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A B S T R A C T

This paper examines the growing field of computational thinking (CT) in education. A review
of the relevant literature shows a diversity in definitions, interventions, assessments, and mod-
els. After synthesizing various approaches used to develop the construct in K-16 settings, we
have created the following working definition of CT: The conceptual foundation required to
solve problems effectively and efficiently (i.e., algorithmically, with or without the assistance
of computers) with solutions that are reusable in different contexts. This definition highlights
that CT is primarily a way of thinking and acting, which can be exhibited through the use par-
ticular skills, which then can become the basis for performance-based assessments of CT skills.
Based on the literature, we categorized CT into six main facets: decomposition, abstraction,
algorithm design, debugging, iteration, and generalization. This paper shows examples of CT
definitions, interventions, assessments, and models across a variety of disciplines, with a call
for more extensive research in this area.

© 2017.

1. Introduction

In the middle ages, only select groups of people (e.g., priests and scribes) could read and write. But as the world evolved, in-
creasingly more people needed these skills. Today, the rapid onset of computers in the 20th century is forcing an analogous revo-
lution where digital literacy is now an essential skill to succeed in our complex, digital 21st century world. And although we don't
all need to become software engineers, the majority of us do use computers daily and need to understand how to communicate
with them to most effectively harness their computing power. Successful communication along these lines is called computational
thinking (CT).

Over the past decade, CT has become a very hot topic in educational research and practice. Thousands of entries appear on
a general Google search regarding its definition, instructional interventions, and assessment. Many of these entries suggest that
CT relates to coding or programming, but considering CT as knowing how to program may be too limiting. According to the
National Research Council (2010), everyone should acquire CT, not only programmers. CT skills include managing information
effectively and efficiently with technologies in our data-driven era (Burke, O'Byrne, & Kafai, 2016; Kim, Kwon, & Lee, 2014; Lu
& Fletcher, 2009; Sanford & Naidu, 2016; Wing, 2010). A workforce with individuals possessing CT skills increases the compet-
itiveness of the United States in the world economic market (NRC, 2010).

Although many programs claim to teach coding skills, rarely do they look deeply at the ways of thinking used in CT. Anal-
ogous to inquiry as a way of thinking scientifically, CT is a set of practices that are entwined with ways of looking at problems
that result in CT skills and understandings. Yet, there is no existing curriculum building a CT foundation of understanding for
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young learners, as there is in Math or Science. Models are needed that help highlight CT within current classroom practices,
because there are too few opportunities to fit new content within existing school curricula. Many problems presented in current
curricula, however, can be approached with CT.

Possessing good CT skills may be a motivator for students to pursue computer science (Allan, Barr, Brylow, & Hambrusch,
2010) and other STEM-related majors (Sneider, Stephenson, Schafer, & Flick, 2014). CT has also been linked to creativity and
innovation (Mishra, Yadav, & the Deep-Play Research Group, 2013; Repenning et al., 2015), and it has important applications in
other STEM areas (Barr & Stephenson, 2011; Sengupta, Kinnebrew, Basu, Biswas, & Clark, 2013). An exact definition of CT,
however, remains elusive (Barr, Harrison, & Conery, 2011; Grover & Pea, 2013).

In this paper, we discuss the various definitions of CT emerging from different disciplines, and we present a definition of CT
in terms of how K-12 educators might think of building a solid foundation for CT in young learners. We break down CT into
the components most often cited in the literature and propose a model for embedding CT learning and assessment within K-12
curricula.

1.1. Definitions of computational thinking

Computational thinking (CT) stems back to the constructionist work of Seymour Papert (Papert, 1980, 1991) and was first
coined as a term in a seminal article by Wing (2006). She explained that CT entails “solving problems, designing systems, and
understanding human behavior, by drawing on the concepts fundamental to computer science” (Wing, 2006, p. 33). As such, it
represents an ability to analyze and then solve various problems. Her arguments provided a fresh perspective on the relationship(s)
between humans and computers, and gave rise to a wave of research on CT.

The most oft-cited definition of CT comes from Cuny, Snyder, and Wing (2010), noting that CT is a thinking process where
“… solutions are represented in a form that can be effectively carried out by an information-processing agent” (as cited in Wing,
2010, p. 1). This relates not only to well-structured problems, but also ill-structured problems (i.e., complicated real-life prob-
lems whose solutions are neither definite nor measurable). Other researchers have come up with their own definitions relative to
their particular research areas. For instance, Barr et al. (2011) concluded that in K-12, CT involves problem-solving skills and
particular dispositions, such as confidence and persistence, when confronting particular problems. Berland and Wilensky (2015)
defined CT as “the ability to think with the computer-as-tool” (p. 630) and suggested using “computational perspectives” as an
alternative to “computational thinking” to emphasize that CT can be constrained by contexts. Additionally, CT has been defined
as “… students using computers to model their ideas and develop programs” (Israel, Pearson, Tapia, Wherfel, & Reese, 2015, p.
264), explicitly linking CT to programming skills.

As described above, CT definitions vary in their operationalization of CT in certain studies, and are not particularly gener-
alizable (e.g., Berland & Wilensky, 2015; Ioannidou, Bennett, Repenning, Koh, & Basawapatna, 2011; Israel et al., 2015). The
definition of CT is evolving as researchers begin to aggregate knowledge about CT.

1.2. Goals and focus

In this paper, we intend to explore the scope and complexity of CT, and establish a clear definition and framework that will aid
in the development of CT pedagogy and assessment, particularly for K-12. At the end, we provide current research examples and
ideas for future research. Our review addresses the following questions: (1) What are the major characteristics and components of
CT? (2) What interventions are (or may be) used to train/enhance CT? (3) What types of measures are used to assess CT? and (4)
What are the main theoretical frameworks/models of CT? Again, our main goal is to derive a general model of CT that may be
used as a framework towards assessing and supporting CT. Our model is derived from an extensive literature review and serves
to guide the development of CT pedagogy and assessment in educational settings.

2. Method

2.1. Procedure

We began by collecting research papers relevant to CT, including peer-reviewed publications and proceedings, plus one acad-
emic report from a national workshop on CT. We searched various databases using the keywords “computational thinking” (quo-
tation marks included), and specified that the term occurred either in the title or in the abstract.

The following online databases and web sites were employed in this search-collection effort:

o ERIC: The Educational Resources Information Center (ERIC) consists of Resources in Education Index, and Current Index to
Journals in Education. ERIC is a broad and popular database containing educational reports, evaluations, and research.

o PsycINFO: This site is hosted by the American Psychological Association, which carries citations and summaries of scholarly
journal articles, book chapters, books, and dissertations, in psychology and related disciplines.

o JSTOR: A database of back issues of core journals in the humanities, social sciences, and sciences. The gap between the most
recently published issue of any journal and the date of the most recent issue available in JSTOR is from 2 to 5 years.
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o Google Scholar: This web site was employed to search for and acquire specific references. Google Scholar is a web site pro-
viding peer-reviewed papers, theses, books, abstracts, and articles from academic publishers, professional societies, preprint
repositories, universities, and other scholarly organizations.

We started the timeline in 2006, when Wing published her seminal article on CT, signaling the beginning of a corpus of re-
search and projects on the topic. After collecting relevant papers, we screened the articles again, sorting them into conceptual
papers and empirical studies. Conceptual papers discussed the general features of CT, providing a theoretical framework or sug-
gesting instructional practices to integrate CT into education. Empirical studies tended to test and justify specific interventions
and measure(s) of CT via qualitative and quantitative research designs. Finally, we integrated the findings from the literature re-
view with empirical research to create our competency model?1 for CT, aiming to facilitate and assess CT in educational settings.

2.2. Inclusion and exclusion criteria

In all, approximately 70 documents – empirical as well as theoretical papers – were initially collected. From this set, a total of
more than 45 documents met the criteria for inclusion in the literature review. The inclusion criteria consisted of relevancy of the
documents to the research topics in this article (e.g., computational thinking skills--characteristics and processes, models, assess-
ments, and interventions). Both experimental and non-experimental studies were included. We created a table summarizing the
full set of 70 papers collected, then deleted papers from the list for the following reasons: (a) poor quality research described in
the paper (e.g., excessive statements and assumptions presented with inadequate support), (b) tangential or no focus specifically
on CT, (c) empirical papers that measured something other than CT as the outcome, and (d) pilot studies that were low quality
and/or reported a small sample size.

3. Results from the literature review

Our review consists of four main parts. We begin by addressing the distinct characteristics of CT. Next, we examine inter-
ventions to support CT followed by CT assessments used in K-12 and higher education. We end with a summary of CT research
models.

3.1. Characteristics of computational thinking

In this section, we define CT and distinguish it from other types of thinking (e.g., systems thinking and mathematical think-
ing). We also discuss CT's relationship with computer science.

3.1.1. Components of CT
Wing (2006) argued that CT does not mean to think like a computer; but rather to engage in five cognitive processes with the

goal of solving problems efficiently and creatively. These include:

1. Problem reformulation – Reframe a problem into a solvable and familiar one.
2. Recursion – Construct a system incrementally based on preceding information.
3. Problem decomposition – Break the problem down into manageable units.
4. Abstraction – Model the core aspects of complex problems or systems.
5. Systematic testing – Take purposeful actions to derive solutions.

Abstraction is the main element undergirding CT (Wing, 2008), where people glean relevant information (and discard irrel-
evant data) from complex systems to generate patterns and find commonalities among different representations (Wing, 2010).
Abstraction has layers, so one must define each layer and clarify the relationships between layers. This involves: (a) abstraction
in each layer, (b) abstraction as a whole, and (c) interconnection among layers. For instance, defining an algorithm is one kind
of abstraction—the “abstraction of a step-by-step procedure for taking input and producing some desired output” (Wing, 2008, p.
3718).

In addition to abstraction and problem reformulation, Barr et al. (2011) argued that CT also consists of data organization
and analysis, automation, efficiency, and generalization. Automation is making a process or system operate automatically; ef-
ficiency means creating optimal solutions; and generalization involves applying CT strategies to solve new problems. Barr and
colleagues also included certain dispositions important to CT, such as confidence, persistence in relation to solving complex tasks,
and the ability to work well in teams. Similarly, CT described by Bers, Flannery, Kazakoff, and Sullivan (2014) includes abstrac

1 A competency model refers to a collection of knowledge, skills, and other attributes that comprise a particular construct (such as CT). It answers the
question: What do you want to say about the person at the end of the assessment? Variables in the competency model are usually called “nodes” and describe the
set of variables on which inferences are based.
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tion, generalization, and trial and error activities. They particularly emphasize the importance of debugging (i.e., identifying and
fixing errors when solutions do not work as expected).

In a comprehensive report by the National Research Council, CT consists of five elements essential and universal across do-
mains (NRC, 2010): (1) hypothesis testing, (2) data management, (3) parallelism, (4) abstraction, and (5) debugging. When solv-
ing a complex problem in any domain, one should generate and test hypotheses systematically to understand how the system
works. It is impossible to test all possibilities, so selecting the right parameters to test is important. Data management involves
gathering data from various sources, processing data patterns, and representing data in a meaningful way. Parallelism refers to
simultaneously processing information from multiple sources or dimensions. Abstraction focuses on modeling the workings of
a complex problem/system. Finally, debugging refers to finding and fixing errors after building up particular models. Recently,
Anderson (2016) explicated five CT components: (1) problem decomposition, (2) pattern recognition, (3) abstraction (i.e., gener-
alization of repeated patterns), (4) algorithm design for solutions, and (5) evaluation of solutions (i.e., debugging).

Based on the foregoing review, researchers have come up with similar CT constituent skills. The components common among
researchers are: decomposition, abstraction, algorithms, and debugging. In our competency model, CT similarly consists of de-
composition, abstraction, algorithms, debugging, as well as iteration and generalization (see detailed definitions, subcategoriza-
tions, and justifications in Section 4).

3.1.2. Differences between CT and other types of thinking skills
Researchers are also studying the differences and similarities between CT and other types of thinking (e.g., Barr et al., 2011;

Grover & Pea, 2013). In this section, we compare CT with mathematical, engineering, design, and systems thinking.
Mathematical thinking involves the application of math skills to solve math problems, such as equations and functions (Sneider

et al., 2014). Harel and Sowder (2005) defined mathematical thinking as global across many problems and “… governs one's
ways of understanding” (p. 31). Mathematical thinking consists of three parts: beliefs about math, problem solving processes, and
justification for solutions. The main commonality between CT and mathematical thinking is problem solving processes (Wing,
2008). Fig. 1 shows the full set of shared concepts of computational and mathematical thinking: problem solving, modeling, data
analysis and interpretation, and statistics and probability.

Engineering involves skills needed to build or transform things in the world in order to construct better lives (Bagiati &
Evangelou, 2016) as well as “applied science and math, solving problems, and making things” (Pawley, 2009, p. 310). The over-
lap between CT and engineering includes problem solving, along with understanding how complex systems work in the real world
(Wing, 2008). However, unlike engineering, CT is intended to help humans understand complex phenomena through simulations
and modeling, which can transcend physical constraints (Wing, 2010). To summarize, CT, mathematical thinking, and engineer-
ing stem from different disciplines. Their differences lie in specific applications in their own domain.

Design thinking requires one to solve problems by thinking as a designer (Razzouk & Shute, 2012). Computational thinking
and design thinking both focus on problem solving. Design thinking, like engineering, focuses on product specification and the
requirements imposed by both the human and the environment (i.e., practical problems). Again, CT is not limited by physical
constraints, enabling people to solve theoretical as well as practical problems.

Fig. 1. Similarities and differences between CT and mathematical thinking. Adapted from Sneider et al. (2014).
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Systems thinking refers to the ability to understand various relationships among elements in a given environment (Shute,
Masduki, & Donmez, 2010). According to the competency model developed by Shute et al. (2010), people with system thinking
skills should be able to: (a) define the boundaries of a problem/system, (b) model/simulate how the system works conceptually,
(c) represent and test the system model using computational tools, and (d) make decisions based on the model. Although CT
and systems thinking both involve understanding and modeling systems, CT is broader than systems thinking, which focuses on
identifying and understanding the workings of a system as a whole. CT aims to solve problems efficiently and effectively, going
beyond modeling and understanding to include algorithmic design, automation, and generalization to other systems/problems. In
conclusion, CT is an umbrella term containing design thinking and engineering (i.e., efficient solution design), systems thinking
(i.e., system understanding and modeling), and mathematical thinking as applied to solving various problems.

3.1.3. Relationship of CT with computer science and programming
Another area in need of clarification involves the relationships among CT, computer science, and programming (Czerkawski

& Lyman, 2015). And although CT originates from computer science (Wing, 2006), it differs from computer science because it
enables people to transfer CT skills to domains other than programming (Berland & Wilensky, 2015).

CT skills are not the same as programming skills (Ioannidou et al., 2011), but being able to program is one benefit of being able
to think computationally (Israel et al., 2015). For instance, Shute (1991) examined the relationships among programming skills,
prior knowledge, and problem-solving skills, within 260 college and technical school students. Participants who had no prior pro-
gramming experience learned programming skills via an intelligent tutoring system. Several assessments were administered to
measure learners' incoming knowledge (i.e., math and word knowledge), cognitive skills (i.e., working memory and information
processing speed), and particular aspects of problem-solving skills (e.g., problem identification, sequencing, and decomposition).
In addition, a criterion test was used to measure learners’ programming skills and knowledge after the intervention. Results from
a factor analysis and hierarchical regression showed that working memory, problem identification, and sequencing solutions are
the best predictors of programming skill acquisition. Thus, CT and programming skills as well as problem solving are closely
related.

In general, the field of computer science is broader than just learning about programming, and CT is broader than computer
science (NRC, 2010; Wing, 2006) in that CT includes a way of thinking about everyday activities and problems. In line with this
perspective, Lu and Fletcher (2009) proposed that teaching CT should not even use programming languages; instead the language
should be based on notions that are familiar to most students to engender the acquisition of concepts like abstraction and algo-
rithms. Like with most of the research targeting CT, its particular relationship to computer programming is evolving.

3.2. Interventions to develop computational thinking

Researchers have attempted to leverage programming tools, robotics, games/simulations, and non-digital interventions to teach
CT knowledge and skills in various educational contexts. The target population ranges from kindergarten to undergraduates. Table
1 summarizes all of the research studies we reviewed, arrayed by intervention tools.

3.2.1. Research on CT using programming tools
Due to its close relationship with computing and programming, CT skills appear to be improved via computational tools, such

as Scratch (MIT, 2003). Regarding the equivalence of programming skills to CT skills, Cetin (2016) compared the effects of em-
ploying Scratch (experimental group) with C language (control group) to teach programming concepts to pre-service IT teachers.
This experiment lasted for six weeks, and the participants (n = 56) completed pre- and posttests relative to their achievement on
and attitudes toward programming. Additionally, nine participants per group were randomly selected to attend semi-structured
interviews. Results showed the experimental group performed significantly better than the control group in terms of programming
knowledge and skills, but there were no between group attitudinal differences.

To promote algorithmic thinking via Scratch, Grover, Pea, and Cooper (2015) designed a seven-week Scratch-based CT course
for 7th and 8th graders (n = 54). Similar to Cetin’s (2016) study, CT gain was measured as pretest to posttest improvement on
programming skills. The aim of this quasi-experiment was to see which approach (face-to-face instruction vs. face-to-face plus
online) supported deep learning relative to computational concepts, such as algorithms, loops, conditionals, and decomposition.
The two conditions were matched in terms of receiving comparable instruction for the same duration of time (i.e., four days per
week, 55 min per day, across seven weeks). Findings revealed that both approaches lead to significantly higher CT gains, and
students in the face-to-face plus online group performed significantly better than those in the face-to-face group. Moreover, both
groups successfully transferred their programming knowledge and skills to text-based programming tasks.

The strength of Scratch is to help young people learn to think creatively, reason systematically, and work collaboratively, and
thus is suitable to facilitate CT. It is easy to use with its drag-and-drop programming method, and provides a meaningful learning
environment where learners engage in specific contexts. Alice (Carnegie Mellon University, 1999) functions similarly, equipped
with ready-made code blocks. Compared with Scratch, it focuses on creating 3D programming projects. It also can be utilized
to train CT. For example, Denner, Werner, Campe, and Ortiz (2014) randomly assigned 320 middle school students to either a
dyadic work group or individual programming. Students' CT skills were measured by their ability to accomplish Alice tasks dur-
ing one semester's course. Results demonstrated that students working collaboratively achieved significantly higher CT scores
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Table 1
Articles reviewed sorted by intervention tools.

Study Setting Participants Intervention Content Measures

Program Duration

Cetin, 2016 Higher
education

56 Undergrads
(pre-service
teachers)

Scratch;
C language

6 weeks Computer
science

Multiple-choice;
open-ended
questions; surveys;
interviews

Grover et al.,
2015

Middle
school

54 7th and 8th
graders

Scratch 7 weeks CT course Multiple-choice;
quizzes; assignments;
text-based coding;
projects

Denner et al.,
2014

Middle
school

320 students Alice
(solo vs.
pairs)

One
semester

Programming Surveys; tasks

Werner et al.,
2012

Middle
school

311 students Alice
(solo vs.
pairs)

One
semester

Programming Surveys; tasks

Atmatzidou &
Demetriadis,
2016

High school 164 students Lego
Mindstorms
Robotics

One year CT course Questionnaires; think-
aloud; interviews

Berland &
Wilensky,
2015

Middle
school

78 8th graders Lego vs.
virtual
robotics

5 days Science Log files; tests;
questionnaires

Basu et al.
(2017)

Middle
School

98 6th graders CTSiM
platform

13 days Ecology, CT Questions;
explanations;
constructing
algorithms

Bers et al.,
2014

Kindergarten 53 students TangibleK
Robotics

20 h CT course Questionnaires

Jenkins, 2015 Middle
school

51 students Snap; Small
Basic

3 h Poem Fill-in-the-blanks;
questions;

Kim et al.,
2013

Higher
education

110 sophomores
(pre-service
elementary
teachers)

PPS 15 weeks Computer
science

Multiple-choice;
surveys

Yadav et al.,
2014

Higher
education

141 undergrads CT module One
week

Educational
psychology

Questionnaires

than students working alone. And collaboration was especially beneficial to students with minimal programming experience.
These findings are consistent with those reported in an earlier experiment conducted by Werner, Denner, Campe, and Kawamoto
(2012) testing 311 middle school students.

Basu, Biswas, and Kinnebrew (2017) similarly viewed CT constructs as programming-related concepts, such as sequencing,
loops, and variables; and they considered iteration, problem decomposition, abstraction, and debugging as CT practices. They
designed the CTSiM platform to integrate ecology and CT learning for 6th graders. Basu et al. employed a pretest/posttest de-
sign to test the effectiveness of scaffolding provided by a virtual agent embedded in CTSiM. Both the experimental (n = 52) and
control (n = 46) groups learned CT and ecology via CTSiM, but only the experimental group received scaffolding. That is, when
students failed a given task 3–5 times, scaffolding was triggered. In that case, the virtual agent provided conversation prompts,
and the students answered by choosing one of the options, which in turn triggered a response from agent. Agent-student conver-
sations were pre-programmed to help struggling students. In the control group, such functionality was disabled. The ecology tests
required students to choose correct answers and provide rationales for their answers. The CT tests required students to predict
outcomes after reading program segments, and build algorithms with CT constructs to model scenarios. Pre- and posttests showed
significant gains in both groups on ecology and CT. And when pretest scores were used as a covariate, the experimental group
(with scaffolding) significantly outperformed the control group in ecology learning gains and CT skills, with effect sizes of 0.36
and 0.31, respectively.

3.2.2. Research using robotics
Another fruitful area in which to develop CT skills is robotics, which is also closely related to programming. Lego robotics is

particularly popular. For example, Lego Mindstorms (http://www.lego.com/en-us/mindstorms) was used to improve high school
students’ (n = 164) CT skills for a year (Atmatzidou & Demetriadis, 2016). The 44 two-hour sessions focused on developing the
following CT skills: decomposing problems, abstracting essential information, generalizing the solution to different problems,
creating algorithms, and automating procedures.
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Solving robot programming problems revealed students’ CT skills, which were measured via rubrics related to the quality of
problem-solving performance. Quantitative data showed that all participants, regardless of their age or gender, improved similarly
on their CT skills following the intervention. Qualitative data generated from interviews and think-aloud protocols confirmed the
effectiveness of robotics to develop CT concepts and solve problems effectively.

Lego robotics is a physical activity. Berland and Wilensky (2015) compared the effects of Lego robotics (n = 34) versus virtual
robotics (n = 44) among 8th graders. Pre- and posttests on pseudo-code programming measured CT gains. Both groups of students
significantly improved their CT skills, and there was no significant posttest difference between the two groups. It is interesting to
note that the two groups perceived the problems differently. That is, the virtual robotics group tended to perceive the problem as
a whole and then attempt to decompose the problem down to its details; while the physical robotics group initially focused on the
constituent parts.

How early can children learn CT skills? One study looked at teaching kindergarten students (n = 53) CT skills (Bers et al.,
2014). These researchers developed the TangibleK Robotics curriculum (http://ase.tufts.edu/DevTech/tangiblek/) which included
20 h of instruction and one final project to measure students' development of CT in terms of debugging, sequencing, loops, and
conditionals. However, repeated measures between tasks did not reveal any linear CT development in kindergarten students. The
researchers speculated that either (a) kindergarten students are simply too young to develop CT skills, or (b) the robotics interven-
tion was too difficult for them (Bers et al., 2014). Therefore, it is important to teach CT concepts in a way suitable for students’
developmental stages.

3.2.3. Research using game design and other intervention tools
AgentSheets is an authoring tool that uses game design to teach CT, as well as to promote students' interest and skills in com-

puter science (see Ioannidou et al., 2011 for details). AgentSheets provides a low entry bar for inexperienced students, yet does
not restrain students with advanced abilities from creating complex game systems. In one study, teachers and community college
students in two summer workshops learned how to animate interactions among objects via programming, using five AgentSheets
design tasks (Basawapatna, Koh, Repenning, Webb, & Marshall, 2011). Unlike other studies, this research measured CT based
on students' knowledge of relevant patterns, defined as object interactions, such as collision and absorption. These CT patterns
represent the intersection of games and science simulations. After two weeks of intervention, the authors tested the participants’
CT skills with eight questions, each representing a phenomenon sharing CT patterns across the five games (e.g., sledding colli-
sion). Participants needed to identify and justify usage of the CT patterns to create simulations of the phenomena. Generally, all
participants did very well in correctly identifying CT patterns, as indicated by the percent correct of their responses. However, the
authors noted that the results do not necessarily mean that students could transfer CT knowledge from game design to simulations
of scientific phenomena.

Teaching CT does not necessarily require digital tools. A paper-and pencil programming strategy (PPS) was created for
non-computer science majors (n = 110) (Kim, Kim, & Kim, 2013). It enabled participants (n = 55) in one group to choose their
preferred way to visualize and represent programming ideas (e.g., via concept maps, tables, words, or symbols). Its effects were
compared to another group, who engaged in typical course instruction (n = 55) for 15 weeks. Typical instruction in this case
refers to the regular programming course, using LOGO (Softronics, Inc., 2002). Pre- and posttests revealed that students using
the paper-and-pencil programming strategy showed significantly better understanding of CT and more interest in CS, than those
learning via typical course instruction. The authors therefore argued that teaching CT without computers might be effective and
efficient for non-computer science majors.

A lecture-based CT instructional module could also change pre-service teachers’ understanding of and attitudes toward inte-
grating CT in their classrooms (Yadav, Mayfield, Zhou, Hambrusch, & Korb, 2014). The researchers tested a 100-min module
focused on CT concepts such as decomposition, abstraction, algorithms, and debugging. After training, participants completed
questionnaires with open-ended questions related to CT and its connections with various disciplines. Compared to the no-treat-
ment control group (n = 154), a higher percentage of those in the experimental group (n = 141) who received the CT training
considered CT a way of thinking to solve problems, with or without the help of computers. Moreover, they realized that CT was
not restricted within the field of computer science. Conversely, the control group viewed CT narrowly—as using computers to
complete specific computing tasks and restricted to subjects involving computers, like computer science and math.

3.2.4. CT skills undergirding programming, robotics, and game design
The rationale for using programming, robotics, and game design to improve CT skills is because each one of these areas em-

phasizes various CT components. For instance, writing computer programs requires the analysis of the problem (e.g., determining
the goal to achieve), and then breaking the problem down to its constituent processes (e.g., identifying sub-goals and associated
steps to achieve the goal). Writing efficient programs requires abstraction and generalization. For instance, if one step needs to
be repeated four times, an efficient solution involves looping the step rather than writing the same code four times. Additionally,
part of the programming code may be reused within similar problems, with minor adjustments, rather than rewriting a new pro-
gram from scratch. And to test the correctness and efficiency of a program, debugging is necessary. That is why programming is
frequently used to promote CT skills.

Similarly, robotics provides learners with tactile experiences to solve problems via CT skills. Learners need to identify the
general problem/goal for the robot, then decompose the problem (e.g., figuring out the number of steps or sub-goals to accom
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plish the goal). Towards this end, learners develop algorithms for the robot so that it can follow the instructions and act accord-
ingly. When the robot does not act as expected, debugging comes into play. Debugging requires the iterative processes of system-
atic testing and modifying.

Finally, as with programming and robotics, game design and gameplay entail various goals for players to solve. These can be
smaller goals represented within levels of the game, and larger goals represented by boss levels and/or part of the narrative. To
succeed, players need to derive solution plans, and if a plan fails, then a modified plan is developed. By systematically testing
various plans, players find the most effective strategy to overcome challenges in the game. Moreover, skillful players are able to
adopt strategies used before to solve new problems. Thus, problem decomposition, systemic testing and debugging, generaliza-
tion, and iteration are skills required in gaming and are important components of CT.

3.3. Assessment of computational thinking

Because of the variety of CT definitions and conceptualizations, it's not surprising that accurately assessing CT remains a
major weakness in this area. There is currently no widely-accepted assessment of CT. This makes it difficult to measure the ef-
fectiveness of interventions in a reliable and valid way (Grover & Pea, 2013; Kim et al., 2013; Settle et al., 2012). Having no
standard CT assessment also makes it very difficult to compare results across various CT studies. Researchers tend to develop and
apply their own CT measures in various studies, depending on their particular operationalization of CT (Kim et al., 2013).

Questionnaires and surveys are the most commonly used measure for knowledge of and/or attitudes towards CT (e.g.,
Atmatzidou & Demetriadis, 2016; Denner et al., 2014; Yadav et al., 2014). For instance, Cetin (2016) used surveys to measure
preservice teachers' conceptual understanding of programming constructs, like arrays and loops, as well as attitudes towards com-
puter science. Yadav et al. (2014) similarly used surveys to examine pre-service teachers' understanding of CT and their attitudes
toward integrating CT into their teaching in the future. Kim et al. (2013) designed questionnaire items to specifically measure
college sophomores’ logical thinking, as well as conceptual understanding of, and interest in computer science. Viewing CT as
the core of computational literacy, Jun, Han, Kim, and Lee (2014) administered questionnaires on computational literacy among
elementary school students.

Other researchers have conducted interviews and observations with participants to understand the development of CT skills
(e.g., Cetin, 2016; Israel et al., 2015). Some of the researchers assessed CT skills through projects and related tasks. For instance,
Denner et al. (2014) and Werner et al. (2012) developed a performance-based assessment to measure CT by letting middle school-
ers complete projects, such as a three-stage task designed with Alice. Students needed to solve particular problems (e.g., saving a
fairy from a magic forest). Other researchers tested learning gains of subject area knowledge, after incorporating CT into discipli-
nary instruction (e.g., Cetin, 2016; Sengupta et al., 2013).

3.3.1. Scratch-based assessments
Several groups of researchers have used Scratch to develop systematic CT assessments. Brennan and Resnick (2012) claimed

that Scratch-based projects could support long-term learning by making learning meaningful within a particular context. They
also argued for a dynamic measure to assess Scratch users' (8–17 years old) CT abilities over time, revealing the progression
of learning and measuring both conceptual understanding and application of CT skills. Their CT assessment included formative
analysis, interviews, and design projects. The formative analysis involved evaluating users’ portfolios to see the development of
CT via projects completed over time. Interviews allowed the researchers to dig deeper into the thinking processes of users. There
were also three sets of design projects, varying in difficulty, which were employed as performance measures. Each set included
two tasks of the same difficulty level but with different representations. Users had to choose one task from each set to describe
and debug.

To align with a particular Scratch-based CT course for middle schoolers, Grover et al. (2015) designed a system of formative
and summative assessments to support and measure CT skills. Multiple-choice items and quizzes throughout the course resem-
bled the pseudo code in Scratch. The items were used to consolidate students’ knowledge of programming concepts, with timely
feedback serving to explain various ideas and procedures. Course assignments were completed using Scratch and were evaluated
by specific rubrics. The summative measure was a final test with multiple-choice items plus open-ended questions, along with a
final project that was completed with a partner. In addition, the researchers developed a test based on AP programming exams to
test whether students could transfer what they had learned to real text-based programming code.

Another Scratch-based assessment is called PECT (progression of early computational thinking), designed for elementary
school students (Seiter & Foreman, 2013). This represents a guideline to measure three facets of CT. The first facet included
evidence variables, which were collected directly from the command categories embedded in Scratch (e.g., operators and condi-
tionals). The second facet was pattern variables (e.g., motion and interactivity), which are broader than the specific evidence from
the pseudo code library in Scratch. The last facet was CT concepts, such as decomposition, abstraction, and algorithms. Students’
proficiency levels (i.e., basic, developing, and proficient) per facet were measured according to rubrics.

3.3.2. Game/simulation-based assessment
Other researchers have proposed assessing CT via CT pattern analysis (CTPA) in K-12 schools. CT patterns are abstract pro-

gramming concepts related to object interactions that students use to develop games and simulations (Basawapatna et al., 2011;
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Ioannidou et al., 2011). Building object interactions in games required 12 CT patterns, defined by Ioannidou et al. (2011).
Repenning et al. (2015) subsequently refined those 12 patterns to nine aspects, to measure transfer of CT from gaming to mod-
eling scientific phenomena in STEM courses. CTPA is used to generate spider web-like graphic reports of the nine patterns, by
comparing students' products with exemplars. This type of report provides visual information about the nature and degree of stu-
dents' abilities, and which aspects need improvement. Reports over time can demonstrate students’ progression of CT skills. Thus,
teachers could provide instructional support given access to such graphic reports.

3.3.3. Validated CT scales for generic usage
The aforementioned assessments were designed solely for the purpose of a particular study based on a specific intervention.

Recently, researchers have developed a scale to measure CT (Román-González, Pérez-González, & Jiménez-Fernández, 2016).
This scale includes 28 items and takes about 45 min to complete. It focuses on computational concepts, like directions and se-
quences, loops, if conditionals, and simple functions. The reliability of this scale is 0.79. The authors tested its validity among
1251 Spanish students from 5th to 10th grades. The results showed significant correlations with other standardized tests on mental
abilities and problem-solving skills. The problem-solving test explained 44.7% of the variance in the CT scale, while the mental
ability test explained 27%. Thus, the authors concluded that CT is more similar to problem solving skills and less aligned with
reasoning, spatial, and verbal abilities.

Similar efforts have been conducted and reported by Korkmaz, Çakir, and Özden (2017). The researchers developed a CT
scale comprised of 29 items, measuring five factors (i.e., creativity, cooperation, algorithmic thinking, critical thinking, and prob-
lem solving). They first conducted exploratory factor analysis (n = 726) and then confirmatory factor analysis (n = 580) among
Turkish college students. The results showed good data fit indices and evidence that the items measured targeted constructs. The
reliabilities for the five factors ranged from 0.73 to 0.87. This scale measures CT differently from the previous one because the
researchers operationalized CT differently, based on their own CT framework (described in Section 3.4.).

In conclusion, this review of CT assessments showcases the pressing need for a reliable and valid assessment of CT skills
across educational settings, so that researchers can determine whether their CT interventions are effective or not, rather than just
looking at learning gains or attitudinal changes via homegrown measures. The assessment of CT also calls for dynamic informa-
tion that can reflect learners’ abilities and progression over time.

3.4. Computational thinking models

Having reviewed CT components, interventions, and assessments, this section examines theoretical frameworks of CT. As
with CT definitions and assessments, there are no agreed-upon models or frameworks for CT (Atmatzidou & Demetriadis, 2016).
In this section, we examine four CT models proposed by researchers.

First, Atmatzidou and Demetriadis (2016) presented a simple, descriptive CT model, based on their operationalization of CT
in previous studies. The model consists of five facets: abstraction, generalization, algorithms, modularity, and decomposition. It
also provides examples of behaviors that students should demonstrate as evidence for each facet (see Atmatzidou & Demetriadis,
2016, p. 664 for details). Briefly, abstraction means distilling the core patterns from complicated systems; generalization involves
applying problem-solving strategies to different contexts; algorithms refer to ordered steps/instructions to implement solutions;
modularity means the automation of problem-solving solutions; and decomposition entails the breakdown of complex systems/
things into manageable pieces.

The second model consists of CT concepts and abilities that should be incorporated into K-12 courses like math, science, so-
cial studies, and language arts (see Barr & Stephenson, 2011, p. 52). It defines core CT facets (i.e., data collection, data analysis,
data representation, decomposition, abstraction, algorithms, automation, parallelism, and simulation) across various disciplines.
These CT facets should have different representations in different subjects (e.g., representing data with charts or tables in math,
and representing linguistic patterns in language arts). However, the specific demonstrations of CT facets within particular disci-
plines are not clearly stated in the paper. Moreover, the provided examples of teaching practices are too vague for teachers to
actually employ them. For example, abstraction in science class is described only as modeling a physical entity. The weakness of
this model stems from (a) no clear definitions per CT facet making operationalization very difficult, and (b) failure to distinguish
concepts from abilities (e.g., abstraction is both a concept and an ability). Thus, this model has room for improvement before
serving as a guideline for teachers in K-12 education.

Brennan and Resnick (2012) presented a CT framework within the context of using Scratch to facilitate CT. They categorized
CT into three areas—concepts, practices, and perspectives. Table 2 shows our summary of their framework.

A review paper on integrating CT in K-12 settings by Lye and Koh (2014) was based on the Brennan and Resnick framework.
Later, Zhong, Wang, Chen, and Li (2016) revised that model (see p. 565 for details) by adding instruction into the CT concepts,
and iteration into the CT practices. They also rephrased CT perspectives to emphasize creativity and collaboration. However, they
did not elaborate on those modifications, which makes it hard to interpret the revised model.

A fourth recent model aims to merge CT and regular classroom instruction (Weintrop et al., 2016). The researchers analyzed
34 lesson plans for high school math and science courses by coding teaching practices that related to CT facets. Then they cat-
egorized the specific facets into broader CT practices, and refined the categorization after consulting with lesson plan designers,
in-service high school teachers, and experts in CT and curriculum design. Finally, they came up with a taxonomy containing four
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Table 2
Summary of CT framework proposed by Brennan and Resnick (2012).

CT Concepts Sequences: Instructions for computer to execute behaviors
Loops: Repeat the same instruction for a specified number of times
Parallelism: Concurrence of multiple instructions
Events: Triggers for certain actions to happen to create interactive environments
Conditionals: Constraints on execution of instructions, allowing for different outcomes
Operators: Mathematical and string operations
Data: Data storage, retrieval, and update

CT Practices Being incremental and iterative: Iterative processes to design and implement solutions, step by step
Testing and debugging: Trial and error processes to test and remove malfunctions as warranted
Reuse and remix: Building reusable instructions; building new products on others' work
Abstraction and modularity: Modeling complex systems with basic elements

CT Perspectives Expressing: Perception of computation as a way of expression and creation
Connecting: Perception of computation as a way of interacting and working with others
Questioning: Raising questions and using technology to solve real life problems

CT categories with 22 CT practices (see Table 3). Their taxonomy is based on specific classroom activities and presented con-
crete examples of CT classroom activities, showing how lesson plans can be designed by following the taxonomy. This model
is tailored to STEM courses in high school, and shows promise with regard to integrating CT in secondary education. However,
more research is needed to validate this model.

Lacking a consistent model might cause problems in designing interventions to support CT learning and in assessing CT
knowledge and skills in various educational settings. This leads to the next part of this paper; namely, our proposed competency
model of CT, which can be used to guide assessment and support of CT skills.

4. Our computational thinking definition and framework

Drawing from the aforementioned definitions and models, we define CT as the conceptual foundation required to solve prob-
lems effectively and efficiently (i.e., algorithmically, with or without the assistance of computers) with solutions that are reusable
in different contexts. As stated earlier, the components of CT that arise most often in the literature are: abstraction, decomposition,
algorithms, and debugging. Our model attempts to understand the cognitive processes underlying each of these CT facets and the
associated behaviors that can help us develop a competency model that can be used for the assessment of CT. We additionally
identify iteration and generalization as two more skills that are important in the development of CT.

Our model of CT emphasizes the importance of approaching problems in a systematic way. Problem decomposition involves
breaking a complex problem into smaller parts and using systematic processes to tackle each of those smaller problems. Itera-
tive, systematic debugging ensures that each part of the smaller problems is solved efficiently and with no loose ends. Abstrac-
tion is the act of finding patterns within problems and solutions, and thus being in a position to generalize solutions for sets of

Table 3
Taxonomy of CT in STEM courses, adapted from Weintrop et al. (2016).

CT Category CT Practice Definition

Data Practices Data collection Gather data using multiple computational tools
Data creation Generate data for large and complex systems
Data manipulation Reorganize data in a meaningful way
Data analysis Use computational tools to analyze data and draw valid conclusions
Data visualization Communicate and present data in multiple ways

Modeling and Simulation Conceptual understanding Understand concepts deeply through modeling
Testing solutions Solve problems through hypothesis testing
Model assessment Evaluate the effectiveness of models
Model design Select essential elements for models
Model construction Implement new models or extend existing models

Computational Problem Solving Solution preparation Decompose and reframe problems using suitable computational tools
Programming Possess basic programming knowledge and skills
Tools selection Evaluate pros and cons of plausible computational tools
Solution evaluation Assess pros and cons of possible solutions
Solution development Develop solutions that can be applied to a wide range of problems
Abstraction Distill the most relevant information from a problem
Debugging Identify and fix errors

Systems Thinking System investigation Understand system functions as a whole
Understanding relationships Understand the operation and interrelationship of elements in a system
Multilayered thinking Think from multiple perspectives and levels
Communication Convey information effectively and efficiently
System management Define scope of systems and manage complexity
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similar problems. Finally, algorithm design allows the development of re-usable tools/procedures for solving classes of problems.
Based on prior research, we have categorized CT into six main facets: decomposition, abstraction, algorithms, debugging, it-

eration, and generalization. The six facets of our CT model are described in Table 4.
This framing of CT underpins, and may be evidenced through, a variety of K-12 subject areas including Mathematics, Science, 

and even English Language Arts.

4.1. Comparison with other models

Our model focuses on the underlying conceptual foundation required to approach problems via a CT perspective and how that 
kind of CT perspective can be highlighted and supported in current K-12 subjects. This is in contrast to models that focus on just 
one specific subject area, such as Brennan and Resnick (2012) who limit their model of CT to concepts related to coding. The 
three facets in their model are hierarchical with the foundation comprised of programming concepts, like loops and conditionals. 
Their next layer relates to computing practices built on the conceptual knowledge, whereas the highest layer represents perspec-
tives on computing (e.g., a way of expression, creation, and communication).

Weintrop et al., ’s 2016 model is derived from high school teaching practices that occur in STEM courses. The four facets in 
their model represent a collection of possible classroom activities from which teachers can select the most relevant ones to facil-
itate CT acquisition. Thus, their model is restricted to high school STEM course settings, where we feel that a foundational basis 
for CT starts much earlier, analogous to scientific inquiry or mathematic reasoning.

4.2. Examples of emerging models of K-12 CT

Our competency-based model of CT knowledge and skills strives to inform assessment methods to measure the foundational 
understandings of CT in K-12 learners. Several research groups are just starting attempts to measure CT in K-12 settings. Here 
we present several examples, ending with an illustration of the co-authors’ assessment-related work on the conceptual foundation 
of several important CT facets; namely problem decomposition, abstraction, and algorithm design.

As noted earlier, several research groups are studying learners’ coding in Scratch. A tool called Dr. Scratch (http://www. 
drscratch.org/) is currently in Beta test, and used as the basis to analyze Scratch code by quantifying the usage of loops, sequences, 
and other logistical facets of coding outlined by Brennan and Resnick (2012).

Researchers at Stanford (Grover et al., 2015) designed and implemented a middle school curriculum called Foundations for 
Ad-vancing Computational Thinking (FACT). FACT strives to get a comprehensive picture of students’ CT skills by 
examining cognitive, interpersonal, and intrapersonal variables. FACT uses pedagogical strategies to support transfer from 
block-based to text-based programming, along with formative and summative assessments (including quizzes and tests as well 
as open-ended programming assignments) related to the acquisition of computational thinking skills. Their findings show 
that students ages 11–14 using the FACT curriculum experience improved algorithmic learning, understanding of computing, 
and transfer of skills from Scratch to a text-based programming context. Building on this research, Grover (2017; see http://
stemforall2017.videohall. com/presentations/872) suggests a framing of Variables, Expressions, Loops, and Algorithms (VELA) 
to prepare young learners for CT.

Research underway by EdGE at TERC?2 involves studying the development of CT within the logic puzzle game, Zoombinis. 
EdGE studies how game-based behavior can predict implicit knowledge and help teachers support explicit STEM learning in the 
classroom (Rowe, Asbell-Clarke, & Baker, 2015). Implicit knowledge refers to knowledge that may not yet be formalized or ex-
pressed by a learner, but may be evident through actions and behaviors.

In Zoombinis, players engage in many cycles of CT strategy development that can be evidenced by their patterns of activity 
in the game. In the game, players are challenged to sort Zoombinis according to underlying logic rules (e.g., the puzzle named 
Allergic Cliffs will reject Zoombinis with certain features, or a combination of features in upper levels—see Fig. 2).

Players typically move from trial-and-error (testing arbitrary Zoombinis) to a systematic testing pattern, where they use prob-
lem-solving strategies, some of which researchers can identify as evidence of CT. For instance, players may consistently test if 
Zoombinis with one or more common features (e.g., those with glasses) help the student identify a pattern to solve the puzzle. This 
change, from trial-and-error to systematic testing provides evidence of problem decomposition. As players accumulate evidence, 
they may see common patterns and start testing towards a partial solution, eventually demonstrating their ability to abstract the 
patterns into an underlying rule of the puzzle. Successful players exhibit repeated strategies, or algorithms, implemented over a 
collection of puzzles. For example, once players adopt the strategy of trying one variable at a time, and then implementing sin-
gular pieces of information into a final solution, that pattern can be observed across multiple puzzles (and other problem-solving 
situations).

2 TERC is a non-profit studying math and science education innovations since 1966. In 2009, the Educational Gaming Environments group (EdGE) was
founded to study STEM learning in digital games.
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Table 4
Summary of our CT facets and their definitions.

Facet Definition

Decomposition Dissect a complex problem/system into manageable parts. The divided parts are not random pieces, but functional elements that
collectively comprise the whole system/problem.

Abstraction Extract the essence of a (complex) system. Abstraction has three subcategories:
(a) Data collection and analysis: Collect the most relevant and important information from multiple sources and understand the rela-

tionships among multilayered datasets;
(b) Pattern recognition: Identify patterns/rules underlying the data/information structure;
(c) Modeling: Build models or simulations to represent how a system operates, and/or how a system will function in the future.

Algorithms Design logical and ordered instructions for rendering a solution to a problem. The instructions can be carried out by a human or
computer. There are four sub-categories:
(a) Algorithm design: Create a series of ordered steps to solve a problem;
(b) Parallelism: Carry out a certain number of steps at the same time;
(c) Efficiency: Design the fewest number of steps to solve a problem, removing redundant and unnecessary steps;
(d) Automation: Automate the execution of the procedure when required to solve similar problems.

Debugging Detect and identify errors, and then fix the errors, when a solution does not work as it should.
Iteration Repeat design processes to refine solutions, until the ideal result is achieved.
Generalization Transfer CT skills to a wide range of situations/domains to solve problems effectively and efficiently.

Fig. 2. Screen capture of the “Allergic Cliffs” level in Zoombinis.

To validate student learning of these facets of CT as a function of playing Zoombinis, EdGE and Empirical Games have de-
signed a set of online assessment items that focus on several of the fundamental facets of CT: problem decomposition, abstraction,
and algorithm design. Researchers are currently completing a validation study with 300 elementary and middle school learners.
The assessments were conceptually and structurally the same for both elementary and middle school students, but differed in
terms of difficulty (e.g., based on number of variables to consider in a pattern and size of the array for abstraction problems). The
example items shown in this paper are from the elementary school version of the assessment.

The assessment for problem decomposition uses a series of progressively harder puzzles, similar to the game called Mas-
termind (the board game developed by Meirowitz in 1970; see https://boardgamegeek.com/boardgame/2392/mastermind) where
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learners must use feedback from the game to figure out which values per graphical feature (color and/or shape and/or pattern) are
required to solve a puzzle (see Fig. 3; left side is the initial problem, and right side is receiving feedback on the current test). The
learner needs to drag one object at a time into the test box to find the correct color (and in more difficult levels—also shape and
pattern) in as few tries as possible. Incorrect choices are placed in the “not solutions” box. Feedback per object is represented by
a green check per correct color/shape/pattern, and a red X for an incorrect attribute.

For abstraction, pattern-matching puzzles require learners to identify an underlying rule. The learners drag objects from a pool
on the right into the gray cells on the left to complete the pattern, and thus applying the inferred rule. Each colored shape can only
appear once in the solution. See Fig. 4.

For algorithm design, players must align a sequence of arrows (in advance) to guide a character along a path in a maze that
fits specified criteria. In Fig. 5, the sequencing task requires the learner to insert directional arrows, along with the number of
iterations as warranted, to guide a leprechaun to a pot of gold, in the fewest steps possible, while avoiding certain obstacles.

Finally, the CT assessment for the Zoombinis study includes a set of general pattern recognition items (Raven's Progressive
Matrices, RPM; Raven, 1981) as a baseline of learners' ability to infer and apply different patterns in increasingly complex situa-
tions. Raven (2000) pointed out that the RPM focuses on two components of general cognitive ability–eductive and reproductive
ability. Eductive ability involves making sense out of chaos and generating high-level schema to handle complexity. Reproduc

Fig. 3. Simple item in CT assessment for problem decomposition.

Fig. 4. Example item in CT assessment for abstraction.
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Fig. 5. Simple sequencing/algorithmic design item in CT assessment.

tive ability is the ability to recall and reproduce information that has been explicated. Rule application in general is the behavior
of following the basic rules of a problem in order to solve the problem. It is an outward expression of the solvers' perception of
the problems' features, via both eductive and reproductive abilities. An example is shown in Fig. 6. For each item, learners click

Fig. 6. Example CT assessment item from Raven's for pattern identification.
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and drag the correct option among the eight possible options at the bottom to complete the pattern at the top—where the solution
applies horizontally, vertically, and diagonally.

These assessments strive to examine the fundamental cognitive underpinnings of CT in an abstract and non-contextual manner.
EdGE is using these assessments in combination with Educational Data Mining of game behaviors in Zoombinis, and observa-
tions of classroom CT learning to get a full picture of CT learning of students in grades 3–8.

5. Discussion

In this review, we analyzed existing definitions of CT, with a focus on literature that could help describe the conceptual foun-
dation of CT that should guide learning and assessment in K-12 settings. We discussed how CT is similar to, and distinct from
other ways of thinking (e.g., mathematical thinking and systems thinking), and described the relationships between CT and com-
puter science. We reviewed interventions and assessments used to develop and measure learners’ CT skills, ranging from kinder-
garten to college level. Finally, we presented examples of research striving to measure the development CT in experiences for
K-12 learners. Our goal with this review paper was to synthesize the literature in order to provide a general framework of CT,
including its definition, facets, and elaboration per facet, to develop a model of CT that guides K-12 CT learning and assessment.

This review of the literature has shed light on a number of gaps in CT research. For instance, a generally agreed-upon defini-
tion of CT is missing in the literature, along with a specification of its components (Wing, 2008). Inconsistent term usage occurs
in many papers, such as conflating computer science, computer programming, and CT (Czerkawski & Lyman, 2015; Israel et al.,
2015).

The immaturity of the field that results in this ambiguity is compounded when looking at education. Teachers are generally
unfamiliar with CT and have difficulty finding connections between CT and their current curricula. Designing and developing a
reliable and valid CT assessment is key to successful education of CT embedded in multiple disciplines (Grover & Pea, 2013).
But lacking a standard definition to operationalize CT consequently leads to research where measurements vary greatly across
studies, which makes the results less convincing and certainly difficult to compare.

Another issue that needs to be resolved concerns the difficulty in judging whether in-class CT interventions actually achieve
their desired results (Settle et al., 2012). Again, researchers have pointed out the difficulty of assessing CT in classrooms, and
have called for real-time assessment to provide learning progression data per student to support teachers’ instruction (Bers et
al., 2014; Wolz, Stone, Pearson, Pulimood, & Switzer, 2011). The framework we have proposed can be a guideline to develop
assessment tasks that elicit evidence for specific CT skills. The examples we present of how CT is being measured in Scratch,
Zoombinis, and FACT are intended to highlight these possibilities.

Studies on transfer of CT are also needed (Bers et al., 2014). One problem is how to identify the application of CT in other
domains (Czerkawski & Lyman, 2015). Efforts have been made by a few researchers, such as Ioannidou et al. (2011), who tried
to examine the transfer of CT acquired from games to math and science courses. Similarly, Repenning et al. (2015) aimed to in-
vestigate transferred CT skills from games to the creation of simulations of scientific phenomena. Grover et al. (2015) found that
students could apply computational concepts learned from Scratch to specific text-based programming languages, which is quite
promising. In any case, the long-term retention of CT skills, along with the application of CT skills to other contexts and domains,
is under-researched.

A final area deserving research attention involves gender differences in the development of CT. Females are often under-
represented in STEM related subjects, particularly once they reach college. Researchers may consider utilizing CT to motivate
learners, especially females, to major in science fields (e.g., Grover & Pea, 2013; Kazimoglu, Kiernan, Bacon, & Mackinnon,
2012; Repenning et al., 2015). However, the results of studies examining gender differences are inconsistent. Atmatzidou and
Demetriadis (2016) reported that girls’ CT skills improved significantly after intervention, and that ultimately girls and boys
reached the same skill level. Girls tend to spend significantly more time learning online after school, resulting in better perfor-
mance than boys (Grover et al., 2015). However, no gender differences were reported by Werner et al. (2012) and Yadav et al.
(2014).

Computational thinking needs to be demystified (e.g., Barr & Stephenson, 2011). Towards this end, we have developed a de-
finition and shown examples of a model that: (a) considers CT as a logical way of thinking, not simply knowing a programming
language; (b) particularly focuses on conceptual development required to engage in problem decomposition, abstraction, algo-
rithmic design, debugging, iteration, and generalization; (c) examines performance-based competencies related to each of these
facets of CT, and (d) can be strengthened and emphasized within existing (e.g. STEM) curricula. Our CT model presented in this
paper is intended to be broadly applicable, while specific enough to inform measurement of CT learning—overall and at the facet
level (for diagnostic purposes). Current research is in progress to validate this claim. We anticipate the next few years will bring
many empirical studies to help refine this model for use across wide-ranging contexts.
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