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Abstract The infinitesimal generators of Lévy processes in Euclidean space are
pseudodifferential operators with symbols given by the Lévy-Khintchine formula.
This classical analysis relies heavily on Fourier analysis which, in the case when the
state space is a Lie group, becomes much more subtle. Still the notion of pseudo-
differential operators can be extended to connected, simply connected nilpotent Lie
groups by employing the Weyl functional calculus. With respect to this definition,
the generators of Lévy processes in the simplest step 3 nilpotent Lie group G are
pseudodifferential operators which admit C.(G) as its core.
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1 Introduction

Let K be a Lie group with the identity e and let X; be a Lévy process with values in K
starting at e. One obtains a semigroup of operators (7(f), t > 0) on the Banach space
Cy(K) of functions on K which vanish at infinity, by defining

(T Hk) = E(f(kX))

foreacht > 0,k € K and f € Cy(K).
When K = R” the characteristic function of the process X; is given by the Lévy-
Khintchine formula

E(ein/) — et(p(u)

for allu € R", t > 0, where

1
(p(u)=im~u—fu«au+/
2 R

ey —1—i v(dy). (1)
"\{0}< 1+ |y|2>
Here m € R", a is a non-negative symmetric 7 x n matrix and v is a Lévy measure on
R™\{0} (see [6] for details).
Let the differential operator D be defined on Cy(R") by D = (D, ..., D,) with
D= %% The generator A of this semigroup satisfies the relation
ax;

A =o(D) ()

where ¢ is as in Eq. 1. Indeed, one makes the observation that A is in fact a pseudo-
differential operator (see [8, pp. 139-170]) with symbol ¢(u) [1].

There has been interest in extending this characterization of Lévy processes to
Lie groups, including the book by Liao [11]. For an arbitrary Lie group K, one may
define the group Fourier transform fofa suitably chosen function by

for) = /K fUom k) dk, 3)

where 7 is a unitary irreducible representation of K and dk is Haar measure (see
[7]). This Fourier transform may be inverted if a complete set of unitary irreducible
representations of K is known. Fourier inversion is necessary when formulating a
theory of pseudo-differential operators. Because the representation theory of Lie
groups is only fully understood for specific subclasses of Lie groups, Eq. 3 might
have to be adopted to each case separately.

In the current paper we consider a step 3 nilpotent group. If K is a general nilpo-
tent group, then Kirillov’s method of co-adjoint orbits provides explicit formulae of
all unitary irreducible representations of K (refer to Theorem 2 below for details). In
[4], Beltita and Beltita apply this technique to describe the Weyl functional calculus
for arbitrary nilpotent Lie groups. In what follows, we make use of this symbolic
calculus, and of general results from [2] to describe the quantized generator L7 of a
Lévy processes X, in a step 3 nilpotent Lie group G. We describe G and the collection
of all unitary irreducible representations of G in Sections 2 and 3. In Section 4 we
describe the Weyl functional calculus for G and in Section 5 we prove the following
theorem which is the main result of this paper.
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Lévy Processes in a Step 3 Nilpotent Lie Group

Theorem 1 The operator L™ is a pseudo-differential operator. Moreover, the space
CX(R) is a core for L.

Here C2°(R) denotes the collection of infinitely differentiable functions of com-
pact support on R.

The case when K is the Heisenberg group was treated in [2]. Then one may make
use of the classical Schrodinger representations. The resulting pseudo-differential
calculus (referred to as the classical Weyl functional calculus) has been used to
express the generators of these semigroups as

1 :
Az HX) = @m) ™" /R o <5<x +9), s) SO f(ydyde.

Here one works through the Schrodinger representations and deals not with the
original semigroup generator, but with their images A, (henceforth referred to as
the quantization of the generator A). Lévy processes in the Heisenberg group have
been thoroughly investigated; the reader may refer to the work of Applebaum and
Cohen in [2] for a complete treatment of the Heisenberg group case.

We restricted our study to finding an explicit form of the quantized generator in
the simplest step 3 nilpotent Lie group which is often called the Engel group, and
as a result developed the method which is potentially applicable to a larger class of
nilpotent groups. Finding exact expressions of unitary irreducible representations as
in Proposition 1 may be difficult in groups of higher dimension because this method
depends on a potentially complicated parametrization of the coadjoint orbit space.
One group for which this might be a tractable problem is the 5-dimensional Cartan
group; we intend to complete our preliminary results in a forthcoming article.

2 A Step 3 Nilpotent Lie Group

Let G denote R* with the multiplication law

{wr, x1, y1, 21} * {wo, X2, y2, 22} = {w] + way, X1 + X2, Y1 + Y2 + wixy,

wi1Xo
21+ 22+ wy (y2+ > )}

With respect to this operation G is a Lie group with identity {0, 0, 0, 0} and inversion
given by

wx
(w,x,y,z}7' = {—w, —X, —y + wx, —z+w(y— 7)}

The Lie algebra g of left invariant vector fields of G is spanned by {W, X, Y, Z}
where
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il a
Y=—+w—,

ay 0z
z=2

0z

These vector fields satisfy the following commutation relation
(W, X]1=Y,
(W, Y]=Z,

with all other brackets zero. This Lie algebra g is step 3 nilpotent, and the exponential
map exp : g — G is given by
( ) LN N w2x
X = , —_, =+ —1.
exp(w, x, y, z WX, y+ -2t 5

Because both the underlying manifold of G and g are R*, we adopt the convention of
{w, x, y, z} when referring to a point in G and (w, x, y, z) when referring to a point
in g.

Any Lie group naturally acts on its Lie algebra via the adjoint representation. The
adjoint action of G on g is given by

2
Ad(w, x, y, 2D, b, ¢, d) = (a, b. c+ wb —ax), d+ (we — ay) + %)

Let g* denote the linear dual of g. The adjoint action induces the co-adjoint action of
G on g*, defined for each [ € g* as

Ad*({w, x, y, z}) ((a, b, ¢, d)) = [(Ad({w, x, y, z} ") (a, b, c, d)).

In the following sections we will make use of unitary irreducible representations of
G. These representations for nilpotent Lie groups can be classified by using Kirillov’s
method of co-adjoint orbits, as stated in Theorem 2. To this end we need to identify
the co-adjoint orbits of G in g*. If

l(a,b,c,d) =aa+ b + yc+dd

for (a,b,c,d) € g then we will adopt the convention of writing / = [, 8, y,d]. In
these coordinates, the co-adjoint action of G on g* is given by

Ad*({wwxv Vs Z})[O{, :83 Vs 8] = (4)

w2s
a+xy+(y—wx)8,/3—wy+7,y—wa,a )

3 Representation Theory of G
To describe a complete set of unitary irreducible representations of G, we make use

of the fact that G is nilpotent. The following result, due to Kirillov is presented in
[5, Section 2.2].
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Theorem 2 (Kirillov) Let K be any connected nilpotent Lie group with Lie algebra ®.

1. If ] € ¥ then there exists a subalgebra wy; of € of maximal dimension such that
[([my, my]) = 0 for all my, my € my.

2. M; =exp(wy) is a closed subgroup of K, and p;(exp(m)) = ™ is one dimen-

sional representation of M,.

The induced representation IndIAf,l‘ o, I8 a unitary irreducible representation of K.

4. Ifw is any unitary irreducible representation of K, then there exists | € € such that
7 is unitarily equivalent to Indlﬂqu o

»

. . . _ K _ K . .
5. Two irreducible representations m; = Ind Mi, .o, and m, = Indy, , are unitarily

equivalent if and only if I, and I, are elements of the same coadjoint orbit of K
in €.

If / and my are as in Theorem 2, then the subalgebra my is said to be a maximal
subordinate algebra for .

Theorem 2 implies that the set of unitary irreducible representations of G is
indexed by the set of co-adjoint orbits of G in g*. The coadjoint action described
by Eq. 4 allows for an explicit parametrization of these orbits. This parametrization
can be used to give an explicit expression of unitary dual of G, as presented in the
following proposition. This calculation can be found in [5, 10], but we include it here
for completeness.

Proposition 1 If 7 is a unitary irreducible representation of G, then w is unitarily
equivalent to a representation of one of the following classes.
Class 1. 7 is a unitary character of G given by

ﬂ({w, X, V. Z})(Z) — €2ni(aw+ﬂ)f)z

forsome a, B € Rand any 7 € C.
Class 2. 7 is a representation on L*(R) given by

kx
5

7w, x, y, 2)) f(k) = 705 flk + w)

for some y € R.
Class 3. 7 is a representation on L*(R) given by

n({w, X, y, Z}) f(k) — eZﬂi(ﬂx+8(Z+k(y+%))) f(k+ 'LU)
where § € R*, g € R.
Proof If [a, B, v, 8] € g* and {w, x, y, z} € G then mpy p,.51{w, X, y, z}) can be com-
puted by considering some individual cases.

Case1: (8 =y =0). In this case Ad*(w,x,y, 2)[e, B,0,0] = [«, B,0,0] for all
w, x, y, z. These are 1 point orbits determined by « and B. The maximal
subordinate algebra corresponding to any such orbit is the entire Lie
algebra g, since [A, B] € Span{Y, Z} for each A, B € g. Therefore M; = G
and G/M; = 0. For any point {w, x, y, z} € G, we write

( ) wx X wx+ w?
w,X,y,Zf=exp|lw,X,y— —,7— = -
Y.z p y 5 Z 2 y > 5
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and 74 ,0,0) is the one dimensional representation of G given in C as

Ta,,0,01{W, X, ¥, 2}Z

_ ezni[a.ﬂ.o.O](w,x,y— 2.5 (y-%+%)) .

— eZni(anrﬂx) z,

for each z € C.
Case2: (8=0, y #0). In this case Ad*(w,x,y,2)[o B,y,0]=[a+xy,B—
wy, y, 0], and so

Ad*(G)[a, B, v, 81 ={[p.q.v.01: p,q € R}.

These are 2-dimensional orbits parametrized by y. For any such orbit, the
unitary irreducible representations induced by elements of the orbit are all
unitarily equivalent and so it suffices to choose a convenient representative.
There is a one-to-one correspondence between the set

R, ={[0,0,y,0]:y € R}
and the collection of orbits of this type. Since y # 0,
L(AW, X =y #0
and so g is not subordinate to [0, 0, y, 0]. The three dimensional subalgebra
m = Span{X, Y, Z} is Abelian and is therefore maximal subordinate to any
element of g*. The subgroup
M =exp(m) = {{w,x,y,0} :w, x,y € R}

and G/M = R. As indicated in [13], 7(9,0,,,0) acts on

A, = feLX(G/M), flexp(q)g)

= e>@ f(g) for each g € mand g € G}.

First note that Haar measure p on G is given by u(exp(E)) = A(E) where

A is Lebesgue measure on g, and so 7, := L*(G/M, ) = L*(R, A). We
have that

(Tr0.0p.01({w. x. y. 21 f) (k)
= f({k7 07 0! O} * {w, X, y, Z})

=f({k+w,x7Y+kx’Z+k<y+k7;)})

=f({0,x,y+kz—x,z+k<y+%)}*{k—i—w,0,0,0})

= 2O+ fk 4 w).
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Case 3:

(8 #0). We have that

Ad*({w, x, y, zDla, B, v, 8]

2

wé
:[oe—}—xy+(y—wx)8,ﬁ—wy+7,y—w8,8i|.

Defining ¢ = y — wé we have that w = ”8;" and so

Ad*({w, x, y, DI, B, ¥, 8]

v\,
z[a+xy+(y—wX)8, (/3—%)4‘5,6],5}-

Hence

v\, 7
Ad*(G)[Ol, 13’ Y, 8] = {|:p7 </3 - %) + %7 q., 5] - P.q € R} .

These orbits are 2-dimensional parabolic cylinders parametrized by § and
the quantity § — Z5. As in the previous case we have that

Ry ={[0,5,0,38]: 8 e R*, B e R}

is a collection of orbit representatives and M = Span{X, Y, Z} is a maximal
subordinate subalgebra for each representative. Therefore, 735 = L*(R)
and

mro,p,0,51{w, x, y, z}) f(k)
= f({k,0,0,0} % {w, x, v, z})

k
=f({0,x,y+7x,z+k<y+%)}*{k—i-w,O,O,O})

— omi(Bx+s(z+k(y+5))) flk + w).

4 The Weyl Functional Calculus for G

In Euclidean space, there is a well-developed theory of pseudo-differential oper-
ators and the corresponding symbolic calculus [12]. The classical Weyl functional
calculus provides an analogous construction for the simplest step 2 nilpotent case. A
functional calculus for general nilpotent groups has been developed in [4]. We will
describe this functional calculus for G, and begin by stating the general construction
for arbitrary nilpotent groups.

Definition 1 As above, let K be an n dimensional nilpotent Lie group with corre-
sponding Lie algebra €.

1. Let & € £ with corresponding co-adjoint orbit &. The isotropy group of K at &
is Ky, := {k € K| Ad" (k)& = &}.
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2. Kg, is a Lie group with corresponding isotropy Lie algebra
£, = {X e tl§oad(®) X = 0}.
3. Fix asequence of ideals in €,
{Oy=¢ctc---ceg,=¢t

such that dim(¢;/€;_;) =1 and [€,¢;] C €,_; for j=1,...,n. Pick any X, € €;\
€, for j=1,...,nsothat the set { Xy, ..., X} is a Jordan-Hélder basis in .

4. Consider the set of jump indices of the coadjoint orbit & with respect to the
Jordan-Holder basis,

Joy =1{jell, ... n}|¥; & + €&}
={jefl,....n}|X; € ;1 + ¥t}
and then define the corresponding predual of the coadjoint orbit O,
€ ;= Span{X;: je Jg).

5. The Fourier transform . (0) — . (g.) is given by the formula
a(P) = / e &PlaE)de for P e g.,
o

where d & is Liouville measure on 0.
6. The Weyl calculus Op™ () for the unitary representation 7 is defined for every

ae. . (0)by
Op”™ (a) = / a(Vym(expg V)dV,
Ee
where a(V) is the Fourier transform of a € . (0). The operator Op” (a) is called
the pseudo-differential operator with symbol a.

The following result appears in [4].

Theorem 3 The Weyl calculus Op™ has the following properties:

1. For every symbol a € ./ (0) we have Op™ (a) € B(IH ) (the space of smooth
operators for the representation ) and the mapping

S(O) > B(A ) a + Op” (a)

is a linear topological isomorphism.
2. Forevery T € B(H ) we have T = Op” (a) where a € ./ (0) satisfies the condi-
tion a(V) = Tr(w(expg V)~ A) for every V € &,

If 7 is a representation of the nilpotent group G, then = can be classified as in
Proposition 1. If 7 is of class 1 or class 2, then Op”(-) is understood [13]. From
above results one can explicitly describe the Weyl functional calculus for class 3
representations of G.
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Proposition 2 If 7w is an irreducible unitary representation of G of class 3 correspond-
ing to the orbit 0 and a € ./ (0), then the Fourier transform of a is given by

8 Y +wW) = / e~ iay+pw) 4 (q, p)dgdp
R2

and the pseudo-differential operator Op™ (a) is given for each f € L*(R?) by
Op™ (a) f(k) = [ [ / e {@*+rg(q, pydqgd p] XTIk ) £k 4 yd ydw.
r2 [JR2

Proof The basis {W, X, Y, Z} is a Jordan-Holder basis for G, and the predual of the
co-adjoint orbit & is given by g, = {W, Y}. The chart & — R

2
pW* + [/3— (2%] X'+ qY" +8Z" — (p.q)

is a map which brings Liouville measure on & to Lebesgue measure on R. Direct
substitution implies that the Fourier transform is given by

(Y +wW) = f g (g, pydgd p.
RZ

For (m({w, x, y, z}) ) (k) = 2B+ (zHk(y+5)) f(k+w) and (w, 0, y,0) € g, we have
that

7(exp(w. 0. v, 0)) fk) = 7({w, 0, y, 0}) f(k) = T CE+5 f(kc 4wy,

and direct substitution yields the result. O

5 Lévy Processes in G

The expository material of this section can be found in [11]. Suppose that K is an
arbitrary (not necessarily nilpotent) Lie group with Lie algebra €. A Lévy process in
K is a K-valued stochastic process X;, t > 0 which satisfies the following

1. X, hasstationary and independent left increments, where the increment between
sand t with s < ris X' X,.

2. X;(0)=ea.s.

3. X, is stochastically continuous, i.e.

lim P(X;'X, e A)=0
for all A € B(K) such thate ¢ A.

Let Cy(K) be the Banach space (with respect to the supremum norm) of functions
on K which vanish at infinity. Just as in the Euclidean case, one obtains a Feller
semigroup on Cy(K) by the prescription

(T k) = E(f(kX))),

foreachr > 0,k € K, f € Cy(K) and its infinitesimal generator will be denoted as L.
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We fix a basis {Z, ..., Z,} for £ and define a dense subspace C,(K) of Cy(K) as
follows:

G(K) = {f € Co(K) :

ZE(f) € Co(K) and ZEZE(f) € Co(K) forall 1 < i, j < n] ,

where Z© denotes the left invariant vector field associated to Z € &.
In [9], Hunt proved that there exist local coordinate functions y; € Co(K), 1 <i <
nsothatforalll <i j<n

vi(e) =0, and ZiLy]-(e) = §jj,
and a map & € Dom(L) which satisfies

1. h>0on K\{e}.
2. There exists a compact neighborhood of the identity U such that for all r € U,

h(x) =) yi(0)*.
i=1

Any such function is called a Hunt function in K. A positive measure v defined
on B(K\{e}) is called a Lévy measure whenever

f h(o)v(do) < oo. (5)
K\{e}

Theorem 4 (Hunt) Let X, be a Lévy process in K with infinitesimal generator L then,

1. Cy(K) Cc Dom(L).
2. Foreacht € K, f € Co(K)

i=1 i =1
+f ()~ (0= Y w2 fomdo). O
\te i=1

whereb = (by,...,b,) € R", c = (¢;)) is a non-negative-definite, symmetric n x n
real-valued matrix and v is a Lévy measure on K\{e}.

Furthermore, any linear operator with a representation as in Eq. 6 is the restriction to
C»(K) of a unique weakly continuous, convolution semigroup of probability measures
in K.

Let .77 be a complex, separable Hilbert space and U (7#°) be the group of unitary
operatorsin 7Z. Let 7 : K — U(J¢) be a strongly continuous unitary representation
of K in 77 and let C®(x) = {¢ € J; k — m(k)y is C*°} be the dense linear space
of smooth vectors for w in €. Define a strongly continuous contraction semigroup
7, of linear operators on .77 by

T = E(w (X))
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for each ¢ € 2. Let L™ denote the infinitesimal generator of this semigroup. It
follows from the work in [2] that C*°(r) € Dom(L™) and for f € C* () we have

LT f :Zbidn(Zi)f—f- Z cjdn(Z)dn(Z) f+

i=1 i j=1

n
+/ (n(o) —-I1- Zw(o)dn(zo) fr(do). ()
K\{e} i=1

We now investigate L™ where K = G. Since G is nilpotent, the Haar measure do
is related to Lebesgue measure on g via the exponential map. Therefore it will
be convenient to adopt exponential coordinates in G. To this end we impose the
identification of (w, x, y, z) with exp(w, x, y, z). Fix real numbers g and § # 0. Let
7 = s p be a representation of class 3. Suppose that S(R) denotes the Schwartz class
of rapidly decaying smooth functions, and for each f € S(R), define

Kf(k) = kf(k),

1df
Dfk) = ——-.
f (k) oy
We have that

(tw. x, v, 2) f) (k) = ezni((ﬁx+5(z+%+%))I+(y+%)K+§K2)+2mef(k) (8)

and
da (W) =2riD,
dm(X) =27il + wiK>,
dn(Y) =27isK,
dn(Z) =2misl.
Denote

LJIT = Xn:bidﬂ'(zi),

i=1

L7 = cydn(Zydn(Z),

ij=1

Lx :=/ w(0) = 1= yi(o)dm(Z) | v(do).
G\{e} i=1
Then the drift part can be written as follows.
LT =b,Qnuis]) + br2nisK) + b3uiBl 4+ 1iK?) + b4(2wiD). 9)

Using the Weyl functional calculus described in Proposition 2, LT is a pseudo-
differential operator with symbol given by

d
8T = 2misb | 4 2misb ot + b3 (2wip + wit*) + 2iba.
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The Brownian part can be expressed
L3 =ci1(—4m*8% ) + cpp(—4n?8% K?)
+ c33(—4n2 B2 — 47’ BK? — 72K
+ cas (=42 D?) + 2¢15(—2728% K) + 2¢13(—4n 281 — 2128 K?)
+ 2¢14(—4728 D) + 2¢03 (=472 8B K — 2728 K?) + o4 (4728 K D)
+ c34 (428D — 272 K> D) + can(—47 28 (KD + I))
+ cy3(—47°BD — 272 (2K + K D)), (10)

which is a pseudo-differential operator with symbol
87 = — 4n?8ciy — An S ent’ + cx3(—4n?B* — dn? B — w7t

32
+ s (—4712@) — 4728%¢iot + 2¢13(—47 %8B — 27281%)

_ 2 g _ 2 _ 2043y 2 3
8m“8C14 Py + 2¢p3(—4m 5Bt — 2m°6t°) — 8w 662418[

+c3 —471253 - 271%23 —4A7%8cay 13 +1
ot ot ot

+ ¢z —4n2/33—2n2 2r+t22
ot at) )’

Before expressing the jump part L7, observe that Eq. 8 can be rewritten as

JT(U), X, Y, Z)f(k) = exp(iqD(ws X, Y, Z))f(k)

where
1, 1 1
D(w, x,y,z) =2 |1 z—i—iwx—}-iwy + 86K y+§wx
1
+ (,31+ EKZ) (x) + wD]

is essentially self-adjoint. This form suggests the following choices for local coordi-
nate functions

yi(w,x,y,2) =wxp(w, X, y, 2),

y2(w, x,y,2) =xxp(w, x, y, 2),

1
yi(w,x,y,2) = (y + 5%) xs(w, x, y,2),

1 1
ya(w, x,y,2) = (z + szx + Ewy) xs(w, X, y, 2),
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where y;(w, x, y, 2) = yi(exp(w, x, y, 2)), B =-exp(B(0, 1)). With respect to these
local coordinate functions we have that

Ly = / (r(w, x,y,2) = [ —i®(w, x,y,2)xp(w, x, y,2)) v(dzd ydxdw).
R#\{0}
Therefore L7 is a pseudo-differential operator with symbol
83 = / (t(w,x,y,2) =1 —i®Ow, x,y, ) xp(w,x,y,2))v(dzdydxdw),
RA\{0}

where
T(w, x,y, z) =exp(i®(w, x, y, 2))

for

1 1 1
O(w, x,y,z) =21 |:8 (z + szx + Ewy) + ot <y + wa)

t(p+2e) @ +wl
- X) 4+ w—
2 ot
and 7 is as in Eq. 8. We are now ready to state the main theorem of this paper.

Theorem 5 The operator L™ is a pseudo-differential operator. Moreover, the space
C*(R) is a core for L.

Proof We have that
LT =LT 4+ L7 + L3,
and consequently we have shown that L7 is pseudo-differential with symbol
8" =87 +87 +83.

We write L3 = L], + L7, with
LI, =] (mw.x,y,2)—DHv(dzdydxdw)
BC

U{zZ/ (N(w,x,y,z)—l —i<I>(w,x,y,z))V(dzdydxdw)-
B\{0}

For each f € C(R), we have that

LT, £l </B lr(w. % . 2) = D) fllvdzd ydxdw)

S2BII -
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Let P(w, x, y, z) denote the projection-valued measure associated to the spectral
decomposition of the self adjoint operator ®. By the spectral theorem and Taylor’s
theorem, and referring again to Eq. 8 we see that

I (w, x, y, z) — [—i®(w, x, y, 2)) fII*

i 12
=f4 le* =1 — x| [1P(w, x, y, 2)(d 1) fII?
R

1
<1/ A PCw, x, v, 2)(AR) I
R4

2 2

1 1 1
2 |:8[<z + —w’x + fwy) + 6K (y + wa)
2

2
+ <51+ %Kz) (x) + wD] f

<? 5

1
‘[yl(w, X, 9, 2)D + y2(w, x, y, 2) (ﬁ1+ *K2>

2

2
+ y3(w, x, y, 28K + yas(w, x, y, 2)51] f

<167°C% - B (w, x, y, 2).

The last inequality follows from Young’s inequality. The Hunt function £ corre-
sponds to the local coordinate functions {y;}}, and

Cr =B+ + I fl+ Q5B +8) + DIKfI+ 6+ B +HIKf
1
+ 811K fIl + ZI|K4f|| +2(B+ I DfI + 28I KDf|| + 2| K> Df ||

+ I D*fIl.

Therefore we have that
1£3, fll <4an/ h(w, x, y, Z2)v(dwdxdydz),
B

and the latter integral is finite by Eq. 5. Applying these bounds for L7, and L7, and

the expressions (9) and (10) there exist non-negative constants w ( f);; such that

2 . .
o (NIl K D! f. 11)

1

L7 fIl < Z

i=1 j

Let f € Dom(L7), then we can find ( f,,, n € N) in C2°(R) such that
Tim || fu — fIl = 0.

Applying Eq. 11 to the sequence f, — f,,, we deduce by integration by parts
and the Schwarz inequality that lim,, ,— |7 (f, — fin) |l = 0. Hence the sequence
(L™ f,, n € N) is Cauchy and so convergent to some g € L*(R). The operator L7 is
closed, hence g = L7 f and the result is established. O
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Example I Let B! and B? be independent one-dimensional Brownian motions and
define X; = exp(B/, B2, 0, 0). Then its generator is the sub-Laplacian

L= (8>2+ (8+w8+w28)2.
ow ox ay 2 0z
If m = 75 g is a representation of class 3, the quantization of this generator is given as
L™ = —n? (4D* +4B°1 + 4BK* + K*).
The symbol of L7 is the operator 8™ defined for each ¢(t) € CX(R) by

32
9w0=—#<ggh4ﬁwo+quo+mwﬂ. (12)
The symbol in Eq. 12 has the form
82
S=c <ﬁ>+(02+c3x2+c4x4) GeR, i=12734
X

which is the well-known Schrodinger operator with a quartic potential. In [3] it is
shown that fractional Brownian motion in Carnot groups exhibits a scaling proposi-
tionerty reminiscent of the propositionerty for Brownian motion in R”. If one defines

V| = Span{W, X},
V> = Span{Y},
V3 = Span{Z},

then g = V|, @ V, @ V3 and it is clear that G has the structure of a Carnot group. A
fractional Brownian motion is not a Lévy process unless the Hurst parameter H is
equal to % By a standard application of [td’s Lemma

1 [ 1
X,:{B},Btz,i/(; (B;dBf—deBS‘)JFEB;Bz,

t N 1 1
/(/ (fodBj—fB}dBf)>dBj.+
o o \6 3

wWW}

Bl ' 1 2 2 1
1 /0( s s s s) 6

It is easy to verify that X, solves the stochastic differential equation
dX, = X,(WdB} + XdB?),
Xop=e.
Finally, the scaling propositionerty as formulated in [3, Proposition 3.8] implies that
(X0 (A e XD iz0,
where

A selw, x, y, 2} = {Vew, vex, cy, V3z).
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