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Abstract The infinitesimal generators of Lévy processes in Euclidean space are
pseudodifferential operators with symbols given by the Lévy-Khintchine formula.
This classical analysis relies heavily on Fourier analysis which, in the case when the
state space is a Lie group, becomes much more subtle. Still the notion of pseudo-
differential operators can be extended to connected, simply connected nilpotent Lie
groups by employing the Weyl functional calculus. With respect to this definition,
the generators of Lévy processes in the simplest step 3 nilpotent Lie group G are
pseudodifferential operators which admit Cc(G) as its core.
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1 Introduction

Let K be a Lie group with the identity e and let Xt be a Lévy process with values in K
starting at e. One obtains a semigroup of operators (T(t), t � 0) on the Banach space
C0(K) of functions on K which vanish at infinity, by defining

(T(t) f )(k) = E( f (kXt))

for each t � 0, k ∈ K and f ∈ C0(K).
When K = Rn the characteristic function of the process Xt is given by the Lévy-

Khintchine formula

E(eiu·Xt ) = etϕ(u)

for all u ∈ Rn, t � 0, where

ϕ(u) = im · u − 1
2

u · au +
∫

Rn\{0}

(
eiu·y − 1 − i

u · y
1 + |y|2

)
ν(dy). (1)

Here m ∈ Rn, a is a non-negative symmetric n × n matrix and ν is a Lévy measure on
Rn\{0} (see [6] for details).

Let the differential operator D be defined on C0(R
n) by D = (D1, . . . ,Dn) with

D j = 1
i

∂
∂x j

. The generator A of this semigroup satisfies the relation

A = ϕ(D) (2)

where ϕ is as in Eq. 1. Indeed, one makes the observation that A is in fact a pseudo-
differential operator (see [8, pp. 139-170]) with symbol ϕ(u) [1].

There has been interest in extending this characterization of Lévy processes to
Lie groups, including the book by Liao [11]. For an arbitrary Lie group K, one may
define the group Fourier transform f̂ of a suitably chosen function by

f̂ (π) =
∫

K
f (k)π(k) d k, (3)

where π is a unitary irreducible representation of K and dk is Haar measure (see
[7]). This Fourier transform may be inverted if a complete set of unitary irreducible
representations of K is known. Fourier inversion is necessary when formulating a
theory of pseudo-differential operators. Because the representation theory of Lie
groups is only fully understood for specific subclasses of Lie groups, Eq. 3 might
have to be adopted to each case separately.

In the current paper we consider a step 3 nilpotent group. If K is a general nilpo-
tent group, then Kirillov’s method of co-adjoint orbits provides explicit formulae of
all unitary irreducible representations of K (refer to Theorem 2 below for details). In
[4], Beltiţa and Beltiţa apply this technique to describe the Weyl functional calculus
for arbitrary nilpotent Lie groups. In what follows, we make use of this symbolic
calculus, and of general results from [2] to describe the quantized generator Lπ of a
Lévy processes Xt in a step 3 nilpotent Lie group G. We describe G and the collection
of all unitary irreducible representations of G in Sections 2 and 3. In Section 4 we
describe the Weyl functional calculus for G and in Section 5 we prove the following
theorem which is the main result of this paper.
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Theorem 1 The operator Lπ is a pseudo-differential operator. Moreover, the space
C∞

c (R) is a core for Lπ .

Here C∞
c (R) denotes the collection of infinitely differentiable functions of com-

pact support on R.
The case when K is the Heisenberg group was treated in [2]. Then one may make

use of the classical Schrödinger representations. The resulting pseudo-differential
calculus (referred to as the classical Weyl functional calculus) has been used to
express the generators of these semigroups as

(Aπ f )(x) = (2π)−n
∫

R2n
σ

(
1
2
(x + y), ξ

)
ei(x−y)·ξ f (y)dydξ.

Here one works through the Schrödinger representations and deals not with the
original semigroup generator, but with their images Aπ (henceforth referred to as
the quantization of the generator A). Lévy processes in the Heisenberg group have
been thoroughly investigated; the reader may refer to the work of Applebaum and
Cohen in [2] for a complete treatment of the Heisenberg group case.

We restricted our study to finding an explicit form of the quantized generator in
the simplest step 3 nilpotent Lie group which is often called the Engel group, and
as a result developed the method which is potentially applicable to a larger class of
nilpotent groups. Finding exact expressions of unitary irreducible representations as
in Proposition 1 may be difficult in groups of higher dimension because this method
depends on a potentially complicated parametrization of the coadjoint orbit space.
One group for which this might be a tractable problem is the 5-dimensional Cartan
group; we intend to complete our preliminary results in a forthcoming article.

2 A Step 3 Nilpotent Lie Group

Let G denote R4 with the multiplication law

{w1, x1, y1, z1} ∗ {w2, x2, y2, z2} =
{
w1 + w2, x1 + x2, y1 + y2 + w1x2,

z1 + z2 + w1

(
y2 + w1x2

2

)}
.

With respect to this operation G is a Lie group with identity {0, 0, 0, 0} and inversion
given by

{w, x, y, z}−1 =
{
−w,−x, −y + wx, −z + w

(
y − wx

2

)}
.

The Lie algebra g of left invariant vector fields of G is spanned by {W, X, Y, Z }
where

W = ∂

∂w
,

X = ∂

∂x
+ w

∂

∂y
+ w2

2
∂

∂z
,
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Y = ∂

∂y
+ w

∂

∂z
,

Z = ∂

∂z
.

These vector fields satisfy the following commutation relation

[W, X] = Y,

[W, Y] = Z ,

with all other brackets zero. This Lie algebra g is step 3 nilpotent, and the exponential
map exp : g → G is given by

exp(w, x, y, z) =
{
w, x, y + wx

2
, z + xy

2
+ w2x

6

}
.

Because both the underlying manifold of G and g are R4, we adopt the convention of
{w, x, y, z} when referring to a point in G and (w, x, y, z) when referring to a point
in g.

Any Lie group naturally acts on its Lie algebra via the adjoint representation. The
adjoint action of G on g is given by

Ad({w, x, y, z})(a, b , c, d) =
(

a, b , c + (wb − ax), d + (wc − ay) + w2b
2

)
.

Let g∗ denote the linear dual of g. The adjoint action induces the co-adjoint action of
G on g∗, defined for each l ∈ g∗ as

Ad∗({w, x, y, z}) (l(a, b , c, d)) = l(Ad({w, x, y, z}−1)(a, b , c, d)).

In the following sections we will make use of unitary irreducible representations of
G. These representations for nilpotent Lie groups can be classified by using Kirillov’s
method of co-adjoint orbits, as stated in Theorem 2. To this end we need to identify
the co-adjoint orbits of G in g∗. If

l(a, b , c, d) = αa + βb + γ c + δd

for (a, b , c, d) ∈ g then we will adopt the convention of writing l = [α, β, γ, δ]. In
these coordinates, the co-adjoint action of G on g∗ is given by

Ad∗({w, x, y, z})[α, β, γ, δ] = (4)[
α + xγ + (y − wx)δ, β − wγ + w2δ

2
, γ − wδ, δ

]
.

3 Representation Theory of G

To describe a complete set of unitary irreducible representations of G, we make use
of the fact that G is nilpotent. The following result, due to Kirillov is presented in
[5, Section 2.2].
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Theorem 2 (Kirillov) Let K be any connected nilpotent Lie group with Lie algebra k.

1. If l ∈ k∗ then there exists a subalgebra ml of k of maximal dimension such that
l([m1, m2]) = 0 for all m1, m2 ∈ ml .

2. Ml = exp(ml) is a closed subgroup of K, and ρl(exp(m)) = e2π il(m) is one dimen-
sional representation of Ml.

3. The induced representation IndK
Ml,ρl

is a unitary irreducible representation of K.
4. If π is any unitary irreducible representation of K, then there exists l ∈ k∗ such that

π is unitarily equivalent to IndK
Ml ,ρl

.
5. Two irreducible representations π1 = IndK

Ml1 ,ρl1
and π2 = IndK

Ml2 ,ρl2
are unitarily

equivalent if and only if l1 and l2 are elements of the same coadjoint orbit of K
in k∗.

If l and ml are as in Theorem 2, then the subalgebra ml is said to be a maximal
subordinate algebra for l.

Theorem 2 implies that the set of unitary irreducible representations of G is
indexed by the set of co-adjoint orbits of G in g∗. The coadjoint action described
by Eq. 4 allows for an explicit parametrization of these orbits. This parametrization
can be used to give an explicit expression of unitary dual of G, as presented in the
following proposition. This calculation can be found in [5, 10], but we include it here
for completeness.

Proposition 1 If π is a unitary irreducible representation of G, then π is unitarily
equivalent to a representation of one of the following classes.

Class 1. π is a unitary character of G given by

π({w, x, y, z})(z) = e2π i(αw+βx)z

for some α, β ∈ R and any z ∈ C.
Class 2. π is a representation on L2(R) given by

π({w, x, y, z}) f (k) = e2π iγ (y+ kx
2 ) f (k + w)

for some γ ∈ R.
Class 3. π is a representation on L2(R) given by

π({w, x, y, z}) f (k) = e2π i(βx+δ(z+k(y+ kx
2 ))) f (k + w)

where δ ∈ R×, β ∈ R.

Proof If [α, β, γ, δ] ∈ g∗ and {w, x, y, z} ∈ G then π[α,β,γ,δ]({w, x, y, z}) can be com-
puted by considering some individual cases.

Case 1: (δ = γ = 0). In this case Ad∗(w, x, y, z)[α, β, 0, 0] = [α, β, 0, 0] for all
w, x, y, z. These are 1 point orbits determined by α and β. The maximal
subordinate algebra corresponding to any such orbit is the entire Lie
algebra g, since [A, B] ∈ Span{Y, Z } for each A, B ∈ g. Therefore Ml = G
and G/Ml

∼= 0. For any point {w, x, y, z} ∈ G, we write

{w, x, y, z} = exp
(

w, x, y − wx
2

, z − x
2

(
y − wx

2
+ w2

6

))
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and π[α,β,0,0] is the one dimensional representation of G given in C as

π[α,β,0,0]{w, x, y, z}z

= e2π i[α,β,0,0]
(
w,x,y− wx

2 , z− x
2

(
y− wx

2 + w2
6

))
z

= e2π i(αw+βx)z,

for each z ∈ C.
Case 2: (δ = 0, γ �= 0). In this case Ad∗(w, x, y, z)[α, β, γ, 0] = [α + xγ, β −

wγ, γ, 0], and so

Ad∗(G)[α, β, γ, δ] = {[p, q, γ, 0] : p, q ∈ R} .

These are 2-dimensional orbits parametrized by γ . For any such orbit, the
unitary irreducible representations induced by elements of the orbit are all
unitarily equivalent and so it suffices to choose a convenient representative.
There is a one-to-one correspondence between the set

R2 = {[0, 0, γ, 0] : γ ∈ R
×}

and the collection of orbits of this type. Since γ �= 0,

lγ ([W, X]) = γ �= 0

and so g is not subordinate to [0, 0, γ, 0]. The three dimensional subalgebra
m = Span{X, Y, Z } is Abelian and is therefore maximal subordinate to any
element of g∗. The subgroup

M = exp(m) = {{w, x, y, 0} : w, x, y ∈ R}

and G/M ∼= R. As indicated in [13], π[0,0,γ,0] acts on

Hγ := {
f : f ∈ L2(G/M), f (exp(q)g)

= e2π ilγ (q) f (g) for each q ∈ m and g ∈ G
}
.

First note that Haar measure μ on G is given by μ(exp(E)) = 
(E) where

 is Lebesgue measure on g, and so Hπ := L2(G/M, μ) ∼= L2(R,
). We
have that

(
π[0,0,γ,0]({w, x, y, z}) f

)
(k)

= f ({k, 0, 0, 0} ∗ {w, x, y, z})

= f
({

k + w, x, y + kx, z + k
(

y + kx
2

)})

= f
({

0, x, y + kx
2

, z + k
(

y + kx
2

)}
∗ {k + w, 0, 0, 0}

)

= e2π iγ (y+ kx
2 ) f (k + w).
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Case 3: (δ �= 0). We have that

Ad∗({w, x, y, z})[α, β, γ, δ]

=
[
α + xγ + (y − wx)δ, β − wγ + w2δ

2
, γ − wδ, δ

]
.

Defining q = γ − wδ we have that w = γ−q
δ

and so

Ad∗({w, x, y, z})[α, β, γ, δ]

=
[
α + xγ + (y − wx)δ,

(
β − γ 2

2δ

)
+ q2

2δ
, q, δ

]
.

Hence

Ad∗(G)[α, β, γ, δ] =
{[

p,

(
β − γ 2

2δ

)
+ q2

2δ
, q, δ

]
: p, q ∈ R

}
.

These orbits are 2-dimensional parabolic cylinders parametrized by δ and
the quantity β − γ 2

2δ
. As in the previous case we have that

R3 = {[0, β, 0, δ] : δ ∈ R
×, β ∈ R}

is a collection of orbit representatives and M = Span{X, Y, Z } is a maximal
subordinate subalgebra for each representative. Therefore, Hβ,δ = L2(R)

and

π[0,β,0,δ]({w, x, y, z}) f (k)

= f ({k, 0, 0, 0} ∗ {w, x, y, z})

= f
({

0, x, y + kx
2

, z + k
(

y + kx
2

)}
∗ {k + w, 0, 0, 0}

)

= e2π i(βx+δ(z+k(y+ kx
2 ))) f (k + w).

�	

4 The Weyl Functional Calculus for G

In Euclidean space, there is a well-developed theory of pseudo-differential oper-
ators and the corresponding symbolic calculus [12]. The classical Weyl functional
calculus provides an analogous construction for the simplest step 2 nilpotent case. A
functional calculus for general nilpotent groups has been developed in [4]. We will
describe this functional calculus for G, and begin by stating the general construction
for arbitrary nilpotent groups.

Definition 1 As above, let K be an n dimensional nilpotent Lie group with corre-
sponding Lie algebra k.

1. Let ξ0 ∈ k∗ with corresponding co-adjoint orbit O . The isotropy group of K at ξ0

is Kξ0 := {k ∈ K| Ad∗(k)ξ0 = ξ0}.
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2. Kξ0 is a Lie group with corresponding isotropy Lie algebra

kξ0 = {X ∈ k|ξ0 ◦ ad(k)X = 0}.
3. Fix a sequence of ideals in k,

{0} = k0 ⊂ k1 ⊂ · · · ⊂ kn = k

such that dim(k j/k j−1) = 1 and [k, k j] ⊂ k j−1 for j = 1, . . . , n. Pick any X j ∈ k j \
k j−1 for j = 1, . . . , n so that the set {X1, . . . , Xn} is a Jordan-Hölder basis in k.

4. Consider the set of jump indices of the coadjoint orbit O with respect to the
Jordan-Hölder basis,

Jξ0 = { j ∈ {1, . . . , n}|k j �⊆ k j−1 + kξ0}
= { j ∈ {1, . . . , n}|X j �⊆ k j−1 + kξ0}

and then define the corresponding predual of the coadjoint orbit O ,

ke := Span{X j : j ∈ Jξ0}.
5. The Fourier transform S (O) → S (ge) is given by the formula

â(P) =
∫

O
e−i〈ξ,P〉a(ξ) d ξ for P ∈ ge,

where d ξ is Liouville measure on O .
6. The Weyl calculus Opπ (·) for the unitary representation π is defined for every

a ∈ S (O) by

Opπ (a) =
∫

ke

â(V)π(expK V) d V,

where â(V) is the Fourier transform of a ∈ S (O). The operator Opπ (a) is called
the pseudo-differential operator with symbol a.

The following result appears in [4].

Theorem 3 The Weyl calculus Opπ has the following properties:

1. For every symbol a ∈ S (O) we have Opπ (a) ∈ B(H )∞ (the space of smooth
operators for the representation π) and the mapping

S (O) → B(H )∞ a �→ Opπ (a)

is a linear topological isomorphism.
2. For every T ∈ B(H )∞ we have T = Opπ (a) where a ∈ S (O) satisf ies the condi-

tion â(V) = Tr(π(expK V)−1 A) for every V ∈ ke.

If π is a representation of the nilpotent group G, then π can be classified as in
Proposition 1. If π is of class 1 or class 2, then Opπ (·) is understood [13]. From
above results one can explicitly describe the Weyl functional calculus for class 3
representations of G.

Author's personal copy



Lévy Processes in a Step 3 Nilpotent Lie Group

Proposition 2 If π is an irreducible unitary representation of G of class 3 correspond-
ing to the orbit O and a ∈ S (O), then the Fourier transform of a is given by

â (yY + wW) =
∫

R2
e−i(qy+pw)a (q, p) d q d p

and the pseudo-differential operator Opπ (a) is given for each f ∈ L2(R2) by

Opπ (a) f (k) =
∫

R2

[∫
R2

e−i(qy+pw)a(q, p) d q d p
]

e2π i(δky+ 1
2 δyw) f (k + w) d y d w.

Proof The basis {W, X, Y, Z } is a Jordan-Hölder basis for G, and the predual of the
co-adjoint orbit O is given by ge = {W, Y}. The chart O → R

pW∗ +
[
β − q2

2δ

]
X∗ + qY∗ + δZ ∗ �→ (p, q)

is a map which brings Liouville measure on O to Lebesgue measure on R. Direct
substitution implies that the Fourier transform is given by

â (yY + wW) =
∫

R2
e−i(qy+pw)a (q, p) d q d p.

For (π({w, x, y, z}) f ) (k) = e2π i(βx+δ(z+k(y+ kx
2 ))) f (k + w) and (w, 0, y, 0) ∈ ge we have

that

π(exp(w, 0, y, 0)) f (k) = π({w, 0, y, 0}) f (k) = e2π i(δ(ky+ k2 x
2 )) f (k + w),

and direct substitution yields the result. �	

5 Lévy Processes in G

The expository material of this section can be found in [11]. Suppose that K is an
arbitrary (not necessarily nilpotent) Lie group with Lie algebra k. A Lévy process in
K is a K-valued stochastic process Xt, t � 0 which satisfies the following

1. Xt has stationary and independent left increments, where the increment between
s and t with s � t is X−1

s Xt.
2. Xt(0) = e a.s.
3. Xt is stochastically continuous, i.e.

lim
s→t

P(X−1
s Xt ∈ A) = 0

for all A ∈ B(K) such that e �∈ A.

Let C0(K) be the Banach space (with respect to the supremum norm) of functions
on K which vanish at infinity. Just as in the Euclidean case, one obtains a Feller
semigroup on C0(K) by the prescription

(T(t) f )(k) = E( f (kXt)),

for each t � 0, k ∈ K, f ∈ C0(K) and its infinitesimal generator will be denoted as L.

Author's personal copy



M. Gordina, J. Haga

We fix a basis {Z1, . . . , Zn} for k and define a dense subspace C2(K) of C0(K) as
follows:

C2(K) = { f ∈ C0(K) :
Z L

i ( f ) ∈ C0(K) and Z L
i Z L

j ( f ) ∈ C0(K) for all 1 � i, j � n
}

,

where Z L denotes the left invariant vector field associated to Z ∈ k.
In [9], Hunt proved that there exist local coordinate functions yi ∈ C2(K), 1 � i �

n so that for all 1 � i, j � n

yi(e) = 0, and Z L
i y j(e) = δij,

and a map h ∈ Dom(L) which satisfies

1. h > 0 on K\{e}.
2. There exists a compact neighborhood of the identity U such that for all τ ∈ U ,

h(τ ) =
n∑

i=1

yi(τ )2.

Any such function is called a Hunt function in K. A positive measure ν defined
on B(K\{e}) is called a Lévy measure whenever∫

K\{e}
h(σ )ν(d σ) < ∞. (5)

Theorem 4 (Hunt) Let Xt be a Lévy process in K with inf initesimal generator L then,

1. C2(K) ⊂ Dom(L).
2. For each τ ∈ K, f ∈ C2(K)

(
L f

)
(τ ) =

n∑
i=1

bi Z L
i f (τ ) +

n∑
i, j=1

cijZ L
i Z L

j f (τ )

+
∫

K\{e}
( f (τσ ) − f (τ ) −

n∑
i=1

yi(σ )Z L
i f (τ ))ν(d σ), (6)

where b = (b 1, . . . , b n) ∈ Rn, c = (cij) is a non-negative-def inite, symmetric n × n
real-valued matrix and ν is a Lévy measure on K\{e}.

Furthermore, any linear operator with a representation as in Eq. 6 is the restriction to
C2(K) of a unique weakly continuous, convolution semigroup of probability measures
in K.

Let H be a complex, separable Hilbert space and U(H ) be the group of unitary
operators in H . Let π : K → U(H ) be a strongly continuous unitary representation
of K in H and let C∞(π) = {ψ ∈ H ; k → π(k)ψ is C∞} be the dense linear space
of smooth vectors for π in H . Define a strongly continuous contraction semigroup
Tt of linear operators on H by

Ttψ = E(π(Xt)ψ)
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for each ψ ∈ H . Let Lπ denote the infinitesimal generator of this semigroup. It
follows from the work in [2] that C∞(π) ⊆ Dom(Lπ ) and for f ∈ C∞(π) we have

Lπ f =
n∑

i=1

bi d π(Zi) f +
n∑

i, j=1

cij d π(Zi) d π(Z j) f+

+
∫

K\{e}

(
π(σ) − I −

n∑
i=1

yi(σ ) d π(Zi)

)
fν(d σ). (7)

We now investigate Lπ where K = G. Since G is nilpotent, the Haar measure d σ

is related to Lebesgue measure on g via the exponential map. Therefore it will
be convenient to adopt exponential coordinates in G. To this end we impose the
identification of (w, x, y, z) with exp(w, x, y, z). Fix real numbers β and δ �= 0. Let
π = πδ,β be a representation of class 3. Suppose that S(R) denotes the Schwartz class
of rapidly decaying smooth functions, and for each f ∈ S(R), define

K f (k) = kf (k),

Df (k) = 1
i

d f
d k

.

We have that

(π(w, x, y, z) f ) (k) = e2π i
((

βx+δ
(

z+ xy
2 + w2 x

6

))
I+(y+ wx

2 )K+ x
2 K2

)
+2π iwD f (k) (8)

and

d π(W) = 2π iD,

d π(X) = 2π iβ I + π iK2,

d π(Y) = 2π iδK,

d π(Z ) = 2π iδI.

Denote

Lπ
1 :=

n∑
i=1

bi d π(Zi),

Lπ
2 :=

n∑
i, j=1

cij d π(Zi) d π(Z j),

Lπ
3 :=

∫
G\{e}

(
π(σ) − I −

n∑
i=1

yi(σ ) d π(Zi)

)
ν(d σ).

Then the drift part can be written as follows.

Lπ
1 = b 1(2π iδI) + b 2(2π iδK) + b 3(2π iβ I + π iK2) + b 4(2π iD). (9)

Using the Weyl functional calculus described in Proposition 2, Lπ
1 is a pseudo-

differential operator with symbol given by

Sπ
1 = 2π iδb 1 + 2π iδb 2t + b 3(2π iβ + π it2) + 2π ib 4

∂

∂t
.
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The Brownian part can be expressed

Lπ
2 =c11(−4π2δ2 I) + c22(−4π2δ2 K2)

+ c33(−4π2β2 I − 4π2βK2 − π2 K4)

+ c44(−4π2 D2) + 2c12(−2π2δ2 K) + 2c13(−4π2δβ I − 2π2δK2)

+ 2c14(−4π2δD) + 2c23(−4π2δβK − 2π2δK3) + c24(−4π2δKD)

+ c34(−4π2β D − 2π2 K2 D) + c42(−4π2δ(KD + I))

+ c43(−4π2β D − 2π2(2K + K2 D)), (10)

which is a pseudo-differential operator with symbol

Sπ
2 = − 4π2δ2c11 − 4π2δ2c22t2 + c33(−4π2β2 − 4π2βt2 − π2t4)

+ c44

(
−4π2 ∂2

∂t2

)
− 4π2δ2c12t + 2c13(−4π2δβ − 2π2δt2)

− 8π2δc14
∂

∂t
+ 2c23(−4π2δβt − 2π2δt3) − 8π2δc24t

∂

∂t

+ c34

(
−4π2β

∂

∂t
− 2π2t2 ∂

∂t

)
− 4π2δc42

(
t
∂

∂t
+ 1

)

+ c43

(
−4π2β

∂

∂t
− 2π2

(
2t + t2 ∂

∂t

))
.

Before expressing the jump part Lπ
3 , observe that Eq. 8 can be rewritten as

π(w, x, y, z) f (k) = exp(i�(w, x, y, z)) f (k)

where

�(w, x, y, z) =2π

[
δI

(
z + 1

2
w2x + 1

2
wy

)
+ δK

(
y + 1

2
wx

)

+
(

β I + 1
2

K2
)

(x) + wD
]

is essentially self-adjoint. This form suggests the following choices for local coordi-
nate functions

y1(w, x, y, z) = wχB(w, x, y, z),

y2(w, x, y, z) = xχB(w, x, y, z),

y3(w, x, y, z) =
(

y + 1
2
wx

)
χB(w, x, y, z),

y4(w, x, y, z) =
(

z + 1
2
w2x + 1

2
wy

)
χB(w, x, y, z),
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where yi(w, x, y, z) = yi(exp(w, x, y, z)), B = exp(B(0, 1)). With respect to these
local coordinate functions we have that

Lπ
3 =

∫
R4\{0}

(π(w, x, y, z) − I − i�(w, x, y, z)χB(w, x, y, z)) ν(d z d y d x d w).

Therefore Lπ
3 is a pseudo-differential operator with symbol

Sπ
3 =

∫
R4\{0}

(τ (w, x, y, z) − I − i�(w, x, y, z)χB(w, x, y, z)) ν(d z d y d x d w),

where

τ(w, x, y, z) = exp(i�(w, x, y, z))

for

�(w, x, y, z) =2π

[
δ

(
z + 1

2
w2x + 1

2
wy

)
+ δt

(
y + 1

2
wx

)

+
(

β + 1
2

t2
)

(x) + w
∂

∂t

]

and π is as in Eq. 8. We are now ready to state the main theorem of this paper.

Theorem 5 The operator Lπ is a pseudo-differential operator. Moreover, the space
C∞

c (R) is a core for Lπ .

Proof We have that

Lπ = Lπ
1 + Lπ

2 + Lπ
3 ,

and consequently we have shown that Lπ is pseudo-differential with symbol

Sπ = Sπ
1 + Sπ

2 + Sπ
3 .

We write Lπ
3 = Lπ

3,1 + Lπ
3,2 with

Lπ
3,1 =

∫
Bc

(π(w, x, y, z) − I) ν(d z d y d x d w)

Lπ
3,2 =

∫
B\{0}

(
π(w, x, y, z) − I − i�(w, x, y, z)

)
ν(d z d y d x d w).

For each f ∈ C∞
c (R), we have that

‖Lπ
3,1 f‖ �

∫
Bc

‖(π(w, x, y, z) − I) f‖ ν(d z d y d x d w)

�2ν(Bc)‖ f‖.
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Let P(w, x, y, z) denote the projection-valued measure associated to the spectral
decomposition of the self adjoint operator �. By the spectral theorem and Taylor’s
theorem, and referring again to Eq. 8 we see that

‖(π(w, x, y, z) − I−i�(w, x, y, z)) f‖2

=
∫

R4

∣∣eiλ − 1 − iλ
∣∣2 ‖P(w, x, y, z)(d λ) f‖2

�1
4

∫
R4

|λ|4‖P(w, x, y, z)(d λ) f‖2

=1
4

∥∥∥∥2π

[
δI

(
z + 1

2
w2x + 1

2
wy

)
+ δK

(
y + 1

2
wx

)

+
(

β I + 1
2

K2
)

(x) + wD
]2

f

∥∥∥∥∥
2

�π2
∥∥∥∥
[

y1(w, x, y, z)D + y2(w, x, y, z)

(
β I + 1

2
K2

)

+ y3(w, x, y, z)δK + y4(w, x, y, z)δI
]2

f

∥∥∥∥∥
2

�16π2C2
f · h2(w, x, y, z).

The last inequality follows from Young’s inequality. The Hunt function h corre-
sponds to the local coordinate functions {yi}4

i=1 and

C f =((β + δ)2 + δ)‖ f‖ + (2δ(β + δ) + 1)‖Kf‖ + (δ2 + β + δ)‖K2 f‖

+ δ‖K3 f‖ + 1
4
‖K4 f‖ + 2(β + δ)‖Df‖ + 2δ‖KDf‖ + 2‖K2 Df‖

+ ‖D2 f‖.
Therefore we have that

‖Lπ
3,2 f‖ �4πC f

∫
B

h(w, x, y, z)ν(d w d x d y d z),

and the latter integral is finite by Eq. 5. Applying these bounds for Lπ
3,1 and Lπ

3,2 and
the expressions (9) and (10) there exist non-negative constants ω( f )ij such that

‖Lπ f‖ �
4∑

i=1

2∑
j=1

ω( f )ij‖Ki Dj f‖. (11)

Let f ∈ Dom(Lπ ), then we can find ( fn, n ∈ N) in C∞
c (R) such that

lim
n→∞ ‖ fn − f‖ = 0.

Applying Eq. 11 to the sequence fn − fm, we deduce by integration by parts
and the Schwarz inequality that limm,n→∞ ‖Lπ ( fn − fm)‖ = 0. Hence the sequence
(Lπ fn, n ∈ N) is Cauchy and so convergent to some g ∈ L2(R). The operator Lπ is
closed, hence g = Lπ f and the result is established. �	
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Example 1 Let B1
t and B2

t be independent one-dimensional Brownian motions and
define Xt = exp(B1

t , B2
t , 0, 0). Then its generator is the sub-Laplacian

L =
(

∂

∂w

)2

+
(

∂

∂x
+ w

∂

∂y
+ w2

2
∂

∂z

)2

.

If π = πδ,β is a representation of class 3, the quantization of this generator is given as

Lπ = −π2 (
4D2 + 4β2 I + 4βK2 + K4) .

The symbol of Lπ is the operator Sπ defined for each ϕ(t) ∈ C∞
c (R) by

Sπϕ(t) = −π2
(

4
∂2ϕ

∂t2 + 4β2ϕ(t) + 4βt2ϕ(t) + t4ϕ(t)
)

. (12)

The symbol in Eq. 12 has the form

S = c1

(
∂2

∂x2

)
+ (

c2 + c3x2 + c4x4) ci ∈ R, i = 1, 2, 3, 4

which is the well-known Schrödinger operator with a quartic potential. In [3] it is
shown that fractional Brownian motion in Carnot groups exhibits a scaling proposi-
tionerty reminiscent of the propositionerty for Brownian motion in Rn. If one defines

V1 = Span{W, X},
V2 = Span{Y},
V3 = Span{Z },

then g = V1 ⊕ V2 ⊕ V3 and it is clear that G has the structure of a Carnot group. A
fractional Brownian motion is not a Lévy process unless the Hurst parameter H is
equal to 1

2 . By a standard application of Itô’s Lemma

Xt =
{

B1
t , B2

t ,
1
2

∫ t

0
(B1

s dB2
s − B2

s dB1
s ) + 1

2
B1

t B2
t ,

∫ t

0

(∫ s

0

(
1
6

B2
r dB1

r − 1
3

B1
r dB2

r

))
dB1

s +

B1
t

4

∫ t

0
(B1

s dB2
s − B2

s dB1
s ) + (B1

t )
2 B2

t

6

}
.

It is easy to verify that Xt solves the stochastic differential equation

dXt = Xt(WdB1
t + XdB2

t ),

X0 = e.

Finally, the scaling propositionerty as formulated in [3, Proposition 3.8] implies that

(Xct)t�0
law= (�√

c Xt)t�0,

where

�√
c{w, x, y, z} = {√cw,

√
cx, cy,

√
c3z}.
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