A CONVERGENCE TO BROWNIAN MOTION ON
SUB-RIEMANNIAN MANIFOLDS
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ABSTRACT. This paper considers a classical question of approximation of Brow-
nian motion by a random walk in the setting of a sub-Riemannian manifold
M. To construct such a random walk we first address several issues related
to the degeneracy of such a manifold. In particular, we define a family of
sub-Laplacian operators naturally connected to the geometry of the underly-
ing manifold. In the case when M is a Riemannian (non-degenerate) manifold,
we recover the Laplace-Beltrami operator. We then construct the correspond-
ing random walk, and under standard assumptions on the sub-Laplacian and
M we show that this random walk converges (at the level of semigroups) to
a process, horizontal Brownian motion, whose infinitesimal generator is the
sub-Laplacian. An example of the Heisenberg group equipped with a standard
sub-Riemannian metric is considered in detail, in which case the sub-Laplacian
we introduced is shown to be the sum of squares (Hérmander’s) operator.
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1. INTRODUCTION

This paper describes a geometrically natural piecewise Hamiltonian-flow ran-
dom walk in a sub-Riemannian manifold, whose semi-group converges to that of
a horizontal Brownian motion on the manifold. In this setting we define a sub-
Laplacian by means of uniform averaging of second order derivatives. In particular,
in the Riemannian case we recover the Laplace-Beltrami operator; in the case of
the Heisenberg group equipped with a standard sub-Riemannian metric, we recover
the sum of squares (Hérmander’s) operator. While the current paper presents the
probabilistic aspects of this construction, the geometric study of this sub-Laplacian
can be found in [10]. As we will see in Section 4, the sub-Laplacian we study is the
one that generates the horizontal Brownian motion.

Over the last half century, Brownian motion on Riemannian manifolds has de-
veloped into a well-understood and rich theory. Much of this development relies
heavily on the Riemannian structure as one can see from the monographs [9,11].
There are two major ingredients which are canonical in the Riemannian case: the
Riemannian volume g and the corresponding Laplace-Beltrami operator Ay g. Re-
call that the Laplace-Beltrami operator is usually defined as divgrad, where div
is defined with respect to the Riemannian volume p. From here, a Brownian mo-
tion on a Riemannian manifold can be described as a stochastic process with the
infinitesimal generator Ay pg.

This approach is not easily available in the sub-Riemannian case. There are
several measures which might be used in lieu of the Riemannian volume such as the
Hausdorff measure, Popp’s measure (see [1,17]), left or right Haar measure in the
case of Lie groups. Each choice of the measure will lead to a possibly different sub-
Laplacian, and therefore to a different Brownian motion. A more detailed analysis
of sub-Laplacians and natural choices of measures is presented in [10].

Instead of making this choice, we develop a more classical approach of construct-
ing a Brownian motion as the limit of an appropriately-scaled random walk. Any
complete list of references working in this direction on Riemannian manifolds would
undoubtedly include the now-classic works [12,16], and most relevant to our work,
the isotropic transport process studied by M. Pinsky in [18]. Motivated by Pinsky’s
approach, the sub-Laplacian we construct is canonical with respect to the limiting
process of the random walk. This sub-Laplacian £ defined by (3.1) is elemental in
the sub-Riemannian setting without some a priori canonical choice.

There are several fundamental issues in our construction which are not present
in the Riemannian setting. Such issues prevent us from adopting a Pinsky-type
process to a sub-Riemannian manifold. For example, one of the basic relations
which has been exploited in the Riemannian setting is the duality between the
tangent and cotangent spaces. This duality is not available in the sub-Riemannian
setting, which led us to the realization that it seems to be more appropriate to
construct the random walk in the cotangent space, rather than in the tangent space.
Another major ingredient in the Riemannian case are solutions of the Hamilton-
Jacobi equations which are degenerate in the sub-Riemannian case. We overcome
the problem of the non-uniqueness of solutions to the Hamilton-Jacobi equations
with given initial position and velocity (tangent) vector by using a compatible
Riemannian metric in the definition of the sub-Laplacian £. Even though this
definition seems to depend on the choice of the compatible Riemannian metric, we
show that £ actually only depends on the corresponding “vertical” bundle.
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We further mention that there is interest in seeing how work by Bakry, Baudoin,
Garofalo et al [2,4-6] on generalized curvature-dimension inequalities for such man-
ifolds is related to dissipation of horizontal diffusions. We expect further study of
connections between diffusions on sub-Riemannian manifolds and corresponding
generators, as well as of behavior of hypoelliptic heat kernels and corresponding
functional inequalities such as in [3,7,8,15].

2. BACKGROUND AND NOTATION

2.1. Sub-Riemannian basics. We start by reviewing standard definitions of sub-
Riemannian geometry that can be found e.g. in [17] and originally were introduced
by R. Strichartz in [19,20]. Let M be a d-dimensional connected smooth manifold,
with tangent and cotangent bundles T'M and T* M respectively.

Definition 2.1. For m <d, let H be a smooth sub-bundle of T'"M where each fiber
H4 has dimension m and is equipped with an inner product which smoothly varies
between fibers. Then

(1) the triple (M, H,(-,-)) is called a sub-Riemannian manifold of rank m;

(2) H is called a horizontal distribution on M, and (-,-) a sub-Riemannian
metric;

(3) sections of H are called horizontal vector fields and curves on M whose
velocity vectors are always horizontal are called horizontal curves.

Assumption 2.2 (Hérmander’s condition). Throughout this paper we assume that
the distribution H satisfies Hormander’s (bracket generating) condition; that is,
horizontal vector fields with their Lie brackets span the tangent space Ty M at every
point g€ M.

Under Hormander’s condition any two points on M can be connected by a
horizontal curve by the Chow-Rachevski theorem. Thus there is a natural sub-
Riemannian distance (Carnot-Carathéodory distance) on M defined as the infimum
over the lengths of horizontal curves connecting two points. In turn, this affords
us the notion of a horizontal geodesic, a horizontal curve whose length (locally)
realizes the Carnot-Carathéodory distance.

Due to degeneracy of the sub-Riemannian metric on the tangent bundle, it is
convenient to introduce the cometric on T* M corresponding to the sub-Riemannian
structure. This is a particular section of the bundle of symmetric bilinear forms on
the cotangent bundle,

(g TuMxTIM >R, g M.

We relate the cometric to the sub-Riemanian metric via the sub-Riemannian bundle
map [:T*M — TM with image H defined in the spirit of Riesz’s theorem by

(2.1) (B4(p), v} = p(v)

for all g e M,p e T;M, and v € H,M. Hence the correspondence between the sub-
Riemannian metric and cometric can be summarized as

(2.2) (o, ¥hg = (Ba(9), By(1))g = ¢ (Bg(¥)) =¥ (By())
for all g € M, and p,¢ e T M.
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Armed with the cometric, we conclude this section by defining the corresponding
sub-Riemannian Hamiltonian H : T*M — R by

1 "
H(qap) = §<<p,p>>q7 qE€ M7p € Tq M

from which we can recover the cometric via polarization. Again we note the follow-
ing equivalent descriptions of the map

(2.3) H(q,p) = %((p,p»q = %((ﬂq (»): Bq(P))g = %p(ﬂq (»)-

The Hamiltonian is used to generate the dynamics of the system, where H (q,p)
gives the (kinetic) energy of a body located at ¢ with momentum p.

2.2. Canonical coordinates and compatible metrics. In the non-degenerate
(Riemannian) case, the metric and cometric are matrix inverses of each other when
written in any given local frame. Indeed, these matrices are represented componen-
twise by the lowered and raised indices g;; and g% respectively. The degeneracy in
the sub-Riemannian case disallows for such a relationship, leaving us with a choice
of Riemannian metrics which will be compatible with a given sub-Riemannian struc-
ture. The general non-canonical choice of compatible metrics will eventually lead
us to defining a family of sub-Laplacians corresponding to the choice of compatible
metric.

Definition 2.3. Let g be a Riemannian metric on M extending the sub-Riemannian
metric; i.e., gl x3, = (-,-)q for all ¢ € M. Then we say that g is compatible with
the sub-Riemannian structure, or simply that g is a compatible metric.

Within this paper, the purpose of introducing a compatible metric (-,-) is to
take advantage of the induced bundle map g : TM — T*M defined by g(v) = (+,v),
the standard duality TM <« T*M described generally through Riesz’s theorem.
This is a tool that we lose in the sub-Riemannian setting as we can associate to
each cotangent (momentum) vector a corresponding horizontal (velocity) vector

via T M 7, ‘H, but are unable to canonically map back H T M. With a
compatible metric g on hand, we then recover our return A 7M. However, as
already mentioned, with the full strength of the Riemannian metric, we have a full
bundle isomorphism TM — T*M, but this is more machinery than we need since
we will only be considering the mapping on the horizontal distribution; something
we explore presently through an observation from [10].

Proposition 2.4. Let (-,-) be a Riemannian metric on M and let g: TM — T*M
be the corresponding bundle map. Then (-,-) is a compatible metric if and only
if Bogly = Idy. Further, suppose (-,-)1 and (-,-)2 are compatible metrics with
corresponding bundle maps g1, g2 : TM — T*M. Fori=1,2, let V; be the orthogonal
compliment of H in TM with respect to (-,-);. Then g1(v) = g2(v) for every veH
if and only if V1 =Vs.

Idea of the Proof. For a Riemannian metric (-,-), the corresponding bundle map
g:TM — T*M can be written as gy ® gy : HoV - T*M, where V is the (-,-)-
orthogonal compliment of H in TM. From here, noticing that g(V) = Null(5),
and thus T*M = g3 (H) @ Null(3), we have 8 =33 ®0: g (H) ® Null(8) > TM.
Moreover, g is compatible if and only if gy = ,8;[1 which in turn happens if and
only if S o g =1Idy ®0. From here, it is easy enough to deduce that the mapping
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H 5 v~ g(v) depends only on gy and V, but not on the behavior of gy. Since, if g is
compatible, then gy = ﬂ;’{l is completely determined by V and the sub-Riemannian
structure, the assertions of this proposition follow. O

With Proposition 2.4 understood, instead of introducing a compatible metric,
we could build up the remaining work by selecting a smooth wvertical sub-bundle
VY ¢ TM such that TM = H &V, use this to distinguish a compliment of Null(3),
say H, in T* M such that we have 8 = 3 ®0: H®Null(8) - TM and hence recover

-1
a “return map” with H ﬁ—”> T*M. As for the theory that follows, the only role that
a compatible metric g serves is to distinguish the vertical bundle. However, for
some calculational purposes, it seems advantageous to keep working in terms of a
compatible metric g.

Notation 2.5. Let g be a compatible metric. For local coordinates x = (2*,..., 2%)

on M, we define the local maps 8% : M - R and g;j: M - R by
g 0
}

B9 (a) = (da', d )y and g35(a) = (5= 5

for all q in the domain of x. The d x d matrices with entries 3% and gi; will be
denoted by B and G respectively.

As B is the matrix representation of the bundle map 5 : T*M — TM in local
coordinates, G is the local coordinate matrix representation of the bundle map
TM — T*M defined by v~ g(-,v).

Example 2.1 (Contact manifolds). Let M be a 2n+1-dimensional manifold and w a
contact 1-form on M, that is, a 1-form such that dw is non-degenerate on Ker(w).
Let H := Ker(w), which defines a 2n-dimensional horizontal distribution on M,
called a contact distribution, and we assume that H is equipped with inner product
(-,+). The sub-Riemannian manifold (M, H, (-,-)) is called a contact sub-Riemannian
manifold. With any contact form w we can associate its Reeb vector field, which is
the unique vector field X satisfying the conditions w (Xp) = 1 and dw(Xy,-) = 0.
Hence for any local orthonormal frame Xj, ..., X5, for the distribution H we have
that Xo, X1, ..., X2, is a local frame, since Xy is transversal to H. Finally, if (-,-) is
an inner product on H, we can extend it to Xy by g (Xo, Xo) = 1 and setting H 1 Xj.
This g is then naturally compatible with the sub-Riemannian structure. Moreover,
for contact sub-Riemannian manifolds there are no abnormal geodesics, that is,
all geodesics are smooth and are projections of the trajectories of the Hamiltonian
vector field in T* M given by the Legendre transform of the inner product on H.
The Heisenberg group is an example of a contact manifold where w is a standard
symplectic form.

2.3. Hamilton-Jacobi Equations. We can now re-write the Hamiltonian H :
T*M — R defined by (2.3) using canonical coordinates. By identifying the vector
(¢%,....,q% p1, ..., pq) in R4 with the point (¢, p) € T* M using local coordinates for

) ) d )
the standard identification ¢* = z'(¢) and p = ¥, p;dz’, then
i=1

d
(24) Hgp) =5 3 pinsB (@)

,5=1
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A curve (q(t),p(t)) € T* M satisfies the Hamilton-Jacobi equations when

(2.5) q'(t) = '(t)ﬂ”(Q(t))

(2.6) pi(t) = ,p(t)) =-3 Z pk(t)pg(t) 8 - |q(t)

k,j=1

where we have slightly abused notation in the common way, conflating 6ip' with the
dxl in (2.6). Equations (2.5)
and (2.6) are collectively known as the Hamllton—J acobi equations.

Taking a time derivative in (2.5) we get

66

partial derivative of (2.4) in terms of p;, and 5~ with

en Fm- % {ﬁ”(q(t

,5,l=1

kj
o - 58NS - o }pz(t)p] 0.

+

Define the raised Christoffel symbols locally by

ik ij
(28) TG = Z{ﬁ”() | @l a0l

Rewriting (2.7) with (2.8) while suppressing the time dependence,

d ..
(2.9) i == > T (q)pip;.
ig=1

The negative signs in (2.8) and (2.9) are just by convention so that the acceleration
term is consistent with standard Riemannian definitions.

Notation 2.6. We let ® be the Hamilton flow
O:[0,7)xT"M —T"M,

where if (x,p) € To M then t — ®y(x,p) is the curve (q(t),p(t)) in T*M satisfying
the Hamilton-Jacobi equations with initial conditions q(0) =z and p(0) = p for t in
some mazimal interval [0, 7).

Remark 2.7. If (q(t),p(t)) = ®¢(x,p), then ¢(t) is a horizontal curve. Indeed,
(2.5) guarantees that ¢(t) = B(p(t)) € Hqer)-

Assumption 1. We henceforth assume that the sub-Riemannian manifold (M, H, (-, -,

is complete with respect to the Carnot-Carathéodory metric. Note that in this case
this sub-Riemannian manifold is also geodesically complete by a sub-Riemannian
Hopf-Rinow theorem (e.g. [19, Theorem 7.1]). In particular, for each (x,p) e T*M,
Oy (x,p) is defined for all t > 0.

3. HORIZONTAL SUB-LAPLACIANS AND THE HEISENBERG GROUP

In this section we introduce a family of second order differential operators on
M indexed by Riemannian metrics compatible with the sub-Riemannian structure
(M,H,{--)). In the Riemannian case when H = T'M, we recover the Laplace-
Beltrami up to a constant scaling factor; in the Heisenberg case using the standard
compatible metric introduced in Example 2.1, we get the familiar sums of squares
Laplacian up to a constant scaling factor.

)
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3.1. Horizontal sub-Laplacians. Definition 3.2 below introduces horizontal sub-
Laplacian operators, but before we can give the definition, some notation is in order.

Notation 3.1. We denote the unit sphere in H, by Sit = {v e Hy : (v,v), = 1}.
The (unique) rotationally invariant measure on S, will be denoted U,.

Definition 3.2. Let (-,-) be a compatible metric, and let g be the corresponding
bundle map TM — T*M. We define £ on C*(T*M) by

(3.1) cr@= [, {dt|0d8\ F(®ees(,9(0))) } U (o).

We will call £ the horizontal sub-Laplacian corresponding to g.

As is now obvious from Proposition 2.4 and the remarks that followed, we have
the following statement.

Proposition 3.3. Suppose (-,-)1 and (-,-)2 are compatible metrics giving rise to
orthogonal compliments V1 and Vo of H, respectively. For i =1,2, if L; is defined
by (3.1) with respect to (-,-);, then L1 = Lo whenever Vi = Vs.

3.2. A formula for £ in local coordinates. Working in local coordinates, we
set q(t) := 7 (P¢(x,p)), where 7 is the projection onto M. Defining v = B(p), we

get
Sl a4l Sewgh] )
d .
=;{qz<o>g‘;\ NIOTCP W\}
(3.2) ., of 4 oy
:;{ kglelz(l”)pkplaiL-ij::vlvj R I}
d i,.9 82f 17
- _;1{1}0 O 01 |z kz:;r k(x)pzp]a k| }

Proposition 3.4. Let (-,-) be a compatible metric with corresponding bundle map
g:TM —->T*M. For1<1i,j<d,

o 1 ..
3.3 f iU, (dv) = —BY
(53) [PV = 257 a)
and

1 d

3.4 f i Um d = — ia
(3.4) sn PP (dv) ma,b2=1 B% gy (x
Here p=g(v).

Proof. Rewrite (3.3) as
fsf da' (v)da? (v)U, (dv) = [S§<ﬂz(dxi>,v><ﬂm<dxj>,v>dwx<v>
- (B de'), Bulde?)) = =Y (2)
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The second equality follows from Corollary 5. 4 below. From here (3.4) follows by

a similar argument after realization that p; = Z Jiav® and p; = Z g]bv O

Combining Proposition 3.4 with (3.2) leads immediately to
Theorem 3.5. The horizontal sub-Laplacian indexed by g can be locally written as

i BZJ 82 i Fz]k} _Bab i
g Oridxi GialZ 9bj ozk

a,b,k=1

_ 1
(3.5) T

- Z ﬂlj 82 _ il—\mk [GBG]i
0xiox? = Ok

1]1

where [G’BG]M is the ijth entry of the matric GBG and G and B are defined in
Notation 2.5.

Remark 3.6. In the case that H = TM, B = G~ and hence

52 d ik o
m Z { 0zt 0z -2 gijaxk}’

7.] 1 k=1

which is the (% scaled) local formula for the Laplace-Beltrami operator on the
Riemannian manifold (M, g).

With Proposition 3.3 in mind, (3.5) appears deceivingly dependent on the struc-
ture of the compatible metric with the repeat appearance of its corresponding
matrix G. However, using the notation in the proof of Proposition 2.4, we have
gofog=gy o0, which as the proof of and remarks following Proposition 2.4 indi-
cate, gy is determined by the sub-Riemannian structure once the vertical bundle
V is fixed. The following example in the Heisenberg case illustrates this.

3.3. An example: the Heisenberg group. Let H be the Heisenberg group; that
is, H = R? with the multiplication defined by

1
(z1,91,21) * (T2,Y2,22) = | L1 + 2, Y1 +Y2,21 + 22 + §W (z1,y1522,92) |,

where w is the standard symplectic form

w (T1,Y1; T2, Y2) = T1Y2 — Y122
Left multiplication by (x,0,0) and (0,y,0) induce two left-invariant vector fields

0 1 9
X (q) ::%‘q—g %L
(3.6) Y (q) = ;y\q N %x%L

for any g € H. At each point g € H the globally defined vector fields X (¢) and Y (q)
span a two-dimensional subspace of TyHj set Hq := Span{X (¢),Y (¢)} and then

H=JH,

qeH
can be taken as the horizontal distribution. Moreover, at each ¢ € H we have
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X @Y @)= o] =7,

and so Hormander’s condition is satisfied. Consider M = H, the horizontal dis-
tribution H defined as above, and the inner product (-,-) on H, defined so that
{X (¢),Y (q)} is an orthonormal basis for H,. Recall also that in Example 2.1 we
described (H,#, (-,-)) as a contact manifold with Z as a Reeb vector field.

A covector ¢ € T, M will be identified with the triple (¢1,¢2,¢3) € R3 via
© = p1dx+pody+@3dz. We have that for each ¢ = (z,y, z) € H, the sub-Riemannian
bundle map B :T*M — TM is defined by

5 1 11 1
(3.7) (1,2, 03) — (@1 ~ SUPs, P2+ 503, o (B2 —ypr) + Z(y2 + x2)<p3) :

2 2
The matrix representation of 3 with entries 5% = dz*(8(dz?)) is
1 0 -4
(3.8) B(z,y,2)=[ 0 1 3
_y oz 2yt
2 2 2

Using the fact that (H,H,(-,-)) is a contact sub-Riemannian manifold, we can
extend the sub-Riemannian metric (-,-) to the Riemannian metric g which makes
{X,Y,Z} a global orthogonal frame with g(Z,Z) = A > 0. The matrix representa-
tion of g with entries g;; = (azﬂ ) Bt 9.y is

A2 Awy Ay
1+/\4 1, 2
(3.9) Glay,z)=| 2o g% el
Ay _Az A
2 2
and therefore,
142 ey dw\ g g ¥\ (1420 dew
4 1 2 4 1 2
GBG=| -2y gl el 0 1 3 SAzyopgp e e
27 2 4 4 2
Ay _Az A -y z Tty Ay _Az A
2 2 2 2 4 2 2
1 00
=0 1 0
0 0 0

Here you can see the manifestation of Proposition 3.3 through the independence
of GBG on any choice of \. Using (2.8) and (3.8), for any k = 1,2, 3, T'1** = 22k = ,
which gives us all values needed to explicitly find (3.5) in this context.

r-1L 23: g O |1 23: {pijk (GBG] i}
S 2,54 Ozidxd | 2, 54, Ok
1 3 32
T2 2; { 0xi0xI } -

0? 82 1 9 0? 0?
+ = (2? ) +x
022 8y 4 822 Yora: Oyoz

Thus we can rewrite £ as

C:%(X2+Y2).
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4. CONVERGENCE AND RANDOM WALKS

The first part of this section discusses the semi-group convergence results nec-
essary to prove the convergence of the random walk developed in Section 4.2 to a
horizontal Brownian motion. The main result is Theorem 4.11.

4.1. Convergence of semigroups. Let € (T*M) be a subspace of the smooth
bounded functions on T*M, Cp°(T* M), closed with respect to the sup norm. We
identify C¢° (M) as a closed subspace of C°(T* M), where f e Cp° (M) is identified
with f e O°(T*M) when f(x,p) = f(x) for every (x,p) € T*M. Let € (M) =
C(T*M)nCg*(M).

Remark 4.1. We will require further assumptions to be made on the space € (7T M)
below in Assumptions 2 and 3. With these in mind, a reasonable example is the
space of functions f € Cp°(T* M) such that f(z,p) - 0 whenever dec(x,0) - oo
for some fixed o € M; note in this case €(M) = C§°(M). Another example is the
space of functions f e Cp°(T*M) such that f(z,p) = 0 whenever x lands outside
some compact subset in M; in this case €(M) = C(M).

Definition 4.2. For f e C°(T*M), we define the Hamiltonian vector field by
d

(4.1) Puf(w.p)= 2| f (@)

Remark 4.3. If f e C;°(M), then Py f(z,p) = v(f) where v = 3(p).

Remark 4.4. The semigroup property of flows implies that if f € € (T* M), then

(4.2 I (T f) (wp) = | S| T (@),

Definition 4.5. For f e Cy°(T* M), the horizontally averaged projection

P:Cy (T M) — Gy (M),

is defined by
(43) Pf@)= [, Fa.g()Us(dv).
Here, as before, U, is the rotationally invariant (uniform) probability measure on
the unit sphere S*.

Let us now make the following observation.
Proposition 4.6. For every f e C;°(M), Lf =PPuPuf.
Assumption 2. We henceforth assume that P (€ (T*M)) c €(T*M).

Set T as the identity operator on C;°(T*M). We denote by e!P=T) the strongly
continuous contraction semigroup on C;° (T M) whose bounded generator is P-Z.
We denote by e!?# the strongly continuous contraction semigroup on C(T"M)
whose generator is Zy. Using Notation 2.6 we have

et@Hf(xap) = f(q)t(xap)) .

Finally, for any « > 0 we denote by T, (¢) the strongly continuous contraction
semigroup on € (T*M) whose generator is Py + a(P — ). This is possible since
P -7 is bounded.
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For more generalized notions of summing together generators we refer to [21].
Our aim is to prove a limit theorem of T, (at) as o - oo using [14, Theorem 2.2]. To
this end, we first state some prerequisites which follow easily from the definitions.

Lemma 4.7. The following hold.

1) P(EC(T*M)) =€ (M).

2) PPuf =0 for fe€(M).

Following the notation of T. Kurtz in [14], define
Dy:={feC(T"M)nP(€(T*M)):

there exists h € Dom(%y) such that (P-Z)h=-Pyf}.

Using the first claim of Lemma 4.7, we see that € (T*M) nP(€(T*M)) =€ (M).
Moreover, for f € €(M), define h := Zgf. By the second claim of Lemma 4.7,
(P-I)h=-2yf. We conclude that Dy =€ (M).

Before getting to Theorem 4.9, the main result regarding convergence to a sub-

Riemannian Brownian motion, we first make an assumption necessary to apply the
result of Kurtz we wish to use.

(4.4)

Assumption 3. We henceforth assume the semigroup et is Feller in the following
sense: for everyt >0, A>0, and he €(M)

x— foo e MetEn(x)dt € € (M).
0

Remark 4.8. For example, both Assumptions 2 and 3 hold if we let M be the
Heisenberg group, £ be as in Example 3.3, and set € (T*M) to be those f €
Cy2 (T M) such that f(z,p) - 0 as dec(x,0) - .

We can now formulate the main result of this section.

Theorem 4.9. lim T,(at)f = et“ f uniformly for every f € € (M).

Proof. By Assumption 3, for any h € €(M) = Dy and A > 0, the function k(z) =
[y e Meteh(x)dt is in €(M); moreover, (A — L)k = h. This shows that € (M) c
Ran(\ — £). Hence by [14, Theorem 2.2], the closure of PPy 2y is the generator
of a strongly continuous contraction semigroup e”?#?# such that

lim T, (at)f = etP7u7m f

for every f e € (M), where the limit is in the sup norm. As noted in Proposition
4.6, P9y P = L on €(M). This concludes the proof. O

4.2. A sub-Riemannian random walk. Let ¢ > 0 be a parameter that we eventu-
ally take to zero. Let {e;}32; be i.i.d. exponential random variables with parameter
1 and define eg := 0. Let us fix (z,p) € T*M as our initial position and momen-
tum and let v = B(p). Define (&,p5) = @ot(z,g9(v)) for 0 <t < e;. Given ey, let
2f =mo P, (x,9(v)) € T*M where 7 : T*M — M is the canonical projection, and
take v] randomly from S;'% such that the law of v{ is Uze. From here, for 0 <t < ea,

define (&7,.,,05,c,) = Pet(27,9(v)). Continuing recursively, for each k > 0, once

given {(0,00)., (5,05 .., (5. vf) } and {e;} 5, define a5, = (Pec, ., (5. 9(vf)))

and take v, randomly from S;{i ) such that the law of vy is Uz . From here, for

0 <t <epyo define (&5, s Pivr,.,) = Pet(25,1,9(vi, 1)) Where Tpiy = €1+ + gy
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We now have a (e-scaled) random walk Bj(z,p) := (&,pf) in T*M. Here, the
notation Bj (z,p) emphasizes that (x,p) are the initial conditions (and S(p) = v is
the initial horizontal velocity). Define Ty : €' (T*M) - ¢ (T*M) by

With this we are ready to present the final piece needed, Theorem 4.10, before the
statement of convergence, Theorem 4.11.

Theorem 4.10. For every f e €(M),
(4.5) Tef = Zu+PD g,

We postpone the proof of Theorem 4.10 until Section 5.1. Note that both T} and
et(eZ7u+P=I) are defined on € (T*M), however only agree on € (M). This is due
to the fact that Bf(x,p1) = B (x,p2) when 8(p1) = 5(p2), even though ®;(x,p;1)
need not be equal to ®¢(x,py). This is in contrast with the Riemannian case (e.g.,
see [18, Proposition 3.3]) where these semigroups would agree on the entirety of
€ (T*M) and allow us to ignore some of the difficulties and subtleties apparent in
the sub-Riemannian setting.

As a corollary to Theorem 4.10, we arrive at the convergence result which is our
main theorem.

Theorem 4.11. 1i1% f/ng = ' f uniformly for every f e €(M).
E—>

Proof. From Theorem 4.9, it follows that if f € €(M) then lir% e(t/sz)(E@H”D‘I)f =
£—

e* f. Since Theorem 4.10 shows that TF and e!(¢Z7#*P~T) agree on € (M), the
result follows. O

Remark 4.12. Let B = (By)»0 be the horizontal Brownian motion on M with
generator £; that is, (By)sso is a L-diffusion on M. Theorem 4.11 shows that the
T — Ty strongly on € (M), where T; = e'* is the semi-group associated with
(Bt)t>0- One might be interested in what we can infer about other convergences

with respect to these processes B® = (Bf/SQ)tzo to B, a question that will likely

depend on the specifics of a particular sub-Riemannian manifold and the function
space € chosen. However, a result in this vein is given in, for example, [13, Theorem
19.25].

5. PROOFS

5.1. The Proof of Theorem 4.10. We continue with the notation introduced in
Section 4.2. For the i.i.d. exponential random variables {e;}:°, and for k > 0, let
Ti = €o + €1 + - + eg; recall that eg := 0. We denote by R the resolvent of eft@H;
that is,

)= [N fapydi= [N f(@a(ap)) dt
We denote by S5 the resolvent of Ty; that is,

(51) S30Gp) = [ NEL (B )] dt

Lemma 5.1. For any f e €(T*M),

| [ B )] < B oo 50
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Proof. If the initial conditions of Bf are (x,p), then or 0 <t < 7y, Bf = ®4(z,g0
B(p)). Thusly

| J) B0 | [ @0 s

- fote*se*tf@st(x,goﬁ(p)))dms= [ (@, g 0 Bp))) d

=Ry (2,90 B(p)).
This concludes the proof. O

Lemma 5.2. For any f € €(T*M),
| [ B )t - B APS3 o 5.
Proof. Notice that

E[ I e‘”f(Bf(rmp))dt] E[* [T e B ot |

E[ JAGECACY e (xivi)] = 55 (a,9(0),
and
B[S3/(a1.9(v1)) | 7 = 1] = E[S5/ (20, g(U))]
= J S Ga1s9(0) Uz () = PS5 S (20).

where 2y = 1o @ (2,90 (p)) (as before, m: T*M — M is the canonical projection)
and U is a uniform random variable on S;'f. Putting these pieces together,

E[ [ e (x,p))dt] =E[e S5 f (a1, 0]) ] = B[ PS5 f ()]

= foooe’Ate‘tPSif(%(x,gOﬁ(p)))dt=Ri+17’S§f(:v7gOB(p))-

Note that the third equality used PS5 f(z5, ) = PSS f (Dt (z, go S(p))) by the iden-
tification of € (M) as a subset of € (T*M). O

Proof of Theorem 4.10. Using Lemmas 5.1 and 5.2, we have

S5 (2.p) = E[ [ e”f(Bf(Lp))dt] E[ [ e

1S (@90 B8(p)) + Ri PSS f (2,90 B(p))-
Multiplying on the left by 1+ A\ — Py yields
(1 +A=eZ1)S5f(x,g0B(p)) = f(w,90B8(p)) + PSS (2,90 B(p))-
That is,
(A= [eZu +P? -I])S5f(z,g0B8(p)) = f(x,9° B(p)).
In particular, for any f € € (M),
(A=[eZu+P?-I])S5f = [

From here we can now conclude the result. O
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5.2. Averaging over the unit sphere in an inner product space. Here we
provide details of the proof of Proposition 3.4 which are solely properties of finite-
dimensional inner product spaces.

Proposition 5.3. Let X be an n-dimensional real inner product space with inner
product {-,-). Let S be the unit sphere in X with respect to this inner product and
set p as the rotationally invariant probability measure on S. Given any X € X,

X |2

[ .0 uae) ==

Proof. Tt suffices to show that if X € S, then fS(X,f)z,u(df) = 1/n. To this end,
suppose X,Y € S and [ : § - S is any rotation such that [(Y) = X. Since the
adjoint of a rotation is again a rotation, we have,

LX) = [a().©%u(de) = [[(Vir©)?u(d) = [ (v.©)%u(de)

where the final identity follows from the rotational invariance of . This shows that
the value of the integral is constant for any choice of X € 5. Set

ar= [ (X.0%u(d9).

Take {X;:1<i<n}cS to be an orthonormal basis for V, then for any £ € S

L= = 20X, 0%
Therefore,
- 2 5 2 -
1= [ lePutae) =% [ (X06)u(d) =na
which then implies a = 1/n. O

Corollary 5.4. Let X, S, and p be as in the previous proposition. Take X,Y € X.

Then Xy
[x o e - 1)

Proof. By the previous proposition,
2 2 2
XY PP 000

[ 47,9 uag) - L g
On the other hand, (X +Y,&)? = (X,f)2 +(Y,6)? +2(X,€)(Y,€). Hence another

application of the previous proposition yields,

[&+v.9%uae) = [ {(X,€)2+(Y,€)2+2(X7§ (V.6 u(de)
2
P (oo uae).

n
Comparing terms, the result now follows. O
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