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ABSTRACT

Trusted Execution Environment (TEE) is designed to deliver a safe
execution environment for software systems. Intel Software Guard
Extensions (SGX) provides isolated memory regions (i.e., SGX
enclaves) to protect code and data from adversaries in the untrusted
world. While existing research has proposed techniques to execute
entire executable files inside enclave instances by providing rich sets
of OS facilities, one notable limitation of these techniques is the
unavoidably large size of Trusted Computing Base (TCB), which
can potentially break the principle of least privilege.

In this work, we describe techniques that provide practical and
efficient protection of security sensitive code components in legacy
binary code. Our technique dissects input binaries into multiple com-
ponents which are further built into SGX enclave instances. We also
leverage deliberately-designed binary editing techniques to retrofit
the input binary code and preserve the original program semantics.
Our tentative evaluations on hardening AES encryption and decryp-
tion procedures demonstrate the practicability and efficiency of the
proposed technique.

1 INTRODUCTION

With the increasing needs to deploy applications on the third-party
untrusted environments (e.g., cloud), software attacks are widely
launched to steal privacy information from the victim programs.
Cutting-edge code reuse attacks exploit software vulnerabilities (e.g.,
buffer overflow) and leverage code snippets in the victim program to
undertake attack activities. In addition, many sophisticated attackers
can (indirectly) inspect the execution behavior of victim programs
and reveal secret information of the running process.

A promising direction to protect benign applications from cutting-
edge threats (e.g., code reuse attacks) is to execute programs in
the Trusted Execution Environment (TEE), such as Intel Software
Guard Extensions (SGX). In general, SGX technique provides a
secure memory region (called SGX enclave) in the process address
space where the application code and data can be executed safely.
Hardware guarantees the isolation of the enclave instances, and it
also encrypts the memory pages before storing on the disk.

To protect (legacy) binary code from adversaries using SGX tech-
niques, existing research has proposed techniques to put the entire
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executable file into the enclave for execution [2, 4, 28]. By providing
rich sets of system supports (e.g., a library of OS facilities), legacy
binaries can be directly executed inside SGX enclaves without mod-
ifications for most of the cases. However, a general concern for such
“heavy-weight” approaches is that usually the Trusted Computing
Base (TCB) is largely increased, which potentially violates the prin-
ciple of least privilege [16, 22]. We also notice some recent work
proposing to partition the software system into several components
according to their dependency on program secrets [16]; code com-
ponents that depend on the program secrets would be protected by
the SGX enclave instances. While the overall approach shall notably
decrease the size of TCB, their approach is designed to instrument
source code, which limits its application scope since there are large
amount of legacy binaries in the wild.

In this research, we propose novel techniques to perform binary
retrofitting and harden (security sensitive) functions with SGX en-
claves. Our technique is designed to dissect binary code into multiple
components; each component contains one or several functions, and
each component will be put into an SGX enclave instance for pro-
tection. To deliver a flexible design, we create an SGX “interface”
library for each enclave, where “interface” functions are provided to
perform SGX enclave initialization, teardown as well as invoking
each protected function in the corresponding enclave instance. The
input binary code is instrumented, where the body of protected func-
tions are rewritten into “trampoline” code and the assembly instruc-
tions of the protected functions are built into SGX enclave instances.
During runtime, the “trampoline” code redirects the control flow
from the original function entry point into the corresponding SGX in-
terface library, and further reach the protected functions in the SGX
enclave instance. Also, since many challenges in binary retrofitting
are fundamentally undecidable, we propose well-designed excep-
tion handling techniques to capture and fix execution errors, which
deliver a faithful runtime behavior.

To protect security sensitive functions in cryptosystems, we eval-
uate our technique towards a widely-used cryptographic algorithm
implementation, i.e., the AES implementation in OpenSSL. Our
preliminary evaluations protect AES core encryption and decryp-
tion procedures, and the experimental results have demonstrated the
feasibility and efficiency of the proposed technique.

2 BACKGROUND OF INTEL SGX
TECHNOLOGY

Software Guarded Extensions (SGX) is a set of extended x86 instruc-
tions that provide isolated execution environments, called enclaves,
within a single process. Technically, an enclave run in the user mode
(ring 3) of an Intel CPU, but the SGX hardware guarantees that
accesses from outside are always properly mediated even if the en-
tire software stack, including the operating system, driver, BIOS
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and VMM, is compromised. In other words, the CPU and code
inside an enclave are enough to form a Trusted Computing Base
(TCB). A physical memory region called Processor Reserved Mem-
ory (PRM) is reserved exclusively for SGX execution. SGX enforces
page based access control by extending the processor’s Page Miss
Handler (PMH). The Enclave Page Cache (EPC) resides in the PRM
and holds enclave code and data. The system software is in charge
of managing EPC pages for enclaves. While the system software is
untrusted, SGX tracks the properties of EPC pages through a data
structure called the Enclave Page Cache Metadata (EPCM), which
is also located in the PRM.

The functionalities of SGX are encoded as leaf functions within
the ENCLS (enclave supervisor) and ENCLU (enclave user) instruc-
tion mnemonics. The system software uses the ENCLS instruction
to invoke the specified privileged leaf function for managing and
debugging code in enclaves. Users utilize the ENCLU instruction to
invoke the specified non-privileged leaf functions for enclave state
transitions and retrieving key materials inside the enclave. The life
cycle of an enclave begins with the creation of an SGX Enclave
Control Structure (SECS) page for the enclave when the system
software issues the ECREATE leaf function; The system software
then uses the EADD leaf function to load initial code and data into
the enclave. While loading the enclave, the system software also
updates the enclave measurement using the EEXTEND leaf function.
After the enclave code and data are loaded, the system software can
execute the EINIT leaf function to mark the enclave as initialized
and finalize the enclave measurement to establish the enclave iden-
tity. The correctness of the enclave can be verified by generating a
cryptographic report of the enclave measurement with the EREPORT
leaf function and attested to a local enclave through local attestation
or to a remote party through remote attestation. The ring-3 applica-
tion is now allowed to perform a controlled jump into the enclave
code using EENTER leaf function; EENTER also switches the pro-
cessor to enclave mode. The enclave code can use the EEXIT leaf
function to return the execution to the host application. Whenever an
exception or fault occurs inside the enclave, the processor performs
an Asynchronous Enclave Exit (AEX) before invoking the system
software’s exception handler. The AEX saves the enclave state in
the enclave’s State Save Area (SSA) frame, restores the state saved
by EENTER and changes the instruction pointer (RIP) to point to a
trampoline area (referred to as the asynchronous exit handler) in the
host application. The RIP is pushed onto the stack before jumping
to the system software’s exception handler. As a result, after the
exception is handled by the system software, execution is returned
to the trampoline area which is expected to return to enclave mode
and continue the computation using the ERESUME leaf function. An
enclave is destroyed with the EREMOVE leaf function after the EPC
pages are deallocated by the system software.

3 RELATED WORK

SGX has been receiving much attention since it was introduced as it
is widely supported on commodity CPU hardwares. Extensive works
have been published to enable the quick deployment of various ap-
plications on SGX. The library OSes, Haven [4] for Windows and
Graphene-SGX [28] for Linux, enable running unmodified binaries
inside SGX enclaves. Scone [2] uses SGX to protect Linux con-
tainer processes with a small TCB and a low performance overhead.
Eleos [19] implements exit-less system calls and exit-less paging
in enclaves. It introduces a Secure User-managed Virtual Memory

(SUVM) abstraction that implements application-level paging inside
the enclave to reduce the overhead of enclave exits due to paging.
PANOPLY [27] provides a new abstraction called a micro-container
which is a unit of code and data isolated in the enclaves. It has a
minimized TCB and yet offers rich OS abstractions to enclave code.
SGX has also been used to enable trustworthy data analytics in the
cloud [23] and secure isolation of the states of Network Function
Virtualization (NFV) applications [24], to enhance the security and
privacy of Tor [14], to protect distributed sandbox instances [13] and
data-oblivious machine learning algorithms [18] from potentially
malicious computing platforms.

Lind et al. propose an automatic source-level partitioning frame-
work called Glamdring [16]. A developer first annotates security-
sensitive application data. Glamdring then automatically partitions
the application into untrusted and enclave parts, places security-
sensitive functions inside the enclave, and adds runtime checks and
cryptographic operations at the enclave boundary to enforce the
confidentiality of sensitive input and integrity of sensitive output.

Intel states that SGX does not provide explicit protection from
side-channel attacks. Furthermore it has been shown that under the
threat model of SGX, a type of controlled-channel attacks [34] can
introduce page-faults for enclave memory accesses, monitor the
page-level memory access patterns inside the enclave and recover
meaningful information from it. As the controlled-channel attacks
induce a high number of AEXs, defenses are proposed to detect
such abnormal events inside the enclaves based on detecting the
frequent interrupts using Transactional Synchronization Extensions
(TSX) [25] or checking program execution time at the granularity
of paths in its control-flow graph [8]. SGX has also been shown
to suffer from the well-known cache timing attacks [5, 10, 17] and
branch history based attacks [15]. A recent work [33] presents a
comprehensive study of the SGX memory side channels and further
demonstrates that a page-level attack can still steal information from
the enclaves without inducing a large number of AEXs.

4 DESIGN

In this section we outline the design of the proposed technique.
To this end, we first present an instrumentation example and ex-
plain each component of a typical instrumentation product. We then
present overview of each instrumentation step.

Instrumentation Example In general, the proposed technique sup-
ports flexible configurations to utilize SGX techniques. That is, users
can configure our tool to put one or multiple functions into differ-
ent SGX enclaves. The Intel SGX SDK provides a set of routine
functions to support SGX enclave initialization, destruction, access
control, and other security-related operations. To provide a flexible
and mostly reusable design, functions belonging to the same en-
clave are associated with a set of such standard routines. Each set
of routines are compiled into one shared library, providing interface
functions to invoke the protected code in the enclave instances. By
maintaining the interface of each enclave as a shared library, the pro-
tected functions become mostly “reusable” to provide functionalities
secured by SGX.

Figure 1 presents an instrumentation example, in which the input
binary is compiled from a program of three functions (Figure 1a).
In this example we put two functions (Func2 and Func3) into
two enclaves, separately. The instrumentation output is shown in
Figure 1b. As previously presented, we maintain common routine
code for each enclave as one shared library (second column in
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(a) Input Binary. (b) Instrumented Outputs.

Figure 1: Example of binary instrumentation using SGX en-
claves. Two functions (Funcl and Func2) are put into two en-
claves for protection.

Figure 1b); “interface” functions to trigger protected code in the
associated enclave of the shared library are exported (such library is
denoted as SGX interface library later in this paper). The original
content of both functions are rewritten into trampolines (FT2 and
FT3), which forward function calls to corresponding interface code,
and further to code in the enclaves. While control transfers between
the application code and each shared library are normal function
calls, specific SGX instructions are used to bridge libraries and
enclave instances (i.e., through SGX ECALL and OCALL).

Instrumentation Overview To perform SGX-based binary instru-
mentation, we first launch in-place binary editing to rewrite several
leading bytes of the target binary functions into trampolines; tram-
poline code will redirect control-flow transfers to its corresponding
SGX interface library and further invoke the protected function in
the enclave instance. Well-designed in-place binary rewriting can
preserve the original binary context, and hence delivering a faithful
rewritten output (§4.1). For each protected function, we perform dis-
assembly and recover their assembly instruction sequences. We then
launch a set of analysis passes to recover higher-level information
(e.g., function prototype) of the protected function; such informa-
tion is critical to preserve the functionality correctness and support
SGX access control in the instrumented output (§4.2). Furthermore,
considering the general difficulty in retrofitting binaries, it is not
inaccurate to assume that some data or code pointers would become
broken due to the relocation of the SGX-hardened functions. Hence,
we propose a deliberately designed exception handling mechanism
to catch and process potential runtime exceptions (§4.3).

Scope and Limitations Our tool is mainly designed to protect
legacy binaries on x86 platforms. The instrumented binary can bene-
fit from the SGX technique which is widely supported by recently-
released Intel hardware. In this research we propose to perform
function-level protections. As Intel SGX supports to execute arbi-
trary length of code components, it should be also interesting to
investigate the feasibility on protecting finer-grained code snippets,
such as critical control predicates.

Our tool is designed to protect legacy code, including stripped
binaries containing no or minimal debug and relocation information.
While function information is mostly absent in such binaries, re-
cent work has made promising progress in this direction [3, 26, 32].
Hence, in this research we assume the function information is avail-
able before instrumentation. The current implementation instruments
64-bit ELF binaries since ELF is the default format on Linux plat-
forms and 64-bit is the mainstream. Nevertheless, the proposed

trampoline_foo:

1
2 push %rbp
3 mov srsp, srbp
4 push Sreturn_addr
5 push S%rax
6 mov $sgx_interface_foo, $rax
7 xchg %rax, (%rsp)
8 ret
9 pop $rbp
10 ret

Figure 2: Trampoline Code for In-Place Binary Editing of Func-
tion foo.

technique is independent with the underlying architecture details,
and hence not difficult to port to other platforms, like 32-bit Linux.

4.1 Binary Editing

We now elaborate on the design of the binary editing process. In
general, code components in (stripped) binary code are pointed
to through concrete addresses (in terms of absolute or relative ad-
dresses). Hence, binary code is generally considered “un-relocatable”;
any manipulation that changes the relative position of binary compo-
nents can potentially break the pointers of concrete addresses in the
context and lead to ill-functionalities during runtime.

In general, existing binary instrumentation approaches can be
divided into several categories. The first category delivers in-place
editing which performs byte-level binary rewriting and can preserve
the original positions of all reachable binary components in the
context [20]. Some other commonly-used techniques perform patch-
based or replica-based instrumentation [6, 11]. Wrappers are broadly
adopted to redirect the control transfers and preserve the original
semantics, which can usually lead to non-trivial execution slow-
down or binary space increase. We also notice a number of recent
techniques proposing to fully recover relocation information before
instrumentation; once the code components become relocatable, it
shall be safe to perform arbitrary instrumentation [29, 30].

Since one promising application of our technique is to harden
cryptosystems, where complex data structures and control flows
shall exist, in this research in-place binary editing is adopted for the
seek of delivering a conservative and faithful instrumentation. In
general, for each function that is going to be placed inside the SGX
enclave, we analyze the input binary and locate its position in the
binary code. We then rewrite the starting bytes of the target function
with a trampoline routine; this routine will forward the execution to
the corresponding SGX interface library and further into the enclave.
By editing the beginning bytes of the target functions, it is safe to
assume that any function call towards these functions can be rerouted
to their callees in the enclave, and thus retaining the inter-procedural
transfer correctness.

Trampoline Code In-place binary editing rewrites bytes in a binary
code. To be compatible with the editing context (e.g., avoid breaking
pointers), usually code snippets used for substituting the original
binary content are deliberately designed to be as concise as possible.

A sample trampoline code used in this research is shown in Fig-
ure 2. Note that libraries (including the SGX interface libraries) are
usually loaded at the higher addresses in a process memory space.
In other words, memory address of each SGX interface function
is usually larger than 4 bytes on 64-bit x86 platform. On the other
hand, each time push instruction can only store a 4-byte value on
top of the stack.



One common trick is that mov instruction can operate a 8-byte
operand one time as long as the destination operand is rax. Hence,
we first store the address of the trampoline callee into register rax
(line 6), and then use xchg to exchange value in register with
the top of the stack (where the original value of rax stores). ret
instruction is then used to perform unconditional control transfers
with the address on top of the stack as its destination (line 8).

Since the trampolines are located in the application code at the
lower address of a process memory space, we can directly store the
“return_addr” on the stack with one instruction (line 4); “return_addr”
represents the address of the instruction on line 9. After finishing
the execution of sgx_interface_foo function, the control flow
will return back to line 9.

As previously mentioned, we place this instruction sequence at
the beginning of foo by editing the leading bytes of its function
body. Our deliberately selected instructions are indeed very concise
(only 28 bytes), hence any non-trivial function shall provide enough
space to be rewritten with such trampoline.

4.2 Assembly Function Analysis

For each target function, we perform an intra-procedural analysis
to recover high-level program information. The recovered informa-
tion is critical for preserving functionality correctness, supporting
SGX enclave access control, as well as further instrumentation and
retrofitting.

Function Prototype Recovery One attractive feature provided by
SGX SDK is “access control”. In particular, for a function call which
has parameters of pointer types, users can annotate these pointer
parameters and Intel SDK would generate additional routines for
pointer legitimacy checks. A number of pointer properties (e.g.,
length of the pointed memory region) are checked before entering
enclave functions.

While it is straightforward to annotate sensitive parameters of
pointer types for programs written in C, there is no type information
available in the assembly code. To benefit from the validation check-
ing routines for pointer parameters, we first recover type information
on the target assembly functions, and hence revealing the function
prototype information. Function parameters of pointer type can be
configured to enable the checking process.

Relocation Information Recovery We recover program relocation
symbols for each target function. In particular, we identify addresses
for intra-procedural control transfers, code pointers as well as global
data pointers. Such concrete addresses (i.e., absolute or relative
addresses) are recognized through an existing reverse engineering
tool [30]. For addresses of control transfer destinations, we lift them
into relocatable symbols to support arbitrary code manipulation. On
the other hand, we keep global data pointers in its original concrete
value format, since after in-place binary editing, global data sections
would be loaded in their original locations.

Inter-procedural control flow transfers (i.e., function calls) can be
performed directly or indirectly. For direct function calls, control
flow destinations can be recognized from the operand of the call
instruction. As for the indirect function call which takes a code
pointer as its destination, we identify code pointers embedded in the
instructions. All of these control flow destinations are collected to
build OCALL procedures (details are given shortly).

While recent work on recovering program relocation informa-
tion has reported promising results, still, this problem is in general

exception_exit:

1

2 mov %gs:0x0, srax

3 mov $rax, srbx

4 call update_ocall_lastsp
5 mov 0x20 (%rbx) , $rdx

6 mov 0x98 (%rdx) , srbp

7 mov 0x90 (%$rdx) , Srsp

8 mov Starget_addr, $rbx

9 mov SEEXIT, %rax

10 enclu

Figure 3: Code snippet of exception_exit procedure to han-
dle potential runtime exceptions.

undecidable and unrecognized pointers may still exist when ana-
lyzing real-world complex programs. Hence, we further design the
exception handling techniques to deliver a faithful execution during
runtime (§4.3).

OCALL Trampoline As aforementioned, we analyze the assembly
code of the target function and collect its inter-procedural control
transfer destinations. SGX specifies that code inside an enclave needs
to use OCALL routines to call functions in the untrusted part. Hence,
these collected callee addresses are candidates for OCALL transfor-
mations and we create one OCALL routine for each control transfer.
We rewrite the destination of such control transfer instructions to
point to one corresponding OCALL routine code. The execution flow
will be further forwarded to the untrusted world, where library or
application functions are invoked.

Our instrumentation is conceptually similar to the “replica-based”
instrumentation in terms of the organization of the instrumented
components. That is, function call can eventually reach to the callee
even if the callee function has been relocated inside an enclave, since
its trampoline code in the instrumented binary would faithfully redi-
rect the execution flow. On the other hand, considering the relatively
high performance cost of inter-enclave control transfers, we perform
optimizations at this step if both the caller and callee of a function
call are in the same enclave; OCALL trampoline is omitted and caller
destination is rewritten with callee’s new address in the enclave.

4.3 Exception Handling

In this section we propose exception handling mechanisms to solve
potential runtime exceptions (e.g., pointer dereference error). When
such an exception occurs, the processor performs an AEX before
invoking the system software’s exception handler. The AEX saves
the enclave state in the enclave’s State Save Area (SSA) frame. The
EXITINFO in the SSA frame contains the information used to report
exit reasons to software inside the enclave. According to the SGX
manual [1], a segmentation fault exception is not reported inside
an enclave in the current implementation of SGX. As a result, the
VALID bit of EXITINFO is not set. In order to support the recovery
from runtime exceptions, we removed the examination of the VALID
bitinthe trts_handle_exception function (file trts_veh.
cpp) to enable exception handling inside an enclave in our proof-of-
concept implementation.

To perform a successful transition from the enclave state to the
application state, the application stack pointers RBP and RSP need
to be restored. Furthermore, the target address outside the enclave
needs to be retrieved from the saved region and EEXIT leaf function
needs to be executed to perform a synchronous exit. According to
the SGX manual [1], upon an interrupt or exception the application’s
RBP and RSP are saved in the GPRSGX region of the current thread’s



SSA frame. We register our exception handler inside the enclave
which is first invoked after the exceptions. The exception handler sets
the RIP to a dedicated exception_exit procedure (Figure 3).
The exception_exit procedure restores the application stack by
calling update_ocall_lastsp and then executes the EEXIT
leaf function to exit the enclave. It also retrieves the target address!
and puts the address to RBX before the EEXIT leaf function, so that
the execution branches to the target address after enclave exits.

For each call from the enclave to the application that raises an
exception, the exception handling process involves three transitions
between enclave state and application state. Extra time is also spent
on the processing inside the system software. As a result, the excep-
tion handling approach takes more time than the trampoline code
based approach. However we believe the runtime exceptions are rare
cases, and we propose possible methods which we leave as future
work to reduce the overhead. Firstly, the runtime exception frequency
could be reduced if we could update the pointer dereference infor-
mation dynamically during runtime. Secondly, Intel Transactional
Synchronization Extensions (TSX) could be used to transfer control
to the enclave address specified in the XBEGIN instruction before
trapping to the system software once runtime exceptions occur inside
the enclave. Another side effect of the current exception handling
mechanism is that it allows jumping to arbitrary code outside the
enclave from within the enclave.

5 IMPLEMENTATION

We extend an existing open source binary reverse engineering plat-
form (Uroboros [30, 31]) with the SGX instrumentation functionality
described in this paper. Our prototype is implemented in Scala, with
over 1,700 LOC. Our extension components perform the aforemen-
tioned instrumentation steps (§4), and also employ the core function-
ality of Uroboros to identify program relocation symbols (e.g., code
pointers, global data pointers). The proof-of-concept implementation
of the exception handling mechanism adds 56 lines of C code.

We leverage hexedit to edit the hex representation of the input
binary code [21]. Also, although (stripped) binaries are lack of
function information, existing research has presented promising
results in this direction [3]. Hence as aforementioned, we assume
the function information is available in this research. In addition,
although “type” information is absent in disassembled outputs, there
has been a lot of existing research and industrial tools performing
type inference towards assembly code [7]. Without reinventing the
wheel, we acquire the function prototype information (regarding the
number of function arguments and whether an argument is pointer
type or not) from the industrial strength reverse engineering tool
IDA-Pro [12].

Symbol addresses in the SGX interface libraries need to be known
during binary instrumentation (§4.1), which is contradict to the ran-
domization agreement provided by ASLR. In our prototype imple-
mentation, we disable ASLR to fix the addresses of exported symbols
in the interface libraries. Nevertheless, loading time instrumentation
can be used to acquire those addresses without breaking the security
guarantee of ASLR. We leave it as one future work to intercept the
loading process and instrument application binaries with the runtime
memory addresses of invoked functions in the interface libraries.

I The target address is obtained by subtracting the enclave base address from the RIP
saved in the SSA.

Table 1: Functions placed in the SGX enclave for two perfor-
mance evaluations. Function enc and dec are written by us
to iteratively invoke the block-level processing code, while the
other three are implemented in the OpenSSL library.

Functions
AES_decrypt, AES_encrypt, AES_ecb_encrypt, enc, dec
AES_decrypt, AES_encrypt

Evaluation One
Evaluation Two

6 PRELIMINARY RESULTS

In this section we present the evaluations of this research. Our pre-
liminary evaluation mainly focuses on understanding the feasibility
and cost of the instrumentation products. All the experiments are
launched on a machine with 3.40GHz i7-6700 CPU and 16GB
memory. This machine is SGX enabled, with 64MB SGX enclave
reserved memory. The operating system is 64-bit Ubuntu 16.04. The
SGX interface and enclave instance libraries are all compiled by
Intel SGX SDK with the pre-release mode (optimization —02).

With the growing need to secure cryptosystems using SGX tech-
niques [9], our preliminary evaluation instruments sensitive proce-
dures provided by cryptographic libraries. In this research, we adopt
the AES encryption and decryption procedures for evaluation. We
wrote a sample code to perform AES encryption and decryption
tasks. The AES implementation is from a commonly-used cryptosys-
tem, OpenSSL (version 0.9.7¢c), and the key length is set as 256.
We use the AES electronic codebook (ECB) mode to process the
data. This mode divides the input data into fixed-length blocks, and
perform encryption (decryption) towards each block, separately. As
aresult, the underlying data block processing code would be invoked
for multiple times, depending on the length of the input data.

6.1 Performance Penalty Evaluation

In general, two major factors would contribute to the performance
penalty of the SGX protected code: 1) execution slowdown of code
components inside enclaves; 2) inter-enclave control flow transfers,
e.g., enclave ECALL. To get a comprehensive understanding of the
performance cost, we launched two evaluations to study both factors,
respectively.

To measure the performance cost of the first factor, we put all
the encryption and decryption functions into an enclave (referred as
Evaluation One later in the paper). Data pointers on the secret key
and input data blocks are passed in through the interface function.
Hence, all the block-level encryption and decryption tasks are pro-
cessed within an enclave. The second row of Table 1 presents the
roster of functions in the enclave.

Moreover, by putting only the block-level encryption (decryption)
functions into the enclave and changing the length of the input, we
are able to control the number of inter-enclave control transfers, thus
revealing how the inter-enclave transfers affect the overall execution
slowdown (referred as Evaluation Two). Note that while enclave
creations can cause even higher performance penalty, in our case they
are only executed for once. That means, major performance penalty
would come from the repeated SGX ECALLs, also the inserted
trampoline code (§4). The third row of Table 1 shows two functions
used for this evaluation.

Figure 4 presents the performance evaluation; we increase the
number of processed data blocks, and record the execution CPU
time. Besides two evaluations introduced before, we also present the
performance data of the original input (the “Baseline” case).
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Figure 4: Performance evaluation of AES sample code. For eval-
uation two, processing of one data block (for encryption and
decryption) leads to two SGX ECALLs.

For all evaluations, the overall processing time increase is roughly
linear regarding the number of processed data blocks. We report that
on average the instrumented binaries in Evaluation One are 23.7%
slower than the baseline case. Note that such comparison indeed
includes the processing time of enclave initialization routines, which
should not change with the growing of the processed data blocks.
Actually when processing over 100k data blocks (i.e., around 1.52M
data), we report the normalized average overhead is 6.91%.

The second evaluation brings in notable execution slowdown. We
report that on average the instrumented binary in this evaluation
becomes 4.12 times slower than the baseline. We interpret the results
are reasonable; frequent inter-enclave control transfers are major
factors of the execution cost.

6.2 Size Increase Evaluation

Besides performance cost, SGX-based instrumentation would also
bring in size increase of the instrumentation products. In this section
we report the size increase of the launched experiments.

As shown in the motivating example (§4), outputs of our tool in-
cludes multiple components, i.e., the instrumented binary, the SGX
interface libraries and corresponding enclave instance libraries. Also,
SGX runtime environments (provided as multiple shared libraries)
would also be linked into the process address space. In this evalu-
ation, we measure the total size of the instrumented binaries and
newly-created libraries by our tool, while ignoring the SGX stan-
dard runtime libraries since the later ones are not produced by our
technique.

Table 2 presents the data for both evaluations. As previously dis-
cussed, our binary editing only performs in-place instrumentation,
and the instrumented binaries would have identical size comparing
with the input. On the other hand, both interface and enclave libraries
bring in new code pieces of non-trivial size. In Evaluation One we
put five functions into the enclave, and the size of the produced
libraries grows slightly larger than the second evaluation. In sum,
we interpret the size increase due to those libraries are mostly within
a reasonable extent. Actually the enclave instance libraries are es-
sential components of any SGX-based software protection (not only
binary-related approaches), and we trade some memory space for
flexible code re-use by compiling SGX routine code into interface
libraries.

Table 2: Size increase of the instrumented outputs. Here we
present the size of the original binary (second column), the
instrumented binary (third column), SGX interface library
(fourth column) and the enclave library (fifth column). The last
column represents the total size of the instrumented outputs.

Case [ Tnput Bin (KB) | Output Bin (KB) | Tnterface Libs (KB)
Evaluation One 48 48 16
i 0

Enclaves (KB) |_Output Total (KB)
116 180

[
48 48 ‘ 12 ‘ 108 ‘ 168

6.3 Processing Time

In this section we report the processing time of our preliminary
evaluations. We report our tool takes 8.53 CPU seconds for the first
evaluation while 9.12 CPU seconds for the second one. Although
IDA-Pro is used to recover the function prototype information, we
do not measure its processing time since it is running in a virtual
machine. Typically IDA-Pro would take seconds to a few minutes
to process real-world executable files, which shall be acceptable in
general.

Techniques proposed in our work are mostly efficient; we use
Uroboros to recover the function relocation symbols, and it is re-
ported that Uroboros takes less than one minute to analyze large size
binary code (e.g., stripped GCC binary with over 3MB size). While
the current processing time evaluation only delivers preliminary data,
our estimation is that the proposed technique shall take less than 5
minutes for most real-world cases.

7 DISCUSSION

For code snippets running inside enclaves, performance overhead
would mainly come from two aspects: 1) instruction execution over-
head, 2) memory access overhead for data buffers allocated inside
enclaves. Our evaluation in §6.1 has studied the first aspect, and we
omit to evaluate the second factor since existing work has presented
comprehensive study on this. As reported by previous research [2],
random data write would lead to relatively high cost, especially when
the accessed buffer size grows over the L3 cache size (usually SMB),
and further beyond the SGX EPC size.

Nevertheless, our experimental results (i.e. Evaluation One in
§6.1) show that execution cost brought by SGX becomes negligible
once the accessed data is allocated outside enclave. Hence, we in-
terpret that while usually we shall need to trade certain efficiency
for data security when designing SGX applications, sensitive code
pieces can be mostly protected with relatively low cost.

8 CONCLUSION

Intel Software Guard Extensions (SGX) provides techniques to ex-
ecute code and data in an isolated environment. In this work, we
have presented techniques for hardening binary components (i.e.,
functions) through SGX enclaves. Our technique can be directly
used to protect legacy binary applications with a small size of TCB.
Our preliminary evaluations on hardening AES encryption and de-
cryption procedures demonstrate the practicability of the proposed
technique.
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