
Software Protection on the Go: A Large-Scale Empirical Study on
Mobile App Obfuscation

Pei Wang
∗

pxw172@ist.psu.edu

The Pennsylvania State

University

Qinkun Bao

qub14@ist.psu.edu

The Pennsylvania State

University

Li Wang

lzw158@ist.psu.edu

The Pennsylvania State

University

Shuai Wang

szw175@ist.psu.edu

The Pennsylvania State

University

Zhaofeng Chen

chenzhaofeng@baidu.com

Baidu X-Lab

Tao Wei

lenx@baidu.com

Baidu X-Lab

Dinghao Wu

dwu@ist.psu.edu

The Pennsylvania State

University

ABSTRACT
The prosperity of smartphone markets has raised new concerns

about software security on mobile platforms, leading to a grow-

ing demand for effective software obfuscation techniques. Due to

various differences between the mobile and desktop ecosystems, ob-

fuscation faces both technical and non-technical challenges when

applied to mobile software. Although there have been quite a few

software security solution providers launching their mobile app

obfuscation services, it is yet unclear how real-world mobile devel-

opers perform obfuscation as part of their software engineering

practices.

Our research takes a first step to systematically studying the

deployment of software obfuscation techniques in mobile software

development. With the help of an automated but coarse-grained

method, we computed the likelihood of an app being obfuscated

for over a million app samples crawled from Apple App Store. We

then inspected the top 6600 instances and managed to identify

601 obfuscated versions of 539 iOS apps. By analyzing this sample

set with extensive manual effort, we made various observations

that reveal the status quo of mobile obfuscation in the real world,

providing insights into understanding and improving the situation

of software protection on mobile platforms.

CCS CONCEPTS
• Software and its engineering→ Software reverse engineer-
ing; • Security and privacy→ Software security engineering;
Mobile and wireless security;

KEYWORDS
obfuscation, reverse engineering, mobile app, empirical study

∗
Part of the research was done during an internship at Baidu X-Lab.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00

https://doi.org/10.1145/3180155.3180169

ACM Reference Format:
Pei Wang, Qinkun Bao, Li Wang, Shuai Wang, Zhaofeng Chen, Tao Wei,

and Dinghao Wu. 2018. Software Protection on the Go: A Large-Scale Em-

pirical Study on Mobile App Obfuscation. In ICSE ’18: 40th International Con-
ference on Software Engineering , May 27-June 3, 2018, Gothenburg, Sweden.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3180155.3180169

1 INTRODUCTION
Concerns on security breaches targeting mobile apps have kept

rising in past years. It was reported the piracy rates of popular

mobile apps can approach to 60–95% [7]. Research by Gibler et al.

found that a surprisingly large portion of mobile applications are

“copies” of others [19]. Besides these traditional intellectual prop-

erty theft problems, the industry is also facing new security threats

as there are nowmany businesses heavily relying on mobile devices

to operate, among which the fraudulent and malicious campaigns

conducted through automatically manipulating a massive number

of mobile devices [14] are particularly harmful to the mobile ecosys-

tems. From a technical point of view, reverse engineering mobile

apps in general takes less effort than traditional desktop software,

due to the wide use of reflective programming languages like Java

and Objective-C and the regulated binary structures restricted by

the mobile hardware and software environments. The soaring of

unprecedented security challenges and the lack of natural defenses

call have driven mobile developers to seek additional protections.

One of the most important software protection technologies

is software obfuscation, which is a kind of semantics-preserving

program transformations that aim to make software code more

difficult for automated tools and humans to analyze. Although

obfuscation-related research topics have been intensively studied

for decades, most previous work focuses on in-lab technical analysis

of the effectiveness of new obfuscation techniques [22, 35, 40, 42, 43]

or countermeasures against obfuscation when it is misused by

malwarewriters [13, 45]. As far aswe have learned, little emphasis is

put on investigating how benign software authors take obfuscation

as part of their development process in the real world, which is

critical for software obfuscation techniques to be practical. To push

this line of research forward, we aim to investigate the answers

to the following important research questions: RQ1: What are the
characteristics of obfuscated mobile apps? ; RQ2: In what patterns
are mobile apps typically obfuscated? ; RQ3: How does app review

1

https://doi.org/10.1145/3180155.3180169
https://doi.org/10.1145/3180155.3180169

affect the adoption of obfuscation? ; and RQ4: How resilient are the
obfuscated apps to malicious reverse engineering?

To develop meaningful conclusions, it is most adequate to con-

duct an empirical study on a reasonably large set of recently de-

veloped and supposedly benign mobile apps obfuscated by their

vendors. Unfortunately, there is no such a data set available for pub-

lic access, so we decided to collect samples independently. There are

currently two major platforms in mobile software markets, i.e., iOS

and Android. Although they share many common characteristics,

there are also notable differences. Some previous research has indi-

rectly or implicitly touched the topic of mobile app obfuscation, but

the focus is mostly on Android. For example, the study by Zhou and

Jiang on Android malware revealed some obfuscated samples [47].

Linares-Vásquez et al. [26] and Glanz et al. [20] investigated An-

droid app repacking, with the potential disturbance of obfuscation

considered. On the other hand, the iOS platform received notably

less attention which mismatches its share in the market. With over

a billion iOS mobile devices sold, there are reportedly millions of

software programmers working on iOS app development. In this

study, we chose to work on iOS for a dual purpose of filling in the

blank of empirical studies on mobile app obfuscation and enriching

scientific research on this important mobile platform.

To obtain a representative sample set, we crawled 1, 145, 582

free iOS app instances from the official Apple App Store. We then

estimated the likelihood of each instance being obfuscated based

on a variant of a statistical language model previously proposed

for studying software source code [21, 27]. We picked the top 6600

most likely obfuscated samples and identified 539 that are truly

obfuscated with manual verification. For each sample, we further

conducted in-depth investigations to understand how obfuscation

was applied. In general, effectively analyzing a large amount of ob-

fuscated binary code can be extremely difficult, since most existing

program analysis techniques have either scalability or accuracy

issues regarding obfuscated code. Moreover, analyzing iOS apps

has its own unique challenges, one of which is caused by the wide

use of statically linked third-party libraries [16]. To overcome these

obstacles altogether, our study combined automated analysis with a

considerable amount of manual effort from knowledgeable software

reverse engineers with industry experience. After examining all the

samples, we formulated 8 findings regarding the proposed research

questions.

In summary, we made the following contributions in this re-

search:

• We are the first to conduct a comprehensive empirical study

targeting mobile software obfuscation. Our research focuses

on iOS, an influential mobile platform that did not receive

enough attention from the academia in contrast to Android.

• We developed a scalable detection algorithm to estimate the

likelihood of an iOS app being obfuscated and applied it to a

large quantity of apps crawled from App Store. After man-

ually analyzing the 6600 most likely obfuscated instances,

we identified 539 truly obfuscated iOS apps with a total of

601 different versions. As far as we know, this is the first

scientifically collected sample set of obfuscated iOS mobile

apps. We plan to share these samples with the community

in the future.

• To overcome the limitations of existing automated software

analysis on obfuscated binaries, we invested over 600 man-

hours in manually examining the obfuscated iOS apps, ex-

tracting detailed information about how these apps are pro-

tected by different obfuscation algorithms. The human effort

assured the accuracy of our analysis and therefore the credi-

bility of our findings.

• We made various observations about the characteristics of

obfuscated apps, the obfuscation patterns applied, and their

resilience to reverse engineering. Our findings can shed light

on future research on mobile software protection.

2 BACKGROUND
2.1 Significance of the Problem
Obfuscation is one of the most important software protection tech-

niques that prevent software from being reverse engineered ma-

liciously. The status of its application and presence among pub-

lished software is closely related to the state of security in a soft-

ware ecosystem. Previous research on mobile software engineer-

ing revealed that obfuscation has been a common practice on An-

droid [24, 26, 47], yet the figure for iOS is mostly missing.

Since iOS is typically considered a more secure system than An-

droid for being more closed, it may be susceptible that obfuscation

on iOS could be as prevalent as on Android. However, some recent

security incidents have shown that with the help of production-

quality binary analysis tools like IDA Pro [2], iOS reverse engineer-

ing is not as difficult as it is generally recognized. For example, it

is found that iOS developers similarly suffer from severe software

piracy issues like Android developers [7]. It is also reported that

there have been popular iOS apps being repackaged with malicious

payload for stealing sensitive user data [17]. To help iOS develop-

ers counter these threats, some reputed software security solution

providers have launched their iOS app obfuscation services [9].

For more secure iOS software engineering, it is imperative to

obtain a thorough understanding about the current practice of ap-

plying obfuscation in iOS app development. The benefits of such an

understanding are two-fold: vendors of obfuscation tools can better

tune their development based on the status quo, while researchers

interested in analyzing iOS app repositories can grasp a sense about

when and how obfuscation may affect their analysis.

2.2 Technical Challenges of the Study
Despite both being mobile platforms, iOS and Android are dras-

tically different in many technical aspects. As a result, our study

faces unprecedented challenges that need not to be considered by

similar work targeting Android.

2.2.1 Obfuscation Detection and Analysis. Detecting and analyz-
ing obfuscated binaries has long been an open research problem and

is still being actively studied [12, 29, 36]. To date, the accuracy of

automated obfuscation detection is not satisfying enough to fit our

demand. Therefore, we decided to undertake manual analysis as the

major research methodology of the study, with some light-weight

automated methods as assistance. Unlike Android developers that

can use an app obfuscator embedded into the official development

toolchain [8], iOS developers do not get any receive official support,

2

thus having to rely on third-party tools or self-made obfuscators.

Considering the large number of obfuscation techniques potentially

available, it is impractical for an empirical study relying on manual

effort to cover all of them. This poses another challenge, requiring

us to identify a group of obfuscation techniques analyzable with

our limited labor yet representative enough.

2.2.2 Static Third-Party Libraries. Third-party libraries have

been an indispensable part of mobile apps. It is possible that an

app “accidentally” got obfuscated due to the inclusion of obfuscated

libraries without the awareness of app developers. Our analysis

needs to capture such situations to avoid drawing biased conclu-

sions. Unlike Android apps that are written in Java, iOS apps are

written in languages that are more static, e.g., C, C++, Objective-C,

and Swift. Due to Apple’s security policies, iOS apps cannot use

dynamic libraries from other vendors until iOS 8, meaning all third-

party libraries have to be statically linked into app executables. The

consequence is that there is no clear boundary between library

code and an app’s own code, making library detection in iOS apps

a unique challenge [16, 33]. This is completely different from the

library identification problem on Android, where application code

is naturally assorted through the Java package hierarchy.

3 METHODOLOGY
We adopted a three-step process to conduct the empirical study.

The first step is to select a representative collection of obfuscation

techniques to consider, for reasons explained in Section 2.2.1. The

second step is to search for a reasonably large set of iOS apps that

are obfuscated before release. To date, there is no such a publicly

available data set. Mining obfuscated samples from benign iOS apps

is one of the major contributions of our work. For the third step,

we inspect each obfuscated app in more depth and aggregate the

harvested information to deduce empirical findings.

3.1 Considered Obfuscations
After decades of development, there are now numerous obfuscation

techniques available. A comprehensive review by Schrittwieser et

al. [37] included 22 classes of obfuscation methods proposed by

previous research. For this study, we would like to focus on obfus-

cations popular among mobile developers and therefore worthy

of in-depth investigation. We used Google to search for commer-

cial and open source tools that can obfuscate iOS applications. By

studying the statements and technical white papers of the top 10

results, we identified four families of obfuscations that are most

widely supported, i.e., symbol renaming, exotic string encoding,

control flow flattening, and decompilation disruption. Compared

to all known obfuscation algorithms, this is a relatively small set,

with the major reason being that the unique hardware and software

environment on iOS devices imposes strict restrictions on the form

of executable code. For example, iOS does not allow normal user

applications to dynamically generate executable code, rendering

self-modifying obfuscation technically impossible to implement. A

graphical illustration of the four obfuscation algorithm families is

given by Figure 1 while the technical details are briefly introduced

as follows.

SymbolRenaming. It is recommended by common software en-

gineering practices that programmers should make sensible names

for functions and variables symbols. The preferred programming

languages for developing iOS apps, i.e., Objective-C and Swift, are

reflective or partially reflective. Therefore, names of many global

symbols have to be retained in the distributed binaries to support

by-name function dispatching at run time. Symbol renaming scram-

bles these names to prevent information leakage.

Exotic String Encoding. String literals sometimes disclose im-

portant information about the software. Some obfuscation algo-

rithms convert string literals into representations that are not un-

derstandable by humans. The converted strings are decoded before

use during run time.

Decompilation Disruption. It is common for obfuscations to

prevent the recovery of high-level program structures from binary

code. Typical methods of this kind include interleaving code and

data to disturb disassembly, inserting opaque predicates to forge

invalid control flows, and employing certain machine instruction

patterns in unconventional ways to confuse decompilers.

Control Flow Flattening. This technique “flattens” the orig-
inal control flow graph of a function by rewriting the procedure

into a huge switch-like structure [23]. This makes the logical links

between basic blocks obscure.

3.2 Mining Obfuscated iOS Apps
To obtain a reasonably large sample set without being biased, our

collection starts with the entire Apple App Store. However, it should

be noted that we do not aim to find all obfuscated apps in the store.
From February to October in 2016, we crawled 1, 145, 582 free

iOS app instances, including different versions of the same app.We

then try to identify apps that are obfuscated by at least one of the

four families of algorithms in Section 3.1. Ideally, we could run

automated detection over all the crawled apps for each obfuscation

technique subsumed by the four families. However, obfuscation

detection itself is a non-trivial task and is still being actively re-

searched [11, 29, 31, 34]. For many obfuscation algorithms consid-

ered by our study, it is prohibitively expensive, if possible at all, to

automatically detect their presence in over a million instances.

To tackle this problem, we identify a baseline obfuscation algo-
rithm which is supposed to be the most widely adopted in mobile

development. If developers indeed consider protecting their prod-

ucts, it is very likely that more than one obfuscation algorithm

will be employed. In such cases, detecting the baseline obfuscation

can help us identify the heavily obfuscated samples. Based on this

insight, we developed an automated method to identify scrambled

symbol names, since symbol renaming is considered by a large vol-

ume of previous research the most prevalent obfuscation method

on mobile platforms [13, 24, 26]. In practice, symbol name scram-

bling imposes little execution cost while being highly effective in

disturbing manual analysis.

Details of the detection algorithm are presented in Section 4.

After running the algorithm for all crawled app instances, we ob-

tained the likelihood of each app being obfuscated by symbol name

scrambling. Based on the available man-labor, we examined the top

6600 most likely obfuscated samples, of which 601 are conformed

to be true positives by manual verification. These samples, which

can be further grouped into 539 applications identified by a unique

ID assigned by App Store, are taken as the data set for subsequent

3

@interface Person: NSObject

@property NSString *name;

@property int age;

@property NSString *addr;

@end

@interface AlJi09: NSObject

@property NSString *KJihad;

@property int z9kmV;

@property NSString *Nm23d;

@end

(a) Symbol renaming

const char *str1 = "A plain string";

// string xor masked by 0xab

const char *str1 =

"\xea\x8b\xdb\xc7\xca\xc2\xc5\x8b"

"\xd8\xdf\xd9\xc2\xc5\xcc\x85";

void decode(const char *s, char *d)

{

while(*s) *d++ = *s++ ^ 0xab;

*d = 0;

}

(b) Exotic string encoding (c) Decompilation disruption

1

2 3

4

switch

2 31 4

(d) Control flow flattening

Figure 1: Illustration of obfuscation techniques considered in the study

Crawl Apps from App Store

1,145,582 instances

Automated Baseline Obfuscation Detection

pick top 6600 positives†

Manual Verification

601 versions of 539 apps

†The 6600 cut off is based on the maximum labor available for manual verification

Figure 2: Workflow for sampling obfuscated iOS apps

study. This sampling process is illustrated by Figure 2. We again

emphasize that these 601 samples should not be regarded as all the
obfuscated apps among the 1, 145, 582 crawled instances. We set the

cut off at 6600 to bound the manual work within a manageable

amount.

3.3 Per-App Inspection
In addition to symbol scrambling, we need to further confirm what

other obfuscation techniques were applied to the apps. This step

needs to be conducted manually to achieve the highest possible

accuracy. To assure the consistency across the results from different

inspectors, we developed a set of elaborate protocols to standardize

the inspection process.

3.3.1 Detecting Obfuscation. To detect the presence of anti-

decompilation obfuscation techniques, we use IDA Pro [2], a com-

mercial integrated reverse engineering environment that has been

widely regarded as the de facto industry standard for analyzing

binary code. IDA Pro can automatically dissect a binary executable

into functions and translate the assembly code of each function to

a high-level representation similar to C. We consider that a binary

is protected by anti-decompilation techniques if IDA Pro reports

too many failures. All results were manually validated.

To identify flattened control flows, we developed a binary analy-

sis framework to disassemble app binaries and construct the control

flow graph (CFG) of each function in a binary. If a CFG is flattened,

most of its basic blocks will be included by a single loop, which can

be captured by a standard loop detection algorithm [30]. Also, the

“diameter” of the loop, which is defined as maximum length of the

shortest path from the loop header to other basic blocks, should be

of the logarithmic order of the total number of all basic blocks in

the loop. Based on these two characteristics, we can find functions

with flattened control flows.

For exotic string encoding, it is hard to develop automatic de-

tection methods since there is no standard implementation of such

techniques. In iOS executable binaries, string literals are stored in

dedicated regions. We scan these regions for character sequences

that cannot be decoded, or those that can be normally decoded but

do not seem to possess reasonable meanings. We then manually

investigate how these sequences are utilized in the code and see if

they are transformed by an ad hoc decoding procedure at certain

program points.

3.3.2 Identifying Obfuscated Third-Party Libraries. As introduced
in Section 2.2.2, we need additional manual effort to identify third-

party libraries in the examined iOS apps if the library code contains

any obfuscation by themselves. We decide if an obfuscated code

region belongs to some third-party library by observing whether

there are similar code patterns appearing in multiple samples de-

veloped by different vendors. Typical signatures of code patterns

include control flow graphs, special algorithms, and uncommon

data structures. Once a library is detected, we try to identify its

origin through public information searching, with clues such as

names of library APIs and special string literals, e.g., strings used

for logging and generating crash reports. Some libraries do not

provide even the most subtle information that can help reveal their

identities. In such cases, we extracted the semantic signatures of ob-

fuscated code, e.g., control flow patterns and unique data structures,

and check if they appear in different apps.

3.4 Cross-Validation
To ensure the accuracy and consistency of manual analysis, the

two authors performing per-app inspections were first asked to

independently examine the same 50 app instances in the sample set

and compare their results. Divergences among results from different

authors were discussed until an agreement was reached. The two

authors then independently analyzed another 25 apps, based on

the regulations made in the previous discussions. For the second

round, the inspection results were consistent for all 25 apps. In this

4

way, we established a highly accurate and cross-validated protocols

for the manual analysis on obfuscated iOS apps.

4 DETECTING SYMBOL OBFUSCATION
In practice, obfuscation tends to replace human-made symbols with

randomly generated gibberish which can be detected by natural

language processing (NLP) techniques. Previous research discov-

ered that human-written source code is “natural” in the sense that

it can be described by statistical language models [21]. Based on

this insight, “unnatural” symbol names are possibly obfuscated.

4.1 An NLP-Based Detection Model
In NLP, the perplexity measure is used to quantify how “surprising”

it is for a sequence of words to appear within a statistical language

model. Oftentimes, the log-transformed version of perplexity, called

cross-entropy, is more preferable in the literature. Given a word

sequence s = x1 · · · xk of length k and a language model ℳ, the

cross-entropy of s within ℳ is defined as

Hℳ(s) = −
1

k

k∑
i=1

log
2
P(xi |x1, · · · ,xi−1) (1)

We use cross-entropy to capture the naturalness of an identifier.

Intuitively, lower Hℳ(s) means s is more natural within ℳ. In

particular, we adopt the n-gram language model that assumes the

word sequences suit an (n−1)-order Markov process. Historically,n-
gram has been utilized in various software engineering applications,

including automated code completion [21] and bug detection [41].

Within an n-gram model, the definition of cross-entropy can be

further formulated as

Hn-gram(s) = −
1

k

k∑
i=1

log
2
P(xi |xi−(n−1), · · · ,xi−1) (2)

A notable difference between our method and previous work is

that our statistical language model is applied to individual identi-

fiers rather than sequences of terms. As a consequence, we need to

first segment an identifier into several parts before fitting it to an

n-gram model. Naturally, we adopt the segmentation that makes

most sense within the n-gram model by enumerating all possibili-

ties. Therefore, the likelihood of an identifier I being “surprising”,
or obfuscated, can be defined by the following formula

L(I) = min

s ∈SI
Hn-gram(s) (3)

where SI is the set of all possible word sequences obtained by seg-

menting I in different ways. Given an empirically decided threshold

H , we deem I as an obfuscated symbol name if L(I) > H .

4.2 Implementation
Considering that identifiers are usually not too lengthy, we can

efficiently compute L(I) in equation (3) using the Viterbi algorithm

with the complexity of O(nl2), where n is length of the identifier

and l is the length of the longest possible word in the language [38].

In fact, the worst cases can often be avoided, since most normal

symbol names are already naturally segmented by programmers

with underscores or the camel case scheme. We first compute the

cross-entropy of an identifier by assuming the symbol is naturally

segmented. If the entropy computed this way is already low enough,

we can skip the relatively expensive Viterbi segmentation.

Our n-gram corpus contains two parts, i.e., the natural language

corpus and the software source code corpus. Most identifiers in the

crawled apps are named in English, but there are also many written

in Chinese pinyin or even a mixture of English and Chinese. For

English, we use a portion of the Google web trillion word corpus

introduced by Franz and Brants [18] and derived by Norvig [32].

For Chinese, we employ the Lancaster Corpus of Mandarin Chinese

(LCMC) [6]. As for the source code part, we crawled all identifiers

appearing in iOS official APIs, which are all naturally segmented.

Each identifier is then turned into a word sequence, thus forming a

n-gram corpus.

The probability of occurrence for an n-gram is defined as the

average of its probabilities in three corpora. If an n-gram does not

appear in any corpus, we assign it a low probability penalized by its

length. This is a necessary heuristic since there are a large number

of unlisted words in program identifiers. Formally, the occurrence

probability of an n-gram s is defined as

p(s) =

pEN(s) + pCN(s) + pcode(s)

3

pEN(s) + pCN(s) + pcode(s) > 0

20
−(|s |−1) · 2−(H+1) pEN(s) + pCN(s) + pcode(s) = 0

(4)

where |s | is the number of characters in the n-gram and H is the

threshold defined earlier in this section.

When deciding the value of n, we observed that patterns of word
sequences in different applications are quite unique and rarely

occur in the corpus. The consequence is that any n greater than

one leads to too many false positives. Therefore, the best option for

the problem is to set n to 1, namely to adopt the unigram model.

In this study, the threshold H is set to 32.5. With this config-

uration, a total of 6600 positives were reported. Potentially, we

could find more positives by employing a larger H , but the results

then will exceed the maximum number of samples we can afford

to verify. After manually examining symbols in the 6600 initial

positives, we confirmed that 601 of them are truly obfuscated. The

false positives are mostly caused by uses of non-English language

and out-of-vocabulary abbreviations.

5 FINDINGS
In this section we present 8 findings of our empirical study, grouped

by their relevance to research questions raised in Section 1.

5.1 (RQ1) Characteristics of Obfuscated Apps
We first discuss what factors might lead to the adoption of obfusca-

tion in mobile app development.

Finding A.1. A considerable portion of apps containing obfus-
cation are “passively” obfuscated due to the inclusion of obfuscated
third-party libraries.

As previously mentioned, we paid special attention to third-party

libraries when inspecting the obfuscated apps. The examination

shows that these libraries indeed make a major source of obfus-

cation. In total, we captured 35 third-party libraries. The major

functionality of each library, inferred by analyzing their code and

retrieving publicly available information on the Web, is presented

in Table 1.

5

Table 1: Obfuscated Libraries Grouped by Functionality

Functionality Count Including Apps

Advertising & Promotion 9 259

Security & Authentication 7 17

Digital Right Management 6 53

Payment & Banking 5 101

Location 2 11

Visualization 2 11

Analytics 1 19

Fraud Detection 1 17

Peripheral Control 1 3

Speech-to-Text 1 8

App Only

Third-Party Libs Only

App and Third-Party Libs

135

(25%)

344

(63.8%)

60

(11.1%)

Figure 3: Origins of obfuscation in 539 obfuscated apps

Youmi

MBJoy

imopan

AdMob

AM3
AmAd

Qianka

ChartBoost

izhuanpan

SecurityGuard

SealSign

Metaforic

SecurID

VGuard

Webroot

Fancyfon

PlayReady

Poison

CyperGuard

VGDrm

PrimeTime

Deezer

MTAWXO

UPPayment

Encap
CMPay

PayU
Flurry

iovation

Structure

Estimote

iFly
Zeemote

BlueDot

VVidget

100

101

102

N
um

be
r o

f i
nc

lu
di

ng
 a

pp
s Advertising Security DRM Payment Others

(a) Number of apps including each third-party library

0 50 100 150 200 250 300 350
Number of applications

0

1

2

3

N
um

be
r o

f i
nc

lu
de

d
lib

ra
rie

s

(b) Distribution of apps regarding the number of obfuscated libraries included

Figure 4: Popularity of obfuscated third-party libraries

Figure 3 shows the breakdown of the origins of obfuscated code

in the samples. Among the 539 apps employing obfuscation, 404

(75%) of them include at least one obfuscated third-party library.

In particular, for 344 (63.8%) apps, the obfuscation is solely intro-

duced by libraries. The popularity of these libraries can be further

demonstrated in two aspects. Figure 4a shows for each library the

number of including apps and Figure 4b shows the distribution

of apps including obfuscated third-party libraries regarding the

number of libraries.

Others
Shopping

Medical
News

Social Networking
Sports

Reference
Photo & Video

Finance
Music

Productivity
Food & Drink

Health & Fitness
Book

Travel
Utilities

Entertainment
Lifestyle

Education
Business

Games

3.15%

1.29%

1.88%

1.99%

2.11%

2.19%

2.22%

2.22%

2.23%

2.55%

2.61%

2.86%

2.98%

3.04%

3.93%

4.88%

6.12%

8.36%

8.47%

9.88%

25.04%

2.05%

2.05%

5.13%

2.05%

1.03%

0.51%

0.51%

1.54%

20.00%

6.15%

3.59%

0.00%

3.08%

1.03%

4.10%

13.85%

5.13%

6.67%

1.54%

7.18%

12.82%

3.53%

2.78%

2.60%

1.48%

0.74%

1.48%

0.56%

2.23%

15.77%

4.27%

2.23%

0.37%

1.67%

2.04%

3.53%

8.35%

9.28%

7.42%

3.53%

5.38%

20.78%

Actively Obfuscated
Actively and Passively
Obfuscated
App Store

Actively Obfuscated
Actively and Passively
Obfuscated
App Store

Data for App Store from Statista [1]

Figure 5: Distributions of apps regarding their categories

Figure 3 indicates that the occurrences of obfuscation are mainly

caused by the practice of depending on third-party libraries rather

than app developers actively considering software protection. Based

on the observation, we believe that it is important to consider the

impact of third-party libraries for empirical software engineering

research whenever app obfuscation is involved. To distinguish dif-

ferent sources of obfuscation, we henceforth call an app is actively
obfuscated if its obfuscation is not entirely contributed by third-

party libraries; otherwise it is called passively obfuscated.
The most notable kind of third-party libraries is for advertising

purposes with both metrics being the highest in Table 1. Our prelim-

inary analysis on some of these libraries shows that the obfuscated

parts are used for communicating with the back-end ad servers.

It is known that mobile advertising has been bothered by reverse

engineering, through which a malicious party instruments advertis-

ing libraries to forge fake advertisement display or user clicks and

tricks ad providers into paying in vain [25]. For ad providers, ob-

fuscating their libraries is a reasonable response to such malicious

attempts.

Finding A.2. The likelihood of apps and libraries being obfuscated
is strongly correlated to their categories of functionality.

We found that in contrast to the distribution of all apps in App

Store regarding their categories, the distribution of obfuscated apps

has a vastly different pattern. This pattern varies further when the

impact of third-party libraries is considered. Figure 5 shows the

differences between these distributions, leading to the following

key observations:

• The proportions of obfuscated apps in certain categories are

exceptionally high compared to the shares of all apps in these

categories across App Store, no matter whether passive ob-

fuscation is taken into account. These categories are Finance

(20.00%/15.77% vs. 2.23%), Utilities (13.85%/8.35% vs. 4.88%),

Music (6.15%/4.27% vs. 2.55%), and Medical (5.13%/2.60% vs.

1.88%). According to our investigation, most of the obfus-

cated Music apps provide streaming services for copyrighted

6

musical contents. The inspected Utilities apps are mainly

toolkit software providing assistance to daily activities, the

majority of which regularly record user data that may be

closely tied to personal privacy or enterprise secrets.

• For some other categories, the situation is flipped, namely

the proportions of apps carrying obfuscated code are signifi-

cantly lower than the store-wide ratios. Categories of such in-

clude Education (1.54%/3.53% vs. 8.47%), Book (1.03%/2.04%

vs. 3.04%), Food & Drink (0.00%/0.37% vs. 2.86%), and Refer-

ence (0.51%/0.56% vs. 2.22%).

• The distributions of obfuscated apps in the Games, Finance,

and Utilities categories are heavily influenced by obfuscated

third-party libraries. Apps in the Games category are easily

passively tainted by libraries. The Finance and Utilities apps,

on the other hand, have a relatively higher rate for being

actively obfuscated.

The first two points suggest that mobile apps related to health,

finance, privacy, and intellectual property safety are more likely

to get obfuscated, both actively or passively. Despite being a fairly

expected phenomenon, it informs us that software obfuscation at

this point is still not a general interest to mobile development. We

may infer that although developers working on security-sensitive

business sectors do view malicious reverse engineering as a non-

neglectable threat, the obfuscation applied to their works is mostly

for protecting the information encapsulated in the apps rather than
the design and implementation of the software.

Regarding the third point, it turns out that among the 112 Games

apps with obfuscation, 87 are passively obfuscated and 82 of them

are solely tainted by obfuscated advertising libraries. The statistics

fit the general perceptions of the mobile game business model in

which publishing third-party advertisements is the major monetiza-

tion method for free game apps. For Finance and Utilities apps, the

fractions of passively obfuscated ones are comparatively lower (46

out of 85 and 18 out of 45, respectively), suggesting that software

protection is more seriously considered in these sectors.

5.2 (RQ2) Obfuscation Patterns
Before presenting our findings regarding RQ2, we first present an
overview on the obfuscation patterns extracted from the samples.

We studied the pattern of obfuscation in three aspects:

• How many and what kinds of obfuscation techniques are

found in the code;

• In what scopes the obfuscation algorithms are applied to the

code, i.e., at the function level, class level, or module
1
level;

• Whether multiple obfuscation methods are applied to the

same code region to achieve a synergy effect, which we call

synergistic obfuscation.

We performed this pattern analysis on actively obfuscated apps and

obfuscated third-party libraries separately. The results are presented

in Table 2 and Table 3, respectively.

Due to limited space, we only list categories with significant rele-

vance to the discussions in Finding A.2. It may cause confusion that

a small number of apps or libraries do not employ symbol renaming

1
A module is defined as functionality-related classes coupled through method calls.

even though it is the baseline obfuscation method in sample collec-

tion. The reason is that we detect symbol scrambling in obfuscated

app instances as a whole. In some cases we “accidentally” detect

obfuscated apps or libraries without scrambled symbols because

they are “mingled” with obfuscated parts developed by others that

indeed contain such symbols. Nevertheless, such cases are rarely

seen among actively obfuscated apps (9 out of 195).

Interestingly, all five third-party libraries that did not scramble

their symbols are developed by Internet giants like Google, Amazon,

Yahoo, Tencent, and Alibaba, suggesting that large-scale enterprises
and smaller mobile development teams may favor quite different
obfuscation patterns, which is worth further investigation.

Finding B.1. Mobile apps are mostly obfuscated at a large scale,
suggesting a wide adoption of automated obfuscation tools.

In theory, obfuscation can be manually conducted without the

aid from automated tools [3]. Nevertheless, we believe this is not

the case in mobile development. For actively obfuscated apps, the

proportion of those employing module-level obfuscation is 55.90%

(109 out of 195). For third-party libraries, the rate is even higher,

reaching 71.43% (25 out of 35). Compared to function-level and class-

level obfuscation, the workload of protecting one or more modules

is significantly heavier, implying that most mobile developers rely
on automated tools for obfuscation.

On the other hand, it is extremely rare that an entire app or

library is obfuscated. Throughout the inspection, we only identi-

fied two actively protected apps that are fully covered by symbol

scrambling obfuscation. For all other apps and libraries, the obfus-

cation covers only a small portion of the code. This phenomenon

shows that applying obfuscation to mobile software comes with

non-negligible cost even if the process can be automated. Presum-

ably, the cost of obfuscation can include but not limited to,

• Increased configuration effort, increased compilation time,

and run-time performance penalty,

• Additional cost of software crash forensics due to scrambled

symbol names and obscure control flows, and

• Risks of apps being rejected by software publisher for bloated

or unanalyzable code (see Finding C.1 for more discussions).

Although it is hard to confirm these items without contacting the

developers, we can still get some hints by analyzing other aspects of

the obfuscation patterns, as demonstrated by the following finding.

Finding B.2. The popularity of obfuscation method families de-
creases as the implementation and performance cost grows.

It is made clear by Table 2 and 3 that the popularity of the four

obfuscation families vastly differs. The number of apps and libraries

containing decompilation disruption and control flow flattening is

remarkably smaller than the number of apps and libraries protected

with scrambled symbol names and exotic string encoding. Due

to our sampling methodology, symbol scrambling is naturally the

most popular obfuscation technique across the data set. However,

even without symbol scrambling considered, it is still true for the

other three families of techniques that, the more costly it is to

implement and deploy an obfuscation algorithm, the less widely

it is adopted. To elaborate on this trend, we roughly discuss the

difficulty of automating obfuscation each method and their impacts

on run-time performance, in an increasing order.

7

Table 2: Numbers of Actively Obfuscated Apps Employing Different Obfuscation Patterns

Category Total

Applied Obfuscation Families # of Families Scope of Obfuscation Synergic

Obfuscation

Symbol String Anti-Decomp. Flattening 1 2 3 4 Function Class Module

Finance 39 39 17 12 0 19 11 9 0 4 10 25 18

Utilities 27 27 10 2 3 15 10 1 1 2 4 21 4

Games 25 22 7 6 0 15 10 0 0 2 3 20 3

Music 12 11 4 1 0 9 2 1 0 1 0 11 3

Medical 10 9 2 0 0 9 1 0 0 2 7 1 0

Others 82 78 18 6 2 66 11 4 1 16 35 31 9

All 195 186 58 27 5 133 45 15 2 27 59 109 37

Table 3: Numbers of Third-Party Libraries Employing Different Obfuscation Patterns

Category Total

Applied Obfuscation Families # of Families Scope of Obfuscation Synergic

Obfuscation

Symbol String Anti-Decomp. Flattening 1 2 3 4 Function Class Module

Advertising 9 7 3 2 0 6 3 0 0 1 1 7 2

Security 7 6 5 1 2 2 3 2 0 0 0 7 3

DRM 6 6 2 1 1 4 1 0 1 1 2 3 1

Payment 5 4 3 1 0 2 3 0 0 1 1 3 1

Others 8 7 3 0 0 6 2 0 0 2 1 5 1

All 35 30 16 5 3 20 12 2 1 5 5 25 8

Automatically scrambling symbol names is relatively easy and

can be implemented through various options like preprocessor

macros, compiler instrumentation, and even binary rewriting. Re-

naming symbols can be implemented in a way that it causes almost

no performance degradation during program execution.

Re-encoding string literals in an automated manner requires

more effort since it changes program semantics. However, the obfus-

cation only needs to operate on strings and therefore light-weight

program transformations are sufficient. At run time, the obfuscated

strings need to be decoded before use, but it is one-time cost and

only manifests when programs launch.

Compared with the first two families of obfuscation, decompi-

lation disruption is significantly more difficult to implement, for

obfuscator writers need reverse engineering experience to under-

stand how to disrupt a decompiler. It is hard to analyze the run-time

cost of this obfuscation since techniques in this family can vary a

lot. Nevertheless, the performance penalty is not constant and will

keep accumulating as programs run.

Implementing control flow flattening requires deep customiza-

tion of the compiler which falls out of the skill sets of most common

mobile developers. Same as decompilation disruption, each execu-

tion of flattened control flows takes an additional amount of time.

It is also worth noting that control flow flattening can increase the

size of obfuscated binaries significantly.

Currently, we are unable to confirm whether the difference of

popularity results from exact one of the two factors, i.e., implemen-

tation cost and performance penalty, or both of them. Theoretically,

if the obfuscation is conducted with third-party tools, the techni-

cal challenges in implementing each obfuscation method should

not be a problem, leaving performance to be the primary concern.

Otherwise, if the intention of apply software protection is really

blocked by technical issues, there will be many opportunities for

obfuscation toolkit providers to improve their products and attract

more mobile developers to embed advanced obfuscation techniques

into their apps and libraries. It would be interesting future work to

investigate which is the case.

Finding B.3. Apps and libraries of certain categories tend to adopt
more complicated obfuscation patterns than others.

Finding A.2 shows that apps serving life-, money-, and privacy-

critical purposes are more likely to be obfuscated. It is further

suggested by Table 2 and Table 3 that the security strength of ob-

fuscation applied to apps and libraries of these kinds is also notably

stronger. In general, the Finance, Utilities, Games, andMusic apps, if

obfuscated, are more willing to employ expensive obfuscation tech-

niques, i.e., decompilation disruption and control flow flattening.

These apps also tend to employ more different families of obfusca-

tion techniques. For example, over half (20 out of 39) of the actively

obfuscated Finance apps contain plural kinds of obfuscation. More-

over, in many cases (18 out of 20), these different methods were

applied to the same part of the code, achieving synergistic obfus-

cation. Also, the scope of obfuscation in these apps is often larger,

mostly reaching module-level protection.

The observation above applies to obfuscated third-party libraries

as well. Overall, the obfuscation patterns found in libraries are very

similar to those in actively obfuscated apps in most aspects. There-

fore, it can be difficult to distinguish actively and passively obfuscated
mobile apps by simply analyzing their obfuscation patterns.

Finding B.4. An increasing number of mobile apps start to inte-
grate obfuscation into the development process.

As aforementioned, our sample crawling was continuous and

lasted for nine months. For apps getting version updates during the

crawling period, we were able to analyze the temporal evolution

of their obfuscation patterns. With these historical versions and

some additional examinations, we confirmed that 27 of the 195

8

actively obfuscated apps were unobfuscated at the beginning of

the crawling period. It is very likely that developers of these apps

were newly attracted by the benefits of software protection and

started to employ it as part of their software engineering routines.

Note that 27 is a possibly untight lower bound because the recorded

version historiesmay be incomplete because of the limitedworkload

capacity of our crawler.

Unfortunately, the same analysis does not apply to passively ob-

fuscated apps, since they may include different third-party libraries

in different versions. The change of obfuscation status in these apps

may not reflect the intention of their developers. The analysis is

also not applicable to third-party libraries, because we were unable

to obtain the development dates of each version of the same library.

5.3 (RQ3) Impact of Distributor Code Review
Centralized software distribution usually features a vetting process

in which an app must be reviewed by the distributor before allowed

for publication. Through this vetting process, software publishers

aim to filter out malicious or misbehaving applications that can hurt

user experience or security, thus affecting the healthiness of the

ecosystem. Both iOS and Android employ this centralized model.

Hypothetically, this mandatory app review process can affect

developer incentive to obfuscate their products in two opposite

ways. Firstly, although software obfuscation is a legit approach

to protecting apps from undesired reverse engineering, it hinders

distributor reviews as well. If the reviewer acts conservatively and

considers unanalyzable code malicious, the obfuscated apps may be

constantly rejected, making developers reluctant to adopt heavy-

weight obfuscation algorithms. On the other hand, some developers

may be stimulated to obfuscate their code so that they are able to

circumvent certain checks, allowing their apps to possess features

forbidden by publisher policies. We have encountered two cases

supporting both possibilities, respectively. Although not qualified

as solid evidence to validate our hypotheses, these case studies can

indeed provide valuable insight on the problem.

Finding C.1. Code reviews enforced by mobile software publishers
may influence the adoption of obfuscation in different directions.

The first case is a heavily obfuscated app developed by a reputed

commercial iOS security service provider, which only published

that single app in App Store. Judged from the simplicity of its func-

tionality, this app is merely a minimal working example of iOS

development, whereas it is protected by all four kinds of obfus-

cation techniques considered by our study. Only two among the

195 actively obfuscated apps are obfuscated in this pattern. We

speculate that the security solution provider submitted this app to

address the concerns that their obfuscation algorithms may cause

distributor review alarms, to the detriment of the sales of their

services. It is known that App Store have various constraints on

submitted apps, some of which may not be clearly documented.

For example, each slice of an executable file in iOS apps must not

exceed 60 MB [5] if the app is to be compatible with older versions

of iOS, limiting the use of code transformations that bloat binary

size too much. These constraints intrigue obfuscator writers to

test the boundaries of acceptable obfuscation techniques. This case

suggests that developing new mobile obfuscation algorithms has to
take the app vetting process into account to be practical.

In the second case, we found that a third-party advertising li-

brary contains code for calling private iOS APIs, which is strictly

forbidden by Apple App Store security policies. To circumvent store

reviews, the library writer uses the dlopen system call to avoid

direct linkage to internal iOS frameworks providing private APIs.

The library then uses exotic string encoding to obfuscate the string

literals provided to dlopen as parameters. In this way, Apple’s

vetting analysis failed to detect this violation. By searching related

information on the Internet, we learned that this library was once

caught using private iOS APIs in 2015 [4], long before we started

crawling samples from App Store. Shortly after the incident was re-

ported, Apple announced that it had removed all apps contaminated

by this library from App Store. Yet our findings show that either

authors of the library managed to bypass the app review process

for another time or Apple failed to detect all apps including this

library. Whichever is the case, this finding serves as empirical evi-

dence that obfuscation is not only employed to repel malicious reverse
engineering but also for infiltrating publisher inspection, even though

this practice is previously regarded as a signature of malware.

By nature, ad providers are impelled to collect as much client

data as possible for developing more effective ad distributing strate-

gies, potentially placing themselves on the verge of infringing user

privacy. Considering the large quantity of obfuscated third-party

advertising libraries and their wide spread in the sample set, we

are concerned by the possibility that abusing obfuscation to bypass

publisher security policy enforcement is becoming a common prac-

tice for aggressive adware on the mobile. Mobile apps falling within

a “gray area” that are controversially benign or malicious, aka.

“grayware,” has drawn attention from the security community [10].

5.4 (RQ4) Effectiveness of Obfuscation
We now present our findings regarding the effectiveness of real-

world obfuscation for mobile apps. It should be emphasized that

our goal is not to access the security strength of obfuscation tech-

niques themselves like previous literature review did [37] but to

investigate whether iOS developers are able to appropriately utilize

these techniques and optimize the protection effects.

With limited labor, we cannot afford to conduct comprehensive

penetration tests for all apps in our sample set. Even though, we

found that a modest amount of reverse engineering effort is enough

to reveal some information that possibly leads to security breaches.

We inspected the actively obfuscated apps in two aspects. Firstly,

we scanned all symbol names, searching for common key phrases

related to security, such as “private key” and “secret”. Secondly,

during the detection of exotic string encoding, we payed attention

to string literals that are not obfuscated and seem to leak sensitive

information.

Finding D.1. A considerable portion of obfuscated apps remain
vulnerable to low-effort reverse engineering, which could have been
avoided if the obfuscation was performed more appropriately.

With preliminary reverse engineering effort, we found that

among the 195 actively obfuscated apps, there are 33 that may

leave certain sensitive information unprotected due to lack of cer-

tain obfuscation techniques or insufficient coverage by the right

techniques. There are mainly three kinds of such information:

9

• Tokens assigned to apps for accessing third-party services.

Some enterprise entities provide APIs for mobile apps to re-

trieve proprietary information or upload app usage data for

analytics, usually at a price. Requests for accessing these ser-

vices has to be sent with tokens issued by service providers

to prove the identities of requesting clients. We found that

some apps store these tokens as plaintext in variables whose

names are not scrambled.

• In-app secrets. Apps may encrypt their private data such

as execution logs and intermediate results before storing

them on mobile devices. Some poorly obfuscated apps store

encryption keys in plaintext as string literals.

• Information about back-end servers connected with the apps

and the corresponding communication protocols. In partic-
ular, we found 4 apps, which are the mobile clients of some
financial institutions, leaking the URLs or IP addresses of their
back-end testing infrastructures. Surprisingly, accessing these
infrastructures does not require any authentication. The

communication protocols and even internal documentations

are exposed to anyone knowing the URLs or IPs.

It is true that information leaked above does not necessarily lead to

exploitable security vulnerabilities. Per common software security

principles, however, such information should not be exposed to

unauthorized parties in the first place. Although leakages discov-

ered by our study were caused by series of inappropriate software

engineering practices, the problem will be less severe if the apps

are more properly obfuscated. In our opinion, the current status of

software protection on mobile platforms is far from satisfactory.

6 IMPLICATIONS OF THE RESULTS
Through this empirical study, we learned that third-party libraries

play a significant role in iOS app obfuscation, which is consistent

with the situation on Android [24]. Being a major source of ob-

fuscated code, third-party libraries affect software attributes in

various aspects without app developers being aware. We urge that

future studies on iOS app repositories to take obfuscated third-

party libraries into consideration and develop dedicated analysis

techniques to handle them.

We have found a posteriori evidence indicating the correlation

between the likelihood of mobile apps being obfuscated and their

functionality. Particularly, apps related to finance, privacy, intellec-

tual properties, and monetization are more likely to be obfuscated.

It may be worthwhile for obfuscation service providers to take an

in-depth study on the characteristics of these apps and specialize

their products to better fit the demands of their vendors.

Our study suggests that the adoption of obfuscation on mobile

platforms may be affected by mandatory code reviews from app dis-

tributors. Since obfuscation is inherently unfriendly to code reviews

and may causes disapproval from the reviewer, app developers will

likely face the dilemma between improved security and shorter

time to market of their products. This factor needs to be considered

when developing or advocating new obfuscation techniques for

mobile platforms, particularly iOS whose vetting process is much

more strict that Android.

We noticed an increasing trend in the number of mobile apps

getting obfuscated. For a notable portion of these apps, however,

the obfuscation was not appropriately conducted, leaving them still

vulnerable to certain low-effort reverse engineering techniques. As

such, we believe that future efforts on software protection should

not only focus on developing new obfuscation techniques but also

proposing accessible policies and strategies that can guide mobile

developers to maximize the efficacy of existing techniques.

7 RELATED WORK
To the best of our knowledge, most historical work on mobile

app analysis targets the Android platform. The Android Malware

Genome project is among the earliest research efforts that perform

large-scale analysis on mobile app repositories [47]. By working

on over 1200 samples, the authors managed to present a systematic

characterization on existing Android malware. According to this

research, mobile malware authors by then had already started to

apply obfuscation to bypass anti-virus analysis. Besides malware

that harms users, mobile app repackaging that harms the interest of

developers has also drawn attention. Various tools and systems have

been developed to detect and analyze cloned mobile applications

with both accuracy and scalability [15, 19, 39, 46]. Researchers have

also worked on examining third-party libraries used by mobile

developers. Tools like LibRadar [28] and LibD [24] were developed

to detect third-party libraries in Android apps and classify them.

Research by Chen at al. [16] detects libraries potentially harmful to

user security and privacy for both Android and iOS.

Despite the progress in mobile app analysis, most studies of this

kind either ignored or spent very limited effort in handling the pres-

ence and influence of software obfuscation. One of the few studies

that systematically investigated the impact of obfuscation onmobile

development is from Linares-Vásquez et al., who researched how

obfuscation can affect the detection of Android code cloning [26].

Similar to our work, Linares-Vásquez et al. spent extensive manual

work in identifying obfuscated code, but their analysis only covered

120 apps and did not consider obfuscation methods other than iden-

tifier scrambling. CodeMatch is a similar project that focuses on

obfuscation-resilient Android library detection [20]. Xue et al. [44]

proposed adaptive unpacking of Android apps to recover dex code,

which can potentially enable obfuscation-resilient clone or library

detection.

8 CONCLUSION
In this work, we empirically investigated the status of software ob-

fuscation in the mobile software industry. We collected a large set

of obfuscated iOS applications in the real world and performed in-

depth analysis on these samples. With the information gathered in

the study, we revealed factors potentially affecting the deployment

of obfuscation techniques in mobile apps and typical obfuscation

patterns adopted by mobile developers. We believe that findings de-

veloped in this research will shed light on future research that aims

to understand and improve the state of art of software protection.

ACKNOWLEDGMENTS
This research was supported in part by the National Science Foun-

dation (NSF) under grant CNS-1652790, and the Office of Naval

Research (ONR) under grants N00014-16-1-2912, N00014-16-1-2265,

and N00014-17-1-2894.

10

REFERENCES
[1] Apple: most popular app store categories 2017 | Statistic. https://www.statista.

com/statistics/270291/popular-categories-in-the-app-store/.

[2] IDA: About. https://www.hex-rays.com/products/ida/.

[3] The International Obfuscated C Code Contest. http://www.ioccc.org.

[4] iOS Apps Caught Using Private APIs. http://sourcedna.com/blog/20151018/

ios-apps-using-private-apis.html.

[5] iTunes Connect Developer Guide. https://developer.apple.com/library/

content/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/

Chapters/About.html.

[6] The Lancaster Corpus of Mandarin Chinese. http://www.lancaster.ac.uk/fass/

projects/corpus/LCMC/.

[7] Monument Valley apparently has a 95% piracy rate on Android, 60% on iOS.

https://goo.gl/TkfCIK.

[8] Shrink Your Code and Resources | Android Studio - Android Developers. https:

//developer.android.com/studio/build/shrink-code.html.

[9] Smart Obfuscation for iOS Apps | PreEmptive Protection. https://www.

preemptive.com/products/ppios.

[10] Benjamin Andow, Adwait Nadkarni, Blake Bassett, William Enck, and Tao Xie.

2016. A Study of Grayware on Google Play. In Proceedings of the 2016 IEEE
Workshop on Mobile Security Technologies (MoST ’16).

[11] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad

Rieck. 2014. DREBIN: Effective and Explainable Detection of Android Malware in

Your Pocket.. In Proceedings of the 2014 Network and Distributed System Security
Symposium (NDSS ’14).

[12] Sébastien Bardin, Robin David, and Jean-Yves Marion. 2017. Backward-Bounded

DSE: Targeting Infeasibility Questions on Obfuscated Codes. In Proceedings of
the 38th IEEE Symposium on Security and Privacy (SP ’17). 633–651.

[13] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. 2016.

Statistical Deobfuscation of Android Applications. In Proceedings of the 23rd
ACM SIGSAC Conference on Computer and Communications Security (CCS ’16).
343–355.

[14] Hao Chen, Daojing He, Sencun Zhu, and Jingshun Yang. 2017. Toward Detecting

Collusive Ranking Manipulation Attackers in Mobile App Markets. In Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications Security
(AsiaCCS ’17). 58–70.

[15] Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving Accuracy and Scalability

Simultaneously in Detecting Application Clones on Android Markets. In Proceed-
ings of the 36th ACM/IEEE International Conference on Software Engineering (ICSE
’14). 175–186.

[16] Kai Chen, Xueqiang Wang, Yi Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang,

Bin Ma, Aohui Wang, Yingjun Zhang, and Wei Zou. 2016. Following Devil’s

Footprints: Cross-Platform Analysis of Potentially Harmful Libraries on Android

and iOS. In Proceedings of the 37th IEEE Symposium on Security and Privacy (S&P
’16). 357–376.

[17] Zhaofeng Chen. iOS Masque Attack Weaponized: A Real World Look. https:

//www.fireeye.com/blog/threat-research/2015/08/ios_masque_attackwe.html.

[18] Alex Franz and Thorsten Brants. All Our N-gram are Belong to You. https:

//research.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html.

[19] Clint Gibler, Ryan Stevens, Jonathan Crussell, Hao Chen, Hui Zang, and Heesook

Choi. AdRob: Examining the Landscape and Impact of Android Application

Plagiarism. In Proceeding of the 11th Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys ’13). 431–444.

[20] Leonid Glanz, Sven Amann, Michael Eichberg, Michael Reif, Ben Hermann,

Johannes Lerch, and Mira Mezini. 2017. CodeMatch: Obfuscation Won’t Conceal

Your Repackaged App. In Proceedings of the 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE ’17). 638–648.

[21] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.

2012. On the Naturalness of Software. In Proceedings of the 34th ACM/IEEE
International Conference on Software Engineering (ICSE ’12). 837–847.

[22] Pengwei Lan, Pei Wang, Shuai Wang, and Dinghao Wu. 2017. Lambda Obfus-

cation. In Proceedings of the 13th EAI International Conference on Security and
Privacy in Communication Networks (SecureComm ’17).

[23] Tımea László and Ákos Kiss. 2009. Obfuscating C++ Programs via Control Flow

Flattening. Annales Universitatis Scientarum Budapestinensis de Rolando Eötvös
Nominatae, Sectio Computatorica 30 (2009), 3–19.

[24] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu, Rui Xue,

and Wei Huo. 2017. LibD: Scalable and Precise Third-party Library Detection in

Android Markets. In Proceedings of the 39th ACM/IEEE International Conference
on Software Engineering (ICSE ’17).

[25] Wenhao Li, Haibo Li, Haibo Chen, and Yubin Xia. 2015. AdAttester: Secure

Online Mobile Advertisement Attestation Using TrustZone. In Proceedings of the
13th Annual International Conference on Mobile Systems, Applications, and Services
(MobiSys ’15). 75–88.

[26] Mario Linares-Vásquez, Andrew Holtzhauer, Carlos Bernal-Cárdenas, and Denys

Poshyvanyk. 2014. Revisiting Android Reuse Studies in the Context of Code

Obfuscation and Library Usages. In Proceedings of the 11th Working Conference

on Mining Software Repositories (MSR ’14).
[27] Han Liu, Chengnian Sun, Zhendong Su, Yu Jiang, Ming Gu, and Jiaguang Sun.

2017. Stochastic Optimization of Program Obfuscation. In Proceedings of the 39th
International Conference on Software Engineering (ICSE ’17). 221–231.

[28] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. LibRadar: Fast and

Accurate Detection of Third-party Libraries in Android Apps. In Proceedings of
the 38th International Conference on Software Engineering Companion (ICSE ’16
Companion). 653–656.

[29] Jiang Ming, Dongpeng Xu, Li Wang, and Dinghao Wu. 2015. LOOP: Logic-

Oriented Opaque Predicate Detection in Obfuscated Binary Code. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security
(CCS ’15). 757–768.

[30] Steven S. Muchnick. 1997. Advanced Compiler Design Implementation. Morgan

Kaufmann.

[31] Minh Ngoc Ngo and Hee Beng Kuan Tan. 2007. Detecting Large Number of

Infeasible Paths Through Recognizing Their Patterns. In Proceedings of the the
6th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering (ESEC-FSE ’07).
215–224.

[32] Peter Norvig. Natural Language Corpus Data: Beautiful Data. http://norvig.com/

ngrams/.

[33] Damilola Orikogbo, Matthias Büchler, and Manuel Egele. 2016. CRiOS: Toward

Large-Scale iOS Application Analysis. In Proceedings of the 6th Workshop on
Security and Privacy in Smartphones and Mobile Devices (SPSM ’16). 33–42.

[34] Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo Bruschi.

2009. A Fistful of Red-Pills: How to Automatically Generate Procedures to

Detect CPU Emulators. In Proceedings of the 3rd USENIX Workshop on Offensive
Technologies (WOOT ’09).

[35] Andre Pawlowski, Moritz Contag, and Thorsten Holz. 2016. Probfuscation: An

ObfuscationApproach using Probabilistic Control Flows. InDetection of Intrusions
and Malware, and Vulnerability Assessment. Springer, 165–185.

[36] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. 2016. Har-

vesting Runtime Values in Android Applications That Feature Anti-Analysis

Techniques.. In Proceedings of 23rd Network and Distributed System Security Sym-
posium (NDSS ’16).

[37] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merz-

dovnik, and Edgar Weippl. 2016. Protecting Software Through Obfuscation: Can

It Keep Pace with Progress in Code Analysis? ACM Comput. Surv. 49, 1 (2016),
4:1–4:37.

[38] Toby Segaran and Jeff Hammerbacher. 2009. Beautiful data: the stories behind
elegant data solutions. "O’Reilly Media, Inc.".

[39] Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. 2015. WuKong: A

Scalable and Accurate Two-phase Approach to Android App Clone Detection. In

Proceedings of the 2015 International Symposium on Software Testing and Analysis
(ISSTA ’15). 71–82.

[40] Pei Wang, Shuai Wang, Jiang Ming, Yufei Jiang, and Dinghao Wu. 2016. Translin-

gual Obfuscation. In Proceedings of the 1st IEEE European Symposium on Security
and Privacy (EuroS&P ’16).

[41] Song Wang, Devin Chollak, Dana Movshovitz-Attias, and Lin Tan. 2016. Bugram:

Bug detection with n-gram language models. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE ’16). 708–719.

[42] Yan Wang, Shuai Wang, Pei Wang, and Dinghao Wu. 2017. Turing Obfuscation.

In Proceedings of the 13th EAI International Conference on Security and Privacy in
Communication Networks (SecureComm ’17).

[43] Dongpeng Xu, Jiang Ming, and DinghaoWu. 2016. Generalized Dynamic Opaque

Predicates: A New Control Flow Obfuscation Method. In Proceedings of the 19th
Information Security Conference (ISC ’16). 323–342.

[44] Lei Xue, Xiapu Luo, Le Yu, Shuai Wang, and Dinghao Wu. 2017. Adaptive

Unpacking of Android Apps. In Proceedings of the 39th International Conference
on Software Engineering (ICSE ’17). 358–369.

[45] Babak Yadegari, Brian Johannesmeyer, Benjamin Whitely, and Saumya Debray.

2015. A Generic Approach to Automatic Deobfuscation of Executable Code. In

Proceedings of the 36th IEEE Symposium on Security and Privacy (S&P ’15).
[46] Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng Liu. 2014.

ViewDroid: Towards Obfuscation-resilient Mobile Application Repackaging De-

tection. In Proceedings of the 2014 ACM Conference on Security and Privacy in
Wireless & Mobile Networks (WiSec ’14). 25–36.

[47] Yajin Zhou and Xuxian Jiang. 2012. Dissecting Android Malware: Characteriza-

tion and Evolution. In Proceedings of the 33rd IEEE Symposium on Security and
Privacy (S&P ’12). 95–109.

11

https://www.statista.com/statistics/270291/popular-categories-in-the-app-store/
https://www.statista.com/statistics/270291/popular-categories-in-the-app-store/
https://www.hex-rays.com/products/ida/
http://www.ioccc.org
http://sourcedna.com/blog/20151018/ios-apps-using-private-apis.html
http://sourcedna.com/blog/20151018/ios-apps-using-private-apis.html
https://developer.apple.com/library/content/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Chapters/About.html
https://developer.apple.com/library/content/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Chapters/About.html
https://developer.apple.com/library/content/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/Chapters/About.html
http://www.lancaster.ac.uk/fass/projects/corpus/LCMC/
http://www.lancaster.ac.uk/fass/projects/corpus/LCMC/
https://goo.gl/TkfCIK
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
https://www.preemptive.com/products/ppios
https://www.preemptive.com/products/ppios
https://www.fireeye.com/blog/threat-research/2015/08/ios_masque_attackwe.html
https://www.fireeye.com/blog/threat-research/2015/08/ios_masque_attackwe.html
https://research.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html
https://research.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://norvig.com/ngrams/
http://norvig.com/ngrams/

	Abstract
	1 Introduction
	2 Background
	2.1 Significance of the Problem
	2.2 Technical Challenges of the Study

	3 Methodology
	3.1 Considered Obfuscations
	3.2 Mining Obfuscated iOS Apps
	3.3 Per-App Inspection
	3.4 Cross-Validation

	4 Detecting Symbol Obfuscation
	4.1 An NLP-Based Detection Model
	4.2 Implementation

	5 Findings
	5.1 (RQ1) Characteristics of Obfuscated Apps
	5.2 (RQ2) Obfuscation Patterns
	5.3 (RQ3) Impact of Distributor Code Review
	5.4 (RQ4) Effectiveness of Obfuscation

	6 Implications of the Results
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

