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VADIM SCHECHTMAN∗ AND ALEXANDER VARCHENKO�,1
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Abstract. We construct a monomorphism of the De Rham complex of scalar multival-
ued meromorphic forms on the projective line, holomorphic on the complement to a finite
set of points, to the chain complex of the Lie algebra of sl2-valued algebraic functions
on the same complement with coefficients in a tensor product of contragradient Verma

modules over the affine Lie algebra ŝl2. We show that the existence of singular vectors
in the Verma modules (the Malikov-Feigin-Fuchs singular vectors) is reflected in the new
relations between the cohomology classes of logarithmic differential forms.

1. Introduction

1.1. We consider two complexes. The first is the De Rham complex of scalar multivalued
meromorphic forms on the projective line that are holomorphic on the complement to
a finite set of points. The second is the chain complex of the Lie algebra of sl2-valued
algebraic functions on the same complement with coefficients in a tensor product of con-
tragradient Verma modules over the affine Lie algebra ŝl2. We construct a monomorphism
of the first complex to the second and show that the existence of singular vectors in the
Verma modules is reflected in the new relations between the cohomology classes of loga-
rithmic differential forms.

This construction has two motivations.

The first motivation was to generalize the principal construction of [SV]. In [SV], we iden-
tified the tensor products of contragradient Verma modules over a semisimple Lie algebra
and the spaces of the top degree logarithmic differential forms over certain configuration
spaces. We also identified the logarithmic parts of the De Rham complexes over the con-
figuration spaces with some standard Lie algebra chain complexes having coefficients in
these tensor products, cf. in [KS] a D-module explanation of this correspondence.

1 Supported in part by NSF grant DMS-1362924 and Simons Foundation grant #336826.
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The second idea was that the appearance of singular vectors in Verma modules over
affine Lie algebras is reflected in the new relations between the cohomology classes of
logarithmic differential forms; moreover, in some sense this correspondence should be
one-to-one. This was proved in an important particular case in [FSV]; in [STV] a one-
to-one correspondence was established ”on the level of parameters”. In the present work
we construct (see Section 6.4) this correspondence for another non-trivial class of singular
vectors, namely for (a part of) Malikov-Feigin-Fuchs (MFF) ones, cf. [MFF]. (The first
examples, were worked out during the preparation of [FSV].) It turns out that MFF
vectors (having quite complicated form) admit a very simple definition using certain
limiting procedure, see Theorem 6.2.

Our paper is related to the recent paper [AFO] by M. Aganagic, E. Frenkel, A. Okounkov
devoted to quantum q-Langlands correspondence. In Section 6 of [AFO] the authors
discuss how conformal blocks of a WZW model are related to conformal blocks of the
“dual” W-algebra. If the conformal blocks are defined by one-dimensional integrals the
problem is reduced to comparing multivalued meromorphic forms on the projective line
in terms of representation theory of ŝl2.

This paper had been prepared for publication in the fall of 2015 while the second author
visited the MPI in Bonn. The second author thanks MPI for hospitality. The authors
thank E. Mukhin for interest in this paper, E. Frenkel for interesting discussions, and the
anonymous referee who helped to improve the exposition.

2. The De Rham complex of a hypergeometric function

2.1. Let z1, . . . , zn be pairwise distinct complex numbers, zn+1 =∞, U = C−{z1, . . . , zn},

` =
∏

1≤i<j≤n
(zi − zj)M

iMj/2κ
n∏
i=1

(t− zi)−M
i/κ , (1)

where t is a coordinate on C and M1, . . . ,Mn, κ are complex parameters. The function `
is a multivalued holomorphic function on U with singularities at z1, . . . , zn and infinity.

The function ` defines a hypergeometric function of z1, . . . , zn by the formula

I(z1, . . . , zn) =
∫
γ
` dt. (2)

Here γ is a suitable cycle on U , for example a path connecting two points zi, zj.

Consider the twisted De Rham complex associated with `:

0 −→ Ω0 d̃−→ Ω1 −→ 0. (3)

Here Ωp is the space of rational differential forms on C regular on U . The differential d̃ is
given by the formula

d̃ = dDR + α ∧ · , (4)
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where dDR is the De Rham differential and the second summand is the left exterior
multiplication by the form

α = −1

κ

n∑
i=1

M i

t− zi
dt. (5)

Formula (4) is motivated by the computation

dDR(`ω) = `dDRω + dDR` ∧ ω = `(dDRω + α ∧ ω).

The complex Ω• is the complex of global algebraic sections of the De Rham complex
of (OanU ,∇) where ∇ = dDR + α ∧ · is the integrable connection on the sheaf OanU of
holomorphic functions on U .

If S is the locally constant sheaf of horizontal sections then the cohomology H•(U ;S) is
equal to H•(Ω•).

If the monodromy of ` is non-trivial, then

H0(Ω•) = 0, dim H1(Ω•) = n− 1. (6)

2.2. The simplest elements of Ω1 are logarithmic forms:

ωi = M id(t− zi)
t− zi

, i = 1, . . . , n. (7)

They are cohomologically dependent:

ω1 + . . .+ ωn = −κd(1). (8)

For generic M1, . . . ,Mn, κ the forms ω1, . . . , ωn generate the space H1 and the relation∑
ωi ∼ 0 is the only one, [STV].

2.3. Resonances. For special resonance values of parameters the forms ω1, . . . , ωn span
a proper subspace of H1.

Here are the resonance conditions.

(a) M i = −aκ where a = 0, 1, 2, . . . ; i = 1, . . . , n.

(b) Mn+1 = −2 + aκ where a = 1, 2, . . . . Here Mn+1 := M1 + . . .+Mn − 2.

Each resonance condition implies a new cohomological relation between the forms ω1, . . . , ωn.

2.4. Example. If Mn+1 = −2 + κ, then
∑n
i=1 ziωi ∼ 0.
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2.5. Example. If Mn+1 = −2 + 2κ, then

n∑
i=1

z2
i ωi −

1

κ

 n∑
j=1

zjM
j

( n∑
i=1

ziωi

)
∼ 0.

It turns out that there is a direct connection between the relations among the forms
ω1, . . . , ωn and singular vectors in Verma modules over the affine Lie algebra ŝl2. An
explanation of this relation is the subject of this work.

2.6. For any i = 1, . . . , n, define a number ai by the formula ai := −M i/κ, if −M i/κ is
a non-negative integer, and set ai :=∞ otherwise.

Set an+1 := (M1 + . . .+Mn)/κ if the right-hand side is a positive integer and an+1 :=∞
otherwise.

The number card{i ∈ {1, . . . , n+ 1}| ai <∞} will be called the number of resonances.

Introduce the restricted De Rham complex

0 −→ Ω0
R −→ Ω1

R −→ 0 (9)

as the subcomplex of (3) where Ωp
R ⊂ Ωp is the subspace of the forms ω such that

(r) for any i = 1, . . . , n+ 1, the degree of the pole of ω at the point t = zi is not greater
than ai if ai <∞.

2.7. Lemma.

(a) Ω•R is a subcomplex of Ω•.

(b) The forms ω1, . . . , ωn belong to Ω1
R and generate the space H1(Ω•R).

(c) The natural homomorphism H1(Ω•R) −→ H1(Ω•) is a monomorphism.

(d) The codimension of the subspace H1(Ω•R) ⊂ H1(Ω•) is equal to the number of reso-
nances.

(e) The forms d(t − zi)/(t − zi)−ai−1 for resonance points t = zi and the form tan+1−1dt,
if t =∞ is a resonance point, give a basis of the space H1(Ω•)/H1(Ω•R).

2.8. It is convenient to use the following basis in Ω•.

(a) An elementary function is a function (t− zi)−b (b ∈ Z>0) or tb (b ∈ Z≥0).

(b) An elementary differential form is a form d(t−zi)/(t−zi)b (b ∈ Z>0) or tbdt (b ∈ Z≥0).

We have two basic formulas:

κ d̃((t− zi)−b) = −(M i + bκ)d(t− zi)/(t− zi)b+1 + (10)

b∑
k=1

∑
j 6=i

M j/(zj − zi)k · d(t− zi)/(t− zi)b+1−k −
∑
j 6=i

M j/(zj − zi)b · d(t− zj)/(t− zj)
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and

κ d̃(tb) =

bκ− n∑
j=1

M j

 tb−1dt− (11)

b−1∑
k=1

n∑
j=1

M jzkj t
b−1−kdt−

n∑
j=1

M jzbjd(t− zj)/(t− zj).

If the resonance condition 2.3(a) is satisfied and b = a, then the first term in the right-
hand side of (10) disappears. Similarly, if the condition 2.3(b) is satisfied and b = a, then
the first term in the right-hand side of (11) disappears.

In the next sections we will give an interpretation for the elementary functions (forms)

and formulas (10), (11) in terms of ŝl2-representations.

Lemma 2.7 follows easily from (10) and (11).

3. The Gauss-Manin connection

In this section we show the important fact that the subbundle with fiberH1(Ω•R(z1, . . . , zn))
⊂ H1(Ω•(z1, . . . , zn)) is invariant with respect to the Gauss-Manin connection on the
bundle with fiver H1(Ω•(z1, . . . , zn)), which moves the points z1, . . . , zn. By Lemma 2.7
the classes of logarithmic forms ω1, . . . , ωn generate H1(Ω•R(z1, . . . , zn)) for every distinct
z1, . . . , zn. Our goal will be to describe the relations between these classes in terms of
z1, . . . , zn.

3.1. When the points z1, . . . , zn are moving, the cohomology groups H•(U ;S) (as well
as the dual homology groups H•(U ;S∗)) form a vector bundle with a flat Gauss-Manin
connection.

Set C[n] := Cn − ⋃i<j {z ∈ Cn | zi = zj}; C[n+1] := Cn+1 − ⋃i<j {(z, t) ∈ Cn+1 | zi =

zj} −
⋃n
i=1 {(z, t) ∈ Cn+1 | t = zi}. Let ψ : C[n+1] −→ C[n], (z, t) 7→ z, be the projection.

This projection is a locally trivial bundle with fiber U(z) = {t ∈ C | t 6= zi, i = 1, . . . , n}.
Define an integrable connection ∇ = dDR+β∧· on the sheaf Oan of holomorphic functions
on C[n+1], where β ∧ · is the left multiplication by the form

β = −
n∑
i=1

M i

κ

d(t− zi)
t− zi

+
∑
i<j

M iM j

2κ

d(zi − zj)
zi − zj

, (12)

cf. (5). Let S be the locally constant sheaf of horizontal sections. The fiber bundle ψ
together with the local system S on C[n+1] defines a vector bundle R1ψ on C[n] with the
fiber H1(U(z);S|U(z)) over z ∈ C[n]. We have an isomorphism

H1(U(z);S|U(z)) = H1(Ω•(z)),

where Ω•(z) is the twisted De Rham complex of the fiber defined in 2.1.
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This vector bundle has a canonical Gauss-Manin connection

∇ =
∑
∇zidzi, (13)

which can be defined as follows. Let A ⊂ C[n+1] be a Zariski open set, Ω1(A×C) the space
of rational differential forms on A×C whose poles are on the hyperplanes t = zi. A form
ω ∈ Ω1(A×C) defines a section [ω] of R1ψ over A with the value [ω|U(z)] ∈ H1(Ω•(z)) at
z. The form η := dDRω + β ∧ ω can be written as

η =
∑
i<j

ηij(t, z)dzi ∧ dzj +
∑
i

ηi(t, z)dzi ∧ dt, (14)

where ηij, ηi are functions. By definition,

∇zi [ω] := [ηidt].

Elementary differential forms d(t−zi)/(t−zi)b and tbdt generate Ω1(A×C) over the ring of
rational functions on C[n] regular on A. Hence, to compute the Gauss-Manin connection
it is sufficient to compute (14) for elementary differential forms.

The following two formulas give a description of the Gauss-Manin connection:

κβ ∧ d(t− zi)
(t− zi)b

= (15)

∑
j<k; i6∈{j,k}

M jMk

2

d(zj − zk)
zj − zk

∧ d(t− zi)
(t− zi)b

+
∑
j 6=i

M j(M i − 2)

2

d(zj − zi)
(zj − zi)

∧ d(t− zi)
(t− zi)b

+

∑
j 6=i

M j d(zj − zi)
(zj − zi)b

∧ d(t− zj)
t− zj

−
∑
j 6=i

b−1∑
m=1

M j d(zi − zj)
(zj − zi)b−m+1

∧ d(t− zi)
(t− zi)m

,

κβ ∧ tbdt =
∑
j<k

M jMk

2

d(zj − zk)
(zj − zk)

∧ tbdt+ (16)

b−1∑
a=0

n∑
i=1

M izb−a+1
i dzi ∧ tadt+

n∑
i=1

M izbidzi ∧
d(t− zi)
t− zi

.

The first formula has an important special case. For the logarithmic forms defined in (7),
we have

κβ ∧ ωi =
∑

j<k; i6∈{j,k}

M jMk

2

d(zj − zk)
zj − zk

∧ ωi + (17)

∑
j 6=i

M j(M i − 2)

2

d(zj − zi)
zj − zi

∧ ωi +
∑
j 6=i

M id(zj − zi)
zj − zi

∧ ωj.
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3.2. Corollary. Consider the subbundle R1ψR ⊂ R1ψ with fiber H1(Ω•R(z)) ⊂ H1(Ω•(z)).
This subbundle is invariant under the Gauss-Manin connection.

Here Ω•R(z) is the restricited De Rham complex introduced in 2.6.

In fact, by Lemma 2.7(b), the logarithmic forms generate the fibers of R1ψR and by (17),
their covariant derivatives are expressed through logarithmic forms.

4. Representations of ŝl2

4.1. Let sl2 be the Lie algebra of complex 2 × 2-matrices with the zero trace; let e, f, h
be its standard generators, subject to the relations

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

Let ŝl2 be the corresponding affine Lie algebra ŝl2 = sl2[T, T−1]⊕ Cc with the bracket

[aT i, bT j] = [a, b]T i+j + i〈a, b〉δi+j,0c,

where c is the central element, 〈a, b〉 := tr(ab).

Set f1 = f, e1 = e, h1 = h, f2 = eT−1, e2 = fT, h2 = c − h. These elements are the
standard Chevalley generators defining ŝl2 as the Kac-Moody algebra corresponding to
the Cartan matrix (

2 −2
−2 2

)
.

4.2. Remark. The algebra ŝl2 has an automorphism π sending c, eT i, fT i, hT i to c,
fT i, eT i, −hT i respectively.

4.3. Fix k ∈ C, the value of the central charge. We assume that the action of c on all
our representations is the multiplication by k.

For M ∈ C, let V (M,k − M) be the Verma module over ŝl2 generated by a vector v
subject to the relations e1v = e2v = 0, h1v = Mv, h2v = (k −M)v.

Let U n̂− be the enveloping algebra of the Lie subalgebra n̂− ⊂ ŝl2 generated by f1, f2.
The map U n̂− −→ V (M,k −M), F 7→ Fv, is an isomorphism of U n̂−-modules. The
space V (M,k −M) has a Γ = Z2

≥0-grading: a vector fi1 · . . . · fipv with ij ∈ {1, 2} has
grading (p1, p2), where pi is the number of i’s in the sequence i1, . . . , ip.

For γ ∈ Γ, denote by V (M,k −M)γ ⊂ V (M,k −M) the corresponding γ-homogeneous
component. A homogeneous vector ω in V (M,k −M), non-proportional to v, is called
a singular vector if e1ω = e2ω = 0. The Verma module V (M,k −M) is reducible if and
only if it contains a singular vector. For generic M , V (M,k −M) is irreducible.
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4.4. Reducibility conditions. (See Kac-Kazhdan [KK]). Set κ := k + 2. The Verma
module V (M,k−M) is reducible if and only if at least one of the equations (a)-(c) below
is satisfied.

(a) M = l − 1− (a− 1)κ.

(b) M = −l − 1 + aκ.

(c) κ = 0.

Here l, a = 1, 2, 3, . . . . If (M,κ) satisfies exactly one of the conditions (a), (b), then
the module V (M,k − M) contains a unique proper submodule and this submodule is
generated by a singular vector of degree (la, l(a − 1)) for condition (a) and of degree
(l(a− 1), la) for condition (b).

The singular vectors are highly nontrivial and are given by the following theorem.

4.5. Theorem. (Malikov-Feigin-Fuchs, [MFF]) For any positive integers a, l and κ ∈ C,
the monomial

(a) F12(l, a, κ) = f
l+(a−1)κ
1 f

l+(a−2)κ
2 f

l+(a−3)κ
1 · . . . · f l−(a−2)κ

2 f
l−(a−1)κ
1

lies in U n̂−. If M = l−1−(a−1)κ, then F12(l, a, κ)v is a singular vector of V (M,k−M)
of degree (la, l(a− 1)). Similarly, the monomial

(b) F21(l, a, κ) = f
l+(a−1)κ
2 f

l+(a−2)κ
1 f

l+(a−3)κ
2 · . . . · f l−(a−2)κ

1 f
l−(a−1)κ
2

lies in U n̂−. If M = −l − 1 + aκ, then F21(l, a, κ)v is a singular vector of V (M,k −M)
of degree (l(a− 1), la).

The explanation of the meaning of complex powers in these formulas see in [MFF].

4.6. Examples. 1. M = −2 + κ, F21(1, 1, κ)v = f2v = e
T
v.

2. M = −2 + 2κ,

F21(1, 2, κ)v = f 1+κ
2 f1f

1−κ
2 v = f

(
e

T

)2

v + (1 + κ)
h

T

e

T
v − (1 + κ)κ

e

T 2
v.

4.7. Claim. The reducibility conditions for l = 1 (the dimension of the complex line is
1) correspond to the resonance conditions for H1(Ω•R) ⊂ H1(Ω•), and the singular vectors
correspond to the relations between the forms ω1, . . . , ωn, cf. examples 2.4, 2.5 and 4.6.

We will make this statement precise in the next section.

4.8. The maximal proper submodule of a Verma module V coincides with the kernel of the
Shapovalov form, which is the unique symmetric bilinear form S(·, ·) on V characterized
by the conditions S(v, v) = 1, S(fix, y) = S(x, eiy) for all i = 1, 2; x, y ∈ V .

One can regard S as a map S : V −→ V ∗ where V ∗ := ⊕γ∈Γ V ∗γ and V ∗γ being the

dual space to Vγ. There is a unique ŝl2-module structure on V ∗ such that 〈fiφ, x〉 =
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〈φ, eix〉; 〈eiφ, x〉 = 〈φ, fix〉, where φ ∈ V ∗, x ∈ V, i = 1, 2. We call this ŝl2-module V ∗

the contragradient dual of V . The map S is a morphism of ŝl2-modules. The quotient
L := V/Ker S is irreducible.

5. The main homomorphism

Conformal block construction.

5.1. In this section let z = (z1, . . . , zn, zn+1 = ∞) be pairwise distinct points of the
complex projective line P1. Fix local coordinates t − z1, . . . , t − zn, 1/t at these points.
Set U(z) := P1 − {z1, . . . , zn+1}. Notice that this U(z) is the same U(z) as in Section 3.

Let sl2(U(z)) be the Lie algebra of sl2-valued rational functions on P1 regular on U(z),

with the pointwise bracket. Let W1, . . . ,Wn+1 be representations of ŝl2. The algebra
sl2(U(z)) acts on the space W1 ⊗ . . .⊗Wn+1:

a(t) · (w1 ⊗ . . .⊗ wn+1) 7→ [a(t+ z1)]w1 ⊗ w2 ⊗ . . .⊗ wn+1 + · · ·+ (18)

w1 ⊗ . . .⊗ wn−1 ⊗ [a(t+ zn)]wn ⊗ wn+1 + w1 ⊗ . . .⊗ wn ⊗ π([a(1/t)])wn+1,

where [b(t)] denotes the Laurent expansion of a function b(t) at t = 0 and the letter π

denotes the automorphism of ŝl2 introduced in 4.2. We assume that all representations
Wi have the following finiteness property:

(Fin) given w ∈ Wi and a ∈ sl2, we have aT j · w = 0 for all j � 0,

so that the action of Laurent power series is well defined. The action of c adds up to zero
due to the residue formula. Thus, we have the multiplication map

µ(z) : sl2(U(z))⊗ (⊗n+1
i=1 Wi) −→ ⊗n+1

i=1 Wi . (19)

The space

(⊗n+1
i=1 Wi)sl2(U(z)) := Coker µ(z) (20)

is called the space of conformal blocks at z.

The Knizhnik-Zamolodchikov connection, see [KZ], [F].

5.2. Let {Xa}, a = 1, 2, 3, be an orthonormal basis of sl2. Set

L−1 :=
1

κ

∞∑
i=0

3∑
a=1

(XaT−i−1)(XaT i).

It is a well defined operator on a representation satisfying the property (Fin) above.

We have

[L−1, XT
i] = −iXT i−1 (21)

for any X ∈ sl2 and any i.
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5.3. The following notation will be used: the action of an element X of an algebra on
the i-th factor of a tensor product of modules will be denoted by X(i).

Recall the notations of 3.1. For an open subspace A ⊂ C[n], set UA := (A×P1)∩C[n+1] ⊂
C[n] × P1. Denote by sl2(UA) the Lie algebra of algebraic sl2-valued functions on UA.

Let W1, . . . ,Wn+1 be representations of ŝl2 satisfying (Fin). Consider the trivial vector
bundle WA := A × (W1 ⊗ . . . ⊗ Wn+1) −→ A. The Lie algebra sl2(UA) acts on its
holomorphic sections by formula (18).

Consider the flat connection on the bundle WA: ∇ =
∑n
i=1 ∇zi dzi,

∇ziG(z) = ∂ziG(z) + L
(i)
−1G(z), (22)

where G(z) ∈ Γ(A;WA).

5.4. Lemma. (Cf. [F]) For any X ∈ sl2(UA), G ∈ Γ(A;WA), we have ∇zi(XG) =
(∇ziX)G+X(∇ziG).

This is proved by a direct computation.

5.5. Let Im µ ⊂ WC[n] denote the subspace whose intersection with the fiber at a point
z is equal to the image of µ(z). According to the lemma this subspace is invariant with
respect to the connection. Consider the quotient bundle W over C[n] with fiber Coker
µ(z). This bundle is called the bundle of conformal blocks.

5.6. Corollary. The connection defined in (22) induces a connection on the bundle of
conformal blocks.

The induced integrable connection on W is called the Knizhnik-Zamolodchikov (KZ) con-
nection. The KZ equation on G is the horizontality condition, ∇G = 0.

The main construction.

5.7. Let M1, . . . ,Mn, k be complex numbers, k 6= −2. Set Mn+1 := M1 + . . .+Mn − 2.
Let Vi denote the Verma module V (M i, k−M i) and V ∗i the contragradient dual, cf. 4.8.

According to 5.1, the Lie algebra sl2(U(z)) acts on ⊗n+1
i=1 V ∗i , so that we can consider the

standard chain complex C•(sl2(U(z));⊗n+1
i=1 V ∗i ). Its right end looks as in (19):

C•(sl2(U(z));⊗ni=1 V
∗
i ) : . . . −→ sl2(U(z))⊗ (⊗n+1

i=1 V ∗i )
d−→ ⊗n+1

i=1 V ∗i −→ 0,
(23)

with d = µ(z), where µ(z) is defined in 5.1. We assign to the last term degree 0 and agree
that d has degree 1, so that the whole complex sits in the nonpositive area.

On the other hand, consider the shifted De Rham complex (3) corresponding to κ = k+2:

Ω•(U(z))[1] : 0 −→ Ω0(U(z)) −→ Ω1(U(z)) −→ 0. (24)
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Here the shift [1] means simply that we assign to Ωj degree j − 1.

In the rest of the section we construct a monomorphism of complexes Ω•(U(z))[1] ↪→
C•(sl2(U(z));⊗n+1

i=1 V ∗i ).

5.8. First we need a basis in the complex (23). Let γ = (p1, p2) ∈ Z2
≥0 and p1 > p2. We

fix the following bases of homogeneous components Vγ of all Verma modules V :

f

T i1
· . . . · f

T ia
h

T j1
· . . . · h

T jb
e

T l1
· . . . · e

T lc
v (25)

where

0 ≤ ia ≤ ia−1 ≤ . . . ≤ i1, 1 ≤ jb ≤ jb−1 ≤ . . . ≤ j1, 1 ≤ lc ≤ lc−1 ≤ . . . ≤ l1;
(26)

a∑
s=1

is +
b∑

s=1

js +
c∑
s=1

ls + a − c = p1,
a∑
s=1

is +
b∑

s=1

js +
c∑
s=1

ls = p2.

For p1 < p2, we fix a basis of the form

e

T l1
· . . . · e

T lc
h

T j1
· . . . · h

T jb
f

T i1
· . . . · f

T ia
v, (27)

with the indices satisfying (26). These are bases by the Poincaré-Birkhoff-Witt theorem.

Notice that the elements X/T i and X/T j (X ∈ sl2) commute.

We fix the bases in the contragradient Verma modules V ∗ which are dual to the bases
distinguished above in the Verma modules.

If {vi} is a basis in V , then we denote the dual basis by {(vi)∗}.

5.9. Define a map

η1 : Ω1(U(z)) −→ ⊗n+1
i=1 V ∗i

by the formulas

d(t− zm)

(t− zm)b+1
7→ −κv∗1 ⊗ . . .⊗

(
f

T b
vm

)∗
⊗ . . .⊗ v∗n+1, (28)

tbdt 7→ κv∗1 ⊗ . . .⊗ v∗n ⊗
(

e

T b+1
vn+1

)∗
, (29)

for b ≥ 0.

Define a map

η0 : Ω0(U(z)) −→ sl2(U(z))⊗ (⊗n+1
i=1 V ∗i )

by the formulas

1

(t− zm)b
7→ f

(t− zm)b
⊗ v∗1 ⊗ . . .⊗ v∗n+1 − (30)
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b∑
l=1

[
e

(t− zm)l
⊗ v∗1 ⊗ . . .⊗ 2

∑
i+j=b−l, i≥j≥0

(
f

T i
f

T j
vm

)∗
⊗ . . .⊗ v∗n+1+

h

(t− zm)l
⊗ v∗1 ⊗ . . .⊗

(
f

T b−l
vm

)∗
⊗ . . .⊗ v∗n+1

]
,

for b ≥ 1;

1 7→ f ⊗ v∗1 ⊗ . . .⊗ v∗n+1, t 7→ ft⊗ v∗1 ⊗ . . .⊗ v∗n+1, (31)

tb 7→ ftb ⊗ v∗1 ⊗ . . .⊗ v∗n+1 −
b−2∑
l=0

[
etl ⊗ v∗1 ⊗ . . .⊗ v∗n ⊗ 2

∑
i+j=b−l, i≥j≥1

(
e

T i
e

T j
vn+1

)∗
+

htl+1 ⊗ v∗1 ⊗ . . .⊗ v∗n ⊗
(

e

T b−l−1
vn+1

)∗ ]
,

for b ≥ 2.

5.10. Theorem. Formulas (28)-(31) define a monomorphism of complexes

η : Ω•(U(z))[1] −→ C•(sl2(U(z));⊗n+1
i=1 V ∗i ).

5.11. Beginning of the proof of Theorem 5.10. We should check that

η1(d̃(x)) = µ(z)(η0(x)) (32)

for any x ∈ Ω0(U(z)). We have

1
η7→ f ⊗ v∗1 ⊗ . . .⊗ v∗n+1

µ7→
n∑
i=1

M iv∗1 ⊗ . . .⊗ (fvi)
∗ ⊗ . . .⊗ v∗n+1, (33)

1
d̃7→ −1

κ

n∑
i=1

M id(t− zi)
t− zi

η7→
n∑
i=1

M iv∗1 ⊗ . . .⊗ (fvi)
∗ ⊗ . . .⊗ v∗n+1,

and these formulas agree with (32). Next we have

t
η7→ ft⊗ v∗1 ⊗ . . .⊗ v∗n+1

µ7→ (34)

n∑
i=1

M izi v
∗
1 ⊗ . . .⊗ (fvi)

∗ ⊗ . . .⊗ v∗n+1 + (k −Mn+1)v∗1 ⊗ . . .⊗
(
e

T
vn+1

)∗
,

t
d̃7→ 1

κ

[ (
κ−

n∑
i=1

M i

)
dt−

n∑
i=1

M izi
d(t− zi)
t− zi

]
µ7→

(
k −

(
n∑
i=1

M i − 2

))
v∗1 ⊗ . . .⊗

(
e

T
vn+1

)∗
+

n∑
i=1

M izi v
∗
1 ⊗ . . .⊗ (fvi)

∗ ⊗ . . .⊗ v∗n+1,

and these formulas also agree with (32). Notice that calculating the action on M∗
n+1 we

use the automorphism π, see formula (18).



RATIONAL DIFFERENTIAL FORMS ON THE LINE 13

Similarly, to prove (32) for x = t2, one needs the identity(
2κ−

n∑
i=1

M i

)(
e

T 2
vn+1

)∗
=

e

T 2
· v∗n+1 − 2f

((
e

T

)2

vn+1

)∗
+
h

T

(
e

T
vn+1

)∗
,

(35)

and to prove (32) for x = 1
t−zi , one needs the identity

(M i + κ)

(
f

T
vi

)∗
=
f

T
· v∗i −

h

T
(fvi)

∗ − 2
e

T
(f 2vi)

∗. (36)

5.12. Theorem. For M, k ∈ C, the following identities hold in the contragradient
Verma module V (M,k −M)∗:

(a) for b ≥ 1, we have

(M + b(k + 2))

(
f

T b
v

)∗
=

f

T b
· v∗ −

b∑
l=1

[
2
e

T l
∑

i+j=b−l, i≥j≥0

(
f

T i
f

T j
v

)∗
+

h

T l

(
f

T b−l
v

)∗ ]
;

(b) for b ≥ 2, we have

(k−M+(b−1)(k+2))
(
e

T b
v
)∗

=
e

T b
·v∗+

b−2∑
l=0

[
−2

f

T l
∑

i+j=b−l, i≥j≥1

(
e

T i
e

T j
v
)∗

+
h

T l+1

(
e

T b−l−1
v
)∗ ]

.

5.13. Proof of the theorem. The theorem is proved by direct verification. Each term
of the expression in (a) is of degree (b+ 1, b). The basis of V (M,k−M)(b+1,b) is described
in Section 5.8. This gives us the dual basis of V (M,k − M)∗(b+1,b). One calculates in

straightforward way the right-hand side of (a) in that basis and obtains the left-hand
side. For example, for b = 1, the space V (M,k −M)∗(2,1) has the basis ( f

T
v)∗, (f h

T
v)∗,

(f 2 e
T
v)∗, and we have f

T
· v∗ = (M + k)( f

T
v)∗+ (2M − 2k)(f 2 e

T
v)∗, h

T
· (fv)∗ = −2( f

T
v)∗+

4(f h
T
v)∗+(4M−4k)(f 2 e

T
v)∗, e

T
(f 2vi)

∗ = −2(f h
T
v)∗−(2M−2k)(f 2 e

T
v)∗. By adding these

expressions we get the formula (M + κ)
(
f
T
v
)∗

= f
T
· v∗ − h

T
(fv)∗ − 2 e

T
(f 2v)∗ which gives

statement (a) for b = 1 and formula (36).

Similarly each term of the expression in (b) is of degree (b− 1, b). The basis of V (M,k−
M)(b−1,b) is described in Section 5.8. This gives us the dual basis of V (M,k −M)∗(b−1,b).

One calculates in straightforward way the right-hand side of (b) in that basis and obtains
the left-hand side. For example, for b = 2 the space V (M,k − M)∗(1,2) has the basis

(( e
T

)2fv)∗, ( e
T
h
T
v)∗, ( e

T 2v)∗ and we have e
T 2 · v∗ = −2M(( e

T
)2fv)∗ − 2k( e

T
h
T
v)∗ + (2k −

M)( e
T 2v)∗, f · (( e

T
)2v)∗ = M(( e

T
)2fv)∗ − 2( e

T
h
T
v)∗, h

T
· ( e

T
v)∗ = 4M(( e

T
)2fv)∗ + (2k −

4)( e
T
h
T
v)∗+2( e

T 2v)∗. By adding these expressions we get the formula (2k+2−M)( e
T 2v)∗ =

e
T 2 · v∗ − 2f · (( e

T
)2v)∗ + h

T
· ( e

T
v)∗ which gives statement (b) for b = 2 and formula (35).

The complete proofs of the theorem will be published elsewhere. 2
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5.14. End of the proof of Theorem 5.10. Theorem 5.10 is a direct corollary of
Theorem 5.12, cf. (10), (11) and (28)-(31). 2

6. Singular vectors in Verma modules

6.1. Let S : V (M,k −M) −→ V (M,k −M)∗ be the Shapovalov form. Set

Xb(M,k −M) := S−1

(
(M + b(k + 2))

(
f

T b
v

)∗)
, (37)

Yb(M,k −M) := S−1
(

(k −M + (b− 1)(k + 2))
(
e

T b
v
)∗)

.

For generic values of M and k, the Shapovalov form S is non-degenerate and Xb and Yb
are well defined elements of the Verma module V (M,k−M). The basis in V (M,k−M)
allows us to compare these vectors for different values of k,M . Obviously, Xb(M,k −
M), Yb(M,k −M) are holomorphic functions of k,M for generic k,M .

Consider the resonance lines

M = l − 1− (a− 1)(k + 2), M = −l − 1 + a(k + 2), k + 2 = 0, (38)

(l, a ∈ Z>0) on the (M,k)-plane, cf. 4.4.

6.2. Theorem.

(a) Let b ≥ 0 and let (M0, k0) be a point of the line {M = −b(k + 2)} which does not
belong to other resonance lines. Then the vector-valued function Xb(M,k −M)
can be analytically continued to the point (M0, k0) and the vector Xb(M0, k0−M0)
is a (nonzero) singular vector of V (M,k −M).

(b) Let b > 0 and let (M0, k0) be a point of the line {M = −2 + b(k + 2)} which does
not belong to other resonance lines. Then the vector-valued function Yb(M,k−M)
can be analytically continued to the point (M0, k0) and the vector Yb(M0, k0 −M0)
is a (nonzero) singular vector of V (M,k −M).

Proof of (a). According to Theorem 5.12,

Xb(M,k −M) =
f

T b
v −

b∑
l=1

[
2
e

T l
∑

i+j=b−l, i≥j≥0

S−1

(
f

T i
f

T j
v

)∗
+

h

T l
S−1

(
f

T b−l
v

)∗ ]
.

(39)

The right-hand side can be analytically continued to (M0, k0) since the elements

S−1
(
f
T i

f
T j
v
)∗

and S−1
(

f
T b−l

v
)∗

are well defined at (M0, k0) by the results in Section 4.4.

We have S(Xb(M0, k0 −M0)) = 0 by definition. Let us check that Xb(M0, k0 −M0) 6= 0.
In fact, consider the basis { e

T l1
· . . . · e

T lα
h
T j1
· . . . · h

T
jβ

f
T i1
· . . . · f

T iγ
} in V (M0, k0 −M0).

Formula (39) shows that the basis vector f
T b
v comes to Xb with coefficient 1. This proves

part (a) of the theorem. Part (b) is proved similarly. �
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6.3. Corollary of Theorem 6.2. If b ≥ 0 and (M0, k0) is a point of the line {M =
−b(k + 2)}, which does not belong to other resonance lines, then Xb(M0, k0 − M0) is
proportional to the Malikov-Feigin-Fuchs vectore F12(1, b + 1, k0 + 2). Similarly, if b > 0
and (M0, k0) is a point of the line {M = −2 + b(k + 2)} which does not belong to other
resonance lines, then Yb(M0, k0−M0) is proportional to the Malikov-Feigin-Fuchs vectore
F21(1, b, k0 + 2). 2

6.4. Corollary of formulas (10) and (11). If the resonance condition k−Mn+1 +(b−
1)κ = 0 of the identity 5.12.b holds, then formula (11) gives the following cohomological
relation between the logarithmic forms ωj introduced in 2.2:∑

m≥0

∑
l0+...+lm=b,
l0,... ,lm>0

(−κ)−m (
m∏
i=1

(
1

li

n∑
j=1

zlij M
j ) )

n∑
j=1

zl0j ωj ∼ 0 , (40)

where κ = k+ 2. Similarly if the resonance conditiion Mp + bκ = 0 of the identity 5.12.a
holds for some p ≤ n, then formula (10) induces the following cohomological relation
between the logarithmic forms ωj:∑

m≥0

[
∑

l0+...+lm=b,
l0,... ,lm>0

(−κ)−m (
m∏
i=1

(
1

li

∑
j=1,... ,n,
j 6=p

M j

(zj − zp)li
) )

∑
j=1,... ,n,
j 6=p

ωj
(zj − zp)l0

−

∑
l1+...+lm=b,
l1,... ,lm>0

(−κ)−m(
m∏
i=1

(
1

li

∑
j=1,...n,
j 6=p

M j

(zj − zp)li
))ωp] ∼ 0, (41)

cf. Examples 2.4, 2.5. 2

For instance, if M1 + κ = 0, then

∑
j>1

ωj
zj − z1

+
1

κ

∑
j>1

M j

zj − z1

ω1 ∼ 0 . (42)
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