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Abstract

We present composite broad-line region (BLR) reverberation mapping lag measurements for Hα, Hβ, He II λ4686,
and Mg II for a sample of 144, z1 quasars from the Sloan Digital Sky Survey Reverberation Mapping
(SDSS-RM) project. Using only the 32-epoch spectroscopic light curves in the first six-month season of SDSS-RM
observations, we compile correlation function measurements for individual objects and then coadd them to allow
the measurement of the average lags for our sample at mean redshifts of 0.4 (for Hα) and ∼0.65 (for the other
lines). At similar quasar luminosities and redshifts, the sample-averaged lag decreases in the order of Mg II, Hα,
Hβ, and He II. This decrease in lags is accompanied by an increase in the mean line width of the four lines, and is
roughly consistent with the virialized motion for BLR gas in photoionization equilibrium. These are among the first
RM measurements of stratified BLR structure at z>0.3. Dividing our sample by luminosity, Hα shows clear
evidence of increasing lags with luminosity, consistent with the expectation from the measured BLR size–
luminosity relation based on Hβ. The other three lines do not show a clear luminosity trend in their average lags
due to the limited dynamic range of luminosity probed and the poor average correlation signals in the divided
samples, a situation that will be improved with the incorporation of additional photometric and spectroscopic data
from SDSS-RM. We discuss the utility and caveats of composite lag measurements for large statistical quasar
samples with reverberation mapping data.
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1. Introduction

Reverberation mapping (RM) is a technique used to infer the

size of the broad-line region (BLR) in active galactic nuclei

(AGNs) and quasars by measuring the time delay between the

continuum and broad-line flux variations (e.g., Blandford &

McKee 1982; Peterson 1993). Combining the BLR size with

the virial velocity inferred from the width of the broad lines,

one can derive a virial estimate of the mass of the black hole.

This is the primary technique used to measure BH masses in

AGNs and quasars, and anchors secondary methods of active

BH mass estimation based on single-epoch spectroscopy (for a

recent review, see Shen 2013).
Over the past two decades, RM measurements have been

performed for dozens of low-redshift (z< 0.3) AGNs and

quasars (e.g., Peterson et al. 1998, 2002, 2004; Kaspi et al.

2000, 2005; Bentz et al. 2009, 2010, 2013; Denney et al.

2009, 2010; Barth et al. 2011b, 2011a, 2013, 2015; Rafter et al.

2011, 2013; Grier et al. 2012a; Du et al. 2014, 2015, 2016; Hu

et al. 2015), and the feasibility and potential of this technique

for measuring BH masses and understanding the inner structure
of AGN and quasars has been well demonstrated. In recent
years, RM has been attempted at higher redshifts (z> 0.3) and
for high-luminosity quasars as well (e.g., Kaspi et al. 2007;
Trevese et al. 2014; Jiang et al. 2016), but successful
measurements are still rare in these regimes. An interesting
new approach to RM is the use of multi-object spectrographs to
study hundreds of quasars simultaneously (MOS-RM, e.g.,
King et al. 2015; Shen et al. 2015a). In addition to the much
improved observational efficiency, MOS-RM programs aim to
detect time lags for uniformly selected samples of AGNs and
quasars at substantially higher redshifts and luminosities with
multi-year time baselines to sample the slow variability patterns
of these high-redshift objects.
We are conducting one of the first MOS-RM programs using

the SDSS Baryon Oscillation Spectroscopic Survey (BOSS)
spectrograph (Dawson et al. 2013; Smee et al. 2013) on the
2.5 m SDSS telescope (Gunn et al. 2006), accompanied by
dedicated photometric monitoring using a number of ground-
based wide-field imagers. Details of the SDSS-RM project are
presented in Shen et al. (2015a). Analyses of the initial season
(2014) of spectroscopic data have led to the first robust
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detections of BLR lags at z>0.3, and a subset of 15 individual
detections were reported by Shen et al. (2016).

The large sample of objects with RM data from the SDSS-RM
project also enables an investigation of composite lag detections,
where one may boost the signal-to-noise ratio (S/N) of the lag
detection (inferred from the cross-correlation between continuum
and line light curves) by stacking the results from individual
objects (e.g., Fine et al. 2012, 2013). As illustrated by these
authors, this technique is useful for measuring the average lag
for a sample of quasars, even if the individual light curves are of
insufficient quality to measure a reliable lag or if the correlated
variability is buried in the random, uncorrelated intrinsic
variability of each light curve. Composite lag measurements
provide a complementary approach to individual lag measure-
ments to perform RM studies for high-z samples.

In this work, we test the feasibility of composite lag
detections using a subset of SDSS-RM data from our first-
season observations conducted in 2014. We use the well-
calibrated first-season (six-month) spectroscopic light curves
alone to create the coadded correlation function. This slightly
differs from Fine et al. (2013), which combined high-cadence
continuum light curves with a few spectroscopic epochs, but
the spirit is the same in both studies. This approach is carried
out in parallel to our ongoing effort on individual lag
detections, and it is particularly useful for lag detections with
weak broad lines (such as He II). The motivations for
performing such an exercise with the SDSS-RM data are as
follows. (1) With composite lags, we will attempt to measure
average lags for different line species, in particular, the weak
broad-line He II λ4686, in the same sample of quasars, allowing
us to explore the stratified structure of quasar BLRs. (2)
Ongoing and future MOS-RM programs will produce light-
curve data for large statistical quasar samples. Composite lag
measurements then offer a promising way to boost the signal-
to-noise ratio, and to measure the average lags for quasars
binned by different physical properties. This work serves as a
demonstration of the concept for this approach using the first-
season SDSS-RM spectroscopic-only data. Nevertheless, the
lag measurements we present here are at mean redshifts >0.3,
where RM measurements are rare, and include the first
measurement of (composite) He II lags at such high redshifts.

This paper is organized as follows. In Section 2, we describe
the sample and light-curve data used, and in Section 3 we
describe the technical details of stacked lag detection, with
several tests to demonstrate its robustness in Section 3.2. We
present our results in Section 4, and summarize our findings in
Section 5, with an outlook for future improvement. Throughout
the paper, we adopt a flat ΛCDM cosmology with ΩΛ=0.7
and H0=70 km s−1Mpc−1 in calculating luminosities. Unless
stated otherwise, all stacked lag measurements are performed in
the observed frame for the reasons discussed in Section 3.

2. Data

SDSS-RM simultaneously monitors 849 broad-line quasars
at 0.1<z<4.5 with a flux limit of ipsf=21.7 (Shen et al.
2015a). The spectroscopic data used in this work are from the
32 epochs taken in 2014 (from January to July) as part of the
SDSS-RM project within the SDSS-III (Eisenstein et al. 2011)
BOSS (Dawson et al. 2013). The wavelength coverage of
BOSS spectra is ∼3650–10400Å, with a spectral resolution of
R∼2000. Each epoch had a typical exposure time of 2 hr,
resulting in a typical S/N of ∼4.5 per 69 km s−1 pixel at

gpsf=21.2 averaged over the g band. The epoch-by-epoch
spectra were pipeline-processed as part of the SDSS-III Data
Release 12 (Alam et al. 2015), followed by a custom flux
calibration scheme and improved sky subtraction as described
by Shen et al. (2015a). The improved spectrophotometry has a
nominal absolute accuracy of ∼5%.
We then performed a spectral-refinement procedure, desig-

nated “PrepSpec,” on the custom flux-calibrated multi-epoch
spectra, as described in detail in Shen et al. (2016). PrepSpec
further improves the relative flux measurements by adjusting
the flux levels of the individual epochs using the fluxes of
narrow emission lines, assumed to remain constant over the
monitoring period. The PrepSpec procedure derived continuum
and broad-line light curves for each object in our sample, as
well as measurements of the emission line widths from both the
mean and the root-mean-squared (rms) spectra. These spectro-
scopic-only light curves form the basis of our composite lag
analysis.
Occasionally, a particular epoch will appear as an outlier in

the light curve. These events are usually caused by the poor
S/N of that particular epoch (e.g., Epoch 3 and Epoch 7; see
Shen et al. 2016), but occasionally may be due to unknown
systematics in the PrepSpec procedure. To build a uniform set
of light-curve data, which is crucial when carrying out further
correlation function and coadding calculations, we identify
outlier epochs with differences larger than three standard
deviations from the linear interpolations of the original light
curves and replace their flux measurements with linear
interpolations from the rest of the light curve. Similarly, we
interpolate the light curve at rare epochs with missing data
(mostly due to bad spectrograph fibers) and assign the flux
error to be the average of the remaining data points. The
fraction of these “fixed” light-curve data points is 9.7% of the
total light-curve points. Figure 1 presents an example of our
light-curve adjustment. With this adjustment, all objects have
exactly the same cadence in their light curves, allowing a
uniform binning of the correlation functions.
As discussed in Shen et al. (2016), one concern of our

analysis is that PrepSpec may underestimate the light-curve
uncertainties, and an empirical upper limit on the flux
uncertainties is 3%. We have tested our calculations with the
original PrepSpec errors and the inflated light-curve errors, and
found consistent results. To be conservative with the light-
curve errors, all analyses presented in this paper will adopt the
3% inflated errors.

3. Composite Lag Measurements

In this work, we focus on the low-z subset of our sample for
which a lag should be detectable given the six-month observed
period of our first-season monitoring. Specifically, we require
that a continuum light curve at rest-frame 5100Å is available,
which is the commonly adopted reference continuum for low-z
RM work. This requirement limits our sample to z1 and 190
objects. We consider four broad lines that are of primary
interest in this redshift regime and for which we have available
light curves from PrepSpec: Hα, Hβ, He II λ4686, and Mg II.
Furthermore, we remove objects whose expected observed-

frame Hβ lags (following the R− L relation in Bentz et al.
2013) exceed the maximum lag range searched-for correlation
(∼120 days), given the total baseline of ∼180 days of our light
curves. These objects will not contribute correlation signals to
the coadded correlation function, but will add noise instead. In

2
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addition, these objects are typically at higher luminosity and
redshift, and thus will bias the sample-averaged luminosity
upward. Indeed, we have tested including these objects in the
coadded correlation functions, and found that the resulting
average lags are almost identical, but the sample-averaged
luminosity is higher compared to the results excluding them.
This additional requirement reduces the total numbers of
objects used in this study to 144 (roughly ∼25% of sources are
removed).

Table 1 lists the composite lag measurements for these four
lines and the corresponding number of objects in each coadd.

3.1. Methodology of Composite Lags

To measure the cross-correlation signal in individual objects,
we use the z-transformed discrete correlation function (ZDCF,
Alexander 2013). ZDCF is a more robust method to measure
time lags for sparse and unevenly sampled light curves than the
traditional discrete correlation function (DCF, Edelson &
Krolik 1988) and the interpolated cross-correlation function
(ICCF, Gaskell & Peterson 1987). By using equal population
binning and Fisher’s z-transform, ZDCF provides accurate
estimates for light curves with as few as ∼15 epochs.
Compared with the ICCF and DCF, ZDCF provides a more
reliable error estimation (whereas ICCF does not provide errors
on the correlation), which is useful in weighting the data points

in the coadded correlation; more importantly, unlike the ICCF,
the ZDCF does not suffer from correlated errors in the
continuum and broad-line light curves as measured from the
same spectrum. Finally, given the uniform sampling of light
curves used here, the automatic time-lag binning of ZDCF
yields the same binning for all objects, allowing a straightforward
coaddition of points in each time-lag bin. These properties of the
ZDCF make it the ideal tool to measure the average time lag for a
given sample in our database. The bottom panel of Figure 1
shows the ZDCF for an example object in our sample.
One drawback of using the ZDCFs in the stacking is that the

individual cross-correlations are stacked in the observed frame
(unless some sort of interpolation and rebinning of the
individual ZDCFs is used). Therefore there is an additional
broadening of the stacked ZDCF due to different time-dilation
factors in different objects. Fortunately, as further discussed in
Section 4.1, when scaled by the sample-averaged (1+ z) factor,
observed-frame coadded lags (without rebinning) are consistent
with the rebinned rest-frame coadded lags, without the
complication of data interpolation. Given the many advantages
of ZDCFs discussed above, we will use ZDCFs and the
observed-frame stacks to demonstrate our methodology below.
Once we have measured the individual ZDCFi,j for object i

and time-lag bin j, and the associated errors σi,j, we create a
composite ZDCF in two different ways. The first approach is a
simple-median coadd, where we take the median of the ZDCF
distribution in each time-lag bin. In the second approach, we
assign the individual ZDCF points in each time-lag bin an
object-based weight

*
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and calculate the weighted mean and uncertainty in each time-

lag bin. In this definition, the weight is on an object-by-object

basis and is identical across all time-lag bins for the same

object.16 The weighted mean provides a better measurement of

the coadded ZDCF by up-weighting signals from high-quality

light curves, and we take these results based on the weighted

mean as our fiducial results. Conversely, both the simple-

median approach and the weighted-mean approach account for

contributions from all objects and hence the resulting coadded

correlation is not dominated by a few objects.
To quantify the inferred average lags, we use a second-order

polynomial to iteratively fit the coadded ZDCF points within
±50 days around the model peak until the peak position
converges to within 10% of itself. We also measure a centroid
by directly using the coadded ZDCF data points within
±50 days of the best-fit polynomial peak and found consistent
results. Bootstrap resampling of the objects contributing to the
coadded ZDCFs is adopted to estimate the values and
uncertainties in the measured average lags. We adopt the
median of the lag distribution from the bootstrap samples as
the measured lag to provide more robust estimates than using
the peak/centroid measured from the original coadded ZDCF.

Figure 1. Example of the light-curve adjustment process described in
Section 2. The top two panels show the continuum (estimated at rest-frame

5100 Å) and broad-line light curves. The open points are the epochs we
identified as outliers, and the red points are the “fixed” light-curve data (circles
are for outliers and squares are for missing data). The bottom panel shows the
ZDCF. This object is one of the 15 first-lag objects reported in Shen et al.
(2016), where a lag detection is possible with the spectro-only LCs.

16
We adopt this weighting scheme instead of using different weights s1 i j,

2 for
the same object across time-lag bins to avoid “glitches” in the s1 i j,

2

distribution due to unknown systematics in our light curves. The individual-
epoch weighting scheme can lead to large fluctuations in the coadded ZDCF
across time-lag bins.

3
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Table 1

Composite Lags

Line Nobj á ñz á ñLlog 5100

tá ñ (Simple Median) tá ñ (Weighted Mean) á ñLinewidth tá ñrest (Rest Frame)

(erg s−1
)

Polynomial fit Direct centroid Polynomial fit Direct centroid (km s−1
) Polynomial fit

Median 16% 84% Median 16% 84% Median 16% 84% Median 16% 84% σmean σrms FWHMmean FWHMrms Median 16% 84%

Hα all 56 0.39 43.66 26.4 17.7 35.0 27.9 19.1 35.1 23.7 17.8 29.5 23.3 17.7 29.0 2251 2266 2668 4281 19.7 15.3 24.6

other 43 0.39 43.64 22.9 13.8 41.0 24.3 14.4 38.9 21.7 13.2 34.4 21.8 13.5 31.4 2473 2479 2681 4662 19.2 11.9 28.2

first lags 13 0.39 43.74 29.0 17.4 37.0 30.6 20.5 38.9 26.5 21.2 31.4 27.4 22.1 31.3 1464 1511 2621 2932 19.5 16.0 22.7

low-L 28 0.32 43.29 17.3 6.5 27.1 17.0 8.5 25.4 16.1 7.1 23.3 15.4 6.5 23.3 2306 2284 2842 4424 14.9 8.6 20.0

high-L 28 0.45 44.02 52.1 33.0 63.7 47.6 34.8 57.6 41.6 31.9 58.8 38.2 30.1 48.5 2196 2247 2493 4138 27.3 19.1 36.0

Hβ all 144 0.62 43.90 22.7 18.4 26.2 24.2 18.7 26.9 19.7 16.9 22.1 19.9 16.4 22.7 3915 3481 4471 7216 12.7 10.6 15.2

other 129 0.64 43.92 18.4 11.3 24.5 19.1 12.4 25.5 15.9 11.7 19.5 15.0 11.0 19.0 4153 3696 4553 7628 9.3 6.5 11.9

first lags 15 0.43 43.81 26.4 23.8 29.8 27.8 25.5 31.3 27.4 24.1 30.3 27.7 24.9 30.2 2107 1842 3839 4076 20.0 18.2 22.1

low-L 72 0.51 43.59 21.5 17.1 24.7 21.7 16.0 25.1 19.0 16.6 21.6 18.3 15.1 21.8 3680 3363 4707 6983 12.4 9.9 14.1

high-L 72 0.73 44.21 24.9 11.7 44.4 28.0 17.5 41.4 24.6 12.1 52.9 26.4 15.5 48.3 4148 3597 4237 7448 14.5 9.1 36.0

He II all 144 0.62 43.90 12.7 6.4 18.3 12.4 5.3 18.7 8.2 2.0 15.6 9.8 3.2 16.3 6064 5163 5728 11753 3.8 1.3 7.2

other 129 0.65 43.91 12.7 3.2 22.0 12.7 2.5 22.7 4.5 −2.2 16.0 6.1 −0.8 18.0 6411 5432 6006 12313 3.4 −0.2 8.0

first lags 15 0.43 43.80 13.8 8.2 18.3 14.2 10.0 18.9 13.9 9.5 16.7 13.6 10.2 16.7 3374 3067 3570 7402 6.5 3.5 8.9

Mg II all 127 0.69 43.99 38.2 24.6 56.8 39.0 28.3 49.1 45.9 35.4 64.0 38.4 30.4 46.3 3166 2969 3145 5985 35.9 20.9 42.9

other 117 0.71 43.99 34.2 21.8 52.7 36.9 25.4 49.6 30.3 16.5 49.2 30.9 19.8 43.7 3294 3086 3198 6209 28.9 16.3 41.7

first lags 10 0.53 43.93 52.7 40.8 58.8 43.2 30.4 52.8 51.9 44.4 59.4 44.7 39.3 52.1 1695 1621 2544 3421 33.6 23.9 38.0

Note. All lag measurements are in units of days in the observed frame except for the last three columns. We take these results based on the weighted mean and the polynomial fit as our fiducial results. For each line, the

“other” sample excludes the 15 objects reported in Shen et al. (2016), and the “high-L” and “low-L” samples are the full sample divided at the median luminosity (for Hα and Hβ only). The sample-averaged redshift,

(host-corrected) quasar continuum luminosity and line widths (denoted by “<>”) are the weighted means calculated using the same weights as for the weighted mean lags. The measurement uncertainties of the average

line widths are negligible and not reported here (see the text). The last three columns show the results for the stacks performed in the rest frame of individual quasars.
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To visually assess the statistical significance of the coadded
lag detection, we generate mock light-curve pairs by shuffling
the real light-curve epochs for each object and measure the
coadded ZDCF from the individual ZDCFs derived from the
mock data. This Monte Carlo procedure was repeated for 100
realizations, and the median and the 16th and 84th percentiles
of the distribution of the coadded ZDCF are recorded as the
expected 1σ range of coadded signals expected from
uncorrelated light curves. By randomly shuffling the real
light-curve epochs, we destroy any intrinsic correlation.17 For
well-detected composite lags, the coadded ZDCF should lie
above the expected uncertainties from uncorrelated light
curves.

As a consistency check, we coadded the ICCFs of individual
objects and found consistent signals. However, there is often an
extra signal near zero lag due to correlated errors between the
continuum and broad-line light curves (see the discussions in
Shen et al. 2016). The calculation of the ZDCF avoids such
complications and provides a cleaner coadded correlation.

A coadded correlation function is a diluted and broadened
version of the individual correlation functions because different
objects have different intrinsic lags and redshift dilation, and
because low-variability light curves contribute both signal
and noise. If appropriately weighted, this averaging process
should reduce the noise from individual correlation measure-
ments, and boost the S/N of the average lag enough to make a
detection possible. We intentionally use all available objects so
that the average lag represents the entire quasar sample, even
though the inclusion of the low-variability subset of the sample
may lead to noisier measurements.

In addition to coadding all objects, we also coadded the
ZDCF for all sources excluding the 15 first-lag sources reported
in Shen et al. (2016; the “other” sample). For Hα and Hβ, we
are able to further divide the sources into low- and high-
luminosity bins since the coadded ZDCF peaks are more
significant for these two lines. We calculated 16 sets of
coadded ZDCF in total, and the results are presented in Table 1
and discussed in Section 4.

Although our default results are based on the coadded ZDCF
in the observed frame, we also compute average lags from the
coadded ZDCF in the rest-frame of the quasars with rebinning
and interpolation of the light curves. The results based on the
rest-frame coadds are listed in the last two columns of Table 1.

3.2. The Robustness of Composite Lags

Before we present the composite lag results for our SDSS-RM
sample, we perform a series of additional tests to demonstrate the
feasibility and robustness of this coadding technique.

3.2.1. Test on the Local RM Sample

The first test is to perform exactly the same coadding
technique as described in Section 3.1 on the Bentz et al. (2013)
sample, which includes 71 pairs of LCs from 41 local sources.
This is a crucial test to evaluate the reliability of the coadding
technique with a sample of known lags.

To match our sample size and observing period, we first
generate 144 pairs of mock LCs by randomly choosing LC

segments of individual objects from the Bentz et al. (2013)
sample, which are assigned redshifts drawn from the redshift
distribution of SDSS-RM quasars. The LC segments are
required to span 180 days (in the observed-frame with the
assigned redshift) with both continuum and line observations.
We then degrade the mock LCs by increasing the measurement
errors such that the rms variability of the LCs (normalized by
measurement errors) matches that of the SDSS-RM sample on
average. This is because the local RM AGNs typically have
larger variability amplitudes than SDSS-RM quasars at higher
luminosities. Finally, we match the exact cadence of SDSS-RM
on the mock LCs with linear interpolation. See Figure 2 for an
example of the original and degraded LCs.
For sources with short observing durations and high

cadences (i.e., corresponding to short lags), we deliberately
assign high redshifts (z> 1) to ensure that they can be observed
with our observing cadence. We do not include the few sources
with long lags or sparse LCs in our test, as the lags cannot be

Figure 2. Example of a mock LC generated as described in Section 3.2.1. From
the top to bottom panels are the original continuum LC, mock continuum LC,
original line LC, and mock line LC. The red shaded areas show the segments of
the original LCs that are used to generate the mock LCs.

17
This shuffled-epoch test (e.g., Shen et al. 2016) also removes the

characteristic red noise of quasar variability, but such variability will not
introduce correlated continuum and line variability on the timescales of
interest here.

5
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detected within the period of 180 days. Out of the 71 LC pairs,
51 are used for generating the mock LCs and the coadding. The
resulting sample of mock LCs has a similar size, cadence, and
variability/noise ratio to our SDSS-RM sample. The mock LCs
are of too poor quality to formally detect a lag in individual
objects.

We then perform the coadding technique as described previously
in Section 3.1 on all mock LCs and two luminosity-divided
subsets. The results are shown in Figure 3. We show the coadded
results (after de-redshifting to the rest-frame) on the original R−L
plot from Bentz et al. (2013) in Figure 4. The results agree with the
Bentz et al. (2013) R−L relation nicely for the full sample and the
luminosity-divided samples. It is worth noting that the coadded
lags are measured from the coadded correlation function, rather
than from the simple average of individual lags, which are usually
difficult to measure in low-quality LCs.
This test demonstrates that the coadding technique can yield

consistent, sample-averaged lags.

3.2.2. S/N Dependence

We further test the robustness of the coadding technique at
different S/Ns of the light curves. Again, we start from the
mock sample generated from the Bentz et al. (2013) sample as
described in Section 3.2.1. Next, we further degrade the sample
S/N by applying a constant inflating factor to the flux errors of
all the LCs in the sample (but keeping the original LC flux
unchanged). These inflated LC errors are propagated to the
calculation of the individual ZDCF. This way, the individual
ZDCF will have lower significance and larger uncertainties.
Finally, we measure the coadded ZDCF and lags on the
degraded samples following the same methodology as before.
Figure 5 shows the coadded ZDCFs and measured average

lags as a function of S/N (i.e., the error inflating factor). As

Figure 3. Coadded ZDCF using the LCs from the Bentz et al. (2013) sample,
following the methodology detailed in Section 3.1. From top to bottom, the
panels show the full sample, and the low and high-luminosity subsets. In each
panel, the blue line and the shaded band are the expected signal and uncertainty
(16th and 84th percentiles of the distribution) generated from mock light curves
with no intrinsic lags. The black data points show the coadded ZDCF with the
weighted mean. Red curves are the polynomial fits to the coadded ZDCF
within±50 days around the peak. Bootstrap resampling is used to estimate the
uncertainty in the peak measurements. The estimated peak of the correlation
(median of the bootstrap distribution) and its 1σ uncertainties are indicated by
the red (polynomial fit) and cyan (direct centroid) vertical lines. The values
measured from the median of the bootstrap distribution are marked in the
upper-left corner, with the values measured from the original ZDCF indicated
by the parentheses. For comparison, the gray line shows the coadded ZDCF
with the simple-median approach.

Figure 4. Hβ BLR radius and luminosity scatter plot from Bentz et al. (2013).
The gray dots show the data points used for generating mock LCs in our test
and the black dots were excluded due to insufficient coverage or lags exceeding
our baseline. The red dashed line is the R−L relation derived by Bentz et al.
(2013). The red circle and the cyan squares are the average lags of the whole
and luminosity-divided samples calculated by the coadding technique, with
negligible error bars. The average cadence of the SDSS-RM observation and
the median luminosity of the mock sample are indicated by the horizontal and
vertical dotted lines, respectively.
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S/N decreases, the significance of the coadded ZDCF drops
and the uncertainty18 in the measured coadded lag increases, as
expected. However, there is no significant bias in the inferred
average lags when the S/N decreases, indicating that the
coadding technique is stable against S/N. In addition to
lowering the S/N of the LCs, we also tested a case where we
reduce the LC errors by 50% and show the results in Figure 5.
As expected, the resulting coadded ZDCF has a stronger signal
and the composite lag has a smaller uncertainty than before.
This demonstrates the general utility of the coadding technique
to strengthen a detection.

We note that lowering the S/N of the light curves is
equivalent to decreasing the intrinsic variability of the light
curves, while keeping the S/N fixed. Lower-variability light
curves require better S/Ns to be able to detect the correlated
signals. On the other hand, the composite method cannot boost
the signal-to-noise of the coadded lags indefinitely. If the
individual light curves are of too poor quality, then even the
composite method will not be able to measure a meaningful
average lag of the sample.

3.2.3. Composite Lags Based on Alternative Flux Measurements

Measuring fluxes from quasar spectra can be a difficult task,
which is particularly true for weak broad lines (such as He II)
and for cases where the decomposition of the continuum,
broad- and narrow-line emission is ambiguous. As described in
detail in Shen et al. (2016), PrepSpec models each individual
spectrum with multiple components to account for the
continuum, the broad lines and the narrow lines. It is possible
that fluxes measured with alternative approaches differ from the
PrepSpec fluxes in a systematic way. Fortunately, the spirit of
the composite lag technique is to average out these potential
systematic uncertainties in the flux measurements, and provide
unbiased average results. Therefore, we expect that our results
are insensitive to systematic uncertainties in the light-curve flux
measurements in individual objects.
To test the above statement, we use continuum and line light

curves measured with the independent spectral fitting approach
of Shen et al. (2011). A full description of the spectral fits to
SDSS-RM quasars will be presented elsewhere (Y. Shen et al.
2017, in preparation). In short, we fit the continuum and Fe II
emission underneath the broad lines, as well as the adjacent
narrow lines, and extract the broad-line flux from functional
fits. The main difference between the alternative spectral fits
and PrepSpec is the explicit inclusion of the Fe II emission in
the former approach, but these two approaches also differ in
many technical details in how the continuum and lines are
modeled. In general, the alternative spectral fits have larger
measurement uncertainties in the fluxes due to additional model
components (e.g., Fe II emission).
We then apply the same coadding method on the set of light

curves based on the alternative flux measurements and measure
the average lags. The results for the 15 first-lag objects reported
in Shen et al. (2016) are compared with the fiducial results
based on PrepSpec fluxes, as shown in Figure 6. Coadding all

Figure 5. Effects of the S/N on estimates of the composite lag. The top panel
shows the coadded ZDCFs from the mock sample generated from the Bentz
et al. (2013) local RM sample (see Section 3.2.1) as a function of the constant
error inflating factor applied to the sample. The gray shaded band shows the
expected signal from random, uncorrelated light curves for the original S/N.
The bottom panel shows the average lag measured from the coadded ZDCF as
a function of the error inflating factor. As the S/N decreases, the significance of
the coadded ZDCF decreases and the uncertainty in the measured average lag
increases, as expected. Nevertheless, there is no significant bias in the measured
average lag as S/N decreases, suggesting that the coadding technique is robust
even for low S/N data.

Figure 6. Comparison of the observed composite lags based on light-curve
fluxes measured with a different spectral fitting approach with the fiducial
results based on PrepSpec. Due to the more complicated decomposition in the
alternative spectral fits, the flux measurements have larger uncertainties, which
led to the non-detection of the He II lag.

18
The uncertainty in the measured average lag includes both the measurement

uncertainty from the noise in the LCs and the systematic uncertainty from the
sample variance and the coadding technique.
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objects yields similar results. We did not detect the He II lag
with the alternative flux measurements (i.e., the lag is
consistent with zero) due to larger measurement uncertainties
in the light-curve fluxes. Nevertheless, this test demonstrates
that the average lags measured from the coadding technique are
robust against the details of the flux measurements, as expected
from the nature of averaging.

4. Results

With the extensive tests in Section 3.2, we have demon-
strated that the composite lag technique is meaningful and
robust against details in the individual correlation function
measurements. We now present the composite lag measure-
ments for our SDSS-RM sample.

4.1. Coadded Lags and Errors

Figure 7 presents the coadded ZDCFs for the four lines using
all objects with available PrepSpec light curves. In all cases, a
peak with the line lagging the continuum is present in
the ZDCF.

To demonstrate that the coadded ZDCF is not dominated by
a few objects with well-detected individual lags, we remove the
15 objects reported in Shen et al. (2016) and calculate the
coadded ZDCF for the remaining objects. As these 15 objects
were the ones with individual lag detections, they have the
ZDCFs with the highest S/N. The results are listed in Table 1

as the “other” samples.19 We still detect statistically significant

lags that are consistent with the full sample, demonstrating the

effectiveness of the coadding technique.
As a sanity check, coadding the 15 objects reported in Shen

et al. (2016) produces much more significant signals (higher

ZDCF peak amplitudes and narrower peaks) given the better

quality of individual ZDCFs for these objects than for the rest

of our sample (see Figure 8). The composite Hβ and Mg II lags

are also consistent with the median of the individual lags

reported in Shen et al. (2016). The relative durations of the

composite lags for different lines are consistent with results

based on the full sample, as discussed below.
Using the ZDCF and coadding in the observed frame avoids

interpolation and rebinning of the individual correlation

functions, which will lead to correlated errors and complicate

the interpretation. However, a caveat of this approach is that

objects at different redshifts will have different time dilations of

their intrinsic lags. This will result in an additional broadening

of the coadded correlation function compared to stacking in the

rest-frame of these quasars. We have tested coadding the

Figure 7. Coadded ZDCFs (points) for the four broad emission lines considered in this work. In each panel, the blue line and the shaded band are the expected signal
and uncertainty (16th and 84th percentiles of the distribution) generated from mock light curves with no intrinsic lags. The black data points show the coadded ZDCF
with the weighted mean, which we take as the fiducial coadded results. Red curves demonstrate polynomial fits to the coadded ZDCF±50 days around the peak.
Bootstrap resampling is used to estimate the uncertainty in the peak measurements. The estimated peak of the correlation (median of the bootstrap distribution) and its
1σ uncertainties are indicated by the red (polynomial fit) and cyan (direct centroid) vertical lines. The values measured from the median of the bootstrap distribution
are marked in the upper-left corner, with the values measured from the original ZDCF indicated in the parentheses. For comparison, the gray line shows the coadded
ZDCF with the simple-median approach, which has a lower but still statistically significant amplitude for the lag detection.

19
We note that some of the objects in the “other” sample can have

individually detectable lags if the light curves are of better quality. For
example, our recent SDSS-RM work incorporating additional photometric light
curves reported additional Hα and Hβ lags (Grier et al. 2017). However, these
lags are non-detections with the spectroscopic-only light curves used here, and
the composite method is the only way to recover an average lag for these
objects.
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individual ZDCFs in the rest frame of the quasars by shifting
and interpolating the original ZDCFs onto a common rest-
frame time-lag grid. We found consistent results (to within
∼1σ) and uncertainties compared to the stacks performed in the
observed frame after scaling the latter by a factor of + á ñz1 .
The results for the rest-frame stacks are provided in the last
three columns in Table 1 for completeness. Stacking in the rest
frame does not produce significantly smaller error bars for the
average lags, which may be due to the possibility that objects
with different luminosities (which presumably have different
lags) already significantly broaden the stacked ZDCF, and the
additional broadening due to redshfit is sub-dominant. If we
assume the R∝L0.5 relation from Bentz et al. (2013), the
dispersion in the observed-frame lags due to luminosity is a
factor of ∼2–3 larger than that due to the (1+ z) factor in the
four line samples.

4.2. Lags for Different Line Species

Figure 9 shows the average lags as a function of sample-
averaged continuum luminosity for the four lines, where the
lags have been shifted to the rest frame using the sample-
averaged redshift. To remove host-starlight contamination from
the rest-frame 5100Å continuum-luminosity measurements, we
adopted a spectral-decomposition technique detailed in Shen
et al. (2015b) to derive the quasar-only luminosity. We use the
same weights as for the coadded ZDCFs to compute a
weighted-mean luminosity for the sample. The Hα sample
has a relatively lower average redshift than the other three line
samples, and thus has the lowest average luminosity. For the
other three lines, their samples have similar continuum
luminosities and redshifts, allowing a fair comparison of their
average lags. If we extrapolate the average Hα lag to higher

continuum luminosity assuming τ∝L0.5 (i.e., consistent with
the measured R− L relation for Hβ, Bentz et al. 2013), we
derive the open data point in Figure 9 at the sample-averaged
luminosity of the Hβ sample. Although the error bars overlap,
Figure 9 reveals some evidence that He II has, on average,
shorter lags than Hβ, and Hβ has shorter average lags than Hα.
While having large error bars, the composite Mg II lag appears
to be slightly longer than that for Hα. These results are
qualitatively consistent with earlier individual RM measure-
ments of different line species in the same objects (e.g.,
Peterson & Wandel 1999; Peterson et al. 2004; Bentz et al.
2010; Grier et al. 2012b, 2013). In addition, the tentative
evidence that Mg II has, on average, longer lags than Hβ is also
consistent with the finding that Mg II varies less than Hβ on the
same timescales (e.g., Sun et al. 2015), suggesting that the
Mg II gas may be located slightly further out than the Hβ gas.
However, Figure 9 suggests that the average Hβ lag is

significantly shorter than the expected lag from the measured
R−L relation based on individual RM measurements in the
low-z sample (e.g., Bentz et al. 2013). We speculate that the
main reason for this discrepancy is due to imperfectly weighted
mean redshifts and luminosities for the sample. When
averaging the ZDCF for a sample covering a wide redshift
and luminosity range, objects that have more obvious (higher
amplitude) correlations contribute more power to the peak
location in the final coadded ZDCF in a non-trivial way.
Lower-z and lower-luminosity objects are likely to have a
stronger influence on the determination of the composite lag
than higher-z and higher-luminosity objects, given the higher
S/N in the light curves and stronger intrinsic variability. As a
result, the sample-averaged redshift and luminosity using the
weights based on measurement errors in the individual ZDCFs

Figure 8. Same format as Figure 7, but for the 15 first-lag objects reported in Shen et al. (2016).
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(instead of the amplitude of the ZDCFs) may overestimate the
true sample-averaged redshift and luminosity. Unfortunately,
without a robust weighting scheme to account for this
complication, we can only qualitatively explain this discre-
pancy, but cannot correct the bias quantitatively. The solution
would be to coadd objects roughly at the same redshift and
luminosity, which should become possible when we have better

individual ZDCF measurements (see Section 5) or with future,
larger MOS-RM samples. Nevertheless, this caveat should
affect all lines for the same set of objects, and hence the relative
lags of different lines should be robust.
Another possible explanation of the discrepancy is that most

of the objects included in the coadded ZDCF have different
accretion rates and hence different spectral energy distributions
than those for the local sample used to measure the R−L
relation for Hβ. Recently, Du et al. (2015, 2016) suggested that
objects with higher accretion rates have significantly shorter
BLR lags compared to lower accretion-rate objects. Quasars
with higher Eddington ratios also vary less than those with
lower Eddington ratios (e.g., Ai et al. 2013), leading to a
potential selection bias in the sample with robust lag detections
or target samples for RM campaigns. The local sample used to
measure the R−L relation is dominated by relatively low
accretion-rate objects (e.g., Figure1 of Shen et al. 2015a)
compared to the general population of SDSS-RM quasars.
Although it is unlikely that this is the complete explanation, we
will investigate this possibility further in future work to
determine if it can account for at least some of the discrepancy
seen here.
It is worth noting that our recent work on individual lag

measurements based on both spectroscopic and photometric
data (Grier et al. 2017) measured ∼40 Hβ lags and 18 Hα in
the SDSS-RM sample. Complementary to the composite
approach, these individual Hβ lags are also significantly
shorter than the expectation from the local R−L relation on
average. We have tested by coadding the objects with
detections in Grier et al. (2017) using spectro-only LCs. We

got rest-frame composite lags of -
+16 4.6
5.3 days for Hα and -

+14 1.8
1.8

days for Hβ, fully consistent with the average lags from Grier
et al. (2017). This again demonstrates that our composite
approach is robust in recovering a sample-averaged lag.

4.3. Luminosity and Line-width Dependence of Time Lags

We further divide each sample at the median luminosity and
investigate the luminosity dependence of the average lags. For
Hα, a clear luminosity dependence of the average lag is seen
(time lags are shorter for the lower-luminosity subsample) after
the + á ñ( )z1 time dilation is included (see Table 1), and is
roughly consistent with the measured R−L relation for Hβ
(e.g., Bentz et al. 2013). However, the luminosity trend is
poorly constrained for Hβ, He II, and Mg II, both due to the
weak coadded ZDCF signals in the divided samples, and to the
narrow dynamic range in luminosity covered by the full
samples. We further tested dividing the sample according to the
expected lags in the observed frame using the R−L relation
for Hβ in the local sample (Bentz et al. 2013), but the resulting
composite lags are again too noisy to reveal any conclusive
trends for Hβ, He II, and Mg II. We plan to investigate the
luminosity dependence further with the inclusion of photo-
metric data in our analysis in the future.
Figure 10 shows the relationship between the average lag

and the sample-averaged (weighted-mean) line width for the
four lines. We use four definitions of line width: the line
dispersion (square root of the second moment of the line) σline
measured from the mean and rms spectra, and the full-width-at-
half-maximum (FWHM) measured from the mean and rms
spectra. The rms spectra are produced by PrepSpec after
decomposing the line emission and the continuum emission.
All four line-width definitions are consistent with the virial

Figure 9. Measured average lags of the four broad emission lines from the
polynomial fit to the coadded ZDCF calculated using the weighted mean
method, as a function of the weighted mean luminosity of the objects in the
coadd (top panel: 15 first-lag objects reported in Shen et al. (2016); bottom
panel: all sources in the sample). For Hα, we also show the expected lag at the
same average redshift and luminosity of the Hβ sample as the open symbol
(without error bars). The solid line is the measured R−L relation for Hβ in the
local RM sample (Bentz et al. 2013).
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prediction, and the luminosity-extrapolated Hα point matches
as well. Lines with shorter lags, in general, have larger velocity
widths (e.g., Peterson & Wandel 1999; Grier et al. 2013),
consistent with the scenario that there is a stratification of the
BLR for different lines with different ionization potentials such
that high-ionization lines (e.g., He II) are, on average, closer to
the BH and hence have larger line widths.

5. Conclusions

Using the large sample of quasars with RM data from the
SDSS-RM project, we have tested the feasibility of measuring
composite lags for statistical samples. We applied the ZDCF
method on the z1 subset of the SDSS-RM quasar sample,
and measured composite lags for Hα, Hβ, He II, and Mg II at
average redshifts >0.3. Compared to the earlier work on
composite RM (Fine et al. 2013), our work focused on a
different regime of redshift and luminosity with the unique
SDSS-RM sample, and provided composite lag measurements

for broad lines other than Mg II and C IV. The findings from
this work are as follows.

1. When luminosity and redshift are matched, the sample-

averaged lag decreases in the order of Mg II, Hα, Hβ, and

He II, suggesting that there is a stratification of the BLR,
with high-ionization lines closer to the ionizing con-

tinuum than low-ionization lines. In particular, Mg II may

have slightly longer lags, on average, than Hβ, suggesting
that the Mg II gas may be located at a larger distance from

the black hole than the Hβ gas.
2. Lines with shorter average lags have larger average line

widths. The relation between average line width and lag

is roughly consistent with the virial relation.

These results are in qualitative agreement with earlier RM

studies based on individual objects and at lower redshifts (e.g.,

Peterson & Wandel 1999; Peterson et al. 2004; Bentz et al.
2010; Grier et al. 2012b, 2013) and are among the first results

Figure 10. Relations between the average lag (from the polynomial fit) and line width for the four lines. The average lags have been shifted to rest frame using the
sample-averaged redshifts in Table 1. The adopted line widths are placed at the weighted mean line width for each sample, the uncertainty of which is estimated using
propagated individual measurement uncertainties, and is almost negligible. We use four definitions of the line width. In each panel, the dotted line indicates the virial
relation V∝τ−0.5, fit to all data points except for that of Hα, for which the sample average luminosity is quite different from those of the other three lines. The open
symbol in each panel is the expected lag (without error bars) for Hα at the same average redshift and luminosity of the Hβ sample.
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on stratified BLR structure at z>0.3 (e.g., Fine et al. 2013),
particularly for He II lags.

However, as discussed in Section 4, it is challenging to
assign an average redshift and luminosity to the sample, due to
the non-trivial contributions from individual objects to the
coadded ZDCF. For flux-limited samples that cover broad
ranges of redshift and luminosity, the simple-median or
weighted mean redshift and luminosity may be overestimated.
This caveat can be avoided by focusing on samples within a
narrow redshift-luminosity range, at the cost of significantly
degrading the sample statistics. Finally, as pointed out in earlier
work (Fine et al. 2013; Brewer & Elliott 2014), it is somewhat
ambiguous to interpret the stacked correlation function for the
underlying sample other than the indication of a typical
“average” lag from the peak of the stacked correlation. It is
possible to deploy more sophisticated statistical inferences to
extract information about the intrinsic-lag distribution of the
underlying sample from the stacked analysis (e.g., Brewer &
Elliott 2014).

SDSS-RM continues to monitor the same quasar sample to
extend the time baseline for the detection of long lags at higher
redshifts. In addition, we are incorporating the more densely
sampled photometric light curves into our time-series analyses.
These photometric light curves will improve the spectro-
photometry of our spectroscopic epochs with overlapping
photometric epochs. With the addition of photometric light
curves to enhance the correlation signals in individual objects
and the extended time baseline, we plan to expand the redshift
coverage to z>1, to include additional broad lines (such as
C III] and C IV), as well as to greatly improve the quality of
composite lag measurements in subsamples divided by
luminosity and other quasar parameters.
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