CYCLOTOMIC DISCRIMINANTAL ARRANGEMENTS
AND DIAGRAM AUTOMORPHISMS OF LIE ALGEBRAS

ALEXANDER VARCHENKO AND CHARLES YOUNG

ABSTRACT. We identify a class of affine hyperplane arrangements that we call cyclotomic discrim-
inantal arrangements. We establish correspondences between the flag and Aomoto complexes of
such arrangements and chain complexes for nilpotent subalgebras of Kac-Moody type Lie algebras
with diagram automorphisms. As part of this construction, we find that flag complexes naturally
give rise to a certain cocycle on the fixed-point subalgebras of such diagram automorphisms.

As a byproduct, we show that the Bethe vectors of cyclotomic Gaudin models associated to
diagram automorphisms are nonzero. We also obtain the Poincare polynomial for the cyclotomic
discriminantal arrangements.
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1. INTRODUCTION AND OVERVIEW

It is known that the theory of Knizhnik-Zamolodchikov (KZ) equations and Gaudin models is
closely related with the theory of arrangements of hyperplanes. For example, KZ equations were
solved in multidimensional hypergeometric integrals associated with a family of discriminantal ar-
rangements [SV91]; the Kohno-Drinfeld theorem [Ko87, Dr90a, Dr90b], describing the monodromy
of KZ equations in terms of quantum groups, was given a geometric proof in [Var95], where the
homology groups of the complements to the discriminantal arrangements were described in terms
of quantum groups; the Bethe vectors in the Gaudin models were constructed in terms of the com-
binatorics of discriminantal arrangements and were labeled by critical points of master functions
associated with these arrangements [BF94, RV95, SV91].

The foundations for these relations were laid in [SV91]. In that paper, discriminantal arrange-
ments of hyperplanes were defined, and the geometric objects of those arrangements were related
to homology of nilpotent subalgebras of Kac-Moody type Lie bialgebras.

Recently, hierarchies of cyclotomic Gaudin Hamiltonians were introduced in [VY14al; see also
[Skr06, CY07, Skr13, VY14b]. We expect that the cyclotomic Gaudin models will also have close
relations with the theory of arrangements of hyperplanes. In this paper we take the first step in this
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direction. We identify a new class of arrangements of hyperplanes that we call cyclotomic discrim-
inantal arrangements, and establish correspondences between the flag and Aomoto complexes of
such arrangements and chain complexes for nilpotent subalgebras of Kac-Moody type Lie algebras
with diagram automorphisms. Let us describe our results in detail.

1.1. Cyclotomic discriminantal arrangements. Let w € C* be a primitive root of unity of
order T' € Z>;. Fix coordinates t1,...,t, on C™ and let Cy y., denote the arrangement (i.e.
collection of affine hyperplanes) in C™ consisting of:

kHi,thi—wkt]’:O, 1<i<j<m, ke€Zr,
ng:ti—wkz]-ZO, 1<i<m, 1<j<N, ké¢&lZr,
HY:t; =0, 1<i<m,

where z1,...,2y € C* are N € Z> nonzero points whose orbits under the action of the cyclic group
w” = Zp := 7./T7Z are pairwise disjoint. In the special case T' = 1 such hyperplane arrangements are
called discriminantal arrangements. We shall call Co ., a cyclotomic discriminantal arrangement.

Given any hyperplane arrangement C in C™, one has the Orlik-Solomon algebra </*(C) =
@Z”:O /P(C): it can be defined as the C-algebra of differential forms generated by 1 and the
one-forms dlogly = dly/ly, where, for each hyperplane H € C, [y = 0 is an affine equation for H.
One has also the flag space FP(C), for p=0,1,...,m. It is a certain quotient of the C-span of all
those flags L® O --- D LP in which each L’ is an edge (i.e. non-empty intersection of hyperplanes)
of C of codimension i. There are canonical isomorphisms .Z?(C)* = &/P(C) for each p. (See §2.)

The Poincare polynomial which encodes the dimensions of the flag spaces/Orlik-Solomon spaces
for the cyclotomic discriminantal arrangement Cy n.y, is given by

m m—1
P(z) := Za:p dim(2?(Co,nim)) = H (1 + (14 (p+ N)T):c).
p=0 p=0

See Theorem 9.5. When N = 0 one recovers the arrangement of a complex reflection group, whose
Poincare polynomial is known from [OS80, §4].

There is a canonical differential d : #?(C) — ZPT1(C), given by extending flags in all possible
ways. This gives the flag complex, (#°(C),d). Our first result gives an algebraic description of the
flag complex (#°*(Co,n;m),d) of the cyclotomic discriminantal arrangement. Let a denote the free
Lie algebra in generators *f;, i = 1,...,m, k € Zr, and let a denote the fixed-point subalgebra
under the automorphism a — a defined by kf; s (kHlmod D) e Eor any a-module M we have the
standard chain complex (Ce(a, M), d) whose spaces are Cp(a, M) := N\’ a® M. Consider taking M
to be the module

Moy =U(@) @ U(a)®",

where the universal envelopes U(a) and U(a) are regarded as left modules over a. Let (AVa®
Mo n)jm) denote the subspace spanned by terms in which each *f; appears exactly once, for
i=1,...,m. We show the following; see Theorem 4.2.

Theorem 1.1. There are linear isomorphisms
wp : (/\p ae MOJV) [17] - ym_p(CO:NVm)? 0 S p S m,

and they define an isomorphism of complexes
Ve 1 (Co(a, Mo n)im), d) = (F™*(Co,Nm), d).

The way these isomorphisms work is best understood by inspecting Example 4.3.
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(To prove the dimension formulas above, we construct dual bases of #?(Co n.n,) and @P(Co Num)-
Pulling back, we get bases of (AN’ a® MO,N)[IW}, and in particular of U(a)m). These bases are

labelled by “decorated” Lyndon words. See §9.2.)

1.2. Symmetrization of flags. Now let n be the free Lie algebra over C in generators F;, ¢ =
1,..., R for some R € Z>;. For any permutation o € ¥p there is an automorphism o : n — n
defined by o(F;) = F(;). Let n° C n denote the fixed-point subalgebra. We have the n”-module

Moy = U(n%) @ U(n)*V.

There is a “weight” gradation of the spaces N\’ n? @ Mg x of the chain complex (Co(n?, Mo n),d),
given by counting the number of F; from each o-orbit. Fix any weight A = (A1,...,\;) € ZZ,
where r is the number of orbits. Let m = A\ + --- + A, and let T be the order of 0. We
construct a linear “cyclotomic symmetrization” map, s : (N’n” ® Mg n), — (/N 6®M0,N)[1m}.
(Example 6.3 illustrates how this map works.) Combining this with the theorem above we get an
identification between vectors in (A’ n” ® Mg x), and certain “cyclotomically symmetrized” linear
combinations of flags in the flag space #™P(Cy n.m) of the cyclotomic discriminantal arrangement.
More precisely, there is a finite group 3Z) — a certain semi-direct product of symmetric and cyclic
groups — depending on the weight A\ and also the automorphism o. It acts naturally on the flag
spaces, and among the isotypical components for its action is one we label .#™P(Cy N;m)mk. We
establish the following in Theorem 6.7.

Theorem 1.2. There are linear isomorphisms
(pos): (/\pn” ® MQN)/\ — F"P(Conm) P, p=0,1,...,m.
They define an isomorphism of complexes
(e 05) : Co(n7, Mo.n)x = F™*(Co,nm) ™.

1.3. Main result: Shapovalov and geometric forms. Let R € Z>o. Suppose we fix the
following data:

(1) A finite-dimensional complex vector space b;

(2) A non-degenerate symmetric bilinear form (-,-) : h x h — C;

(3) A collection ay,...,ar € h* of linearly independent elements, called the simple roots.

This defines a symmetric R x R matrix B = ((O‘i70‘j))i,je{1,...,R}'

To the data (1-3) is associated a Lie algebra g = g(B), which is roughly-speaking a “Kac-Moody
algebra without Serre relations”. See §7. One has g =n® h D n,, and g is generated by h together
with generators F; € ny and F; € n, ¢ =1,..., R. Now we suppose we have, in addition to (1-3),
we have an automorphism
(4) a diagram automorphism of g;
namely, an automorphism o : g — g such that o(E;) = Ey(;) and o(F;) = F,(;), where 0 € ¥p is a
permutation such that (i, ;) = (i), @(j)) for each i, j .1 Specifying such an automorphism is

eq
Let us also fix weights Ag € (h?)* and Ay,..., Ay € h* and let M (A) denote the tensor product
of Verma modules with these highest weights:

N
M(A) = M7 (Ao) @ (R) M(A,),
i=1
the first factor over g7, the rest over g. As n’-modules, M (A) = My n. So we are in the setting of
Theorem 1.2.

Lo, [Enr08, Brol12] where the automorphism is inner, i.e. fixes h pointwise.
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Now, the Cartan and weight data, i.e. the numbers

((O‘iaaj))i,je{l,...,R} and ((O‘ivAJ‘))ie{l,...,R},je{0,1,...,N} (1.1)

define a bilinear form, the Shapovalov form S, on the spaces N’n° @ M(A); see §7. This form
respects the weight decomposition, so it can be regarded as a linear map

D . P & P & *
S (/\ n ®M(A)))\—> (/\ n @M(A))A
sending each weight subspace to its dual.

On the other hand, the numbers (1.1) also naturally define a weighting of the cyclotomic discrim-
inantal arrangement Co n.n,; that is, an assignment to every hyperplane of a number, its weight.
For example the weights of the hyperplanes with equations ¢; — wktj = 0 are given by the numbers
(i, a%aj); see (7.7) and (7.20) for precise details. The weighting of the arrangement defines a bi-
linear form on the flag spaces, which we will call the geometric form, G; see §2. It can be regarded
as a linear map

gmr. <g.m_p(CO,N;m) — Jym_p(CO,N;m)
from each flag space to its dual.

One of the main results of [SV91] was that, in the non-cyclotomic case (¢ =id, w =1, T = 1)
the Shapovalov form S essentially coincides with the pull-back (1 o s)*(G) of the geometric form
by the isomorphisms of Theorem 1.2. This statement does not hold in the cyclotomic setting
in general (though it does turn out to hold in some important special cases related to finite-

dimensional semisimple Lie algebras, as we discuss in §1.5). However, we do have the following
natural generalization, which is the main result of the present paper.

Theorem 1.3. There exists a central extension g° of the fized-point subalgebra g, by a one-
dimensional centre Ck, such that if we let

M?(Ao) :=U(§”) @u(hrans yock Cro

be the Verma module over this central extension §° (with kvg := vg) then the Shapovalov form agrees
with the pull-pack of the geometric form. More precisely, then the following diagram commutes for
each p:

Cp(n?, M(A))y P Cp(n?, M(A));

Ypos|~ (m oY) | ~

(—1)m—PTPGM—P

<g.m_p(CO,N;m)XZ)‘ Jym_p(CO,N;m)ZZAa

where SP is defined with respect to g°.

(See Theorem 7.13, and §7.8-7.9 for the definition of SP. The map = is the inverse of the
symmetrization-of-flags map s, up to a nonzero constant of proportionality; see Lemma 6.4.)

1.4. The definition of the extension g° and the cocycle ). Let us explain the key difference
between the usual and cyclotomic discriminantal arrangements which gives rise to this central
extension of the fixed-point subalgebra g. It is enough to consider the case p = 0 and N = 0, in
which case the isomorphism of Theorem 1.2 is a map

M (Ao)x = F™(Coum )™

from a weight subspace of the Verma module M?(Ag) =no U(n?) to the space of (suitably sym-
metrized) full flags in the arrangement Cp,, in C™ consisting of only the hyperplanes ka- :
ti—wktj =0 and H?:tl:o.
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Suppose we set Ag = 0. Then (it is easy to show that) the Shapovalov form vanishes on every
weight subspace except the highest weight space M?(Ag)o = Cvp. So it is zero whenever m > 0.
(Recal m = Ay + -+ A)

On the geometric side, setting Ag = 0 means assigning weight zero to the hyperplanes HY.
Nonetheless, the geometric form G is not always identically zero. Consider for example m = 2 and
the full flag

F = ((CQD (tlztg) 3(t1=t2=0)).

By definition, §2.6, we have G(F, F) = }_ , p,) a(H1)a(Hz) where the sum is over all unordered

pairs of hyperplanes of the arrangement such that F = (C? D H; D Hy N Hs) in F%(Co.2), and
where a(H1), a(Hz) are the weights of these hyperplanes. Clearly we must set H; = "H; 2. But
then Hy can be any of HY, HY, or *H, 5 for any k € Zr \ {0}. Thus, when a(HY) = a(HY) = 0 we
still have

G(F,F)=a("Hi2) Y a(*Hyy)
keZ7r\{0}

which is trivially zero if T'=1 (the non-cyclotomic situation) but not zero in general.

This observation suggests (what turns out to be) the correct definition of the central extension
g?. Namely, we define a certain skew-symmetric bilinear map €2 : g° x g — C on the Lie algebra g°
in terms of the geometric bilinear form for the flag space #™(C,,) of full flags for the arrangement
consisting of only the hyperplanes kHi,j Tt — wktj = 0. See §5.6-5.7 and §7.3. We prove that (Q is
in fact a cocycle. It is this cocycle which defines the extension g° of g?. We go on to show that the
“extra” terms in the geometric form always organize themselves in such a way that Theorem 1.3

holds.

1.5. Special cases: finite-type, Kac-Moody, and Borcherds Lie algebras. Let g := g/ ker S
denote the quotient of g by the kernel of the (usual) Shapovalov form. When the matrix B is the
symmetrization of a symmetrizable generalized Cartan matrix then the quotient g is the Kac-Moody
Lie algebra associated to B [Kac90].

With Theorem 1.3 in hand, we get a number of corollaries.

First, whenever the fixed-point subalgebra g7 of g is finite-dimensional and semisimple then the
usual Shapovalov and geometric forms do coincide just as in the non-cyclotomic situation. (See
Corollary 8.2.) Indeed, our cocycle € defining the central extension g” vanishes on ker SgNg? C g°
(Proposition 7.5). Therefore it defines a central extension of the quotient g7 too. But recall that
finite-dimensional semisimple Lie algebras do not admit non-trivial central extensions, because
Whitehead’s lemma states that every cocycle is coboundary. In fact (Proposition 8.1) whenever
our cocycle €2 is coboundary it is actually zero.

Thus, for example, our cocycle  vanishes for all foldings of simply-laced finite-type Dynkin
diagrams by diagram automorphisms.

Actually we prove a statement which shows that 2 = 0 whenever g7 “is a folding” in a looser
sense. Namely, there is always a subalgebra g(B?) C g° generated by the projections of the
generators F;, F;, b of g. We show (Corollary 8.5) that whenever g(B?) = g7 then Q@ = 0. (One can
ask how, in practice, the “extra” terms in the geometric form, as in §1.4, can fail to contribute in such
cases. In examples, one finds seemingly rather subtle cancellations coming from the symmetrization
of flags.)

The “typical” situation, though, is that the fixed-point subalgebra g7 is not even finitely gener-
ated, and (therefore) is not a Kac-Moody algebra. However it is always a generalized Kac-Moody
or Borcherds algebra [Bor88]: see Remark 8.7. So one can think of our construction as singling out
a certain preferred one-dimensional central extension of any Borcherds Lie algebra obtained as a
fixed-point subalgebra under a diagram automorphism.
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1.6. Canonical element and weight function. In §9 we apply Theorem 1.3 to prove results
about the weight function and Bethe vectors for weighted cyclotomic discriminantal arrangements.
Let us describe these objects briefly.

We construct, as mentioned above, a dual pair of bases for the flag spaces .#?(Cy n.m) and Orlik-
Solomon spaces &P (Co n.m), p = 0, 1,...,m. In particular we get a dual pair of bases of #"(Co n.m)
and @™ (Co,N.m), and hence an expression for the canonical element © € .Z™(Co n.m )R ™ (Co,Nm)-
By the isomorphisms of Theorem 1.3 that gives an element of M(A)y ® &/™(Co n.m)™ . From it,
one constructs a rational map ¥ : C™ — M(A)x — L(A)y, where L(A)y := M(A)y/ker SP =
G(F™(Co.N.m)™), again by Theorem 1.3. This map ¥ : C™ — L(A), is the (cyclotomic) weight
function.

The weighting of the hyperplane arrangement Cy n.»,, defines the master function ®, (9.8). The
evaluation of the map W at any critical point p of ® is called the Bethe vector associated to that
critical point. Making use of results from [Varll] we show that the Bethe vectors corresponding to
isolated critical points are nonzero, under certain conditions. See Theorem 9.17.

In [VY14a, VY14b] a cyclotomic Gaudin model was constructed and solved by Bethe ansatz.
Our construction of the canonical element © here is chosen in such a way that the weight function
U coincides with the weight function ¢r of [VY14a]. So Theorem 9.17 establishes that the Bethe
vectors of [VY14a] corresponding to isolated solutions of the cyclotomic Bethe equations are nonzero
(in the case of diagram automorphisms, and if the conditions of Theorem 9.17 hold).

1.7. Structure of the paper. After recalling in §2 some facts from [SV91] about general hyper-
plane arrangements, in §3 we define the cyclotomic discriminantal arrangements and give their flag
relations explicitly. Then §4 and §5 are devoted to the situation “before symmetrization”: that
means working with a free Lie algebra in which each orbit, of the automorphism acting on the
generators, has the same length, 7', and working only in the subspace of weight (1,...,1). Finally
in §6 and §7 we can consider the general situation: in §6 we prove Theorem 1.2 and then in §7 we
prove Theorem 1.3. In §8 we prove properties (in particular vanishing properties) of the cocycle
Q). Finally in §9 we apply the results of the paper to prove results about the weight function of
cyclotomic Gaudin models.

Acknowledgements. The research of AV is supported in part by NSF grant DMS-1362924 and
the Simons Foundation Grant #336826. AV thanks the Max Planck Institute, Bonn for hospitality
during the preparation of this paper, and the School of Physics, Astronomy and Mathematics at the
University of Hertfordshire for hospitality during a visit in June 2015. CY thanks the Department
of Mathematics at UNC Chapel Hill for hospitality during his visit in August 2015.

2. HYPERPLANE ARRANGEMENTS

We recall some facts about hyperplane arrangements, Orlik-Solomon algebras and flag complexes
from [SV91]. Let m be a positive integer and let C be a finite collection of affine hyperplanes in
C™. We call C an arrangement in C™.

2.1. Edges, flags, and the flag complex. An edge of the arrangement C is a non-empty inter-
section of its hyperplanes. For k =0, ..., m, let FlagF (C) denote the set of all flags

cCr=1">L'>...oLF

with each L7 an edge of C of codimension j. Let .#*(C,Z) denote the quotient of the free abelian
group on Flagh(C) by the following relations. For every flag with a gap

F=(L>L'>L'>L* 5...oLF), i<k,
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we impose

Y F=0 (2.1)
FOF
in #*(C,7Z), where the sum is over all flags F = (L° > L' O ... SL*) € Flag*(C) such that LY = LJ
for all j # 1.
There is an “extension of flags” differential d : .Z#*(C,Z) — F*+1(C,Z) defined by

dL°>L'D>--D>L)=> (L°>L'>.-->LF o> LM,
Lk+1

where the sum is over all edges LF™! of C of codimension k + 1 contained in L*. Tt follows from
(2.1) that d?> = 0. Thus we have a complex, the flag complex, (F*(C,Z),d).

2.2. Orlik-Solomon algebras. Define Abelian groups «/*(C,Z), k = 0,1,...,m as follows. For

k=0,set &°(C,Z) = 7. For k > 1, &/*(C,7Z) is generated by k-tuples (H, ..., H},) of hyperplanes

H; € C, subject to the relations:

- (Hy,...,Hy)=0if Hy,..., H are not in general position (i.e. if codim Hy N--- N Hy, # k);

- (Hoqys -5 Hory) = (=1)lel(Hy,. .., Hy) for every permutation o € j;

- for any k + 1 hyperplanes Hy, ..., H 1 that have non-empty intersection, Hy N --- N Hyyq # 0,
and that are not in general position,

k+1 R
S(-1y(Hy,. . Hy, - Hyg) =0,
p=1

where H), denotes omission.

The Orlik-Solomon algebra of the arrangement C is the direct sum «/*(C,Z) = @), «*(C,Z)
endowed with the product given by (Hi, ..., Hy) A (Hy,...,H)) = (Hy,..., Hy, Hy, ..., Hy). Tt is
a graded skew-commutative algebra over Z.

2.3. Orlik-Solomon algebra as an algebra of differential forms. For each hyperplane H € C,
pick a polynomial [g of degree one on C™ whose zero set is H, i.e. let [ = 0 be an affine equation
for H. Consider the logarithmic differential form

(H):=dlogly = dn
lg
on C™. Note that «(H) does not depend on the choice of I but only on H. Let <" (C,Z) be
the Z-algebra of differential forms generated by 1 and «(H), H € C. The assignment H — «(H)
defines an isomorphism .27 (C,Z) = </ (C,7Z) of graded algebras. Henceforth we shall not distinguish
between o/ and < .

2.4. The pairing of flags with forms. We say a k-tuple H = (Hy, ..., Hy), H; € C, of hyper-
planes is adjacent (with sign (—1)1¥) to a flag F = (L° > L' O ... L¥) € Flag®(C, Z) if there exists
a permutation s € ¥ such that L = Hyqy N Hyy N --- N Hypy for each @ = 1,...,k. Such a
permutation is unique if it exists.

For each k = 1,...,m, there is an isomorphism ¥ : &*(C,Z) = F*(C,Z)* defined as follows.
If H = (Hy,...,Hy)is adjacent with sign (—1)I*! to a flag F' then the pairing ©*(Hy, ..., Hy)(F) is
defined to be (—1)Isl. Otherwise @*(Hj, ..., Hy)(F) is defined to be zero. We shall use the notation

(F,HiA--- A Hy) = @"(H,..., Hy)(F)
for this pairing.
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2.5. Framings and bases. A framing O of an arrangement C is a choice, for every edge L of C,
of a hyperplane H(L) containing L. Given a framing O, define FlagP(C, Q) to be the set of those
flags (L° D L' > --- D LP) € FlagP(C), such that LF = H(LY)N--- N H(L*) for k = 1,...,p.
Equivalently it is the set of flags such that LF ¢ H(LFY), k=1,...,p— 1.

Lemma 2.1. Given a flag (L° D L' D --- D LP) € Flag?(C, O) and a permutation s € ¥, consider
the flag F = (f/O S LY DD LP) defined by LF := H(L*W) N---NHL®), k=1,....p. Ifs is
not the identity then F ¢ FlagP(C, O).

Proof. If s # id then we can let k € {1,...,p} be the largest such that s(k) # k. Then k = s(I)
for some [ € {1,...,k—1}, so L*¥"' ¢ H(L*). And s({1,...,k}) = {1,...,k}, so L¥ = L*. Thus
LF=1 ¢ H(L*) and hence F ¢ FlagP(C, ) as required. O

The next proposition is proved in [SV91], Theorems 1.6.5 and 2.9.2. 2

Proposition 2.2. Forp=1,...,m:
(i) The group FP(C,Z) is free over Z, and admits FlagP(C, O) as a base.
(ii) The group </P(C,Z) is free over Z, and admits as a base the set

{(H(Ll)a H(L2>> R 7H(Lp)) }(LO3L13~--DLT’)6FlagT’(C,O) .

We have #P(C,Z)* = /P(C,Z) as in §2.4.
Proposition 2.3. The bases of (i) and (ii) are dual.
Proof. Let F = (L° D> L' D ... D LP) € FlagP(C,0). By definition, the pairing this flag F* with
(H(LY),H(L?),...,H(LP)) is 1. It remains to show that if ' = (L > L' > --- > LP) € Flag?(C)
is any other flag with which (H(L'), H(L?),..., H(L?)) has non-zero pairing, then F does not
belong to the set FlagP(C, Q) of basis flags. This is the content of Lemma 2.1. O
Corollary 2.4. Forp =1,...,m, the canonical element of FP(C,7Z) Ry FP(C,7Z)* can be expressed
as
> (L°>L' > > L)@ (H(LY),H(L?),...,H(LP)).
(LODL1D---DLP)€eFlagh (C,0)
]

2.6. Weighted arrangements, the geometric form, and the master function. Let .«7*(C) :=
d*(C,7) ®z C and .F*(C) := F*(C,Z) ®z C for each k.

A weighted arrangement of hyperplanes is an arrangement C together with an assignment, to
each hyperplane H € C, of a number a(H) € C, its weight. The weighting defines a symmetric
bilinear form G* on .Z*(C), [SV91], given by

GHF,F'):=> (F,Hy A+ NHg) (F',Hy A+ A Hy)a(Hy) ... a(Hy),

where the sum is over the set of unordered k-tuples (Hq, ..., Hy) of hyperplanes. The form G* is
sometimes called the quasi-classical contravariant form of the arrangement C. We shall refer to it
simply as the geometric form. It defines a homomorphism,

Gk . FkC) = FF ) ~ 7*(0)
by GF(F) := G*(F,-). Explicitly,
GH(L° >+ LM) = a(Hy)...a(Hy)Hi A--- A Hy, (2.2)
2Let us remark that the definitions of @; and hence Fl;(0) in [SV91, §1.6] have misprints. Nevertheless the proofs

there go through for FlagP(C,O) as defined above. Namely, part (i) of the Proposition (2.2) follows from [SV91,
Corollary 2.9.1] and part (ii) is a corollary of [SV91, Lemma 1.5.2].
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where the sum is over all k-tuples (Hq, ..., Hy) such that H; D L' for all i.
The master function corresponding to this weighted arrangement is

O =, = Z a(H)logly
HeC

where each [y is an affine equation for the hyperplane H, as in §2.3. It is defined up to an additive
constant. Define a differential d = d(a) : &*(C) — «7*+1(C) by the rule

da;zx/\d@za;/\(Za(H)H).

HeC

It is clear that d? = 0, so this makes (</®,d) into a complex, called the Aomoto complex.
Theorem 2.5. G°® is a map of complexes

G*: (#°(C),d) — (#°(C),d).
Proof. See [FMTV00, Lemma 5.1] and [SV91, Lemma 3.2.5]. O

2.7. Functoriality of the geometric form on subarrangements. Suppose B C C is a subar-
rangement in C™. There are obvious inclusions «/*(B) < &/*(C) and hence .#*(C) ~ /*(C)* —
¥ (B)* ~ F*(B), for each k.

Lemma 2.6. Given a weighting a : B — C, suppose we extend it to a weighting of the arrangement
C by setting a(H) = 0 for every remaining hyperplane H € C \ B. Then the following diagram
commautes:

FH(B) g o/*(B),

FF(C) g A5(C).

3. CYCLOTOMIC DISCRIMINANTAL ARRANGEMENTS

Let w be a primitive root of unity of order 7' € Z>;. We let the cyclic group Zr := Z/T7Z act on
C by multiplication by powers of w, i.e. k.z := w2, k € Zp, z € C. Fix a tuple z = (z1,...,2n),
N € Z>q, of non-zero complex numbers whose Zp-orbits are pairwise disjoint.

Fix coordinates t1,...,t, on C™. We define the following hyperplanes in C™:

Mt —wft; =0, 1<i<j<m, keZr,
ng:ti—wijZO, 1<i<m, 1<j<N, ké¢&lZr,
H?:t; =0, I1<i<m.

Note that kHivj = _kHj,i, and ka N le = HZQ N H}J whenever k # [.

Let C,, denote the arrangement in C™ consisting of all the hyperplanes ka.

Let Com denote the arrangement in C™ consisting of all the hyperplanes HY and ka.

Let Cy n:m denote the arrangement in C™ consisting of all the Hio, ng, and kHM.

We have C,,, C Co.m C Co,Nim-

In the special case T' = 1 we recover the discriminantal arrangements, [SV91]. More generally
we call such hyperplane arrangements cyclotomic discriminantal arrangements.

Remark 3.1. The arrangements Cp, and Co.y, are those of the complex reflection groups G(T',T, m)
and G(T,1,m) respectively. See e.g. [LT09].
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3.1. Edges and flags of Cy n.,. Given a a p-element subset I = {iy,...,i,} C {1,...,m} with
1 <p<m,andamapk:{l,...,m} = Zg, let ¥L; denote the edge given by

e wk(il)til - wk(h)tiz S wk(ip)tip. (3.1)

Note in particular the degenerate case kL{i} = C™. For each i € {1,...,N}, let kL"I denote the
edge given by

kL% . wk(il)til — wk(iz)tiz S wk(ip)tip = 2.
Let kL? = L(I] denote the edge given by
0
Lf:til = 14y :---:tip:().

We have codim*L; = p — 1, codim kL§ = p, and codim kL(I) = p.
Following [SV91, §5.6.4], let us think of edges of the form ¥L; as swimming islands, and edges of
the form kLiI, i€40,1,..., N}, as fized islands. Every edge of Cy n.pm, is of the form

kri krir k k

LA n-nky nkL, nenkr, (3.2)
for some function k : {1,...,m} — Zp, some collection of r € Z>( distinct numbers i1,...,i, €
{0,1,..., N} and some pairwise disjoint subsets I1,..., 1., Ji,...,Jp (p € Z>g) of {1,...,m}. We
shall refer to the edge (3.2) as the archipelago consisting of the swimming islands *L,,...,*L I

and fixed islands KL}, ... kLY .

We will use kL; to denote any edge which is either the swimming island ¥L; or any one of the
fixed islands kLé.

We say KL% involves j € {1,...,m} if j € I. Note that, in particular, the hyperplanes *H, ,, kH]Z:,
HJQ are islands which involve j.

Given any flag F = (L° > L' 5 --- D LP) € Flag?(Co n.m), each edge L' is some archipelago.
Fort =0,1,...,p — 1, each successive archipelago L!*! is obtained from its predecessor L! in one
of the following ways:

(1) A swimming island becomes fixed: that is, *L; is replaced by kLJ} for some j =0,1,..., N.
(2) Two swimming islands become joined: that is, *L; N ¥L; is replaced by *L ju;.

3.2. The flag relations of F7(Cy n.m). The defining relations, (2.1), in the flag space FP(Co n:m)

are
w

0= Z(LO... SLIo L S L2 5. o IP)
w=1
for t € {0,...,p—2} and for archipelagos L!, LI}t w =1,..., W, and L**? of the following forms,
where in each case L denotes the remaining islands, if any:

(i) W =2 and

L =%, 5 N* L 0 Ly, N L
L' =*L; Nk Ly, n*L,, Nk, NI, L' =*L 00, 0 L0, N L,

LS =%, n*L, 0 *L 05, N L.

(i) W =2 and
L =%, 0, Nk N L

L'=*L, n*L, n*L;NL, L2 =R nkine,
LYY =kLy kL, Nk N L,
for some j € {0,1,..., N}.
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(iii) W =2 and
L =k nkr, L
L'=*;,n*;NL, L2 =k nkp2 0L,
t+1 _ k krJj
L2 = LJl N L?]Z NnL,
for some 71,72 € {0,1,..., N} with j; # ja.
(iv) W =3 and
LwiJrl _ kLJ1UJ2 n kLJ3 nL,
L'=FL, n*L,n*L,nL, LY =* g0k, nL, L' = L0505 NL,
L =KLy o5 N*Ly, N L.
(v) W =3 and
Lt1+1 = kLJlUJQ N L7
Lt - kLJ1 N kLJz N L, LgH - kLJl N kL‘thQ N L’ Lt+2 kL{hUJQ N L
Lt =k3 nkLy, N L,

for some j € {1,...,N}.
(vi) W =T + 2 and, for some (any) fixed choice of j; € Ji, j2 € Jo and for £ =1,2,...,T,

Lt+1 (kLJ1 kLJ2 N 1Hj17j2> nL,

L5 = (ML, (0 *Ly, 02, 5) N L,

L4 = (M, 0¥y, 0 THG 5 ) O L

Lt = kLJ'l N kLJz N La Lgti-ll - kLJ1 N L ﬂ La Lt+2 LJ1UJ2 N L’
Lt =15, ij2 NL.

Remark 3.2. Note especially the final relation. As a simple example, we have
(C*> H) D> HYNHY)+ (C* > H) D> HY NHY) + > (C* > *H 5 > H) N HY) = 0.
k

The other relations are just as in the non-cyclotomic case of [SV91].
3.3. On flags with no zero ends. Let us say a flag F' = (L° D --- D LP) € Flag”(Co n.m) has no
zero ends if LP ¢ HY for all i € {1,...,m}. Otherwise we say F' has zero ends. Thus, informally,
a flag has zero ends “if some ¢; is set equal to zero”.

Fix a flag F' € Flag?(Co n.m) with no zero ends, for some p € {1,...,m}.

The last edge LP of F' is of the form

P=*n.onkLy nkL, nenkL,,

for some map® k : {1,...,m} — Zp, some collection of r € Z>o distinct non-zero numbers
i1,...,0 € {1,...,N} and some pairwise disjoint subsets Ii,...,I., Ji,...,J, (p € Z>q) of
{1,...,m}. Define new coordinates

tvi = wk(i)ti, i=1,...,m.

3unique if and only if p =m
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Let kCz;m C Co,N;m be the arrangement consisting of the hyperplanes

Hij:ti—1;=0, 1<i<j<m,

H i —2=0, 1<i<m, 1<j<N. (3.3

)

By construction, %C,.,,, is a discriminantal arrangement, in the sense of [SV91], and F' € Flag? (¥C..,,,).
Lemma 3.3. If a hyperplane H € Cy n.;m contains the edge LP, then H belongs to kCz;m. ]

Corollary 3.4. If a tuple (Hy, ..., Hy) of hyperplanes of Co n.m is adjacent to F, in the sense of
§2.4, then this tuple consists of hyperplanes belonging to the discriminantal arrangement kCz;m. U

Note that the condition that F' had no zero ends was necessary, as the following example shows.

Ezample 3.5. Consider the full flag C2 O (t; = t3) D (t; = t2 = 0). This flag does have zero ends.
It is adjacent to the tuples of hyperplanes {(t1 = t2),(t1 = 0)} and {(t1 = t2), (t2 = 0)} but also
to the tuples {(t; = t2), (t1 = w”t3)} for each k € Zz \ {0}. Thus there is no single discriminantal
arrangement such that all tuples adjacent to this flag consist of hyperplanes from that arrangement.

Suppose now that we have a weighting a : Co n.m, — C of the arrangement Cy n.p,. It defines a
bilinear form GP(-,-) on FP(Co n.m) as in §2.6. Let G : ¥Cs.,,, be the restriction of this weighting a
to the arrangement ¥C,.,,,. It defines a bilinear form GP(-,-) on ZP(*C, ).

The next lemma is a consequence of Corollary 3.4. It will be an important source of simplifications
in what follows.

Lemma 3.6. Let F' be a flag with no zero ends, and let kCz;m be the corresponding discriminantal
arrangement, as above. For all F' € FlagP(Co nm),

GP(F,F') if F' € Flagl (%Cpum)

0 otherwise.

GP(F,F') = {

4. FREE LIE ALGEBRA WITH AUTOMORPHISM

Let w € C* be a primitive T'th root of unity and Zy the cyclic group of order T', as above.
Let a denote the free Lie algebra over C with generators *f;, i = 1,...,m, k € Zp. There is an
automorphism 7 : a — a defined by

TR B
where we understand that k 4+ 1 means addition in Zg.
Let a denote the Lie subalgebra of 7-invariant elements of a and let = : @ — a denote the
surjective linear map given by
g:i=>»_ 19 gea (4.1)
JELT
We sometimes write °f; as f;, and hence *f; as 7% f;.
There is a unique ZZ-grading of a as a Lie algebra, a = ea(rl,...,rm)ez’;‘o Afry,....rp]» SUCh that

k
a[0,...,0,1,0,...,0] ‘= spang ("fi)kezy
+

2

for each ¢ = 1,...,m. We call this the weight decomposition of a, and say a[ry,...,r,] is the
subspace of weight (r1,...,7m). We write wt(v) = (r1,...,m) if v € a[ry, ... 7).
In particular we have the weight decomposition of a.
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We extend the weight decomposition additively over tensor products, i.e. wt(a®b) := wt a+wt b.
So we have the weight decompositions of the universal envelopes U(a) and U(a), and of

N
Moy =U@ @@ U(a). (4.2)
=1

Note that Mg y is an a-module, with the action given by
z.(mp @M1 @+ @my)
=(xmo) @M1 @mNy+mo X (xm) @Ma®---dmy+---+my®m; Q-+ & (xmy).

Let (Co(a, Mo,n),d) denote the standard chain complex of a with coefficients in M . Namely,
for k € Z>o, define

Ci(a, Moy) = N\ @@ Moy (4.3)
(where A¥ denotes the k-th exterior power), and let
d: Cx(a, Mo n) = Cry1(a, Mo n) (4.4)
be the linear map defined by
k

AGe AGpa A AT @T) = ()G A G A NG T

=1
+ > (CD)THG A AG A NG A AT A GG @3 (45)
1<i<j<k

for x € Mon, G1,-..,0; € A, where ~ denotes omission.
Recall the cyclotomic discriminantal arrangement Co ., from §3. We have the flag complex
(Z*(Co,N:m),d) as in §2. Let us write
1" :=1,...,1].
N——

m

In this section we define (Theorem 4.2) a family of linear isomorphisms

k
Y (/\ a® MO,N)[lm} — gzm_k(co’]v;m),
such that d o ¢ = ¢_1 o d.

4.1. Commutators and projected commutators. Let us say that an element g € a is a com-
mutator if either

(1) g is one of the generators *f; of a, or
(2) g = [g1, g2] for commutators g1, g2 € a.

For a given commutator g and generator *f; there is a well-defined notion of the number of times
kf: occurs in g. Let the length 1(g) of a commutator g be the total number of generators that occur
in g, and the content of g the set {(k1,i1), ... (i), 71(g))} of the labels of these generators.?

For example, [*1f;,, *2f;,], ¥3fi,] has length 3 and content {(ky,41), (ka,42), (k3,i3)}.

Whenever g is a commutator in a, we call the element g € a a projected commutator, cf. (4.1).
The Lie algebra a is spanned by the set of all projected commutators g as g runs over the set of
commutators in a. (Indeed, the latter span a and = : a — @ is a surjective linear map.)

430 each commutator lies in some weight subspace a[ri, ..., ] of a, determined by its content. In general the content
is a set with multiplicities. When working with Ce (@, Mo ~)j1m] these multiplicities will be at most one.
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Remark 4.1. Suppose we are not in the degenerate cases m =1 or T' = 1. Then a is not spanned
by commutators of the projected generators f;. For example [Pf1, ifs] € @, p # g, is not in the
span of [ f1, fo]. In fact a is not finitely generated [Bry91, BP0O].

We say an element x € U(a) is a monomial if it is equal to a product of commutators, i.e. if

T = gp...g1 for commutators gi,...,gp, € a.
We say an element x € U(a) is a monomial if it is equal to a product of projected commutators,
i.e. if x =7g,...g; for commutators gi,...,g, € a.

We say an element x € /\pﬁ®/\/lo7N is a monomial if

for commutators g1, ..., g, and monomials zg, z1,...,TN.

4.2. The maps ,. Given any commutator g in a, with content say {(k1,41), ..., (k;, i)}, we shall
write Ly, Ly, j=1,...,N, and L(g) for the edges of the arrangement Co ., given by

Lg:whity, =-- = M,
L_z] : wkltil == wkltiz = Zj
Lg:th:---:tilzo. (46)

(When g has length 1, L, = C™.)

Observe that Ly = L.

Now we define linear maps v, : (N @ ® Mon)um) — F™ P(Co,n;m) by induction on m — p as
follows.

For the base case p = m, we set ¥ (f1 A Af,,®1®1®---®1) to be the trivial flag, L’ = C™.

For the inductive step, assume that 1,41 has been defined in such a way that for any monomial
=G, AN AGIRTRTI ORIy € (NTaw Mo n)im, the image 1,41(2) is of the form
(—1)*F for some sign (—1)% and some flag ' = (L° D --- D L™ P) € Flag" ?(Co nm)-

Then we define ¢, (2’) := (=1)*F’ for 2/, F' as follows:

(A) If 2/ =g, A+ AGpRTRT1®- - ®g1.2;®- - @y then F' = (LY D --- D L™ P D L™POLL ).
B) If 2! =G A NG @G 20 @21 ® -+ @y then F' = (L° > ... D L™ P> L™ PNLY).
(C) If &’ = Gpr1 A -AG3A[g1, g2] @2 @21 ®- - - @y then F/ = (L0 D - D L™P D L™ PN Ly, 001)-

Theorem 4.2. These rules correctly define a family of linear isomorphisms
. P gm—p
Pp : (/\ a® MQN) - — F"P(Co.Nm), 0<p<m.

Moreover this gives an isomorphism of complexes

Ve 1 (Co(a, Mo N)im), d) = (F*(Co,Nim), d)-
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Ezample 4.3. Consider m = 2 and N = 1. The monomials in A\*(a) @ Moy = A*(a)@U(a)®U(a),
and their images under 1,, include:

finfelel (€%,
fiolerhf (C? > (wFty = 2)),
fo@lerhf —(C? o (Wt = 2)),
1@ (TP f1)(T9f2) (C? D (wity = 2) D (wWity = WPt = 2),
fiefael (C? > (t2 = 0)),
fa@7rf (C25 (ty = 0) O (ty = 0,wkt; = 2))
= —(C? > (W't = 2) D (t2 = 0, = 2)),
[P, fl®1@1 (C? D (wPty = 1)),
L@ 7P f2, fi] (C? D (wWPty = t1) D (WPTy = Wity = 2)),
[P fos il @1 (C* > (wPty =11) D (t2 = t1 = 0)).

Proof of Theorem 4.2. By recursively applying the rules and using the skew-symmetry in the factors
of A’@, one can compute ¢, on any monomial in (A’a ® Mo n);m. The first thing to check is
that the result well-defined, i.e. that it is independent of the order in which we choose to apply
the rules.

Consider 2" = g, N AG3 @10 @21 @ -+ ® g1.4; @ --- @ g2.7j; ® -+ @ xy. Starting from
Yp(x) = (=1)5(L° D -+ D L™ P), we can compute 9,_o(2") in two ways. On the one hand we
have

Pp1(Gp N ATz NG @R T @+ @ gr.a; @+ @ay) = (—1)°(L° D - D L™ P D> L™PNL,)
and hence

Ppa(2”) = (-1)*(L° > --- D L™ PO L™PAL, DL™PNL, NL). (4.7)
On the other hand we have
¢p,1(§p/\ o AGINGIRTRTI R R G T; Q- QRIN) = —(—1)S(LO D---DLM™PD Lm_pﬂL§2)
(note the extra sign, which comes from g, A g; = —g; A g5) and hence

Ppo(a”) =—(-1)*(L° D> - D L™ P> L™PNL], DL™PNL, NL). (4.8)

And indeed (4.7) and (4.8) are equal in the flag space F™ P*2(Cy n.m), by virtue of the flag relations
(2.1). (Specifically, a relation of type (iii) in §3.2.)
Similarly, one checks that, starting from ,(z) = (=1)°F, v, 2 is well-defined on g, A --- A

g3 R g1 00001 X ...02.2; Q- QxN, ongp/\.--/\@l/\[gg,gg]®xo®x1®...gl.xi®-~®x1\;, on
G\ - NGaN[g3, 92] @Gy - w0 @71 ®- - -® N and finally on g, A+ A[g4, g3] A[g2, 1] @To@T1®- - - RN
This establishes that ¢/, is well-defined as a map from the set of monomials in (A" a® Mo n)pm|
into the flag space .Z#™P(Co,Nim)-
Now we must check that this map can be extended by linearity to a linear map (/\” a®@ Mo n)j1m) —
F"P(Co Nm). For this it is enough to check that

Yp—2(Gy N NG ® ((?1)(?2)@“0 —(92)-(91)-w0 — [?1752}-950) ®r1 @ ®@zN) =0, (4.9)

Up-a(GyA- - AT @m@11®- @ ((TFg1).(r'g2) .5 — (T'g2) (7" g1) .y — [T" g1, T g2) ) @+ - @) = 0,
foreach j=1,...,N, and

Vp—2(Gp A+ A (g3, [92: 1l] + [92, [91, 93]] + [91. [93, 92]]) ® Do @ 21 @ - @ 2N) = 0.
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Again these follow from the relations in the flag spaces. Let us consider the first in detail. We have

Vp—2(Gp N+ ANG3® (92).(1)- 20 @21 @ -+ @ TN)
=(-1)*L°> - D L™POL™PALY DL™PAL) NLY) (4.10)

and

Yp—2(Gp N NGz @ (G1)-(F2) w0 @21 @ --- @ aN)
— 0 - - 0 - 0 0
=—(-1)%L" D>---DL™PDOL™PNL, DL™PNL, NLg) (4.11)

(the sign coming from g, A g; = —g; A Gs). Now, in the flag space F™ P 2(Cy n.m) we have, by
(2.1), the relation

0=(LD>---DL™POL™PNL) DL™PNL) NL))
+L0>--D L™ PO L™PAL), D L™PAL) NL))
+ Y (L0 DL™P O L™ P Ly, gy D LMPNLY NLY) (4.12)
k€lr
(which is of type (vi) in §3.2). The third line here is equal to

> pa(@ A ATy (91, TR g]) o @21 @ - @ )
kel

= (=1)"Yp—2Gp A+ AG3 @ ([91,G2)) w0 @71 ® - - @ TN)
= (=1)*Yp—2(Gp A+ AG3®[G1,G2] W0 @21 @ - @ TN)
Therefore, in view of (4.10) and (4.11), the relation (4.12) yields the required identity, (4.9).
Thus ¢, is a linear map (Na ® Mon)pm) — F™P(Con:m). Now we show it is a linear
isomorphism. To do so we define the inverse linear map 1, 1. by induction on m — p.

For the base case p = m we set ¥, /(L' =C™) = fiA-- ANf, @121 - -®1.
For the inductive step, pick any flag F = (L° > --- D> L™ P~1 5 L™P) € Flag™ ?(Co num)-
Inductively we may assume we have the monomial

Gpi1 A AT D@1 @ @y =1 L (LO D+ D L™PT).
Now consider the last step, L™ P~1 5 L™~ P_of the flag F: '

First, suppose “t; and z; became linked”. Namely, suppose that for some 1, j, k, we have kHzJ D
L™ P and hHZ.J 2 L™ P~ for every h € Zr. By re-ordering the factors as necessary, using skew-
symmetry in A’ + d, we may assume that 'f; appears in g, for some | € Zp. By the invariance
g, = 7g1 we may assume [ = 0. That is, we may assume f; appears in g;. Then we set

P, (F) =Gy A NG @2 @218 ® (1 g1)a; @ ®ay.

Next, suppose that “t; and 0 became linked”. Namely, suppose that for some 17, Hi0 D L™7P and

H? % L™ P~1. Again, we may assume that f; appears in g;. We set
Uy ((F) :=Gp1 A AGp @ (G1)-20 @21 @ - @ .

Finally, suppose we are in neither of the above cases. Then it must be that “¢; and ¢; became
linked”. That is, for some 1, j, k, we have kHi,j D L™P and "H;; 2 L™ P=! for any n € Zp. We
may suppose that f; appears in go and f; appears in g;. We define

by =Gy A AT A [TRgL ) @ @31 @ - @y,

These definitions respect the relations in .#*(Co nm)-
This completes the inductive step, and we have the inverse map 1, Lfor each p=0,...,m.
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For the moreover part, one checks directly that d o, = 1,1 od for each p=1,...,m. O

Given a subset I C {1,...,m}, let Co n.; C Co n:m denote the arrangement consisting of hyper-
planes kHihb, kHijl, and Hlol with iy,i0 € I, j € {1,...,N}, k € Zp. Let C; denote the arrangement
consisting of just the “diagonal” hyperplanes kHihiQ, 11,00 € I, k € Zp.

Let [I] denote the tuple (r1,...,7ry) with 7, = 1if ¢ € I and r, = 0 if ¢ ¢ I. By an obvious
generalization of Theorem 4.2, we have linear isomorphisms

=2yl (NaoMow)y — FIP(Con),  0<p< Il (4.13)

(We shall sometimes suppress the indices p and I from .)
For any commutator ¢ in a, define the flag

Y(c) == (@) =yvE®1e1V). (4.14)
Note that ¢(c) = ¢ (7%c) for all k € Zr.

5. BILINEAR FORM

We keep the conventions of section §4. Let us now fix a weighting a : Con.m — C of the
arrangement Co n.m, in the sense of §2.6. Let b be the Lie algebra with generators kf.. Fe; and Fh,,
i=1,...m, k € Zr, subject to the following relations:

[Fes, U] = 6ij0m1 "hi,

[Fhs, ;] = {a(lkHz',j) ‘e; Z #j , [*ha, U] = {—a(lkHi,j)lfj 1 #J: ’
0 1= 0 1=7
[*hi, 'nj] = 0.

We sometimes write e; := %;, f; := °f;, hi := ‘h;.

There is an automorphism 7 : b — b given by 7(*z;) = **l2; where 2 € {e, f,h} and k + 1 is
understood to mean addition modulo 7. Let b C b denote the subalgebra fixed by 7 and ~: b — b
the surjective linear map x — ¥ := ZjeZT .

We have the obvious embedding of Lie algebras a < b. Let by (resp. ay) denote the subalgebra
of b generated by the *h; (resp. Fe;). Then b = a®bo®a, and hence U(b) =¢ U(a)®@U (bg) U (aL).
Likewise b = a ® bg @ a; and hence U(b) =¢ U(a) ® U(bg) ® U(ay).

Let M; = U(b) ®y(sy@a,) Cvi, i = 1,..., N, denote the b-module generated by a vector v;
obeying the relations

aL.v; = 0, khj.UZ‘ = a(kH]’)vz

Let My :=U( E)®U(E o®a+)CU07 denote the b-module generated by a vector vy obeying the relations

a+.vg == 0, hj.Uo == a(H;-))Uo.

There are isomorphisms M; =, U(a) and My =5 U(a). Hence, with Mg y as in (4.2),
N
Mo,n =a Mo ® ® M;. (5.1)

Our choice of weighting a : Cy n;m — C defines a symmetric bilinear form G* on .%*(Co,n.m) and
corresponding linear maps G*® : .#°*(Co n.m) — F*(Con:m)*. (See §2.6.) Pulling back by the linear
isomorphism v, of Theorem 4.2, we obtain a bilinear form 15 (G™~?) on (A" @ ® Mo n);1m), and a

linear map
*

(4p) "t 0GP oty (/\p a® MO,N) 7 (/\p a® MO,N)

[1m]
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In fact, for any subset I C {1,...,m}, we have the linear isomorphism ¢ = wé of (4.13), and
therefore a bilinear form 1/);(6"1 =) on (N a ® My, ~)r) and linear map

(wé)_l ogm_pozﬂ; : (/\pc_l®./\/l()7]v) " — (/\pﬁ®./\/l07]v>

up

When there is no ambiguity, we shall sometimes denote these linear maps (for any p and any I)
simply by G. Similarly we will sometimes use G to refer to the corresponding symmetric bilinear
forms.

In particular when p =1 and we restrict to the subspace aj;j @ vo®@v1 ® --- @ vn = a5 we get a
linear map

g .= @ZJ_I o g”'_p o a[[] — af}],
cf. (4.14). And when p = 0 and we restrict to the subspace vp® -+ ®@v;—1 ® (M) ®vit1®. .. o§ =
(M;)(5) we get a linear map G : (M;);;) — (M;")(y for each i =0,..., N.

5.1. Shapovalov form. Let ¢ : b — b be the anti-automorphism defined by
o(Fei) =i, o(¥fi) = Fei,  o(*hi) = Fh;.
It restricts to an anti-automorphism of b. There is a unique bilinear form S; on M;, i =1,..., N,
such that
Si(vi,vi) = 1, Si(Xw,w) = Si(v, p(X).w).
There is a unique bilinear form S, on a such that
Sa("fis 'fj) = udij,  Sa([X,Y],2) = =S(Y, [p(X), Z)).

It restricts to a bilinear form on a.
Define

N
My ::®Mi<—>M0,N; 1R RIN—VYRLTL R RITN.
=1
Let S? be the bilinear form on the space A’a ® My, p=0,1,...,m, defined by

SP@y A+ ANaGLR@T1 R QIN, by A Ab @Y1 @ D YN)
N

= det(Sa(@i, bj)1<ij<p) H Si(wi, yi). (5.2)
i=1

By restriction, we get a bilinear form SP on the weight subspace (A’ a ® M N)[lm].

5.2. The forms G and S coincide on flags with no zero ends. Recall from §3.3 the notion of

flags with no zero ends. By definition of the map 1, a monomial in ¢ € (A’ a @ M, N)[lm] belongs
to the subspace (N a® M) m) if and only if its image ip(x) € F™P(Co,nym) is a flag with no

zero ends.

Theorem 5.1. On (A" Pa® My)
symmetric bilinear forms.

[im)r We have the equality S™P = (=1)"T™ Pyy,_ (GP) of

Proof. Suppose x,y are monomials in (/\m_p aM N)[lm]’ with corresponding flags

Ym-p(x)=F =(L"D>-DLF),  w(y)=F.
Let kCz;m be a discriminantal arrangement adapted to the last edge LP of F' as in §3.3. Define
ﬁ = k(z)f“ FLl = k(z)h“ él’ = k(i)ei, 1= 1, ey, (53)
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These generate a subalgebra b = @ @ by @ @™ of b = a® by ® at. Let M; := U(b) DU (bo@it) Cu;,
i=1,..., N, where we note that

Cvl_,_.vz' = O, hj.’UZ' = a(Hji)vi,
with ﬁji as in (3.3). Set M#O = ®ZJ\L1 Mz
It follows from the definition of the map ,,—, that the monomial x is of the form
T=Gp A AGRLIRTI®...2N

for some commutators g1, . .., gm—p € @ (i.e. commutators in the generators fl), and some monomial
1 Q- ®TN EM;,AO.

We have subalgebras 7%a C a, k € Zp. They are mutually orthogonal with respect to the
Shapovalov form S, on a. Therefore for any commutators g, ¢’ € @ we have

Sa(?a ?l) = TSﬁ(ga g,)v
where S; denotes the Shapovalov form on @ On the other hand if g is a commutator in @ and ¢” is a

commutator in a\ 72a then Sy(g,g") = 0. Similar statements hold for the factors M;, i =1,..., N.
Hence S™7P(x,y) is zero unless the monomial y can also be expressed in the form
Y=Tmp N A1 @1y @ ... yn (5.4)
for some commutators g, ... ,g;n_p € a and some monomial y; ® --- @ yy € M#O, and if y is of
this form then
N
SP(x,y) = T™ P det(Sa(gi, ))1<ij<m—p) | [ Si(i vi)- (5.5)
i=1

Now, up to the factor of 7™ P, the right-hand side is the usual Shapovalov form for A’ a ® M#).
Therefore we may apply [SV91, Theorem 6.6] and conclude that

SP(z,y) =T" P(-1)"GP(F, F'),
where GP(F, F') is the bilinear form of the discriminantal arrangement *C,.,.
At the same time, Lemma 3.6 states that GP(F, F') is zero unless F € Flag?(*C..), in which
case GP(F, F') = GP(F,F’"). And F’ € Flag?(*¥C..,,,) if and only if the monomial y can be expressed
in the form (5.4). Thus we have the result. O

It will be useful to note the following special case of this argument.

Corollary 5.2. On a, we have the equality Sq = G of symmetric bilinear forms. In particular, for
all x € 4, if x € ker S, then x € ker G. ]

5.3. On the kernel of the geometric form.

Lemma 5.3. Given an element € :=y1 A+ - Ayp Quo Qw1 Q- --Quwy € N a® Mo n, if any one
of Y1, .- -Yp, Wo, w1, ... wn lies in the kernel of G, then x lies in the kernel of G.

Proof. By inspection of the definition of ¢ and G. O
Lemma 5.4. If y @ wy € a ® My lies in the kernel of G, then ywg € My lies in the kernel of G.

Proof. This follows from Theorem 2.5. Indeed, we have ¥ (y1wp) = di)(y1 ® wp) and hence, by that
theorem, G(¥(y1wo)) = G(¥(y1 ® wo)) A (X yec a(H)H). By the previous lemma, this is zero if y
lies in the kernel of G. O

Theorem 5.5. Suppose x € (\'a® MO,N)[lm] is of the form
=y N Ay @ (21...2...200) QU Q -+ - @ Wy,

where x1,...,%;,...2; € @ and w; € M;,i = 1,...,N. Assume that x; lies in the kernel of the

Shapovalov form S,. Then x lies in the kernel of G.
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Proof. By Corollary 5.2, x; € ker G. Lemma 5.3 (with N = 0) then implies that z; ® (241 . .. zjvg) €
ker G. Hence by Lemma 5.4, (z;241 ... zvg) € ker G. Therefore by Lemma 5.3, x;—1®(x;izit1 . .. 1jvg) €
ker G. By using Lemmas 5.4 and 5.3 repeatedly in this way, we conclude that (x1...x;...zv9) €
ker G. The result follows, by one final invocation of Lemma 5.3. O

5.4. Shortened flags and linking hyperplanes. Given a subset J C {1,...,m} and an edge L
of the arrangement Cy n.,,, define the edge L|; as follows. Recall that we can write L = kL}ll N---N
ML N Ry, N nKLy,, asin (3.2). Let Ly =k L n---n*Ly  n*Ly a0 N*Ly,As. Now
given a flag ' = (L° D L' 5 .- D LP) define the flag F|; := (L°|; 2 L'|; 2 --- D LP|;). Note
that F'|; has at most p steps. Call F|; a shortened flag.

Ezxample 5.6. If J ={1,2,4} C {1,2,3,4} and F is the flag (t; =t2) D (t1 =ta =1t3) D (t1 =t2 =
t3 = t4) then F|J is the flag (tl = tQ) D (tl =19 = t4).

Let I,J C {1,...,m} be disjoint subsets. We say a hyperplane H links I and J if H is (t; = wkt;)
for some i € I, j € J, k € Zp. (That is, if H is one of the *H; ; withi € I, j € J.)

5.5. Commutator lemmas in non-cyclotomic case. In this subsection we let T' =1, i.e. we
consider the non-cyclotomic case.

Let I1,Io C {1,...,m} be disjoint non-empty subsets. Let b € a be a commutator of weight
wt b = [[ U I5). The element ¢(b) € F1IHEI=1(Cp 1), cf. (4.14), is a flag multiplied by a certain
sign +1,

by =+F, F=(L°>L'>... > LAY ¢ plaghlil=tc, ).

For convenience we will refer such elements +F simply as flags. We extend the notions of adjacency-
with-sign (§2.4) and shortening (§5.4) to such elements by linearity. In particular we have the
shortened flags

Y(b)|r, == +F|r,, V()1 == £F|L,-

Recall from §3.1 that we can regard each edge L’ of the flag 1)(b) as an archipelago of islands.
These islands are all swimming since b is a commutator. At each step L’~! D L7 two islands are
joined.

Let k be the smallest index such that the edge L* is contained in some hyperplane which links
I; and I». That is, let k£ be smallest such that for some nonempty subsets J; C I; and Js C Is, the
edge L¥ has an island Ly, 7,. Denote by

H:{(ti:t]‘) :iGJl,jEJQ} (5.6)
the set of all hyperplanes linking J; and Js.

Lemma 5.7. Let (Hi,...,H 1) be a tuple of hyperplanes in Cr,. Let (H{,...,H|’12|71) be a
tuple of hyperplanes in Cr,. Let H e Cr,u1, be a hyperplane linking 11 and I. Then the tuple

(Hy, ..., Hyp-1, Hi, .. .,H|’12|_1, H) is adjacent to (D) if and only if (Hy, .. . Hip,|-1) is adjacent
to ¥(b)|r,, (Hi,.. "H(Ig\—l) is adjacent to (b)|1,, and H links Jy and Jo.

Proof. The “only if” direction is immediate from the definition of the shortened flags. For the “if”
direction, note that the step L¥~1 O L* of the flag ¢(b) is the only one in which an island (see §3.1)
Ly, with J; C I is joined to an island Lj, with Jo C I5. At this step we have LF=LF1NH.
At every other step L™ D L7, j # k, we have [/ = L7~ N H for some H € C;, or H € Cy,.
By definition of the shortened flags, a suitable hyperplane H can always be drawn from the set
{Hl,...,H|11|,1,H{,...,H|’I2|_1}. O
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Now let (H1,...,H,|—1) be a tuple of hyperplanes in C;, adjacent to v¥(b)|r,. We associate
to any such hyperplanes a sign, c¢(Hj, ... ,H‘m_l), defined as follows. Suppose H € H. Suppose
(H{,..., H|’12|_1) is adjacent to the shortened flag 1 (b)|,, with sign say (—1)!. By Lemma 5.7, the
tuple (Hi, ..., Hy -1, Hi,.. ‘7H\/12|—1’ H) is adjacent to ¥ (b) with some sign, say (—1)P.

Lemma 5.8. The sign (—1)P** is independent of the choice of (Hj,. .. ’H‘/12|*1

Proof. Call astep L’~! D L7 of the flag 1(b) black, e, if [/ = L7='N H for some H € Cy, and white,
o, otherwise. Reading the steps of the flag ¥(b) in order we obtain a tuple T € {e, o}/11+121=1 iy
which each entry is e or o. There is a unique shuffle (i.e. a permutation which does not alter the
ordering of e’s or the ordering of o’s) which sends

) and H.

(07"')O>.7"'7.7O) —T.
—— —
-1 |I2]-1

Let (—1)" be the sign of this shuffle. Let (—1)* be the sign with which (H1,..., H;,|-1) is adjacent

to ¥(b)|r,. Then we have (—1)? = (—1)“T*t, Hence (—1)P™ = (—1)“*?, and written in this form
it is manifestly independent of the choice of (Hj, ..., H, " 12|71) and H. O

Thus we may define the sign ¢(Hj, ..., Hyp,—1) = (=1)P*.

Proposition 5.9. Let a,b € a be commutators such that wta = [I1] and wtb = [I; U Is]. Then

¥([p(a),b]) + 1 (b)[1, > eHy,. Hypo)a(H).ca(Hy2) | Y e(H) o (5.7)
(HIV"'vH\Il|71) INJEH
lies in the kernel of G. Here H is as in (5.6), and the first sum is over all tuples (Hy, ..., H|11|,1),
modulo reordering, of hyperplanes in Cr, adjacent to ¢ (a) with sign +1 and adjacent to ¥ (b)|y, .

Proof. Let ¢ be any commutator of weight wt ¢ = [I3]. It is shown in [SV91] that G(¢(-),%(:)) =
S(-,-) as an equality of bilinear forms on a, where S is the Shapovalov form. By definition of the
latter, S([a,c],b) = —S(c, [¢(a),b]). Hence, we have

— G(¥(c), ¥([p(a),b]))
= G(Y([a, c]), (b))
= > Y > (=DPa(Hy)...a(Hpy1)a(H)) ... a(H]p, )a(H),

(Hi""’H(IQ‘ 1) (H17 7H‘Il| I)HEH

where:

(1) the outer sum is over all tuples (Hi,...,H |’ Io|-1)» modulo reordering, of hyperplanes in Cj,
adjacent to 1(c) with sign +1 and adjacent to ()| 1,;

(2) the middle sum is over all tuples (H1,..., H|r|—1), modulo reordering, of hyperplanes in C,
adjacent to 1(a) with sign +1 and adjacent to 1(b)|r,; and

(3) (=1)P is the sign with which the tuple (Hy, ..., Hp 1, Hy,. .. ,H|’[2|_1,
flag 1 (b).

Indeed, by definition of G, §2.6, we are to sum over all tuples, modulo reordering, of hyperplanes

adjacent to both flags ¥(b) and ¢ ([a,c]). By definition of ([a,c]), every tuple adjacent to to

Y([a,c]) is of the form (Hy,..., H)p- 1,H{,...,H|’12‘_1,IEI) for some H linking I; and I», some

Hy,...,Hj -1 € Cr,, and some Hj,... H|’I -1 € Cr,- Lemma 5.7 then tells us which of these

tuples are also adjacent to ¥ (b).

H) is adjacent to the
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Now, in view of Lemma 5.8, we may factor the expression above as

Y. (D'a(H)...a(Hp_y)

x > el ... Hyp-)a(Hy). . a(Hj21) Y a(H)
(Hlv“'7H‘Il|—l) HEH
where (—1)! is the sign with which (H,..., H\/12|—1) is adjacent to 1(b)|r,. But now observe that
the left factor above is G(v¢(c), ¥ (b)|r,). So we have shown that

—G((0), ¥([p(a), b)) = G(p(c),¥(b)lr) Y e(Hy,..., Hyp1)a(Hr) .. a(Hjy 1) Y a(H).
(Hys s Hyry 1) HeH

Thus (5.7) lies in the kernel of G(¢(c),-), for any commutator ¢ € ajz,). This suffices to show that
it lies in the kernel of G. O

5.6. Definition of Gy. We return to the case of general T' € Z>1, i.e. to the general cyclotomic
case.

Let I C {1,...m}. Recall that C; denotes the arrangement consisting of just the “diagonal”
hyperplanes kHihh, i1,12 € I, k € Zy. Define a bilinear form on Gg on ajy) by

Go(a,b) := Ge, (¥(avo), ¥ (bvo)) (5:8)

where G, is the bilinear form for the arrangement C; of “diagonal” hyperplanes.

Equivalently, but more explicitly, for two projected commutators @,b € a of equal weight [[],
define

Go(@b):= >  (=1)a(Hy)...a(Hp1)
(Hl""vHP+1)
where the sum is over all tuples (Hi, ..., Hpt1), modulo reordering, of hyperplanes belonging to

the arrangement Cy, such that

(1) (H1,...,Hps1) is adjacent to the flag ¢ (avp), with sign +1,

(2) (H1,...,Hps1) is adjacent to the flag 1 (buvy), with sign say (—1)°.
Note that 1 (avg) is the flag ¢ (a) completed by the last edge LY.

Example 5.10. For k,l € Zr,

Go([%1, *fal, [°f1, fo]) = a(*Hi2) | —a('Hiz2) + 6 ) a("Hip)

pEZLT

Proposition 5.11. Let J C I. For alla € ﬁ[J],E € ayy and ¢ € ajp g,

Go(b, [¢,a]) + Go(¢, [#(@),b]) + Go(a, [b, p(€)]) = 0.

Proof. Tt is enough to consider the case that @,b,¢ are projected commutators. Then [¢,a] =

> kez, lc; TRa] and we have

Go(b[ea) = > Golb[e,7%al) = > (=DPa(Hy)...a(Hy)a(Hi)...a(H[p ;)a(Hs)a(Hs).
keZr (Hi,....,H )
(H{oees Hpy )
He,Ho

(5.9)
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Here the sum is over all tuples (Hy, ..., H| ‘ J‘), modulo reordering, of hyperplanes in Cy, all tuples
(HY,..., H(I\J‘), modulo reordering, of hyperplanes in Cp\ 7, and all hyperplanes H,, Ho € Cy, such

that:

(1) (Hy,...,H g, Hy, ... ,H(I\J‘,H.) is adjacent to 1([c, 7"a]) for some k € Zp, with sign +1,
(2) HmmmHMmH{m---mH"I\ﬂmH.mHo:{O} )

(3) (Huy..., Hyy, Hy, ... ,H(I\J‘,H.,Ho) is adjacent to the flag 1 (bvg), with sign say (—1)P.

Note that (1) implies in particular that the hyperplane H,q links I\ J and J. The hyperplane H,
is of one of three types:

(i) Ho (also) links I'\ J and J,
(ii) Ho belongs to the arrangement Cr ,
(iii) H, belongs to the arrangement Cj.

Consider case (i). Then the sum also includes the term with H, and H, interchanged, and it
comes with the opposite sign. Indeed, (Hy, ..., H, Hi,. .. 7H|/I\J|’H°) is adjacent to 1([c, 7%a])
for some (different) value of k € Zp, again with sign 1. Condition (2) still holds with H, and H,
interchanged. And so does condition (3), but with an additional factor of (—1). Therefore such
terms cancel pairwise in the sum.

In the remainder of the proof we shall show that the terms in the sum of the types (ii) and (iii)

cancel against Go(c, [p(a@),b]) and Go(a, [b, ¢(¢)]) respectively.

Consider Gy (¢, [p(@),b)]). We have [p(a@),b] = > kezy lp(a), 7). Consider any one term
[¢(a), 7%D] in this sum. If the content, in the sense of §4.1, of the commutator a is not a sub-
set of the content of 7°b, then this term is evidently zero, since [lej, kf:] is zero unless k = [ and
i = j. So suppose that the content of a is a subset of the content of 7%b. (This happens for at
most one value of k). Asin §3.3, we may consider the (non-cyclotomic) discriminantal arrangement

adapted to the last edge of the flag ¥(b) = ¢(7%b) := 9(b). Then by Proposition 7.11 we find that

Y(lpla), 7)) + (T )y Y (DPTa(Hy)... a(Hy)a(H,) € ker G (5.10)
(Hy,--,H) 5))

where the sum is over all hyperplanes (Hi, ..., H, | J|), modulo reordering, of hyperplanes in C; and
all hyperplanes H, that link 7\ J and J, such that
(1) (Hi,...,H ) is adjacent to the flag ¢(a), with sign +1,
(2) for some hyperplanes Hi, ... ,H"I\J| in Cp\ s, the tuple (Hy, ..., H ), Hy, ... ’H|/I\J|’H') is
adjacent to the flag 1 (7%b) = ¢(b), with sign say (—1)P.
The sign (—1)* is the sign of the permutation that puts these H, ... 7H\/I\J| into the order in which
they appear in the flag (b).

We have Lemmas 5.3 and 5.4 for the arrangement C;. Therefore (5.10) is sufficient to ensure
that

[p(a), 70 + o (D)0, Y (=17 a(Hy). . a(H)y)a(H,) (5.11)
(Hi,.. H )
lies in the kernel of Gy(c,-).
Now by definition of G,

Go(e, v ' (®)ns)) = >, (=D'a(H])...a(Hp ;)a(Ho) (5.12)
(e H 1 )

H,
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where the sum is over all tuples (Hj,..., H " I\ JI)’ modulo reordering, of hyperplanes in Cp\ 5, and
all hyperplanes H, € Cy\ , such that
(1) (Hy,... ’H|/I\J|) is adjacent to the flag ¢(c), with sign +1,
(2) Hin---NHp ;N Ho = {0},
(3) (Hy,... 7H|/I\J|’ H,) is adjacent to the flag 1 (bvo)|p 7, with sign say (—1)".
Inspecting (5.11) and (5.12), one indeed sees that Go(c, [¢(a),b]) is equal and opposite to the
sum of terms of type (ii) in the expression (5.9) for Go(b, [¢, ).
The argument that terms of type (iii) cancel against Go(a, [b, ¢(¢)]) is similar. O

5.7. Definition of {)<;. Let a<; denote the subspace
o= P au.
Ic{1,...m}

That is, a<; is the span of all commutators in which for each i € {1,...,m} at most one of
the generators Ff;, k € Zp, appears. Define (a4)<1 similarly. Recall b = a @ by @ ay. Let
by i=a<1 b ® (a4)<1. . .

Define a skew-symmetric bilinear form Q<; : b<; X b<; — C as follows. For all I C {1,...,m}
and all z € (a4);) and y € a/p), set

—Q<i(y,2) = Q< (z,y) = Go(p(x),y)).
On all other components in the weight decomposition of 531 X 531, set Q<1 (z,y) = 0.

Proposition 5.12. Let x € a. If x € ker Sy then Q<1 (w,y) =0 for all y € b.

Proof. If x € ker Sy then x € ker G as in Corollary 5.2. Lemma 5.4 holds for the arrangement Cj.
In view of the definition of Gy, the result follows. O

Theorem 5.13. We have the equality
Qai(z, [y, 2]) + Q< (y, [2,2]) + Q< (2, [2,9]) = 0
for all z,y,z € b<.

Proof. When x € (ﬁ+)[ 1, Y €ayand z € bo the third term vanishes and the first two cancel.

Consider the case that x € (a4)(y), y € aj; and 2 € ajp s where J C I C {1,...,m}. It is enough
to suppose that x,y, z are projected commutators. Say z = go(g), y = ¢ and z = a for commutators
a,b,c € a. Then what has to be shown is that

0= Q<1(p(b), [¢,a]) — Q<1([@, v (0)],0) — Q<1([¢(b), 7], a)
= Go(b, [¢,a]) — Golp([a, ¢ (0)]),e) — Go(e([#(b).T]), a)
= Go(b, [c,@]) + Go([¢(@), b)), ¢) + Go([b, ¢(C)], @)
= Go(b, [¢,a]) + Go(T, [p(@), b)]) + Go(a, [b, ¥ (2)]),
which is true, by Proposition 5.11. O

Remark 5.14. One “wants” to say that {2<; is a cocycle, and then use it to define a central extension
of the Lie algebra b. We do not quite have that statement, because (<1 is defined only on the
subspace 531. After symmetrization is introduced in §6, it will be possible to make such statements,
in §7.3. For now we proceed as follows.

Let b ® Ck denote the trivial extension of b by a one-dimensional centre Ck. We make M, into
a module over b & Ck by declaring that k.vg = vg. Define a “modified commutator”, namely a
bilinear map [', -]/ : (a+)§1 X agl —ba (Ck, by

[$ay], = [:L"y] + le(l‘,y)k.
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Define a “modified action” > of b<j on (Mp)<1 recursively as follows. For all z € a<; and w €
(Mo)<1, set z>w = zw. For all x € (ay)<1, set z>vp := 0 and
r>yw =[x,y >w+ y(r>w)

for all y € a<; and w € (Mp)<1 such that yw € (Mp)<;. Theorem 5.13 ensures that this is well-
defined, i.e. > [y1,y2]w = T>y1ysw — x> Yoy w, and respects the bracket in by, i.e. [r1, z2]bw =
1> x> w — x> x> w whenever xy, xg, [T1, 2] € 631. Let Sy be the corresponding “modified
Shapovalov form” on (Mp)<i. Namely, define a symmetric bilinear form Sy : (Mp)<1 x (Mp)<1 — C
by So(vo,vp) = 1 and then recursively,

So(zv,w) :== So(v, p(z) >w)
for all x € a<; and v,w € (Mp)<1 such that zv € (Mp)<1.
Ezample 5.15. We have ([0, *fa]) = —[%1, kes] and hence

So([°f1, Ff2]vo, [°f1, Lf2lvo)

= So(oo, [[%er, Feal 1, 2l w0)

= So(vo, | Ske(h1 + ho)a("Hi ) + ka(*Hy o) | —a('Hig) + 6, Y a(PHig) | | vo)

pEZT

= —a(*H12)a('H12) + Sra(*Hy2) | a(HY) + a(H9) + > a(PHy )
pEZLT

Theorem 5.16. We have the equality So = G of bilinear forms on (Mp)<i.

Proof. Let I1,...,I, C {1,...,m} be pairwise disjoint subsets and let Ay, ..., A, € a be commuta-
tors such that wt A; = [I;] fori =1,...,n. Let Jy,...,J, C {1,...,m} be pairwise disjoint subsets
and let By, ..., B, € a be commutators such that wt B; = [J;] for i = 1,...,p. It is enough to show
that
G(Al e Anvo, Bl e Bp’UQ) == So(Al e An’Uo, Bl e Bp’l)(]). (513)

We proceed by induction on n + p. The equality (5.13) is true whenever n =0 or p = 0.

Consider the inductive step. Suppose n,p > 1. Let us assume that Iy U---U 1, = Jy U--- L J,.
(If not, both sides of (5.13) are zero and we are done.)

Observe that for any permutation s € 3, the difference

Zl .. Zn — Zs(l) .. Zs(n)
as an element of the universal enveloping algebra is a linear combination of products of < n projected
commutators. (For example A; Ay — Ay A; = ml,ﬁg] = ZkeZT [A1, 7k As].) Therefore, by the
inductive assumption, we effectively have the freedom to permute the commutators Ay,..., A, at

will. The same applies to B, ... B,.
We note the following lemma.

Lemma 5.17. Both G(A; ... Ayvo, B1...Bpvg) and So(A; ... Ayvo, By ... Bpvg) are zero unless
the following condition holds:

There exists j € {1,...,p} such that I C J; or Iy D J;. (5.14)

Proof. Suppose this condition does not hold. We must show that then both the geometric and
Shapovalov forms are zero.

For the Shapovalov form Sy, it is enough to observe that, for each j, the supposition that Iy Z J;
and I 2 J; implies [p(A4;), B;)' = 0.
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Consider the geometric form G. Let [ :=I; U---U I, = J; U---UJ,. Inspecting the definition
of ¢ in Theorem 4.2, we see that the flag 1)(A; ... A,vg) € FHI(Co 1) has last two edges

DL, N LY, D LY,

for some map k : {1,...,m} — Zp. Indeed, the last step is the one in which the swimming island
(see §3.1) corresponding to A; is fixed to zero.
To write the penultimate edge, L nnN L?\ 7, @S an intersection of hyperplanes requires |1 \ 11|+

(11| = 1) = |I] — 1 hyperplanes, none of which can be from the following set

{kHivj}iEIhjEI\Il,k‘EZT' (515)

So, by counting, any tuple of hyperplanes adjacent to the flag ¥(4; ... A,vg) € FH |(Co, 1) contains
at most one hyperplane from the set in (5.15).

Therefore we are done if we can show that any tuple of hyperplanes adjacent to the flag
(B .. .Epvg) contains more than one element from the set in (5.15). By supposition, we may
pick i1,i2 € Iy such that ¢y € J; and i3 € Jj,, with j1 # j2 and J;,,J;, ¢ I;. Now, by choice
of the order in which we apply the rules, (A)—(C), of Theorem 4.2, we may suppose that the flag
(B ... Bpvg) contains the edge

k/leﬂ-”ﬂk/LJp

for some map k' : {1,...,m} — Zp. (Informally, we may choose to “build all the swimming
islands first, before fixing any islands”, cf. §3.2.) Any tuple of hyperplanes adjacent (B ... Bpvg)
therefore contains some hyperplane linking J;, NIy to J;, \ I1 (to construct KL J;,) and also some
hyperplane linking J;, NI to J;, NI (to construct KT, Ty ). Both of these two distinct hyperplanes
belong to {kHi,j}ieh,jeI\h,keZT- So we are done. O

Suppose therefore that the condition (5.14) does hold. By the freedom to permute the commu-
tators, and if necessary by renaming A <> B, I < J, we may suppose that [; C J;. By definition
of S(),

S()(leg . .vao,glgg . .Epvo) = SO(ZQ . ~Zn7)07 [@(Zl)’EI]IEQ .. .Ep’vo).
Therefore to complete the inductive step it is enough to establish the following.

Lemma 5.18.

G(Zlﬁg .. .Tnvo,ﬁlgg .. .Fp’t)o) = G(A2 .. .vao, [(,D(Al), Bl]/ B2 e pro).

Proof. There are two cases, Iy C J; and I} = Jj.

First suppose I; C Jj. Then the lemma follows from Proposition 7.11 and the definition of G.
(Compare the proof of Proposition 5.11.)

Next suppose I1 = J;. By definition of G, we have

G<A1A2 . .Tnvo,glgg . .vao)
= G(ZQ ‘e .vao,gg .o .Epvo)

x | GALB) > (a@EH)+ > Y al*Hiy) | + Go(Ar, By)

ieh=J1 jeJoU--UJp k€L
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On the other hand we have, using Corollary 7.12 and G(A1, B1) = S(A1, By),

. 1_ . _
[(p(Al),Bl]/BQ...BP’UO = G(AlaBl)ZThz"i'le((P(Al)aBl)k BQ...BP'UO
i€l

= EQ .. -Ep"UO G(Zl,gl) Z CL(HZO) + Z Z a(kHi,j) + GO(ZMEI)

icli=Jp jEJQlJ---UJp k€eZr

The lemma follows. ]
This completes the proof of Theorem 5.16 U

Putting together Theorem 5.16 and Theorem 5.1, we finally obtain the following. Let SP be the
bilinear form on the space N’a ® Moy, p=0,1,...,m, defined by

SP(ay A+ ANAGL QT RT1 @ RIN,bp A AL QY @Y1 ® - D YN)

N
= det(Sa(@i, bj)1<ij<p)So(z0, Y0) H Si(wi,yi).  (5.16)
i=1
Let » »
SP . /\ a® Mon — (/\ a® Mon)* (5.17)

denote the corresponding linear map.
Recall the isomorphism ¢, : Cp(a, Mo n)jim) — F™ P(Conym) of Theorem 4.2. It yields an
isomorphism of the dual spaces,

(65 1)+ Cpl@ Mo )fim) = F™P(Conm)" 2 /™7 (Co Nom).
Theorem 5.19. On Cy(a, Mo n)pm) = (N a® Mo,N)ym); we have the equality
SP = (1) TP, (G™F)
of symmetric bilinear forms. Equivalently, the following diagram commutes:

Cp(a, Mo,n)jim el Cp(a, Mo,N)fim)»

Up | ~ (1/};:1)* ~

(-G

FP(CoNim) " P(Co,Nym)-

6. SYMMETRIZATION

6.1. The Lie algebras n and n°. Let n denote the free Lie algebra in generators F;, ¢ € {1,..., R},
R € Z>;. For a permutation o : {1,..., R} — {1,..., R}, define the automorphism o : n — n by

U(FZ) :Fg(i), 1€ {1,...,R}. (61)

Let T' € Z>1 be the order of o.
The set {1,..., R} is the union of some number r of disjoint cycles for the permutation o. Pick
an injection ¢ : {1,...,r} — {1,..., R} which maps distinct elements into distinct cycles, so that

1(7) is a representative of the ith cycle. Let T} denote the length of the ith cycle, i.e. T; := |oZu(i)].
Each T; divides T'.
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By definition Y ;_, 7; = R. Observe that
{o"F iy k=0,.... s —1,ie{l,....r}} (6.2)

are the set of generators of n.
As with a above, we have a weight decomposition of n, namely the Z%,y-grading of n as a Lie

algebra,
= D (6.3a)
(”lw-,ﬂr)EZTZO
such that
10,...,0,1,0,...,0] ‘= Span(C(UkFL(i))kzO,l,...,Ti—l, for each i € {1,...,r}. (6.3b)
"
i
We have also the obvious refinement of this decomposition, namely the Zgo-grading of n as a Lie
algebra >
= @ Yn1,...ng)> (6.4a)
(n1,...,nr)ELE,
such that
0,...,0,1,0,...,0) ‘= spanc(F;),, foreachie {1,...,R}. (6.4b)
*
7

Ezample 6.1. Suppose R = 3 and o is the permutation (13). We have r = 2 and, say, (1) = 1,
t(2) =2. Then T} =2, T5 = 1, and

F1 :O'OFL(I), F2:O'0FL(2), FgZO'IFL(l).
Thus nj; g = n(1,0,0) © N(0,0,1) = spanc(F1, F3) and nj 1) = n(g,1,0) = spanc(£2).

Let n? C n denote the subalgebra of o-invariants. Define

N
Mo ==U(n") ® Q) U(n), (6.5)
=1

cf. (4.2). We have the standard chain complex (Co(n’, Mg n),d), cf. (4.5). The automorphism o
respects the weight decomposition (6.3) (though not the decomposition (6.4) in general). Thus we
have also a weight decomposition of n?, and thence of Mg n, Cp,(n?, Mg n), etc.

6.2. The weight A\ and symmetrization in C(a, Mo ). Now pick and fix an arbitrary weight
A= (A1, .., ) € ZL,. Set m = |A| :=>_I_, \i. We have the free Lie algebra a in generators *f;,
ke€Zr,i=1,...,m, as in §4.

(Let us stress that m and a now depend on the choice of \.)

It will be useful to introduce a notation for the elements of the set {1,...,m}, adapted to the
composition m = A1 + - -- + A, of m. To that end, we shall write
i—1
in=» N+n,  n=1...\ i=1..,m (6.6)
j=1
so that

Lo omp={11,..., 10,21, 20,5715 TA) |
Fori=1,...,r, let 3Z), denote the wreath product, Xy, ! Z7/7,. That is, let

A
Sy, =35 % (Zp7,)™,
where the semi-direct product is

(Slv (kiz)lﬁnﬁki)(sv (kn)lﬁnﬁ)\i) = (58/7 (kn + k;(n))lﬁnﬁ/\i)'
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We let an element (s, (kn)i1<n<y;) € 3Zy, act on the generators kfip, keZp,pe{l,...,\i} by
(s, (kn)1<n<n). "fi, = HTikpfz‘s(p)

and let it act trivially on the remaining generators, kfjp, j# i, keZp, pe{l,. .., \} This
defines an action by automorphisms of the group
ZZA ::mh X xZZAT.

on the free Lie algebra a, and hence on U(a). The subalgebra a is stable under this action. In this
way we have an action of 3Zy on A’ a ® Mg n.

This action of 37y on A* a® My y commutes with the projection A* a®@ Mo ny — (A® aQMo n)pm|
to the weight (1,...,1) € ZZ, subspace.

Recall the generators of n given in (6.2).

Proposition 6.2. There is a homomorphz’sm of Lie algebras 3 :n — a defined by
T/T;—

9: 0" Z ZkJrTlf,n, k=0,....,T;,—1, 1e€{l,...,r}

It satisfies yjo o = 70 j. Hence its restiction to n° defines a homomorphism n° — a.

Proof. For k=0,...,T; — 2 it is immediate that

T/T;—1 )\, T/T;—1 X
(jOO')( kF() Z Z k+1+Tlf7,n -7 Z Z k+Tlfzn TOJ)(U FL(’L))
=0 n=1 =0 n=1
It remains to observe that
T/T;i—1 )
(roa) (0" Fyy) = y(0T Fp) = 3(Fua) = Z Z T

T/T;—1 )\ T/Tz i
Z T:(1-1) fzn -7 Z Z T;— 1+Tlf (Toj)(UTiilFL(i)).
=0 n=1 =0 n=1

O

The homomorphism of Proposition (6.2) induces a homomorphism of complexes Co(n?, Mg ) —
Co(a, Mo n)**. By composing this homomorphism with projection onto the [1™] weight space, we
get a homomorphism of complexes

s: Ca(n%, Mo,v)x —= Co(@, Mo,n)[12) (6.7)
Ezample 6.3. We continue Example 6.1 above. For simplicity, take N = 1 and consider elements
in1®Um) c A’n’ @ Un?) @ U(n) = Co(n?, Mg y). Under the map s, we have
19F —10°%, 108FR=12 (%, + ), 10Rk—1ef,
and
1@ FiFy = 1@ (°f, Of, + %, O,
1@ FiFs— 1@ (°f, i, + f, 1)
1 FiFy = 1@ (°f, %2, + °f1, o)
1@ FaFy = 1@ (°fa, °fa, + °fa, U, + °fay oy + 'f2, °fa,
+ 1f21 0f22 + 0f22 1J021 + 1f21 1f22 + 1f22 1f21)-
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In the other direction, there is a homomorphism of Lie algebras a — n defined by
i 0" F i, keZp, i=1,...,r, n=1,...,\. (6.8)
This homomorphism induces a homomorphism Ce(a, Mon)jim) — Ce(n?, Mo n)x. Let 7 denote
the restriction of the latter to Ce(a, ./\/lo,N)ﬁZ,,?],
7 Co(@, Mo,n)jim) = Co(n?, Mo,v)x: (6.9)
Lemma 6.4. The compositions wos and som are equal to multiplication by

r

SZ| = T[(T/Ti) Al (6.10)
i=1
0
Corollary 6.5. The maps s and 7 are isomorphisms of complezes. O

6.3. Symmetrization of flags and forms. Define an action of 37, on the coordinate functions

of C™ by the following formula. For ¢ = 1,...,7, let an element (s, (kn)1<n<);) € XZ), transform
the coordinate functions ¢;,, p € {1,...,A\;}, on C™ according to

(s, (kn)lgng)\i)~tip = wTikptiS(p) (6.11)
and let it act trivially on the remaining coordinate functions ¢;,, j # ¢, n € {1, ..., A;}. This action

defines an action of 37, on C™.
The action (6.11) gives rise to an action of the group 3Zy, on the set of hyperplanes of the
arrangement Co n.,. This yields a canonical action of 37y on the spaces &P (Co n.m) and FP(Co nm)-
Namely, for each i = 1,...,r, an element g = (s, E) € XZy, acts on &/P(Cy N.m) according to
g.(HiN---NHp) = (g.H1) N+ N(g9.Hp).
For hyperplanes Hy, ..., Hp, let F(Hy,..., Hp,) denote the flag Hy D HiNHy D --- D HiN---NHp.
For each i =1,...,r, we let an element g = (s, E) € 37y, act on the set of flags as follows
g.F(Hy,...,Hp) = F((9.H1),...,(9.-Hp)).
These actions respect the pairing of §2.4, i.e. (9.F,g.(Hi N---NHp)) = (F,(Hi N\--- N Hp)).
For g = ((s1,k1),- .., (s, kr)) € XZy let us write
(=Dl = (=)=l (=)l (6.12)

Proposition 6.6. The isomorphisms e : \' 6 @ Mon — F™*(Conm) of Theorem 4.2 have
the following equivariance property with respect to these actions of 3Zy. For all g € 37y and
m € /\. a® Mon,

be(g.m) = (—1)9g.1pe(m)
O

Let F™k(Cy n.m)™* denote the subspace of #™ *(Co n.m) spanned by flags F such that
(=1)l9lg.F = F. We arrive at the following.

Theorem 6.7. The map
P os: Ck(n", MO,N))\ — ﬂm_k(CO7N;m)m* (6.13)

s an isomorphism of complexes, for k =0,1,...,m. O
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Example 6.8. In the setting of Example 6.3 above,

(o os)(1® Fy) = o (1@ (°fa, + 'f2,)) = (C? D (2, = 21))
+ ((C2 D) (—tgl = 21)) .
and

(oos)(1® F1FY) = (L@ (°f, %, + %f1.°f10)) = (C* D (t1, = 21) D (t1, = t1, = 21))
—(C* > (t1, = 21) D (ti, = t1, = 21))
(o os)(1® F1F3) = vy (1@ (°f1, i, + %1 1) = (C? D (—t1, = 21) D (t, = —t1, = 21))
—(C?* 2 (=t =21) D (t1, = —t1, = 21)) .

7. CARTAN DATA AND DIAGRAM AUTOMORPHISM

7.1. Definitions of g and g°. Suppose we are given the following data:

(1) A finite-dimensional complex vector space b;

(2) A non-degenerate symmetric bilinear form (-,-) : h x h — C;

(3) A collection «y,...,ar € h* of linearly independent elements, called the simple roots.
Let (-,-) : h x b* — C denote the canonical pairing, (H,\) := A\(H).

The form (-,-) induces an isomorphism h* — h and a symmetric bilinear form on h* which we
also denote by (-,-). Define H; € b, i € {1,..., R}, to be the elements such that (H;, ) = (a,-).
Let B = (bij)i jeq1,.,ry be the symmetric matrix with elements b;; := (o, ;) = (H;, o) .

Let g = g(B) be the Lie algebra with generators F;, F;, i € {1,..., R}, and H € b, subject to
the defining relations

[Ei7Fj]:5inja [Hin]:<H7ai>Ei [HﬂFi]:_<H70‘i>Fiv [HﬂHl]:()?

for all i, € {1,...,R} and all H, H' € h. (Thus, g is a “Kac-Moody Lie algebra without Serre
relations”, and B is the symmetrized Cartan matrix of g; see Remark 7.7 below.)
We have the triangular decomposition
g=ndohont

of g where n (resp. n™) is the subalgebra generated by the F; (resp. E;), i € {1,...,R}. The
subalgebras n and ny are free Lie algebras.
Now suppose that in addition to (1-3) above we are given

(4) An automorphism of ¢ : g — g such that
o(F) = Fouy, o(Ei) =E,qu, o(H)=H,; i€{l,....R}, (7.1)
for some permutation o € Yg.
The fact that o is an automorphism implies that the permutation ¢ must be such that
(i, aj) = (Qo(s)s Qo(j))s (7.2)
for all 4,7 € {1,..., R}. Such automorphisms are called diagram automorphisms.

Remark 7.1. If B is a symmetrized Cartan matrix of finite type then {H;};c(1,.. gy span b and the
conditions (7.1) completely define 0. More generally they define o only on the derived subalgebra
[g, 9] of g. See [FSS96].

Let T be the order of 0. Recall from §6 the definitions of the numbers T;, i € {1,..., R}, and
the injection ¢ : {1,...,r} = {1,..., R}.
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7.2. Symmetrized commutator lemmas. We have the weight decomposition (6.3) of n, and
similarly of n:
ny = @ (M) [y, n]s (7.3a)
(nl,.,.,nT)EZTEO
with
("4)o,...0.10,...0 1= spanc (0¥ E,;))k=o,1,..1,-1, foreachie {1,...,r}. (7.3b)

B
%

Let A= (\,...,\) € Z%,y be a nonzero weight and let m := Ay + -+ + A;. Define
s:ny — a[XlZm*] (7.4a)
to be the composition of the homomorphism j of Proposition 6.2 with projection onto to the weight
[1™] subspace. It is a linear isomorphism, cf. Lemma 6.4. Similarly (by replacing f — e, FF — FE
everywhere) we have a linear isomorphism

57,
s:(ny)y — (a+)[1n$}. (7.4b)
These maps restrict to linear isomorphisms (n?), — aﬁ%} and (n9)\ — (agﬁ?,i} respectively.

Suppose g = (f1, ..., yr) € Z%, p # A, is a nonzero weight dominated by A. That is, u; < A
foreachi=1,...,r. Foreach i =1,...,r, pick any subset I; C {1,...,\;} of size y;. Having made
this choice, define a subset I C {1,...,m} by, in the notation of (6.6),

I={i:1<i<r tel} (7.5)

We have the corresponding weight [I], in the notation introduced before (4.13). Let s; denote the
composition of the homomorphism j of Proposition 6.2 with projection onto the weight [I] subspace.
We get a linear isomorphism

pyam
Sr-ny — a[ 1 -
Similarly we have a linear isomorphism
37,
st () — (a+)[1]u-

Let Z be the set of all subsets I C {1,...,m} of the form (7.5), i.e. corresponding to all possible
choices of subsets I; C {1,...,\;},i=1,...,r. Note that

oY d ! N 37|
- < >: B - , (7.6)
zHl Hi }_[1“"!()‘1' — i)t BBl [

since |3Zy| = [Ti— (T/T:)*i N
Lemma 7.2. Suppose a € n, and b € ny_,. Then
S([a, b]) = Z [S](CL), S{l,...,m}\[(b)]
IeT

as an equality in a[gl%j}. g

Recall that C,, denotes the arrangement in C™ whose hyperplanes are kHZ-J Ct = wkt]— with
i,7 €{1,...,m}, k € Zp. The Cartan data defines a weighting of this arrangement, in the sense of
§2.6, given by

a(kH,;mi:L/) = (akaL(i),aL(i/)), (7.7)
fori,i’ e {1,...,r},and n e {1,..., N}, n' € {1,..., \v}.
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Note that [*Tilh; | Pf; ] = —(oP~ k" Tilay «j) Pf;, = —(0P *ay, a;) Pfj, whenever i, # j,. Thus,
whenever i, ¢ I € 7 and d € n,, we have
T/Ti—1 T
Z [k+Tilhin ) S[(d)] - SI([UkHL(i)a d])f? (78)
1=0 !

and hence _ o
[hiy s s1(d)] = s1([H ), d]).- (7.9)
Lemma 7.3. Suppose a € (ny.), and d € ny. Then
[s1(a),s(d)] = sq,_mps(la, d]) [Z,,]

STix—
as an equality in O, }\I]

Proof. By induction on \,u,\ =yt e
For the base case, we may suppose that a = 0¥ E,;), i € {1,...,r}, k € {1,...,T;}, and we have

I = {iy} for some n € {1,...,\;}. Thus sy(a) = ;‘F/ér ~1 k+Tile; and what must be shown is that
T/Ti—1 T
Z [FHTite;  s(d)] = 5{1,...7m}\{in}([UkEL(i)7d])f-
1=0 !

This is true by inspection, using (7.8) and the fact that

T/T;—1 T/T;—1 T/Ti—1
Z k+Til,,. Z WAT | > _/0 k+Tilp,  n=n' and k = k' mod T;
n K3 - .
’ ! 0 otherwise.

For the inductive step, it is enough to establish the result when a is a commutator, a = [b, c|,
since these span (n.),. Let p = (p1,...,pr) € Z5, be the weight of b. For each I € Z as in (7.5),

Lemma 7.2 yields
sr((b, ) = Y [ss(0),sns(c)]]

JeJr
as an equality in afﬁ“ where J7 is defined by analogy with Z. Namely, let J; be the set of subsets

J C I such that J = {i; : 1 <i < r,t € J;} for some subsets J; C I; with |J;| = p;. Hence, by the
Jacobi identity and the inductive assumption, we have

[s1([b,e])s(@) = D [[ss(0),sns(0)] ,s(d)]

J,
= Jé ([ss(0), [sns(0),s(@)]] = [sns(0), [55(b), s(d)]])
= J;; ([ss®),sqr,mpnyo (e d)] [yl = [sn(e),sp1,..mpvs ([0 dD)] [3Z,))
= ZI (51t ([0 e, dl) = [, b, ) 52,152,
= :f.,m}\f ([[b,e] , d)) | T |52 |5 .

Now, |77 = \zplnzzul = %'@L_p‘, cf. (7.6). This completes the inductive step. O

Lemma 7.4. Let a,d € ny. Then |m IARES (s(a),s(d)) = Sy(a,d).

Proof. By induction on |\|. (The argument is similar to that in the proof of Lemma 7.3, or of
Proposition 7.17 below.) O
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7.3. Definition of the cocycle (2 on g° and central extension g?. Define a skew-symmetric
bilinear form € : g7 x g7 — C as follows. Recall the map Q<; : b<y X b<y — C of §5.7. For any
nonzero weight A = (A1,...,A;) € Z%, and any z € (n?),, y € (n7),, set

—Q(y,2) = Ao, y) = ,ZZ}Angs(x),s(y)),

where s is the symmetrization map in (7.4). On all other components in the weight decomposition
of g% x g7, set (-, -) to zero.

Proposition 7.5. Let x € g7. If x € ker Sy then Q(x,y) =0 for all y € g°.

Proof. Suppose x € n§ for some A € ZL (the argument is similar if € n7 and trivial if x € ).
Then the result follows from Lemma 7.4 and Proposition 5.12. ([

Theorem 7.6. Q2 is a cocycle on g°. That is, we have the equality
Qz, [y, 2]) + Uy, [z,2]) + Q(z, [2,9]) =0
for all x,y,z € g°.

Proof. When x € (n7)), y € (n?) and z € h?, for some nonzero A € ZZ, the third term vanishes
and the first two cancel.

Let A= (A1,...,\) € ZLyand p = (1, ..., pr) € Z5, be nonzero weights such that A dominates
i, as in §7.2. When x € (ni)k, y€ (n?), and z € (n");_u, we have

Qz, [y, 2])3Zx| = Q<1(s(z),s([y, 2]))
= Z Q<i1(s(), [s1(y),sq1,...mp1(2)])

IeT

- Z (QSI ([s{l”"’m}\l(z)’ S(.ZL‘)] ,S[(y)) + Q§1 ([s(x), S[(y>] ) s{l,...,m}\](z>))
IeT

= <Q (st () 519)) 2]
IeT

0 (st () Sty (2) r%\)

= (Q(z2],9) +Q([2,9],2)) [ZZu][ZZx|
1€l

Here we used Lemma 7.2, then Theorem 5.13, then Lemma 7.3 and the definition of ). Since
|Z|[3Zu||¥Zx—p| = [3Zy| as in (7.6), we indeed have the equality Q(x,[y,z2]) = Q([z,z],y) +
Q([z,y], 2).

Up to obvious symmetries, these are the only non-trivial cases. O

Now let g7 denote extension of g” by a one-dimensional centre Ck defined by this cocycle €.
That is, g% ¢ g7 @ Ck as a vector space, with Lie bracket

[z,y]" = [z, 9] + Uz, y)k. (7.10)

(For clarity we will always use [, -] to denote the bracket on §7.)

7.4. The Cartan anti-involution ¢. Let ¢ : g — g denote the involutive (¢ = id) anti-
automorphism (¢([z,y]) = —[p(x), (y)]) of g defined by

o(H)=H, P(E;) = F; o(F;) = E;
forall € {1,...,R} and all H € .



CYCLOTOMIC DISCRIMINANTAL ARRANGEMENTS 35

Since o is a diagram automorphism,
poo=00¢p. (7.11)

Hence, ¢ restricts to give an involutive anti-automorphism g° — g°. By definition of the cocycle €2
(in terms of Q<7 and hence Gp) we have that Q(a,b) = —Q(p(a), ¢(b)) for all a,b € g. Therefore
if we define ¢(k) = k then ¢ is also an involutive anti-automorphism g° — g% of the centrally
extended fixed point subalgebra g°.

7.5. The bilinear forms K and S; on g. Let K(-,-) : g x g — C be the bilinear form such that

(i) K coincides with (-,-) on b; K is zero on n and ny; h and n @ ny are orthogonal with respect

to K;

(ii) K(Fi, Ej) = K(Ei, Fj) = 51‘3‘, i,j (S {1, ... ,R};

(iii) K is g-invariant, i.e. K([z,y],2) = K(z, [y, 2]) for all z,y, z € g.
Such a form exists, is unique, and is symmetric [Kac90, §2.2].

The form K is g-invariant, i.e. K(p(z),p(y)) = K(z,y) for all z,y € g. Define the bilinear form
Sg(+s) g xg— Chy

Sg(x7y) = —K(tp($)7y)7 T,y €9

It is symmetric, (p-invariant, and obeys

So([z, 4], 2) = =54 (y, [p(2), 2])

for all z,y,~ € g. The subspaces h, n, and n; are pairwise orthogonal with respect to Sj.
We have ker K = ker Sy C g.

Remark 7.7. Whenever we have b; # 0 for each i € {1,..., R}, we may define a matrix A =
(aij)i,je{l,...,R} by ai; = 2b;;/b;;. By construction a; = 2 for each i € {1,..., R}. If in addition
a;j € Z<o whenever ¢ # j then A is a symmetrizable generalized Cartan matrix. In that case the
quotient g := g/ ker K = g/ ker Sy is the Kac-Moody Lie algebra associated with A, and the kernel

ker Sy is generated by the Serre elements adF;a” +1Ej, 1% .

Given (7.2), one sees that K is o-invariant, i.e. K(o(x),0(y)) = K(x,y) for all z,y € g. Hence,
in view of (7.11), so too is Sy, i.e. Sy(o(x),0(y)) = Sg(x,y) for all z,y € g. Thus Sy restricts to
give a bilinear form on g?. Also o(ker Sy) = ker S.

Lemma 7.8. There are canonical Lie algebra isomorphisms

(9/ ker Sg)g = 90/(1{‘31" Sg)7 = g7/ ker((Sg)|g7)-

Proof. We shall show that these are linear isomorphisms; it is then clear that the Lie algebra
structures coincide. Let II; : g — g, k € Z7, denote the projectors Il := % ZjEZT w %57 onto the
eigenspaces of 0. We have g = g° ® g+ where g+ = ®k¢0 II;g. By o-invariance of Sy, the subspaces
g% and g+ are orthogonal with respect to Sg. Therefore if x € g7 is such that Sy(x,y) = 0 for all
y € g7 then in fact Sy(z,y) = 0 for all y € g. Thus ker((Sy)|go) C ker Sy N g7 = (kerSy)?. The
reverse containment, ker S;Ng? C ker((Sg)lge ), is obvious. This establishes the second isomorphism.
Consider the first isomorphism. Elements of (g/ ker Sg)? are by definition cosets z +ker Sy such that
o(z +ker Sg) = x + ker Sy, or equivalently such that oz — z € ker Sg. We have z = 27 + 3, (k)
for unique 27 € g7 and 2*®) € ;g. Now ox — = € ker Sy implies that (w* — 1)2*) € I}, ker S for
each k # 0. Hence () € ker S for each k # 0. Therefore in fact z + ker Sy = 27 + ker Sy, and
here the element x is defined up to addition of an element of (ker Sy)? = ker Sy N g”. Therefore
we have the first isomorphism. O
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Proposition 7.9. Suppose a,b € 0y, mp) for some (m1,...,mg) € Zgo, cf. (6.3). Then

R
[p(a),b] = Sy(a,b) Z m; H;
i—1

0

Proof. By induction on |} ., m;|. The statement is true when |) . m;| = 1. For the inductive
step, by linearity and the Jacobi relations, we may suppose that a = [d/, F}], for some i such that
mi > 1. Then Sg(av b) = SE([alaFi]’b) = _Sg(Fiv [@(a/)7b])‘ On weight grounds [So(a/)vb] ~ Fj.
Since Sy(F;, F;) = 1, we must have —F;Sq(a,b) = [¢(a’),b]. Hence

—Hng((L, b) = [Eu [QD(CZ,), b]]
= [[Ei, o(a’)], 0] + [p(a’), [E;, b]]
= [p(a),b] + [p(a’), [E;, b]]. (7.12)
Inductively we have [¢(a’), [E;, b]] = Sy(d, [E;, b])(—H¢+Zf:1 m;H;) = Sy(a, b)(—Hi—i-Zf:l m;Hj).
Inserting this into (7.12) and rearranging, we find the required equality. O

Corollary 7.10. Suppose z,y € n‘[’/\hmw] for some A= (A1,...,\) € ZL, ¢f. (6.4). Then in g”
we have the equality

1 r _
=1

and hence in §° we have the equality

0

Proof. We may suppose that = @, y = b for some commutators a,b € n, since such projected
commutators span n°. Since @ and b are of the same g°-weight, certainly b has the same length
(“total number of F’s”) as a. Therefore, for every k € Zp, if 0*b and a have different g-weights
then [p(a),o*b] = 0. Also Sy(a,0b) = 0. Hence, if o*b and a have different g-weights for all
k € Zr then both [p(a),b] = 0 and Sg(a,b) = 0 and we are done.

Suppose therefore that *b and a share the same g-weight for some k € Z7. By choice of b we can
take k = 0 without loss of generality. So suppose a and b are both of g-weight (m1,...,mpg) € Zﬁo.
Then, using Proposition 7.11, we have ;

[(p(a)75] = Z [@(Uka)vapb] = Z O'k[(p(a)ﬂjlb]

k,pEZr kJl€Zr
R
= Z Sq(a, o*lb) " Z m; H;
kJl€Zr =1
R o 1 a R o
= S4(a,0) Y miH; —55(@,0) > miH;
i=1 =1
Now
R r T r T; 7'
> mifl; = Mk, ok = D (Z mam@)) Hyp =Y Al
i=1 =1 k=1 =1 \k=1 =1

and we are done. OJ
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The above proposition and corollary have their analogs in a and @, as follows.

Proposition 7.11. Suppose a and b are commutators in a both of weight [I], for some I C
{1,...,m}. Then

[(,0((1), b] = S(CL, b) Z hi

el
O
Corollary 7.12. Suppose x,y € ajp, for some I C {1,...,m}. Then
(ea). 9] = S.v) Y
o(x),y] = S(z,y ) i
el
and hence
1_
(), 9l = S(x,y) p_ hi + Qi y)k.
el
O

7.6. Verma and contragredient Verma modules over g. Given A € h* we denote by M(A)
the induced g-module

M(A) :==U(g) ®u(hen,) Coa (7.13)

where Cvy is the one-dimensional (h @ ny)-module generated by a vector vy obeying niy.vp = 0
and Howp = vpaA(H) for all H € . Call M(A) the Verma module over the Lie algebra g. (One
should keep in mind that g has “no Serre relations”.) By the PBW basis theorem U(g) =¢
U(n) ®c U(h @ ny). Hence there is an isomorphism of left U(n)-modules

M(A) =, U(n) @c Cop =, U(n).
The Zgo-grading on n defined in (6.4) induces a Zgo-grading on the envelope U(n),
Un) = B O, (7.14)
(nl,...,nR)Ezgo

Then we have M(A) = @(A1,..-,/\R)€Z§o M(A)(xy,
Equivalently, B

) where M(A)(Ah...,)\R) = U(n)(/\l,”_)\R).’l)A.

R

R
M(A)(rr,np) =4V EM(A): Hv=v(H,A— Z)\pap> forall H € b
p=1
These weight subspaces M (A)(y,,... x,) are all of finite dimension. Let M*(A) denote the restricted
dual space of M(A) with respect to this decomposition,

M*(A) := @ (M(A)xy,nm)™

(A1, AR)EZE,

The contragredient Verma module M*(A) is by definition this restricted dual endowed with the
g-module structure given by (g.f)(v) := f(¢(g).v), for f € M(A)*, v € M(A), g € g.



38 ALEXANDER VARCHENKO AND CHARLES YOUNG

7.7. Verma and contragredient Verma modules over g°. Recall the definition of the centrally
extended Lie algebra g7 =¢ g% @ Ck from §7.3. Given A € (h?)* we denote by M7 (A) the Verma
module over g7,

M?(A) :=U(g”) ®u(prengack) Cvi (7.15)

where Cvf is the one-dimensional (h? @n% @ Ck)-module generated by a vector v§ obeying n7 .v§ =
0, Ho§ = v{A(H) for all H € 7 and k.v§ = v{. As a module over n?,

M7 (A) Z4o Un?) @c Cof Z4e U(n?). (7.16)
We have the ZZ -grading of U (n?) induced by (6.3). Then M?(A) = EB[/\l,...,AT}GZ’;O M (A)xy,n]

-----

sion. Let M7*(A) denote the restricted dual vector space endowed with the contragredient dual
g%-module structure.

7.8. Shapovalov form on Verma modules. For A € h* (resp. A € (h?)*) there is a unique
bilinear form S on the g-module M (A) (resp. the g°-module M?(A)) defined by

S(”Aa UA) =1, S(l’.’l),’LU) = S(’U, Qo(x)w)v
for all x € g (resp. = € g7) and all v,w in M(A) (resp. in M?(A)). This form is symmetric and

the weight subspaces are pairwise orthogonal.

7.9. Shapovalov form on C,(n?, M(A)) := N\’n° ® M(A). Let us fix now weights Ag € (h7)*
and Aj,..., Ay € b*. We shall write A := (Ag,Aq,...,Ax) and

N
M(A) == M?(Ag) @ Q) M(A,).
i=1
Note that M (A) is a module over n?. With Mg x as in (6.5), we have
M(A) = Mo n.(v], ®vp; @ - Quay), (7.17)

as an equality of vector spaces, and in fact of n?-modules. There is a symmetric bilinear form SP
on the space

Con”, M(A) == \N'n? @ M(A),  p=0,1,...,
defined by

SP(@y N+ NG QT RT1 @ QIN,bp A AbI QY @Y1 @ D YN)

N
= det(Sy (@i, b)1<i,j<p)S(z0, yo) [ [ S(wirwi).  (7.18)

i=1

It respects the weight decomposition. Let SP denote the linear map defined by SP,
p P *
st (NweMm) = (N oMm)) 7.19
N'w @ MA)) — (Nn7eM@)). (719)
Let Cp(n?, M(A)} denote the restricted dual of Cp(n?, M(A) and

7.10. Main theorem. Fix any A = (A1,...,\;) € Z%,. Set m = > i_1 Ai. Recall that the Cartan
matrix entries b;; := (a4, ;) defined a weighting on the “diagonal” hyperplanes ¥H, ;, as in (7.7).

The choice of weights A = (Ag; A1, ...,An) defines a weighting of the remaining hyperplanes of
the arrangement Co .. Namely,

a(ngn) = —(O'kOéL(,L'),A]‘), a(H?n) = —T(OJL(i),A()), (720)
forje{l,...,N},ie{l,...;r},and n € {1,..., \;}.
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Theorem 7.13. For each p € Z>g, the following diagram commutes:

Cp(n?, M(A))x = Cp(n?, M(A))}
S|~ |~

Cpla, Mo.x)jmy & (Cp(a, Mo.v ) ) fimy
Up |~ (W )" |~

FMP(Co nn)Zr TV mp (0o pn ) T

The theorem is proved in §7.11 below.

Remark 7.14. The map G™* : F™*(Co N.m) 2> — ™ *(Co N.m)™* is a map of complexes, cf.
Theorem 2.5. The isomorphisms on the left, s and v, are isomorphisms of complexes, as in Theorem
6.7. We may regard the isomorphisms on the right, 7* and (1»~!)*, as defining the structure of a
differential complex on (Cp(ﬁ,Mo,N)ZZ*)Em] and Cp(n?, M(A))%. It would be interesting to give

an intrinsic definition of the differentials on (Cp(a, MO,N)EZ*)’["W] and Cp(n?, M(A))} in the spirit
of [SV91, §6.16].

Define L(A;) := M(A;)/ker Sfori=1,...,N, L7(Ag) := M?(Ag)/ker S, and L(A) := L7 (Ag)®
QN | L(A;). Define 7 := n?/(ker Sy Nn?).

Corollary 7.15. The maps e 0 s induce isomorphisms of complexes
Ce(n?, L(A))x = g(fg;m_.(CO,N;m)XZk)
O

7.11. Proof of Theorem 7.13. In view of Theorems 5.19 and 6.7, what remains to be established
is the commutativity of the upper square in Theorem 7.13. We will give the details of the proof for
the special case N =0, p =0, i.e. we will prove the commutativity of the square

M(Ao)y —S -, Mo(Ao)}

I

(Mo)pm) —5 (Mo)fym)-
(7.21)

The general proof is similar.
We keep the conventions of §7.2. In particular, we suppose that A dominates u. We have, for
each I € 7, the symmetrization map

sy : M7 (Ao)y — (Mo) -
Proposition 7.16. Suppose € nj, and w € M?(Ag). Then, for all I € T,

1
32|

S(1,...mp1 (P(@)w) = sr(p(x)) > s(w)

as an equality in (Mo)(f1,....m\1]-
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Proof. By linearity, we may suppose that w = by .. .prg for some commutators b1,...,b, € n. We
must show that
1 _ _ _ _
7 si(p(x))>s(by...bpvy) = 5{17“_7m}\](90(l')b1 ... bpup).
P

We proceed by induction on p.
We have = wtx. Let p = wtby. For the inductive step, there are four cases to consider:

(i) p # p and neither dominates the other.
(ii) p # p and p dominates u;
(iii) p # p and p dominates p;
(iv) = p;
(For the base case p = 1 the argument is the same except that then p = A, which dominates pu, so
we can only be in case (ii) or case (iv).)
For brevity, set y := by ...byvg € M?(Ag). By an obvious analog of Lemma 7.2, we have
s s(0@) b s(bay) = st (0(@) > 3 sy Esqr, s v), (722)
2] 2] 2

where J denotes the set of subsets J C {1,...,m} such that J = {i; : 1 <i < r, ¢t € J;} for some
subsets J; C {1,...,\;} with |.J;| = p;.

Consider case (i). The fact that neither of ;1 and p dominates the other implies that, for every J
in the sum (7.22), neither of the sets I, J contains the other. It follows that [s;(¢(z)),ss(b1)]" = 0. If
JNI #  then additionally s;(¢(2))>sg1, s (y) = 0, and hence s;(o())>sy(b1)sgr,.mps(y) = 0.
Thus the only contributions come from J such that J NI = ), and we have

1 - 1
sz @b = > s Bs(9(@) P Spmp ).
JC{i],G\?m}\I

Using the inductive assumption, we see that this is equal to

> sispmpona (@) = s mpr(bre(@)y).
J
JC{1,.. < SmI\I
Since neither of u, p dominates the other, [¢(z),b1] = 0, and so this last expression is equal to

s{l,wm}\j(go(x)gly), as required.
Consider case (ii). Since p dominates u, for every J in the sum (7.22) it must be that either
I C J or neither of I, J contains the other. When I C J we have s;(¢(x)) >sg1 . mps(y) =0 and

@[wm (1)) = @[W(z» s(50)] = s (le().Bu))

by Lemma 7.3. The contribution from terms in the sum on J in (7.22) such that neither of I,.J
contains the other is sg; .\ 7(b1¢(2)y), for the same reason as in case (i) above. Thus, in total,

1 _
WSI( o(z))>s(bry) = Z spa(le(@), bi])sp,mp g (W) + g1, mp 1 (brp(x)y)
B Jeg
ToT
= sq1,.mp 2 ([9(2), 01]y) + sp1, 1 (B1(2)y)
=sq1,mph1(e(@)biy)

as required.
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Consider case (iii). Since p dominates p, for every J in the sum (7.22) it must be that either
J C I or neither of I, J contains the other. When J C I we have s;(¢()) >sq,. mp\s(y) = 0 and

[s1(0(2)),55(b1)]" = [s:(0(2)), 55 (b1)] = ¢ ([ss (0 (b1), 51(2)])
= 3Z,| ¢ (sns([p(b1), 1)) = [3Zy| sp\ s ([o(x), b1])

by Lemma 7.3. The contribution from terms in the sum on J in (7.22) such that neither of I,.J
contains the other is still sy m}\l(blgo(x) ), as in case (i). Hence

1 _
Z |SI(<P( z)) > s(biy) = p| Z sp(le(x), b1]) > sp g (U) + sp1,mp 1 (bre(2)y).
K JCJ
JCI

In every term in the sum on J here, the inductive assumption allows us to re-write the summand
in a form independent of J:

sp(le(@), b)) o spmpg (W) = Xu—plsp,mpa(le(2), bily) (7.23)

The number of terms in the sum is IXZﬁZTI’ cf. (7.6). Therefore the combinatorial factors cancel

and we find

@SI(@@)) >s(b1y) = sg1_mpa([0(@), 01]y) + sp1mp s (019(2)y) = g1 mp 1 (@()bry)

as required.

Finally, consider case (iv). Since u = p, for every J in the sum (7.22) either J = I or neither of
I, J contains the other. The contribution from the latter class of terms is still s;y 1\ 1(b1o(2)y).
Consider the J = I term in the sum. What we must show is that

[sr(0()), s1(b)]'sg1,..mp1(¥) = squ,.mp1([0(2), baly),

1
P
as an equality in s(M7(Ag)x) = (Mo){1,...my\7- And indeed, using Corollary 7.10 and (7.9), we have

_ 1 < _
sr,..mpa([@(®),b1]y) = sqi, . mp\a (TSg(ﬂ% b1) > piH iy + Qp(x), b1 )ky

- (;Sg(x,bl)zhi+Q(<p(fc>»b1>k> S(t,..mp1 (1)

el
By Lemma 7.4 and the definition of §2, this is equal to

|Z%M, (;S(sz(az),SI(bﬁ) > hi+ Q<1(sz(s0(:c)),51(b1))k> S(1mpy ()

i€l
= 5z (1@ s100] 51 mpa () (7:24)
as required. ]
Proposition 7.17. Let v,w € M?(Ag)x. Then ‘XZ ‘S(s(v),s(w)) = S(v,w).

Proof. By complete induction on [A| = A; + -+ + A,. The result is true for |A\| = 0. For the
inductive step, suppose v = zu for some z € nj, and u € M?(Ag)r—,. Then, by definition of S and
the inductive assumption, we have

S(zu,w) = S(u, p(z)w) = Z
=

|EZ>\ H‘ S{1,mp (W, s(1,mpr(@(z)w)).
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Therefore
1
S xu, w .,m (’U,), 75[(90('7;)) > S(IU))
Nz ; mf ettt fez]
S(sr(@)sqa,...myp\r(w),s(w))
|I||zzu||m u% Hrmh)
570 (s(zu), s(w)),

|EZ |

where we used Proposition 7.16 and (7.6). This completes the inductive step. O

Recall that som = mos = [3Z,]id, as in Lemma 6.4. Therefore Proposition 7.17 is equivalent to
the statement that

S(v,n(+)) = S(s(v),-), for all v € M?(Ap)ax,

as an equality in (M), .- Thus the square in (7.21) is indeed commutative.
(1m]

8. PROPERTIES OF THE COCYCLE {2

We keep the conventions of §7. We have the quotient Lie algebra g := g/kerS;, and its Lie
subalgebra of o-invariants,

= (g9/ker §4)7 = g7/ ker((Sq)lg- ),
as in Lemma 7.8. In §7.3 we defined a cocycle 2 on g°. According to Proposition 7.5, {2 vanishes
on ker Sy C g?. Therefore Q descends to a well-defined cocycle on the quotient g°.

Proposition 8.1. If Q) is coboundary then it is zero.

Proof. Suppose that Q is coboundary, i.e. that

Qz,y) = a([z,y])
for some linear map « : g% — C. What we must show is that & = 0. Let n” := n?/ker Sy and
n7 :=n9 /ker Sy. Suppose x € n{ and y € (n%.),. By definition Q(z,y) = 0 unless ;= A, in which
case [z,y] € h?. Thus « is non-zero at most on h? N [g”, g”]. The space h? N [g7, g°] spanned by
the elements H (i) = [E W@ (i)], i =1,...,7. So to show that a = 0 it is enough to check that
QE, @, I L( y) =0fori=1,...,7. And indeed this is manifestly true: for any given ¢, we have the
flag ¥ (sgiy (F,yv0)) = ¥ (f; vo) (C! 5 {0}), and we are to compute the inner product of this flag
with itself with respect to the arrangement in C! consisting of only the “diagonal” hyperplanes —
but in C! this is the arrangement with no hyperplanes at all. O

Corollary 8.2. If g7 is semisimple and of finite dimension, then € = 0.

Proof. Recall that when g7 is semisimple and of finite dimension, Whitehead’s lemma states that
H?(g?,C) =0 (e.g. [JacT9, Lemma 6, Ch. 3]). That is, every (2-)cocycle on g° is a coboundary. [

The Lie algebra g7 is finite-dimensional and semisimple in particular in the following situations:
(i) g7 is the folding of a simply-laced finite-dimensional simple Lie algebra by an admissible

diagram automorphism [Kac90, §7.9]. That is, the pair (B, T) is one of

(DZ+17 2)7 (AZZflv 2)7 (E67 2)7 or (D47 3)

and g“ is the finite-dimensional simple Lie algebra of type By, Cy, F4 or Go respectively.

(ii) A is the direct sum of T copies of a Cartan matrix A’ of finite type. Then g7 is the finite-
dimensional semisimple Lie algebra of type A’, g is the direct sum of T copies of g7, and o is
the automorphism which cyclically permutes these copies.
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Now define a matrix B = (b{;); je{1,....r} bY
b= D bt
k€Zr
Observe that B? is symmetric.

g

Proposition 8.3. There is an embedding of Lie algebras g(B%) < g°.
Proof. We have

B T-1 7o Tzl
[ o(2) L(j Z Fi L(j)] = 5i7jﬁ [EakL(i)ﬂ FUZL(i)]
k,1=0 v k=0
72 izl 2
T T; T
T2 ZHk ’]TQTZHk = zijL(i) (8.1)
T k=0 i
and
o o T-1
[Hb(i)>EL(j)] = Z [H k, a L(] Z bcr’%(z ),otu(§) Holu(h)
=0 k=0
=D biyorri)Eo) = D by ok Eotuis) = W5 Euh)- (8.2)
k,1=0 k=0

and similarly for [H,), F,(j)]. Therefore E,;, 7 LF Fy;) and H,;), i € {1,...,7}, generate a copy of
g(B?) inside g°. O

Proposition 8.4. Suppose x € g(B?) — g. Then Q(y,z) =0 for all y € g°.

Proof. 1t is enough to consider z € n(B?). (The case x € n (B?) follows, while z € h(B?) is
immediate.) Consider the flag 1(s(zvg)). To say that x € n(B?) is to say that z is a linear
combination of commutators in the F,;), i = 1,...,7. By expanding commutators we can express

v as a linear combination of monomials of the form Fb(il) .. .Fb(ik)vo, i1,...,0 € {1,...,7}. Now
T/J(S(FL(il) .. .FL(ik)vo)) is a linear combination of flags each of which has a first step of the form

C">(tp=0)D... (8.3)
for some p. No such flag is adjacent to any tuple of hyperplanes from the arrangement C; of
“diagonal” hyperplanes *H; ;. Therefore by definition Q(y,z) is zero, cf. (5.8). O
Corollary 8.5. If g(B?) = g7 then Q = 0. O

The next example shows that the embedding g(B?) < g7 is not always an isomorphism, and
that €2 is not always zero.

Ezample 8.6. Suppose g = g(B) is the untwisted affine Kac-Moody Lie algebra of type Dil). Let
us label the nodes of the Dynkin diagram as follows:
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Let o be the diagram automorphism (1234). Set ¢(0) =0, ¢(1) = 1. Then

w5

Thus g(B?) is the twisted affine Kac-Moody Lie algebra of type AgQ), whose Dynkin diagram is

==

0 1

In g(B?) — g7 the subspace n(B7)|; 5 has dimension one: it is spanned by [[FO,Fl],FI]. But
nﬁ 3] has dimension strictly greater than one. Indeed, already in the quotient n? C g°, the subspace

ﬁ‘[fl 9] has dimension two: it is spanned by the elements [[Fo,Fl],Fl] and?®

[[Fo,Fl],FQ] = [[Fo,Fl],FQ] =+ [[F07F2],F3:| =+ [[F07F3]7F4] =+ [[Fo,F4],F1].

Hence g(B“) % ¢°.
Now we shall show that

Q([[EO7E1])E2:|7 [[FO,F:[],FQ]) — —16
Let w = y/—1. We have coordinates to,t1,,t1, on C3. Let®

X = y(s([[Fo, 1], Fz]vo))
= > ([ Ffo. O] Ui Jv0)

S€EYXo kE€EZy

=2 2 E0M(E s (o =ty

SEY kEZy

D (to = Wktlsu) = wk+1t15(2)) D (to=t1, =t, = 0))

We are to evaluate the inner product Gg, ,, ,, (X, X). The hyperplanes of the arrangement Cp 1, 1,
are

e *Hy1, = (to = wFty,), k € Zs, p € {1,2}, of weight —1,

e UHy 9 = (t1, = t1,), of weight 2, and

o Ky 5 = (t1, = wFty,), k € Zy \ {0}, of weight 0.

We may ignore the last of these since they have weight 0. Therefore the only unordered tuples of

hyperplanes we need consider are those of the form (kHo,lsu) , k+1H0715<2) ,x) for some hyperplane x.
Note that for any k € Zy4, s € ¥,
k k+1 k+2
<X, Ho’ls(l) AFT H0713(2) A FT H0713(1)> =1-1=0.

SNote that in n?, [F1, F»] = 0 and hence HF{),FQLFl] = — HF{),Fﬂ,FQ] by the Jacobi identity.

6Here we choose the sign convention in which P(f1, A ?11 A fo ® vo) = +(C?).
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Thus we get, as claimed,

GC0,11,12 (X, X) = Z Z <<X7 kHOvls(l) A k+lH0713(2) A 0H13(1)113(2)> ? % (-1)(=1)(2)

SE€T kely
+ (X, "Ho 1,0y AT Ho ) A +1Ho L) 2 X (=D)(=1)(=1)
+ (X, Ho 1) A Ho o) AT Ho ) 2 X (=1)(=1)(=1)
+ (X, "Ho 1,0, AT Ho ) A +2H0 L) - X (=1)(=1)(=1)

(X, o ) AP Oy A1) X (<1)(-1)(-1))

=) Y 2-1-1-1-1)=2x4x(-2)=-16.

s€X k€Zy

Remark 8.7. Suppose B is a symmetrized generalized Cartan matrix, as in Remark 7.7, so that g
is a Kac-Moody Lie algebra. Then the fixed-point subalgebra g7 is not a Kac-Moody algebra in
general. However it does belong to the larger class of Borcherds algebras [Bor88]. More generally,
in fact, g7 is a Borcherds algebra whenever g is a Borcherds algebra [Bor88, Theorem 5.1]. Note
also that every central extension of a Borcherds algebra is isomorphic to some quotient of the
corresponding universal Borcherds algebra; see [Bor91].

9. CANONICAL ELEMENT, DIMENSION FORMULAS, AND WEIGHT FUNCTION

9.1. Bases of flags spaces. We have the Orlik-Solomon algebra 7*(Co n.m) =c #°*(Con:m)™,
cf. §2.2, for the cyclotomic discriminantal arrangement of §3. We will now define a dual pair
of bases of .#™(Co,n;m) and ™ (Co n:m), and hence an expression for the canonical element in
ngm(CO,N;m) ® fQ{m(CO,N;m)-

For each p = 1,...,m, let us construct a set of preferred flags Flag?(Co n;m, O) in Flag?(Co,nim)-
It will be a disjoint union

Flag? (Co,n:m> O) = |_| Flag?(Co,nim, O)1

over the set of p-element subsets I C {1,...,m}. First, we must set
Flag”(Co n:m, O) = Flag®(Co n:m» O)p = Flag®(Con.m) = {(L° = C™)}.
Then we proceed recursively: for p=0,1,...,m —1and for 1 <i <iy <ig <--- <1ip <m,

Flangrl(CO,N;ma O){i,il,.‘.,ip}

= { (L°> - > IP>LPNH): (L° D D LP) € Flag?(Co,nm. O)fir,min}s

k kpyi 0
H e {"Hjiti o ipen, YU H o jonnen, Y {H: }}. (9.1)
Proposition 9.1. |Flag?(Co nym, O)r| = [Lie; (1 + (1 =1+ N)T).

Proof. According to the recursion (9.1), the set of preferred flags Flang(Co, Nimy O)fisin, iy} 18
obtained by taking each of the preferred flags F' = (LY D --- D LP) € Flag”(Co n.m, O)fir,...ip) I
turn, and extending it in every one of the following 1 + NT + (i — 1)T different ways:

(1) “setting t; to zero : that is, letting LPT1 = LP N HY;

(2) “setting t; = w”z;”: that is, letting LPT! = LP N ka, fork€Zrand j=1,...,N;

(3) “setting t; = wkt ”: that is, letting LPT! = LP N _kHM, forke€Zprandj=1,...,i—1.

The result follows by induction. O
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Example 9.2. Suppose T'=1 and N = 1, and take m = 2. So we have coordinates t1,ty. We have
Flag' (Co, 22, O) 1y = {C* D (t1 = 2),C* D (t; = 0)}.
Note that this set does not include the flag C? O (t; = t2). This flag does appear in
Flag' (Co,z:2, 0) 2y = {C? D (t2 = t1),C* D (t2 = 0),C* D (t2 = 2)}.
From Flag! (Co,z;2, O) 2y We compute

Flag2(CO;2,O){172} = {C2 D(ta=t1)D(ta=1t1 = 0),@2 D(ta=t1)D(ta=1t1 = 2),
CQ D) (t2 = 0) D (tQ =0,t1 = Z),(C2 D (tz = 0) D) (tg =0 :tl),
CQ D) (t2 = Z) D) (tz =z :tl),CQ D) (tg = Z) D) (t2 =2z,t1 = 0)}

Note that Flag?(Cp .2, O) does not contain, for example, the flag C2 D (t1 = 2) D (t2 = t; = 2).

As the notation indicates, Flag?(Co n.m, O) corresponds to a framing O of the arrangement Co n.m,
in the sense of §2.5, i.e. to a choice of hyperplane H(L) for every edge L. Indeed, this framing O
is as follows. Given any edge L of Co n.m, let j be smallest such that L is contained in either: kHM
for some i < j and k € Z7, or kH; for some i € {1,...,N} and k € Zp, or H]Q. Then for that 7,
(1) if L € H}, let H(L) = HY;

(2) if L C *H, let H(L) = *H};
(3) otherwise, let H(L) = ¥H;, ; for i as small as possible.

Ezample 9.3. With m = 3 and N = 1 we have for instance
H({tg = tl,tg = wzl}) = {tz = tl} = OHLQ, H({tg = tl,tg = wzl}) = {tg = wzl} = 1H21.
Consequently, by the results of §2.5, we have the following.

Theorem 9.4.
(1) FlagP(Co nim, O) is a basis of FP(Conm);
(ii) the dual basis of FP(Conm)* = AP(CoNm) 1S

{H(Ll) A H(L2) A A H(Lp)}(LODLl3...3LP)€Flagp(CO,N;m:O) '

0

Combining this with Proposition 9.1, we obtain the dimensions of the flag spaces of the cyclotomic
discriminantal arrangements, as follows.

Theorem 9.5. The Poincare polynomial P(x) := 3 " 2P dim(FP(Conym)) of the arrangement
Co,N:m s given by

e
O
Il
—
—

1+ (1+(p+N)T)x).

0

Moreover it follows from our recursive definition of Flag™(Co n.m) above that the canonical
element in F™(Co, N.m) @ ™ (Co,N.m) itself has a simple recursive definition. For p=0,...,m —1
we define a linear map

emfp : ﬁp(CO,N;m) ® JZ{p(CO,N;m) — <g.:l)—~_1(CO,N;TrL) ® vQ{p—i_l(CO,N;m)
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= (L°> - D IP > LPN Hmp) @ AAFH )
j T
+(L°D> D LPDIPNH), ,)®(AANH), )
N
+Y N @ oo PntH, @ WA, ) (9.2)
j=1k€Zr
Define © := 01 (02(...0,,(L°®1)...)). In view of Corollary 2.4 we have the following.
Proposition 9.6. © is the canonical element of F™(Co,N.m) @ ™ (Co,Nim)- O

By Theorem 4.2, we have an isomorphism 1,,! from .Z™(Co n.) to the subspace (Mo, N)pm) of
Mon=U(a) ® ®i:1 U(a). Hence we get a canonical element

(b, ®1d)(©) € (Mo,n)[m) ® @™ (CoNim) (9.3)

where we can regard @™ (Co,n.m) as the space of logarithmic differential m-forms of the arrangement
CO,N;m7 as in §2.3.

Ezxample 9.7. Consider the case N = 0 — i.e. no non-zero marked points z; — and m = 3. We have
logarithmic differential forms «(HY) = dt;/t; and «(*H; ;) = d(t; — w¥t;)/(t; — w*t;). The element
(¢t ®id)(©) is given by

(U @10)(0) = FiTaFy ® T2 A T2 7
2 1
Z [4fa, f1] f3®73 %AJ
wity — 11 11
qE€EZT
. d(wptg — tl) dty diy
P o N AN
+ Z [Pf3, f1] foa ® WPl — 1 ty
pELT
I d(wptg — t2) dty ~dity
5 al\wtty —1tz) ~aty a4l
+ > AP fl® WPtz — o ty  t
pEZLT
— d(wPty—t1)  d(wity —t) dt
+ ¥ TR Th e St St ) S

WPty — t1 wity — 1 ty
P,q€LT 3

(wptg — tg) A d(wqtg — tl) A dtl
wPts — to wity — 1 t '

+ > (77 fs, 9l Al e

p,9€LT

(9.4)

Combining Theorem 4.2 and Theorem 9.4(i) we obtain a basis,
U (Flag™ (Co.nom, O)), (95)
of the subspace (Mo n)im) of Mon = U(a) ® ®Z]\L1 U(a).

Corollary 9.8. We have dim(Mo n)im) = dim F™(Co n;m) = " A+ (k+N)T). In particular,
dim U (@) = dim F™(Copn) = [Tp5' (1 + k7).

Proof. Follows from Theorem 9.5. ]
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9.2. The case T' =1 and Lyndon words. Let us consider in passing the special case T' =1, i.e.
the non-cyclotomic case. Then a = a and we have the weight [1,...,1] component U(a)jm) of the
universal envelope U (a) of the free Lie algebra a in generators fi, ..., f;,. Corollary 9.8 reduces to
the statement that

dimU(a)[lm] =1+1)(1+2)...014+(m—1)) =ml

An obvious basis of U(a)(;m] is given by monomials fy1)... fs(m) labelled by permutations s € %,.

Let us describe explicitly the basis of U(a)m) constructed in (9.5).

Recall that given any ordered alphabet there is the reverse’ lexicographical total ordering on the
set of words in that alphabet: if w1 = ai...aza2a1 and wo = by ...bgbyby are distinct words then
wy < wy if and only if a; < b; for the smallest ¢ such that a; # b;.

A word w is called a Lyndon word if w < vu for every splitting w = wv of w into (non-empty)
words u and v. Note that if ay ...asa2a; has no repeated letters, then it is a Lyndon word if and
only if a; is least among its letters.

Free Lie algebras are known to admit bases labelled by Lyndon words [CFL58, Shi58, Hall50]
(see e.g. [BCL13]| for recent work with extensive bibliography). Indeed, given an ordered alphabet
A, let W(A) denote the set of Lyndon words in A and L(A) the free complex Lie algebra in
generators (fy)aea. Define a map v : W(A) — L(A) recursively as follows. For each letter a € A,
set y(a) := f, € L(A). For any Lyndon word w of length > 1, there is is a unique way to write
w = uv for (non-empty) words Lyndon words u and v such that u is as long® as possible. Set
v(w) := [y(u),y(v)]. Then the image v(W(A)) is a basis of L(A). The reverse lexicographical
ordering among Lyndon words makes this into an ordered basis, and so we can apply the PBW
theorem to get a basis of the envelope U(L(A)).

In our case, let P denote the set of all m! words in the ordered alphabet 1,2, ..., m in which each
letter is used exactly once. Every word w € P can be uniquely factored into a product of Lyndon
words such that these Lyndon words are ordered (reverse lexicographically) when read from left to
right. (The factors are, in an obvious sense, the maximal Lyndon words occurring in w.) Applying
the map ~ factor by factor, we arrive an element of U (a)[lm]. Doing this for each word w € P in
turn, we produce a basis of U(a){im).

Proposition 9.9. This basis of U(a);im) coincides with the basis (9.5), for N =0 and T = 1.
Proof. By inspection. O

Ezxample 9.10. When m = 5 we have for example the following factorizations of words in P into
reverse-lexicographically ordered products of Lyndon words

54321 = (54321), 41235 = (41)(2)(3)(5), 24531 = (24531), 12345 = (1)(2)(3)(4)(5).
Applying v we get the following elements of U(a)(;m], which indeed belong to our basis above:
[[[[fs, IANANAP fl} L U RS, [fz, [[Fa s, £l fl]], fifofsfufs.
Remark 9.11. When T' > 1, the basis (9.5) of U(a)[;m) consists of “decorated” Lyndon words. For

example, the element [f2, f1]f3 of the Lyndon basis for m = 3, T = 1 corresponds to T elements
[9fa, f1] f3 labelled by q € Zp if T > 1.

"To match our conventions above it is convenient to use reverse lexicographical ordering.
8Again, note our convention here.
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9.3. Symmetrized canonical element and the weight function. Let now A = (A1,...,\;) €
Z5y with m = A1 +---+ A As in §6.3, the finite group

m)\:m)\l ><-~-><ZZ,\T

acts linearly on the flag spaces #?(Co n.m) and their duals, &P (Co n.m) = FP(Co,N.m)*

Let #™(Co,N;m) = €D, Wa be the canonical decomposition of the space of full flags into its
isotypical components with respect to this action. Let &/ (Co n;m) = @, W, be the corresponding
decomposition of its dual. Then the canonical element © decomposes as © = @, O, where O is
the canonical element of Wy ® W. In particular, let

O € F™(Conym) ™ © A" (Conm)

where F™(Co n.m)™* denotes the isotypical component of .#™(Co n.m) spanned by flags F' such
that (—1)l9lg.F = F, as in §6.3, and where "™ (Co.n.m)™* denotes the isotypical component of
/™(Con.m) spanned by forms w such that (—1)19g..o = w. Observe that ©™* can be obtained
from © by projecting either tensor factor.

Let x; : 3Zy, — C* be the one-dimensional representation of 37y, given by x((s, (k1,...,ky,;))) =
wFrt 4k )Ti - Then X = X1 - - - Xr 1S a one-dimensional representation of 37Z,. For later use, observe
that the Jacobian of the linear map C™ — C™;p — ¢ L.p is

ot(g~ L. i 0(g-t)i
gymdet (B PE) e (ReDD) gy (9.6)
where (—1)19 is as in (6.12).
An element n € &/ (Co n.m) is a top-degree form, so it can be written uniquely as
n=udt; \--- Ndty,

for some rational function u regular on C™ \ | HeCo n., H- We have

(—1)llg.n = (gu)x(g) dtr A+ A dt.

Ezample 9.12. Suppose r = 1, Ay = m =2 and T' = 1. Then ¥Z) = 5. Suppose n = dlog(t; —z) A

dlog(ty — z) = 7 5 dty A diy. By definition (—1)II(12).n = —dlog(ty — ) A dlog(t — 2) =17
1 1

and indeed x = 1 and u(t) = ;—5-—- is invariant under {1 < ¢5.

Ezxample 9.13. Suppose r = 1, \y = m = 1 and T = 3, 71 = 1. Then ¥Z) = Zs3. Suppose
n = dlog(t; — z) = ~—dt;. Then k.n = dlog(w"t; — z) = whdty.

1
t1 wkt;—z

It follows that 7 € @™ (Co n.m )™ if and only if u = x(g)g.u for all g € XZy. That is, if and only
if u(p) = u(g~1.p)x(g) for all g € 3Z,. Hence the projector &/™(Co n.m) — ™ (Co.n.m)* 2> can be
written as

wdty A+ Adty, — Z u(g~ p)x(g)dty A - Adtp,.

1
132, oot

In particular, the canonical element © is of the form
O =0dxy N...dty,

for a unique rational map 6 : C"™ — %™ (Co n.m ), regular on Cm\UHeCO,N;m H. Recall that to obtain
the component O ¢ g;m(c()’N;m)XZ)\ & eﬂme(CQN;m)zZA from © € f%\m(COJ\[;m) & lem(Co’N;m) it
is enough to apply the projector &/ (Co nim) — %m(CO,N;m>ZZ’/\ to the second factor. Thus ©*%x
is given by

O = 0™ X day A ... dty,
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where 0*2) : C™ — Z™(Co n.m) ™2 is the rational map, regular on C™ \ Urec, ., H given by

1
|37, |

67 = > 0(g " p)x(g). (9.7)

9EXL

Definition 9.14. The weight function ¥ is the rational map C™ — L(A)) given by
U O I Z(Co )T S5 M(A)y — L(A),
where the isomorphism M (A)y = .F™(Co n.m)*2> is that of Theorem 6.7.
Equivalently (given Theorem 7.13 and Corollary 7.15)
WO I 2 (Conan) ™ D GLF™ (Covim) ™) S L(A)

Ezample 9.15. Let B be the Cartan matrix of type A and o the diagram automorphism, o = (13).

Let A = (1,0). Let the number of non-zero marked points be N = 1. The weight function is

vy @ Flv1 v ® F3vq n (F1 + F3)vg ® 01 c
t1 — 2z t1+ 2 t1

U= L(A).

The weight function is regular at least on C"\|J HeCo n.., H - The following proposition establishes
that it is also regular on any hyperplane H € Cy n., whose weight is zero, a(H) = 0.
Proposition 9.16.

(1) Suppose (aL(i),akozL(j)) = 0. Then the weight function ¥ is regular on the hyperplanes
kH’in,jp} n = 1,...,)\1', D= 1,...,)\j.

(2) Letve{l,...,N} (resp. v=0). If (a,(5), " Ay) = 0 then the weight function U is regular
on the hyperplanes kHZ?iL (resp. the hyperplane Hion) form=1,... ).

Proof. The proof is given in Appendix A. O

Recall the definition of the master function ® from §2.6. In the case of the cyclotomic discrim-
inantal arrangement Co ., with the weighting defined in (7.7) and (7.20), ® is given explicitly
by

oA N r A
®=- Z Z (e, Ao) log ti, — Z Z Z Z (aj, %) log(t, — w"z)

i=1 n=1 keZr i=1 j=1n=1
)\i )\j T
+ Z Z Z Z (Oéi,UkOéj) log(t;, — wktjp) + Z Z Z (ai,akai) log(t;, — wktip).
keZr 1<i<j<rn=1p=1 ke€Zr i=1 1<n<p<);

(9.8)

Given a point p € C™, let Stab(p) C ¥Z) denote the stabilizer subgroup of p. Define a number
n(p) € C by

heStab(p)

Whenever p € C™ \ Upe, .. then Stab(p) is trivial and hence n(p) = 1.
Let now By n.m C Co,n:m be the subarrangement consisting of all the hyperplanes of Co n.m of
nonzero weight. Proposition 9.16 shows that W is regular on the complement C™ \ Uycp, .. H of

this subarrangement. A point p € C™ \ Uycp, .. [ in this complement is called a critical point
if d®|, = 0. The Bethe vector corresponding to a critical point p is the vector U(p) € L(A),.
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Theorem 9.17. Suppose p € C™\ UHEBO v, H s an isolated critical point of the master function

®. The Bethe vector V(p) is nonzero if and only if n(p) # 0.
In particular the Bethe vector ¥ (p) is nonzero whenever the stabilizer Stab(p) C 3Zy is trivial.

Proof. By Lemma 2.6, we may work with the geometric form of the subarrangement By n.p,.
We use results from [Varll]. Consider first the rational map

T:C™ L F™(Conim) = G(F™(Conim)) C & ™(Conam)-

Suppose p is an isolated critical point of ®. It follows from Theorem 9.13 in [Varll] that ¥(p)
(denoted there [F](p)) is nonzero.

Indeed, in [Varll] a linear map oy, : A, = F™(Co.n.m)/ ker G = G(F™(Co n:m)) is defined, where
A, is the local algebra of the critical point p. The local algebra is the quotient of the algebra of germs
at p of holomorphic functions by the ideal generated by the partial derivatives (0®/0t;)1<i<m. It
comes equipped with a canonically defined non-degenerate bilinear form, the Grothendieck form.
Theorem 9.13 of [Varll] says that «, is an injection and that under this injection the Grothendieck
form on A, is identified with the geometric form G on .#™(Co n.m)/ker G. There is a preferred
element of A, the Hessian determinant

Hess := det(82<1>/ati8tj)19,j§m.

It is known that Hess # 0 in A,. (Let us stress that this is true even if p is a degenerate critical
point, i.e. even if Hess|, = 0.) It is shown in [Varll] that the image of Hess under the injection oy,
is \T/(p), up to a nonzero multiplicative constant.

Now consider the ¥Zy-orbit of p.

Let us first consider the case that p € C™ \ Upeg, .. F1- Then the orbit consists of |3Z,|
isolated critical points, and 37 acts freely on it. To each point g.p is associated its local algebra
Ay p. Theorem 9.14 from [Varll] says that the images of the corresponding injections oy p : Ay, —
F"™(Co,Nym)/ ker G are orthogonal with respect to the (nondegenerate, on this quotient) bilinear
form G. Hence a linear combination of the form »_ v ¢(g)¥(g~'.p) is non-zero whenever any of
the coefficients ¢(g) are nonzero. In particular the sum

| ! > x(9)¥(g"p) (9.9)

bVAN g7

is nonzero. In view of (9.7), it follows that the Bethe vector ¥(p) is non-zero.

In the case when p lies on a hyperplane H € Cy n.n of zero weight, the stabilizer subgroup
Stab(p) C 3Zx may be non-trivial. The sum (9.9) is nonzero if and only if 37 g X(9) = n(p)
is nonzero. O

For critical points that are not only isolated but non-degenerate, i.e. such that Hess|, # 0, we
have also the following.

Proposition 9.18. Suppose p € C™ \ Uyep, ... H is a critical point of the master function ®.

Then the norm of the Bethe vector is given by S(V(p), ¥(p)) = %Hess\p.

In particular, if p is a non-degenerate critical point with n(p) # 0 then the Bethe vector ¥(p) has
nonzero norm.
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Proof. First observe that, since (g.t;)(g.p) = ti(p) for all g € 3Zj,

P
Hess|,-1, = det 0
g P 8ti8tj 1<i,j<m

g lp

0 71.151' 2
det <<9>>
i 0 Ji<ijzm

< -g 7 g >
=

J7-1 = Hess|,x(9) 2, (9.10)

cf. (9.6). Let ¥ be as in the previous proof. It is shown in [Var06, Theorem 5.2] that for any
non-degenerate critical point p, S(¥(p),¥(p)) = Hess|,, and moreover that if p,q are distinct

non-degenerate critical points then S(¥(p), ¥(g)) = 0. Thus, given (9.7) and (9.10), we have
1 -

sz 2o Max®)SEap), Wb p))
a,beXZy

“ R L X MaOX®SEe ). e )

a€3Z beaStab(p)

S(¥(p), ¥(p)) =

B 1
132,

Z x(h) | Hess|, (9.11)

heStab(p)

as required. ]

9.4. On the Bethe vectors of the cyclotomic Gaudin model. In [VY14a] a cyclotomic Gaudin
model was constructed and solved by Bethe ansatz. The data defining the model include a triple
(g,0,T) where g is a finite-dimensional semisimple Lie algebra and o is an automorphism of g
whose order divides T' € Zx.

Consider the special case when o is a diagram automorphism of order 7. Then we are in the
setting of the present paper. Choose the matrix B = (o, )i j=1,..,r above to be the symmetrized
Cartan matrix of g.

Proposition 9.19. The image in L(A) of the cyclotomic weight function yor € M(A) of [VY14a]
coincides with ¥ as defined here. ([l

This is so because the recursive definition of the canonical element © given after Theorem 9.4
coincides (by construction) with the recursive definition of the weight function via “swapping” given
in [VY14a] following [FFR94].

Consequently, the results of the preceding subsection apply to the weight function of [VY14a).

We should remark on the following subtlety. In the present paper the highest weight Ay € (h7)*
of the module M?(Ag) determines the weighting of the hyperplanes HY defined by the equations
(t; = 0) simply by

—a(H ) = (i, TAy) (9.12)
as in (7.20). In [VY14a] the relationship is in general less trivial. Namely,

_a(HZn) = (CYZ‘,TA() + AO) — Z ﬁ
k=1

(9.13)
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where \g € (h?)* is a weight defined as follows.” Let A* denote the set of positive roots of g. The
Cartan decomposition can be chosen such that, for each o € A", we have ocE, = TaEy(a) and
oF, = Tolea(a) for some root of unity 7,. Let

T-1 1 k—1
— -1
Ag = Z 1= oF Z Top(a) | @
k=1 acAt p=0
ok (a)=a

Lemma 9.20. The definitions (9.12) and (9.13) do coincide whenever o is a diagram automor-
phism.

Proof. If T = 1 there is nothing to prove. If T" > 1 but ¢ = id is the trivial automorphism
then 7, = 1 for all @« € AT and the result follows from the identity (ai7ai) = Z(ai, p) where
p= % Y aca+ « is the Weyl vector. So suppose o is a non-trivial diagram automorphism and 7" is a
multiple of the order of 0. To say that o is a diagram automorphism is to say that 7,, = 1 for each
simple root a;. Then 7, € {+1,—1} for all « € A*. Now we proceed by case-by-case inspection
of the non-trivial diagram automorphisms of the finite-type Dynkin diagrams. Define a sign ¢ to
be —1 in type Ay, and +1 otherwise. One finds that 7, = ¢ for all @ € AT such that o(a) = a.
Moreover for each simple root a;,

(ozi,oozi)ze Z (ai,a).

aEAT
o(a)=a

This implies the result. U

APPENDIX A. PROOF THAT ¥ IS REGULAR ON HYPERPLANES OF WEIGHT ZERO.

In this appendix we give the proof of Proposition 9.16. Consider part (i). Recall our basis
Flag™(Co,N:m, O) and its dual from Theorem 9.4. The canonical element is the sum

0= Z F ®wp,
FeFlag™ (Co,Nym,O)
where wp € 7™ (Co n.m) is the basis vector dual to the flag F', for each flag F' € Flag™ (Co Ny, O).

Let up be the rational function defined by wp = updt; A -+ A dt,,.
Fix i, j, k such that (ab(i),akadj)) =0. Fixne{l,..., N} and p € {1,...,\;}. We must show

that
> G(Fur
FeFlag™ (Co,Nym,O)
is regular on kHimjp.

There is an equivalence relation on the set Flag™(Co n.m, O) of basis flags in which two flags are
equivalent if and only if “they are the same when we equate t;, and wktjp”. That is, F = (L° D
o> L™ and F = (L% D --- D L™) are equivalent if L" N "Hi, j, = LN "H,,,j, for each r. Let
[F] C Flag™(Co n:m, O) denote the equivalence class of a flag F'. We shall now show that, for every
basis flag F,

> G(F)up (A1)

Fe[F)

is regular on *H;
sition.

.y Since the classes partition Flag™ (Co,n;m, O), this suffices to prove the propo-

9Strictly speaking, [VY14a] considered only the case Ag = 0, but the generalization is straightforward.
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Suppose that F' is any basis flag such that the function ug is singular on kHZ-n,jp. This happens
if and only if up contains a factor (¢;, — w¥¢;)~'. In view of Theorem 9.4 part (ii), that means
H(L") =*H;, ; for some edge L", r € {1,...,m}, of the flag F.

Observe that the difference up — uj is regular on *H;, ; for all F € [F]. (Indeed, up =
(ti, —wFt;,) 7 f and up = (t;, —wktjp)_lf for rational functions f, f regular and equal on " o)
So for the purposes of computing the singular part of (A.1) we can replace uz by up in the sum.
Therefore it is enough to show that

Z F € ker g.
Fe[F]

Recall that in our recursive definition of the basis flags, we first “set ¢, equal to something”, then
tm—1, then tp, o, and so on, until at the 7th step we get t0 tmax(i,,j,)- Thus r = m+1—max(in, jp)-
There is a unique nonnegative integer s < r and unique integers hy,...,hs with m > hy > --- >
hs > max(in, j,) such that: for every flag F = (L® D --- D L™) in the class [F], each of the
hyperplanes H (I~/”+1_h“), u =1,...,s, involves one or other of i, or jj,, while the remainder of
the first » — 1 hyperplanes H(El), e ,H(i’"_l) do not. (Intuitively speaking, t,,...,t,, are the
coordinates which got equated to a multiple of ¢;, or ¢;, before either of the latter got set equal to
something.)

Note that for all F = (L° > ... > L™) € [F], L* = L* for r < s < m. Consider the edge L" of
F. Tt is an archipelago of islands in the sense of §3.1. One of these islands is a swimming island
involving precisely the elements of J = {h1,...,hs} U{in,jp}. Recall the notion of shortened flags
from §5.4. By inspection, it is enough to consider the shortened flags F' |; and to show that

Y Flj €kerg. (A.2)
Fe[F)
Observe that a(*Hj, j,) = (a,g), 0% a,(;)) = 0 implies ([¥f;,, fi,]) € ker G and hence

C o= ([ % s [% S no s -5 [0y [F, fin] - T)]) € Ker G

Now we claim that (for suitable q1,...,qs € Zr), C is the sum of flags in (A.2). Indeed, consider
the following procedure. Here we simplify notation by letting w := f;, and i := f;, , j := kfjp.
First distribute 1 over [j,¢] using the Jacobi identity in the form

[, [7, ] = [[1, 4], 4] + [4, [1, 2]).

Then distribute 2 over the result:
[2, (1, 1)) = 2,111,401 + . [1, 4]
= [[2, (1,400 4] + [[1, 5, [2,4]] + [[2, ], [L,4)] + [, 2, [L,4]]],

and so on. In general, at the uth step we have a sum of terms of the form [s, ..., [u+1, [u, [X,Y]]...]]
for some commutators X,Y and we re-write such terms as follows:

[s [u+ 1, [u, [X, Y]] } - [s [+ 1, [[u, X], Y] + [X, [u, Y]]] ]

With the isomorphisms of Theorem 4.2 in mind, one sees that this indeed coincides with the
recursive procedure given above to construct the basis flags. Thus we have the equality (A.2), as
required.

We turn now to part (ii). The argument is similar to the one above. We shall consider for
definiteness the case of (a,(;), Ag) = 0. There is an equivalence relation among basis flags in which
F=(L">--->L™) and F = (L° > --- D L™) are equivalent if L N H) = L'n H for every r.
As before one checks that up — uj is regular on Hion for all I € [F] so that it is enough to show
that for each equivalence class [F], > FelF] F € kerG.
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Pick a basis flag F' = (L% D -+ D L™) such that up is singular. Let r be the unique number such
that H(L") = H?n. There is a unique s < r and unique integers hi,...,hs with m > h; > -+ >
hs > in such that: for every flag F = (L° > --- D L™) in the class [F], each of the hyperplanes
H(fﬂ”“‘h“), uw=1,...,s, either involves i,, or else is Hou, while the remainder of the first r — 1
hyperplanes H(L'),..., H(L""') are not of either of these types. Let J = {hi,...,hs,in}. The
edge L" of F includes the fixed island L?].

Now the fact that a(H? ) = (o), Ao) = 0 implies that (f; vo) € ker G and hence that

A= w(ﬂm V.. TM)EUO € ker@.

Once more we conclude by observing that A = > FelF) F |7. Indeed, this follows from repeatedly
rewriting using the identity

T Xy=Xfry+ Z [Ffne> X1y (A.3)
keZr
for ¢ =1,...,s in turn, where X is a commutator including f;, and y is a monomial of the form

fh. - fn.vo (compare Example 9.7).
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