1	THE EFFECTS OF PRESSURE ON PH OF TRIS BUFFER IN SYNTHETIC SEAWATER		
2			
3	Yuichiro Takeshita* ^{1,2} , Todd R. Martz ¹ , Luke J. Coletti ³ , Andrew G. Dickson ¹ , Hans W. Jannasch ³		
4	and Kenneth S. Johnson ³ ,		
5			
6	1. Scripps Institution of Oceanography, University of California San Diego, La Jolla		
7	California, USA.		
8	2. Carnegie Institution for Science, Department of Global Ecology, Stanford, California, USA		
9	3. Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, California		
10	95039		
11	* Corresponding Author: Email: ytakeshita@carnegiescience.edu		
12			
13			
14			
15			
16			
17			
18			

Abstract

Equimolar Tris (2-amino-2-hydroxymethyl-propane-1,3-diol) buffer prepared in artificial seawater media is a widely accepted pH standard for oceanographic pH measurements, though its change in pH over pressure is largely unknown. The change in volume (ΔV) of dissociation reactions can be used to estimate the effects of pressure on the dissociation constant of weak acid and bases. The ΔV of Tris in seawater media of salinity 35 ($\Delta V_{\rm Tris}^*$) was determined between 10 and 30 °C using potentiometry. The potentiometric cell consisted of a modified high pressure tolerant Ion Sensitive Field Effect Transistor pH sensor and a Chloride-Ion Selective Electrode directly exposed to solution. The effects of pressure on the potentiometric cell were quantified in aqueous HCl solution prior to measurements in Tris buffer. The experimentally determined $\Delta V_{\rm Tris}^*$ were fitted to the equation $\Delta V_{\rm Tris}^* = 4.528 + 0.04912t$ where t is temperature in Celsius; the resultant fit agreed to experimental data within uncertainty of the measurements, which was estimated to be 0.9 cm⁻³ mol⁻¹. Using the results presented here, change in pH of Tris buffer due to pressure can be constrained to better than 0.003 at 200 bar, and can be expressed as:

33
$$\Delta pH_{Tris} = \frac{-(4.528 + 0.04912t)P}{\ln{(10)RT}}$$

where T is temperature in Kelvin, R is the universal gas constant (83.145 cm³ bar K⁻¹ mol⁻¹), and P is gauge pressure in bar. On average, pH of Tris buffer changes by approximately -0.02 at 200 bar.

1 Introduction

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Open ocean pH is declining at rates between -0.001 to -0.002 pH yr⁻¹ as atmospheric CO₂ increases and the surface ocean equilibrates with larger partial pressures of CO₂ [Dore et al., 2009; Byrne et al., 2010; Bates et al., 2014]. Decreases in pH may have large impacts on ocean ecosystems, particularly on organisms that make calcium carbonate skeletons and shells [Doney et al., 2009; Barton et al., 2012; Bednaršek et al., 2012]. It is expected that rates of pH change will not be uniform [Feely et al., 2008; Wootton et al., 2008; Takeshita et al., 2015], and different regions will experience varying degrees of impact. The rate of decrease has been observed directly at a few long-term time series stations [Bates et al., 2014] using highly reproducible spectrophotometric pH measurements [Clayton and Byrne, 1993; Liu et al., 2011]. The expense and expertise required to sustain such observations prevent them from being scaled to large areas of the ocean. Alternatively, a monitoring system that utilizes autonomous chemical sensors may alleviate such problems and greatly improve our understanding of the spatial and temporal variability of the rate of pH decline in the ocean [Johnson et al., 2007]. However, in order to establish such a chemical sensor network, the development and implementation of stringent calibration protocols are necessary.

The assignment of proper pH values to a suitable buffer solution is essential in obtaining accurate pH measurements [Bates, 1973]. Equimolar Tris (2-amino-2-hydroxymethyl-propane-1,3-diol) buffer prepared in artificial seawater (referred to as just Tris buffer hereafter) has been widely accepted as the primary pH standard for oceanographic pH measurements [Dickson, 1993; DelValls and Dickson, 1998], and has been used to calibrate potentiometric pH measurements [Millero et al., 1993; Martz et al., 2010], and to characterize indicator dyes used in spectrophotometric pH measurements [Clayton and Byrne, 1993; Liu et al., 2011]. Although the

temperature and salinity dependence of the dissociation constant of Tris has been quantified at 1.01 bar $(K_{\text{Tris}}^{1.01})$ [DelValls and Dickson, 1998], its pressure dependence has yet to be determined in seawater media. As the number of in situ pH measurements at high pressures is expected to increase rapidly in the next decade due to improvements in robust pH sensor technology [Johnson 64 65 et al., 2016] and development of the deep-sea Free Ocean Carbon Enrichment system [Barry et al., 2014], characterizing Tris buffer in seawater under high pressures will meet a crucial need in sensor calibration and traceability.

61

62

63

66

67

68

72

73

74

75

76

The pH of a buffer solution can be quantified by the Henderson-Hasselbach equation:

$$pH = pK_a + \log_{10}\left(\frac{[A^-]}{[HA]}\right) \tag{1}$$

69 In equimolar buffer solutions, where the deprotonated and protonated forms of the buffer are at equal concentrations, pH is equivalent to the pK_a . Therefore the change in pK_a is equivalent to 70 the change in pH of the solution. The effect of pressure on K_a can be expressed as 71

$$RT\left(\frac{\partial \ln K_a}{\partial P}\right) = -\Delta V \tag{2}$$

where ΔV [cm³ mol⁻¹] is the difference in partial molal volume of the acid dissociation reaction, R is the universal gas constant (83.145 cm³ bar K⁻¹ mol⁻¹), T is temperature in Kelvin, and P is pressure in bar [Byrne and Laurie, 1999; Millero, 2001]. This can be rearranged to give the relationship between the dissociation constant at in situ gauge pressure (K_a^P) and at atmospheric pressure (K_a^0) :

$$\log\left(\frac{K_a^{\rm P}}{K_a^{\rm 0}}\right) = \frac{-\Delta VP}{\ln\left(10\right)RT} \tag{3}$$

77 Note that this equation does not include the partial molal compressibility term, as this only becomes significant at higher pressures than we investigated in this study [Millero, 2001]. P refers 78

to gauge pressure hereafter. The $\Delta V_{\rm Tris}$ has been measured at infinite dilution and in low ionic strength solutions (≤ 0.1 mol dm⁻³ NaCl) using dilatometry [*Katz and Miller*, 1971; *Kitamura and Itoh*, 1987] and spectrophotometry [*Neuman et al.*, 1973]. More recently, the $\Delta V_{\rm Tris}$ in 0.725 mol kg⁻¹ NaCl was reported between 5 and 25 °C by measuring density and sound speed, and using Pitzer equations to interpret the results [*Rodriguez et al.*, 2015]. These results can be extended to seawater media, as agreement of ΔV in artificial seawater media (salinity = 35) and 0.725 mol kg⁻¹ NaCl solutions have been shown for various weak acid-base species [*Millero*, 2001]. However, since ΔV is dependent on ionic strength and solution composition [*Byrne and Laurie*, 1999], $\Delta V_{\rm tris}$ should be quantified in seawater media to validate the extension of $\Delta V_{\rm Tris}$ measured in NaCl solution to seawater.

Here, we report $\Delta V_{\rm Tris}^*$ at 10 to 30 °C, where the * symbol refers to seawater media of salinity 35. A potentiometric cell consisting of an Ion Senstive Field Effect Transistor (ISFET) pH sensor and a Chloride-Ion Selective Electrode (Cl-ISE) was utilized to quantify the effects of pressure on $K_{\rm Tris}$ up to 200 bar. Excellent agreement with $\Delta V_{\rm Tris}$ in 0.725 mol kg⁻¹ NaCl solution was observed [*Rodriguez et al.*, 2015], validating the extension of the reported $\Delta V_{\rm Tris}$ in NaCl solution to seawater media. Sources of uncertainty for the reported values are explored.

2 Background and Theory

The pressure dependence of K_{Tris} can be calculated by monitoring the pH of equimolar Tris buffer solutions over a range of pressures. The left hand side of equation (1) is equivalent to the difference in solution pH at 0 and experimental P (pH⁰ – pH^P) for an equimolar solution, given that the concentration of H⁺ and OH⁻ is negligible compared to the buffer concentration:

$$(pH^0 - pH^P) = \frac{-\Delta V_i P}{\ln{(10)RT}}$$
(4)

Therefore $\Delta V_{\rm Tris}^*$ can be quantified from a linear regression between $RT \ln(p H^0 - p H^P)$ versus gauge pressure. We ignore the effects of partial molal compressibility, because this effect becomes only significant at pressures above 600 bar [*Rodriguez et al.*, 2015]. Furthermore, we make the assumption that the presence of Tris buffer in the artificial seawater media (0.04 mol kg⁻¹) has negligible influence on $\Delta V_{\rm Tris}^*$.

The pH of the solution was quantified using the cell ISFET|Tris Buffer|Cl-ISE. The operating principle of ISFET pH sensors is based on potentiometry, though significantly differs from conventional potentiometric electrodes such as the glass electrode [Bergveld, 2003]. The ISFET is an active electronic circuit, in which the potential between the reference electrode and the source of the transistor follows a Nernstian response when the gate insulator material has sufficient buffer capacity [Bergveld, 2003; Takeshita et al., 2014]. The ISFET utilized in the Honeywell Durafet line of pH sensors (referred to as ISFET hereafter) with a Cl-ISE directly exposed to solution as the reference electrode have been shown to produce extremely stable measurements in seawater for months to years at 1 atm [Martz et al., 2010]. The Cl-ISE is especially well suited for high pressure applications, as it seems to exhibit minimal pressure hysteresis [Shitashima et al., 2002]. These traits make the ISFET and Cl-ISE a good candidate for characterizing Tris buffer over periods of weeks to months.

Detailed description of the calibration protocol and calculation of pH at experimental temperature and pressure has been presented previously [*Johnson et al.*, 2016], but will be summarized here. The electromotive force of the cell ISFET|Tris Buffer|Cl-ISE (E) at experimental temperature and pressure range between 0 and 200 bar can be explained by the Nernst relation:

$$E = E_{\text{ref}}(T, P) - k \log(a_{\text{H}} a_{\text{Cl}})$$
 (5)

$$= E_{\text{ref}}(T, P) - k \left[\log(\gamma_{\pm \text{HCl}}^2 m_{\text{H}} m_{\text{Cl}}) + \frac{\overline{V}_{\text{HCl}} P}{\ln{(10)RT}} \right]$$

121 where $E_{ref}(T, P)$ is the reference potential at experimental T and P, k is the Nernst slope, a and m are the activity and molality of the respective ions, $\gamma_{\pm HCl}$ is the mean activity coefficient of HCl 122 $(\gamma_{\pm \text{HCl}} = (\gamma_{\text{H}}\gamma_{\text{Cl}})^{1/2})$, and \bar{V}_{HCl} is the partial molal volume of HCl in seawater; the Nernst slope is 123 defined as $k = RT \ln(10)/F$, where R is the universal gas constant (8.3145 J K⁻¹ mol⁻¹) and F is the 124 Faraday constant (96485 C mol⁻¹). Since partial molal volume of H⁺ is defined as zero, \bar{V}_{HCl} is 125 equivalent to \bar{V}_{Cl} . The pressure effects on the activity coefficients are encapsulated in the difference 126 127 between the molal volume of HCl in seawater and water. Rearranging equation (5) for pH, defined 128 as the $-\log(m_{\rm H})$, gives

$$pH = \frac{(E - E_{ref}(T, P)) + k \left[\log(\gamma_{\pm HCl}^2 m_{Cl}) + \frac{\bar{V}_{Cl} P}{\ln(10)RT} \right]}{k}$$
(6)

In order to calculate pH at experimental conditions, $E_{ref}(T, P)$ must be quantified.

132

133

134

135

136

 $E_{\text{ref}}(T, P)$ can be expressed as the sum of the reference potential at a given temperature at 0 bar $(E_{\text{ref}}(T, 0))$, and the pressure coefficient of the sensor (f(P)):

$$E_{\text{ref}}(T, P) = E_{\text{ref}}(T, 0) + f(P) \tag{7}$$

The $E_{\rm ref}(T,0)$ can be quantified by measuring E in a solution with known activity of HCl at atmospheric pressure (e.g. aqueous HCl solution or Tris buffer) [Martz et al., 2010]. The pressure coefficient must be determined for every sensor individually [Johnson et al., 2016]. The f(P) can be quantified by measuring E in a solution where the activity of HCl and $\bar{V}_{\rm Cl}$ are known over the desired range of T and P. Combining equations (5) and (7) gives

$$f(P) = E - E_{\text{ref}}(T, 0) + k \left[\log(\gamma_{\pm \text{HCl}}^2 m_{\text{H}} m_{\text{Cl}}) - \frac{-\bar{V}_{\text{Cl}} P}{\ln(10)RT} \right]$$
(8)

Aqueous HCl is an ideal solution for this approach since HCl is fully dissociated, thus $m_{\rm H}$ and $m_{\rm Cl}$ are independent of T and P, $\gamma_{\pm \rm HCl}$ is well characterized over a wide range of temperature [Harned and Ehlers, 1932; Harned and Owen, 1963], and the partial molal quantities of Cl⁻ are known [Millero, 1982]. Once f(P) is quantified for a given ISFET Cl-ISE pair, then it can be used to measure pH of Tris buffer at experimental T and P (equation (6)) to quantify $\Delta V_{\rm Tris}^*$ (equation (4)). Note that these partial molal quantities are solution dependent, and the $\bar{V}_{\rm Cl}$ in seawater media ($\bar{V}_{\rm Cl}^*$) must be used for Tris buffer [Millero, 1982].

3 Materials and Methods

Temperature and pressure cycles were carried out in a custom system capable of reproducing a *T-P* range of 0 to 40 °C, and 0 to 200 bar. The ISFET and Cl-ISE was placed into a pressure vessel consisting of a titanium housing with an inert PEEK insert as the wetted material [*Johnson et al.*, 2016]. The *T* and *P* of the housing is controlled by a temperature bath (Thermo Scientific, RTE-7) and an ISCO 260D Syringe pump, respectively. The pressure chamber was placed in an air bath (controlled by the same water bath) in order to improve temperature stability. Temperature was measured using a YSI 4600 thermometer with an Omega thermistor (P/N ON-410-PP), and pressure was measured using an Omega analog pressure sensor (P/N: PX409-5.0KG5V-XL). The thermistor was calibrated between 0 and 40 °C using a Hart 5611T thermistor (estimated accuracy of 0.01 °C). The factory calibration was used for the pressure sensor (accuracy of 0.03%).

Modifications were made for the supporting structure of the ISFET to withstand high pressures; details on the modifications are documented elsewhere [Johnson et al., 2016]. Cl-ISE

pellets were purchased from Van London, and packaged in-house. The ISFET and Cl-ISE was operated in either a 0.0100 ± 0.0001 mol kg⁻¹ HCl or Tris buffer solution; HCl was prepared gravimetrically using a 1 mol dm⁻³ HCl standard solution (Fisher, SA48-1), and a certified Tris buffer distributed by the Dickson lab (batch 8) was used. A 24-bit Analog to Digital Converter (NI-9219) was used to measure *E* every 45 seconds. All electronics except for the water bath were powered through an isolation transformer to eliminate potential ground loop issues.

The experimental apparatus was controlled through a LabView interface, and pressure was cycled between 0 – 200 bar at a rate of approximately 0.83 bar min⁻¹, taking 8 hours for a full compression/decompression cycle. This resulted in > 600 discrete measurements per pressure cycle. Pressure cycles were performed at 7 different temperatures at 5 °C intervals between 0 and 30 °C (n = 6 for HCl, n = 9 for Tris buffer at each temperature). Temperature was stable to better than 0.2 °C during the pressure cycles; changes were due to adiabatic heating and cooling of the solution. The first pressure cycle at a new temperature was discarded due to incomplete thermal equilibration of the housing. Only the data collected during increasing pressure were used in the analysis due to the small pressure hysteresis in f(P). This was repeated twice, to serve as replicate estimates for f(P). The ΔV_{Tris}^* was quantified by averaging results from 4 to 8 pressure cycles at each temperature, and then performing a linear regression between $-RT \ln(10)(\text{pH}^0 - \text{pH}^P)$ and P (equation (4)). Data for P > 100 bar was used at 10 °C due to increased noise at lower pressures. Due to a sensor malfunction during the final set of measurements in Tris, results are not reported for (0, 5, and 15) °C. Experimental data is provided in the supplementary materials.

4 Results and Discussion

A repeatable f(P) was observed at all temperatures, and decreased by ~ 6 mV over 200 bar (Figure 1). There was a small, but noticeable effect of temperature on f(P), and generally was lower

at lower temperatures. However, this effect was very repeatable at all temperatures. Agreement between replicate assessments of f(P) at all temperatures performed roughly a month apart was better than 180 μ V (maximum difference), and typically was better than 100 μ V. This demonstrates the high reproducibility and long term stability of the established pressure coefficient for the sensor. We assumed that f(P) remained consistent between HCl and seawater media [*Johnson et al.*, 2016].

The $\Delta V_{\rm Tris}^*$ was calculated as the slope of a regression for $-RT \ln(10)({\rm pH^0} - {\rm pH^P})$ versus P (equation (4)) between 30 and 200 bar (Figure 2) over the range 10 - 30 °C. Sensor noise often increased with a full depressurization of the sensors, theorized to be due to nucleation of an air bubble in the open gate of the FET. Therefore, regression was limited to data above 30 bar. $\Delta V_{\rm Tris}^*$ increased with temperature, ranging from 5.1 cm³ mol⁻¹ at 10 °C to 6.0 cm³ mol⁻¹ at 30 °C (Table 1). The $\Delta V_{\rm Tris}^*$ was fitted to functions of temperature $(t, {\rm ^{\circ}C})$:

$$\Delta V_{\text{Tris}}^* = 4.528 + 0.04912t \tag{9}$$

193 Combining this with equation (4) allows us to calculate the change in pH of Tris buffer due to 194 pressure relative to atmospheric conditions over a range of temperatures:

$$\Delta p H_{Tris} = \frac{-(4.528 + 0.04912t)P}{\ln{(10)RT}} \tag{10}$$

Note that t and T refers to temperature in Celsius and Kelvin, respectively. The effect of temperature on ΔpH_{Tris} is relatively small, ranging from -0.017 to -0.021 between 0 and 30 °C, respectively at 200 bar. This translates to a $\Delta pH_{Tris}/\Delta P$ of approximately -0.0001 bar⁻¹.

The $\Delta V_{\rm Tris}^*$ determined in this study were in excellent agreement with previously reported $\Delta V_{\rm Tris}$ in 0.725 mol kg⁻¹ NaCl solution [*Rodriguez et al.*, 2015]. At 25 °C, $\Delta V_{\rm Tris}^*$ was 5.8 cm³ mol⁻¹ compared to 5.6 cm³ mol⁻¹ in NaCl solution [*Rodriguez et al.*, 2015]. They were in agreement to

better than 0.2 cm³ mol⁻¹ between 10 and 30 °C, leading to a difference in ΔpH_{Tris} of < 0.001 at 200 bar. Quantifying ΔV_{Tris}^* at temperatures < 5 °C would be most useful for validating pH measuring systems in situ, as the vast majority of the deep sea falls into this temperature range. The agreement between the two studies becomes slightly worse at 0 °C (0.35 cm³ mol⁻¹, calculated by extending the linear regression from our dataset to 0 °C), which leads to a difference in ΔpH_{Tris} of 0.0013, approaching precision of many autonomous pH sensing systems [*Martz et al.*, 2003; *Bresnahan et al.*, 2014; *Johnson et al.*, 2016]. However, at this temperature, the pH of equimolar Tris buffer is greater than 8.9, making it non-ideal for validating in situ pH measurements, especially for those using m-cresol purple indicator dye. Tris buffer pH can be lowered by adjusting the ratio of the acidic and basic form of the buffer. Standardization of Tris buffer in varying mole ratios in artificial seawater for oceanographic pH measurements are currently underway [*Pratt*, 2014]. Use of such buffers are recommended for validating in situ pH measurements in the deep ocean.

The uncertainty in the determined $\Delta V_{\rm Tris}^*$ is directly associated to our ability to quantify the relative change in pH between atmospheric and experimental pressure (equation (4)). The sources of error and their contribution to the uncertainty at 200 bar based on standard propagation of uncertainty calculations [EURACHEM/CITAC, 2000], are listed in Table 2. These results indicate that the change in pH of Tris due to change in pressure of 200 bar can be constrained to 0.0031, which translates to an uncertainty in $\Delta V_{\rm Tris}^*$ of 0.9 cm³ mol⁻¹; the effect of temperature on this value is small, and changes by < 0.1 cm³ mol⁻¹ between 10 and 30 °C. This uncertainty likely represents a lower bound estimate, as sources of error such as the accuracy of the analog to digital converter were not included. However, it is interesting to note that the uncertainty in the regression using the

combined dataset from this study and from Rodriguez et al. 2015 is significantly smaller (RMSE = 0.1 cm³ mol⁻¹) than that calculated from Table 2.

5 Conclusion

The $\Delta V_{\mathrm{Tris}}^*$ was quantified between 10 and 30 °C by measuring the change in pH of the buffer solution between 1.01 and 200 bar. pH of the solution was measured using a modified high pressure tolerant ISFET pH sensor and a CI-ISE as a reference electrode. A custom system was utilized to control experimental temperature and pressure. The pressure coefficient f(P) of the cell ISFET|Tris Buffer|CI-ISE was quantified in aqueous HCl solution prior to measurements in a certified Tris buffer solution. Our measured values were fitted to the equation: $\Delta V_{\mathrm{Tris}}^* = 4.528 + 4.912E-02t$. We estimate our uncertainty to be 0.9 cm³ mol⁻¹. Our measurements for $\Delta V_{\mathrm{Tris}}^*$ were in excellent agreement with those measured in 0.725 mol kg⁻¹ NaCl. This agreement is very encouraging, and demonstrates the validity of extending partial molal volume data in NaCl solutions to seawater media. Potential uses of this information include benchtop and in situ validation of pH measuring systems at elevated pressures in a widely accepted seawater pH standard (Tris in artificial seawater).

6 Acknowledgements

This work was funded by the National Oceanographic Partnership Program award N00014-10-1-0206 and by the David and Lucile Packard Foundation.

Table 1: ΔV_{Tris}^* [cm³ mol⁻¹] between 10 and 30 °C

Temperature	$\Delta V_{\mathrm{Tris}}^{*}$
10	5.1
20	5.4
25	5.8
30	6.0

Table 2: Summary of Propagation of Error for Calculated pH at Experimental Conditions

Source of Error	Error	Uncertainty in pH ^a
f(P)	180 μV ^b	0.0030
$\overline{oldsymbol{V}^*}_{oldsymbol{Cl}}$	$0.1^{\rm c}~{\rm cm}^3~{\rm mol}^{-1}$	0.0005
$\overline{V^{\circ}}_{Cl}$	0.1^d cm ³ mol ⁻¹	0.0007
Total		0.0031

^a pH calculated at 200 bar and 25 °C

244

246

248249

^b Error in f(P) was calculated using the worst case scenario

^c Error from [*Poisson and Chanu*, 1976]

^d Error from [*Millero*, 1982], at 25 °C.

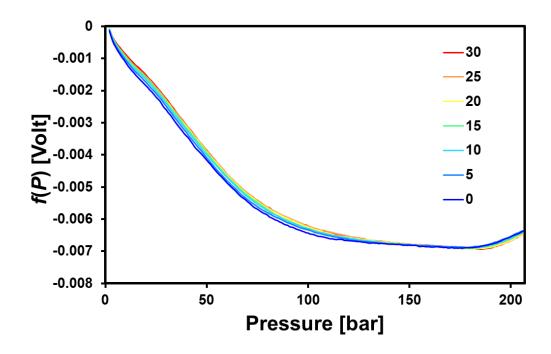


Figure 1: The pressure coefficient, f(P), of an ISFET Cl-ISE pair between 0 and 30 °C.

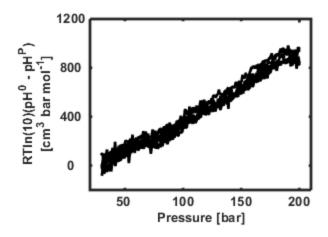


Figure 2: Typical results of a set of pressure cycles at a constant temperature used to determine ΔV_{Tris}^* (data shown for 8 pressure cycles at 30 °C).

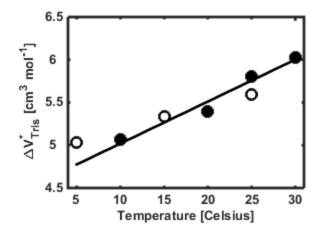


Figure 3: ΔV_{Tris}^* versus temperature from this study (closed circle) and *Rodriguez et al. 2015* (open circle). The black line represents the linear regression for the data in this study.

261 Literature Cited

- Barry, J. P., C. Lovera, K. R. Buck, E. T. Peltzer, J. R. Taylor, P. Walz, P. J. Whaling, and P. G. Brewer (2014), Use of a free ocean CO2 enrichment (FOCE) system to evaluate the effects of ocean acidification on the foraging behavior of a deep-sea urchin, *Environ. Sci. Technol.*, 48(16), 9890–9897, doi:10.1021/es501603r.
- Barton, A., B. Hales, G. G. Waldbusser, C. Langdon, and R. A. Feely (2012), The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects, *Limnol. Oceanogr.*, *57*(3), 698–710, doi:10.4319/lo.2012.57.3.0698.
- Bates, N. R., Y. M. Astor, M. J. Church, K. Currie, J. E. Dore, M. Gonzalez-Davila, L. Lorenzoni, F. Muller-Karger, J. Olafsson, and J. M. Santana-Casiano (2014), A time-series view of changing surface ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification, *Oceanography*, 27(1), 126–141.
- 274 Bates, R. G. (1973), *Determination of pH Theory and Practice*, 2nd ed., John Wiley & Sons, Inc., New York.
- Bednaršek, N. et al. (2012), Extensive dissolution of live pteropods in the Southern Ocean, *Nat. Geosci.*, *5*(12), 881–885, doi:10.1038/ngeo1635.
- Bergveld, P. (2003), ISFET, Theory and Practice, in *IEEE Sensor Conference*, pp. 1–26, Toronto.
- Bresnahan, P. J., T. R. Martz, Y. Takeshita, K. S. Johnson, and M. LaShomb (2014), Best practices for autonomous measurement of seawater pH with the Honeywell Durafet, *Methods Oceanogr.*, *9*, 44–60.
- Byrne, R. H., and S. H. Laurie (1999), Influence of Pressure on Chemical Equilbria in Aqueous Systems With Particular Reference to Seawater, *Pure Appl. Chem.*, 71(5), 871–890.
- Byrne, R. H., S. Mecking, R. A. Feely, and X. Liu (2010), Direct observations of basin-wide acidification of the North Pacific Ocean, *Geophys. Res. Lett.*, *37*(2), 1–5, doi:10.1029/2009GL040999.
- Clayton, T. D., and R. H. Byrne (1993), Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results, *Deep Sea Res. Part I Oceanogr. Res. Pap.*, 40(10), 2115–2129.
- DelValls, T. A., and A. G. Dickson (1998), The pH of buffers based on 2-amino-2-hydroxymethyl-1,3-propanediol ("tris") in synthetic sea water, *Deep Sea Res. Part I Oceanogr. Res. Pap.*, 45(9), 1541–1554.
- Dickson, A. G. (1993), pH buffers for sea water media based on the total hydrogen ion concentration scale, *Deep Sea Res. Part I Oceanogr. Res. Pap.*, 40(1), 107–118, doi:10.1016/0967-0637(93)90055-8.
- Doney, S. C., V. J. Fabry, R. a. Feely, and J. a. Kleypas (2009), Ocean Acidification: The Other CO 2 Problem, *Ann. Rev. Mar. Sci.*, *I*(1), 169–192, doi:10.1146/annurev.marine.010908.163834.
- Dore, J. E., R. Lukas, D. W. Sadler, M. J. Church, and D. M. Karl (2009), Physical and biogeochemical modulation of ocean acidification in the central North Pacific., *Proc. Natl. Acad. Sci. U. S. A.*, 106(30), 12235–40, doi:10.1073/pnas.0906044106.

- EURACHEM/CITAC (2000), *Quantifying Uncertainty in Analytical Measurement*, edited by S. L. R. Ellison, M. Rosslein, and A. Williams.
- Feely, R. A., C. L. Sabine, J. M. Hernandez-Ayon, D. Ianson, and B. Hales (2008), Evidence for upwelling of corrosive "acidified" water onto the continental shelf., *Science*, *320*(5882), 1490–1492, doi:10.1126/science.1155676.
- Harned, H. S., and R. W. Ehlers (1932), The Dissociation Constant of Acetic Acid from 0 To 35 Centigrade, *J. Am. Chem. Soc.*, *54*, 1350–1357.
- Harned, H. S., and B. B. Owen (1963), *The Physical Chemistry of Electrolytic Solutions*, 3rd ed., Reinhold Pub. Corp., New York.
- Johnson, K. S., J. A. Needoba, S. C. Riser, and W. J. Showers (2007), Chemical sensor networks for the aquatic environment., *Chem. Rev.*, 107(2), 623–40, doi:10.1021/cr050354e.
- Johnson, K. S., H. W. Jannasch, L. J. Coletti, V. A. Elrod, T. R. Martz, Y. Takeshita, R. J. Carlson, and J. J. Connery (2016), Deep-Sea DuraFET: A pressure tolerant pH sensor designed for global sensor networks, *Anal. Chem.*, acs.analchem.5b04653, doi:10.1021/acs.analchem.5b04653.
- Katz, S., and J. E. Miller (1971), Medium Effects of Some Denaturing Agents on Volume Changes, J. Phys. Chem., 75(8), 1120–1125.
- Kitamura, Y., and T. Itoh (1987), Reaction Volume of Protonic Ionization for Buffering Agents.

 Prediction of Pressure Dependence of pH and pOH, *J. Solution Chem.*, *16*(9), 715–725.
- Liu, X., M. C. Patsavas, and R. H. Byrne (2011), Purification and characterization of meta-cresol purple for spectrophotometric seawater pH measurements, *Environ. Sci. Technol.*, *45*(11), 4862–4868, doi:10.1021/es200665d.
- Martz, T. R., J. J. Carr, C. R. French, and M. D. DeGrandpre (2003), A submersible autonomous sensor for spectrophotometric pH measurements of natural waters., *Anal. Chem.*, 75(8), 1844–50.
- Martz, T. R., J. G. Connery, and K. S. Johnson (2010), Testing the Honeywell Durafet for seawater pH applications, *Limnol. Oceanogr. Methods*, *8*, 172–184, doi:10.4319/lom.2010.8.172.
- Millero, F. J. (1982), The effect of pressure on the solubility of minerals in water and seawater, *Geochim. Cosmochim. Acta*, 46, 11–22.
- 331 Millero, F. J. (2001), *Physical Chemistry of Natural Waters*, 1st ed., John Wiley & Sons, Inc., New York.
- Millero, F. J., J.-Z. Zhang, S. Fiol, S. Sotolongo, R. N. Roy, K. Lee, and S. Mane (1993), The use of buffers to measure the pH of seawater, *Mar. Chem.*, *44*(2-4), 143–152.
- Neuman, R. C. J., W. Kauzmann, and A. Zipp (1973), Pressure Dependence of Weak Acid Ionization in Aqueous Buffers, *J. Phys. Chem.*, 77(22), 2687–2691.
- Poisson, A., and J. Chanu (1976), Partial molal volumes of some major ions in seawater, *Limnol.*Oceanogr., 21(6), 853–861.
- Pratt, K. W. (2014), Measurement of pHT values of Tris buffers in artificial seawater at varying mole ratios of Tris: Tris·HCl, *Mar. Chem.*, *162*, 89–95, doi:10.1016/j.marchem.2014.03.003.
- Rodriguez, C., F. Huang, and F. J. Millero (2015), The partial molal volume and compressibility

- of Tris and Tris–HCl in water and 0.725m NaCl as a function of temperature, *Deep Sea Res. Part I Oceanogr. Res. Pap.*, *104*, 41–51, doi:10.1016/j.dsr.2015.06.008.
- Shitashima, K., M. Kyo, Y. Koike, and H. Henmi (2002), Development of in situ pH sensor using ISFET, in *International Symposium on Underwater Technology*, pp. 106–108, IEEE, Tokyo.
- Takeshita, Y., T. R. Martz, K. S. Johnson, and A. G. Dickson (2014), Characterization of an Ion Sensitive Field E ff ect Transistor and Chloride Ion Selective Electrodes for pH Measurements in Seawater, *Anal. Chem.*, 86(22), 11189–11195, doi:10.1021/ac502631z.
- Takeshita, Y., C. A. Frieder, T. R. Martz, J. R. Ballard, R. A. Feely, S. Kram, S. Nam, M. O. Navarro, N. N. Price, and J. E. Smith (2015), Including high-frequency variability in coastal ocean acidification projections, *Biogeosciences*, *12*(19), 5853–5870, doi:10.5194/bg-12-5853-2015.
- Wootton, J. T., C. a Pfister, and J. D. Forester (2008), Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset., *Proc. Natl. Acad. Sci. U. S. A.*, 105(48), 18848–53, doi:10.1073/pnas.0810079105.