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 
Abstract— Machining complex thin-wall components (such as 

compressor disks and casings in aircraft engines) has been a 
challenging task because workpiece deformations and vibrations 
not only compromise the surface integrity but also induce residual 
stresses in the final products. This paper offers a physics-based 
method that accounts for the damping effects and external loads 
for reconstructing the dynamic displacement and strain fields of a 
thin-wall workpiece in real-time with non-contact displacement 
measurements during machining. Given that part dynamic 
behaviors can be characterized by superposition of mode shapes, 
the time-varying displacement and strain fields are reconstructed 
with modal coefficients that are updated in real time using in situ 
measurements. The reconstruction method has been numerically 
verified with finite element analyses with the sensor locations 
optimized using a genetic algorithm; both static and dynamic field 
reconstructions are analyzed. Tradeoffs between the number of 
sensors and the reconstruction efficiency in terms of computation 
time and error are discussed. The method has been evaluated 
experimentally on a lathe machine testbed, where the dynamics of 
the distributed physical fields have been successfully captured and 
analyzed, demonstrating its practicality as a real-time tool for 
continuously monitoring the displacement and strain 
distributions across a disk workpiece during machining. 

Index Terms— field reconstruction, displacement and strain, thin 
elastic plate, process monitoring, dynamics, intelligent sensing 

NOMENCLATURE 
Capitalized symbols 

E Elastic modulus F External force 
P General physical field R Normalized radius 
K Number of mode shapes N Number of sensors 
W Normalized displacement   

Lowercase symbols 
a Outer radius b Inner radius 
e Normalized strain h Thickness 
n Nodal radius m Nodal circle 
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t Time r Radius 
v Tool feedrate w Displacement 

Greek symbols 
Ω Rotational speed Θ Normalized angle 
Φ Mode shape θ Angle 
 Modal coefficient ε Strains 
τ Normalized time ρ Density  
υ Poisson ratio   

I. INTRODUCTION 
With increasing demands for products with high strength to 

weight ratio, thin-wall component machining has become 
common in aviation industries. A good understanding of the 
stress and deformation caused by the vibration and the cutting 
force between the machine tool and the component is an 
essential prerequisite for the machining of the thin shell parts. 
Deformations are spatially distributed across the thin-wall 
workpiece during machining; the main causes of distortions are 
vibrations under cutting forces and machining-induced surface 
residual stresses that are among the critical problems [1]. 
Displacement and strain distributions in a thin-wall component 
due to external loads (such as cutting and clamping) play an 
important role in assessing residual stresses and surface 
integrity of a machined product. As a main feature in intelligent 
manufacturing equipment [2], field sensing is essential to 
online compensation with autonomous process parameter 
updating. Motivated by the interests to improve “first time 
yield” and manufacture components at a faster rate while 
minimizing scraps, this paper presents a new non-contact 
approach to characterize the dynamic displacement and strain 
fields in real time for continuously monitoring their 
distributions across a disk workpiece during machining. 

Machine vision with various advanced sensing principles 
has been used to capture field-based information. The shape 
and deformation of a vibrating structure can be captured with 
3D digital image correlation methods [3]. With the known 
force-deflection characteristics, a force sensor has been 
developed by observing displacements of the selected points in 
the compliant mechanism with a CCD camera [4]. Out-of-plane 
deformations of a specimen were captured in real time via 
full-field shadow moiré images to study how residual strains 
were built up in an epoxy molding compound during 
manufacturing [5]. Employing piezospectroscopic effects, 
where spectral emissions of photo-luminescent materials are 
sensitive to the strains or stresses, a portable system has been 
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developed for non-contact in-situ stress sensing [6]. An 
alternative to optic-based imaging methods (where the 
performance effectiveness depends on environmental 
conditions during machining) is to reconstruct physical fields 
numerically with discrete measurements. Intelligent robotics 
has been employed to collect field data for health monitoring of 
civil infrastructures [7]; such as a wall-climbing robot capable 
of impact-echo acoustic inspection for plate-like structures [8]. 
Typical field reconstruction methods numerically solve a 
boundary value problem (BVP) formulated with appropriate 
governing equations and boundary conditions interpolated from 
measured nodal information in the region of interests. The 
curvature-based beam model was employed to predict and 
control a soft robot which continuous deformations are 
numerically obtained by the shooting method [9]. The 
confluence algorithm was applied for constructing dynamic 
displacements of a rectangular plate using experimental 
measurements and a numerical model [10]. Finite element 
analysis (FEA) is one of the most common approaches to solve 
BVPs for predicting distributed dynamic responses with 
prescribed accuracy. However, most numerical methods for 
solving BVPs usually involve iterations at the expense of 
relatively long computational time thus not practical for real 
time applications. Combining FEA with statistical analysis, the 
time for simulating workpiece deflection under machining has 
been reduced from weeks to hours [11], but still it is too time 
costly for online computations.  

The modal expansion technique that assumes displacements 
of a deformation or vibration as a linear combination of shape 
functions has been developed to improve computational 
efficiency. The displacement field of a wing-like plate was 
obtained with mode shapes and strain measurements for control 
applications and health monitoring [12]. Since mode shapes can 
be obtained in advance, a displacement field is reconstructed by 
evaluating each modal coefficient with an approximation of 
locally measured strains through a linear regression. 
Formulated using the variation principle to derive a 
displacement-strain relation, the three-dimensional (3D) 
deformed shape of a composite stiffened panel under a 
mechanical/thermal load was reconstructed in real time using 
an inverse-FEA with in-situ surface strain measurements [13], 
where the least-square regression was used to fit the calculated 
strains in FEA with measurements [14]. Given the differential 
relations between displacements and strains/curvatures, the 
bending of a beam was estimated by strain measurements [15], 
and the large deformations of a beam were calculated with the 
curvatures [9, 16]. The 3D deflected shape of a needle was 
predicted with local axial-strains measured by an array of Fiber 
Bragg Grating sensors [17]. Strain sensing was employed as a 
cost-effective method to reconstruct deformations in structural 
health monitoring [18, 19]. With the displacement field 
obtained from strain data using the above shape sensing 
methods, the process can be reversed through a spatial 
differentiation of the displacements to reconstruct the strain 
fields. The global dynamic strains in a wind turbine was 
extracted in a photogrammetric approach where motions of 
optical targets along the vibrating blades were tracked by high 
speed cameras, while the reconstruction accuracy depended on 
numerous tracking points covering the whole structures [20]. 
Besides, other physical quantities can also be obtained from 

displacement or strain data, such as stresses [21] and forces [4, 
22], as long as their constitutive relations are known for a given 
mechanism. Though efficient for real-time reconstruction, the 
above shape sensing methods generally rely on strain sensors 
attached on the measured surfaces of the targeted structures. 
For material removal applications particularly rotating disks in 
aircraft engines and structural components in airframes, where 
workpiece parameters (inertia, damping and stiffness) are time 
varying, it is desired to develop a non-contact method for robust 
field sensing during machining. 

To avoid difficulties encountered in direct strain sensing, 
this paper tales advantages of the non-contact eddy-current 
displacement sensing to reconstruct both the displacement and 
strain fields of a thin-wall compressor disk under lathe turning. 
Eddy-current displacement sensing has been found to be robust 
under machining conditions [23] and implemented for 
monitoring the spindle status of a computer numerically 
controlled (CNC) end milling machine [24]. Moreover, 
eddy-current dampers (ECD) have been developed to suppress 
beam-like structure vibrations [25, 26] providing a relatively 
large stability margin for tuning process parameters involved in 
machining thin-wall components. As compared to shape 
sensing with strain measurements, the method introduced here 
captures strain field dynamics with displacement data using a 
similar approach for displacement field reconstruction in [27]. 
To account for the geometrical changes due to material removal 
during machining, the mode shapes were numerically 
calculated and normalized by the plate thickness [23] for 
multiple cuts, and the mode-shapes of a stepped plate during 
one cut were investigated in [28]. In this paper, the calculated 
mode-shapes are stored in an offline database for real-time 
reconstruction during machining. The remainder of this paper 
offers the following: 
 A general method that reconstructs both the displacement 

and strain fields from the same measured displacement data 
is formulated for real time applications where the dynamics 
of a thin-wall component can be characterized by a linear 
superposition of mode shapes obtainable offline. The 
formulation, along with the reconstruction algorithm, is 
numerically illustrated with FEA that simulates the 
“measured fields” as a basis for verification. Both static and 
dynamic field reconstructions are analyzed. As will be 
demonstrated with a thin-wall part machining experiment, 
the modal expansion method accounts for the damping 
effects and external loads in the reconstruction. 

 In theory, the number of mode shapes for a 
distributed-parameter system could be infinite. However, in 
most of cases, only a finite set of vibration modes plays the 
leading role. The dominant vibration modes are identified in 
an impulse test. For numerically illustrating the mode shapes 
and investigating its effects on the reconstruction, all the 
detected vibration mode-shapes are calculated, and the 
tradeoffs between the number of mode-shapes and the 
computation efficiency/error are demonstrated where higher 
order modes are intentionally included in the simulation. For 
comparing with published results in [27] and [29], the 
sensing locations are optimized using a genetic algorithm for 
reconstruction with two mode-shapes of the lowest orders. 
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 Experimental results obtained on a machining testbed with 
the optimized sensing locations are presented; both rotating 
and non-rotating dynamic responses are considered. These 
results experimentally validate the method by comparing the 
reconstructed fields with three independent types of 
measurements; the laser and eddy-current displacement 
sensors, and strain gauges.  

To the best of our knowledge, the experimental results 
presented here are among the first quantitative data reported on 
reconstructed strains during machining of a thin-wall 
workpiece. Apart from providing a guideline for designing 
ECD to minimize vibration, the reconstructed fields potentially 
offer essential information for online compensation with 
autonomous updating of process parameters. 

II. FORMULATION OF FIELD RECONSTRUCTION 
Figure 1 shows two examples of circular thin-wall 

(thickness h) components modeled in cylindrical coordinates 
[er eθ ez], where the referenced mid-surfaces are spanned by er 
and eθ axes, and ez is aligned with the revolution axis. Figures 
1(a, b) illustrate an annular plate model where the radial 
dimension of the mid-surface is given by b ≤ r ≤ a; and the 
location of a plate element is described in terms of (r, θ). For a 
cylindrical shell (r = a) in Figs. 1(c, d), its element is located by 
the coordinates (z, θ). The constraints can be imposed on either 
one or both boundaries of the components; and the elements are 
subjected to plane strain states. As the thickness h which may 
be a non-uniform function of the element location is very small 
compared to its radius (h << a), the thin-wall component can be 
represented by its mid-surface, and has the smallest stiffness in 
the normal direction of its mid-surface. Thus, the deformation 
of the component is dominant by the out-of-surface 
displacement w(t, r, θ) for the plate model or w(t, z, θ) for the 
shell model. The interest here is to reconstruct the continuous 
distributions of the out-of-plane displacement field and 
normal/shear strains by superimposing the corresponding mode 
shapes, where the time-varying coefficients are determined by a 
finite set of local discrete measurements. The following 
formulation assumes that the material property is linear elastic 
and homogeneous across the component; and the shear 
deformations are neglected across the small thickness. The 
strain fields ε = [ε11, ε22, ε12]T are given by 

wwε L  (1) 

T2 2 2

2 2 2 2

T T2 2 2

2 2 2

for plate

where

2 2

2 10 0 for shell
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r r r rr r r
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a z az a


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

                 
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L . 

While the presented method is formulated for an annular 
plate and a cylindrical shell, it can be extended to other 
coordinate frames following a similar procedure of variable 
separation. For generality, we denote the physical field as P(t, s) 
in terms of time t and the location vector s = [s1, s2]T where s1 
and s2 are two coordinate variables characterizing the 
mid-surface. In Figs. 1(a, b) or Figs. 1(c, d), (s1, s2) represent 

the (r, θ) or (z, θ) coordinates of an element in the annular plate 
or cylindrical shell respectively such that ε11 and ε22 are the 
normal strains along s1 and s2 whereas ε12 is the shear strain. 
Without loss of generality, the time-varying physical field P is 
expressed as a serial product of time and spatial components: 

0
( , ) ( ) ( )p

k k
k

P t t




 s s  (2) 

where, p
k is the kth mode-shape (corresponding to P) 

determined by the component inertia and stiffness as well as the 
boundary constraints; and k’s are the modal coefficients 
accounting for the accumulative time-varying effects of the 
intrinsic damping, initial conditions and external inputs. The 
estimated quantity can be approximated by the modes of the 
lowest K orders:  

0
( , ) ( ) ( )

K
p

k k
k

P t t

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 (3) 

With measured P at N different locations sj, j = 1, 2, …, N, k’s 
can be obtained from (4) according to the least square method: 
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Fig. 1. Models for circular thin-wall components. 

A. Field Reconstruction Algorithm 
With the general field reconstruction and mode-shapes 

formulated above, the displacement and strain fields can be 
independently reconstructed using (2) where the corresponding 
coefficient  is determined from (4) with corresponding 
measurements. However, given the displacement and strain 
fields share the same coefficient (t) as can be derived from (1), 
an indirect but simple yet effective approach is employed to 
determine  from (4) only with measured displacement data. 
To define dimensionless-variable groups to account for effects 
of the non-constant thickness on the physical fields 
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 (1) is rewritten as (5) with the elements (r, θ, z, a) in 

w
L replaced with (R, Θ, Z, 1) in e

WL :  
e
WWe L  (5) 

Given that (2) is valid for both displacement and strains, (5) 
indicates that the normalized strain mode-shapes Φe = [Φ11, Φ22, 
Φ12]T are related to the displacement mode-shape ΦW via (6): 

e e W
W Φ L  (6) 

Moreover, the modal coefficients α(t) for both displacement 
and strain fields are identical at each time instance, and e

WL is 
independent of t.  

In many applications, non-contact strain measurements are 
not as accessible as displacement sensing; thus, the indirect 
approach is employed to reconstruct the strain distributions 
with the coefficients determined from the displacement 
measurements using (4) and the procedure is detailed below: 
1. Obtain ΦW for a given configuration from a modal analysis. 

2. Differentiate ΦW to obtain eΦ with (6). 
3. Measure w and calculate its normalized value W at the 

discrete locations T
1 2j j

s s   s  where sj = (Rj, Θj) or (Zj, Θj), 

and j = 1, 2, …, N across the flexible part surface. 
4. Calculate  from (4) where P is specified as W. 
5. Obtain the displacement and strain fields by substituting  

into (3) with P = W and P = e, respectively.  
6. Finally, the dimensional quantities w or ε can be obtained 

from the normalized values.  
In Steps 1 and 2 above, the mode-shapes are calculated 

offline and stored in a database so that the computation does not 
affect the efficiency of the online reconstruction. The noise due 
to the derivatives in e

WL  in (6) can be minimized within a 
prescribed tolerance using a numerical filter. Unlike commonly 
used dynamic analysis methods (such as FEA) where  is 
numerically solved from a large-scale system formulated by the 
governing differential equations with known inputs, the method 
introduced here captures the field dynamics with real-time 
measurements and computes  with simple linear algebraic 
operations; thus it is practical and efficient for online 
applications.  

B. Numerical Verification 
The reconstruction method is numerically verified by 

comparing results with FEA. The annular plate (with a clamped 
inner-edge and a free outer-edge) is chosen as an illustrative 
example [23], where the parametric values are listed in Table I; 
and an impulse response (experimentally captured by an 
eddy-current displacement sensor) and its frequency spectrum 
are available in Fig. 2. It is suggested that the plate dynamics 
can be approximated by the superposition of the lowest three 
mode-shapes for reconstructing the displacement and strain 
fields, which justifies the reduction in the number of modes in 
(3) for subsequent reconstructions. The strain and displacement 
mode shapes as well as the mode-shape matrix S of the 

thin-wall annular plate are numerically calculated using the 
shooting method [23]. In Table II, the published (1st column) 
displacement mode-shapes can be used to compute the different 
strain mode-shapes (2nd to 4th columns) of the lowest orders 
using (6).  

TABLE I. VALUES OF PARAMETERS IN SIMULATION.  
Al 1060 Density ρ Elastic modulus E Poisson υ 
Properties 2.7 g/cm3 70 GPa 0.35 
Dim. (mm) a = 150 b = 40 h = 1 

  

 
Fig. 2 FFT of vibration measurement [23]. 

TABLE II. MODE SHAPES. 

 
As a basis for verification, the displacement/strain fields of 

the annular plate are simulated using FEA. The plate is 
subjected to a normalized concentrated force fz (= 0.0045, 
equivalent to 10N for the Al6016 plate) at the free edge 
(150mm, 0), and then relieved to simulate a zero-damping free 
vibration due to a step change. The simulated shape of the plate 
is shown in Fig. 3(a) where the strains are found primarily in 
the sector area 50° ≤ θ ≤ 50° around the loading point. Using 
the FEA results as “simulated measurements”, the modal 
coefficients (k where k = 0, 1 and 2) are estimated from (4) 
using 5 measurements at the cylindrical coordinates r = 110mm 
and  = 45, 315 and at r = 140mm and  = 0, 33, 327. The 
static and dynamic (displacement/strain) fields reconstructed 
from (3) are presented in Figs. 3(c) and 3(d) respectively.  

The upper and lower rows in Fig. 3(c) are the static 
reconstructed fields and their errors relative to the FEA results 
respectively. The radial strain εrr (upper row) has its maximum 
at the fixed inner edge and is zero at the free edge. On the other 
hand, the tangential strain εθθ is zero at the fixed inner edge. 
Around the loading, εθθ is in tensile along two radii and 
compressive on its bottom surface (z = ‒h/2) which is opposite 
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on the upper surface (z = h/2). Unlike the normal (radial εrr and 
tangential εθθ) strains which are symmetric due to bending, the 
shear strain εrθ is antisymmetric about θ = 0° because of the 
plate twisting due to the applied force. The maximum error of 
the reconstructed strains (after multiplying the normalization 
factor h2/a2) is approximately 105 where the largest strain is 
about 104. This 10% error (larger than the displacement 
reconstruction error of approximately 1%) is somewhat 
expected as the strains are inferred from the measured 
displacements.  

In Fig. 3(d), the reconstructed displacement/strains of the 
free vibration are compared with the FEA results. The 
comparisons verify that the proposed reconstruction method 
can track the time-varying displacement/strains closely when 
the plate is in free vibration. It is also observed that all the three 
strains vary with multiple modes like the displacement, 
validating the formulation of the strain mode-shapes and its 
field reconstruction application. 

 
Fig. 3 Field reconstruction verified with FEA. 

C. Numerical Evaluation of Reconstruction Algorithm 
Based on the static analysis, the trade-offs between 

accuracy and computation time in terms of N sensors and K (≤ 
N) modes are analyzed in Fig. 4: The blue circles in the top plot 
indicate the % errors of the reconstructed displacement field 
(relative to the FEA at the maximum value). The red dash-line 
indicates the upper bound of one standard deviation obtained 

from 100 tests with up to 10% Gaussian noise added to the 
simulated measurements to emulate environmental effects on 
sensed data. The solid-line in the bottom plot represents the 
time required to calculate one nodal displacement, and the 
standard deviations (plotted as error bars) are obtained with 
more than 3500 tests. All the measurements are taken at equally 
spaced locations along the referenced radius (θ = 0°) of the 
constraint configuration in Fig. 3(a) with fz applied at the radius 
center (95mm, 0) to represent a general case where a focal 
force is exerted across the plate. The reconstruction is 
computed on a desktop computer (Intel i5 CPU 3.3GHz, 8GB 
RAM); for N = 5, it takes about 0.6ms to calculate one 
reconstruction. 

As shown in Fig. 4 (top), the error converges to less than 
0.1% with more than five sensors, where the upper bound of the 
error is limited to 3%. Using the genetic algorithm in the 
MATLAB Optimization toolbox, the sensing locations are 
optimized by finding a proper modal coefficient matrix S that 
minimizes the condition number. With the optimized sensing 
locations, the reconstruction accuracy in Fig. 3 has been 
significantly improved as compared to that presented in our 
previous work [29] where the same number of sensors were 
used. Figure 4 (bottom) shows that the computation time 
increases linearly with N for K = N, and remains almost 
constant with increasing N for a specified K = 6; thus, the 
computation time required to reconstruct the displacement field 
is linearly dependent on K. As seen in (4), the reconstruction 
process involves linear algebraic superposition of K modes 
implying that more mode shapes for higher reconstruction 
accuracy would result in a larger modal coefficient matrix and 
thus longer calculation time. The above conclusions assume 
that all sensors are distributed equally in space; however, with 
optimized arrangement of sensor locations, higher 
reconstruction precision may be obtained with less number of 
sensors. As the focus here is to develop a reconstruction method, 
design optimization is briefly described in this work.  

 
Fig. 4 Reconstruction efficiency. 

III. EXPERIMENT RESULTS AND ILLUSTRATIVE APPLICATION 
The reconstruction of the displacement and strain fields has 

been experimentally evaluated on the machining testbed [29]. 
As shown in Fig. 5(a) where the world referenced frame OXYZ 
is assigned at the rotation center, the inner portion (r  b) of a 
thin-wall plate (Table I) is rigidly mounted on the motor shaft. 
The machining testbed was modified to allow non-contact 
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measurements on one side of the workpiece (WP) and a 
displacement-input can be applied on the other side. The fields 
were reconstructed from a finite number of eddy-current 
sensors (ESs). To provide an alternative basis for experimental 
verification, a laser sensor and a pair of strain gauges (SG1 and 
SG2) were used for measurements of the displacement and 
strain respectively; however, the latter can only be used in a 
non-rotating plate experiment. With the sensor specifications 
detailed in Table III, two experiments were conducted to 
validate the field reconstruction of the plate subjected to two 
different inputs; free vibration of a non-rotating plate (Fig. 5b) 
and lathe machining of a rotating WP (Fig. 5c).  

TABLE III. SPECIFICATIONS OF SENSORS. 
Eddy-current Sensor (CWY-DO-20XLT08-M10) 

Parameters Performance 
Diameter (mm) 8 Response (kHz) 10 
Standoff (mm) 0.5 Range (mm) 2 
Input (Vdc) -24 Resolution (μm) 0.1 
Output (Vdc) 18 to 2 Linearity (±%FS) 1 
  Temp. stability (%FSR/°C) 0.04 

Laser Displacement Sensor (Keyence LK-H025) 
Parameters Performance 
Ref. distance (mm) 20 Sampling rate (kHz) 2 
Spot diameter (μm) 25×1400 Range (mm) ±3 
Wavelength (nm) 655 Repeatability (μm) 0.02 
Output (mW) 4.8 Linearity (±%FS) 0.02 
  Temp. stability (%FSR/°C)  0.01 

Strain Gauge (BFH350-1AA-S) 
Parameters Performance 
Gauge pattern uniaxial Gauge resistance (Omega) 350 
Base diameter (mm) 3.6×3.1 Gauge factor (mV/V) 2±1% 
Gauge length (mm) 1.0×2.0 Mechanical hysteresis (μm/m)    1.2 
  Range 0.01 

 
A. Free Vibration of Non-rotating Plate 

The non-rotating plate (Fig. 5b) was subjected to an initial 
deflection (w = 0.7mm) specified by a micrometer which was 
suddenly released to simulate a step displacement-input at (X = 
150mm, Y = 0mm). Two mode-shapes (K = 2) of the lowest 
orders were used for reconstruction from three eddy-current 
sensors (N = 3) so that the effects of the sensor locations on the 
reconstruction accuracy can be compared with the published 
results in [29]. The reconstructed dynamic displacement and 
strain fields were compared with real-time measurements (w; 
εrr, εθθ) from the laser sensor and uniaxial strain gauges. As 
shown in Fig. 5(b), the pair of strain gauges was aligned with 
the circumferential direction and along the radial direction to 
measure εθθ and εrr, respectively. The test was repeated multiple 
times with the same initial deflection to allow (εrr, εθθ) 
measurements over a range of angular positions (θ = 0 to 40 in 
step of 10). The results are presented in Figs. 6 and 7.  

Figure 6 shows that the reconstructed displacement field 
(RDF) agrees well with the laser measurements, confirming the 
reconstruction can monitor the plate dynamics featured with 
multiple modes in real time. It is worth noting that the dominant 
vibration modes can only be captured by high-speed 
reconstruction that is generally limited by the sampling rate and 
calculation time. The sampling rate (2 kHz) employed here is 
high enough to capture the dominant modes while excluding 
other higher order modes in the reconstruction considering their 
negligible vibration amplitudes. With a computation speed 
faster than 1 kHz (Fig. 4), it is believed that this reconstruction 

method is sufficiently efficient for a broad range of structural 
dynamic problems in engineering.  

 
Fig. 5 Experiment setups. 

Fig. 6 Validation of the reconstructed displacement field (RDF). 

In Figs. 7(a, b), the reconstructed strain (εrr, εθθ) fields are 
compared with the strain gauge measurements, where the error 
is defined as the difference between the reconstruction and 
measurement. The % errors are compared in Fig. 7(c) between 
two reconstructions of the same plate with different sensor 
locations where (r, θ) are measured in millimeters and degrees 
respectively: 

ES Set 1 (Fig. 6b): (78, –38°), (115, –40°), (86, 46°) 
ES Set 2 [29]: (100, –21°), (132, –16°), (106, 28°). 

As shown in Fig. 7, all the normal strains respond in a 
similar fashion as the displacement because their linear 
relations (1) share the same modal coefficients (4). When θ 
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changes from 40° to 0°, εrr and εθθ increase from 1.2×10-4 to 
1.9×10-4 and from 0.7×10-4 to 1.2×10-4 respectively while their 
errors decrease from 2×10-5 to about 0.5×10-5 (with a lower % 
error at 0°), which are consistent with the numerical error 
analysis in Fig. 3(c). The error fluctuation in the static 
deflection tests was primarily caused by the noise of the strain 
gauges. The ES Set 1 results in a much smaller % errors than ES 
Set 2 in the normal strain reconstruction, suggesting that the 
errors can be reduced by optimizing the ES configuration. 

 
Fig. 7 Reconstruction of time-varying strain distributions. 

B. Field Reconstruction for Machining 
An aluminum plate (Table I) was lathe-machined at the 

rotational speed Ω(= 600rpm) with the depth-of-cut h(= 
0.05mm) and the tool feedrate v(= 0.0125mm/rev) from the 
inner edge towards the outer edge as shown in Figs. 5(a) and 
5(c) where the pair of permanent magnets (located near the free 
edge) induces an eddy-current in the plate, which functions as a 
non-contact eddy-current damper (ECD) to reduce the WP 
vibration. The fields were reconstructed by superimposing 
three mode-shapes of the lowest orders (K = 3) from the 
displacement measurements of five nodal eddy-current sensors 
(N = 5). The constant depth-of-cut h, which is a small fraction 
( 1/2 [28]) of the plate thickness, has little effects on the mode 
shapes. The fields were verified with the displacement 
measured by the 6th ES. Because the surface being machined 

was oily and partially obscured with chips as the cutter moves 
outward along θ = 0º, the laser sensor was not used during 
cutting. The ability to account for the damping effects and 
external loads in the field reconstruction are demonstrated in 
Figs. 8 to 10.  

Figures 8(a, b) show qualitative comparison of the WP 
surfaces machined without and with the ECD respectively. The 
property of the modal coefficients that reflects the dynamic 
characteristics of the plate is illustrated in Fig. 8(c) where the 
dominant modal coefficients α1’s of the two cases (without/with 
ECD) are quantitatively compared. In Fig. 8(c), the thin-dash 
rectangles indicate the time-intervals (0.l5s each) of the 
zoom-in plots. The low-frequency α1 variations in both 
(without/with ECD) cases are primarily due to the WP rotation, 
whereas the high-frequency variation (in the cutting without 
ECD) grows from the unstable machining dynamics. As shown 
in Fig. 8, the time-varying α1 increasingly fluctuates with the 
actual depth-of-cut (closely related to the cutting force and WP 
vibration displacement) as the machined surface changes from 
smooth to rough during cutting without the ECD. As a 
comparison, a smaller and persistent variation of α1 can be seen 
in the case of cutting with the ECD that effectively dissipates 
the high-frequency vibration energies yielding a relatively 
smooth surface. 

 
Fig. 8 Effect of eddy-current damper. 

Figures 9(a, b) show the (N = 5) ES measurements and the 
(K = 3) computed modal coefficients, which provide the basis 
for the reconstructed displacement and strains at the fixed point 
(X = 94mm, Y = 0) in the referenced coordinate in Fig. 9(c). As 
shown in Fig. 9(c), the reconstructed displacement at (X = 
94mm, Y = 0) excellently agrees with the ES measurements 
during machining (forced vibration with non-zero dampings). 
Figure 10 shows several snapshots of the displacement and 
strain fields along the timeline over one rotation period in the 
rotating frame, where the arrow indicates the cutting trajectory 
for rotation reference. Some observations about the validated 
field reconstruction in Fig. 10 are highlighted as follows: 
– The maximum displacement is located on the opposite side of 

the cutting area. The most deflected point changing with the 
rotation period indicates that the intrinsic high-frequency 
plate dynamics is coupled with the low-frequency rotation, 
explaining that the low-frequency α1 variations in Fig. 8(c) 
are primarily due to the workpiece rotation. 
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– The locations of the respective maximum strain values at 
each sampling time instance are marked in black and 
superimposed on the last-column plots. The maximum εrr 
occurs at the inner (clamped) edge, and the corresponding 
location is opposite to the cutting zone.  

– The areas for the largest εθθ and εrθ are close to the inner edge, 
specifically about r = 63.1mm. On the other hand, εθθ is zero 
along the clamped edge, and εrθ is zero along the diameter 
that is being cut.  

 
Fig. 9 Reconstruction at (X, Y) = (94mm, 0mm) during machining. 

More importantly, the in situ field reconstruction provides a 
practical real-time feedback of the deflection at the cutting 
region (Fig. 10) for online compensation of the cutter motions; 
this relaxes the needs to measure the local WP displacement at 
the cutting point where stringent space limitations make direct 
measurements impractical. Additionally, the reconstruction 
offers a health diagnosis tool that monitors the maximum 
strains in the WP within its elastic range or its material yielding 
strain (5×10-4 for Al 1060) to prevent built-up of residual 
strains that is one of the main causes of distortions in final 
products. As indicated in Fig. 8(c), the modal coefficient 
potentially plays the role of an alerting signal that monitors the 
displacement and strains within tolerances. The ability to locate 
maximum strains facilitates supplemental fixture designs to 
reduce residual stresses. 

IV. CONCLUSION 
A method based on mode superposition has been developed 

to reconstruct the continuous displacement/strain fields across a 
flexible workpiece from a finite number of non-contact 
measurements during machining. This method, which requires 
no attachment of sensors on the rotating workpiece to 
reconstruct its strain fields, has been verified numerically and 
experimentally on a flexible annular plate; both the static 
deformations and free/forced vibrations are considered. 
Featured with simple implementation and high efficiency, the 
reconstruction algorithm takes 0.6ms cycle-time to calculate 
the displacement/strain fields from five sensors on a desktop 
computer with a 3.3GHz Intel i5 CPU and 8GB RAM. It is 
expected that this sensing rate is fast enough to capture the 
structural dynamics for a broad range of applications. The 
sensing configuration (both number and location) has been 
optimized leading to a significantly improved reconstruction 

accuracy as compared to the previously published results. The 
method has been evaluated experimentally on a lathe machine 
testbed, where the dynamics of the distributed physical-field 
have been successfully captured and analyzed. It is expected 
that the method presented here will offer an effective basis for 
developing a health-diagnosis tool for monitoring the 
maximum strains in the workpiece within its elastic range to 
prevent built-up of residual strains, which can also be used in 
real-time feedback for vibration compensation.  

 
Fig. 10 Field reconstructions during machining.  
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