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A Modal Expansion Method for Displacement
and Strain Field Reconstruction of a Thin-wall
Component during Machining

Man Yu!, Jiajie Guo'", IEEE/ASME Member, and Kok-Meng Lee'?", Fellow, IEEE/ASME

Abstract— Machining complex thin-wall components (such as
compressor disks and casings in aircraft engines) has been a
challenging task because workpiece deformations and vibrations
not only compromise the surface integrity but also induce residual
stresses in the final products. This paper offers a physics-based
method that accounts for the damping effects and external loads
for reconstructing the dynamic displacement and strain fields of a
thin-wall workpiece in real-time with non-contact displacement
measurements during machining. Given that part dynamic
behaviors can be characterized by superposition of mode shapes,
the time-varying displacement and strain fields are reconstructed
with modal coefficients that are updated in real time using in situ
measurements. The reconstruction method has been numerically
verified with finite element analyses with the sensor locations
optimized using a genetic algorithm; both static and dynamic field
reconstructions are analyzed. Tradeoffs between the number of
sensors and the reconstruction efficiency in terms of computation
time and error are discussed. The method has been evaluated
experimentally on a lathe machine testbed, where the dynamics of
the distributed physical fields have been successfully captured and
analyzed, demonstrating its practicality as a real-time tool for
continuously monitoring the displacement and strain
distributions across a disk workpiece during machining.

Index Terms— field reconstruction, displacement and strain, thin
elastic plate, process monitoring, dynamics, intelligent sensing

NOMENCLATURE
Capitalized symbols
E  Elastic modulus F External force
P General physical field R Normalized radius

K Number of mode shapes N Number of sensors

W  Normalized displacement

Lowercase symbols

a Outer radius b Inner radius
e Normalized strain h  Thickness
n Nodal radius m  Nodal circle

This research was supported by the National Basic Research Program of
China (973 Program, Grant No. 2013CB035803), National Nature Science
Foundation of China under Grant 51505164, and the U.S. National Science
Foundation (Grant CMMI-1662700).

Man Yu and Jiajie Guo are with the State Key Lab. of Dig. Manuf. and

Equip. Tech. (SKL-DMET), and Sch. of Mech. Sci. and Eng. at Huazhong Univ.

of Sci. and Tech. (HUST), Wuhan, Hubei, 430074, P. R. China. Kok-Meng Lee

is with the Woodruff Sch. of Mech. Eng. at Georgia Inst. of Tech., Atlanta, GA

30332-0405 USA, and Distinguished Professor of the SKL-DMET at HUST.

*Corresponding authors: Jiajie Guo (jiajie.guo@hust.edu.cn) and Kok-Meng
Lee (kokmeng.lee@me.gatech.edu).

t Time r Radius
v Tool feedrate w  Displacement
Greek symbols
Q Rotational speed ® Normalized angle
® Mode shape 6 Angle
a Modal coefficient & Strains
7 Normalized time p Density
v Poisson ratio

1. INTRODUCTION

With increasing demands for products with high strength to
weight ratio, thin-wall component machining has become
common in aviation industries. A good understanding of the
stress and deformation caused by the vibration and the cutting
force between the machine tool and the component is an
essential prerequisite for the machining of the thin shell parts.
Deformations are spatially distributed across the thin-wall
workpiece during machining; the main causes of distortions are
vibrations under cutting forces and machining-induced surface
residual stresses that are among the critical problems [1].
Displacement and strain distributions in a thin-wall component
due to external loads (such as cutting and clamping) play an
important role in assessing residual stresses and surface
integrity of a machined product. As a main feature in intelligent
manufacturing equipment [2], field sensing is essential to
online compensation with autonomous process parameter
updating. Motivated by the interests to improve “first time
yield” and manufacture components at a faster rate while
minimizing scraps, this paper presents a new non-contact
approach to characterize the dynamic displacement and strain
fields in real time for continuously monitoring their
distributions across a disk workpiece during machining.

Machine vision with various advanced sensing principles
has been used to capture field-based information. The shape
and deformation of a vibrating structure can be captured with
3D digital image correlation methods [3]. With the known
force-deflection characteristics, a force sensor has been
developed by observing displacements of the selected points in
the compliant mechanism with a CCD camera [4]. Out-of-plane
deformations of a specimen were captured in real time via
full-field shadow moiré images to study how residual strains
were built up in an epoxy molding compound during
manufacturing [5]. Employing piezospectroscopic effects,
where spectral emissions of photo-luminescent materials are
sensitive to the strains or stresses, a portable system has been
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developed for non-contact in-situ stress sensing [6]. An
alternative to optic-based imaging methods (where the
performance effectiveness depends on environmental
conditions during machining) is to reconstruct physical fields
numerically with discrete measurements. Intelligent robotics
has been employed to collect field data for health monitoring of
civil infrastructures [7]; such as a wall-climbing robot capable
of impact-echo acoustic inspection for plate-like structures [8].
Typical field reconstruction methods numerically solve a
boundary value problem (BVP) formulated with appropriate
governing equations and boundary conditions interpolated from
measured nodal information in the region of interests. The
curvature-based beam model was employed to predict and
control a soft robot which continuous deformations are
numerically obtained by the shooting method [9]. The
confluence algorithm was applied for constructing dynamic
displacements of a rectangular plate using experimental
measurements and a numerical model [10]. Finite element
analysis (FEA) is one of the most common approaches to solve
BVPs for predicting distributed dynamic responses with
prescribed accuracy. However, most numerical methods for
solving BVPs usually involve iterations at the expense of
relatively long computational time thus not practical for real
time applications. Combining FEA with statistical analysis, the
time for simulating workpiece deflection under machining has
been reduced from weeks to hours [11], but still it is too time
costly for online computations.

The modal expansion technique that assumes displacements
of a deformation or vibration as a linear combination of shape
functions has been developed to improve computational
efficiency. The displacement field of a wing-like plate was
obtained with mode shapes and strain measurements for control
applications and health monitoring [12]. Since mode shapes can
be obtained in advance, a displacement field is reconstructed by
evaluating each modal coefficient with an approximation of
locally measured strains through a linear regression.
Formulated using the variation principle to derive a
displacement-strain relation, the three-dimensional (3D)
deformed shape of a composite stiffened panel under a
mechanical/thermal load was reconstructed in real time using
an inverse-FEA with in-situ surface strain measurements [13],
where the least-square regression was used to fit the calculated
strains in FEA with measurements [14]. Given the differential
relations between displacements and strains/curvatures, the
bending of a beam was estimated by strain measurements [15],
and the large deformations of a beam were calculated with the
curvatures [9, 16]. The 3D deflected shape of a needle was
predicted with local axial-strains measured by an array of Fiber
Bragg Grating sensors [17]. Strain sensing was employed as a
cost-effective method to reconstruct deformations in structural
health monitoring [18, 19]. With the displacement field
obtained from strain data using the above shape sensing
methods, the process can be reversed through a spatial
differentiation of the displacements to reconstruct the strain
fields. The global dynamic strains in a wind turbine was
extracted in a photogrammetric approach where motions of
optical targets along the vibrating blades were tracked by high
speed cameras, while the reconstruction accuracy depended on
numerous tracking points covering the whole structures [20].
Besides, other physical quantities can also be obtained from

displacement or strain data, such as stresses [21] and forces [4,

22], as long as their constitutive relations are known for a given

mechanism. Though efficient for real-time reconstruction, the

above shape sensing methods generally rely on strain sensors
attached on the measured surfaces of the targeted structures.

For material removal applications particularly rotating disks in

aircraft engines and structural components in airframes, where

workpiece parameters (inertia, damping and stiffness) are time
varying, it is desired to develop a non-contact method for robust
field sensing during machining.

To avoid difficulties encountered in direct strain sensing,
this paper tales advantages of the non-contact eddy-current
displacement sensing to reconstruct both the displacement and
strain fields of a thin-wall compressor disk under lathe turning.
Eddy-current displacement sensing has been found to be robust
under machining conditions [23] and implemented for
monitoring the spindle status of a computer numerically
controlled (CNC) end milling machine [24]. Moreover,
eddy-current dampers (ECD) have been developed to suppress
beam-like structure vibrations [25, 26] providing a relatively
large stability margin for tuning process parameters involved in
machining thin-wall components. As compared to shape
sensing with strain measurements, the method introduced here
captures strain field dynamics with displacement data using a
similar approach for displacement field reconstruction in [27].
To account for the geometrical changes due to material removal
during machining, the mode shapes were numerically
calculated and normalized by the plate thickness [23] for
multiple cuts, and the mode-shapes of a stepped plate during
one cut were investigated in [28]. In this paper, the calculated
mode-shapes are stored in an offline database for real-time
reconstruction during machining. The remainder of this paper
offers the following:

— A general method that reconstructs both the displacement
and strain fields from the same measured displacement data
is formulated for real time applications where the dynamics
of a thin-wall component can be characterized by a linear
superposition of mode shapes obtainable offline. The
formulation, along with the reconstruction algorithm, is
numerically illustrated with FEA that simulates the
“measured fields” as a basis for verification. Both static and
dynamic field reconstructions are analyzed. As will be
demonstrated with a thin-wall part machining experiment,
the modal expansion method accounts for the damping
effects and external loads in the reconstruction.

—In theory, the number of mode shapes for a
distributed-parameter system could be infinite. However, in
most of cases, only a finite set of vibration modes plays the
leading role. The dominant vibration modes are identified in
an impulse test. For numerically illustrating the mode shapes
and investigating its effects on the reconstruction, all the
detected vibration mode-shapes are calculated, and the
tradeoffs between the number of mode-shapes and the
computation efficiency/error are demonstrated where higher
order modes are intentionally included in the simulation. For
comparing with published results in [27] and [29], the
sensing locations are optimized using a genetic algorithm for
reconstruction with two mode-shapes of the lowest orders.
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— Experimental results obtained on a machining testbed with
the optimized sensing locations are presented; both rotating
and non-rotating dynamic responses are considered. These
results experimentally validate the method by comparing the
reconstructed fields with three independent types of
measurements; the laser and eddy-current displacement
sensors, and strain gauges.

To the best of our knowledge, the experimental results

presented here are among the first quantitative data reported on

reconstructed strains during machining of a thin-wall
workpiece. Apart from providing a guideline for designing

ECD to minimize vibration, the reconstructed fields potentially

offer essential information for online compensation with

autonomous updating of process parameters.

II. FORMULATION OF FIELD RECONSTRUCTION

Figure 1 shows two examples of circular thin-wall
(thickness /) components modeled in cylindrical coordinates
[er o ], where the referenced mid-surfaces are spanned by e;
and epaxes, and e, is aligned with the revolution axis. Figures
1(a, b) illustrate an annular plate model where the radial
dimension of the mid-surface is given by b < r < a; and the
location of a plate element is described in terms of (r, ). For a
cylindrical shell (» = a) in Figs. 1(c, d), its element is located by
the coordinates (z, #). The constraints can be imposed on either
one or both boundaries of the components; and the elements are
subjected to plane strain states. As the thickness # which may
be a non-uniform function of the element location is very small
compared to its radius (%2 << a), the thin-wall component can be
represented by its mid-surface, and has the smallest stiffness in
the normal direction of its mid-surface. Thus, the deformation
of the component is dominant by the out-of-surface
displacement w(z, r, ) for the plate model or w(z, z, 0) for the
shell model. The interest here is to reconstruct the continuous
distributions of the out-of-plane displacement field and
normal/shear strains by superimposing the corresponding mode
shapes, where the time-varying coefficients are determined by a
finite set of local discrete measurements. The following
formulation assumes that the material property is linear elastic
and homogeneous across the component; and the shear
deformations are neglected across the small thickness. The
strain fields £ = [e11, &2, €12]" are given by

e=Lw (1)
where
Jo & o 22 2 i
ot for plate
I 8r r°060~ ror roro@ r-o0 )

{az & 20 T [ 1
T\ —5 o | t|0 —
0z° a 00" aoczol a

While the presented method is formulated for an annular
plate and a cylindrical shell, it can be extended to other
coordinate frames following a similar procedure of variable
separation. For generality, we denote the physical field as P(¢, s)
in terms of time ¢ and the location vector s = [s1, 52]7 where s
and s, are two coordinate variables characterizing the
mid-surface. In Figs. 1(a, b) or Figs. 1(c, d), (s1, 52) represent

T
0} for shell

the (7, 6) or (z, 0) coordinates of an element in the annular plate
or cylindrical shell respectively such that ¢;; and & are the
normal strains along s; and s> whereas &> is the shear strain.
Without loss of generality, the time-varying physical field P is
expressed as a serial product of time and spatial components:

Pt,s) =Y, (0 (5) @

where, ®7 is the k™ mode-shape (corresponding to P)
determined by the component inertia and stiffness as well as the
boundary constraints; and a’s are the modal coefficients
accounting for the accumulative time-varying effects of the
intrinsic damping, initial conditions and external inputs. The
estimated quantity can be approximated by the modes of the
lowest K orders:

P(t,s) =Y o, (D] (s) 3)

With measured P at N different locations s;, j =1, 2, ..., N, a&’s
can be obtained from (4) according to the least square method:

a=(S"S)'S"P (4)
where P =[ P(z.5,) - P(z.s,) ] .a) =[a, a, - a,]'.
s)  @5(s) D (s,)
ands | OF6) @I6) o @LGn |
L L(sy) @F (S ) ‘132.(%)

(c) Shell model.
Fig. 1. Models for circular thin-wall components.

(d) Strains in a shell element.

A. Field Reconstruction Algorithm

With the general field reconstruction and mode-shapes
formulated above, the displacement and strain fields can be
independently reconstructed using (2) where the corresponding
coefficient o is determined from (4) with corresponding
measurements. However, given the displacement and strain
fields share the same coefficient a(t) as can be derived from (1),
an indirect but simple yet effective approach is employed to
determine a from (4) only with measured displacement data.
To define dimensionless-variable groups to account for effects
of the non-constant thickness on the physical fields
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(1) is rewritten as (5) with the elements (r, 0, z, a) in
L’ replaced with (R, ©,Z, 1)in L, :

e=L, W 5)

Given that (2) is valid for both displacement and strains, (5)
indicates that the normalized strain mode-shapes ®° = [D1;, ®2,
®,]" are related to the displacement mode-shape ®" via (6):
@ =L, 0" (6)
Moreover, the modal coefficients a(f) for both displacement

b

and strain fields are identical at each time instance, and L, is

independent of ¢.

In many applications, non-contact strain measurements are
not as accessible as displacement sensing; thus, the indirect
approach is employed to reconstruct the strain distributions
with the coefficients determined from the displacement
measurements using (4) and the procedure is detailed below:

1. Obtain ®" for a given configuration from a modal analysis.

2. Differentiate ®" to obtain ®° with (6).

3. Measure w and calculate its normalized value W at the
discrete locationss, =[s, s, ]T where s; = (R, ©)) or (Z, 0)),
andj =1, 2, ..., N across the flexible part surface.

4. Calculate a from (4) where P is specified as .

5. Obtain the displacement and strain fields by substituting o
into (3) with P = W and P = e, respectively.

6. Finally, the dimensional quantities w or & can be obtained
from the normalized values.

In Steps 1 and 2 above, the mode-shapes are calculated
offline and stored in a database so that the computation does not
affect the efficiency of the online reconstruction. The noise due

to the derivatives in Lj, in (6) can be minimized within a

prescribed tolerance using a numerical filter. Unlike commonly
used dynamic analysis methods (such as FEA) where o is
numerically solved from a large-scale system formulated by the
governing differential equations with known inputs, the method
introduced here captures the field dynamics with real-time
measurements and computes o with simple linear algebraic
operations; thus it is practical and efficient for online
applications.

B.  Numerical Verification

The reconstruction method is numerically verified by
comparing results with FEA. The annular plate (with a clamped
inner-edge and a free outer-edge) is chosen as an illustrative
example [23], where the parametric values are listed in Table I;
and an impulse response (experimentally captured by an
eddy-current displacement sensor) and its frequency spectrum
are available in Fig. 2. It is suggested that the plate dynamics
can be approximated by the superposition of the lowest three
mode-shapes for reconstructing the displacement and strain
fields, which justifies the reduction in the number of modes in
(3) for subsequent reconstructions. The strain and displacement
mode shapes as well as the mode-shape matrix S of the

thin-wall annular plate are numerically calculated using the
shooting method [23]. In Table II, the published (1% column)
displacement mode-shapes can be used to compute the different
strain mode-shapes (2™ to 4™ columns) of the lowest orders
using (6).

TABLE I. VALUES OF PARAMETERS IN SIMULATION.

Al 1060 Density p  Elastic modulus £ Poisson v
Properties 2.7 g/lem® 70 GPa 0.35
Dim. (mm) a=150 b=40 h=1
0.2f
E
£ of
-0.2¢ ) i i ;
0 2 4 6 8 Time (s)
3 100+
£
S sor
]
. ]
0 A
50 100 150 200 250 300
Frequency (Hz)

Fig. 2 FFT of vibration measurement [23].

TABLE II. MODE SHAPES.

Displacement Strains
Mode " [23]
0,0)
(1,0)
2,0
(3.0

As a basis for verification, the displacement/strain fields of
the annular plate are simulated using FEA. The plate is
subjected to a normalized concentrated force £ (= 0.0045,
equivalent to 10N for the Al6016 plate) at the free edge
(150mm, 0°), and then relieved to simulate a zero-damping free
vibration due to a step change. The simulated shape of the plate
is shown in Fig. 3(a) where the strains are found primarily in
the sector area —50° < § < 50° around the loading point. Using
the FEA results as “simulated measurements”, the modal
coefficients (o where k = 0, 1 and 2) are estimated from (4)
using 5 measurements at the cylindrical coordinates 7 = 110mm
and #=45° 315° and at » = 140mm and &= 0°, 33°, 327°. The
static and dynamic (displacement/strain) fields reconstructed
from (3) are presented in Figs. 3(c) and 3(d) respectively.

The upper and lower rows in Fig. 3(c) are the static
reconstructed fields and their errors relative to the FEA results
respectively. The radial strain &, (upper row) has its maximum
at the fixed inner edge and is zero at the free edge. On the other
hand, the tangential strain &g is zero at the fixed inner edge.
Around the loading, &g is in tensile along two radii and
compressive on its bottom surface (z = —A/2) which is opposite
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on the upper surface (z = 4/2). Unlike the normal (radial ¢, and
tangential ggg) strains which are symmetric due to bending, the
shear strain ¢, is antisymmetric about § = 0° because of the
plate twisting due to the applied force. The maximum error of
the reconstructed strains (after multiplying the normalization
factor h%*a?) is approximately 10~ where the largest strain is
about 10™*. This 10% error (larger than the displacement
reconstruction error of approximately 1%) is somewhat
expected as the strains are inferred from the measured
displacements.

In Fig. 3(d), the reconstructed displacement/strains of the
free vibration are compared with the FEA results. The
comparisons verify that the proposed reconstruction method
can track the time-varying displacement/strains closely when
the plate is in free vibration. It is also observed that all the three
strains vary with multiple modes like the displacement,
validating the formulation of the strain mode-shapes and its
field reconstruction application.

Free edge

x Force applied (150, 0°) :
= Simulated measurements
o Reconstructed (80, 6°)

(a) FEA of a deformed annular plate. (b) Sensor configuration.

W (RDF .~ (RSF RSF 0 (RSF
oo WERDP) Y e RSP ew®SP) ) e RSP

50 0.15 0.75 / 01 ‘ 0.2
0 o1 | ) 05 . 0

-50 0.05 0.25 \ ‘ 0.2

-100 0 0 -0.1 -0.4

4
W (Error) _* 107 ¢ (Error) ego (Error) e,o(Error)

100 N R 0.1 > Boi \ Mol
50 Al 0.05 0.05 0.0
0 I o ) 0 0 0
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(c) Reconstruction of the normalized displacement/strain fields and error analysis.
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(d) Transient responses of the normalized nodal displacement/strains.

Fig. 3 Field reconstruction verified with FEA.

C. Numerical Evaluation of Reconstruction Algorithm

Based on the static analysis, the trade-offs between
accuracy and computation time in terms of N sensors and K (<
N) modes are analyzed in Fig. 4: The blue circles in the top plot
indicate the % errors of the reconstructed displacement field
(relative to the FEA at the maximum value). The red dash-line
indicates the upper bound of one standard deviation obtained

from 100 tests with up to 10% Gaussian noise added to the
simulated measurements to emulate environmental effects on
sensed data. The solid-line in the bottom plot represents the
time required to calculate one nodal displacement, and the
standard deviations (plotted as error bars) are obtained with
more than 3500 tests. All the measurements are taken at equally
spaced locations along the referenced radius (6 = 0°) of the
constraint configuration in Fig. 3(a) with f- applied at the radius
center (95mm, 0°) to represent a general case where a focal
force is exerted across the plate. The reconstruction is
computed on a desktop computer (Intel i5 CPU 3.3GHz, 8GB
RAM); for N = 5, it takes about 0.6ms to calculate one
reconstruction.

As shown in Fig. 4 (top), the error converges to less than
0.1% with more than five sensors, where the upper bound of the
error is limited to 3%. Using the genetic algorithm in the
MATLAB Optimization toolbox, the sensing locations are
optimized by finding a proper modal coefficient matrix S that
minimizes the condition number. With the optimized sensing
locations, the reconstruction accuracy in Fig. 3 has been
significantly improved as compared to that presented in our
previous work [29] where the same number of sensors were
used. Figure 4 (bottom) shows that the computation time
increases linearly with N for K = N, and remains almost
constant with increasing N for a specified K = 6; thus, the
computation time required to reconstruct the displacement field
is linearly dependent on K. As seen in (4), the reconstruction
process involves linear algebraic superposition of K modes
implying that more mode shapes for higher reconstruction
accuracy would result in a larger modal coefficient matrix and
thus longer calculation time. The above conclusions assume
that all sensors are distributed equally in space; however, with
optimized arrangement of sensor locations, higher
reconstruction precision may be obtained with less number of
sensors. As the focus here is to develop a reconstruction method,
design optimization is briefly described in this work.

100y ®
10" k ' Upper bound of one standard deviation
= , = -
g QO T T EmEmEEL ... ...
B 10k
= .
1L O.n. ©Q 0 . O
10 %00 Faht .‘.0 ° 00 O"o-o'°-
s ° 0.0
107 & ] .
2ost -
[0
E
=
0
0 5 10 15 20 25
Number of sensors, N
Fig. 4 Reconstruction efficiency.
III. EXPERIMENT RESULTS AND ILLUSTRATIVE APPLICATION

The reconstruction of the displacement and strain fields has
been experimentally evaluated on the machining testbed [29].
As shown in Fig. 5(a) where the world referenced frame OXYZ
is assigned at the rotation center, the inner portion (» < b) of a
thin-wall plate (Table I) is rigidly mounted on the motor shatft.
The machining testbed was modified to allow non-contact
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measurements on one side of the workpiece (WP) and a
displacement-input can be applied on the other side. The fields
were reconstructed from a finite number of eddy-current
sensors (ESs). To provide an alternative basis for experimental
verification, a laser sensor and a pair of strain gauges (SG1 and
SG2) were used for measurements of the displacement and
strain respectively; however, the latter can only be used in a
non-rotating plate experiment. With the sensor specifications
detailed in Table III, two experiments were conducted to
validate the field reconstruction of the plate subjected to two
different inputs; free vibration of a non-rotating plate (Fig. 5b)
and lathe machining of a rotating WP (Fig. 5c).

TABLE III. SPECIFICATIONS OF SENSORS.

method is sufficiently efficient for a broad range of structural
dynamic problems in engineering.

Workpiece
Initial #=2mm
Q=300rpm

Servo motor

Linear motion
XY-Table

Cutting tools
v =0.025mm/rev
Ah=0.05mm

Eddy-current Sensor (CWY-DO-20XLT08-M10)

Parameters Performance

Diameter (mm) 8 | Response (kHz) 10

Standoff (mm) 0.5 | Range (mm) 2

Input (Vdc) -24 | Resolution (pm) 0.1

Output (Vdc) —18to -2 | Linearity (£ %FS) 1
Temp. stability (%FSR/°C) 0.04

Laser Displacement Sensor (Keyence LK-H025)

Parameters Performance

Ref. distance (mm) 20 | Sampling rate (kHz) 2

Spot diameter (pm) 25x1400 | Range (mm) +3

Wavelength (nm) 655 | Repeatability (um) 0.02

Output (mW) 4.8 | Linearity (+%FS) 0.02
Temp. stability (%FSR/°C) 0.01

Strain Gauge (BFH350-1AA-S)

Parameters Performance

Gauge pattern uniaxial | Gauge resistance (Omega) 350

Base diameter (mm) 3.6x3.1 | Gauge factor (mV/V) 2+1%

Gauge length (mm) 1.0x2.0 | Mechanical hysteresis (um/m) 1.2
Range 0.01

A. Free Vibration of Non-rotating Plate

The non-rotating plate (Fig. 5b) was subjected to an initial
deflection (w = 0.7mm) specified by a micrometer which was
suddenly released to simulate a step displacement-input at (X =
150mm, Y = Omm). Two mode-shapes (K = 2) of the lowest
orders were used for reconstruction from three eddy-current
sensors (N = 3) so that the effects of the sensor locations on the
reconstruction accuracy can be compared with the published
results in [29]. The reconstructed dynamic displacement and
strain fields were compared with real-time measurements (w;
&, €op) from the laser sensor and uniaxial strain gauges. As
shown in Fig. 5(b), the pair of strain gauges was aligned with
the circumferential direction and along the radial direction to
measure &g and &, respectively. The test was repeated multiple
times with the same initial deflection to allow (&, &)
measurements over a range of angular positions (8 = 0 to 40° in
step of 10°). The results are presented in Figs. 6 and 7.

Figure 6 shows that the reconstructed displacement field
(RDF) agrees well with the laser measurements, confirming the
reconstruction can monitor the plate dynamics featured with
multiple modes in real time. It is worth noting that the dominant
vibration modes can only be captured by high-speed
reconstruction that is generally limited by the sampling rate and
calculation time. The sampling rate (2 kHz) employed here is
high enough to capture the dominant modes while excluding
other higher order modes in the reconstruction considering their
negligible vibration amplitudes. With a computation speed
faster than 1 kHz (Fig. 4), it is believed that this reconstruction

Strain gauges

(r, 0) Plate
&0 (70, 0)
&y (50, 0)

uMeter (X,

(131, 36)
(150, 0) :

-ES1 (78, -38)
4—ES2 (115, -40)

Translational
stages

Eddy-current sensors (X, )

7 Dimension in mm
(b) Experiment setup (Non-rotating plate).

ES1 (77, 43)
ES2 (117, 42)

ES5 (68, -48)

o ES Verification (94, 0)

= ES Measurements

— Cutting trajectory  Dimension in mm

EiC sensors

(c) Lathe-machining experimental measurement setup.

Fig. 5 Experiment setups.
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Fig. 6 Validation of the reconstructed displacement field (RDF).

In Figs. 7(a, b), the reconstructed strain (&, eg) fields are
compared with the strain gauge measurements, where the error
is defined as the difference between the reconstruction and
measurement. The % errors are compared in Fig. 7(c) between
two reconstructions of the same plate with different sensor
locations where (7, #) are measured in millimeters and degrees
respectively:

ES Set 1 (Fig. 6b): (78, -38°), (115, —40°), (86, 46°)
ES Set 2 [29]: (100, —21°), (132, -16°), (106, 28°).
As shown in Fig. 7, all the normal strains respond in a

similar fashion as the displacement because their linear
relations (1) share the same modal coefficients (4). When 6
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changes from 40° to 0°, &, and &g increase from 1.2x10* to
1.9x10** and from 0.7x10* to 1.2x10 respectively while their
errors decrease from 2x107 to about 0.5x107 (with a lower %
error at 0°), which are consistent with the numerical error
analysis in Fig. 3(c). The error fluctuation in the static
deflection tests was primarily caused by the noise of the strain
gauges. The ES Set 1 results in a much smaller % errors than ES
Set 2 in the normal strain reconstruction, suggesting that the
errors can be reduced by optimizing the ES configuration.

= RSF e - SG Error
x 10™ x 10? 152 10 x 10
2 o=0°14 5 5 o=001%4 5
1 05 0™
&0 Ego
1 4 05 4
x 10° x10° _ x10* x 107
004519 g=10°]* &
1 0™05 0™
&0 )
P 4 05 4
x10* X107 x10* x10°

0.9 1 1.1 1.2 0.9 1 1.1 1.2
(b) Reconstructed &gp.
Set 1

i ES location Set2

Time (s)
(c) Percentage errors for reconstructed strains at 6 = 0°.

Fig. 7 Reconstruction of time-varying strain distributions.

B. Field Reconstruction for Machining

An aluminum plate (Table I) was lathe-machined at the
rotational speed Q(= 600rpm) with the depth-of-cut Ah(=
0.05mm) and the tool feedrate v(= 0.0125mm/rev) from the
inner edge towards the outer edge as shown in Figs. 5(a) and
5(c) where the pair of permanent magnets (located near the free
edge) induces an eddy-current in the plate, which functions as a
non-contact eddy-current damper (ECD) to reduce the WP
vibration. The fields were reconstructed by superimposing
three mode-shapes of the lowest orders (K = 3) from the
displacement measurements of five nodal eddy-current sensors
(N=15). The constant depth-of-cut Ak, which is a small fraction
(£ 1/2 [28]) of the plate thickness, has little effects on the mode
shapes. The fields were verified with the displacement
measured by the 6" ES. Because the surface being machined

was oily and partially obscured with chips as the cutter moves
outward along 6 = 0° the laser sensor was not used during
cutting. The ability to account for the damping effects and
external loads in the field reconstruction are demonstrated in
Figs. 8 to 10.

Figures 8(a, b) show qualitative comparison of the WP
surfaces machined without and with the ECD respectively. The
property of the modal coefficients that reflects the dynamic
characteristics of the plate is illustrated in Fig. 8(c) where the
dominant modal coefficients a;’s of the two cases (without/with
ECD) are quantitatively compared. In Fig. 8(c), the thin-dash
rectangles indicate the time-intervals (0.15s each) of the
zoom-in plots. The low-frequency o; variations in both
(without/with ECD) cases are primarily due to the WP rotation,
whereas the high-frequency variation (in the cutting without
ECD) grows from the unstable machining dynamics. As shown
in Fig. 8, the time-varying a; increasingly fluctuates with the
actual depth-of-cut (closely related to the cutting force and WP
vibration displacement) as the machined surface changes from
smooth to rough during cutting without the ECD. As a
comparison, a smaller and persistent variation of ; can be seen
in the case of cutting with the ECD that effectively dissipates
the high-frequency vibration energies yielding a relatively
smooth surface.

Cutting direction

(a) Cut without ECD. (b) Cut with ECD.
t =80s t =230s

t=15s t‘lSOs

W/0 ECD i} = w/ECD!i

0 50 100 150 200 250
Time (s)
(¢) Time-varying modal coefficient.
Fig. 8 Effect of eddy-current damper.

Figures 9(a, b) show the (N = 5) ES measurements and the
(K = 3) computed modal coefficients, which provide the basis
for the reconstructed displacement and strains at the fixed point
(X'=94mm, Y= 0) in the referenced coordinate in Fig. 9(c). As
shown in Fig. 9(c), the reconstructed displacement at (X =
94mm, Y = 0) excellently agrees with the ES measurements
during machining (forced vibration with non-zero dampings).
Figure 10 shows several snapshots of the displacement and
strain fields along the timeline over one rotation period in the
rotating frame, where the arrow indicates the cutting trajectory
for rotation reference. Some observations about the validated
field reconstruction in Fig. 10 are highlighted as follows:

— The maximum displacement is located on the opposite side of
the cutting area. The most deflected point changing with the
rotation period indicates that the intrinsic high-frequency
plate dynamics is coupled with the low-frequency rotation,
explaining that the low-frequency a; variations in Fig. 8(c)
are primarily due to the workpiece rotation.
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— The locations of the respective maximum strain values at
each sampling time instance are marked in black and
superimposed on the last-column plots. The maximum &,
occurs at the inner (clamped) edge, and the corresponding
location is opposite to the cutting zone.

— The areas for the largest gg and €,9 are close to the inner edge,
specifically about » = 63.1mm. On the other hand, ¢ is zero
along the clamped edge, and &, is zero along the diameter
that is being cut.

Unlt mm )
W') W3 — Wy Ws —a — a3

I L e 1
nmmmmm it
-1t -301 |
25 30 Time(s) 35 30 30.1  Time(s) 30.2

(a) Displacement data from ESs.

(b) Modal coefficients.

0'4_’ — Reconstruction - Measurement 4r

Time (s) 30.2

. Lol . .
Time (s) 30.2 30 30.1
(¢) Reconstructed displacement and strains.
Fig. 9 Reconstruction at (X, ¥) = (94mm, Omm) during machining.

30 ' 30.1

More importantly, the in situ field reconstruction provides a
practical real-time feedback of the deflection at the cutting
region (Fig. 10) for online compensation of the cutter motions;
this relaxes the needs to measure the local WP displacement at
the cutting point where stringent space limitations make direct
measurements impractical. Additionally, the reconstruction
offers a health diagnosis tool that monitors the maximum
strains in the WP within its elastic range or its material yielding
strain (5x10* for Al 1060) to prevent built-up of residual
strains that is one of the main causes of distortions in final
products. As indicated in Fig. 8(c), the modal coefficient
potentially plays the role of an alerting signal that monitors the
displacement and strains within tolerances. The ability to locate
maximum strains facilitates supplemental fixture designs to
reduce residual stresses.

IV. CONCLUSION

A method based on mode superposition has been developed
to reconstruct the continuous displacement/strain fields across a
flexible workpiece from a finite number of non-contact
measurements during machining. This method, which requires
no attachment of sensors on the rotating workpiece to
reconstruct its strain fields, has been verified numerically and
experimentally on a flexible annular plate; both the static
deformations and free/forced vibrations are considered.
Featured with simple implementation and high efficiency, the
reconstruction algorithm takes 0.6ms cycle-time to calculate
the displacement/strain fields from five sensors on a desktop
computer with a 3.3GHz Intel i5 CPU and 8GB RAM. It is
expected that this sensing rate is fast enough to capture the
structural dynamics for a broad range of applications. The
sensing configuration (both number and location) has been
optimized leading to a significantly improved reconstruction
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accuracy as compared to the previously published results. The
method has been evaluated experimentally on a lathe machine
testbed, where the dynamics of the distributed physical-field
have been successfully captured and analyzed. It is expected
that the method presented here will offer an effective basis for
developing a health-diagnosis tool for monitoring the
maximum strains in the workpiece within its elastic range to
prevent built-up of residual strains, which can also be used in
real-time feedback for vibration compensation.
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Fig. 10 Field reconstructions during machining.
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