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Abstract— This paper presents a new modeling method to
determine the harmonic eddy-current (EC) field induced in a
non-ferrous metal and its corresponding magnetic flux density
(MFD) by an EC-based sensing system for geometrical
measurements, which accounts for the boundary effects of the
object. Modeled using a distributed current source (DCS) method
in state-space representation, the EC field is formulated as a
two-step constrained least-square (CLS) problem to solve for its
real and imaginary parts. Two practical techniques to improve
the efficiency and accuracy of the EC solutions are illustrated; the
first refines the DCS distribution based on the skin-depth effects,
and the second takes advantages of commercial mesh-generation
software to facilitate the modeling of EC induced in complex
shaped objects. The DCS-based EC models are verified
numerically by comparing computed results with 2D analytical
axisymmetric solutions and commercial finite-element analysis
(FEA), and evaluated experimentally with an EC sensor that
measures the MFD generated by the induced EC in different
materials and geometrical configurations.

Index Terms—Eddy-current, displacement sensor, thickness
measurement, modeling, skin depth

I. INTRODUCTION

igh performance measurement systems are increasingly in

demand in modern manufacturing [1] where both

geometrical precision and surface quality specifications of
the workpiece must be met. As a non-contact sensing device
capable of measuring various properties of the non-ferrous
metal objects both statically and dynamically, eddy-current
(EC) sensors are widely used in many applications due to their
fast response, high sensitivity and harsh-environment
workability. In manufacturing, EC devices have been employed
in rapid mold surface heating [2], vibration suppression [3], and
measurements of displacement [4][5], thickness [6][7][8], and
electrical conductivity [8][9] that depends on temperature and
is related to residual stress [10]. With few exceptions ([1] [6]),
most existing eddy-current sensors rely on high-frequency
excitation and base principles on single-output induction
measurements. High-precision magnetic sensors with
advantages of small size, fast response and low power
consumption, which can fulfill measurement requirements at
both high and low frequencies while ensuring compact
structure integrity of the EC sensor, are now widely available at
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low cost. However, the potentials of EC sensors capable of
multi-target measurements [1] are underexploited for
intelligent manufacturing because the relationships between
the geometrical/material parameters and measured magnetic
fields are highly coupled and spatially nonlinear. For this
reason, this paper presents an efficient, physically intuitive
method for designing EC-based multi-target sensors and
analyzing the effects of the geometrical/material properties
being measured on the induced EC and its corresponding
magnetic field.

Dodd ef al. [10] derived an analytical model to calculate the
eddy current induced by an annular coil in a plane. Recently, an
analytical model to study the induced current and power loss of
a thin conducting nonmagnetic plate of finite size was
developed [12]. Jeng [13] numerically calculated the eddy
current distribution of a 2D axisymmetric conducting slab with
a flaw by separating the conductor to many rings. Theodoros et
al. [14][15] proposed a truncated region eigenfunction
expansion method to replace integral expressions for the
axisymmetric electromagnetic field and impedance of the eddy
current coil. In general, axisymmetric solutions assume
idealized shapes to simplify derivations to obtain tractable
solutions. Driven by the needs to simulate the induced eddy
currents in biological tissues, the impedance method (IM)
which subdivides the object into a number of cells was
developed for transcranial magnetic stimulation (TMS); each
cell is replaced by an equivalent impedance for calculation of
power deposition by the eddy currents. This method was later
extended to the independent impedance method (IIM) [16][17]
to improve the conditionality and speed up the numerical
convergences. The IM and IIM methods [18][19] account for
the boundary effects but neglect mutual inductances because of
the low electrical conductivity of biological tissues.

The analysis of EC devices often requires handling complex
geometry in 3D space, which are solved numerically using
methods such as finite-element analysis (FEA), boundary
element method and mesh-free methods, offer an accurate (but
a computationally demanding) means to predict the magnetic
fields and induced eddy current from simple static to dynamic
problems. To increase the size of the largest solvable problems
for computing eddy currents in complicated electromagnetic
systems, a hierarchical matrix with adaptive cross
approximation for the boundary element methods based on
stream functions was proposed in [20]. Besides these methods,
a distributed multipole model (DMP) method was proposed in
[21] to characterize the MFD fields of a permanent magnet
(PM) or electromagnet (EM), and its extension equivalent-PM
[22]. More recently, a similar but more general approach
referred to here as a distributed current source (DCS) method
was developed in [23], which derives closed-form solutions to
model the magnetic and electric fields of an EM component.
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Unlike FEA that requires a sufficiently large air space to
enclose all the magnetic fields of both the EM and the EC to
ensure its solution accuracy, the DCS method uses point
sources to eliminate the air space. Motivated by the needs for a
computationally-efficient model for measuring the eddy current
and its magnetic field, Lee ef al. [6] [24] developed an
EC-based sensing method based on a material- independent
model for simultaneously measuring the geometrical
parameters (thickness and displacement) and electrical
conductivity of a non-ferrous semi-infinite metallic workpiece.

This paper relaxes several commonly made assumptions in

modeling an EC field, and formulates a two-step constrained

least-square (CLS) problem for solving the real and imaginary

parts of an EC induced in a non-ferrous metallic object with a

relatively complex geometry. Inspired by the flexible division

algorithm [25] that divides the workspace geometrically into
physics-governed elements, the EC and its MFD are formulated
in state-space representation that has closed-form solutions.

The remainder of this paper provides the following:

— Along with a constraint matrix that accounts for the
geometrical boundary effects of the object and the continuity
equation, a state-space model that characterizes the magnetic
and eddy-current (M/EC) fields contributed by both the
electromagnet (EM) and the conductor is formulated and
numerically solved for the harmonic eddy-current density
(ECD) induced in the conductive object.

— The DCS modeling method is numerically investigated and
verified by comparing results with 2D analytical solutions
and FEA simulations; both 2D and 3D configurations of a
benchmark problem where a 2D annular electromagnet is
perpendicular to a non-ferrous metallic plate are considered.
As will be shown, tradeoffs between efficiency and accuracy
can be achieved by appropriately distributing the current
sources based on the skin-depth effects, particularly for
materials with a high electrical conductivity and for the EC
sensor operated at a very high frequency. Unlike FEA, the
DCS method do not need to include air space in the
computation of the ECD and MFD fields.

— The EC models and their applications are experimentally
evaluated using a prototype EC sensor that houses a pair of
single-axis MFD sensors. The experiments involve three
materials (copper, aluminum and titanium), and three object
configurations (namely, a semi-infinite conducting slab, an
edge model and a plate with a through hole). As will be
demonstrated, commercially available CAD and mesh
generation software can be used to automate the grid
assignments for computing the EC field induced in a
geometrically complex object.

II. FORMULATION OF ECD AND ITS MFD

Figure 1 illustrates a typical eddy-current-density (ECD)
sensor for geometrical measurements, and the parameters
involved in its modeling. The conductor (and hence r;) is fixed
relative to the EM; hence, the eddy-current (EC) is induced
solely by a time-varying current flowing through the EM
winding. In Fig. 1(a), the xyz coordinate frame is at the
geometrical center of the EM with its Z-axis pointing away
from the conductor along the axis. In the following discussion,
the EM coil is assumed to consist of NV,, turns wire (diameter d,,)

2

through which an input current /() flows with density J(?) given
in (1a) where Cr accounts for the fact that the current only
passes through the circular wires:
Iy =S 1) where ¢, = 2| NuDa (1a)
a 4(1-p))
The characteristic geometrical parameters of the EM are
normalized to its outer radius a, and half-length « as follows:

2
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Fig. 1 Schematics showing variables/parameters used in modeling. (a)
Conductor and EM in xyz coordinates. (b) 2D cylindrical coordinates.

The induced ECD (denoted as J(eR™)=J,+J.) is

contributed by the time-varying magnetic fields of the EM and
by the Conductor elements respectively, and can be explicitly
expressed in terms of a geometry-dependent magnetic vector
potential ¢(=¢pe+dc) using (A.3b) in Appendix. For the EM
through which an uniform current density J (£) flows,

Jy(r',t)=J,(t)e, where e, = —sin e, +cosle, )

r.
Using (A.2b) with— =[ R cos6, R;sin6, p,Z,] .
~=[R ,sind, p,Z

o

a3 (r;.0) = 1,75 (1;) (1) 3)
In (3), ye(r)) depends on the winding geometry for a stationary
EM (Fig. 1b):

127[1 1

.‘- J. .‘- "
\J
47 Lo 2w, ‘r} _r|/a0

ve(r,) = aa, RARAZAO|  (4)

where — =[Rcos® Rsind p,Z].

For deriving practical ECD solutions, the conductor is
decomposed into » hexahedron elements with their locations
denoted by a displacement vector ri() where i=1, 2, ..., n. Each
of the i element (volume v;) is treated as an EC source with
uniform density J;, electrical conductivity o;, and volume v;.
Using the distributed current source (DCS) method [23], ¢c(r))
at location j can be similarly computed from the sum of the
individual magnetic potential vectors contributed by the »
elemental ECD sources j; of the i conductor element:

a§¢c (r,) = luoz(}/q‘ivi)ji ©)
i=1
The modified kernel function . in (5), which accounts for the
errors of the magnetic field computed around the current source
with boundary r4; [23] is given by (6):
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1 1/r, i#j
Vei 47 (31?3 _7’},-2)/(2’};31‘) i=j
Using (3) and (5), which solve for the ECD induced by the
EM and mutual inductances of the conductor, along (A.3b), the
ECD source j;in the j conductor element can be expressed in
terms of the input current density Jg:

. u dj‘j daJ,
i =R VYT | T O Yy 7
J /;[ i dt jVEj dt ( )

where 7, = |rj —ril. (6)

With J(:[jm T
the state vector of the ¢ component ECD. j, is the ¢

jrn]T:/LZX,y,Z is defined as

component ECD of the ij element and .J, as an input.
Equation (7) can be rewritten in state-space representation:

J, =[a,]d, +[a,]J; €3]
where @, = ~[Ac] ' [S] 5 @, =—[Ac] [A]:
Ac (i 7) =7 (1)=v,75 (1)
[AE (t)]:["/m Yy

and a}’ [S]:diag(ﬂ00'1~-- 0

YE":|";

#,0,).

The MFD at any point & in the neighborhood of the
conductor, which is denoted as B(ry, ), is a combination of the
MEFDs contributed by the EM and the EC, B=Bg+B¢ where B is
directly measured; and Bg due to the current flowing through
the EM (Fig. 1b):is real and can be pre-calibrated. The MFD
contributed by the eddy-current is given by the output equation:

B(r.0) By = LI O] Vs R, (1) ©)

where B =n; (r,)J, (1)
In (10a), ne(rx) depends on the winding geometry:

(10a)

27 1 1 g

ne(r)=a| 2 | | jMRdeZd@
47 Lo 2o R=p, |rk -r'

The term on the right side of (9) accounts for the mutual

inductance of among the conductor elements, where

[Js(t)] =

10b

[skew(Jl(Z))--- skew(J,.(t))--- skew(Jn(t))]; (100)

[Vs]=diag(vI - vl vI); (10c)

R=[ri/nm o wiin b ] (10d)
0 _']iz ']iy

and skew(J,) =| J, 0 —J, (10e)
_Jiy ix 0

In state-space representation, (8) and (9) are the state and
output equations of the EM/Conductor system (Fig. 1)
respectively. Equations (4) and (10a) are presented in full
forms for establishing a relatively complete state-space
formulation with accurate solutions for future benchmark
comparison. Once understood, approximated closed-form
solutions (such as [6] [21]) could be developed within the
framework for real-time computing.

3

A. Constraints imposed on the governing equations of ECD
To obtain solutions that uniquely describe the system (Fig. 1),
(8) must satisfy the principle of conservation of charge, and
account for the physically meaningful boundary conditions.
For simplicity in illustration, Fig. 2(a) shows a hexahedron
element is characterized by three orthogonal vectors u, and six

surfaces s,, and their normal n,, where the subscript

“+”indicates the “+” or “-” side along the ¢ =x, y or z axis.

The surface areas and surface-normal vectors of the i element
can be mathematically written as (11a~f):

St = ‘uiy+ XUy 58, = W, Xuixil 38 = (Wi X Wy (I1a~c)
u Xu u. XUu. u,. . Xu,,
_ i+ izt _ + ixt . _ ix+ iyt
n,, = jMy, =———== = . (11d~f)
Sixs iyt Sizt
|Cis1 ]
& S b It
Jar)

Fig. 2 Schematics illustrating the symbols for describing constraints.
(a) Hexahedron element. (b) Connected elements. (c) Interface
between i and i+1.
Conservation law
The steady ECD must satisfy the continuity equation,
V-J=0 can be written in integral form using the
divergence theorem to satisfy the conservation law for a
hexahedron element. Numerically, the algebraic sum of the
outward-flowing eddy-current of the i element is zero:

6
zsk (Jyom;)=0
P

In (12), the subscript & (=1, ...6) corresponds to the surfaces
(x+, x—, y+, y—, z+, z—); sx and n are defined in (11a,b). For
computing (8), the ECD Jj at the six surfaces (Fig. 2b) can
be computed using the forward finite-difference:

J,_=J,and J,,, =J

i

(12)

(13a,b)

(i+1)4

Boundary conditions

When the ECD obliquely crosses an interface between
two media with different conductivities, the ECD vector
changes both in direction and in magnitude. The steady
ECD is divergence-less and curl-free and thus satisfies two
conditions; 1) the normal component n of a divergenceless
vector field is continuous; and 2) the tangential component t
of a curl-free vector field is continuous across an interface.
With the aid of Fig. 2(c), they are given in (14a) and (14b)
respectively:
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. =J

Um( (1= @ Eianyem )
wheren, +t, =1.

(14a)
(14b)

(7+I)f— (z+1)(—

1/+ tlf,+ )

(1+1)Z

Thus, the constraint matrix [Q] consists of [Qc] accounting
for the conservation law and ([Qs,], [Qs/]) for the constraints
imposed on the boundary surfaces in the (normal, tangential)
directions respectively. For n elements with a total of m
boundary surfaces,

[Q)(e =) =[[Qc] [Qu] [Qu]']
where [Q ] B, [Q,,]< R and [Q,, ] R,

To facilitate implementation, the elements in the i row of the
constraint matrices ([Qc |, [Qy, ], [Qp ]) are given in (16a~c)

(15)

using the selection vector b,, define in (16d) where the

subscripts k and / refer to the six surfaces and three axes of the
i element:

3
Q. (e RM") = Zsik z My Dy,

(16a)
k=1 (=x,y,z
Qi = /Z |:nz/+b:/+ _”(m)/fb(m)/‘fil (16b)
=X,¥,Z
Qi = Z [2A7/2+t(,+1)/-b(,+1)r- A(_1+1)l u+bz/+] (16c)
I=x,y,z
1 at k surface along ¢ axis
x3n\ _
b, (e R"™")= {0 e (16d)

A surface is defined as a boundary surface if it belongs only
to a hexahedron element or an inner surface if it belongs to two
hexahedron elements. Each element takes a row of [Qc] and
each boundary surface takes one row of [Qs,] and [Qg].

B. Harmonic solutions to the ECD and its generated MFD

When a sinusoidal current density J,(1)=.J,e"” flows
through an annular electromagnet (EM) which generates a
magnetic flux density (MFD), the steady state ECD Je/*
(where J =J, +jJ,, with the subscripts “Re” and “Im”

denoting the real and imaginary parts respectively) is induced
in the non-ferrous electric conductive plate placed below the
EM. Jjp is the current density of the EM, which can be

determined by (la). For a harmonic input /e’ , the time

Im

derivatives of the input current density and induced ECD are
(JE,J) = jo(J,.J) and o is the angular frequency. The (Re,

Im) parts of the ¢ (=x, y, z) components, (J s € R™! ) can

be solved from (8) in terms the skin-depth & normalized to the
outer radius a, of the EM as shown in (17) where the subscript j
is the element number to account for any material variation
within the non-ferrous metal (with the relative magnetic
permeability u, equal to 1):

J, 2
I.=—’ where &, = f—
ao a)o-jluolur

In (17), o; is the electrical conductivity and u, (=4x10~"H/m)
is the magnetic permeability of free space. The steady-state
harmonic solutions to (8) are given by (18a,b) in terms of a

(a7

4

normalized skin-depth (introduced here to derive a unified
solution independent of materials):

I =[S][A]I i (18a)
where [5} = clz'ag(2A1’2 e 207 2A7 )
Jm =7 E, (18b)

where B, = 1+([S][a ) ][54,

The ECD in the conductive plate is formulated as a two-step
constrained least-square (CLS) problem: The first CLS solves

(18b) for J,, =[J1,. I, I}

ylm zIm

Z 19 1 —E[JE” subject to [Q]J,,,=0

] by minimizing

(19)
{=x,y,z
With  Ji, the second CLS solves (18a) for
T T T ' C e
Jre [Jxkc J ke JzRJ by minimizing
—_ 2 .
Z J,Re—[SJ[AC]J,Im” subject to [Q]J . =0 (20)
(=x,y,z

In (19) and (20), ¢/ =x, y,zand J eR™.

/Re?> (lm

The measured MFD at any point k in the neighborhood of the

conductor, which is denoted as B(r,,r) =[B,, B ]T , where

Im

B,..B,, are combinations of MFDs. B, generates from the

EM, and can be pre-calibrated. The output equation (9) can be

computed from (21) where [, |and [Jg,, ] are the real and

imaginary parts of Js (10b):

|:BRc B :| _H |:[JSRc][Vs ] R, (rk ):|
B,, 47| [Ism |[ Vs R (1)

III. NUMERICAL ILLUSTRATION AND VERIFICATIONS

ey

The DCS method and its physical insights for modeling an
EM-induced ECD field are best illustrated numerically and
verified by comparing with published 2D analytical solutions
[10] for a coil above a semi-infinite conducting slab and
FEA-simulated results. For an axisymmetric configuration
where the magnetic vector potential and induced ECD only
exist in the tangential direction, the continuity equation (13a,b)
and boundary constraints (14a,b) are automatically satisfied.
The ECD solutions (8) reduce to 2D, where v; is replaced by an
elemental area c¢;; and the modified kernel function y; that
accounts for the 2D simplification is given by

2(R—-cos@) i=j
Yoy = ! Jcosﬁde where f(0) = ( ) /
' 1(0) v, —r|/a,

Three sets of numerical investigations were performed. The
first set simulates the skin-depth effect on flexible grid division
that refines the grid distribution based on equal current
densities. The second set investigates the boundary effects on
the computed ECD field where the analytical (2D
axisymmetric) solutions [10] provide a basis for comparison.
The third numerically evaluates the DCS method and its
effectiveness (computational efficiency and accuracy) by
comparing results with FEA in both 2D and 3D.

i#j (22)
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A. Flexible grid division based on equal current

Without loss of generality, an axisymmetric configuration is
used as an example in Fig. 3 to illustrate a grid refinement
method that takes into account the skin-depth effect on the ECD
solutions. The method resizes the divisions such that all the
elements have equalized current density as compared in Figs.
3(a) and 3(d), which show the initially uniform and refined
grids respectively. The method is illustrated in Figs. 3(b) and
3(c), where the probability density function (PDF) is defined as
the summation of the ECDs along the depth for a specific radius
or the radius for a pre-determined depth; and the cumulative
distribution function (CDF) is the accumulated PDF in
corresponding direction. Fig. 3(b) plots the PDF and its
corresponding CDF of the ECD magnitude normalized to its
maximum magnitude (|/|//yux) in the radial direction. Similarly,
Fig. 3(c) plots the PDF and CDF but in the Z direction. The
refined (R, Z) grid lines on the conductor (Fig. 3d) represent an
even distribution of the ECD magnitudes along the (R,Z)
directions, which can be obtained through the projection of the
equalized divided current-densities on the CDF(R) and CDF(Z)
as illustrated in Figs. 3(b) and 3(c).

2 . 1 ',‘
o Sos /0
tl] S 1 p
0.6/ 1 \
-2 1 \
041! v -~ PDF

8,

R s

Nos — CDF

-1

-5 s

2 -2

250 02 04 06 08 1 0 1 2 3 4 s

© [/ ax ) R=r/a,
Fig. 3 Grid refinement method. (a) Uniform grids. (b) PDF(R),
CDF(R). (c) PDF(Z), CDF(Z). (d) Refined grids.

To help visualization, Figs. 4(a~c) show the effects of the
normalized skin-depth A and the plate-to-coil width aspect ratio
R, (=ry/a,) on CDF(Z) and CDF(R). Smaller skin depth (A) and
larger Rp causes that the ECD distribution is more non-uniform
in Z and R directions. Smaller A leads to the ECDs more
concentrate near the surface, and larger R, makes the ECDs
concentrate near the EM and sparse on the edge.

As shown in Figs. 4(a) where R,=2, the ECD concentrates
more on the surface with smaller A, and is relatively insensitive
to A in the R direction. On the other hand, R, has a significant
influence on the CDF(R) but negligible effects on CDF(Z) as
compared in Fig. 4(b) for a given A=1; thus, the ECD
distributes more uniformly with a smaller R, but abruptly
changes near the EM when R, >5. The above parametric effects
on the grid divisions can be visually seen in Fig. 4(c) where the
horizontal axis R is graphed in logo scale for clarity, and starts
from 0+ to avoid taking logio of R=0. Fig. 4(c) shows that the
ECD concentrates near the coil edge (R=1) in the R direction,

5

and denser grids in the (Z—Z,) direction are needed near the
surface with smaller A. The case (A=0.2, R,=2) requires finer
grids near the surface while uniform grids are sufficient for
(A=1, R,=2). Similarly, the case (A=1, R,=20) requires finer
grids below the EM but uniform along Z direction, whereas the
case (A=0.2, R,=20) requires both a much denser grids directly
below the EM and near the surface.

N < 7
N-0.5 &0
Q
-1 0.6
1.5 — A=02 . 04 A=0.2
T Acoe / A0
2 TTA=08 0 02 Za T A=08
....... A=1 e A=1
2.5 0 :
0 02 04 06 08 1 0 05 1 15 2
CDF(2) R
.0
N
N-0.5
-1
_ R=1
13 R=2
R,=5
-2 R=10 |
25 e R=20 | 0 L2 L e R,=20
0 02 04 06 08 1 2 04 06 08 1
P 0 02 04 06 0.8
N0
N
0.5
-1
15
2 -2
s TTLANIIIIITY  ,
05 1 15 2 0 05 1 15 2
(R,=2, A=) R (R=2,A=02) R
N0 e — N
| B EcEstesstas =
N'O-S - 0.5 o
=St =P
15 o — Y
) B -2
‘2.5 . - T \ . T - R - 5 T 1 T
0316 1 3.162 10 0316 1 3.162 10 R
(R,=20, A=1) Ioglo scale (R,=20, A=0.2) logm scale
(©)

Fig. 4 Parametric effects of grid divisions (H,=2.5, Z,=3.25). (a) Effect
of normalized skin-depth A on CDF (R,=2). (b) Effect of the
plate-to-coil aspect ratio on CDF (A=1). (c) Effect of skin-depth
plate-to-coil aspect ratio on grid divisions.

A general method that takes advantages of commercial CAD
and mesh generation software to model the EC field induced in
a geometrically complex object is outlined in Appendix B and
will be illustrated experimentally in Section I'V.

B.  Axisymmetric ECD distribution and boundary effects

Figure 5(a) shows the real and imaginary parts of the ECD
fields induced in the circular plate (characterized by thickness
H,=2.5 and located at Z, = 2.75 below the EM), which were
numerically computed using (19) and (20) along the R direction
at Z=-5. Figs. 5(b, c) graph the real and imaginary parts of the
tangential ECD at different R and Z locations. The parametric
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values that characterize the EM and the normalized skin-depth
A are given in the first row of Table I. The boundary effects on
the ECD models can be analyzed by investigating the effect of
different radii on the computed tangential ECD; (R,=r,/a,~1, 2
and 3) in Fig. 5(a) and (R, = 5) in Fig. 5(b, ¢). In Fig. 5, the
analytical solutions [10] (solid-line curves) provide a basis for
comparison. The DCS model and the analytical solutions agree
well for R, > 3 but the discrepancy increases for smaller R, as
shown in Fig. 5(a). Unlike the 2D analytical solutions that
yield a single pair of (real and imaginary) curves regardless of
R, the DCS model accounts for the boundary effects.

TABLE I. SIMULATION PARAMETRIC V ALUES

EM, A=0.7926 | (a,, a)=(6,2) mm, p;=0.625; Jy=4.276 A/mm?,
Method DCS 2D DCS 3D FEA 2D FEA 3D
Elements 360 1,296 2,630 120,529
MFD (G) |B,|=0 |B«[=0.026 |B,|=0.037 |B([=0.048
at (R=0, Z~4.5) | |B]=20.26 |B,|=0.026 |B:|=20.17 |B,|=0.209
|B.|=20.24 |B.|=20.24
0.04 . :
Re Im
S Analytical — —
%, DCS(R~1)—— —o—
0.03 %, (R~ o
S - (Rp=3) —_
< N
~
TQ 0.02 N
Analytical (Im) S
0.01F # Analytical (Re)
p "=-='=-=-E-E'E'E-En= —
0

0 0.5 1 1.5 2 2.5 3
R (=r/a,)

0.012

e <
> 2
S S
& ©

“RelJo/dy]

0.003

Z=z/a
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o
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3.5
]
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-4.5 L5
-5 o 3

0.012 0 001 002 003 004
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C

Fig. 5 Tangential ECD fields (H,=2.5; Z, = 2.75). (a) Boundary effect
on real and imaginary parts of tangential ECD (Z= -5). (b) Js along
the radial direction at a specified depth (R,=5). (¢) Jo along z direction
at a radial location (R,=15).

0.006  0.009
—Re[Jo/Jy]

C. Computational effectiveness of the DCS model

The effectiveness (efficiency and accuracy) of the DCS
model is numerically evaluated by comparing of the computed
MEFD of the induced ECD with results simulated by COMSOL
(commercial FEA software) for a benchmark problem; both 2D
and 3D FEA meshes are considered as shown in Figs. 6(a, b).

6

FEA models mesh all domains assuming both the nonferrous
metallic plate (6=10°~10% Sm™) and the air (6=1 S m™) are
conductive to compute the MFD due to the induced ECD. For
the benchmark problem, an annular EM is perpendicular to a
non-ferrous square (72x72 mm?) plate with a MFD sensor
placed along the coil axis (x = y = 0) but Imm above the plate.
Because of the symmetry, the MFD (|By|, |B,|) components of
the induced circular eddy-currents are theoretically equal to
zero; this observation provides a rational means to verify the
solutions and a means to determine an appropriate number of
elements needed in the DCS and FEA models. With the
parametric values listed in Table 1 EM, Figs. 6(c, d) plot the
ECD-induced MFD at the sensor location (R=0, Z=-2.25)
computed using different number of elements.

Dimensions
in mm

10 -+ DCS3D B,, By
25/ .o FEA3D B,

20 == FEA3DB,

a a
56 S1s
4 10
2 SH\-\“‘
o | | | | 1
107 10° 10* 2 3 10t 10°
Number of element # (logo scale)  Number of element 7 (log) scale)
(©) (C))

Fig. 6 Performance evaluation of the DCS model. (a) FEA 2D Mesh.
(b) FEA 3D Mesh. (¢) r component MFD. (d) x, y component MFD.

Table 1 and Fig. 6 offer some intuitive insights into the
modeling of the MFD generated by the induced ECD:

— Table 1 shows that all the DCS and FEA models (2D or 3D)
converge to a nearly identical |B;| value but the 2D |B,| or the
3D (|B, |B)]) components vary somewhat. As expected
theoretically, the results show that |B,| of the 2D DCS model
is zero and that the (|By/, |B,|) computed from the 3D DCS
model approaches zero as the number of elements increases
(Fig. 6d). This validates both the 2D and 3D DCS models.

— The large area or volume of air space in the FEA models
results in significant “quantitation noise” observed simulated
MEFD; as a result, both the 2D and 3D FEA yield non-zero |B;|
or (|By, |B)|). This theoretically explains why FEA needs
more elements to converge, and exhibits larger fluctuations
with the number of elements for all cases in Figs. 6(c, d).
Unlike FEA models, the DCS method (that uses point
sources in direct modeling without the need to include the air
space) results in more accurate but less variations in the MFD
computation.

The DCS modeling method solves the pair of CLS problems,
(19) and (20), where the number of elements (and hence the
matrix sizes) represent a trade-off between its computational
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time and accuracy. Based on several n (= 2x2, 5x5, 10x10,
20%20, 30%30, and 40x40) elements, the computational time of
the DCS modeling method is proportional to n>3. As a rule of
thumb, the calculations with a PC (Intel Core i7-3630QM,
2.40GHz CPU, 16GB RAM, 64 bits OS) take about 14.1
seconds for a 20x20-element DCS model and 1 minutes for a
30x30-element DCS model.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

Three experiments were conducted to validate the DCS
models and evaluate the MFD-based eddy-current (EC) sensor
system [6] using the experimental setup as shown Fig. 7(a). The
first experimentally validates the axisymmetric DCS model by
comparing with the measured magnitude/phase of the MFD
generated by the induced ECD in a 24mm-diameter
5.38mm-thick annular copper that has an electrical conductivity
0=58.4 MSiemens/m (or MS/m). The second investigates the
boundary effects on the measured MFDs as the ECD sensor
horizontally scans across an edge of an Aluminum plate. The
third demonstrates the DCS method for modeling an ECD and
measuring its MFD.

3-D motion platform
EM/Sensor/Conductive Plate s

Current amplifier and data
acquisition system

Laser sensor
controller

Amplifiers
Laser sensor: Air-cored )
coil »

AMR
sensors

Eddy-current

(©)

Derlrin

24mm-
diameter

sample

()

B.e/™

Signal processing circuit

1 e EM/Conductor
Gy(jw)

’ (zps b, 0)

» ES ejzul

(e)
Fig. 7 Experimental setup. (a) Experimental testbed. (b) Measurement
setup. (c¢) Eddy-current sensor. (d) Copper sample. (e) Sensor
dynamics.

As shown in Figs. 7(a, b), the EC sensor is positioned by a
three degree-of-freedom (DOF) precision translation stage with
a laser-sensor above the test-sample. The test-sample relative
to the magnetic sensor can be fine-tuned by three micrometers
and the laser-sensor so that it is parallel to the sensor xy-plane.
A pair of commercial (HMC1051) anisotropic magnetic
resistance (AMR) sensors S: housed in the EM was used to
measure the z-MFD from which the contribution of the
pre-calibrated EM was subtracted from the measurements. As
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shown in Fig. 7(c), the AMR sensors are symmetrically placed
near the outer radius of the coil where its z-MFD is minimum to
avoid sensor saturation. Fig. 7(e) schematically illustrates the
overall system dynamics, where the EM/conductive-plate
system dynamics can be determined by the DCS model in terms
of the parameters (A, z,, /,). The sensor dynamics (contributed
by the signal processing amplifiers and associated circuits) are
accounted for the transfer function G (jw)=|G,(jw)£G,(j®)

in the 2" block. The sensor system dynamics were determined
to be 1.33 and —0.014° using a least-square (LS) method
described in Appendix C. The parametric values of the EM,
test samples and AMR sensor specifications, along with the
operating frequencies, are detailed in Table II. The results for
the three experiments are summarized in Figs. 8, 9 and 10.

A. Harmonic analysis of the 2D axisymmetric DCS model

Figure 8 shows the effects of the normalized skin-depth A
defined in (17) and the normalized EM-plate distance Z, on the
ECD-generated MFD computed using a 2D axis-symmetrical
DCS model with two different types of grid divisions; uniform
grids and refined grids based on equal current density. To
provide quantitative comparisons, the computed results are
compared with experimentally measured magnitudes and
phases of the copper sample shown in Fig. 7(d). As shown in
Fig. 8, the magnitudes (left plot) depend on both A and Z, but
the phases are insensitive to Z,. The % mean-squared-errors
(MSESs) of the magnitudes computed using uniform and refined
grids (relative to measurements) are 1.11x10* and 1.62x1077
respectively. The corresponding MSEs of the phases are 0.0012
and 4.1712x10*. The discrepancies in the uniform DCS grids
primarily occur at small A, where the refined grid method plays
an important role to improve the computational effectiveness.
TABLE II. PARAMETRIC VALUES OF EXPERIMENTAL SETUP

EM Coil (N,= 60, d,, = 0.35 mm)

(ai, ao, a) = (3.75, 6, 2) mm

AMR Sensor (HMC1051ZL)
Size: 6.5x1.7%2.0 mm

1=1A, B~ 16.67 uT

S: (x5, ys, 25): (6, 0, —=4.5) mm

Sensor system dynamics: |G, (jo)| = 1

33, 2G,(jo) =—0.0141°

Copper (Cu) Titanium (Ti) Aluminum (Al)

o =58.4MS/m 6=0.59 MS/m, | 5=35.5MS/m

h =538 mm 7=5.013 mm h=1mm; d,=6,12,15mm

f=100Hz-25kHz f~10-25kHz | f=1kHz
2,=6.5,7.5,8.5,9.5 mm 2,=6.5 mm

Edge scan w, =48 mm Hole scan w, =72 mm

Number of elements: 769, 670, 689

Number of elements: 576

Exp.  DCS model
80 Z, Cu Ti Uniform Refined
. - —
601425 ¢ » —— -
475 & a -

40

20 B

0.16 025 04
A (logo scale)
Fig 8. Experimental verification of the DCS model (single AMR)

0.63 1 0.16 025 04 0.63 1
A (logo scale)

Validated with experiments conducted on the two materials
(copper and titanium alloy), the results confirm that the
EC-induced and its corresponding MFD depends only on the
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normalized skin-depth (regardless of materials) for the
specified pair of (H, Z,). This finding is consistent with that
reported in [24] for measurements with negligible edge effects.

B. Boundary effects on the DCS model

Figure 9(a) shows the state-space solutions of the eddy
current field for experimentally investigating the edge effects
on the MFDs measured by the pair of AMR sensors S: as the
EC sensor moves horizontally across the Al plate from X = —4
to X=4. The simulated and measured real and imaginary parts
are compared in Fig. 9(b), and replotted in magnitudes and
phases in Fig. 9(c).

To facilitate discussions, the path is divided into four stages:

Stage I(X < —1) : EM is outside the plate as S+ approaches its
left edge. No apparent edge effects are observed.
Stage I1(~1< X <0): Less than half of the EM is above the

plate. S. is above the plate. A sharp sign change in phase
can be observed in S- as the EM center approaches the left
edge of the plate.

Stage 111 (0 <X< 1): More than half of the EM is above the
plate as S_ approaches its left edge with S. above the plate.

Stage IV (1 <X < &—4J : EM (with both S:) is completely
above the plate. Apparent edge effects slowly disappear as
the EC moves away from the edge.

Because the magnitudes in Stages I and II are infinitesimally

small, the corresponding phases are difficult to measure

accurately and thus the experimental phase data are ignored.

Some intuitive insights can be gained from Fig. 9:

— As compared in Fig. 9(b) that graphs their real and
imaginary parts, the measured MFDs agree well with the
simulation validating the DCS model.

— The AMR sensor S;: registers a smooth S-shape curve.
However, a peak near X =1 (where S- is directly above the
left edge) can be observed in both the real and imaginary
parts in the S- measurements.

— The phenomena of the S- measurements can be explained
with the aid of Fig. 9(d): As S- approaches the edge from
the far left, the positive EC (+y direction in the cross
sectional view) primarily contributed to positive B.. (which
increases until S- is at the edge. As S- passes the edge, the
negative EC increases its contribution to the measured B.:,
causing it (and thus the phase) to change from positive to
negative when S- is directly above the edge, which is a
meaningful phenomenon for edge detection.

— The above findings demonstrate that the number of sensors
and their placement play an important role in edge
localization.

C. Geometrical effects on ECD and its corresponding MFD

Fig. 10 illustrates the solutions to the DCS models in
state-space representation for analyzing the M/EC fields of a
plate that has a through hole (diameter d). The relatively
complicated shape of the plate/hole configuration was
geometrically modeled using a commercial CAD software
Solidworks, and then discretized using a mesh generation
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software to create divisions (represented by nodes and elements)
of irregular hexahedrons. Fig. 10(a) shows a typical
hexahedron where the volume, areas and surface normal are
given in Appendix B for completeness. Figures 10(b) and 10(c)
show the typical DCS modeled EC fields induced in the plate
when the EM is above the hole-center and at an offset along a
radial path. Figures 10(d) to 10(f) compare the measured and
simulated MFDs (where the data were determined at an
interval of 1 mm) as the EC sensor swept over the hole (d, = 6,
12, 15mm) along a radial path.
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Fig. 9 Effect of edge boundary on z-component MFD. (a)
Configuration. (b) Real and imaginary parts. (¢) Magnitude and phase.
(d) ECD and schematics illustrating edge-effect on measured MFD.

The following can be observed from the results:

— The experimental curves share similar trends with the
simulation. The curves obtained from two AMR sensors are
approximately symmetric about X = 0.

— Unlike Fig. 9 where S, registers a smooth S-shape magnitude
curve between X=—1 and 1, S+ experiences a local peak as it
moves pass the edge of a hole. The shape of the magnitude
curve around the peak depend on dy/ao.

— The resolution of the meshes could have a significant
effect on numerical error. This is numerically illustrated
in the zoom-in Fig. 10(g) where (3, 2.5 and 2) denote
the three approximate global element-sizes in mm
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corresponding total numbers of elements (689, 938 and
1525). Due to the symmetry, the effects on the MFDs
measured by S+ were compared. As shown in Fig. 10(g),
the local noisy peaks disappear when the meshes are
sufficiently fine.

— The results show that the peaks of the three curves are at X =
—0.5, 0 and 0.33 respectively, which correspond to the
locations when S is directly above the edge of the hole. The
close agreements between the measured and simulated MFDs
validate the DCS methods, and demonstrate its effectiveness
for analyzing the M/EC fields of a configuration with a
relatively complicated shape.

V. CONCLUSION

A distributed current source (DCS) modeling method for
analyzing the magnetic and eddy-current fields of an
eddy-current-based  sensing  system in  state-space
representation has been formulated. In harmonic forms, the
eddy-current field is numerically solved for its real and
imaginary parts as a two-step CLS problem subjected to the
geometrical constraints imposed by the continuity equation and
the object boundary conditions.

As demonstrated numerically, the efficiency/accuracy of the
EC solutions can be improved without significantly increasing
the number of elements, particularly for materials with a very
small skin-depth, by appropriately distributing the grids based
on the skin-depth effects. The DCS-based models have been
numerically verified by comparing results with the 2D
analytical axisymmetric solutions and FEA simulations; both
2D and 3D configurations are considered. The DCS models
that account for the boundary effects of the object agree well
with the 2D axisymmetric solution when R, > 3 but the
discrepancy increases for smaller R, since the latter does not
account for the boundary effects. Unlike FEA that requires a
sufficiently large air space to enclose all the magnetic fields of
both the EM and EC to ensure its solution accuracy, the DCS
based models do not need to include the air space resulting in
more accurate but less variations in the MFD computation.

The DCS-based EC models and their applications have been
evaluated experimentally using measured MFDs, which
involve three materials (copper, aluminum and titanium), and
three object configurations (a semi-infinite conducting slab, an
edge model and a plate with a through hole). The
experimentally obtained frequency responses (with copper and
titanium) suggest that the 2D axisymmetric solutions depend
only on plate thickness, sensor-to-plate distance, and
skin-depths. The close agreements between the DCS method
and experiments confirm that the method is capable of handling
the boundary effects of the object with complicated shapes, and
offering high-fidelity physically intuitive predictions without
sacrificing technical details. The DCS modeling method can be
adapted for a spectrum of applications in robotics,
mechatronics and industrial processes, where eddy current
effects play an essential role. Applications may include design
analysis of eddy-current sensors (for localization, geometrical
measurement, defect detection and structural health monitoring)
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and actuators for the vibration suppression.
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APPENDIX A
BIOT-SAVART LAW

For applications where the effects of displacement current
can be neglected, the Maxwell’s equations that relate the
magnetic and electric fields are given by (A.la, b) along with
the constitutive relations in (A.lc, d):

VxH=J; VxE=-0B/0t; B= gy Hand J=0cE (A.la~d)
In (A.1), H and E are the magnetic and electric field intensities
respectively, J is the eddy-current density (ECD) induced by
the time-varying magnetic fields of the EM and conductor
elements; B is the magnetic flux density; and u, is the
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permeability of free space the EC density. Using the two
fundamental magneto-static postulates that specify the
divergence and curl of B, B can be expressed as the curl of the
magnetic vector potential ¢ defined by (A.2a) and has an
integral form in (A.2b) where Q denotes the volume of the
electric conductor; and r'and r are the position vectors of the
EM and the observation point respectively:

/"0 J(r '9 t)

B =V x¢ where ¢(r,t)=—| ——=dV

¢ o(r.1) " fQ ] (A.2a,b)

The ECD J in (A.1d) can be explicitly expressed in terms of ¢

by substituting B from (A.2a) into (A.1b) leading to

E= _% ; hence J = —a@ (A.3a,b)
ot ot

Using (A.2a), B (generated by the combined effects of the input
current to the EM and eddy current induced in the conductor
respectively) can be derived from the curl of ¢ leading to the

Biot-Savart’s law:

fo [ Ir)x(r=r)
Br)=22 | &2 gy
=2, - (A4)

APPENDIX B
CAD-BASED DCS MODEL FOR COMPLEX GEOMETRY

Figure 10(a) shows a hexahedron with eight vertexes (p;-ps)
and six quadrilateral surfaces (s, k=x=, -, z=) for analyzing the
M/EC fields of irregular shape objects. The object geometry is
described by the CAD and its discretized divisions are created
by a mesh generation software. With the aid of Fig. 10(a) and
Table B.1, the area s and the normal vector n of each
hexahedron and its volume v are given by (B.1) to (B.3):

s, = 0.5(|p,2 —P/1|><|Pr4 _p/1|+|p/2 _p/3|X|pf4 _p’3|) (Bl)
(P2 —P.)x(Ps—Pu)
n, =——o - ——, where { =x,,y,,2, B.2
! ‘(pfz _pm)x(pm _p/l) B ( )
18
V= EZ{(pziA ~Pui ).|:(pli,2 ~Pus )X (pti.3 ~ P ):|} (B.3)
1i=1

In (B.1) and (B.2), the vertexes p, (where i=1, 2, 3 and 4) for

the ¢ quadrilateral surface (made of two triangles) are tabulated
on the left side of Table B.1. Equation (B.3) sums the six
tetrahedron volumes (denoted as #; =1 to 6) that make up the
hexahedron, where p,,; are listed on the right side of Table B.1.

TABLE B.1. VERTEXES OF TETRAHEDRONS AND SURFACES

[ p/,] pr,z p(} p/4 li p/i.l p/i.z pn.} p11,4
Xt p2 p3 p7 Ps P P2 P4 Ps
x— P1 Ps Ps P4 > ps P4 Ps Ps
ytoops P4 Ps p7 5 Ps  Ps P2 P4
y—- Mm P2 Ps pPs 1y Pps3 p7 Ps Ps
zt  ps P p7 Ps s p2 D3 P4 Ps
z— P P4 pPs P2 ls P4 P3 Ps Ps

APPENDIX C
LEAST SQUARE ESTIMATION OF SENSOR PARAMETER [6]
The dynamics of the MFD measurement/signal-processing

electronics is accounted for by the transfer function (C.1) where
(M, P) denote (magnitude, phase):

10

GS (]w) = M\ LPS (C.1)
With the measured (Mg, Pr) of the overall system and
experimentally identified sensor (without the conductor), the
EM/Conductor system can be estimated in real time:
My =M M and P, = P, +(-F,) (C.2)
The parameters (Ms, Ps) that characterize the electronic system
dynamics are calibrated by minimizing the error function E:

m ) >
E:Z[(MEJ'_MSMBI') +(PEi_PBi_RS') ] (C.3)
i=1
Minimizing E by solving 0E/Ms=0 and 0E/Ps=0 lead to
MSzi:(MEiMBI) /iM; and &zii(&i_[)lii)' (C4)

i=l
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