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1. Introduction

Consider an n x n system of reaction—diffusion equations
up = Dulyy + G(u), ueR”,

where G: R" — R" and D is a positive diagonal matrix. We are interested in relating the stability
of a steady state ¢* to its underlying geometric structure. Recall that ¢* is said to be spectrally

unstable if the linear operator
2

d
L=D— + VG(¢*
3 + VG ()

has any spectrum in the open right half-plane. Note that, for a reaction-diffusion equation, the
existence of unstable spectrum is enough to guarantee nonlinear instability [1].

As Lo} =0, we know that 0 is an eigenvalue of L with eigenfunction ¢}, provided the state
has suitable decay at oc. Thus in the scalar case n =1, Sturm-Liouville theory tells us that the
number of unstable eigenvalues equals the number of zeros of ¢}. In particular, if ¢* is a pulse,
meaning ¢*(x) — 0 as |x| — oo, it must have at least one critical point, and hence be unstable (cf.
[2, §2.3]). However, when 1 > 1, the results of Sturm-Liouville theory no longer apply, and it is
not as easy to determine the stability of a pulse solution.

The question of pulse stability arose initially from a discussion of Turing patterns, which
are spatially periodic patterns that arise in reaction-diffusion systems when a homogeneous
background state becomes unstable in the presence of diffusion. In all contexts in which such
patterns are physically observable, the diffusion coefficients are not all equal (and in fact are quite
different in size). It has been conjectured that this is a necessary condition for the stability, and
hence observability, of Turing patterns. In many situations, the stability of a spatially periodic
pattern can be related to the stability of a nearby pulse. Thus, if one could prove that pulse
solutions are necessarily unstable when the diffusion coefficients are all equal, it would provide
a route to resolving the Turing pattern conjecture for periodic solutions.

In this paper, we establish the instability of pulse solutions when n > 1, under the assumption
that the nonlinearity satisfies G = VF for some F. In this case, the linearized operator L is self-
adjoint. This is not a setting in which Turning patterns arise, as the standard mechanism for their
creation—a stable, homogeneous state destabilized by the addition of diffusion—does not occur
in gradient systems [3]. Thus our result does not address the original Turing pattern conjecture,
but we feel it is interesting in its own right. Our proof exploits the gradient structure of G by
recasting the eigenvalue problem for L as a first-order Hamiltonian system. At present we do not
know how to extend this analysis to an arbitrary (i.e. non-gradient) nonlinearity G.

The starting point for our proof is Arnold’s symplectic interpretation of Sturm-Liouville theory
[4]. Arnold observed that, for a system of differential equations, a useful generalization of the
notion of ‘oscillation” (or number of zeros) is given by the Maslov index, a topological invariant
counting signed intersections of Lagrangian planes in a symplectic vector space.

Arnold’s analysis is local in space. That is, he uses the symplectic picture to formulate and
prove comparison-type results about oscillations and the interlacing of zeros for Hamiltonian
systems. In the first part of the paper, we develop a global version of this picture, in which the
number of unstable eigenvalues for a differential operator on a half-line (—oo, L], or the full line
R, is equated to the Maslov index of a family of Lagrangian planes. A similar analysis has been
carried out in [5-8]. However, in those papers the Maslov index is defined using a different family
of Lagrangian planes from that needed for our current application, so those results cannot be
applied directly, and we must develop a new (though closely related) framework for the problem
at hand. It is worth pointing out that these results hold for any value of 7 (i.e. for a single equation
or a system of any dimension).

Having related the number of unstable eigenvalues to the Maslov index, our next task is to
compute the latter quantity. This is where the difference between the system and scalar cases
becomes apparent. An explicit computation of the Maslov index requires n linearly independent
solutions to the equation Lu = 0. The derivative ¢} of the steady state is always such a solution.
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Thus, when n =1, ¢* contains all of the information needed to evaluate the Maslov index and
determine whether or not L has any unstable spectrum. This simple fact is the basis for the Sturm
oscillation theorem.

When n > 1, we cannot compute the Maslov index without knowing the additional n —1
solutions. However, in the case of a pulse, we can use a geometric argument to give a lower
bound on the Maslov index, thus proving that at least one unstable eigenvalue exists. It is here
that the advantages of our definition of the Maslov index (and in particular our choice of reference
plane) become apparent. In particular, our definition is such that a zero in the derivative of the
pulse will generate an unstable eigenvalue. This property is not enjoyed by previous definitions of
the Maslov index for homoclinic orbits, which measure intersections between stable and unstable
subspaces, much like the Evans function.

For the last few decades, the Evans function has been the primary tool for determining the
stability of coherent structures in a range of partial differential equations, including reaction—
diffusion equations but also many others, such as nonlinear Schrodinger equations and KdV-type
equations [9]. However, the Evans function has not been shown to be useful for problems in
multiple spatial dimensions. Recently, a series of papers have focused on developing the Maslov
index as an alternative tool for analysing stability in the multidimensional setting. Although that
theory has seen much important progress [10-13], to our knowledge there is only one practical
application of the Maslov index to determine stability in a setting where the Evans function
does not also apply. This is in [14], where the Maslov index is used to prove that the standing
pulse solution of the FitzHugh-Nagumo equation, with diffusion in both variables, is unstable,
provided certain assumptions on the model parameters are satisfied. The analysis in [14] is
particular to the FitzHugh—Nagumo model, and relies heavily on the activator—inhibitor structure
in evaluating the Maslov index. The results in the current paper are valid for a general class of
equations, only requiring a certain generic assumption, and so we feel that this is a significant
contribution towards demonstrating the utility of the Maslov index in a setting where the Evans
function has not been used to obtain the same result.

There is another context in which it was shown that pulse solutions are unstable for a class of
systems of PDEs, namely the viscous conservation laws studied in [15, eqn (4.1)]. In those systems
of two equations, it was shown that homoclinic orbits, which correspond to undercompressive
shocks, are necessarily unstable. Their proof involves a necessary condition for stability that is
derived using the Evans function, and it is not clear how to use that method for the systems we
consider here. Further references on the Maslov index and the stability of pulses can be found
in [14].

Notation: We let (-,-) denote the real Euclidean scalar product of vectors and let T denote
transposition. For an x-dependent n-dimensional matrix A: R — R"*" we define the norm

[[Alloc =sup sup [A(x)v].
xeR veR"
lvl=1
When a=(a;)! ; eR" and b= (bj)].m:1 eR™ are (n x 1) and (m x 1) column vectors, we use the
notation (a,b) " for the (1 + m) x 1 column vector with the entries a1, . ..,a4,b1,...,bn (avoiding
theuse of (a7,b7)T). We denote by B(X) the set of linear bounded operators on a Hilbert space X
and by Sp(T) = Sp(T; &) the spectrum of an operator on X'

(a) Outline of main results and structure of paper

We describe a symplectic approach to counting negative eigenvalues of a second-order differential
operator on the real line, that is, the values A <0 for which there exists a non-trivial solution to
the eigenvalue problem

Hu:=-Du" +V(x)u=xiu, D=diag{d;}>0, ueR", xR, (1.1)
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where

dom(H) = H*(R; R") (1.2)
and V(x) e R™" satisfies the following hypotheses.

Hypothesis 1.1.

(H1) The potential V € C(R,R"*") takes values in the set of symmetric matrices with real
entries.

(H2) The limits limy_, +5 V(x) = V1 exist, and are positive-definite matrices, i.e. Sp(V+) > 0.

(H3) The functions x > (V(x) — V) are in L1(Ry; R™*").

Hypothesis (H1) ensures that the spectrum for (1.1) is real. Hypothesis (H2) is a necessary and
sufficient condition to ensure that the essential spectrum of H is strictly positive, i.e. D+ Vy>0
for every k € R if and only if V4 > 0. Finally, hypothesis (H3) is important in applying the theory
of exponential dichotomies to the first-order system of equations (1.6), which is equivalent to
the eigenvalue problem (1.1). In particular, this hypothesis ensures that the existence of an
exponential dichotomy of the constant coefficient asymptotic system implies the existence of
an exponential dichotomy of (1.6) and the continuity of the respective dichotomy projections (cf.
lemma 2.5).

Remark 1.2. The results from the first four sections can be extended to the case Hu=
—(Dx)u'Y 4+ V(x)u, where D € C(R, R"*") takes values in the set of symmetric matrices with real
entries, there is @ > 0 such that D(x) > aI > 0 for all x € R and the limits limy_, 1~ D(x) = Dy exist
(these restrictions on D are described in [16]).

Remark 1.3. The results can also be extended to the case where the essential spectrum touches
the imaginary axis, meaning that one or both of V4 is not hyperbolic. In that case, we could
instead consider the operator H + C for some small positive constant C so that V4 + C is positive.
This would allow us to use the below results to compute the Morse index of H 4+ C, which equals
the Morse index of H for sufficiently small C. The case where one or both of V1 <0 is not of
interest, because in this case the state is already unstable due to the essential spectrum.

Operators of the form (1.1) arise, for example, when determining the stability of pulse or front
solutions to a reaction-diffusion system with gradient nonlinearity:

ur=DAu+ G(u), uecR",

where G(1) = VF(u) for some scalar function F; see the example in §5. If ¢, is the solution about
which one linearizes, then the spectrum of £=DA + V2F(p«(x)) determines the linear stability
of ¢.. By considering instead the operator H = —£, we have that the Morse index of H, which
is defined to be the number of negative eigenvalues, equals the number of positive, and hence
unstable, eigenvalues for L.

Our strategy is to first consider the eigenvalue problem on the half-line

Hiu:=-Du" +V(x)u=x, ueckR" xe(—oo,L], (1.3)
where

dom(Hy) = {u € H*((—o0, LL; R") | u(L) = 0} (1.4)

and L € R is fixed. We then extend our results to the full line in §4.

s s g oo [
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Setting
1:=uUc R"
P (1.5)
and p2:=Du' eR"
and p:=(p1,p2)" € R?", we can write (1.3) as
r_ _ On D!
p =AM A)p, Al )= (_MH LV 0, ) (1.6)

where I,; and 0,, denote the n x n identity and zero matrices, respectively. Then the Dirichlet
boundary condition at x = L corresponds to p(L) € D, where D is the Dirichlet subspace defined by

D={(p1,p2)" €R*"|p1=0}. (17)

We then define a trace map @; that maps a solution p of the system (1.6) to its boundary value
pGs) € R?". Let Y; denote the set of solutions of (1.6) that decay at —oo. This leads to the critical
observation (see proposition 2.8) that X is an eigenvalue of (1.3) on (—oo,s] if and only if the
subspace @;(Y;,) intersects D non-trivially.

In what follows, we will be working with infinite rectangles [~10, 0] x [—00, L], where Ao, L €
R are fixed, and we have compactified (—oo, L] as follows. We first identify [-1, 1] and [—oc0, +-00]
via the mutually inverse functions

s(o) = %In (%) , o(s)y=tanh(s), o e€[-1,1], s€[—o0,+00], (1.8)
with s(£1) = o0 and o (£00) = £1. Then there is a unique topology on [—o0c, +00] so that both s
and o are continuous. Thus, by construction, the set [—oo, L] is homeomorphic to [-1, o (L)].

We will denote the boundary of [-As,0] x [-00,L] by I =TI UT> Ul3p UTy, where
I =[=Xoo,0] X {—00}, I 1 ={0} x [-00,L], I3 =[—Ac,0] x {L} and I'y; ={—Aoo} x [—00,L],
and each curve is oriented as shown in figure 1. With a slight abuse of notation, we also let I
denote the images of these line segments under the map o(-) from (1.8).

We extend the definition of @5(Y}) from s € (—oo, L] to s € [-o0, L] by introducing the planes

D_o(Y;) :=E" (—00, 1),

where EY (—o0, A) denotes the spectral subspace corresponding to the eigenvalues of the matrix

0 D1 )
A_(A):= =1 Alx, &
) (—M,HLV_ 0, ) im A(x, 2),

with positive real parts.

There is a natural symplectic structure on R?" such that the subspaces ®s(Y,) and D are
Lagrangian (see theorem 2.6). This symplectic structure allows us to define the Maslov index,
definition 2.1, of @5(Y}) with respect to D, along the paths I in the A-s plane.

We define a crossing to be a point (A4, s.) for which &,(Y}) has a non-trivial intersection with
D. The Maslov index of I} (with respect to D) can be viewed as the number of crossings along
T, counted with sign and multiplicity. We will prove in lemma 2.5 that the map

(A, 0) > Ds(5)(Ya)

from [—As, 0] x [—1, £] into the set of n-dimensional subspaces of R2" is continuous, so its Maslov
index is well defined. Our goal is to relate this Maslov index to the Morse index of (1.3). Our
strategy, as depicted in figure 1, is as follows.

As above, welet I'1, =17, UI> UI3; Uy, where I'1 depends on the choices of both L and
Aco- A homotopy argument implies that the Maslov index Mas(/7, D) of the closed curve [T is
equal to zero. By general properties of the Maslov index one has Mas(/1, D) = 2;1:1 Mas(I5 1, D),
using the orientation shown in figure 1.
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eigenvalues

L
no conjugate ’ conjugate
points points
Y FZ,L
4 5 > A
-
no eigenvalues oo
Ip

Figure1. lllustrating the proof of theorem 3.1. When X, is large enough, there are no crossings on 17, and 3, and the Morse
index equals the number of crossings on 73,. By homotopy invariance, the Morse index is equal to the number of crossings
on [,; these are precisely the conjugate points in (—oo, [).

In lemma 2.11, we show that there are no crossings along Iy 1, or I provided A is chosen
large enough. This follows from the structure of Hj, and the fact that its spectrum is bounded from
below uniformly in L.

Crossings along I3, (when s =L and A € [—A, 0]) correspond to eigenvalues of the operator
Hj defined in (1.3), hence Mor(H| ) equals the number of crossings on I3 1, counting multiplicities.
On the other hand, a local computation shows that all crossings along I3 have the same sign
(lemma 3.3). This important monotonicity property implies that [Mas(/3 1, D))| is equal to the
total number of crossings, and hence is equal to the Morse index of Hy .

Finally, Mas(/%,1,, D) is the Maslov index of the boundary value problem (1.3) with A =0.
Another local computation shows that all crossings along I have the same sign (lemma 3.4).
This means, in particular, that Mas(/% 1, D) is equal to the number of crossings along I 1, counted
with multiplicity.

Combining the above results with the fact that Mas(/;, D) vanishes, we arrive at the desired
formula

Mor(Hp ) = # crossings, with multiplicity, in (—oo, L) (1.9)

relating the Maslov index of the boundary value problem and the Morse index of the
corresponding differential operator. This result is summarized in theorem 3.1. We then show in
theorem 4.1 that the Maslov index of I is independent of L for all L large enough, and thus can
be viewed as the Maslov index for (1.1) posed on the whole line.

The paper is organized as follows. After a brief introduction to the Maslov index, in §2, we
introduce an appropriate symplectic structure and relate the crossings of the path @;(Y3) to the
eigenvalues of differential operators. In §3, we prove monotonicity of the crossings and provide
the ingredients for the main results of the paper. In §4, we extend our results from §3 to the
operator (1.1) on the whole line. Finally, in §5 we apply our results to prove the instability of
pulse solutions in reaction—diffusion systems with gradient nonlinearity.

2. The Maslov index: a symplectic approach to counting eigenvalues

We begin by recalling some notions regarding symplectic structures and the Maslov index; for a
detailed exposition, see [17-19]. For a brief but extremely informative account, see [20]. Many of
these ideas have been extended to infinite-dimensional settings (e.g. [21]).
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A skew-symmetric, non-degenerate bilinear form w on R?" is said to be symplectic. For every
such o, there exists a unique skew-symmetric matrix §2 so that

2
vy, v2) = (v1, 2v2), vy, vy €R

A Lagrangian plane V is an n-dimensional subspace in R?" such that w(vy,vp)=0forall v, vy e V.
The set of all Lagrangian planes in R?" is denoted by A(1). Note that A(1) depends on the choice
of w.

Let 7 (V) denote the train of a fixed Lagrangian plane V € A(n), that is, the set of all Lagrangian
planes whose intersection with V is non-trivial. Obviously, 7 (V) =U}_; Tt(V), where T((V) =
{We A(n) | dim(V N W) =k}, the set of all Lagrangian planes whose intersection with V is k-
dimensional. Each set 7x(V) is a submanifold of A(n) of codimension k(k + 1)/2; in particular,
codim7; (V) =1. Moreover, 7;(V) is two-sidedly embedded in A(n), in the sense that there is a
nowhere-vanishing normal vector field on 77 (V). This vector field defines a canonical orientation,
and hence one can speak about the positive and negative sides of 71(V). A continuous curve @
in A(n) can be perturbed so that it only intersects the train in the 77(V) component, and does so
transversely. Then Mas(®, V), the Maslov index of @ with respect to V, is defined to be the signed
number of intersections of the curve @ with 7;(V). This idea is made precise in [17].

For our purposes, it suffices to define the Maslov index for regular, piecewise C! paths,
following [19]. Let @: [a,b] - A(n) be a continuously differentiable path and fix a particular
Lagrangian plane V. A crossing is a point tg € [a,b] with ®@(ty) € T(V), i.e. @(tg) NV #{0}. Let
to € [a, b] be a crossing, and let W be a subspace in R?" transversal to @ (tp); generically W can
be chosen to be V1. Then W is transversal to @(t) for all t € [ty — €, tg + £] for & > 0 small enough.
Thus, there exists a family of matrices ¢(t), viewed as operators from ®(tp) into W, so that ®@(¢) is
the graph of ¢(t) for |t — ty| < &. The bilinear form Q r defined by

Qmv,w)= %w(v,d)(t)w) . forv,wed(tp)NV (2.1)
=to

is called the crossing form. We denote by n.(Qaq) and n_(Qaq) the number of positive and

negative eigenvalues of Q a4, counted with multiplicity, so that signQaq =n4(Qa) — 1—(Qm)

is its signature. As Qa4 is a symmetric matrix its eigenvalues are purely real; thus the notion of

positive and negative eigenvalues is well defined. A crossing is called regular if the crossing form

is non-degenerate.

Definition 2.1. If 5 is the only regular crossing of the path @ with 7(V) in a segment [ag, bg],
then the Maslov index Mas(®|[4, 5,], V) is defined as

—n—(Qm) if s =ag
Mas(®|[ay,b], V) = ) n(Qrm) — n—(Qaq)  if 5o € (a0, bo) (22)
14(Qm) if so = bo.

The Maslov index of any regular, piecewise C! path can be determined by computing the Maslov
index on each segment and summing,.

The important features of the Maslov index for this work are summarized below.

Theorem 2.2 [19].

(i) (Additivity) Fora<c<b,
Mas(®@ (551, V) =Mas(P |41, V) + Mas(P|[cp1, V).
(if) (Homotopy invariance) Two paths &g, @1: [a,b] — A(n), with @y(a) = @1(a) and @y(b) = P1(b),

are homotopic with fixed endpoints if and only if they have the same Maslov index.

Remark 2.3. When defining the Maslov index for a curve with ®(a) # ®(b), one needs to be
careful about crossings at the endpoints, to ensure that the additivity property holds. That is, if c €

sy s g oo [
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(a,b) is a crossing, should it contribute towards Mas(®|[, ], V) or Mas(® (.}, V)? Our (arbitrary)
convention is that the positive part of the crossing is assigned to [a, c], whereas the negative part
is assigned to [c,b]. We could just as well have chosen the opposite sign convention, or could
have assigned %sign Qm to each segment. For a closed curve, these are all equivalent, so our
choice ultimately does not matter, but it will affect some intermediate results; see in particular
theorem 3.1 and remark 3.2.

In our application to the spectral theory of differential operators, a special role is played by
paths for which all crossings are sign definite (and have the same sign).

Remark 2.4. A crossing at fg is said to be positive if the crossing form is positive definite; in
this case the local contribution to the Maslov index is just n4(Qaq) =dim(@(fp) N V). A curve
@ : [a,b] - A(n) is said to be positive if all of its crossings are positive, in which case

Mas(®, V)= ) dim(®(t)N V).

a<t<b

Similarly, the Maslov index of a negative curve is given by

Mas(®, V)= dim(®(t)N V).

a<t<b

Both sums are necessarily finite because regular crossings are isolated.

(@) Symplectic formulation of the eigenvalue problem

We now return to system (1.6). We recall that Y, denotes the (n-dimensional) space of solutions
to equation (1.6) that decay at —oo, @5 denotes the trace map

®s: p(-) > p(s) e R*
which maps a solution in Y), to its value at x =s,

D={(p1,p2)" €R*"|p1 =0}

encodes the Dirichlet boundary conditions and we have compactified (—ooc, L] using the map s(o)
from (1.8).
The following lemma is needed to define (and compute) the Maslov index.

Lemma 2.5. The map
(A, 0) = Ds5(Y3)

into the set of n-dimensional subspaces ofR2" is continuous on [—iso, 0] x [—1, €] and Ct on [—Aso, 0] X
(—1, £]; here s(o) is defined in (1.8) and Ao > 0 and £ € (0, 1) are fixed.

In what follows, we will suppress the notation s(o) and will view (A,s) > @5(Y)) as a
continuous map from [—A«, 0] X [—00, L] into the set of n-dimensional subspaces of R2,

Proof. We will use exponential dichotomies. By hypothesis 1.1(H2), the essential spectrum of H
is strictly positive. Thus, H — Al is Fredholm for all A € [~A, 0] and so the first-order differential
operator d/dx — A(-, 1) is Fredholm in L3(R; R2") (e.g. [22] and [23, Thm. 4.1]). By Palmer’s
theorem [24,25] (see also [26]), the differential equation (1.6) has exponential dichotomies on R
and R_. We will denote by E! (x, 1) the dichotomy subspace of (1.6) for x € (—oo, L], consisting
of the values at x of solutions of (1.6) which decay exponentially to zero at —oco. That E" (x, 1) is
continuous for x € (—oo, L] is true by definition.

We note that the asymptotic (constant coefficient) equation p’(s)=A—_(A)p(s) is also
exponentially dichotomic, that is, Sp(A_(1)) NiR =@, and we denote by E"(—o0c,1) the (x-
independent) unstable subspace associated with the asymptotic system. Then the projections in
R?" onto EY (x, ») converge to the projection onto EY (—oo, 1) as x — —oo (e.g. [27] or [28]). Now the
relation @s(Y,) =EY (s, 1) for s € (—oo, L] finishes the proof. |
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Theorem 2.6. For all s € [—00,+00) and A € (—o0, 0], the plane @4(Y;.) belongs to the space A(n) of
Lagrangian n-planes in R2", with the Lagrangian structure w(v1, v2) = (v1, 2v2), where

0, —Ip
2= . 2.3
() e
Proof. We must prove that @4(Y}) is n-dimensional, and (vi, 2v3) =0 for any vy, vy € @5(Y3).

First consider s € (—oo, L]. For v1 = p(s) and vy = q(s), we compute

(v1, 2v2) = (p(s), $2q(s))

s d
— | 5 pw, 2qundx
= (w0, 2q0 + b, 29 @) dx
= [ A »pe0, 2900 + b0, @A g dx

= [ 1pe0, 246 a0 + b, 246, e dr=0,

where in the last line we used 27 = —£2 and

QA1) = (A, ). (2.4)
For s = —o00, the notation ®@_.(Y3) refers to E (—oo, 1), the unstable subspace at —oco. Let vy,
vy € E¥ (—o00, 1) and consider the evolution of v; and v, under the vector field

pP=A_MNp, A_-(N)= xEr_noo Alx, ).

Then by (2.4)
d (e¥A-(%)

dx

Thus (v1, 2vy) = (2e*-Pyy, e4-Wyy) =0, as e¥4-Fy; ) — 0 as x — —oo by definition of the
unstable subspace.
To complete the proof, we show that dim @,(Y;)=n. By continuity, it suffices to prove the

result at s = —oo. Using
0 D1
A_(M)= ,
() (—}Jn +V_ 04 )

we see that v € Sp(A_(1)) if and only if (AL, + V_)p= szp for some p e R". As V_ and D are
positive, and A <0, we must have v2 > 0, so v is non-zero. This means A_ (%) has an equal number
of positive and negative eigenvalues; hence dim ®@_.,(Y;) = dim E" (—oo, A) =1, as claimed. W

vy, .Qex‘A’()”)vz) =0.

It is also true that D € A(n); this can be verified by a straightforward calculation.

Definition 2.7. For a given A € R, a point s € (—oo,L] is called a A-conjugate point of (1.6) if
D5(Y3) ND # {0}. In the special case A =0, s is simply called a conjugate point.

Thus s is a A-conjugate point if and only if there exists a non-zero solution p = (p1,p2) " to (1.6)
that decays at —oo and satisfies the boundary condition p1(s) = 0. This means (1.3) has a non-zero
solution in H2((—oo0, s]; R") with u(s) = 0, hence A is an eigenvalue of H;.

Proposition 2.8. For any A € Rand s € (—oo, L], the following assertions are equivalent:

(i) A is an eigenvalue of Hs;
(ii) s is a A-conjugate point of (1.6).

Moreover, the multiplicity of the eigenvalue X is equal to the dimension of the subspace ®s(Y,) N D.
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As we will see in lemma 2.11, for A large enough Hs has no eigenvalues with A < —Ax.
Therefore, we may restrict A to [—Aso,0]. For a fixed Ao, we can view @; as a continuous map
from the rectangle [—Aso, 0] x [—00, L] to the space of Lagrangian planes A(n). Let I'1, denote the
boundary of the image of this map, and define I'i 1 = {®_oo(Y1) | X € [0, 01}, I L ={Ps(Y0) s €
[—oo, L1}, I3 ={@L(Y2) | A € [0, —Acol} and Iy = {Ps(Y_1.)|s € [—oo, L]}, so that IT = J; I, as
in figure 1. As @ is continuous, /7, is homotopic to a point; hence Mas(/7; D) =0. Letting A; |,
denote the Maslov index of I ; with respect to the Dirichlet subspace D, we have

AL +Ax + Az + Ay =0. (2.5)

Remark 2.9. The Maslov index counts signed crossings and so, in general, |A;| is a lower
bound for the total number of crossings. However, lemmas 3.3 and 3.4 imply that the crossings
along any given I are of the same sign, which means |A; | is in fact equal to the number of
crossings.

(b) Nocrossingson I7;and Iy

We now show that A1 =0 and, provided A« is large enough, A4; =0. We use the following
result.

Theorem 2.10 [29, theorem V.4.10]. Let H be self-adjoint and V € B(X) be a symmetric operator on
a Hilbert space X. Then

dist(Sp(H + V), Sp(H)) < IVl 5x)-
Lemma 2.11. The following hold for all L € R:

(i) A1,L=0.
(i) If Aoo > IVlloo, then Agp =0.

Remark 2.12. In fact, the proof will show that there are no crossings on I 1, or Iy 1. This means
the result A;, = A4 =0 is not due to cancellation.

Proof. (i) This is equivalent to showing that the unstable subspace E" (—o0o, A) of

_ On D!
A-0)= <—un +V_ 0, )

has trivial intersection with D for any A < 0. Let Uy denote an eigenvector for V_ with eigenvalue
k. As V_ is symmetric, the collection {Uy }xesp(v_) forms a basis for R". From hypothesis (H2), we
have k > 0, hence k — 1 > 0. Then v+ = £+/k — A is an eigenvalue for A_()) with eigenvector

+00y _ Uy
Ve)= (imDuJ '

Then span{V,f} N D = {0} because {U}} forms a basis of R".

(i) Let Hg)s = —D(d?/dx?) with dom(H q)s) = dom(Hs), as defined in (1.4). By reflecting and
translating, for any s € R the spectrum of H(y; is seen to be the same as Sp(—D(d?/dx?)) on
L?([0, +-00); R™), which is well known to be [0, +-00) (e.g. [30, theorem 6.33]).

By theorem 2.10, we infer

dist(Sp(Hs), Sp(H(0)s)) < IVIIB(r2 (= oc,s):k") = IV lloo, (2.6)

where |Vl is s-independent, hence Sp(H;) C [—|Vlloo, +00). By proposition 2.8, s is a A-
conjugate point if and only if A is an eigenvalue of Hs. This means there are no A-conjugate points
satisfying A < —[|V]l0, and so A4 =0. |
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3. Counting eigenvalues for H; via the Maslov index

We are now ready to state our first main result, theorem 3.1, which relates the Morse and Maslov
indices of Hj .

Theorem 3.1. Consider the operator Hy, defined in (1.3). Fix L < 400 and Lo > 0 as in lemma 2.11,
and let A;; =Mas(I; 1, D). Then the following assertions hold.

(i) The Maslov index of the curve Iy, is zero;
(ii) AsL=—AzL/
(iii) Asr <0 and |Asy| is equal to the number of non-positive eigenvalues for Hj, counting
multiplicities:

Az Ll = Mor(H;) + dim ker(Hy);

(iv) Apr, >0 and App is equal to the number of the conjugate points in (—oo,L], counting
multiplicities (see definition 2.7(1)); and

(v) the Morse index Mor(Hr) is equal to the number of conjugate points in (—oo,L), counting
multiplicities.

Remark 3.2. In theorem 3.1 and the lemmas below, the assumption 0 ¢ Sp(Hp) is not required.
From proposition 2.8, we see that 0 € Sp(H|,) precisely when s = L is a conjugate point. In figure 1,
this corresponds to a crossing at the top right corner. Such a crossing will contribute equally to
both Ay and |A3 |, so that its net effect on Mas(I7, D) is zero. This cancellation explains why
these endpoint contributions are present in (iii) and (iv) but not in (v). That these terms appear
at all is a consequence of our choice of symplectic form

0, —Iy
Q=

as opposed to —£2, and the sign conventions in our definition of the Maslov index; see
definition 2.1 and remark 2.3, and also [10, §6.1]. The monotonicity computations in lemmas 3.3
and 3.4 are also affected by this choice of symplectic form; much of the existing literature uses
—§£2, with respect to which these paths are negative definite.

The proof of theorem 3.1 relies on the monotonicity of the Maslov index with respect to the
parameters A and s, which we establish in lemmas 3.3 and 3.4, respectively. We begin with 2,
following the strategy of [13, lemma 4.7].

Lemma 3.3. For any fixed s € (—oo, L], the path A — ®s(Y},) is positive definite. In particular, Az, <0
and

|A3L| = Z dim(&r(Y;) N D).
2=0

Proof. Let Ag € [—Aoo,0] be a crossing, so that ®s(Y},) N D # {0}. Let W be a subspace in R2"
transversal to @;(Y},). Then W is transversal to @(Y}) for all A € [Ag — &, A + €] for € > 0 small
enough. Thus, there exists a smooth family of matrices, ¢(1), for A € [Ag — &, 10 + €], viewed as
operators ¢(1): @5(Y3,) = W, such that @(Y}) is the graph of ¢(1). Fix any non-zero v € @5(Y;,) N
D and consider the curve v(1) =v + ¢p(A)v € 5(Yy) for A € [Ag — €, Ag + €] with v(Ag) =V. By the
definition of Y}, there is a family of solutions p(x; 1) of (1.6) such that v(L) = @,(p(x; 1)). We claim
that

1)) (v()»o), g—;(km) > 0. (3.1)
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Assuming the claim, we finish the proof as follows: as for each non-zero v e @s(Y;,) N D the
crossing form Q a4 satisfies

d d
Qm(v,v)= E - (v, p(A)v) = T

(v(Ao) (Ao))

the form is positive definite. Thus, the crossing Ag € [—Aoo, 0] is positive. In particular, taking into
account that the path I'3; = {@L(Y,\)};iff is parametrized by the parameter A decreasing from 0 to
—Aoo, €ach crossing A along I3, is negative so that Az <0.

Starting the proof of claim (3.1), for the solution p = p(x; A) we compute the A-derivative (for
brevity, denoted below by dot) in equation (1.6), and obtain the equation

oV, v+ ¢(r)v)
A=Ag

P'(% Mr=ro = A(X; A0)P(X; Ao) + o0P(X; Ao), (3.2)

where op = ( O;W 0”) We also recall the definition 2 = (O]',’ _I") from (2.3), and will use the fact

that 27 = —£2 and p; € L*((—o0, L]; R"). Then
o (1600), 57.00)) =0(pls32), 62Dy = (0052, 2B,

=—(2p(s; 1), P(S; M) =2

s d
=—J P (£2p(x; 1), p(x; A)) [a=n, dx

(£2p(; 1), p'(x; M) h=2p dx

[e.¢]

8

(£2p(x; 20), Alx, M)P(x; A)a=2, + o0p(X; 20)) d

-I
J (£2p(x; 1), p(x; 1)) 1=1, dx
-[

oo

(6.2

- J (QAG, VP 10), P Wlimry) d

—00

(1.6)

f (2AG M) — 2AC WP A0), P0G W) asg) dx

o0

J (£2p(x; 20), oop(x; Ao)) d

J (82p(x; 10), oop(x; Ap)) d

24

S
:J (P(x; o), $200p(x; 10)) dx
—0o0
S
ZJ lp1(x; A0) e dx > 0
—00

thus completing the proof of (3.1) and the lemma. |

We will now establish monotonicity of the Maslov index with respect to the parameter s.
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Lemma 3.4. For any fixed A € [—Aso, 0], the path s — @4(Y?,) is positive. In particular, Ay 1, > 0 and

Ay =Y dim(®5(Y) N D).
s<L

Proof. Let s, € (—oo,L] be a crossing, so that @, (Y) N D # {0}. Let W be a subspace in R2"
transversal to @;, (Y3). Then W is transversal to ®@s(Y,) for all s € [ssx — ¢,54 + €] for ¢ > 0 small
enough. Thus, there exists a smooth family of matrices, ¢(s), for s € [s, —¢,5, + €], viewed as
operators ¢(s): @s, (Y1) — W, such that @¢(Y}) is the graph of ¢(s). Fix any non-zero v e @, (Y) N
D and consider the curve v(s) =v + ¢(s)v € @5(Y3,) for s € [sx — ¢,54« + €] with v(sx) =v. By the
definition of Y), there is a family of solutions p(x;s) of (1.6) such that v(s) = @s(p(x;s)). The
notation p(x;s) denotes the fact that p(x;s) € Y, depends on s as a parameter and is a function of
x; then @(p(x;s)) = p(s; s) is the solution p(x;s) evaluated at x =s. Denoting by dot the derivative
with respect to the variable s so that

0(s) = (p'(x;8) + P(x;9))lx=s,
we claim that

w(v(sx), v(s«)) >0, (3.3)

Assuming the claim, we finish the proof as follows: as for each non-zero v e @, (Y;) N D the
crossing form Q x4 satisfies

d d
Quvv)= 4| ovdEv)= | ov,v+e()v)

=w(v(s4), (sx)) >0,

the form is positive definite. Thus, each crossing s, € (—oo, L] is positive, so Ay > 0.
Starting the proof of claim (3.3), we remark that s-derivatives of the solutions p(-,s) of (1.6)
satisfy the differential equations

P'(x) = Ax, M)p(x). (3.4)
Using the definition of w, we split the expression for w(v(s), v(s)) as follows:
@(v(s), 0(s)) = (v(s), L20(s))
= (p(s5), 2p'(5;9)) + (p(s;5), 82P(5;9)) .

@, (s) ,(s)

Using (3.4) and rearranging terms, the expressions «; are computed as follows:

a1(s) = (p(s;s), RLA(s, 1)p(s; 5))
a2(s) = (p(s; s), £2p(s; 5))

s d
|| tptse), 2p0s9m ds

S

({A(x, Mp(x;5), 2p(x;5)) + (p(x;8), LA(x, M)p(x;5))) dx
<[—[2A(x, )+ (2Ax ) p(;s), p(x; s)> dx

Thus, (v(s), $20(s)) = «1(s). Using the condition p1 (s«; s«x) = 0, which holds because s, is a conjugate
point, we conclude that

@(v(sx), V(sx)) = a1(54) = (D71P2(5*/ 54), Pz(S*, Sx))rr > 0.
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We are now ready to prove theorem 3.1.

Proof of theorem 3.1. Assertion (i) was already observed in (2.5). Assertion (ii) follows from (i)
and lemma 2.11. Assertion (iii) follows from lemma 3.3 and proposition 2.8. Assertion (iv) follows
from lemma 3.4 and the definition of a conjugate point. Finally, (v) follows from (ii)-(iv). |

We conclude this section with the observation that theorem 3.1 can be used to establish
monotonicity of the eigenvalues of H.

Remark 3.5. Let A1(L) <Ao(L) <--- <Ay(L) <0 denote the non-positive eigenvalues of the
operator Hy. As the essential spectrum of Hj, is strictly positive, the eigenvalues behave as the
eigenvalues of a continuous family of finite-dimensional operators parametrized by L (e.g. [29,
8§I1.5]). A complete proof of this fact is given in [31].

We claim that each (L) is a strictly decreasing function of L. Applying theorem 3.1(iii) to the
operator Hy — ;(L), we see that |A3 | >j. As |A3L| = A is a non-decreasing function of L, we
have |A3 15| > for any § > 0, which implies that the first j eigenvalues of Hy s are less than or
equal to A;(L). In particular, 2;(L + 8) < A;(L), which shows that %j is non-increasing. We complete
the proof of the claim by noting that A; cannot be locally constant, because the conjugate points
are regular, and hence isolated, by lemma 3.4. For an alternative proof, we refer the reader to [31]
where the derivatives d;/dL are computed in terms of the crossing form.

4. Counting eigenvalues for H via the Maslov index

We now show that theorem 3.1 can be extended to count eigenvalues for problems on the whole
real line. Recall the Schrédinger operator H = —D(d?/dx?) + V(x) on L2(R; R"), as defined in (1.1).

Theorem 4.1. There exists Lo, € R such that, for all L > L, the following hold:

(i) Mor(H) =Mor(HL);
(ii) L is not a conjugate point;
(iii) Hy is invertible.

In particular, the number of conjugate points is finite and independent of L, hence
Mor(H) = # conjugate points in (—oo, +00). 4.1)

As Ay, converges as L — oo to the number of conjugate points in (—oo, +00), we can interpret
this number as the Maslov index for the whole-line problem.
To prove theorem 4.1, we use the following notation. For equation (1.6)

‘= AP, A, )) = O D~
p =AW 4p ML+ V) 0,
we define the following subspaces:

Ei (x, 1) : stable dichotomy subspace for x > 0,
EY (x, A) : unstable dichotomy subspace for x > 0,
E® (x,

A) : stable dichotomy subspace for x <0
and E%(x, 1)

unstable dichotomy subspace for x <0,

recalling that E" (s, 1) = ®@s(Y,). We remark that although E‘i/u(x, A) and IESJZu (x, 1) are initially
defined for x <0 and x > 0, respectively, the dichotomy subspaces can be propagated for all x € R.
However, in general (x, 1) — EY (x, 1) is not continuous on (—00, +00] x [—As, 0], and similarly
for (x, 1) = ES (x, 1) on [—00, +00) X [—Ax, 0]. For more on this topic, see [6, appendix].

We also let Ei/”(:lzoo, A) denote the stable/unstable spectral subspaces of A4(%).
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Lemma 4.2. The subspaces Eit/”(x, 1) have the following properties:

X—>—+00

(i) B (x, 1) =25 B (00, A) and B (x, 1) EY/*(—00, A);
(i) E/"(+00, 1) N D = {0} and E”*(—o00, 1) N'D = {0}, with D as defined in (1.7).

X——00
—_—

Proof. (i) This is a well-known fact about dichotomy subspaces.
(ii) The result E¥ (—oo, 1) N D = {0} was already shown in the proof of lemma 2.11(ii); the proof
is analogous for the remaining cases. |

Proof of theorem 4.1. (i) We follow the proof of a similar result from [32]. By construction, Mor(H)
is the number of negative zeros of the Evans function; that is, the number of A < 0 such that

ES (0, 4) A EY(0,1) =0.

Here the wedge product A is defined to be det[vf(k) e v,J{(A)vf()L) -+ v, (A)], where {vji(k)} are
analytic bases for E3 (0, 1) and E" (0, 1). A change of basis will simply multiply the determinant by
a non-vanishing analytic function, so the zeros and their multiplicities are well defined. Similarly,
Mor(Hp) is equal to the number of negative zeros of the function

D AEY(L, ).

We claim that E3 (0,A) AEY(0,A) and D A EY(L, 1) have the same number of negative zeros,
counting multiplicity, for sufficiently large values of L. We remark that A =0 cannot be a cluster
point of the set of negative zeros of the function D A E" (L, 1) as L — oo because the zeros are
decreasing functions of L by remark 3.5.

Let ¢(x1,x2;A) denote the propagator of the non-autonomous differential equation y’' =
A(x, )y. Also define Dy (1) = ¢(0,L; A)D A EY (0, ) and Do (A) = ES (0, 1) A EX (0, 1), and choose an
analytic basis {v;r(k)} of E3 (0,1). Note that D @ EY (400, 1) = R?" because EY (+00,1) N D = {0}
(lemma 4.2(ii)). Also, note that D A E" (L, 1) and Dr(A) have the same zeros because E" (L, 1) =
¢(L,0; L)EU (0, ), hence

Dr(A)=¢(0,L; A)D A ¢(0,L; M)EL(L, A) = [detp(0, L; 1)]D AEY(L, 1).

We now follow the proof of [32, lemma 4.3]. It is known that ]Ei/u(L,A)HEi/"(+oo,)»)
exponentially as L — +o0; see [32, Thm. 1]. Then, as in [32, Thm. 2], there exist unique vectors

w]*()») € EY (L, 1) such that D = span{¢(L,0; )»)v]-'s'()\) +wj(x):j=1,...,n}and
¢(0,L; \)D = span{u}f(x) + ¢(0, L;A)wj*(x) j=1,...,n}.

Thus, ¢(0,L; 1)D and ES (0, 1) are exp(—oL)-close, where o is the rate of exponential decay of
solutions at +00, and so the set of cluster points as L — oo of the negative zeros of D (1) is equal
to the set of negative zeros of D (1), counting multiplicity, by Rouché’s theorem as in [32, Rmk
4.3], and by remark 3.5.

(ii) Combining the result from (i) with theorem 3.1(v), we see that

Mor(H) = Mor(H[,) = # conjugate points in (—oco, L)

for any L > L. As Mor(H) does not depend on L, we conclude that there are no conjugate points
in (Loo, +00), and so Mor(H) is equal to the number of conjugate points in R.

(iii) This is equivalent to (ii), because Hy fails to be invertible precisely when L is a conjugate
point. u

Remark 4.3. The fact that Mor(H}) converges to Mor(H) as L — +o00 has also been shown in
[33]. Here we used an alternative proof based on the arguments from [32] (see also [16]) where
the spectrum of the operator on the full line was approximated by the spectra of the operator
on [—L,L]. Unlike [33], this approach generalizes to operators which are not self-adjoint; this
is relevant as recent progress has been made in defining Maslov-like indices for such problems
(e.g. [34]).

i o S


http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on March 6, 2018

Remark 4.4. It is also possible to prove theorem 4.1(ii) directly (without using part (i)) by
showing that E" (x,0) N D = {0} for all x > L. If 0 & Sp(H), then ES (x,0) N E (x,0) = {0} for all
x > 0, which in turn shows that E3 (x, 0) & E% (x,0) = R?" for all x > 0. As the unstable dichotomy
subspace on R can be taken to be any subspace which complements [ES, (x, 0), we may therefore
choose EY (x,0) = EY (x, 0). Then by lemma 4.2(ii) we have Ef (x, 0) N D = {0} for sufficiently large
x, as required. If 0 € Sp(H), we apply the previous argument to the perturbed operator H + ¢, to
find that Hy + ¢ has no conjugate points for L > L. As the eigenvalues are decreasing functions
of L, by remark 3.5, the conjugate points will move down the s-axis as ¢ decreases to zero; see
figure 1. Therefore, H, has no conjugate points for L > Lo.

5. Instability of generic pulse solutions

Consider a reaction—diffusion system
U = Duxx + G(u), ue Rn, (51)

where G(1t) = VE(u) for some C? function F: R" — R, and D is a diagonal diffusion matrix. We
assume that there exists a stationary, spatially homogeneous solution . (x, t) = 1 to (5.1); without
loss of generality, we take 19 = 0. We also assume that k2D — V2F(0) > 0 for all k € R. This ensures
that the spectrum of the linearization of (5.1) about g, which is given by

(A e R:det(k*D + A — V2F(0)) =0 for some k € R},

lies in the open left half-plane. We further suppose there is a stationary solution ¢*(x, t) = ¢*(x)
to (5.1) in H%(R;R"). From the Sobolev embedding theorem and a bootstrap argument, ¢*
is at least C3. As V2F(0) is non-degenerate, the invariant manifold theorem implies that ¢*
decays exponentially as |x| — co. We thus call this a pulse, or pulse-type solution. Owing to our
assumptions on the background state 1y = 0, the essential spectrum of ¢* is in the open left half-
plane. We claim that the pulse is unstable under a mild assumption which is generically satisfied.
This generalizes the following classic result from Sturm-Liouville theory (cf. [2, §2.3.3.1]).

Theorem 5.1. Suppose p*(x) is a pulse-type solution to the scalar reaction—diffusion equation
ur=uyy +g(u), uek. (5.2)
Then ¢*(x) is unstable.

We now show how the Maslov index can be used to establish the instability of any pulse-type
solution to system (5.1). The eigenvalues for the linearization of (5.1) about ¢,(x) solve

A =Dd2v + V2F(p* (X)v,
and so it suffices to prove that the operator
H=-D? — V2F(¢*(x)) (5.3)
has at least one negative eigenvalue. We first show that (5.3) satisfies hypothesis 1.1, where V(x) =

—V2F(p* (x)).

(H1) As F is C2, the matrix —V2F(p*(x)) is symmetric and continuous in x.

(H2) As |¢*(x)] — 0 as |x| — oo, the limits limy_ 4o V(x) = —VZF(0) exist. Moreover, V4 =
—V2F(0) > 0 because it was assumed that Dk? — VZF(0) > 0 for all k € R (and in particular
k=0).

(H3) The functions V(x) — Vi = —V2F(p*(x)) + V2F(0) are in L'(Ry;R™™) because ¢*(x)
approaches 0 exponentially fast as |x| — oo.

Thus theorem 4.1 applies, so the existence of a conjugate point is enough to guarantee instability.
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Writing the eigenvalue equation Hv = Av as a first-order system, we obtain

0 D!
'=A(x, \)p, A(x,A)= " , 5.4
p=At i A2 (—Mn - V2F(* (@) Oy ) o4
where p; =v, pp=Dv and p:(pl,pz)T eR?, as in §1. By definition, conjugate points are
intersections of @s(Y() with the Dirichlet subspace D, where we recall from §1 that

D5(Yo) = {p(s) :p’ = A(x,0)p and lm p(x) = 0}

and D ={(p1,p2)" e R |p1 =0}. Letting E" (x,0) denote the unstable subspace for (5.4) with
A =0 coming from x = —o0, it is clear that @s(Yy) =E"(s,0) for any s < +oco. Thus, our task is
to find a basis for E" (x,0), and then count its intersections with D. As E" (s, 0) is Lagrangian, by
theorem 2.6, it is n-dimensional.

Differentiating (5.1) with respect to x, we find that (¢} (x), (p;‘x(x))T is a solution to (5.4) with
A =0; thus (¢} (x), o}, (x)T € EY(x,0). Let (vj(x), 8xvj(x))T, jef(l,...,n—1}, denote the remaining
n — 1 basis vectors for E" (x, 0), which are unknown. Denoting the ith component of ¢*(x) by ¢ (x)
and the ith component of v;j(x) by v;,i(x), we have

3x¢ik(x) V1,1 (x) Un—1,1 (x)

ax‘P;lk () V1,n (x) Un—1,n (x)

E" (x,0) = span , P
O=spany |y oo || dsna dyvn-1.1(2)

8xx<P:; (x) Ox V1, (x) axvnfl,n(x)

Then finding intersections with D reduces to finding values of s so that

dxpi(s) v1,1(8) -0 vp—1,1(8)

det =0. (5.5)

3x‘/’:;(s) via(s) 0 Un—1,u(S)

We emphasize that the monotonicity along I 1, = {(%,5) € {0} x [—o0, L]} (lemma 3.4) implies that
any such intersection must be non-degenerate. Unlike the scalar case, it is not immediately clear
that simply knowing ¢*(x) is a pulse provides enough information to conclude that there exists
an s satisfying (5.5) because, in general, it is not obvious how to find the vectors vj(x). However,
if we can find an x¢ so that all of the derivatives dx¢ (xo) are simultaneously zero, then (5.5) is
satisfied for s = x¢, regardless of the vectors vj(xg). We will show that such an x exists by showing
that the original pulse solution ¢*(x) is even-symmetric about some x9. We make the following
assumption.

Hypothesis 5.2. Consider the first-order system of equations describing stationary solutions
to (5.1)

Uy = D1y

(5.6)
and vy = —G(u),

and let W*(x) and W"(x) denote, respectively, the stable and unstable manifolds of (i, V)T =
0 associated with (5.6). We assume that (¢*(x), <pj:(x))T is the unique solution, up to spatial
translation, contained in the intersection WW*%(x) N W (x).

Remark 5.3. As we assume that ¢*(x) is a pulse solution to (5.1), dim(V*(x) N W"(x)) > 1. The
assumption that this dimension is exactly equal to one is generic for the following reason. We
append the x direction so that the manifolds WV*(x) and W"(x) are n + 1-dimensional manifolds
in a 2n 4+ 1-dimensional ambient space. Then it is a well-known fact of differential topology that

s s i oo |5
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the dimension of a transverse intersection of two manifolds X and Z in the ambient space Y is
given by

dim(X N Z) = dim(X) + dim(Z) — dim(Y)
(cf. [35, p. 30]) which in our case gives
dimW(x) N WH(x)=(n+ 1)+ n+1)—2n+1)=1.

The even symmetry of ¢*(x) is a straightforward consequence of hypothesis 5.2 and the spatial
reversibility of (5.1).

Proposition 5.4. Assume hypothesis 5.2. Then there exists some xq € R so that ¢*(x) is even-symmetric
about x = xy.

Proof. Equation (5.1) is reversible; i.e. if u(x) is a solution, so is u(—x). As ¢*(x) is a solution to
(5.1), so is ¢*(—x) and, by the definition of a pulse, both solutions are contained in the intersection
WS(x) N WH¥(x). By hypothesis 5.2, ¢*(x) and ¢*(—x) are the same up to spatial translations. This
can only be true if ¢*(x) is even-symmetric about some point xo. More precisely, if ¢*(x) = ¢*(—x +
3) for all x € R and some fixed §, then ¢*(xp + x) = ¢*(xg — x) for all x € R, where xg =§/2. |

We are now ready to prove our main result.
Theorem 5.5. Assume hypothesis 5.2. Then ¢*(x) is unstable.
Proof. By proposition 5.4, ¢*(x) is even-symmetric about some xq; thus
3™ (¥)x=x, =0
and so (5.5) is satisfied for s = x. [ ]

Remark 5.6. It was assumed at the start of the section that the essential spectrum of the
linearized operator was stable; this allowed us to verify hypothesis 1.1 and thus apply theorem 4.1
to conclude instability of the pulse. On the other hand, if —V?F(0) has any negative eigenvalues,
the pulse is unstable due to the essential spectrum.

Remark 5.7. The proof of theorem 5.5 only requires the even symmetry of ¢* (which may be
valid even if hypothesis 5.2 does not hold, or cannot be verified). We chose to state the result in
terms of hypothesis 5.2, rather than its consequence, proposition 5.4, as it is less apparent that
the latter condition is generically satisfied.
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