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Abstract—We analyze the eigenvalues of a random graph ensemble, proposed by Chung and Lu, in which a given sequence of

expected degrees, denoted by w,, = ('w(l"), ... ,w;’")), is prescribed on the n nodes of a random graph. We focus on the eigenvalues of
the normalized (random) adjacency matrix of the graph ensemble, defined as A,, = \/np, [aff})]ﬁszl, where p, =1/>"" w,ﬁ”) and

aEZ’-) = 1if there is an edge between the nodes {i, j}, 0 otherwise. The empirical spectral distribution of A,,, denoted by F,, (), is the
empirical measure putting a mass 1/n at each of the n real eigenvalues of the symmetric matrix A,,. Under some technical conditions
on the expected degree sequence, we show that with probability one F,, () converges weakly to a deterministic distribution F(-) as

n — oo. Furthermore, we fully characterize this deterministic distribution by providing explicit closed-form expressions for the moments
of F(-). We illustrate our results with two well-known degree distributions, namely, the power-law and the exponential degree
distributions. Based on our results, we provide significant insights about the bulk behavior of the eigenvalue spectrum; in particular, we
analyze the quasi-triangular spectral distribution of power-law networks.

Index Terms—Complex networks, random graph models, spectral graph theory, random matrix theory
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UNDERSTANDING the relationship between structural and
spectral properties of a network is a key question in the
field of Network Science and Engineering. Spectral graph
methods (see [1], [2], and references therein) have become a
fundamental tool in the analysis of large complex networks,
and related disciplines, with a broad range of applications
in machine learning, data mining, web search and ranking,
scientific computing, and computer vision. Studying the
relationship between the structure of a graph and its eigen-
values is the central topic in the field of algebraic graph theory
[1], [2], [3]. In particular, the eigenvalues of matrices repre-
senting the graph structure, such as the adjacency or the
Laplacian matrices, have a direct connection to the behavior
of several networked dynamical processes, such as spread-
ing processes [4], synchronization of oscillators [5], and a
wide variety of distributed algorithms [6].

The availability of massive databases describing a great
variety of real-world networks allows researchers to explore
their structural properties with great detail. Statistical analysis
of empirical data has unveiled the existence of multiple com-
mon patterns in a large variety of network properties, such as
power-law degree distributions [7], or the small-world phe-
nomenon [8]. Random graphs models are the tool-of-choice to
analyze the connection between structural and spectral net-
work properties. Aiming to replicate empirical observations,
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a variety of synthetic network models has been proposed in
the literature [7], [8]. The structural property that have (argu-
ably) attracted the most attention is the degree distribution.
Empirical studies show that the degree distribution of impor-
tant real-world networks, such as the Internet [9], Facebook,
or Twitter, are heavy-tailed and can be approximated using
power-law distributions [7], [10].

Random graph models, such as the Erdés-Rényi [11],
[12], the scale-free [7], and the small-world models [13], are a
versatile tool for investigating the properties of real-world
networks [14]. We find in the literature several random
graphs able to model degree distributions from empirical
data. One of best known graphs is the configuration model,
originally proposed by Bender and Canfield in [15]. This
model is able to fit a given degree sequence exactly (under
certain technical conditions). Although many structural
properties of this model have been studied in depth, it is
not specially amenable to spectral analysis. In contrast, the
preferential attachment model proposed in [7] provides a
justification for the emergence of power-law degree distri-
butions in real-world networks. A tractable alternative to
the preferential attachment model was proposed by Chung
and Lu in [16], and analyzed in [17], [18], [19]. In this
model, which we refer to as the Chung-Lu model, an expected
degree sequence is prescribed onto a random graph ensem-
ble, that can be algebraically described using a (random)
adjacency matrix.

Studies of the statistical properties of the eigenvalues of
random graphs and networks are prevalent in many
applied areas. Examples include the investigations of the
spacing between nearest eigenvalues in random models
[20], [21], as well as real-word networks [22]. Empirical
observations highlight spectral features not observed in
classical random matrix ensembles, such as a triangle-like
eigenvalue distribution in power-law networks [23], [24] or
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an exponential decay in the tails of the eigenvalue distribu-
tion [25].

1.1 Main Contributions

In this work we offer an exact characterization for the eigen-
value spectrum of the (normalized) adjacency matrix of ran-
dom graphs with a given expected degree sequence. This
characterization is in terms of the moments of the eigen-
value distributions and it hinges upon application of the
moments method from random matrix theory [20], [21].
Accordingly, we give closed-form expressions describing
the almost sure limits of the spectral moments. We then use
these moments to draw important conclusions about the
graph spectrum and to bound several spectral quantities of
interest. Analyzing the limiting spectral distribution is
important when designing statistical tests to investigate the
structure of a network from the observed interconnection
data. Such scenarios arise frequently in community detec-
tion, where stochastic block models (SBM) find widespread
use. SBM captures the different edge probabilities for differ-
ent communities but fails to account for variations of node
degrees [26]. Subsequently, the degree-corrected stochastic
block model offers an improved and more realistic null (as
compared to the Erd6s-Rényi model) when testing different
hypothesis for community detection [27]. The knowledge of
spectrum is also important in system-theoretic analysis of
networked systems with random interconnections: indeed,
we have applied our methods to study the controllability
Gramian spectra for such systems [28].

The remainder of this paper is organized as follows.
Preliminaries on the background and motivation of our
study, as well as the random graph model under consider-
ation, are presented in Section 2. Our main results on the
asymptotic spectral moments of the adjacencies of random
graphs and the characterization of the limiting spectral
distributions (for the normalized adjacencies) are pre-
sented in Section 3, where we also include an outline of
the proofs (which are presented in detail in Section 7). In
Section 4, we apply our results to a case where node
degrees are obtained by random samples from the support
of a preset function and show how our main results can be
applied in analysis of the spectrum of large random
graphs. We consider random graphs with an exponential
degree distribution as a special case and derive the asymp-
totic expressions of its spectral moments. In Section 5 we
consider the important case of power-law degree distribu-
tion, which is known to be a good descriptor for many
real-world networks. The asymptotic expressions of the
spectral moments of power-law networks allow us to ana-
lyze the bulk behavior of the eigenvalue spectrum in much
greater details; in particular, we can quantify and charac-
terize the similarities with and deviations from the trian-
gular distribution that is reported in the literature [23],
[24]. Section 6 concludes the paper.

2 BACKGROUND & MOTIVATION

2.1 Chung-Lu Random Graph Model

We consider the Chung-Lu random graph model intro-
duced in [16] and analyzed in [17], [18], [19], in which an
expected degree sequence given by the n non-negative

entries of the vector w, = (w\"”,... w™) is prescribed over

the set of nodes, labeled by [n], of the graph ensemble." In
this model, each random edge is realized independently of
all other edges and in accordance with the probability mea-
sure P{-}, specified below. Let E{-} and Var{-} be the expec-
tation and variance operators corresponding to P{-}.* > To
each random graph, we associate a (random) adjacency
matrix, which is a zero-one matrix with the (4, j)th entry
being one if, and only if, there is an edge connecting nodes i
and j. The number of edges incident to a vertex is the degree
of that vertex, and by the volume of a graph we mean the
sum of the degrees of its vertices. In this paper, our primary
interest is in characterizing the asymptotic behavior of the
eigenvalues of the random adjacency matrix as the graph
size n increases. We consider the distribution of these eigen-
values over the real line and characterize this distribution
through its moments sequence. Accordingly, the probability
of hav1n§ an edge between nodes ¢ and j is equal to
pnw<" w;", where p, =1/>71 1fw is the inverse expected
Volume The adjacency relations in this random graph
model are represented by an n x n real-valued, symmetric
random matrix A, = \/np,[a;; (m), where af ) are independent
0-1 random variables with E{a;]'} = p,w <")w§-">. In this
paper, we assume the following spar51ty condition on the
degree sequence®: p,w!" w" = o(1) for all i, j, which will be
used to ensure that the distribution of the eigenvalues of the
adjacency matrix A, converges, almost surely, to a deter-
ministic distribution that is uniquely characterized by its
sequence of moments when n — co. As a main result of this
paper, we explicate the technical conditions under which
this convergence property holds true (cf. Assumptions Al
to A3 below). Furthermore, we proffer explicit expressions
to calculate this moment sequence. These expressions, in
turn, allow us to upper or lower bound various spectral
metrics of practical interests (cf. Section 4 and discussions
therein).

Characterization of the convergence conditions depend
critically on the behavior of the extreme values of the
expected degree sequence as n increases. To that end, we

1. Throughout this paper, R and N are the set of real and natural
numbers, Ny = {0} UN, n € N is a parameter denoting the size of the
random graph, [n] denotes {1,2,...,n}, and card(X) denotes the cardi-
nality of set X. Then x n 1dent1ty matrix is denoted by I,,, random vari-
ables are printed in boldface, matrices are denoted by capital letters.
Every vector is marked by a bar over its lower case letter.

2. Let P, {-} be the probability measures on the finite product spaces
corresponding to the n(n + 1)/2 independent entries of the n x n real
symmetric random adjacency matrix A, of the Chung-Lu random
graph ensemble and consider the following product measures:
P,=P,®P, 1 ®...P; for all n € N. The probability measure P{-} is
the probability measure on the infinite product space that is the unique
extension (according to Kolmogorov’s existence theorem [29, Section
36]) as n — oo of the consistent probability measures P, and E{-} and
Var{-} are the expectation and variance operators associated with P{-}.
We say that an event occurs almost surely if it occurs with probability
one.

3. Following [30] we allow for self-loops. Self-loops are allowed for
mathematical convenience, and the assumptions imposed on the
degree sequence (cf. Assumptlon A3) ensures that the expected number
of self loops is very small (O(log *n)).

4. Given three functions f(-), ¢(-), and h(-) we use the asymptotic
notations f(n) = O(g(n)) and f(n) = o(h(n)) to signify the relations
limsup,, .| f(n)/g(n)] < oo and lim,—.|f(n)/h(n)| = 0, respectively; in
the latter case we also write h(n) = w(f(n)). We use f(n) =< (g(n)) to
mean that f(n) = (1+ o(1))g(n).
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consider two sequences {w,:n €N} and {w,:n €N}
given by w, = max;w;"” and w, = min,;e[“]w,gn) for all
n € N. Another quantity of interest, whose evolution with
the graph size n plays an important role, is the second-order
average degree d,,, defined in [17] as,

2
Corn () e e
d, = L=, Z(wgn))

n n (n)
D Wi i=1

The spectral moments of the adjacency matrix are derived in
terms of the limiting normalized power-sums of the degree
sequence, defined as follows. For each i € N, we define the
limiting normalized kth power-sum of the expected degree

O\ F
E”>> . For our main

— 2
= pn||w71||2'

. T 1N\
sequence as: Ay = hmnﬂoo;zi:l (npnw

re]sults to hold true, we need the expected degree sequence
w,, to satisfy the following assumptions:

A1 (Sparse & Graphical). p, >
o(1).

A2 (All Finite Moments). Ay, exists (and are finite) for
all k.

A3 (Controlled Growth of Degrees). (i) w,/w, =
O(logn), (i) p,02 = w(1/n), (i) np, =o(1), (iv)
np,w, = O(1), and (v) w, = O(logn).

2
n

< 1,Vn, and p,w

Note that Assumption Al, in particular, implies that the
edge probabilities are all less than one and, indeed, they are
asymptotically vanishing (sparsity). Furthermore, under
Assumption A3 (iv), with np,®, = O(1), the limiting aver-
ages Aj; are guaranteed to be O(1) and Assumption A2
ensures that they indeed exist.

In order to illustrate Assumption A3, let us consider an
Erd6s-Rényi random graph with edge probability p,, so
that wgn) =, =W, =d, =np, and p, = 1/(n’p,) for all n.
Assumptions Al and A3 (ii) require that p, = p,@> = o(1),
and p, = w(1/n), respectively, or equivalently that p, — 0
and np, — oo. These requirements agree with the assump-
tions made in the recent analyses concerning Erdés-Rényi
random graphs under the 1/,/np, normalization [31, Theo-
rem 1.3]. Here, we also note that different (and possibly con-
trasting) assumptions are necessary to characterize different
features of the graph spectrum. For example, satisfying the
conditions for the almost sure convergence of the largest
eigenvalues (stated in Theorem 1, below), together with
Assumptions Al to A3, which are needed for the weak con-
vergence of the spectral distributions (per Theorem 2,
below) could lead to very restricted sets of model
parameters.

2.2 Spectrum of the Chung-Lu Random Graph

In 2003, by a series of results, Chung, Lu and Vu established
important asymptotic properties of the spectra of the adja-
cency matrices of random graph models with given
expected degree sequences [17], [18], [19]. A key result of
theirs specifies the almost sure limit of the largest eigen-
value of the adjacency matrix, as follows [17, Theorems 2.1
and 2.2].

Theorem 1 (Largest Eigenvalue of Random Graphs). If
dp > Jwylogn, then with probability one the largest eigen-
value of the (unnormalized) adjacency matrix is (1 + o(1))d,;

while if \/w, > dnlog 2n, then the largest eigenvalue is almost
surely (1 + o(1))v/w,.

Moreover, for a random graph model whose expected
degree distribution obeys a power law, the largest eigen-
value is with probability one less than 7./logn max
{\/i,,d,}. In [17], similar conditions are established for the
almost sure convergence of the kth largest eigenvalues
towards the square root of the kth largest expected degree.
In [19], relevant results concerning the spectra of other
matrices, such as the Laplacian, were derived. More recent
results use the machinery of concentration inequalities to
investigate the behavior of the graph spectra for random
graphs with independent edges [32], [33], [34]. In [34], the
author shows concentration of the spectral norm for the
Laplacian and adjacency matrices around their expecta-
tions, under certain technical conditions. These results are
improved by Chung and Radcliffe [32], who use a Chernoff-
type inequality to approximate the eigenvalues by those of
the expected matrix and bound the error with high proba-
bility. This error bound is O(y/@w,logn) in [32] and it is later
improved to (2 + o(1))y/@, by [33]. The authors in [35] use
free probability techniques to give a characterization of the
empirical spectral distribution of random graphs with arbi-
trary expected degrees in terms of the free multiplicative
convolution of their degree distribution with the semi-circu-
lar density; however, the techniques come short of a closed-
form expression for the moments of the limiting spectral
distribution, and no attempt is made to determine the exact
conditions that the degree distribution should satisfy for the
techniques to be applicable.

3 MAIN RESULT

In this paper, we offer a moment-based characterization of
the limiting distribution of the eigenvalues of the Chung-Lu
random graph model under Assumptions Al to A3. The
moment sequence provides a versatile tool in the spectral
analysis of complex networks [36], [37], [38]. It is worth
highlighting that, in the sparsity regime p,%? = o(1) and
under the ,/np, normalization, the largest eigenvalue of the
random adjacency matrix may escape to infinity as n — co.”
When investigating the limiting distribution of a sequence
of distributions, it may be the case that some mass escapes
to infinity, which can cause the limit distribution to not be a
probability distribution (does not integrate to one); in such
cases, the underlying sequence of distributions is not “tight”
(cf. [29, Section 25]). However, as we show in this paper, the
tightness property holds for the sequence of spectral distri-
butions in the Chung-Lu random graph model when the
growth of the degrees is controlled as in Assumption A3.
This is because the mass that is escaping to infinity (finitely
many largest eigenvalues) is asymptotically vanishing itself.
In other words, as n — oo, the contribution of finitely many
eigenvalues to the limiting spectral distribution in the
p, W2 = o(1) sparse regime and under the ,/np, normaliza-
tion is vanishingly small. By the same token, our results
complement the characterization of the largest eigenvalue

5. This is true, for example, for Erd6s-Rényi random graphs with
edge probability p, and /np, = 1/,/np, normalization, as we demon-
strate in Section 3.2.
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in [17], [18], [19], which focuses on the growth rate and con-
centration of the largest eigenvalue, as described in Section
2.2.

To describe our main results we need to introduce some
terminology. Let A\j(A,,) < A2(A,) <--- < A\, (A,) be n real-
valued random variables representing the n eigenvalues of
the random matrix A,, ordered from the smallest to the larg-
est. We define §,{-} as the probability measure on R assign-
ing unit mass to the point + € R and zero elsewhere. We
also define L£,{-} =(1/n)>"", 8\ ,{} as the random
probability measure on the real line that assigns a mass 1/n
to each one of the n eigenvalues of the random matrix A,,.
The corresponding distribution can be written as F,(z) =
Lo{(—o0,z]} = (1/n)card({i € [n]: \i(A,) < =z}), where
card(-) is the cardinality function, and is referred to as the
empirical spectral distribution (ESD) for the random matrix
A,,. For each z € R, F,(z) is a random variable. Moreover,
we define the kth spectral moment of the random matrix A,,
as the following real-valued random  variable
m!"” = (1/n)trace(Ar) = [ 2"dF,(x). Our main results
establish the almost sure and weak convergence of the
empirical spectral distribution of the (normalized) adja-
cency matrix A, to a deterministic distribution F(-). We call
this distribution the limiting spectral distribution (LSD) and
we characterize it through its moments sequence, m; =
[ 2k dF(x). According to our main result, the spectral
moments of the limiting spectral distribution F(-) are speci-
fied in terms of the limiting power-sums of the normalized
degree sequence Ay, as follows:

Theorem 2 (Limiting Spectral Moments of A,). Consider
a random graph with a given expected degree sequence
w, = (w& L ,w), satisfying Assumptions Al to A3. With
probability one, F,(-) converges weakly to a deterministic dis-
tribution F(-), which is uniquely determined by its moments
my, = [ a* dF (x). The moments of F(-) are given by

2 s+1 . .
s = ATTARZ AT
2 Zs+1<r1,...,rs) 12 57

TERs

1)

masr1 = 0, for all s € Ny,

with Ry ={F€Nj: >0 rj=s+1,37,jr;=2s} and

Ap = Timy oo 350 (w0 <n))k-

Remark 1 (Sufficiency of the Assumptions). It is worth
highlighting that Assumptions Al to A3 are sufficient
(but not necessary) for our convergence results in Theo-
rem 2 to hold true. Specifically, the closed-form expres-
sion in (1) indicates that the first 2s spectral moments of
A, are determined by the first s power-sums of the
expected degree sequence. Therefore, characterizing the
whole limiting spectral distribution F(-) entails the con-
vergence of all spectral moments of any order and, there-
fore, the finiteness of all limiting normalized power-sums
of the expected degree sequence (i.e., A; < oo for all
k € N). However, in the case of power-law degree distri-
butions, the normalized power-sums A; diverge for
k> p—1, where B is the exponent of the power-law.
Hence, a full characterization of the limiting spectral den-
sity is not possible from Theorem 2. On the other hand, as
we illustrate in Section 5, it is still possible to compute a

truncated sequence of limiting spectral moments
(mas)y gy from (1). This finite sequence of spectral
moments contains interesting information about the bulk
of eigenvalues of power-law networks.

3.1 Proof Outline

The detailed proof is presented in Section 7.2. Here, we pro-
vide an outline of the proof steps. The crux of the argument
is in showing that for each k € N, the kth spectral moments
m|"” converge almost surely to my; thence concluding by
the method of moments that with probability one the empir-
ical spectral distributions F,,(-) converge weakly to F(-). To
begin, we consider the centralized version of the adjacency
A,, given by

An =A, - E{An} = [éle)} . (2)

Note that the entries a ) have zero mean and, asymptoti-
cally, a rank-one pattern of variances, given by

varlal)'} =5 { (a1')}

= pnw(n)w( )(1 — PrW (n) ( ))

- (n) (n)

= ,

(3)

since, by Assumption Al, p,LwEmw(.")

;= o(1). This rank-one
pattern is a key property that allows us to calculate closed-
form expressions of the limiting spectral moments in Theo-
rem 2.

To proceed, we introduce some necessary notations. Simi-

larly to A,,, we consider the eigenvalues of A,,l ordered from

the smallest to the largest as A, (A,,) < \a(A,,) < --- < \,(A,)
and define the random variable m;"” = (1/ n)tracegAL ) to be
its kth spectral moment. Also, let m(k” E{m "} be the

expected spectral moments for all &, n. The proof of our main
result proceeds as follows. Lemma 2, proved in Section 7.1,
ensures that under Assumption A3, m!” = m{" almost
surely for each k € N. Therefore, the effect of centralization
on the spectral moments is asymptotically vanishing, and
both A,, and its centralized version An have the same limiting
spectral moments. Concentration results for functionals of
random matrices with independent entries imply that the
spectral moments concentrate around their expected values;
hence, it suffices to calculate the limiting values of the
expected spectral moments (lim,, mﬁjl)). Finally, Lemma 3
(included in Section 7.2) provides asymptotically exact
expressions for the expected spectral moments under
Assumptions Al to A3, completing the proof following the
method of moments. In the next section, we use the special
case of Erd6s-Rényi random graphs to elaborate on these
steps in more details.

3.2 The Case of Erdés-Rényi Random Graphs

In Erd6s-Rényi random graphs, denoted by G, ,, each edge
is realized with a probability p, independently of other
edges. This is a special case of the Chung-Lu random graph
model when the expected degree sequence is given by
w, = (np,np, ...,np). Ever since its introduction in the late
1950s by Erd6s and Rényi [11], [12], properties of this well-
known class of random graphs have been extensively
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Fig. 1. (a) Normalized eigenvalue histogram of the Erdés-Rényi random graph with n = 1,000 nodes and p = 0.01; (b) corresponding normalized and
centralized eigenvalue histogram; (c) spectral distributions of the normalized adjacency matrix A,, (blue solid) and the centralized version A,, (red

dashed).

studied [39], [40]. Indeed, the seminal work of Fiiredi and
Komlds [41] can be used to derive asymptotic properties of
the spectra of Erd6s-Rényi random graphs; with probability
one, putting its largest eigenvalue at (1+ o(1))np and
upper-bounding the absolute values of the rest by
(2+0(1))y/np(1 — p). More recently, Feige and Ofek [42]
have shown that under mild conditions on p, the largest
eigenvalue of the adjacency matrix is almost surely
pn + O(y/pn), and all other eigenvalues are almost surely
O(/7m).

Fig. 1a depicts the histogram of eigenvalues for a particu-
lar realization of the normalized adjacency matrix of an
Erdés and Rényi graph with n = 1,000 nodes and p = 0.01.
In particular, we can observe that the largest eigenvalue
M (Ay) < np =10 is located away from the remaining eigen-
values, which are asymptotically located in the [—2,+2]
interval. Note that under the ,/np, = 1/,/np normalization,
the largest eigenvalue grows as \/np. Let us also consider
the normalized and centralized adjacency matrix A,
defined in (2). We plot a typical realization of the eigenvalue
histogram of A,, in Fig. 1b. Notice that, as pointed out in
Lemma 2 (proved in Section 7.1), the effect of centralizing
the adjacency matrix A,(w) is to cancel out the largest
eigenvalue (moving it to zero), while the bulk of eigenval-
ues remains (almost) unperturbed. Subsequently, the effect
of normalization on the limiting spectral distribution in the
\/p,-normalization regime is negligible. This can be also
noticed in Fig. 1c, where we plot the empirical spectral dis-
tributions F, () and F, (z). Indeed, under the \/np,-normal-
ization, the largest eigenvalue of A, grows as /n, escaping
almost surely to infinity; every other eigenvalue is almost
surely O(1), being asymptotically compactly supported.

Indeed, as a validity check, it is possible to re-derive the
limiting spectral distribution of the Erd6s-Rényi random
graph ensemble from Theorem 2 under Assumptions Al to
A3. In particular, in this case we have that d, = W, = W, =
npn, p, = n’p,' and Ay=1 for all k; therefore, for
pn = Clogn/n the random graph ensemble satisfies
Assumptions Al to A3. Theorem 2 implies that the asymp-
totic spectral moments satisfy

2 s+1 1 /2s
§ = —— = ::C, 4
e S+1FERS(T1”"’T5‘> s+1<s) s @

These moments correspond to that of a semicircular distri-
bution supported over [—2,+2|, [43], [44]. Note that to
obtain a non-trivial support for the bulk of the spectrum, we
need to investigate the LSD of the adjacency matrix under
the normalization \/np, = /np, regime. The quantity C,

defined in (4) is the sth Catalan number. The Catalan num-
bers have great significance in combinatorics: they count the
total number of Dyck paths of length 2s, cf. [20], the number
of non-crossing partitionsof an ordered set [20], as well as
many other combinatorial structures [45]. Specially relevant
in our work is the relationship between the Catalan num-
bers and rooted ordered trees. A rooted ordered tree T is a tree
in which one vertex is designated as the root, and the chil-
dren of each vertex are ordered (see [45], page 221); i.e.,
there is a total order 3} on the vertex set of T, respecting the
partial order 3 defined as follows: for all {j,k} C V(T),
J 2 kiff j belongs to the unique path on 7" that connects k to
the root. There is a bijection between Dyck paths of length
2s and ordered trees with s edges (see [20, Lemma 2.1.6]);
hence, the number of ordered trees with s edges is equal to
C,. We use 7 4, to denote the set of all rooted ordered trees
on s + 1 vertices that are chosen without replacement from
the set [n]. To understand the significance of the summation
over the set R, that appears in (4), as well as (1), we intro-
duce some additional notation pertaing to trees and their
degree sequences. Given a tree 7' with s edges and s + 1 ver-
tices labeled {1,...,s+ 1}, the degree distribution of T is
defined as the sequence of integers 7(1') = (ry,...,75) € N§,
where 74 = r4(T) is the number of vertices with degree d in
T. We drop the tree argument (T") when there is no danger
of confusion: using d; for the degree of vertex ¢ and r4 for
number of vertices with degree d. Notice that the maximum
degree is at most s; hence, r; =0 for all d > s. For any
graph G with s edges, the degree distribution (ry,...,r;)
satisfies Y 5 ,drq=2s and > ;_ ry = s+ 1. In particular,
since a connected graph with s edges and s+ 1 vertices is
always a tree, we have that G is a tree if and only if
S qrd(G)=s+1 and > _drq=2s; ie., the set R
defined in Theorem 2 denotes the set of integer sequences
that are valid degree distributions for trees with s edges.

We use 7,4,1(7) to denote the set of all rooted ordered
trees on s + 1 nodes whose degree distribution is 7. As part
of the proof of the main result in (35), we show that
card(7 11(7)), i.e., the total number of rooted ordered trees
with degree distribution 7, is given by

card (7 541(7)) = si - ( s+1 ) (5)

T1y...,Ts

Next, if we use the partition 7, = |J ser. T s+1(7), we can
express the total number of ordered trees on s+ 1 vertices
as, Cy =card(T511) = Zfem card(7 441(7)), and by replac-
ing from (5), we obtain the rfght-hand side equality in (4).
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4 DEGREES SPECIFIED BY RANDOM UNIFORM
SAMPLING

We now consider Chung-Lu random graphs for whlch the
expected degree of each node i is specified as w = fu(x),
where f,(-) are given functions with a common support nor-
malized to be the unit interval [0, 1], and {x;,: € N} is a ran-
dom sample, uniformly and independently drawn from the
unit interval.® To illustrate our results, let us assume that
folx) = Aye ", where A, > 0 for all n, and 0 <z <1.
Then, consider a Chung-Lu random graph with the
expected degree sequence specified as w§"> =A™,
i € [n]. In other words, the degrees of the resulting graph
follow an exponential pattern, which have been observed in
practical scenarios, such as in structural brain networks
built from diffusion imaging techniques [46].

The almost sure asymptotic expression for the second-order
average degree d,, can be obtained from a Monte-Carlo aver-
age [48, Section XVL.3], resulting in the following expression:

L) e
' Z? 1 <”) fol fo(2)da (6)
_ [01 Aie_z’“‘dm A, (1 — e 2%)
B fol A, e~ dx 21 —e@) -

We know from Theorem 1 that, if A, > log 2p, then
d, > V/A,logn, and the largest eigenvalue of the adjacency
(without ,/np, normalization) is almost surely given by d,,.
We now use Theorem 2 to write closed-form expressions for
the asymptotic spectral moments of A,, the normalized
adjacency matrix of the random graph whose expected
degree sequence is given by w,, = (w\" ..., w("). We begin
by calculating the almost sure asymptotic expression of the
inverse expected volume of the graph, as follows,

1 _wa / oz

:n/ Apeoidy = "An (1 _ oy,
0 o

We now proceed to verify the qualifying conditions for
applying Theorem 2. First, note the following almost sure
asymptotic identities for the maximum and minimum
degrees,

(7)

W,, = max WE” = Ae (€©)]

=A,, W, = mmw
i€n]

i€[n]

both of which can be easily verified from the corresponding
order statistics for the uniform distribution on the unit inter-
val.” If we set A, = logn, then from the set of almost sure
asymptotic identities in (6), (7) and (8) we get

6. Given a desired degree distribution, the function f,(-) here plays
the same role as the quantile function [29, Section 14] associated with
the cumulative function of the desired degree distribution.

7. More specifically, if we note that min;c,x; and max;c|,x; are
respectively distributed as Beta(l,n) and Beta(n,1) variables [49,
Chapter 2], then the claimed almost sure limits follow by the Borel-Can-
telli lemma. To see how, consider their expected values:
E{mincp, x;} = 1/(n + 1) and E{max;c),x;} = n/(n+ 1), and apply the
Chebyshev inequality to their quadratlcally decaymg common vari-
ance, Var{max;c[,X; } = Var{minpX;} = n/ (n+1)>*(n+2 “’}

d, = O(A,) = o(n/logn),np, = O(1/A,) = o(1),

% = e* = O(logn),w, < A, = O(logn),
a
n - 1 bl
oWy = — = = O(1)
) Ay logn
2 = =o(1) and w(1/n).
pu#? = 22 1B (1) and w(1/n)

Hence, Assumptions Al to A3 are all satisfied, and we can
apply Theorem 2 to obtain a closed-form expressions for the
limiting spectral moments of the normalized adjacency
matrix A,,. First note that the kth order limiting averages Ay,
are almost surely given by

1 1
AL =< / (npnfn(x))kdw = (np,A, ef‘”)kdx,
0 0

which results in

ak—l

Ap=—%
TR — e

(1- efk“).

Under these conditions, we can apply Theorem 2 to obtain
the following closed-form expression for the asymptotic
spectral moments of A,,

2 s+1 a1 — ey
. 1( )H e
FeRS_S-F TleoosTs/) oy k(1 —e@) ©
' . 9
ot 2 ( s+1 > (1 —eka>’k
7(1_6—01)237;;854—1 PlyeoosTs g k ’

where in the second equality we have used the identities
Shaare=s+1, >3 krp=2s, and Y, (k—1)ry=s— 1.
The histogram of the eigenvalues for the normahzed and
centralized adjacency matrix A, = A, — \/np, [p, W, J ) g
of a particular realization with parameters A = 10 a=1,
and n = 1,000 is plotted in Fig. 2a. The largest eigenvalue of
A, in this realization is given by )\”(An) = 2.304. We can
upper and lower bound this eigenvalue using the kth spec-
tral moment, for any k, as follows [21, Equation (2.66)]

1/k

trace(Aﬁ)l/k < /\n(An) < (n : traCC(Aﬁ)) (10)

If we consider k£ = 20 in (10) and use the asymptotic spectral
moment my available from (9) to replace for trace(A%),
then the lower and upper bounds on \,(A,) are given by:
(m2(1)1/2 =1.718 and (n- mg])lm =2.427. These values
compare reasonably with the empirically observed value
)\n(An) = 2.304. Furthermore, using the techniques pro-
posed in [37], we can formulate semi-definite programs that
improve the bounds in (10) by taking into account the
knowledge of all spectral moments up to a fixed order, as
described in [50, Section 3].

5 THE CASE OF POWER-LAW RANDOM GRAPHS

In this section, we study the eigenvalue distribution of the
random power-law graph proposed by Chung et al. in [17].
This random gra%)h presents an expected degree sequence
given by w, = (w1 wl” . w™) such that w!" = ¢i~1/8-1,
for i =ig+1,...,9+n, Where p is the exponent of the
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Exponential: 60 Power-law: Power-law: (c) Power-law: (d)
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Frequency

Fig. 2. Eigenvalue histogram of a sample realization from the random graph model with n = 1,000 nodes and (a) an exponential degree distribution
with A = 10 and o = 1, (b) a power-law with A = 100, d = 10 and g = 3, (c) a power-law with A = 100, d = 10 and 8 = B, ~ 4.44, and (d) a power-law

with A =100, d = 10and g = 6.

power-law degree distribution; i.e., the number of nodes
with degree k is proportional to k7. In this model, we can
prescribe a maximum and average expected degrees,
denoted by A and d, respectively, by choosing the following
values of c and 74 [17]

B2 (B -2\
C—ﬁdnﬂ ,Zo—ﬂ(m) .

For power-law degree distributions, we can asymptotically
evaluate the averaged kth power-sums of the expected
degrees for n — oo, as follows:

I , 1 Nk 1 ot gk
—Zwi =— (cz f‘*‘) = — (cm fH) dx
n4= n n J;

ig+n d
— gkl 2.
ey (Ges).

igp+n—1

p B—1

1 B—1—k
nC B-1—k

x P-1

where

d B2\ B-1
f(K’ﬁ’k) *<ﬂ—1> F1- k"

()™ e

Notice that the moments of the power-law distribution
are well-defined only for k¥ < —1 and the moments
diverge for k> g — 1, [51, Section 8.4.2]. Moreover, when
the largest degree is much larger than the average
degree, i.e., A =w(d), the expression inside the square
brackets in (11) tends to one; hence (11) simplifies as fol-
lows:

(11)

d g—2\" p-1 .

f(@ﬂ» k) =1+ 0(1))(ﬁ> o1k f(B, k).
Therefore, for k=1, we have that f(4;8,k) <1 and
L3 w; < d, the expected average degree. Furthermore,
the above expressions can be used to compute the normal-
ized power-sums Aj in Theorem 2, which can then be used
to compute closed-form values for the asymptotic expected
spectral moments using (1). Here, we should note that the
application of Theorem 2 for calculating the spectral
moments in the case of a power-law network is in line with
our observations in Remark 1. The numerical experiments in
Example 1, below, verify that the empirical spectral moments
agree very well with the theoretical moments calculated
using (1), even though the assumptions of Theorem 2 are

violated. The latter are only sufficient (but not necessary)
and (1) continues to provide good estimates for the actual
values of the spectral moments, in terms of the limiting nor-
malized power-sums Aj, when applied to the powerlaw
networks.

Example 1. Numerical verification of the asymptotic spectral
moments for the power-law degree distributions. In the follow-
ing numerical simulations, we verify the validity of Theo-
rem 2 by computing the first five even-order spectral
moments of a power-law random graph with n = 1,000,
B =3, A=100, and d = 10. The eigenvalue histogram of
one particular realization is plotted in Fig. 2b. In Table 1,
we compare the theoretical values of the even spectral
moments of the centralized and normalized adjacency
matrix with the empirical values of a single random reali-
zation. Furthermore, in order to normalize the values of
the moments of different order to a common range, we
compare the theoretical values of méﬁzs with the empirical
values (13" /\g(An)ZS) /2% i1 the table. We would like to
remark how, as reported in [23], [24], the empirical spec-
tral distribution of the power-law graph under consider-
ation resembles a “triangular” law.

5.1 The Triangular Spectrum

Many empirical studies of real-world networks have reported
triangle-like eigenvalue spectra [23], [24]. In what follows, we
want to compare the spectral density of the power-law graph
with the triangular density function, given by

P4, forxe[-b/2,0],
tab) =< 2— 4o, forz e (0,b/2], (12)
0, otherwise.
The moments of this density function are given by
b/2
mﬂm:/ 1 b)da
—b/2 (13)

_ (b/2)"
_(1+“4y)w+4xk+m'

TABLE 1
Theoretical versus Empirical Spectral
Moments (From One Sample Only)
for the Power-Law Network in Example 1

Order 2 4 6 8
Theoretical 1 130 1.66 192
Empirical 099 131 156 1.75
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Fig. 3. Power-law degree distribution (left) and eigenvalue histogram
(right) of the air traffic control network.

In what follows, we want to find conditions under which
the spectral density resembles a triangular distribution. We
measure the similarity in terms of the moments, in particu-
lar, in terms of the kurtosis® of the distribution. From (13),
the second and fourth moments of the triangular law are
given by ms(b) = zi and my(b) =5 40 The kurtosis of the tri-
angular distribution is then given by

o) 12

(ma(b)* 5

On the other hand, from Theorem 2, we can compute the
kurtosis of the power-law network

(14)

my - QA%AQ _ eflg
moa)T A

(15)

In our analysis, we use the difference between kurtoses
as a measure of how far the spectral distribution is from the
triangular law. Therefore, the spectral distribution that is
closest to the triangular law is the one for which x =%.
According to (14) and (15), k =& is satisfied when npd =
6/5. Furthermore, if k < 12/5 (respectively, « > 12/5), then
the tail of the spectral distribution is “fatter” (respectively,

thmer ) than the tail of the triangular law. Moreover, since
o= nd and d = d(ﬂ 2) b1 (when A = w(d)), we have that
k =k when

B-2" _6
(B-1)(B-3) 5

Solving the above equation, we obtain the following critical
value of B for which « matches &: 8, =2+ V6 ~ 4.44. In
other words, the kurtosis of the spectral distribution is equal
to that of the triangular law only when g = §,.

Remark 2. In practice, the values of g in real world net-
works are below the threshold value g* ~ 4.44 (cf. [52]).
Therefore, the spectral tails of real networks are mostly
“fat”, which is in accordance with empirical observations
reported in [9]. For example, we include in Fig. 3 the
power-law degree distribution of the (symmetric and
unweighted) adjacency matrix of the air traffic control
network constructed from the U.S.A.’s Federal Aviation
Administration (FAA) National Flight Data Center
(NFDCQ), Preferred Routes Database [53]. Nodes in this
network represent airports and links are created from

8. The kurtosis of a distribution is defined as « = 11, /0, where p, is
the fourth moment about the mean and o is the standard deviation.
This ratio is a measurements of how heavy-tailed the distribution is.

strings of preferred routes recommended by the NFDC.
This network has a total of 1,226 nodes, 2,615 edges, and
a power-law exponent of 3.7 (which is below the thresh-
old value B,). As predicted, the corresponding eigenvalue
distribution, plotted in Fig. 3, presents a ‘fat’ tail.

When the spectral distribution resembles a triangular
law, it is possible to approximate the support of the spectral
bulk of eigenvalues by computing the value of b in (12) such
that the second moment of the triangular distribution
matches the second moment of the theoretical spectral dis-
tribution. Since the second moment of the spectral distribu-
tion is given by my = A? = 1 and the second moment of the
triangular distribution is my = 2 7 the value of b for which
these moments match is given by by = v/24. Hence, we see
how the support of this triangular distribution, given by
[—ba/2,ba/2] =~ [2.45, —2.45], is very close to the support of
the spectral distribution of a power-law random graph with
B = B, (plotted in Fig. 2¢).

One may ask whether the spectral distribution of a ran-
dom power-law network does indeed follow a triangular
density when 8 = B,. The answer is no. This can be verified
by comparing the sixth moments of the triangular distribu-
tion with b = by with the sixth moment of the power-law
spectral density when S = g,. In particular, the sixth
moment of the triangular law is given by mg(by) = 54/7 ~
7.71. On the other hand, from Theorem 2, the sixth spectral
moment of the powerlaw network is glven by
me(By) = 2AA3 + 3ATA3. Since A} =1, Ay = (ﬁi_f) pat
g 7 and AJ = 623#/
2 (14+v6)" (—2+v5)

me(By) —2{ (27+f>] ~ 14.14,

we have that

which does not coincide with mg(ba) ~ 7.71.

6 CONCLUSIONS

We have investigated the asymptotic behavior of the bulk of
eigenvalues of the adjacency matrix of random graphs with
given expected degree sequences. We have showed that, in
the \/np,-normalization regime and under some technical
assumptions on the expected degrees sequence, the empiri-
cal spectral distribution of the adjacency matrix converges
weakly to a deterministic distribution, which we have char-
acterized by providing closed-form expressions for its limit-
ing spectral moments.

We have illustrated the application of our results by
analyzing the spectral distribution of large-scale networks
with exponential degree distributions, which appear in
structural brain networks obtained from diffusion imag-
ing. We have also applied our results to analyze the spec-
trum of power-law random graphs, which are of great
practical importance. Using the closed-form expressions
for the asymptotic spectral moments in Theorem 2, we
have investigated the triangle-like spectrum of power-law
random graphs. In particular, we have provided quantita-
tive relationships to show how the parameters of the
power-law degree distribution affect the shape and prop-
erties of the graph spectrum. Furthermore, closed-form
expressions of the asymptotic spectral moments allow us
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to bound spectral properties of practical interest, such as
the support of the spectral bulk.

7 PROOF OF MAIN RESULTS

The argument leading to the proof of our main convergence
result in Theorem 2 is based on the method of moments,
and it is executed in two steps. We begin by showmg (in
Section 7.1, below) that with probability one lim,, ., m_"’
lim,, . rh,(fw, i.e., the adjacency matrix A,, and its centrahzed
version A,, share the same almost sure limits for their spec-
tral moments. Next, in Section 7.2, we prove that these com-
mon almost sure limits are in fact given by m; in closed-
form, as claimed in Theorem 2 (main result).

7.1 Effect of Centralization on the Spectral Moments
The following set of results measures the effect of the cen-
tralization in (2) by comparing the spectral moments of A,
and A, as n — oo. Indeed, centralization by subtracting the
mean E{A,,} from the adjacency matrix A,, has the effect of
shifting the largest eigenvalue towards zero. Example 1
demonstrates this shifting; however, in the sequel we shall
show that the subsequent effect on the spectral moments is
asymptotically vanishing, under certain mild assumptions
on the degree sequences.

We know from Theorem 1 that, if d, > /@,logn, then
A(A)) < d,, with probability one. We use a variation of this
result to prove that the column vector of expected degrees,
denoted by w, = (u\", ..., w")7, is asymptotically almost
surely an eigenvector of A,, associated with its largest eigen-
value. In particular, as A, (A,,) concentrates around d,, the
vector (1/n)A,w, also concentrates around the vector
%(1,,, w,. This is important when characterizing the effect of
the centralization in (2) in light of the fact that

E{A,} = [\/—’03/2 M )Lje
Y npndn_ _T

— WpW
([l

= VAR,
(16)

Chad 1

Lemma 1 (Eigenvector Concentration). If d, = o(n/logn),
it is true that L AW, XA /,o,l/nd,L W, almost surely.

Proof. The ith component of A,w, is a random variable
given by

Z \ /npna,fy) wyw. 17

J=1

[Anmn]i:

(n)

Smce a,; is a Bernoulli random variable with
]P’{a = 1} = pnwgn)w;."), we have that
E{[A@,];} = ap,uw! an( “”) Vi

and E{A,®,} = \/ip,d,w,. Next, note that each of the

summands n,ona< >w§) in (17) are
bounded random variables satisfying n,ona ") €
[0, npnwg U] almost surely. Hence, we can apply
Hoeffding’s inequality [54, Theorem 2 ] to obtain that, for

eachiand anye > 0,

1ndependent

]P’{l (A, —d, ™| > a}
n

—2n?e?
(o)

Pn 2i=1\ Wi
Next note that glven d, = o(n/log n), for any o > 1 we
get that when n is large enough d, < 2ne?/(a logn).

Hence, 2¢~2n<"/dn < 2/n* forms a summable series in n,
and by the Borel-Cantelli lemma [29, Theorem 4.3], we

get that

1 \/ d” ’I
P{ ‘ - [Anwn]i pn

n \/_

which holds true for any € > 0. Therefore, we have

1 /Py,
P{ lim —[A,w,],= lim VP o |
f

n—oon, n—00 n v

0 277
< 2exp = Q¢ 2ne"/dn

> ¢, infinitely often} =0,

The claimed concentration of eigenvector around @, now
follows by the countable intersections of the above
almost sure events over all 7 € N. O

We can now proceed to give conditions under which the
spectral moments of A, and A, are asymptotically almost
surely identical, and therefore the effect of centralization on
spectral moments is asymptotically vanishing.

Lemma 2 (Vanishing Effect of Centralization). Under
Assumptions A3 (1), (iii), (iv), and (v), it is true that rhg”) =
m,@, almost surely, for each k € N.

Proof. To begin, consider the k = 1 case. From (2), we have

) 1 1
m” == trace(An)——trace( —E{A,}).
From (16) we know that
NG ;
trace(E{A,}) = IIM e trace(W,@.. ) = /mpydy,
Wn ||y

wherefrom it follows that trace(A,,) = trace(A,)—
/1P, dy, is true for all n, and in particular with probability
one as n — oo. For general k € N, we have

1 < 1 3
m}j” = Etrace(AfL) = Etraee(An —E{A, )"

To proceed, consider the binomial expansion of
(A, —E{A,})" consisting of a sum of the product of non-
commutative elements, as follows:

AL+ AT (CE{AL)
+ A (-E{A,})?

+ A (—E{AL DA, + -

Consider any product term of the form,

(k) = Al (-E{A, )" Al . (-E{A, D), (8
where k= (ki,...,k,) is an integer partition of k,
consisting of p>1 positive integers satisfying
ki + ...+ k,—1 = k. Let k be the sum of evenly indexed
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integers, i.e., k=ko+ky+--
n — 00,

+ ka.|ps2- We claim that as

k/2 3k _
(npn) dn (_1)k’

n
almost surely To see wl}y first note that for any k;,
(w,w ) = ||w, ||2<k Vw,w w,,, so taking the k;th power of

both 51des in (16), we get

%trace(l_[(%)) — (19)

(CE(A)) = CVIPd)

n W,
@12
and replacing in (18) yields
W0,
T(F) = (—yip,da) Al 22 Aﬁd L (20)
|[w n||2 [l

Under Assumptions A3 (iv) and A3 (v), we have that
np, s = O(log n), Wthh in turn, implies that
d, = p,|[@,||3 < np, > = o(n/logn). Therefore under
Assumptions A3 (iv) and A3 (v), the condition of
Lemma 1 is satisfied and we know that (1/n)A,w, =
V/pn/nd, 0, almost surely. Multiplying both sides by
A%i~! for any integer k; yields

almost surely. Hence, taking the limits of both sides in
(20) we get

_H(k) (-1 )k(\/n_/?nd)

n Hwn”

almost surely. Taking the trace of both sides and using
the fact that trace(wnw” /I[@.|13) =1, leads to (19) as
claimed. The above applies invariably to any of the prod-
uct terms appearmg in the binomial expansion of
(A, —E{A,})", with the exception of the leading term,
trace(Ak), which does not simplify any further. Next,
note that given any 1 < k < k, the number of terms TI(k)
in the binomial expansion for which (19) holds true, is
exactly (}); wherefore we get that with probability one,

An - E{An})k

_ 1! <trace(Ak + (y/pndy) kzk: <> )

k=1

Ak 1
trace(AF) = —trace(
n

We next use a trite identity, 0 = (1—1) = 1+Z,5:1
(=1)(}) to get

%trace(AZ) Tll(trace( " - (\/”T)nd ) )

almost surely. The claim now follows upon noting that
L(/mpndy)F = o(1),Vk € N.  This is
d, < @2/, so that (\apyd,)" < (yapy)" (i, /w,)" @k
and we know from Assumptions A3 (i) and A3 (v) that
(0, /w,) and 1w, are both O(logn) while Assumption A3
(iii) glves that np, 1s o(1). Hence, upon division by n we
get that L (,/np, dy)¥ is o(1), for all k as claimed. O

true because

7.2 Almost Sure Limits of the Spectral Moments
Having established that the spectral moments of A, and A,
are asymptotically identical, in this section we establish that
the spectral moments of the centralized adjacency matrix A,,
are indeed given by (1) in Theorem 2, i.e., we have mg.” = my,
almost surely for each k € N. Each spectral moment is a func-
tional that maps the O(n?) independent entries of a random
matrix to a real value. Concentration of functionals of random
matrices around their expected values have been established
in great depth and generality. Accordingly, the deviation of
these functionals (or so-called linear spectral statistics) from
their expected values are characterized using Gaussian central
limit theorems [55, Chapter 9], [56], as well as exponential tail
bounds [20, Sections 2.3 and 4.4], [57, Section 4.14]; which, in
particular, imply that m;:’) converge almost surely to their lim-
iting expected values. Hence, to determine the limiting s?ec—
tral moments it suffices to calculate lim, .. E{m, (n
lim,, mi ), a task which we undertake in our next lemma

Lemma 3 (Limiting Spectral Moments). Under Assump-
tions Al to A3, it is true that mY" = my, and mi” | = o(1)
forall s € N.

Proof. First, notice that
_(n) _ 1 Ak
m,, = Eq—trace(A})
n
1 7 A(r A (r
=, Z E{ 57172)9a52li)3 e agklzlika’gkli)l }’

n . ‘
1<iy,.. i <n

(21

where each summand in the last term corresponds to a
sequence of k£ nodes, which can be interpreted as a closed
walk of length k, denoted by w = (i1, @2, . . ., i1, i, 91), in
the complete graph with n nodes, denoted by K,. Fur-
thermore, we associate a weight to each walk equal to
the expected value of the product of the adjacency entries
along the walk. In other words, we defme the weight
function w(w) := E{azm Af;ﬁl : ai?m A”'f”} Our task is to
study such weighted sums of closed walks. To this end,
we define the set of vertices and edges visited by w as
Vw) = {i;: € [} and E(w) = {{i iz} : € [k—1]}.
For any e € E(w), we deﬁne N (e,w) as the number of
times that w transverses the edge e in any direction. We
denote by W, the set of all closed walks of length & on /C,,
that start and end on the vertex labeled by i;. It is useful
to partition the set W, into subsets W, defined as
Wiy = {w € Wy, : card(V(w)) = p}, i.e., the set of closed
walks of length k visiting p vertices. Furthermore, it is
convenient to define the following subset of W, :
W;ﬁ,p ={w € Wy, : N(e,w) >2forall e € E(w)},

i.e., the set of walks in Wy, for which each edge is tra-
versed at least twice. Note that, any walks that do belong
to Wkp will have a zero weight, because for any
wE Wkp\Wkp, there exists an edge {i,;j} € £(w) such
that N({i, j}, w) = 1. Hence, by independence,

N({k,l}w)
ow) =efal’}ed T (a) =0,

{k,l}e
Ew\{{i.j}t}



since E{a;;} = 0; recall from (2) that the entries al ; ) have

zero mean. We can now employ the shorthand notation

iy == > ow), (22)

weWy,

to rewrite (21) as follows:

. [k/2]+1
—_(n 2
g = ()" 3 (23)

p=1

where the upper limit of p = |k/2] + 1 in the summation
follows by the pigeonhole principle, since that every
walk w € Wy, with p > k41 has at least one edge
e € £(w) such that N(e,w) = 1; whence, forallp > k+1,
ng‘p = .

A key step in the proof of Wigner’s semicircle law [43],
[44] is that for k even, the summation in (23) is asymptoti-
cally dominated by those closed walks belonging to
Wi rja+1; ie., those in which every edge is repeated
exactly twice. In order words, for every k as n — oo,
W/2+1 dominates every other wy, with p < k/2+ 1.
The reason is that by repeating an edge more than twice
one looses a factor of order n in the available choices for
vertices that comprise the closed walk, this causes the
number of such walks and their contributions to be
asymptotically dominated. The same principle applies to
the walks that comprise the right-hand side of (23) and
forms the base of our analysis.

We begin by analyzing (23) for the case k = 2s, i.e.,
md" = (np,)* S >t oy, We show the desired domi-
nance by first lower bounding the term ;1 and then
upper bounding the terms u,,, for p < s+ 1, as follows.
First, note that the number of walks in W, can be
counted, as follows (according to Lemma 2.3.15 in [21]):

s+1
n! o> (n—s) <283>. 1)

card(Was o11) = (n—s—1)! "~ s+1

We next lower-bound the contribution of each walk in
Wassy1 as o(w) > pzwﬁ“", which holds true because
N(e,w) =2,Ve € £(w), and together with (24) and (22),
implies that

(n—5)"" 125\ | .
] > ————— 5w, 25
M25,5+1 ft n(s+ 1) s P Wy, ( )

Note that Assumption A3 (iii) implies that p, = o(1/n)
while w, < 0, = O(logn); hence, \/p_nwn = o(logn/\/n)
and in particular we have that p}@w? = o(1) ensuring that
the right hand side does not grow unbounded with increas-
ing n and is in fact vanishing with n. Next, to upper-bound
|iasp| for all p < s+ 1, we make use of the following
bound, which is developed by Fiiredi and Komlds in
Section 3.2 of [41], and is subsequently used in Lemma 2 of
[58] and Equation (5) of [59] as well; for all p € [n]

ot k 2(k—2p+2) 92p—2
(n—p) e
n—p)! \2p—2

<nP k pAE-2+2) 922
- 2p — 2

card (Wkp> <
(26)
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Furthermore, we can bound the contribution of each walk
w € Wi, as |o(w)| < o2 10?72 because with p distinct ver-
tices in walk w, there is at least p — 1 distinct edges, for

each of which we can use the bound p,@?. Indeed, for any
edge (i, ) € E(w), we have N({i, j}, w) > 2, while \a | <
1 as by definition ég? = aE M o )ws Y, so that aij) =
1-— p,Lw(mw(") with probability p,w! L)wgn) and é(-n) =
(n)

(n) (n) (n

(n)
—PpW; W, PrW; "W

with probability 1 — . Using (3), we

thus obtain the following bound:

‘E { (aﬁf) N({i,j}hw) H <E { (5\,5?))2}

- pnw w (1 - pnw( )w§ﬂ)) < pnﬁ)i

Next, using the definition (22), together with the
upper-bounds |o(w)| < 2~ '@ ~% and (26), we obtain

1 k 2(k—2p+2) yp—1 p—1 - 2p—2
iy < e (2p - 2>p (k=2p+2) 4p o, ©27)

Using k = 2sin (27), we get that forall p < s+ 1

1 2s
p—1 E A(s—p+1),~2p—2 p—1
M?sq) S n1,p4 <2p _ 2>p w" Pﬁ . (28)

To show the dominance of py, .y Over uy,, for
p < s+ 1, we form the ratio between the two inequalities
(25) and (28) to get

Hasp 2(17482)8“_1) Pty
— i —,1
4 py 2 (n — 5)""

- S faw, 25( n )@ 1
= 2p,w2 \w, n—s/ n—s’

where in the first inequality we have used that

25—2p+2
2s < 2s g < 92 W2,
2p —2 25 —2p+2

and in the second inequality we take into account that the
greatest lower bound is achieved for p = s, cf. [41]. The
proof now follows upon noting that under Assumptions
Al, A3 (i), and A3 (i), we have p, 0’ <1,
W, /1w, = O(logn) and p, > = w(1/n); whence, the rate
of growth of (s°/ p,w?)(w,/ ,)” is slower than a poly-
logarithmic term times n, and we get that
/ng /a5 s+1 = 0(1), as desired. Thus, having shown that
me = (np,)* (1+0(1)) Mas 511, We can now proceed to
derive the asymptotic expressions of jio, ;1 as n — o0o; in
particular, to show that lim,_..(np,)’ Mog s41 = M. But
before we embark on the proof of the asymptotic expres-
sions for the even moments, we use the upper-bound in
(28) to show that the odd-order moments are asymptoti-
cally vanishing: First, note from (27) that with £ = 2s + 1
each of the terms py.,,p<s+1 can be upper-
bounded, as follows:

M?s,s+1 o
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2s+1
-1 2(25-2p+3)92p—2 jp—1 3292
Iogi1p| < 0P (Qp _ 2)]9 (o2 48) 9202 pp =2

2s+1 (29)
( ) (s+ 1)2(2s+3)225 (”Pnﬁ%)%
s ,

IA

Next, using (23) with k=2s+1, we have ml" =

Z;*i Mo, and replacing from (29), the odd spectral
moments can now be upper bounded as

| 7 2s+1

< apes (477/,071

9 +1 . s+1 A
Sg )$+14+6ann 2)p1
p=1

4546 (npn Q)SH*l

np,w? —1

D (2np,,)" (1 + (1))

"
= vaztang,)(** T 1)
i\/er,'(szrl)

L Jap (23: 1) (s +1)**°0(1) £ o(1),

where in (£) we use Assumption A3 (ii): p,? = w(1/n)
to conclude that n,onw2 > > 1 and simplify the leftmost
fraction; in (:) we use Assumption A3 (iv):
np,w, = O(1) and in (=) we use Assumption A3 (iii):
/1o, = o(1), which together complete the proof of the
claim about vanishing odd moments. Having thus shown
the asymptotic relations més)ﬂ = o(1) and mé’? =
(14 0(1)) pas 511, we are now ready to show that pig, sy
are asymptotically equal to my,, completing the proof of
the claim about the limiting spectral moments in
Lemma 3.

Starting from the definition (22) with k£ =2s and
p = s+ 1, we have that

:% Z o(w)

wEWa5 541

1 n n n
=5 2 I s = puVu),
TeT 51 {igyee(T)

a5 541

(30)

where in the last equality we write the summation in
terms of the set of rooted ordered trees (using a bijection
described below), and use (3) together with the indepen-
dence of the entries to express the weight of each tree as
the product of the terms ,onw( )wﬁ ) (1- pnw( )w ) corre-
sponding to each edge {i,j} of the tree. The second
equality in (30) is based on a bijection between the set of
walks in Wy, .41 and the set of rooted ordered trees on
s+ 1 vertices, 7 4,1, as follow/s\. First, note that the set of
edges visited by any walk in Ws; ;.1 is always a tree with
s+ 1 vertices (since we need at least s distinct edges for
the induced graph to be connected). Second, it is clear
that for any walk in W, .1, each edge must be visited
exactly twice and the total number of edges in the
induced graph is exactly s. Furthermore, any walk
w € Wa, 441 corresponds to a depth-first traversal of this
induced tree (see [60] for more details about depth-first
traversals of a tree) and we can, thus, impose a total

order on the vertices of the induced tree (using the order
of the first appearance in the walk w).

Next note that since per Assumption Al:
oy w!™ — 0asn — oo, for any s fixed we obtain

J
1-0o(1 p; n
Mos 541 = % Z H H)En)wi ) (31)
" TETL (ighes)

For any tree 7', it is always true that
n n n dl (T)
[ ol = I ()"
(i f}€E(T) iev(T)

where d;(T") is the degree of node ¢ in the tree 7. Hence,
(31) can be written as

1—o0(1))p?
M25,5+1 = ( ( )) "
s di(T) (32)
(n) )
oy (e )
TGT.H»I 1<iy,eyige1 <n k=1

card({iy,...,ig41})=s+1

Next, note that for any rooted ordered tree 7' € 7,
whose nodes are labeled by [s + 1] and with their respec-
tive degrees (di (1), ..., ds+1(T")) we have

st1 st (dy(T)
(IL)) k
Z 1<7'1;+1<" (H (ka )

=1 k=1
card({i1, . ig1})=J
n n " dq(T) n dsy1(T)

=2 X ()T ) @

i1=1lio=1 is1=1

s+1 n s+1 S
::<Z() ) [T =152

G=1 \ k=1 =t

where we use the partial power-sums notation
Spp =" (™) for all k,neN, and we know that
their limiting averages Aj, = lim,_,«(1/n) (n,on) Sk, exist
and are finite by Assumption A2. Next, note that
s 25
lim P

n—oo N

XZZ

1< oyigy1<n
card({ig,....is41})=J

st dy(T)
(L)) =

k=1

which is true since, for each j € [s], the term in the curly
brackets above can be bounded as

—s 2s s+1
0< n_*(np,) Z Hﬁ)nd"’m
n 1<iy oiigy1 <n k=1

card({i1 iy 11))=j

1 n A \28 n]’ﬁSil A \28
< nstl (j) (np, )™ < T (np,w,)” = o(1),

where in the last equality we use the fact that Assump-
tion A3 (iv): np,w, = O(1). In other words, as n — oo the
summation over j=1,...,s+ 1 is dominated by its last
terms j = s + 1. We now take limits of both sides in (32)
and use the preceding asymptotic dominance relation
together with (33) to get that
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lim ™ =

lim (npn) MQS s+1

n—oo

i S T
= 774'00 nq+1 TeT g1 n.J
£ Jr
= lim 2 : H(npn) j STj(T)
n—o0 TeT sy 4 1 nrj(T) )
j=
s
=Y JINY
TeT s J
j=1

where in the penultimate equality we have used the facts
that, for any of the trees T" € T ., the degree distribution
(r1,...,rs) satisfies > 5, drg=2sand > ;rg=s+1.
The last step of the proof relies on our ability to count
the number of rooted ordered trees with any fixed degree
distribution 7 = (r1,...,7s), i.e., T4.1(7). To determine
card(7 44+1(7)), we rely on related properties of rooted
ordered forests that are studied in [45, Chapter 5]. The
total number of rooted ordered trees with degree distri-

bution 7 is given by
2 s+1
s+1\ry,...,r)°

We can now use (35) to transform the right-hand side of
(34) into the expressions my, claimed in the main theo-

(34)

card(7 411 (7)) = (35)

rem. Using the partition 751 = | e, 7 s+1(7), we get
nhrgouzs s+1 = Z Z HA7
T€ERs TeT 441 (T) J=
= Z card(7 511(7)) HAJ
TERS =1

2 s+1 5 )
Zs—&-l <r1,...,r5)J1j[1A;]’

TER

where (35) is invoked in the last equality, concluding the
proof. O

The results in Sections 7.1 and 7.2 enable us to claim that,
under Assumptions Al to A3, the spectral moments
sequence {m,(:" ,k € N} converges pointwise almost surely
to the deterministic sequence {my,, k € N}. Coup de grace is
to conclude the almost sure and weak convergence of the
empirical spectral distributions from the pointwise almost
sure convergence of their moments sequence; it is the prov-
ince of the method of moments [55, Lemma B.3]: it is easy to
verify that the limiting moment sequence m,, s € N satisfies
Carleman’s criterion, thus pointwise convergence of the
moments sequence indeed implies convergence in distribu-
tion, completing the proof of the main result.
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