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Abstract—We analyze the eigenvalues of a random graph ensemble, proposed by Chung and Lu, in which a given sequence of

expected degrees, denoted by wn ¼ ðwðnÞ
1 ; . . . ; wðnÞ

n Þ, is prescribed on the n nodes of a random graph. We focus on the eigenvalues of

the normalized (random) adjacency matrix of the graph ensemble, defined as An ¼ ffiffiffiffiffiffiffiffi
nrn

p ½aðnÞi;j �
n
i;j¼1, where rn ¼ 1=

Pn
i¼1 w

ðnÞ
i and

a
ðnÞ
i;j ¼ 1 if there is an edge between the nodes fi; jg, 0 otherwise. The empirical spectral distribution of An, denoted by Fnð�Þ, is the
empirical measure putting a mass 1=n at each of the n real eigenvalues of the symmetric matrix An. Under some technical conditions

on the expected degree sequence, we show that with probability one Fnð�Þ converges weakly to a deterministic distribution F ð�Þ as
n ! 1. Furthermore, we fully characterize this deterministic distribution by providing explicit closed-form expressions for the moments

of F ð�Þ. We illustrate our results with two well-known degree distributions, namely, the power-law and the exponential degree

distributions. Based on our results, we provide significant insights about the bulk behavior of the eigenvalue spectrum; in particular, we

analyze the quasi-triangular spectral distribution of power-law networks.

Index Terms—Complex networks, random graph models, spectral graph theory, randommatrix theory

Ç

1 INTRODUCTION

UNDERSTANDING the relationship between structural and
spectral properties of a network is a key question in the

field of Network Science and Engineering. Spectral graph
methods (see [1], [2], and references therein) have become a
fundamental tool in the analysis of large complex networks,
and related disciplines, with a broad range of applications
in machine learning, data mining, web search and ranking,
scientific computing, and computer vision. Studying the
relationship between the structure of a graph and its eigen-
values is the central topic in the field of algebraic graph theory
[1], [2], [3]. In particular, the eigenvalues of matrices repre-
senting the graph structure, such as the adjacency or the
Laplacian matrices, have a direct connection to the behavior
of several networked dynamical processes, such as spread-
ing processes [4], synchronization of oscillators [5], and a
wide variety of distributed algorithms [6].

The availability of massive databases describing a great
variety of real-world networks allows researchers to explore
their structural propertieswith great detail. Statistical analysis
of empirical data has unveiled the existence of multiple com-
mon patterns in a large variety of network properties, such as
power-law degree distributions [7], or the small-world phe-
nomenon [8]. Random graphsmodels are the tool-of-choice to
analyze the connection between structural and spectral net-
work properties. Aiming to replicate empirical observations,

a variety of synthetic network models has been proposed in
the literature [7], [8]. The structural property that have (argu-
ably) attracted the most attention is the degree distribution.
Empirical studies show that the degree distribution of impor-
tant real-world networks, such as the Internet [9], Facebook,
or Twitter, are heavy-tailed and can be approximated using
power-lawdistributions [7], [10].

Random graph models, such as the Erdo��s-R�enyi [11],
[12], the scale-free [7], and the small-world models [13], are a
versatile tool for investigating the properties of real-world
networks [14]. We find in the literature several random
graphs able to model degree distributions from empirical
data. One of best known graphs is the configuration model,
originally proposed by Bender and Canfield in [15]. This
model is able to fit a given degree sequence exactly (under
certain technical conditions). Although many structural
properties of this model have been studied in depth, it is
not specially amenable to spectral analysis. In contrast, the
preferential attachment model proposed in [7] provides a
justification for the emergence of power-law degree distri-
butions in real-world networks. A tractable alternative to
the preferential attachment model was proposed by Chung
and Lu in [16], and analyzed in [17], [18], [19]. In this
model, which we refer to as the Chung-Lu model, an expected
degree sequence is prescribed onto a random graph ensem-
ble, that can be algebraically described using a (random)
adjacency matrix.

Studies of the statistical properties of the eigenvalues of
random graphs and networks are prevalent in many
applied areas. Examples include the investigations of the
spacing between nearest eigenvalues in random models
[20], [21], as well as real-word networks [22]. Empirical
observations highlight spectral features not observed in
classical random matrix ensembles, such as a triangle-like
eigenvalue distribution in power-law networks [23], [24] or
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an exponential decay in the tails of the eigenvalue distribu-
tion [25].

1.1 Main Contributions

In this work we offer an exact characterization for the eigen-
value spectrum of the (normalized) adjacency matrix of ran-
dom graphs with a given expected degree sequence. This
characterization is in terms of the moments of the eigen-
value distributions and it hinges upon application of the
moments method from random matrix theory [20], [21].
Accordingly, we give closed-form expressions describing
the almost sure limits of the spectral moments. We then use
these moments to draw important conclusions about the
graph spectrum and to bound several spectral quantities of
interest. Analyzing the limiting spectral distribution is
important when designing statistical tests to investigate the
structure of a network from the observed interconnection
data. Such scenarios arise frequently in community detec-
tion, where stochastic block models (SBM) find widespread
use. SBM captures the different edge probabilities for differ-
ent communities but fails to account for variations of node
degrees [26]. Subsequently, the degree-corrected stochastic
block model offers an improved and more realistic null (as
compared to the Erdo��s-R�enyi model) when testing different
hypothesis for community detection [27]. The knowledge of
spectrum is also important in system-theoretic analysis of
networked systems with random interconnections: indeed,
we have applied our methods to study the controllability
Gramian spectra for such systems [28].

The remainder of this paper is organized as follows.
Preliminaries on the background and motivation of our
study, as well as the random graph model under consider-
ation, are presented in Section 2. Our main results on the
asymptotic spectral moments of the adjacencies of random
graphs and the characterization of the limiting spectral
distributions (for the normalized adjacencies) are pre-
sented in Section 3, where we also include an outline of
the proofs (which are presented in detail in Section 7). In
Section 4, we apply our results to a case where node
degrees are obtained by random samples from the support
of a preset function and show how our main results can be
applied in analysis of the spectrum of large random
graphs. We consider random graphs with an exponential
degree distribution as a special case and derive the asymp-
totic expressions of its spectral moments. In Section 5 we
consider the important case of power-law degree distribu-
tion, which is known to be a good descriptor for many
real-world networks. The asymptotic expressions of the
spectral moments of power-law networks allow us to ana-
lyze the bulk behavior of the eigenvalue spectrum in much
greater details; in particular, we can quantify and charac-
terize the similarities with and deviations from the trian-
gular distribution that is reported in the literature [23],
[24]. Section 6 concludes the paper.

2 BACKGROUND & MOTIVATION

2.1 Chung-Lu Random Graph Model

We consider the Chung-Lu random graph model intro-
duced in [16] and analyzed in [17], [18], [19], in which an
expected degree sequence given by the n non-negative

entries of the vector w
T

n ¼ ðwðnÞ
1 ; . . . ; wðnÞ

n Þ is prescribed over
the set of nodes, labeled by ½n�, of the graph ensemble.1 In
this model, each random edge is realized independently of
all other edges and in accordance with the probability mea-
sure Pf�g, specified below. Let E �f g and Var �f g be the expec-
tation and variance operators corresponding to Pf�g.2 3 To
each random graph, we associate a (random) adjacency
matrix, which is a zero-one matrix with the ði; jÞth entry
being one if, and only if, there is an edge connecting nodes i
and j. The number of edges incident to a vertex is the degree
of that vertex, and by the volume of a graph we mean the
sum of the degrees of its vertices. In this paper, our primary
interest is in characterizing the asymptotic behavior of the
eigenvalues of the random adjacency matrix as the graph
size n increases. We consider the distribution of these eigen-
values over the real line and characterize this distribution
through its moments sequence. Accordingly, the probability
of having an edge between nodes i and j is equal to
rnw

ðnÞ
i w

ðnÞ
j , where rn ¼ 1=

Pn
i¼1 w

ðnÞ
i is the inverse expected

volume. The adjacency relations in this random graph
model are represented by an n� n real-valued, symmetric
random matrix An ¼ ffiffiffiffiffiffiffiffi

nrn
p ½aðnÞij �, where a

ðnÞ
ij are independent

0-1 random variables with EfaðnÞij g ¼ rnw
ðnÞ
i w

ðnÞ
j . In this

paper, we assume the following sparsity condition on the
degree sequence4: rnw

ðnÞ
i w

ðnÞ
j ¼ oð1Þ for all i, j, which will be

used to ensure that the distribution of the eigenvalues of the
adjacency matrix An converges, almost surely, to a deter-
ministic distribution that is uniquely characterized by its
sequence of moments when n ! 1. As a main result of this
paper, we explicate the technical conditions under which
this convergence property holds true (cf. Assumptions A1
to A3 below). Furthermore, we proffer explicit expressions
to calculate this moment sequence. These expressions, in
turn, allow us to upper or lower bound various spectral
metrics of practical interests (cf. Section 4 and discussions
therein).

Characterization of the convergence conditions depend
critically on the behavior of the extreme values of the
expected degree sequence as n increases. To that end, we

1. Throughout this paper, R and N are the set of real and natural
numbers, N0 ¼ f0g [N, n 2 N is a parameter denoting the size of the
random graph, ½n� denotes f1; 2; . . . ; ng, and cardðXÞ denotes the cardi-
nality of set X . The n� n identity matrix is denoted by In, random vari-
ables are printed in boldface, matrices are denoted by capital letters.
Every vector is marked by a bar over its lower case letter.

2. Let �Pnf�g be the probability measures on the finite product spaces
corresponding to the nðnþ 1Þ=2 independent entries of the n� n real
symmetric random adjacency matrix An of the Chung-Lu random
graph ensemble and consider the following product measures:
Pn ¼ �Pn � �Pn�1 � . . . �P1 for all n 2 N. The probability measure Pf�g is
the probability measure on the infinite product space that is the unique
extension (according to Kolmogorov’s existence theorem [29, Section
36]) as n ! 1 of the consistent probability measures Pn, and E �f g and
Var �f g are the expectation and variance operators associated with Pf�g.
We say that an event occurs almost surely if it occurs with probability
one.

3. Following [30] we allow for self-loops. Self-loops are allowed for
mathematical convenience, and the assumptions imposed on the
degree sequence (cf. Assumption A3) ensures that the expected number
of self loops is very small (Oðlog 2nÞ).

4. Given three functions fð�Þ, gð�Þ, and hð�Þ we use the asymptotic
notations fðnÞ ¼ OðgðnÞÞ and fðnÞ ¼ oðhðnÞÞ to signify the relations
limsupn!1 fðnÞ=gðnÞj j < 1 and limn!1 fðnÞ=hðnÞj j ¼ 0, respectively; in
the latter case we also write hðnÞ ¼ vðfðnÞÞ. We use fðnÞ � ðgðnÞÞ to
mean that fðnÞ ¼ ð1þ oð1ÞÞgðnÞ.
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consider two sequences fŵn : n 2 Ng and f �wn : n 2 Ng
given by ŵn ¼ maxi2½n�w

ðnÞ
i and �wn ¼ mini2½n�w

ðnÞ
i for all

n 2 N. Another quantity of interest, whose evolution with
the graph size n plays an important role, is the second-order
average degree ~dn, defined in [17] as,

~dn ¼
Pn

i¼1 w
ðnÞ
i

� �2

Pn
i¼1 w

ðnÞ
i

¼ rn

Xn

i¼1

w
ðnÞ
i

� �2
¼ rnkwnk22:

The spectral moments of the adjacency matrix are derived in
terms of the limiting normalized power-sums of the degree
sequence, defined as follows. For each i 2 N, we define the
limiting normalized kth power-sum of the expected degree

sequence as: Lk :¼ limn!1 1
n

Pn
i¼1 nrnw

ðnÞ
i

� �k
. For our main

results to hold true, we need the expected degree sequence
w

T

n to satisfy the following assumptions:

A1 (Sparse & Graphical). rnŵ
2
n < 1; 8n, and rnŵ

2
n ¼

oð1Þ.
A2 (All Finite Moments). Lk exists (and are finite) for
all k.
A3 (Controlled Growth of Degrees). (i) ŵn= �wn ¼
OðlognÞ, (ii) rnŵ

2
n ¼ vð1=nÞ, (iii) nrn ¼ oð1Þ, (iv)

nrnŵn ¼ Oð1Þ, and (v) ŵn ¼ OðlognÞ.
Note that Assumption A1, in particular, implies that the

edge probabilities are all less than one and, indeed, they are
asymptotically vanishing (sparsity). Furthermore, under
Assumption A3 (iv), with nrnv̂n ¼ Oð1Þ, the limiting aver-
ages Lk are guaranteed to be Oð1Þ and Assumption A2
ensures that they indeed exist.

In order to illustrate Assumption A3, let us consider an
Erdo��s-R�enyi random graph with edge probability pn, so
that w

ðnÞ
i ¼ ŵn ¼ �wn ¼ ~dn ¼ npn and rn ¼ 1=ðn2pnÞ for all n.

Assumptions A1 and A3 (ii) require that pn ¼ rnŵ
2
n ¼ oð1Þ,

and pn ¼ vð1=nÞ, respectively, or equivalently that pn ! 0

and npn ! 1. These requirements agree with the assump-
tions made in the recent analyses concerning Erdo��s-R�enyi
random graphs under the 1=

ffiffiffiffiffiffiffiffi
npn

p
normalization [31, Theo-

rem 1.3]. Here, we also note that different (and possibly con-
trasting) assumptions are necessary to characterize different
features of the graph spectrum. For example, satisfying the
conditions for the almost sure convergence of the largest
eigenvalues (stated in Theorem 1, below), together with
Assumptions A1 to A3, which are needed for the weak con-
vergence of the spectral distributions (per Theorem 2,
below) could lead to very restricted sets of model
parameters.

2.2 Spectrum of the Chung-Lu Random Graph

In 2003, by a series of results, Chung, Lu and Vu established
important asymptotic properties of the spectra of the adja-
cency matrices of random graph models with given
expected degree sequences [17], [18], [19]. A key result of
theirs specifies the almost sure limit of the largest eigen-
value of the adjacency matrix, as follows [17, Theorems 2.1
and 2.2].

Theorem 1 (Largest Eigenvalue of Random Graphs). If
~dn >

ffiffiffiffiffiffi
ŵn

p
logn, then with probability one the largest eigen-

value of the (unnormalized) adjacency matrix is ð1þ oð1ÞÞ~dn;

while if
ffiffiffiffiffiffi
ŵn

p
> ~dnlog

2n, then the largest eigenvalue is almost
surely ð1þ oð1ÞÞ

ffiffiffiffiffiffi
ŵn

p
.

Moreover, for a random graph model whose expected
degree distribution obeys a power law, the largest eigen-
value is with probability one less than 7

ffiffiffiffiffiffiffiffiffiffi
logn

p
max

f
ffiffiffiffiffiffi
ŵn

p
; ~dng. In [17], similar conditions are established for the

almost sure convergence of the kth largest eigenvalues
towards the square root of the kth largest expected degree.
In [19], relevant results concerning the spectra of other
matrices, such as the Laplacian, were derived. More recent
results use the machinery of concentration inequalities to
investigate the behavior of the graph spectra for random
graphs with independent edges [32], [33], [34]. In [34], the
author shows concentration of the spectral norm for the
Laplacian and adjacency matrices around their expecta-
tions, under certain technical conditions. These results are
improved by Chung and Radcliffe [32], who use a Chernoff-
type inequality to approximate the eigenvalues by those of
the expected matrix and bound the error with high proba-
bility. This error bound is Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŵnlogn
p Þ in [32] and it is later

improved to ð2þ oð1ÞÞ
ffiffiffiffiffiffi
ŵn

p
by [33]. The authors in [35] use

free probability techniques to give a characterization of the
empirical spectral distribution of random graphs with arbi-
trary expected degrees in terms of the free multiplicative
convolution of their degree distribution with the semi-circu-
lar density; however, the techniques come short of a closed-
form expression for the moments of the limiting spectral
distribution, and no attempt is made to determine the exact
conditions that the degree distribution should satisfy for the
techniques to be applicable.

3 MAIN RESULT

In this paper, we offer a moment-based characterization of
the limiting distribution of the eigenvalues of the Chung-Lu
random graph model under Assumptions A1 to A3. The
moment sequence provides a versatile tool in the spectral
analysis of complex networks [36], [37], [38]. It is worth
highlighting that, in the sparsity regime rnŵ

2
n ¼ oð1Þ and

under the
ffiffiffiffiffiffiffiffi
nrn

p
normalization, the largest eigenvalue of the

random adjacency matrix may escape to infinity as n ! 1.5

When investigating the limiting distribution of a sequence
of distributions, it may be the case that some mass escapes
to infinity, which can cause the limit distribution to not be a
probability distribution (does not integrate to one); in such
cases, the underlying sequence of distributions is not “tight”
(cf. [29, Section 25]). However, as we show in this paper, the
tightness property holds for the sequence of spectral distri-
butions in the Chung-Lu random graph model when the
growth of the degrees is controlled as in Assumption A3.
This is because the mass that is escaping to infinity (finitely
many largest eigenvalues) is asymptotically vanishing itself.
In other words, as n ! 1, the contribution of finitely many
eigenvalues to the limiting spectral distribution in the
rnŵ

2
n ¼ oð1Þ sparse regime and under the

ffiffiffiffiffiffiffiffi
nrn

p
normaliza-

tion is vanishingly small. By the same token, our results
complement the characterization of the largest eigenvalue

5. This is true, for example, for Erdo��s-R�enyi random graphs with
edge probability pn and

ffiffiffiffiffiffiffiffi
nrn

p ¼ 1=
ffiffiffiffiffiffiffiffi
npn

p
normalization, as we demon-

strate in Section 3.2.
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in [17], [18], [19], which focuses on the growth rate and con-
centration of the largest eigenvalue, as described in Section
2.2.

To describe our main results we need to introduce some
terminology. Let �1ðAnÞ 	 �2ðAnÞ 	 � � � 	 �nðAnÞ be n real-
valued random variables representing the n eigenvalues of
the random matrix An ordered from the smallest to the larg-
est. We define dxf�g as the probability measure on R assign-
ing unit mass to the point x 2 R and zero elsewhere. We
also define Lnf�g ¼ ð1=nÞPn

i¼1 d�iðAnÞf�g as the random
probability measure on the real line that assigns a mass 1=n
to each one of the n eigenvalues of the random matrix An.
The corresponding distribution can be written as FnðxÞ ¼
Lnfð�1; x�g ¼ ð1=nÞcardðfi 2 ½n� : �iðAnÞ 	 xgÞ, where
cardð�Þ is the cardinality function, and is referred to as the
empirical spectral distribution (ESD) for the random matrix
An. For each x 2 R, FnðxÞ is a random variable. Moreover,
we define the kth spectral moment of the random matrix An

as the following real-valued random variable
m

ðnÞ
k ¼ ð1=nÞtraceðAk

nÞ ¼
Rþ1
�1 xkd FnðxÞ. Our main results

establish the almost sure and weak convergence of the
empirical spectral distribution of the (normalized) adja-
cency matrix An to a deterministic distribution F ð�Þ. We call
this distribution the limiting spectral distribution (LSD) and
we characterize it through its moments sequence, mk ¼Rþ1
�1 xk dF ðxÞ. According to our main result, the spectral
moments of the limiting spectral distribution F ð�Þ are speci-
fied in terms of the limiting power-sums of the normalized
degree sequence Lk, as follows:

Theorem 2 (Limiting Spectral Moments of An). Consider
a random graph with a given expected degree sequence
wn ¼ ðwðnÞ

1 ; . . . ; wðnÞ
n Þ, satisfying Assumptions A1 to A3. With

probability one, Fnð�Þ converges weakly to a deterministic dis-
tribution F ð�Þ, which is uniquely determined by its moments
mk ¼

Rþ1
�1 xk dF ðxÞ. The moments of F ð�Þ are given by

m2s ¼
X

r2Rs

2

sþ 1

sþ 1

r1; . . . ; rs

� �
L

r1
1 L

r2
2 . . .Lrs

s ;

m2sþ1 ¼ 0; for all s 2 N0;

(1)

with Rs ¼ fr 2 N
s
0 :
Ps

j¼1 rj ¼ sþ 1;
Ps

j¼1 j rj ¼ 2sg and

Lk ¼ limn!1 1
n

Pn
i¼1ðnrnw

ðnÞ
i Þk.

Remark 1 (Sufficiency of the Assumptions). It is worth
highlighting that Assumptions A1 to A3 are sufficient
(but not necessary) for our convergence results in Theo-
rem 2 to hold true. Specifically, the closed-form expres-
sion in (1) indicates that the first 2s spectral moments of
An are determined by the first s power-sums of the
expected degree sequence. Therefore, characterizing the
whole limiting spectral distribution F ð�Þ entails the con-
vergence of all spectral moments of any order and, there-
fore, the finiteness of all limiting normalized power-sums
of the expected degree sequence (i.e., Lk < 1 for all
k 2 N). However, in the case of power-law degree distri-
butions, the normalized power-sums Lk diverge for
k 
 b� 1, where b is the exponent of the power-law.
Hence, a full characterization of the limiting spectral den-
sity is not possible from Theorem 2. On the other hand, as
we illustrate in Section 5, it is still possible to compute a

truncated sequence of limiting spectral moments
ðm2sÞs<b�1 from (1). This finite sequence of spectral
moments contains interesting information about the bulk
of eigenvalues of power-law networks.

3.1 Proof Outline

The detailed proof is presented in Section 7.2. Here, we pro-
vide an outline of the proof steps. The crux of the argument
is in showing that for each k 2 N, the kth spectral moments
m

ðnÞ
k converge almost surely to mk; thence concluding by

the method of moments that with probability one the empir-
ical spectral distributions Fnð�Þ converge weakly to F ð�Þ. To
begin, we consider the centralized version of the adjacency
An, given by

Ân ¼ An � E Anf g ¼ â
ðnÞ
ij

h i
: (2)

Note that the entries â
ðnÞ
ij have zero mean and, asymptoti-

cally, a rank-one pattern of variances, given by

Var â
ðnÞ
ij

n o
¼ E â

ðnÞ
ij

� �2� �

¼ rnw
ðnÞ
i w

ðnÞ
j ð1� rnw

ðnÞ
i w

ðnÞ
j Þ

� s
ðnÞ
i s

ðnÞ
j ;

(3)

since, by Assumption A1, rnw
ðnÞ
i w

ðnÞ
j ¼ oð1Þ. This rank-one

pattern is a key property that allows us to calculate closed-
form expressions of the limiting spectral moments in Theo-
rem 2.

To proceed, we introduce some necessary notations. Simi-
larly to An, we consider the eigenvalues of Ân ordered from
the smallest to the largest as �1ðÂnÞ 	 �2ðÂnÞ 	 � � � 	 �nðÂnÞ
and define the random variable m̂

ðnÞ
k ¼ ð1=nÞtraceðÂk

nÞ to be
its kth spectral moment. Also, let �m

ðnÞ
k ¼ Efm̂ðnÞ

k g be the
expected spectral moments for all k; n. The proof of our main
result proceeds as follows. Lemma 2, proved in Section 7.1,
ensures that under Assumption A3, m̂

ðnÞ
k � m

ðnÞ
k almost

surely for each k 2 N. Therefore, the effect of centralization
on the spectral moments is asymptotically vanishing, and
bothAn and its centralized version Ân have the same limiting
spectral moments. Concentration results for functionals of
random matrices with independent entries imply that the
spectral moments concentrate around their expected values;
hence, it suffices to calculate the limiting values of the
expected spectral moments ðlimn!1 �m

ðnÞ
k Þ. Finally, Lemma 3

(included in Section 7.2) provides asymptotically exact
expressions for the expected spectral moments under
Assumptions A1 to A3, completing the proof following the
method of moments. In the next section, we use the special
case of Erdo��s-R�enyi random graphs to elaborate on these
steps inmore details.

3.2 The Case of Erdo��s-R�enyi Random Graphs

In Erdo��s-R�enyi random graphs, denoted by Gn;p, each edge
is realized with a probability p, independently of other
edges. This is a special case of the Chung-Lu random graph
model when the expected degree sequence is given by
wn ¼ ðnp; np; . . . ; npÞ. Ever since its introduction in the late
1950s by Erdo��s and R�enyi [11], [12], properties of this well-
known class of random graphs have been extensively
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studied [39], [40]. Indeed, the seminal work of F€uredi and
Koml�os [41] can be used to derive asymptotic properties of
the spectra of Erdo��s-R�enyi random graphs; with probability
one, putting its largest eigenvalue at ð1þ oð1ÞÞnp and
upper-bounding the absolute values of the rest by
ð2þ oð1ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
. More recently, Feige and Ofek [42]

have shown that under mild conditions on p, the largest
eigenvalue of the adjacency matrix is almost surely
pnþOð ffiffiffiffiffiffi

pn
p Þ, and all other eigenvalues are almost surely

Oð ffiffiffiffiffiffi
pn

p Þ.
Fig. 1a depicts the histogram of eigenvalues for a particu-

lar realization of the normalized adjacency matrix of an
Erdo��s and R�enyi graph with n ¼ 1;000 nodes and p ¼ 0:01.
In particular, we can observe that the largest eigenvalue
�1ðAnÞ � np ¼ 10 is located away from the remaining eigen-
values, which are asymptotically located in the ½�2;þ2�
interval. Note that under the

ffiffiffiffiffiffiffiffi
nrn

p ¼ 1=
ffiffiffiffiffiffi
np

p
normalization,

the largest eigenvalue grows as
ffiffiffiffiffiffi
np

p
. Let us also consider

the normalized and centralized adjacency matrix Ân

defined in (2). We plot a typical realization of the eigenvalue
histogram of Ân in Fig. 1b. Notice that, as pointed out in
Lemma 2 (proved in Section 7.1), the effect of centralizing
the adjacency matrix An wð Þ is to cancel out the largest
eigenvalue (moving it to zero), while the bulk of eigenval-
ues remains (almost) unperturbed. Subsequently, the effect
of normalization on the limiting spectral distribution in theffiffiffiffiffiffiffiffi
nrn

p
-normalization regime is negligible. This can be also

noticed in Fig. 1c, where we plot the empirical spectral dis-
tributions Fn xð Þ and F̂n xð Þ. Indeed, under the ffiffiffiffiffiffiffiffi

nrn
p

-normal-
ization, the largest eigenvalue of An grows as

ffiffiffi
n

p
, escaping

almost surely to infinity; every other eigenvalue is almost
surely Oð1Þ, being asymptotically compactly supported.

Indeed, as a validity check, it is possible to re-derive the
limiting spectral distribution of the Erdo��s-R�enyi random
graph ensemble from Theorem 2 under Assumptions A1 to
A3. In particular, in this case we have that ~dn ¼ ŵn ¼ �wn ¼
npn, rn ¼ n�2p�1

n and Lk ¼ 1 for all k; therefore, for
pn ¼ C logn=n the random graph ensemble satisfies
Assumptions A1 to A3. Theorem 2 implies that the asymp-
totic spectral moments satisfy

m2s ¼
2

sþ 1

X

r2Rs

sþ 1

r1; . . . ; rs

� �
¼ 1

sþ 1

2s

s

� �
¼: Cs; (4)

These moments correspond to that of a semicircular distri-
bution supported over ½�2;þ2�, [43], [44]. Note that to
obtain a non-trivial support for the bulk of the spectrum, we
need to investigate the LSD of the adjacency matrix under
the normalization

ffiffiffiffiffiffiffiffi
npn

p ¼ ffiffiffiffiffiffiffiffi
nrn

p
regime. The quantity Cs

defined in (4) is the sth Catalan number. The Catalan num-
bers have great significance in combinatorics: they count the
total number of Dyck paths of length 2s, cf. [20], the number
of non-crossing partitionsof an ordered set [20], as well as
many other combinatorial structures [45]. Specially relevant
in our work is the relationship between the Catalan num-
bers and rooted ordered trees. A rooted ordered tree T is a tree
in which one vertex is designated as the root, and the chil-
dren of each vertex are ordered (see [45], page 221); i.e.,
there is a total order n on the vertex set of T , respecting the
partial order - defined as follows: for all fj; kg � VðT Þ,
j - k iff j belongs to the unique path on T that connects k to
the root. There is a bijection between Dyck paths of length
2s and ordered trees with s edges (see [20, Lemma 2.1.6]);
hence, the number of ordered trees with s edges is equal to
Cs. We use T sþ1 to denote the set of all rooted ordered trees
on sþ 1 vertices that are chosen without replacement from
the set ½n�. To understand the significance of the summation
over the set Rs that appears in (4), as well as (1), we intro-
duce some additional notation pertaing to trees and their
degree sequences. Given a tree T with s edges and sþ 1 ver-
tices labeled f1; . . . ; sþ 1g, the degree distribution of T is
defined as the sequence of integers rðT Þ ¼ ðr1; . . . ; rsÞ 2 N

s
0,

where rd ¼ rdðT Þ is the number of vertices with degree d in
T . We drop the tree argument ðT Þ when there is no danger
of confusion: using di for the degree of vertex i and rd for
number of vertices with degree d. Notice that the maximum
degree is at most s; hence, rd ¼ 0 for all d > s. For any
graph G with s edges, the degree distribution ðr1; . . . ; rsÞ
satisfies

Ps
d¼1 d rd ¼ 2s and

Ps
d¼1 rd ¼ sþ 1. In particular,

since a connected graph with s edges and sþ 1 vertices is
always a tree, we have that G is a tree if and only ifPs

d¼1 rdðGÞ ¼ sþ 1 and
Ps

d¼1 d rd ¼ 2s; i.e., the set Rs

defined in Theorem 2 denotes the set of integer sequences
that are valid degree distributions for trees with s edges.

We use T sþ1ðrÞ to denote the set of all rooted ordered
trees on sþ 1 nodes whose degree distribution is r. As part
of the proof of the main result in (35), we show that
cardðT sþ1ðrÞÞ, i.e., the total number of rooted ordered trees
with degree distribution r, is given by

card T sþ1ðrÞð Þ ¼ 2

sþ 1

sþ 1

r1; . . . ; rs

� �
: (5)

Next, if we use the partition T sþ1 ¼
S

r2Rs
T sþ1ðrÞ, we can

express the total number of ordered trees on sþ 1 vertices
as, Cs ¼ card T sþ1ð Þ ¼Pr2Rs

card T sþ1ðrÞð Þ, and by replac-
ing from (5), we obtain the right-hand side equality in (4).

Fig. 1. (a) Normalized eigenvalue histogram of the Erdo��s-R�enyi random graph with n ¼ 1;000 nodes and p ¼ 0:01; (b) corresponding normalized and
centralized eigenvalue histogram; (c) spectral distributions of the normalized adjacency matrix An (blue solid) and the centralized version Ân (red
dashed).
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4 DEGREES SPECIFIED BY RANDOM UNIFORM

SAMPLING

We now consider Chung-Lu random graphs for which the
expected degree of each node i is specified as w

ðnÞ
i ¼ fnðxiÞ,

where fnð�Þ are given functions with a common support nor-
malized to be the unit interval ½0; 1�, and fxi; i 2 Ng is a ran-
dom sample, uniformly and independently drawn from the
unit interval.6 To illustrate our results, let us assume that
fnðxÞ ¼ Dne

�ax, where Dn;a > 0 for all n, and 0 	 x 	 1.
Then, consider a Chung-Lu random graph with the
expected degree sequence specified as w

ðnÞ
i ¼ Dne

�axi ,
i 2 ½n�. In other words, the degrees of the resulting graph
follow an exponential pattern, which have been observed in
practical scenarios, such as in structural brain networks
built from diffusion imaging techniques [46].

The almost sure asymptotic expression for the second-order
average degree ~dn can be obtained from a Monte-Carlo aver-
age [48, Section XVI.3], resulting in the following expression:

~dn ¼
Pn

i¼1 w
ðnÞ
i

� �2

Pn
i¼1 w

ðnÞ
i

�
R 1
0
f2nðxÞdxR 1

0
fnðxÞdx

¼
R 1
0
D
2
ne

�2axdx
R 1
0
Dne�axdx

¼ Dnð1� e�2aÞ
2ð1� e�aÞ :

(6)

We know from Theorem 1 that, if Dn > log 2n, then
~dn >

ffiffiffiffiffiffi
Dn

p
logn, and the largest eigenvalue of the adjacency

(without
ffiffiffiffiffiffiffiffi
nrn

p
normalization) is almost surely given by ~dn.

We now use Theorem 2 to write closed-form expressions for
the asymptotic spectral moments of An, the normalized
adjacency matrix of the random graph whose expected
degree sequence is given by wn ¼ ðwðnÞ

1 ; . . . ;wðnÞ
n Þ. We begin

by calculating the almost sure asymptotic expression of the
inverse expected volume of the graph, as follows,

1

rrn
¼
Xn

i¼1

w
ðnÞ
i � n

Z 1

0

fnðxÞdx

¼ n

Z 1

0

Dne
�axdx ¼ nDn

a
ð1� e�aÞ:

(7)

We now proceed to verify the qualifying conditions for
applying Theorem 2. First, note the following almost sure
asymptotic identities for the maximum and minimum
degrees,

ŵn ¼ max
i2½n�

w
ðnÞ
i � Dn; �wn ¼ min

i2½n�
w

ðnÞ
i � Dne

�a; (8)

both of which can be easily verified from the corresponding
order statistics for the uniform distribution on the unit inter-
val.7 If we set Dn ¼ logn, then from the set of almost sure
asymptotic identities in (6), (7) and (8) we get

~dn ¼ OðDnÞ ¼ oðn=lognÞ; nrn ¼ Oð1=DnÞ ¼ oð1Þ;
ŵn

�wn
� ea ¼ OðlognÞ; ŵn � Dn ¼ OðlognÞ;

nrnŵn ¼ a

1� e�a
¼ Oð1Þ;

rrnŵ
2
n � Dna

n
¼ logn

n
¼ oð1Þ and vð1=nÞ:

Hence, Assumptions A1 to A3 are all satisfied, and we can
apply Theorem 2 to obtain a closed-form expressions for the
limiting spectral moments of the normalized adjacency
matrix An. First note that the kth order limiting averages LLk

are almost surely given by

LLk �
Z 1

0

nrrnfnðxÞð Þkdx ¼
Z 1

0

nrrnDn e
�axð Þkdx;

which results in

LLk ¼
ak�1

kð1� e�aÞk
1� e�ka
	 


:

Under these conditions, we can apply Theorem 2 to obtain
the following closed-form expression for the asymptotic
spectral moments of An

m2s �
X

r2Rs

2

sþ 1

sþ 1

r1; . . . ; rs

� �Ys

k¼1

aðk�1Þrkð1� e�kaÞrk
krkð1� e�aÞkrk

¼ as�1

ð1� e�aÞ2s
X

r2Rs

2

sþ 1

sþ 1

r1; . . . ; rs

� �Ys

k¼1

1� e�ka

k

� �rk

;

(9)

where in the second equality we have used the identitiesPs
k¼1 rk ¼ sþ 1,

Ps
k¼1 krk ¼ 2s, and

Ps
k¼1ðk� 1Þrk ¼ s� 1.

The histogram of the eigenvalues for the normalized and
centralized adjacency matrix Ân ¼ An �

ffiffiffiffiffiffiffiffi
nrrn

p ½rrnwðnÞ
i w

ðnÞ
j �ni;j¼1

of a particular realization with parameters D ¼ 10; a ¼ 1,
and n ¼ 1;000 is plotted in Fig. 2a. The largest eigenvalue of
Ân in this realization is given by �nðÂnÞ ¼ 2:304. We can
upper and lower bound this eigenvalue using the kth spec-
tral moment, for any k, as follows [21, Equation (2.66)]

traceðÂk
nÞ

1=k 	 �nðÂnÞ 	 n � traceðÂk
nÞ

	 
1=k
: (10)

If we consider k ¼ 20 in (10) and use the asymptotic spectral
moment m20 available from (9) to replace for traceðÂ20

n Þ,
then the lower and upper bounds on �nðÂnÞ are given by:
ðm20Þ1=20 ¼ 1:718 and ðn �m20Þ1=20 ¼ 2:427. These values
compare reasonably with the empirically observed value
�nðÂnÞ ¼ 2:304. Furthermore, using the techniques pro-
posed in [37], we can formulate semi-definite programs that
improve the bounds in (10) by taking into account the
knowledge of all spectral moments up to a fixed order, as
described in [50, Section 3].

5 THE CASE OF POWER-LAW RANDOM GRAPHS

In this section, we study the eigenvalue distribution of the
random power-law graph proposed by Chung et al. in [17].
This random graph presents an expected degree sequence
given by wn ¼ ðwðnÞ

1 ; w
ðnÞ
2 ; . . . ; wðnÞ

n Þ such that w
ðnÞ
i ¼ c i�1=b�1,

for i ¼ i0 þ 1; . . . ; i0 þ n, where b is the exponent of the

6. Given a desired degree distribution, the function fnð�Þ here plays
the same role as the quantile function [29, Section 14] associated with
the cumulative function of the desired degree distribution.

7. More specifically, if we note that mini2½n�xi and maxi2½n�xi are
respectively distributed as Betað1; nÞ and Betaðn; 1Þ variables [49,
Chapter 2], then the claimed almost sure limits follow by the Borel-Can-
telli lemma. To see how, consider their expected values:
Efmini2½n�xig ¼ 1=ðnþ 1Þ and Efmaxi2½n�xig ¼ n=ðnþ 1Þ, and apply the
Chebyshev inequality to their quadratically decaying common vari-
ance, Varfmaxi2½n�xig ¼ Varfmini2½n�xig ¼ n= ðnþ 1Þ2ðnþ 2Þ

� �
.

220 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2017



power-law degree distribution; i.e., the number of nodes
with degree k is proportional to k�b. In this model, we can
prescribe a maximum and average expected degrees,
denoted by D and d, respectively, by choosing the following
values of c and i0 [17]

c ¼ b� 2

b� 1
d n

1
b�1; i0 ¼ n

d b� 2ð Þ
D b� 1ð Þ

� �b�1

:

For power-law degree distributions, we can asymptotically
evaluate the averaged kth power-sums of the expected
degrees for n ! 1, as follows:

1

n

Xn

i¼1

wk
i ¼

1

n

Xi0þn�1

i¼i0

c i
� 1
b�1

� �k
� 1

n

Z i0þn

i0

cx
� 1
b�1

� �k
dx

¼ 1

n
ck

b� 1

b� 1� k
x
b�1�k
b�1

���
i0þn

i0
¼ dkf

d

D
;b; k

� �
;

where

f
d

D
;b; k

� �
¼ b� 2

b� 1

� �k
b� 1

b� 1� k
� . . .

d b� 2ð Þ
D b� 1ð Þ

� �b�1

þ1

 !b�1�k
b�1

� d b� 2ð Þ
D b� 1ð Þ

� �b�1�k

2
64

3
75:

(11)

Notice that the moments of the power-law distribution
are well-defined only for k < b� 1 and the moments
diverge for k 
 b� 1, [51, Section 8.4.2]. Moreover, when
the largest degree is much larger than the average
degree, i.e., D ¼ v dð Þ, the expression inside the square
brackets in (11) tends to one; hence (11) simplifies as fol-
lows:

f
d

D
;b; k

� �
¼ 1þ o 1ð Þð Þ b� 2

b� 1

� �k
b� 1

b� 1� k
¼ ~f b; kð Þ:

Therefore, for k ¼ 1, we have that f d
D
;b; k

	 

� 1 and

1
n

Pn
i¼1 wi � d, the expected average degree. Furthermore,

the above expressions can be used to compute the normal-
ized power-sums Lk in Theorem 2, which can then be used
to compute closed-form values for the asymptotic expected
spectral moments using (1). Here, we should note that the
application of Theorem 2 for calculating the spectral
moments in the case of a power-law network is in line with
our observations in Remark 1. The numerical experiments in
Example 1, below, verify that the empirical spectralmoments
agree very well with the theoretical moments calculated
using (1), even though the assumptions of Theorem 2 are

violated. The latter are only sufficient (but not necessary)
and (1) continues to provide good estimates for the actual
values of the spectral moments, in terms of the limiting nor-
malized power-sums Lk, when applied to the powerlaw
networks.

Example 1. Numerical verification of the asymptotic spectral
moments for the power-law degree distributions. In the follow-
ing numerical simulations, we verify the validity of Theo-
rem 2 by computing the first five even-order spectral
moments of a power-law random graph with n ¼ 1;000,
b ¼ 3, D ¼ 100, and d ¼ 10. The eigenvalue histogram of
one particular realization is plotted in Fig. 2b. In Table 1,
we compare the theoretical values of the even spectral
moments of the centralized and normalized adjacency
matrix with the empirical values of a single random reali-
zation. Furthermore, in order to normalize the values of
the moments of different order to a common range, we
compare the theoretical values of m

1=2s
2s with the empirical

values
	
1
n

Pn
i¼1 �iðÂnÞ2s


1=2s
in the table. We would like to

remark how, as reported in [23], [24], the empirical spec-
tral distribution of the power-law graph under consider-
ation resembles a “triangular” law.

5.1 The Triangular Spectrum

Many empirical studies of real-world networks have reported
triangle-like eigenvalue spectra [23], [24]. In what follows, we
want to compare the spectral density of the power-law graph
with the triangular density function, given by

t x; bð Þ ¼

2
b þ 4

b2
x; for x 2 �b=2; 0½ �;

2
b � 4

b2
x; for x 2 0; b=2ð �;

0; otherwise.

8
><
>:

(12)

The moments of this density function are given by

bmk bð Þ ¼
Z b=2

�b=2

xkt x; bð Þdx

¼ 1þ �1ð Þk
� � b=2ð Þk

kþ 1ð Þ kþ 2ð Þ :
(13)

TABLE 1
Theoretical versus Empirical Spectral
Moments (From One Sample Only)

for the Power-Law Network in Example 1

Order 2 4 6 8

Theoretical 1 1.30 1.66 1.92
Empirical 0.99 1.31 1.56 1.75

Fig. 2. Eigenvalue histogram of a sample realization from the random graph model with n ¼ 1;000 nodes and (a) an exponential degree distribution
with D ¼ 10 and a ¼ 1, (b) a power-law with D ¼ 100, d ¼ 10 and b ¼ 3, (c) a power-law with D ¼ 100, d ¼ 10 and b ¼ bD � 4:44, and (d) a power-law
with D ¼ 100, d ¼ 10 and b ¼ 6.
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In what follows, we want to find conditions under which
the spectral density resembles a triangular distribution. We
measure the similarity in terms of the moments, in particu-
lar, in terms of the kurtosis8 of the distribution. From (13),
the second and fourth moments of the triangular law are
given by bm2 bð Þ ¼ b2

24
and bm4 bð Þ ¼ b4

240
. The kurtosis of the tri-

angular distribution is then given by

bk ¼ bm4 bð Þ
bm2 bð Þð Þ2

¼ 12

5
: (14)

On the other hand, from Theorem 2, we can compute the
kurtosis of the power-law network

k ¼ m4

m2
2

¼ 2L2
1L2

L
2
1

	 
2 ¼ 2L2

L
2
1

¼ 2nr~d: (15)

In our analysis, we use the difference between kurtoses
as a measure of how far the spectral distribution is from the
triangular law. Therefore, the spectral distribution that is
closest to the triangular law is the one for which k ¼ bk.
According to (14) and (15), k ¼ bk is satisfied when nr~d ¼
6=5. Furthermore, if k < 12=5 (respectively, k > 12=5), then
the tail of the spectral distribution is “fatter” (respectively,
“thiner”) than the tail of the triangular law. Moreover, since
r � 1

nd and ed � d b�2
b�1

� �2
b�1
b�3

(when D ¼ v dð Þ), we have that
k ¼ bkwhen

b� 2ð Þ2
b� 1ð Þ b� 3ð Þ ¼

6

5
:

Solving the above equation, we obtain the following critical
value of b for which k matches bk: bD ¼ 2þ

ffiffiffi
6

p
� 4:44. In

other words, the kurtosis of the spectral distribution is equal
to that of the triangular law only when b ¼ bD.

Remark 2. In practice, the values of b in real world net-
works are below the threshold value b
 � 4:44 (cf. [52]).
Therefore, the spectral tails of real networks are mostly
“fat”, which is in accordance with empirical observations
reported in [9]. For example, we include in Fig. 3 the
power-law degree distribution of the (symmetric and
unweighted) adjacency matrix of the air traffic control
network constructed from the U.S.A.’s Federal Aviation
Administration (FAA) National Flight Data Center
(NFDC), Preferred Routes Database [53]. Nodes in this
network represent airports and links are created from

strings of preferred routes recommended by the NFDC.
This network has a total of 1,226 nodes, 2,615 edges, and
a power-law exponent of 3.7 (which is below the thresh-
old value bD). As predicted, the corresponding eigenvalue
distribution, plotted in Fig. 3, presents a ‘fat’ tail.

When the spectral distribution resembles a triangular
law, it is possible to approximate the support of the spectral
bulk of eigenvalues by computing the value of b in (12) such
that the second moment of the triangular distribution
matches the second moment of the theoretical spectral dis-
tribution. Since the second moment of the spectral distribu-
tion is given by m2 ¼ L

2
1 ¼ 1 and the second moment of the

triangular distribution is bm2 ¼ b2

24
, the value of b for which

these moments match is given by bD ¼
ffiffiffiffiffi
24

p
. Hence, we see

how the support of this triangular distribution, given by
½�bD=2; bD=2� � ½2:45;�2:45�, is very close to the support of
the spectral distribution of a power-law random graph with
b ¼ bD (plotted in Fig. 2c).

One may ask whether the spectral distribution of a ran-
dom power-law network does indeed follow a triangular
density when b ¼ bD. The answer is no. This can be verified
by comparing the sixth moments of the triangular distribu-
tion with b ¼ bD with the sixth moment of the power-law
spectral density when b ¼ bD. In particular, the sixth
moment of the triangular law is given by bm6 bDð Þ ¼ 54=7 �
7:71. On the other hand, from Theorem 2, the sixth spectral

moment of the power-law network is given by

m6 bDð Þ ¼ 2L3
1L3 þ 3L2

1L
2
2. Since L1 ¼ 1, L2 ¼ bD�2

bD�1

� �2
bD�1

bD�3
¼

6
5
, and L3 ¼ 63=2

1þ
ffiffi
6

pð Þ2 �2þ
ffiffi
6

pð Þ, we have that

m6 bDð Þ ¼ 2
6

25
27þ

ffiffiffi
6

p� �� 

� 14:14;

which does not coincide with bm6 bDð Þ � 7:71.

6 CONCLUSIONS

We have investigated the asymptotic behavior of the bulk of
eigenvalues of the adjacency matrix of random graphs with
given expected degree sequences. We have showed that, in
the

ffiffiffiffiffiffiffiffi
nrn

p
-normalization regime and under some technical

assumptions on the expected degrees sequence, the empiri-
cal spectral distribution of the adjacency matrix converges
weakly to a deterministic distribution, which we have char-
acterized by providing closed-form expressions for its limit-
ing spectral moments.

We have illustrated the application of our results by
analyzing the spectral distribution of large-scale networks
with exponential degree distributions, which appear in
structural brain networks obtained from diffusion imag-
ing. We have also applied our results to analyze the spec-
trum of power-law random graphs, which are of great
practical importance. Using the closed-form expressions
for the asymptotic spectral moments in Theorem 2, we
have investigated the triangle-like spectrum of power-law
random graphs. In particular, we have provided quantita-
tive relationships to show how the parameters of the
power-law degree distribution affect the shape and prop-
erties of the graph spectrum. Furthermore, closed-form
expressions of the asymptotic spectral moments allow us

Fig. 3. Power-law degree distribution (left) and eigenvalue histogram
(right) of the air traffic control network.

8. The kurtosis of a distribution is defined as k ¼ m4=s
4, where m4 is

the fourth moment about the mean and s is the standard deviation.
This ratio is a measurements of how heavy-tailed the distribution is.
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to bound spectral properties of practical interest, such as
the support of the spectral bulk.

7 PROOF OF MAIN RESULTS

The argument leading to the proof of our main convergence
result in Theorem 2 is based on the method of moments,
and it is executed in two steps. We begin by showing (in
Section 7.1, below) that with probability one limn!1 m

ðnÞ
k ¼

limn!1 m̂
ðnÞ
k , i.e., the adjacency matrix An and its centralized

version Ân share the same almost sure limits for their spec-
tral moments. Next, in Section 7.2, we prove that these com-
mon almost sure limits are in fact given by mk in closed-
form, as claimed in Theorem 2 (main result).

7.1 Effect of Centralization on the Spectral Moments

The following set of results measures the effect of the cen-
tralization in (2) by comparing the spectral moments of Ân

and An as n ! 1. Indeed, centralization by subtracting the
mean E Anf g from the adjacency matrix An has the effect of
shifting the largest eigenvalue towards zero. Example 1
demonstrates this shifting; however, in the sequel we shall
show that the subsequent effect on the spectral moments is
asymptotically vanishing, under certain mild assumptions
on the degree sequences.

We know from Theorem 1 that, if ~dn >
ffiffiffiffiffiffi
ŵn

p
logn, then

�1ðAnÞ � ~dn with probability one. We use a variation of this
result to prove that the column vector of expected degrees,
denoted by w

T

n ¼ ðwðnÞ
1 ; . . . ; wðnÞ

n ÞT , is asymptotically almost
surely an eigenvector ofAn associated with its largest eigen-
value. In particular, as �nðAnÞ concentrates around ~dn, the
vector ð1=nÞAnwn also concentrates around the vector
1
n
~dn wn. This is important when characterizing the effect of

the centralization in (2) in light of the fact that

E Anf g ¼
ffiffiffi
n

p
r3=2n w

ðnÞ
i w

ðnÞ
j

h i
i;j2½n�

¼
ffiffiffi
n

p
r3=2n wnw

T

n

¼
ffiffiffiffiffiffiffiffi
nrn

p ~dn

kwnk22
wnw

T

n :
(16)

Lemma 1 (Eigenvector Concentration). If ~dn ¼ oðn=lognÞ,
it is true that 1

nAnwn �
ffiffiffiffiffiffiffiffiffiffiffi
rn=n

p
~dn wn almost surely.

Proof. The ith component of Anwn is a random variable
given by

Anwn½ �i¼
Xn

j¼1

ffiffiffiffiffiffiffiffi
nrn

p
a
ðnÞ
ij w

ðnÞ
j : (17)

Since a
ðnÞ
ij is a Bernoulli random variable with

PfaðnÞij ¼ 1g ¼ rnw
ðnÞ
i w

nð Þ
j , we have that

E Anwn½ �i
� �

¼ ffiffiffiffiffiffiffiffi
nrn

p
w

ðnÞ
i

Xn

j¼1

rn w
ðnÞ
j

� �2
¼ ffiffiffiffiffiffiffiffi

nrn
p ~dnw

ðnÞ
i ;

and E Anwnf g ¼ ffiffiffiffiffiffiffiffi
nrn

p ~dnwn. Next, note that each of the

summands
ffiffiffiffiffiffiffiffi
nrn

p
a
ðnÞ
ij w

ðnÞ
j in (17) are independent

bounded random variables satisfying
ffiffiffiffiffiffiffiffi
nrn

p
a
ðnÞ
ij w

ðnÞ
j 2

½0; ffiffiffiffiffiffiffiffi
nrn

p
w

ðnÞ
j � almost surely. Hence, we can apply

Hoeffding’s inequality [54, Theorem 2 ] to obtain that, for
each i and any " > 0,

P
1

n

�� Anwn½ �i�~dnw
ðnÞ
i

�� 
 "

� �

	 2 exp
�2n2"2

nrn
Pn

i¼1 w
ðnÞ
i

� �2

0
B@

1
CA ¼ 2e�2n"2=~dn :

Next note that given ~dn ¼ oðn=lognÞ, for any a > 1 we
get that when n is large enough ~dn < 2n"2=ða lognÞ.
Hence, 2e�2n"2=~dn < 2=na forms a summable series in n,
and by the Borel-Cantelli lemma [29, Theorem 4.3], we
get that

P

����
1

n
Anwn½ �i�

ffiffiffiffiffi
rn

p ~dnffiffiffi
n

p w
ðnÞ
i

���� 
 "; infinitely often

( )
¼ 0;

which holds true for any " > 0. Therefore, we have

P lim
n!1

1

n
Anwn½ �i¼ lim

n!1

ffiffiffiffiffi
rn

p ~dnffiffiffi
n

p w
ðnÞ
i

( )
¼ 1:

The claimed concentration of eigenvector around wn now
follows by the countable intersections of the above
almost sure events over all i 2 N. tu
We can now proceed to give conditions under which the

spectral moments of An and Ân are asymptotically almost
surely identical, and therefore the effect of centralization on
spectral moments is asymptotically vanishing.

Lemma 2 (Vanishing Effect of Centralization). Under
Assumptions A3 (i), (iii), (iv), and (v), it is true that m̂

ðnÞ
k �

m
ðnÞ
k , almost surely, for each k 2 N.

Proof. To begin, consider the k ¼ 1 case. From (2), we have

m̂
ðnÞ
1 ¼ 1

n
traceðÂnÞ ¼

1

n
traceðAn � EfAngÞ:

From (16) we know that

traceðEfAngÞ ¼
ffiffiffiffiffiffiffiffi
nrn

p ~dn

kwnk22
traceðwnw

T

n Þ ¼
ffiffiffiffiffiffiffiffi
nrn

p ~dn;

wherefrom it follows that traceðÂnÞ ¼ traceðAnÞ�ffiffiffiffiffiffiffiffi
nrn

p ~dn is true for all n, and in particular with probability
one as n ! 1. For general k 2 N, we have

m̂
ðnÞ
k ¼ 1

n
traceðÂk

nÞ ¼
1

n
traceðAn � EfAngÞk:

To proceed, consider the binomial expansion of
ðAn � EfAngÞk consisting of a sum of the product of non-
commutative elements, as follows:

Ak
n þAk�1

n ð�EfAngÞ þAk�2
n ð�EfAngÞAn þ � � �

þAk�2
n ð�EfAngÞ2 þAk�3

n ð�EfAngÞAnð�EfAngÞ þ � � �

Consider any product term of the form,

PPðkÞ ¼ Ak1
n ð�EfAngÞk2Ak3

n . . . ð�EfAngÞkp ; (18)

where k ¼ ðk1; . . . ; kpÞ is an integer partition of k,
consisting of p 
 1 positive integers satisfying
k1 þ . . .þ kp�1 ¼ k. Let ~k be the sum of evenly indexed
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integers, i.e., ~k ¼ k2 þ k4 þ � � � þ k2�bp=2c. We claim that as
n ! 1,

1

n
traceðPPðkÞÞ ! ðnrnÞk=2 ~dkn

n
ð�1Þ~k; (19)

almost surely. To see why, first note that for any ki,
ðwnw

T

nÞ
ki ¼ kwnk2ðki�1Þ

2 wnw
T

n , so taking the kith power of
both sides in (16), we get

ð�EfAngÞki ¼
ð� ffiffiffiffiffiffiffiffi

nrn
p ~dnÞki

kwnk22
wnw

T

n ;

and replacing in (18) yields

PPðkÞ ¼ ð� ffiffiffiffiffiffiffiffi
nrn

p ~dnÞ
~k
Ak1

n

wnw
T

n

kwnk22
Ak3

n . . .
wnw

T

n

kwnk22
: (20)

Under Assumptions A3 (iv) and A3 (v), we have that
nrnŵ

2
n ¼ OðlognÞ, which, in turn, implies that

~dn ¼ rnkwnk22 < nrnŵ
2
n ¼ oðn=lognÞ. Therefore under

Assumptions A3 (iv) and A3 (v), the condition of
Lemma 1 is satisfied and we know that ð1=nÞAnwn �ffiffiffiffiffiffiffiffiffiffiffi

rn=n
p

~dnwn almost surely. Multiplying both sides by
Aki�1

n for any integer ki yields

1

n
Aki

n wn � ð ffiffiffiffiffiffiffiffi
nrn

p ~dnÞki
n

wn;

almost surely. Hence, taking the limits of both sides in
(20) we get

1

n
PPðkÞ � ð�1Þ~k ð

ffiffiffiffiffiffiffiffi
nrn

p ~dnÞ
k

n

wnw
T

n

kwnk22
;

almost surely. Taking the trace of both sides and using
the fact that traceðwnw

T

n=kwnk22Þ ¼ 1, leads to (19) as
claimed. The above applies invariably to any of the prod-
uct terms appearing in the binomial expansion of
ðAn � EfAngÞk, with the exception of the leading term,
traceðAk

nÞ, which does not simplify any further. Next,
note that given any 1 	 ~k 	 k, the number of terms PPðkÞ
in the binomial expansion for which (19) holds true, is
exactly k

~k

	 

; wherefore we get that with probability one,

traceðÂk
nÞ ¼

1

n
traceðAn � EfAngÞk

� 1

n
traceðAk

nÞ þ ð ffiffiffiffiffiffiffiffi
nrn

p ~dnÞ
kXk

~k¼1

ð�1Þ~k k
~k

� � !
:

We next use a trite identity, 0 ¼ ð1� 1Þk ¼ 1þPk
~k¼1

ð�1Þ~k k
~k

	 

to get

1

n
traceðÂk

nÞ �
1

n
traceðAk

nÞ � ð ffiffiffiffiffiffiffiffi
nrn

p ~dnÞ
k

� �
;

almost surely. The claim now follows upon noting that
1
n ð

ffiffiffiffiffiffiffiffi
nrn

p ~dnÞk ¼ oð1Þ; 8k 2 N. This is true because

~dn < ŵ2
n= �wn so that ð ffiffiffiffiffiffiffiffi

nrn
p ~dnÞk < ð ffiffiffiffiffiffiffiffi

nrn
p Þkðŵn= �wnÞk ŵk

n

and we know from Assumptions A3 (i) and A3 (v) that
ðŵn= �wnÞ and ŵn are both OðlognÞ while Assumption A3
(iii) gives that nrn is o(1). Hence, upon division by n we
get that 1

n ð
ffiffiffiffiffiffiffiffi
nrn

p ~dnÞk is oð1Þ, for all k as claimed. tu

7.2 Almost Sure Limits of the Spectral Moments

Having established that the spectral moments of An and Ân

are asymptotically identical, in this section we establish that
the spectral moments of the centralized adjacency matrix Ân

are indeed given by (1) in Theorem 2, i.e., we have m̂
ðnÞ
k � mk,

almost surely for each k 2 N. Each spectral moment is a func-
tional that maps the Oðn2Þ independent entries of a random
matrix to a real value. Concentration of functionals of random
matrices around their expected values have been established
in great depth and generality. Accordingly, the deviation of
these functionals (or so-called linear spectral statistics) from
their expected values are characterizedusingGaussian central
limit theorems [55, Chapter 9], [56], as well as exponential tail
bounds [20, Sections 2.3 and 4.4], [57, Section 4.14]; which, in
particular, imply that m̂

ðnÞ
k converge almost surely to their lim-

iting expected values. Hence, to determine the limiting spec-
tral moments it suffices to calculate limn!1Efm̂ðnÞ

k g ¼
limn!1 �m

ðnÞ
k , a taskwhichwe undertake in our next lemma.

Lemma 3 (Limiting Spectral Moments). Under Assump-
tions A1 to A3, it is true that �m

ðnÞ
2s � m2s and �m

ðnÞ
2s�1 ¼ oð1Þ

for all s 2 N.

Proof. First, notice that

�m
ðnÞ
k ¼ E

1

n
traceðÂk

nÞ
� �

¼ 1

n

X

1	i1;...;ik	n

E â
ðnÞ
i1i2

â
ðnÞ
i2i3

. . . â
ðnÞ
ik�1ik

â
ðnÞ
iki1

n o
;

(21)

where each summand in the last term corresponds to a
sequence of k nodes, which can be interpreted as a closed
walk of length k, denoted by w ¼ ði1; i2; . . . ; ik�1; ik; i1Þ, in
the complete graph with n nodes, denoted by Kn. Fur-
thermore, we associate a weight to each walk equal to
the expected value of the product of the adjacency entries
along the walk. In other words, we define the weight
function vðwÞ :¼ EfâðnÞi1i2

â
ðnÞ
i2i3

. . . â
ðnÞ
ik�1ik

â
ðnÞ
iki1

g. Our task is to
study such weighted sums of closed walks. To this end,
we define the set of vertices and edges visited by w as
VðwÞ ¼ fij : j 2 ½k�g and EðwÞ ¼ fij; ijþ1g : j 2 ½k� 1�

� �
.

For any e 2 EðwÞ, we define Nðe; wÞ as the number of
times that w transverses the edge e in any direction. We
denote byWk the set of all closed walks of length k on Kn

that start and end on the vertex labeled by i1. It is useful
to partition the set Wk into subsets Wk;p defined as
Wk;p ¼ w 2 Wk : cardðVðwÞÞ ¼ pf g, i.e., the set of closed
walks of length k visiting p vertices. Furthermore, it is
convenient to define the following subset ofWk;p:

cWk;p ¼ w 2 Wk;p : Nðe; wÞ 
 2 for all e 2 EðwÞ
� �

;

i.e., the set of walks in Wk;p for which each edge is tra-
versed at least twice. Note that, any walks that do belong
to cWk;p will have a zero weight, because for any
w 2 Wk;pncWk;p, there exists an edge fi; jg 2 EðwÞ such
that Nðfi; jg; wÞ ¼ 1. Hence, by independence,

vðwÞ ¼ E â
ðnÞ
ij

n o
E

Y

fk;lg2
EðwÞnffi;jgg

â
ðnÞ
kl

� �Nðfk;lg;wÞ

8
><
>:

9
>=
>;

¼ 0;
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since E âij
� �

¼ 0; recall from (2) that the entries â
ðnÞ
ij have

zero mean. We can now employ the shorthand notation

mk;p ¼
1

n

X

w2bWk;p

vðwÞ; (22)

to rewrite (21) as follows:

�m
ðnÞ
k ¼ ðnrnÞk=2

Xbk=2cþ1

p¼1

mk;p; (23)

where the upper limit of p ¼ bk=2c þ 1 in the summation
follows by the pigeonhole principle, since that every
walk w 2 W2k;p with p > kþ 1 has at least one edge
e 2 EðwÞ such that Nðe; wÞ ¼ 1; whence, for all p > kþ 1,
cW2k;p ¼ ? .

A key step in the proof of Wigner’s semicircle law [43],
[44] is that for k even, the summation in (23) is asymptoti-
cally dominated by those closed walks belonging to
cWk;k=2þ1; i.e., those in which every edge is repeated
exactly twice. In order words, for every k as n ! 1,
mk;k=2þ1 dominates every other mk;p with p < k=2þ 1.
The reason is that by repeating an edge more than twice
one looses a factor of order n in the available choices for
vertices that comprise the closed walk, this causes the
number of such walks and their contributions to be
asymptotically dominated. The same principle applies to
the walks that comprise the right-hand side of (23) and
forms the base of our analysis.

We begin by analyzing (23) for the case k ¼ 2s, i.e.,
�m
ðnÞ
2s ¼ ðnrnÞs

Psþ1
p¼1 m2s;p. We show the desired domi-

nance by first lower bounding the term m2s;sþ1 and then
upper bounding the terms m2s;p for p < sþ 1, as follows.
First, note that the number of walks in cW2s;sþ1 can be
counted, as follows (according to Lemma 2.3.15 in [21]):

cardðcW2s;sþ1Þ ¼
n!

ðn� s� 1Þ!Cs 

ðn� sÞsþ1

sþ 1

2s

s

� �
: (24)

We next lower-bound the contribution of each walk in
cW2s;sþ1 as vðwÞ 
 rsn �w

2s
n , which holds true because

Nðe; wÞ ¼ 2; 8e 2 EðwÞ, and together with (24) and (22),
implies that

m2s;sþ1 

ðn� sÞsþ1

nðsþ 1Þ
2s

s

� �
rsn �w

2s
n : (25)

Note that Assumption A3 (iii) implies that rn ¼ oð1=nÞ
while �wn < ŵn ¼ OðlognÞ; hence, ffiffiffiffiffi

rn
p

�wn ¼ oðlogn= ffiffiffi
n

p Þ
and in particular we have that rsn �w

2s
n ¼ oð1Þ ensuring that

the right hand sidedoes not growunboundedwith increas-
ing n and is in fact vanishing with n. Next, to upper-bound
jm2s;pj for all p < sþ 1, we make use of the following
bound, which is developed by F€uredi and Koml�os in
Section 3.2 of [41], and is subsequently used in Lemma 2 of
[58] and Equation (5) of [59] aswell; for all p 2 ½n�

card cWk;p

� �
	 n!

ðn� pÞ!
k

2p� 2

� �
p2ðk�2pþ2Þ22p�2

	 np k

2p� 2

� �
p2ðk�2pþ2Þ22p�2:

(26)

Furthermore, we can bound the contribution of each walk
w 2cWk;p as jvðwÞj 	 rp�1

n ŵ2p�2
n becausewith p distinct ver-

tices in walk w, there is at least p� 1 distinct edges, for
each of which we can use the bound rnŵ

2
n. Indeed, for any

edge ði; jÞ 2 EðwÞ, we have Nðfi; jg; wÞ 
 2, while jâðnÞij j 	
1 as by definition â

ðnÞ
ij ¼ a

ðnÞ
ij � rnw

ðnÞ
i w

ðnÞ
j , so that â

ðnÞ
ij ¼

1� rnw
ðnÞ
i w

ðnÞ
j with probability rnw

ðnÞ
i w

ðnÞ
j and â

ðnÞ
ij ¼

�rnw
ðnÞ
i w

ðnÞ
j with probability 1� rnw

ðnÞ
i w

ðnÞ
j . Using (3), we

thus obtain the following bound:

E â
ðnÞ
ij

� �Nðfi;jg;wÞ
� �����

���� 	 E â
ðnÞ
ij

� �2� �

¼ rnw
ðnÞ
i w

ðnÞ
j ð1� rnw

ðnÞ
i w

ðnÞ
j Þ 	 rnŵ

2
n:

Next, using the definition (22), together with the
upper-bounds jvðwÞj 	 rp�1

n ŵ2p�2
n and (26), we obtain

mk;p 	
1

n1�p

k

2p� 2

� �
p2ðk�2pþ2Þ4p�1rp�1

n ŵ2p�2
n : (27)

Using k ¼ 2s in (27), we get that for all p < sþ 1

m2s;p 	
1

n1�p
4p�1 2s

2p� 2

� �
p4ðs�pþ1Þŵ2p�2

n rp�1
n : (28)

To show the dominance of m2s;sþ1 over m2s;p for
p < sþ 1, we form the ratio between the two inequalities
(25) and (28) to get

m2s;p

m2s;sþ1

	 2
p4s2

4

� �sþ1�p
rp�1
n ŵ2p�2

n np

rsn �w
2s
n ðn� sÞsþ1

	 s6

2rnŵ
2
n

ŵn

�wn

� �2s n

n� s

� �s 1

n� s
;

where in the first inequality we have used that

2s

2p� 2

� �
	 2s

2s� 2pþ 2

� �2s�2pþ2

	 2s2s�2pþ2;

and in the second inequality we take into account that the
greatest lower bound is achieved for p ¼ s, cf. [41]. The
proof now follows upon noting that under Assumptions
A1, A3 (i), and A3 (ii), we have rnŵ

2
n < 1,

ŵn= �wn ¼ OðlognÞ and rnŵ
2
n ¼ vð1=nÞ; whence, the rate

of growth of ðs6= rnŵ2
nÞ ŵn= �wnð Þ2s is slower than a poly-

logarithmic term times n, and we get that
m2s;p=m2s;sþ1 ¼ oð1Þ, as desired. Thus, having shown that
�m
ðnÞ
2s ¼ ðnrnÞs ð1þ oð1ÞÞ m2s;sþ1, we can now proceed to

derive the asymptotic expressions of m2s;sþ1 as n ! 1; in
particular, to show that limn!1ðnrnÞsm2s;sþ1 ¼ m2s. But
before we embark on the proof of the asymptotic expres-
sions for the even moments, we use the upper-bound in
(28) to show that the odd-order moments are asymptoti-
cally vanishing: First, note from (27) that with k ¼ 2sþ 1

each of the terms m2sþ1;p; p 	 sþ 1 can be upper-
bounded, as follows:
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jm2sþ1;pj 	 np�1 2sþ 1

2p� 2

� �
p2ð2s�2pþ3Þ22p�2rp�1

n ŵ2p�2
n

	 2sþ 1

s

� �
ðsþ 1Þ2ð2sþ3Þ

22s nrnŵ
2
n

	 
p�1
:

(29)

Next, using (23) with k ¼ 2sþ 1, we have �m
ðnÞ
2sþ1 ¼Psþ1

p¼1 m2s;p, and replacing from (29), the odd spectral
moments can now be upper bounded as

j �mðnÞ
2sþ1j

	 ffiffiffiffiffiffiffiffi
nrn

p ð4nrnÞs
2sþ 1

s

� �
ðsþ 1Þ4sþ6

Xsþ1

p¼1

nrnŵ
2
n

	 
p�1

¼ ffiffiffiffiffiffiffiffi
nrn

p ð4nrnÞs
2sþ 1

s

� �
ðsþ 1Þ4sþ6 nrnŵ

2
n

	 
sþ1�1

nrnŵ
2
n � 1

¼a ffiffiffiffiffiffiffiffi
nrn

p 2sþ 1

s

� �
ðsþ 1Þ4sþ6

2nrnŵnð Þ2sð1þ oð1ÞÞ

¼b ffiffiffiffiffiffiffiffi
nrn

p 2sþ 1

s

� �
ðsþ 1Þ4sþ6Oð1Þ ¼c oð1Þ;

where in ð¼a Þ we use Assumption A3 (ii): rnŵ
2
n ¼ vð1=nÞ

to conclude that nrnŵ
2
n > > 1 and simplify the leftmost

fraction; in ð¼b Þ we use Assumption A3 (iv):
nrnŵn ¼ Oð1Þ and in ð¼c Þ we use Assumption A3 (iii):ffiffiffiffiffiffiffiffi
nrn

p ¼ oð1Þ, which together complete the proof of the
claim about vanishing odd moments. Having thus shown
the asymptotic relations �m

ðnÞ
2sþ1 ¼ oð1Þ and �m

ðnÞ
2s ¼

ð1þ oð1ÞÞ m2s;sþ1, we are now ready to show that m2s;sþ1

are asymptotically equal to m2s, completing the proof of
the claim about the limiting spectral moments in
Lemma 3.

Starting from the definition (22) with k ¼ 2s and
p ¼ sþ 1, we have that

m2s;sþ1 ¼
1

n

X

w2bW2s;sþ1

vðwÞ

¼ 1

n

X

T2T sþ1

Y

fi;jg2E Tð Þ
rnw

ðnÞ
i w

ðnÞ
j ð1� rnw

ðnÞ
i w

ðnÞ
j Þ;

(30)

where in the last equality we write the summation in
terms of the set of rooted ordered trees (using a bijection
described below), and use (3) together with the indepen-
dence of the entries to express the weight of each tree as
the product of the terms rnw

ðnÞ
i w

ðnÞ
j ð1� rnw

ðnÞ
i w

ðnÞ
j Þ corre-

sponding to each edge fi; jg of the tree. The second
equality in (30) is based on a bijection between the set of
walks in cW2s;sþ1 and the set of rooted ordered trees on
sþ 1 vertices, T sþ1, as follows. First, note that the set of
edges visited by any walk incW2s;sþ1 is always a tree with
sþ 1 vertices (since we need at least s distinct edges for
the induced graph to be connected). Second, it is clear
that for any walk in cW2s;sþ1, each edge must be visited
exactly twice and the total number of edges in the
induced graph is exactly s. Furthermore, any walk
w 2cW2s;sþ1 corresponds to a depth-first traversal of this
induced tree (see [60] for more details about depth-first
traversals of a tree) and we can, thus, impose a total

order on the vertices of the induced tree (using the order
of the first appearance in the walk w).

Next note that since per Assumption A1:
rnw

ðnÞ
i w

ðnÞ
j ! 0 as n ! 1, for any s fixed we obtain

m2s;sþ1 ¼
ð1� oð1ÞÞrsn

n

X

T2T sþ1

Y

fi;jg2E Tð Þ
w

ðnÞ
i w

ðnÞ
j : (31)

For any tree T , it is always true that

Y

fi;jg2E Tð Þ
w

ðnÞ
i w

ðnÞ
j ¼

Y

i2VðT Þ
w

ðnÞ
i

� �diðT Þ
;

where diðT Þ is the degree of node i in the tree T . Hence,
(31) can be written as

m2s;sþ1 ¼
ð1� oð1ÞÞrsn

n

�
X

T2T sþ1

X

1	i1 ;...;isþ1	n
cardðfi1 ;...;isþ1gÞ¼sþ1

Ysþ1

k¼1

w
ðnÞ
ik

� �dkðT Þ
 !

:
(32)

Next, note that for any rooted ordered tree T 2 T sþ1

whose nodes are labeled by ½sþ 1� and with their respec-
tive degrees ðd1ðT Þ; . . . ; dsþ1ðT ÞÞwe have

Xsþ1

j¼1

X

1	i1 ;...;isþ1	n
cardðfi1 ;...;isþ1gÞ¼j

Ysþ1

k¼1

w
ðnÞ
ik

� �dkðT Þ
 !

¼
Xn

i1¼1

Xn

i2¼1

. . .
Xn

isþ1¼1

w
ðnÞ
i1

� �d1ðT Þ
. . . w

ðnÞ
isþ1

� �dsþ1ðT Þ

¼
Ysþ1

j¼1

Xn

k¼1

w
ðnÞ
k

� �djðT Þ
 !

¼
Ysþ1

j¼1

Sn;djðT Þ ¼
Ys

j¼1

S
rjðT Þ
n;j ;

(33)

where we use the partial power-sums notation
Sn;k ¼

Pn
i¼1ðw

ðnÞ
i Þk for all k; n 2 N, and we know that

their limiting averages Lk ¼ limn!1ð1=nÞðnrnÞkSn;k exist
and are finite by Assumption A2. Next, note that

lim
n!1

nsr2sn

n

�
Xs

j¼1

X

1	i1 ;...;isþ1	n
cardðfi1 ;...;isþ1gÞ¼j

Ysþ1

k¼1

w
ðnÞ
ik

� �dkðT Þ
 !

¼ 0;

which is true since, for each j 2 ½s�, the term in the curly
brackets above can be bounded as

0 	 n�sðnrnÞ2s
n

X

1	i1 ;...;isþ1	n

cardðfi1 ;...;isþ1gÞ¼j

Ysþ1

k¼1

ŵn
dkðT Þ

 !

	 1

nsþ1

n

j

� �
nrnŵnð Þ2s 	 nj�s�1

j!
nrnŵnð Þ2s ¼ oð1Þ;

where in the last equality we use the fact that Assump-
tion A3 (iv): nrnŵn ¼ Oð1Þ. In other words, as n ! 1 the
summation over j ¼ 1; . . . ; sþ 1 is dominated by its last
terms j ¼ sþ 1. We now take limits of both sides in (32)
and use the preceding asymptotic dominance relation
together with (33) to get that
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lim
n!1

�m
ðnÞ
2s ¼ lim

n!1
ðnrnÞsm2s;sþ1

¼ lim
n!1

ðnrnÞ2s
nsþ1

X
T2T sþ1

Ys

j¼1

S
rjðT Þ
n;j

¼ lim
n!1

X
T2T sþ1

Ys

j¼1

ðnrnÞjrjðT Þ

nrjðT Þ
S
rjðT Þ
n;j

¼
X

T2T sþ1

Ys

j¼1

L
rjðT Þ
j ;

(34)

where in the penultimate equality we have used the facts
that, for any of the trees T 2 T sþ1, the degree distribution
ðr1; . . . ; rsÞ satisfies

Ps
d¼1 d rd ¼ 2s and

Ps
d¼1 rd ¼ sþ 1.

The last step of the proof relies on our ability to count
the number of rooted ordered trees with any fixed degree
distribution r ¼ ðr1; . . . ; rsÞ, i.e., T sþ1ðrÞ. To determine
cardðT sþ1ðrÞÞ, we rely on related properties of rooted
ordered forests that are studied in [45, Chapter 5]. The
total number of rooted ordered trees with degree distri-
bution r is given by

card T sþ1ðrÞð Þ ¼ 2

sþ 1

sþ 1

r1; . . . ; rs

� �
: (35)

We can now use (35) to transform the right-hand side of
(34) into the expressions m2s claimed in the main theo-
rem. Using the partition T sþ1 ¼

S
r2Rs

T sþ1ðrÞ, we get

lim
n!1

m2s;sþ1 ¼
X

r2Rs

X

T2T sþ1ðrÞ

Ys

j¼1

L
rjðT Þ
j

¼
X

r2Rs

card T sþ1ðrÞð Þ
Ys

j¼1

L
rj
j

¼
X

r2Rs

2

sþ 1

sþ 1

r1; . . . ; rs

� �Ys

j¼1

L
rj
j ;

where (35) is invoked in the last equality, concluding the
proof. tu
The results in Sections 7.1 and 7.2 enable us to claim that,

under Assumptions A1 to A3, the spectral moments
sequence fmðnÞ

k ; k 2 Ng converges pointwise almost surely
to the deterministic sequence fmk; k 2 Ng. Coup de grâce is
to conclude the almost sure and weak convergence of the
empirical spectral distributions from the pointwise almost
sure convergence of their moments sequence; it is the prov-
ince of the method of moments [55, Lemma B.3]: it is easy to
verify that the limiting moment sequence ms; s 2 N satisfies
Carleman’s criterion, thus pointwise convergence of the
moments sequence indeed implies convergence in distribu-
tion, completing the proof of the main result.
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