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Abstract High-latitude ecosystems are experiencing the most rapid climate changes globally, and in
many areas these changes are concurrent with shifts in patterns of herbivory. Individually, climate and
herbivory are known to influence biosphere-atmosphere greenhouse gas (GHG) exchange; however, the
interactive effects of climate and herbivory in driving GHG fluxes have been poorly quantified, especially in
coastal systems that support large populations of migratory waterfowl. We investigated the magnitude and
the climatic and physical controls of GHG exchange within the Yukon-Kuskokwim Delta in western Alaska
across four distinct vegetation communities formed by herbivory and local microtopography. Net CO, flux
was greatest in the ungrazed Carexmeadow community (3.97 #0.58 [SE]ymol CO,m~2s™"), but CH, flux
was greatest in the grazed community (14.00 = 6.56 nmol CH;m~2s~"). The grazed community is also the
only vegetation type where CH, was a larger contributor than CO, to overall GHG forcing. We found that
vegetation community was an important predictor of CO,and CH,4 exchange, demonstrating that variation in
regional gas exchange is best explained when the effect of grazing, determined by the difference between
grazed and ungrazed communities, is included. Further, we identified an interaction between temperature
and vegetation community, indicating that grazed regions could experience the greatest increasesin CH,
emissions with warming. These results suggest that future GHG fluxes could be influenced by both climate
and by changes in herbivore population dynamics that expand or contract the vegetation community most
responsive to future temperature change.

1. Introduction

High-latitude ecosystems are experiencing more rapid climate change than those in temperate regions [Post
et al., 2009; Elmendorf et al., 2012]. In addition to climate change, high-latitude ecosystems are also affected
by the grazing pressure of migratory herbivores. Herbivory is an important driver of change in high-latitude
ecosystems because the effects of grazing on vegetation and soil properties are compounded with other
constraints inherent in arctic and subarctic systems including cold temperatures, short growing seasons,
and low nutrient availability. Both climate and herbivory affect ecosystem properties that control
biosphere-atmosphere exchange of greenhouse gases (GHGs) [Welker et al., 2004; Davidson and Janssens,
2006]; however, the extent to which climate and grazing interact to drive GHG fluxes, and the differential
effects on CO,, CH4, and N,O fluxes, remains uncertain. Quantifying the interactions between changing cli-
mate and herbivory on GHG exchange in high-latitude systems is critical for informing predictive models
of future GHG forcing and will ultimately aid in determining whether many grazing-influenced, high-latitude
ecosystems will function as a source or a sink of GHGs to the atmosphere under future climate conditions
[Sjégersten et al., 2011; Cahoon etal., 2012].

Many coastal wetlands throughout the circumpolar north support large populations of migratory herbivor-
ous geese [Sedinger, 1996; Stickney and Ritchie, 1996; Abraham et al., 1999; van Der Wal et al., 2007;
Sjégersten et al., 2011]. Geese modify ecosystems through trampling, defecation, and offtake of biomass,
and these actions change ecosystem function by altering net primary production, nutrient cycling, and soil
physical properties such as soil temperature and moisture [Zacheis et al., 2002; Person et al., 2003; Stark
et al., 2003; Van der Wal and Brooker, 2004; Welker et al., 2004; Brathen et al., 2007]. High-latitude wetlands also
play a significant role in the emission and uptake of GHGs. These regions contain large stocks of temperature
protected organic carbon that are vulnerable to warming and likely to play a role in future exchange of
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carbon dioxide (CO,) [Hobbie et al., 2000; Davidson and Janssens, 2006; Schuur et al., 2015]. High-latitude wet-
lands are also an important source of atmospheric methane (CH,) [Bloom et al., 2010; Bousquet et al., 2011;
Turetsky et al., 2014] and contribute to global emissions of nitrous oxide (N,0) [Ma et al., 2008; Tian et al.,
2012]. Despite the importance of herbivores in these coastal systems, and the role of coastal wetlands in glo-
bal GHG emissions, the interaction between grazing activity and climate in driving GHG exchange remains
largely unexamined.

The Yukon-Kuskokwim (YK) Delta in western Alaska is an ideal location to investigate the interaction of cli-
mate controls and herbivory on GHG emissions. As one of the largest river delta ecosystems in the world,
the YK Delta is an important breeding, hatching, and rearing area for nearly a million migratory geese
[Fischer and Stehn, 2014]. All of these species nest and raise young within 15 km of the coast where their pre-
ferred plant communities are most common [Sedinger and Raveling, 1984; Babcock and Ely, 1994; Schmutz,
2001], and through grazing the geese have a profound effect on local vegetation communities and ecosys-
tem structure [Person etal., 2003].

The effects of goose grazing are also closely tied with the microtopography of this region. The low-relief topo-
graphy of the coastal delta has created a gradient of vegetation communities which are distinguished by only
centimeters of elevation [Jorgenson, 2000]. The lowest elevation landscape positions are occupied by tidal
mud flats and interior brackish ponds, which are barren of vegetation. Upland from the tidal mud flats and
pond margins are brackish wet sedge meadows dominated by Carex species [Jorgenson, 2000]. This is the
most aerially expansive vegetation type, and geese graze heavily on regions within these wet sedge mea-
dows. Slightly higher in elevation are the slough levees which are characterized by a moist meadow vegeta-
tion community including Salix ovalifolia and Deschampsia caespitosa [Jorgenson, 2000].

The interacting effects of goose grazing and microtopography have resulted in two discrete vegetation com-
munities within the wet sedge meadows, distinguished by the growth form of Carex ramenskii, the dominant
Carex species. Carex ramenskii has two growth forms that some consider distinct species, and these growth
forms exist through a dynamic feedback with goose grazers [Person et al., 2003]. Under high grazing intensity
the normally tall and erect growth form known as C.ramenskii will morph to a shorter stature plant with pros-
trate leaves historically referred to as Carex. subspathacea. Goose grazing maintains the canopy height of C.
subspathacea swards at 0.5 to 1.5 cm [Kincheloe and Stehn, 1991], but without grazing the swards will revert
back to the taller growth form [Ruess et al., 1997; Person et al., 1998]. Because geese focus their grazing in low-
elevation regions, they create discontinuous “ grazing lawns” of C. subspathacea distributed along
pond

margins in bands ranging from 10 cm wide to swards of up to 0.25 km? (Figure 1). This interaction of micro-
topography and goose grazing activity has resulted in a landscape-scale mosaic of vegetation communities
with variable ecosystem properties and the potential for variable GHG emissions.

Grazing affects many ecosystem properties that are important controls on GHG exchange including soil tem-
perature, soil moisture, vegetation cover, and community composition [Zimov et al., 1995; Van der Wal and
Brooker, 2004; Gornall et al., 2007], with implications for local biosphere-atmosphere CO, exchange.
Grazing reduces vegetation shading of the ground surface and leads to higher soil temperatures and there-
fore higher rates of soil respiration [Welker et al., 2004]. Nutrient input from fecal matter in grazed regions can
contribute to greater ecosystem respiration and gross primary productivity [Sjogersten et al., 2008], but graz-
ing can also reduce ecosystem C sink strength due to the removal of biomass [van Der Wal et al., 2007;
Sjogersten et al., 2011]. Furthermore, the absence of grazing can cause shifts in ecosystem composition that
change ecosystem C storage and net C flux [Cahoon et al., 2012]. Overall, grazing effects on soil and vegeta-
tion conditions have substantial implications for local C balance.

Changes in soil and vegetation characteristics as a result of grazing also have the potential to alter other trace
GHG emissions such as CH,and N,O. Waterfowl grazing in wetland ecosystems can have highly variable
affects on CH, emissions. By decreasing plant biomass, grazing reduces carbon and oxygen delivery to the
soil, which can both lower the rate of CH, production and limit the rate of CH, consumption [Segers, 1998].
Grazing can decrease CH,4 emissions by altering the production activity of methanogenic organisms
[Bodelier et al., 2006], but conversely, grazing can also increase CH4 emissions by decreasing diffusive resis-
tance to CH,transportation through forage species [Dingemans et al., 2011], and in some cases grazing
has no effect CH4 emissions [Sjdgersten et al., 2011]. The effects of grazing can also alter N,O emissions.
Grazing can also accelerate N cycling and N transformation rates [Gao et al., 2008] through the effects of
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Figure 1. (a) Location of study site in western Alaska, USA. (b) True color Worldview-3 irnage of area surrounding Tutakoke study site. (c) Photograph of vegetation
cornrnunities present at Tutakoke study site.

nutrient input and trampling,and these impacts have implications for regional fluxes of N,O [Oenema eta/.,
1997]. Despite the potential influence of grazing on gas exchange in subarctic regions, gas exchange mea-
surements of any type are extremely rare on the expansive YK Delta due to the remoteness of this region
[except see Bartlett eta/., 1992)]. especially in the coastal regions of the Delta where goose grazing is most
prevalent. We expect that the distinct vegetation communities on the YKDelta that exist due to herbivory
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and microtopography will have variable CO,, CH4, and N,O fluxes, and the environmental controls on GHG
fluxes in these communities will vary between vegetation types.

The purpose of this work was to quantify the magnitude and the drivers of GHG exchange across the variable
vegetation communities imposed by grazing and microtopography to provide insights into how the interac-
tions of grazing and future climate change will influence regional GHG emissions. The primary objectives of
this work were (1) to investigate the variation in CO,, CHy4, and N,O fluxes across ecological gradients created
by the influence of herbivory and microtopography and (2) to explore how physical controls on CO,, CH,4, and
N,O fluxes, such as soil temperature, moisture, and vegetation characteristics, vary between these
vegetation communities.

2. Materials and Methods
2.1. Study Site

This study was conducted near the mouth of the Tutakoke River in the central portion of the coastal YK Delta in
western Alaska, (61°15' N, 165°30° W; Figure 1). The YK Delta is a region of more than 75000 km? of
wetlands

extending between the Yukon and Kuskokwim Rivers along the coast of the Bering Sea. The local climate is
moderated by the Bering Sea, and the mean monthly air temperatures range from —14°C in midwinter to
10°C in midsummer [Jorgenson and Ely, 2001]. The study site is located in the active floodplain portion of the
delta where tidally influenced sloughs dissect wet sedge and graminoid meadows. The landscape is underlain
by massive deposits of silts and sands and is characterized by low elevations (<2 m) and neutral soil pH
[Jorgenson, 2000]. Active sedimentation prevents the accumulation of an organic horizon, and no permafrost
is present in the active floodplain zone [Jorgenson, 2000].

2.2. Study Design

In the summer of 2015 we established five transects designed to characterize the variability in GHG exchange
between terrestrial ecosystems and the atmosphere across an ecological gradient. Each transect consisted of
four vegetation communities: unvegetated pond margin (PM), monospecific grazing lawns of C. subspatha-
cea (GL), C. ramenskii-dominated meadows (CM), and the slough levee (SL) community that occurs along
the elevated depositional levees bordering the sloughs and drainages that dissect the region (Figure 1).
Each of the five transects contained one plot location in each vegetation type (PM, GL, CM, and SL), for a total
of 20 study plots.

2.3. Greenhouse Gas Measurements

Polyvinyl chloride (PVC) flux chamber collars were inserted at each study plot along the five transects for a
total of 20 collars at the site. The collars were 15 cm in diameter and 10 cm tall and were inserted 5.5 cm into
the soil. The collars have a 3.2 cm wide flange at the top of the collar as a means of securing the chamber to
the collar during measurements. No measurements were made within the first 48 h after collars were
installed. All vegetation within the collars was left intact throughout the duration of the study.

We measured GHG exchange at each collar between 8 June and 19 July 2015. All measurements were made
within 4 h of solar noon. Carbon dioxide exchange was measured at every collar four times (16 June, 25 June,
28 June, and 11 July). Gas measurements were made by using a translucent PVC chamber 21 cm tall and

13 cm in diameter with a 4.2 cm wide flange at the base that was lined with a rubber gasket. During each
measurement, the flange of the chamber was attached to the flange of the collar by using three hand clamps
to ensure a gas-tight seal. To measure CO, exchange, gas from the chamber was circulated to an infrared gas
analyzer (model 820 Licor Inc., Lincoln Nebraska) through 150 cm of 4 mm internal diameter Bev-A-Line tub-
ing at a rate of 1000 mL min~". An additional fan was used to enhance circulation in the chamber. Flux mea-
surements were performed by using the translucent chamber first to obtain a measurement of net ecosystem
exchange (NEE). Once the chamber was removed from the collar following the NEE measurement, and CO,
concentration and relative humidity in the chamber returned to ambient conditions, a second measurement
was performed with the chamber covered in opaque cloth to obtain a measurement of ecosystem respiration
(ER). Gross primary productivity (GPP) was calculated as the difference between ER and NEE. Concentrations
of CO,, chamber temperature, and humidity were recorded at 1 Hz for 2 min during dark and light measure-
ments (model CS215 Campbell Scientific, Logan, Utah)
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Methane and N,O fluxes were measured concurrently at each collar as frequently as weather conditions per-
mitted (approximately 2 times per week for a total of 12 measurements per collar) from 8 June through 19
July 2015. Methane and N,O flux measurements were made by using an opaque PVC chamber of the same
dimensions as that for CO, exchange, and a Picarro Cavity Ring-Down Spectroscopy Analyzer (Model G2308,
Picarro Inc., Santa Clara, California). As with the CO, exchange measurements, the flange of the chamber was
attached to the flange of the collar by using three hand clamps to ensure a gas-tight seal. Gas was circulated
from the chamber to the instrument at a rate of 230 mL min~" through ~1000 cm of 4 mm internal diameter
Bev-A-Line tubing, and an additional fan was used to enhance circulation within the chamber.
Concentrations of CH,and N,O were measured every 5 s for 5 min. Chamber temperature (type T thermocou-
ple) and pressure (Model 278, Setra, Boxborough, Massachusetts) were measured every 5 s by using a data
logger (model CR800 Campbell Scientific, Logan, Utah).

Flux of CO, was calculated by correcting for the dry CO, concentration (ppm) and fitting an exponential
model dCO,/dt for the period of consistent [CO,] change in the chamber. The change in CO, concentration
through time was determined between approximately 30 and 120 s after chamber deployment. Initial cham-
ber values and the exponential fit were used to determine CO, flux at the time of chamber closure. Flux of
CH,4 and N,O were determined by using the same method as CO, except that the change in CH, and N,O
concentration through time was determined between approximately 60 and 300 s after chamber deploy-
ment, and the slope of the regression was determined according to a nonlinear model [Hutchinson and
Mosier, 1981] used by Soil Flux Processor (SFP) software developed by Picarro Inc. Uncertainty in the regres-
sion fit of CH, and N,O fluxes was characterized by using a bootstrap analysis that estimates the 1-sigma
uncertainty in the flux, using the Picarro SFP program. Global warming potential calculated as CO, equiva-
lents was determined by using the 100 year horizon global warming potential of 34 for CH,and 298 for
N,O [Myhre et al., 2013]. The average of all flux measurements for each gas through the study season was con-
verted to global warming potential of each vegetation community by multiplying the average flux by the glo-
bal warming potential of each gas.

2.4. Environmental Conditions

Soil and environmental conditions at the study site were measured through a combination of continuous
sensors with data loggers and in situ measurements made at the time of the gas flux measurements. We col-
lected continuous measurements of air temperature, precipitation, and photosynthetically active radiation
(PAR) every minute by using a meteorological station established at the study site for the duration of the sum-
mer season. Air temperature was measured at a height of 2m by using a temperature probe (model HMP60
Vaisala, Helsinki, Finland). Precipitation at 1 m was measured by using a tipping bucket precipitation gauge
(model TE525 Texas Electronics, Dallas, Texas), and PAR was measured at 2.5 m by using a quantum sensor
(model LIM90R Licor Inc., Lincoln Nebraska). All data collected from the meteorological station were recorded
on a CR1000 data logger. Continuous soil temperature at each collar was measured by using iButtons (Maxim
Integrated, San Jose, California) installed at a depth of 10 cm below the soil surface.

In situ measurements of soil temperature, soil water table position, and vegetation height were also recorded
at the time of each CH, and N,O gas exchange measurement. Soil temperature was recorded at 10 cm below
the soil surface by using a portable thermocouple. One 2.54 cm internal diameter PVC well was installed at
every collar, and water table position (the distance from the top of the water table to the soil surface within
the well) was measured manually. Vegetation height was manually measured and recorded at five random
locations in each collar at the time of each gas flux measurement and averaged to one height measurement.

Soil temperature at the time of each CO, exchange measurement was determined from the iButtons in place
at each collar. When CO, flux measurements did not occur on the same day as CH, and N,O flux measure-
ments, water table position was determined by interpolating between the two closest measurement dates
spanning the missing date. For a portion of the season (50%), the wells at the SL plots, which were shorter
than the wells present at the other plots, went dry.

Vegetation percent cover was recorded for every collar at one time during the study season (22 June) by
using a line-point transect grid. A 1 m x 1 m grid with wire intercepts every 10 cm was overlain on the collar
and surrounding area. Percent vegetation cover was determined by identifying the presence or absence of
vegetation at every wire intercept. The ratio of unvegetated to vegetated area was used to determine percent
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vegetation cover. Biomass within each collar was determined at the termination of the study by harvesting all
of the aboveground biomass present within a 5cm x 5 cm square in the center of each collar.

2.5. Soil Incubations

Soil incubations were conducted to explore the isolated effects of temperature on fluxes of CO,, CH,4, and
N,O from the four vegetation communities investigated in this study. Three replicate samples of each vege-
tation community were incubated for a period of 5 days at two different temperatures. Soils were incubated
at 8°C and 22°C; these temperatures were designed to represent an early season soil temperature and a sce-
nario of extreme warming.

Soil blocks (20 cm x 20 cm) were collected from the surface to a depth of 10 cm within each of the four vege-
tation communities. There is very little organic layer present in the soils so the samples were recovered
entirely from mineral soil. Soils were carefully cut by hand by using a soil knife and a trowel, frozen in the field,
and transported frozen to the laboratory. While frozen, soil samples were cut to 3 cm x 5 cm x 10 cm blocks,
weighed, placed into glass jars (~473 mL), and stored in an incubator set to a constant temperature (8°C and
22°C). Soil gas fluxes were measured once every 24 h. Prior to measurement, and between measurements, all
samples were left open to the air. At the start of the measurement, the jar containing the soil sample was
capped, and the gas from the jar was circulated to the Picarro G2308 instrument and then returned to the
jar through valves in the jar lid. The concentration of CO,, CH4, and N,O was measured once every 5 s for a
period of 3 min. Following measurement, each sample was watered to replace water lost to evaporation dur-
ing incubation by weighing the sample, and then adding deionized water to bring the sample weight back to
its original value. All samples remained at room temperature for the duration of the measurement, and then
were returned to the incubator. Fluxes of CO, were calculated according to the following equation:

G w
VPo 1 — o JiCO,
F. % ) at

1000
RMsTo p 273:15

where Fis the CO, flux from the soil (umol CO,g~"s™"), V (cm?) is the volume of the head space in the jar
plus the analyzer and tubing, Py is the initial pressure (kPa), w is the initial water vapor (mmol mol~"), Ris the
ideal gas constant (8.314 x 10°kPa cm®*K~" mol~"), M, is the mass of soil (g), Ty is the initial air temperature
(°C), and 252 is the rate of change of CO, with time (umol mol~"s™") [Liang et al., 2015]. Fluxes of CH,
and N,O were calculated by using the same method, but the dry concentration of CH,and N,O was used
for calculating fluxes of those gases, so the water correction term was not needed. Five-day cumulative fluxes
were calculated by interpolating between the measurements from each day, and then integrating across the
incubation period.

2.6. Statistical Analyses

Analysis of variance (ANOVA) was used to determine differences in the magnitude of gas fluxes from the four
vegetation communities. Gas fluxes were considered significantly different where p <0.05. We used the
Tukey' s honestly significant differences post hoc test to investigate which vegetation community fluxes were
significantly different from one another.

We used a linear mixed modeling framework to investigate the environmental controls on gas fluxes across
vegetation communities. The predictor variables included in the mixed models were soil temperature, air
temperature, water table position, vegetation percent cover, biomass, stem height, PAR, and the categorical
predictor of vegetation community type (i.e., PM, GL, CM, and SL). The response variable was gas flux. For
each component of greenhouse gas exchange (NEE, GPP, ER, CH4, and N,O), we established a suite of 85
models including a null model. Each model suite included all possible combinations of predictor variables
and all two-way interactions. The models were restricted a priori to those including three terms or fewer
(including interactions), according to the number of observations we were modeling [Bolker et al., 2009].
Air temperature and soil temperature were never included in the same model because of their covariance.
Similarly, each model only included one of the following: biomass, vegetation percent cover, or vegetation
stem height. The response variable, gas flux, was square-root transformed to produce a normal distribution
prior to analysis. All continuous predictor variables were centered and scaled such that the mean value
equaled zero and the standard deviation equaled 1. The explanatory variables were checked for collinearity,
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Figure 2. (a) Daily average, minimum, and maximum air temperature at 2m; (b) daily total precipitation at 1 m; (c) daily
cumulative incoming photosynthetically active radiation (PAR) at 2.5m. The vertical gray dashed lines indicate the
length of the study season.

collar was included as a random effect (Imer function in the R package Ime4 [Bates et al., 2015 R Core
Development Team]) to account for variability between transects. Only the PM, GL, and CM communities
were included in this modeling effort; the SL community was excluded because part of the water table posi-
tion record for these plots was not captured. The PM community was coded as the reference level for the
categorical variable of vegetation community. For each model we determined the Akaike information criteria
(AIC) [MuMIn package, Barton, K., 2014, R Core Development Team]; we chose to base our model selection on
AIC rather than other information criteria because AIC is perferred for selecting among multiple incompletely
specificed models [Aho et al., 2014]. We determined goodness-of-fit using a pseudo r? calculated according to
the recommendation of Nakagawa and Schielzeth [2013].

3. Results

3.1. Seasonal Environmental Conditions

Air temperature in our study area peaked in early June, and then remained relatively steady through the end
of August following the termination of the study (Figure 2). Mean air temperature was 11.2°C during the
course of the study with the coolest daily minimum temperature of 3.8°C observed on 9 June and the warm-
est daily maximum temperature of 26.6°C observed on 20 June (Figure 2). Precipitation was greatest in July.
The greatest insolation was in late June when maximum day length coincided with clear, warm, and
dry weather.
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Figure 3. (a) Study average soil temperature by vegetation community; pond margin (PM), grazing lawn (GL), Carex mea-
dow (CM), and slough levee (SL). (b) Average soil temperature by vegetation community for each day of gas measurement.
(c) Study average water table depth by vegetation community. (d) Average water table depth by vegetation community for
each day of measurement. For the box plots (Figures 3a and 3c) the lines represent the median, the boxes represent the
interquartile range, and the whiskers represent the range. For the line plots (Figures 3b and 3d) the whiskers represent the
standard deviation.

Soil temperature varied among the four vegetation communities. In general, soil temperature followed the
same seasonal trend as air temperature with a peak in early June (Figure 3). Seasonal mean soil temperature
was greatest in the PM and GL communities, lower in the CM community, and lowest in the SL community
(Figure 3). This trend in the relative soil temperature of the four vegetation communities was consistent
throughout the season. Water table position generally increased (became deeper) through the first half of
the study period, and then decreased at the end of July (Figure 3). Water table position was shallowest in
the PM community and greater in the GL, CM, and, SL vegetation communities (Figure 3). Again, the trend
in relative water table position among the four vegetation communities was consistent throughout
the season.

Live vegetation biomass, vegetation stem height, and vegetation percent cover also varied among the four
vegetation communities (Table 1). The PM community had the lowest vegetation biomass, cover, and height.
Vegetation biomass and height both increased across the transects with the greatest values present in the SL
community; however, the greatest live vegetation cover was present in the CM community, and the SL com-
munity had the greatest standing dead vegetation cover (Table 1).

3.2. COy, CHy, and N,O Flux

ER increased along the transects with the lowest respiration in the PM plots (0.66 = 0.06 [SE]p
mol CO,m~2s~") and the greatest respiration in the SL plots (7.63 + 50.58 [SE] umol CO, m~2s™"; Figure 4).
GPP also varied along the transects; GPP was largest in the CM community (—7.17 £ 0.33 [SE] u
mol CO,m™2s™"), lower in the SL and GL communities (—3.66 + 0.57 [SE] and —3.39 + 0.22 [SE] u
mol CO,m~2s~", respectively), and lowest in the PM community (—0.66 + 0.13 [SE] pmol CO,m™2s™";
Figures 4 and S1 in the supporting information). The largest net source of CO, to the atmosphere during
the study period was the SL community (3.97 % 0.58 [SE] umol CO,m~2s~": Figure 4). The PM and GL com-
munities both had negligible net fluxes of CO, (0.001 = 0.14 [SE] and 0.16 % 0.29 [SE] ymol CO;m™2s~",
respectively), and the CM community was a net sink (—1.63 +0.33 [SE]umol CO,m~2s~"; Figure 4).

The study period mean CH, flux was positive from all vegetation communities, indicating a source of
methane to the atmosphere (Figure 4). The greatest growing season CH, flux occurred in the GL community
(14.00 + 6.56 [SE] nmol CH,m™2s~"), and smallest flux occurred in the SL community (0.41 % 0.21 [SE]
nmol CH,m~2s~"). The GL regions also had the greatest variability in methane flux, which was a result of
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Table 1. Vegetation Characteristics by Community (Average # Standard Deviation)?

Biomass
Ecotype (mg cm_z) Vegetation Height (cm) Vegetation % Cover Live Vegetation % Cover Dead
Pond margin (PM) 0.00+0.0 0.51+0.70 7.80+8.83 0.24+0.45
Grazing lawn (GL) 6.65 +4.55 1.10+0.20 66.76 +11.86 122217
Carexmeadow (CM) 36.26+7.24 15.55 + 4.61 96.34 +£4.39 3.68+4.15
Slough levee (SL) 69.49 + 26.39 20.73+2.55 80.24 +12.46 19.46 + 12.54

®Biomass and vegetation height represent vegetation present at the end of the study period. Biomass from the pond
margin (PM) is 0, while vegetation cover is greater than 0 because vegetation cover was collected from the area in and
surrounding each collar, whereas vegetation biomass was only collected from a small sample area in the center of the
collar.

both seasonal and spatial variability (Figure S1). N,O fluxes were negligible from all communities through the
entire season (Figures 4 and S1).

Total study period average GHG forcing expressed as CO, equivalents indicated that SL community was the
greatest GHG source (3.98 ymol CO,eq m~2s~"), the CM community was the greatest GHG sink
(—1.63 pmol CO,eqm~2s~"), and PM and GL communities were both small GHG sources (0.08 and
0.51 ymol CO,eqm~2s~", respectively; Figure 5). The GL community was the only vegetated community
where CH,;made up the largest component of total GHG forcing (Figure 5); in contrast, CO, was the dominant
component of total GHG forcing in the ungrazed CM and SL vegetation types.

3.3. Generalized Linear Mixed Models of Gas Exchange

Greenhouse gas exchange at this study site was driven by combinations of both soil conditions and vegeta-
tion characteristics including vegetation community (PM, GL, CM, and SL), which was present in the best per-
forming model of every component of greenhouse gas exchange except ER. The best performing models of
CO, exchange (ER, GPP, and NEE) all included both a vegetation variable (biomass or percent cover) and a soil
environment variable (temperature or water table position). Water table position and percent vegetation
cover were the primary controls on ER across all vegetation communities, with vegetation percent cover as
a more important predictor than water table position (pseudo r? = 0.77; Table 2). NEE and GPP both included
vegetation community and soil temperature in the best performing model, with GPP also including vegeta-
tion biomass (pseudo r?=0.85), whereas NEE included percent cover (pseudo r?=0.41; Table 2).

Both environmental conditions and vegetation were important drivers of CH, emissions; CH, flux was gov-
erned by air temperature, vegetation community type, and the interaction of these two variables (pseudo
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Figure 4. Study average ecosystem respiration (ER), gross primary productivity (GPP), net ecosystem exchange (NEE), CHy,
and N,O flux by vegetation community. Letters indicate significantly separate groups. Error bars show standard error of the
mean.
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r’=0.39). The interaction
between temperature and vege-
tation community indicates that
4 ®N,0 the effect of temperature on
CH, flux varies among vegeta-
tion communities. The best per-
forming model of N,O flux
included soil temperature, vege-
tation biomass, and vegetation
community (pseudo r?=0.11).

GCH,
8CO,

3.4. Incubations

Our laboratory  incubation
experiments identified interac-
tions between temperature and
vegetation community type as
a control on GHG fluxes. ER gen-
erally increased with increasing
soil temperature (Figure 6) in all
vegetation communities, but
the greatest percent increase in
ER between the cool and warm
temperatures was observed in
the PM and GL communities
2 (220% and 250% increase,

PM GL CM SL respectively), while greatest net

- 5 stud " al o 4inCo CO, emissions were observed
igure 5. Study average exchange of all greenhouse gases expressed in .

9 y averag ge ofalg use g pres 2 from the CM community at both
equivalents across the four vegetation communities: pond margin (PM),

grazing lawn (GL), Carex meadow (CM), and slough levee (SL). In some bars the cooler and warmer tempera-
N,O fluxes are too small to be visible. ture (9.60+2.02 [SD] and

16.78 +1.14 ymol CO,g~"d™";
Figure 6). The CM community also had the greatest net increase in flux between the cool and
warm temperature.

umol CO, eq mZs!

777777777

%

The incubation results also indicated an interaction between temperature and vegetation community in CH,
emissions. Warmer soil conditions increased CH, emissions in the PM, GL, and CM communities, but the GL
community showed both the largest percent increase in emissions at warmer temperature, and largest net
increase in emissions from 0.38 + 0.25 [SD] nmol CH,g~"d™" at the cooler temperature to 3.80 + 0.63 [SD]
nmol CH, g~"d~" at the warmer temperature. CH,emissions were near zero in the SL community under both
cool and warm conditions. N,O emissions remained negligible in all ecosystems, even under conditions
of warming.

4. Discussion

We found that the magnitude and controls on GHG emissions varied among four vegetation communities
defined by differences in vegetation, herbivory, and microtopography. The variation we observed in GHG
gas fluxes among vegetation communities cannot be explained by soil and vegetation characteristics alone,
but rather was more completely explained when grazing, as determined by the difference between grazed
and ungrazed communities, is included. We also find in the grazed regions that the largest proportion of total
GHG forcing is from CH, emissions, in contrast to the ungrazed regions (CM and SL), where total GHG forcing
is dominated by emissions of CO,. Both field and laboratory analyses identified an interaction of temperature
and vegetation community as a driver of CH,flux, indicating that future warming may have the largest effect
on GHG emissions in regions affected by grazing. Taken together our results suggest that future changes in
gas exchange in this region could occur as a direct response to changing climate, particularly changing
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Table 2. Parameter Estimates for the Fixed Effects in the Linear Mixed temperature, or as an indirect
a

Mode of Gas Fiuxes response to changes in the relative

ECOSySteft“ Respiration; *=0.77 Ectimate SE . area of different vegetation com-
arameter stimate "

- 0035 0102 —0340 munities thgt alter the extent of

Vegetation percent cover 0.853 0.064 13.277 the Vege.tatlon type most respon-

Water table position 0.120 0.064 1.868 sive to climate change.

Gross Primary Productivity; ?=0.85 Estimate SE t 4.1. Carbon Dioxide Exchange

Parameter

Intercept —1.161 0.215 —5.407 All the vegetation communities

\S/0|I t(tar?pergture 8-312 8-?22 ?-‘;gg investigated here have rates of car-
egetation biomass . . .

Vegetation community: Grazing lawn 1217 0141 8578 bon  exchange comparable to

Vegetation community: Carex meadow 2.054 0.427 4.808 other high-latitude wetland sites

NetE e o8 Eame o . [Wickland et al., 2006; Chivers et al.,
et Ecosystem Exchange; r“ = 0. stimate )

Parameter 2009; Sturtevant and Oechel,

Intercept 2583 0724 3.568 2013], but  the net carbon

Soil temperature —0.704 0.141 —4.978 exchange varies between commu-

Vegetation percent cover —-2.311 0.815 -2.835 nities with some functioning as

Vegetation community: Grazing Lawn —2.311 0.815 -2.835 sources of carbon. and some as

Vegetation community: Carex Meadow —5.004 1.236 —4.047 ’

sinks. The study average flux from
Methane; r* = 0.39 Estimate  SE t the SL was positive (CO, source),

Parameter
[i— —0358 0217 —1649 the study a\(erage flux from the
Air temperature 0.493 0.102 4.830 CM community was negative (CO,
Vegetation community: Grazing lawn 0.814 0.146 5.588 sink), and the PM and GL commu-
Vegetation community: Carex meadow 0.237 0.146 1.620 nities were neutral (Figure 4). GPP
A!rT*vegetat!on communllty: Grazinglawn —0.436 0.144 -3.027 differed among vegetation com-
Air T * vegetation community: Carex —0.346 0.148 —2.342 o .

meadow munities with the ungrazed CM
Nitrous Oxide; r*=0.11 Estimate  SE t communities exhibiting higher
Parameter GPP than GL communities, likely
Intercept —0.537 0.373 —1.438 due to removal of standing bio-
Soil temperature 0.157 0.101 1.571 mass in the grazed GL commu-
Vegetation biomass —0.784 0.386 —2.030 nites [Welker et al 2004
Vegetation community: Grazing lawn —0.161 0.276 —0.584 ” '
Vegetation community: Carex meadow 1.725 0.888 1.944 Sjogersten et al., 2008, 2011]. GPP

3 - - was the only component of CO,
For all species these were the best performing models as evaluated by L .
AIC. exchange to show a statistical dif-

ference in the magnitude of CO,
exchanges between grazed and ungrazed vegetation communities; however, the effect of grazing was elu-
cidated when the drivers of CO, exchange were examined.

The modeling analyses identified the combined effects of soil environment, vegetation characteristics, and
vegetation community type (PM, GL, CM, and SL) as the most important controls on CO, exchange.
Vegetation community type was present in the best performing model of both GPP and NEE, along with soil
temperature and vegetation characteristics (biomass for GPP and vegetation percent cover for NEE; Table 2).
The presence of vegetation community type in the model indicates that there are important drivers of gas
exchange, likely related to grazing status and microtopographic position, which are not represented by
the soil and vegetation characteristics we observe here. The GL community in particular may experience
some effects of grazing that are not explicitly addressed in our analyses such as additional nutrient inputs
of labile organic material from goose defecation [Hik and Jefferies, 1990; Welker et al., 2004] and trampling
by geese that can incorporate this material into the soil [Zacheis et al., 2002].

The best performing models of ER included vegetation percent cover and water table position (Table 2). ER
was greater in the presence of more vegetation and was reduced by shallow water table depths (Table 2). In
addition to these modeling results from the field data, the laboratory incubation experiments also identified
an interaction between temperature and vegetation community such that the positive effect of temperature
on ER was greatest in the GL community. This interaction was absent in the field analyses where moisture
conditions were variable and potentially limiting to ER, but was present in the laboratory experiments where
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Figure 6. (a) Soil CO, flux response to two temperature treatments (8°C and 22°C) from all four vegetation communities:
pond margin (PM), grazing lawn (GL), Carex meadow (CM), and slough levee (SL). (b) Soil CH4 flux response to two tem-
perature treatments (8°C and 22°C) for all vegetation communities. (c) Soil N,O flux response to two temperature treat-
ments (8°C and 22°C) for all four vegetation communities.

soil moisture conditions were held constant. Overall ER is controlled by vegetation biomass, which was driven
by vegetation community, with water table position and soil temperature as secondary controls in different
conditions.

4.2. Methane Emissions

Methane emissions at this subarctic site were comparable or slightly lower than methane emissions observed
from other Arctic and subarctic wetlands [Bartlett et al., 1992; Bartlett and Harriss, 1993; Schimel, 1995;
Kutzbach et al., 2004; Sabrekov et al., 2014; Turetsky et al., 2014]. Methane emissions across vegetation com-
munities were not directly correlated with many individual soil environmental factors, but rather were gov-
erned by an interaction of temperature and vegetation community type. The best performing model of
CH,4 emissions contained air temperature, vegetation community type, and the interaction between the
two. Our laboratory incubation experiments also identified this same interaction, where we found that CH,
emissions increased at warmer temperature in all of the vegetation communities, but the increase was much
greater in the grazing lawn community (Figure 6). This interaction is likely a result of the complex drivers of
CH,4 production (methanogenesis) and consumption (methanotrophy) within the soil column, which deter-
mine net CH, emissions to the atmosphere.
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Methanogenesis is an anaerobic process that primarily occurs in saturated soils or in anaerobic microsites,
whereas methanotrophy occurs within oxic surface soils, and can be responsible for consuming much of
the CH, produced at depth. The presence of wetland vegetation can affect CH,4 flux by facilitating the trans-
port of CH,through aerenchymous tissue (air channels present in the plant stem) that allows CH, to reach the
atmosphere without coming in contact with oxidizing soil conditions [Neue et al., 1997; Kutzbach et al., 2004].
Wetland plants can also facilitate methanogenesis by serving as a source of labile carbon through the produc-
tion of high-quality root exudates [Shannon et al., 1996; Bellisario et al., 1999; Joabsson et al., 1999]. Herbivory
in wetland environments can potentially increase methane flux to the atmosphere through plant aerench-
ymous tissue by reducing diffusive resistance (by shortening the plant stem) and thus increasing diffusive
flux to the atmosphere [Dingemans et al., 2011]. Additionally, grazing can also limit the oxygen returning
to the soil through the plan stem after clipping [Ding et al., 2005], and thereby reducing the potential for
CH, oxidation within the soil and increasing flux to the atmosphere [Cheng et al., 2007].

Changes to diffusive resistance and oxygen transport due to grazing may help explain the interaction we
observe between temperature and vegetation community type. At warmer temperatures, both methanogen-
esis and methanotrophy will increase, but in grazed vegetation where CH, can travel most easily from the soil
to the atmosphere without coming in contact with oxidizing soil environment, increased methanogenesis
will have the larger effect and the net result would be an increase in CH,4emissions to the atmosphere.
However, the fact that we observe this interaction in both the field data and the incubation data suggests
that there could potentially be another driver. A similar interaction between goose grazing and temperature
is observed for CO, flux in Sjégersten et al. [2008] and could be the result of a change in the microbial com-
munity due to nutrient input from fecal matter or a result of compensatory production of plant biomass as a
result of grazing [Hik and Jefferies, 1990]. Whether the interaction between temperature and grazing is a result
more efficient physical transport or changes in microbial community, our results suggest that future climate
changes that result in higher temperature would increase CH, flux most from the GL landscapes.
Furthermore, changes in the area of grazing lawn, produced as a function of goose population dynamics,
would affect regional CH,4emissions by changing the extent of the area that is most responsive to future
temperature change.

4.3. Nitrous Oxide Emissions

Nitrous oxide emissions were negligible through the entire season, even from the GL plots where geese con-
tribute high rates of organic N through fecal input. Nitrous oxide emissions at the soil surface are the net
result of production and consumption within the soil. There are two primary pathways of N,O production
in high-latitude systems; nitrification, the process of converting NH,to NO,™ and NO3~, or denitrification,
the reduction of NO,~ or NO;™ to N, via the intermediate stages of NO and N,O [Braker and Conrad, 2011;
Stewart et al., 2014]. Cold temperatures can limit nitrification and N mineralization which produce inorganic
N [Gersper et al., 1980; Nadelhoffer et al., 1991], but we can rule out temperature as the dominant constraint on
N cycling at our site because we found that N,O emissions were still negligible under warming conditions
produced during the laboratory incubations. Similarly, the lack of emissions from the incubation experiments
also suggest that N,O emissions are likely not limited by the complete reduction of N,O to N, during deni-
trification, which can occur in low-oxygen conditions when N,O itself is used as an electron acceptor and
reduced to N, [Veldkamp et al., 1998; Chapuis-lardy et al., 2007]. Low rates of N,O emissions could be a result
of low availability of inorganic N, which can occur in arctic soils even when the microbial communities
responsible for denitrification are present [Christensen et al., 1999; Buckeridge et al., 2010]. Finally, inorganic
N may be limited due to high demand by plant and microbial biomass. Previous research at our study site
indicates that soil microbial biomass is a strong nutrient sink in this ecosystem, and further that direct uptake
of amino acids by C. ramenskii may also be an important component of N cycling [Ruess et al., 1997]. If this is
the case, then inorganic N may be limiting in the soil environment because plants and soil microbes quickly
take up available N.

4.4, Uncertainties and Future Work

This study presents compelling results regarding the interacting factors governing GHG fluxes in subarctic
regions affected by migratory grazers and also highlights opportunities for future work. The results of our
study suggest that the drivers of NEE, GPP, and CH,flux are best explained when vegetation community,
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which is driven in part by grazing, is explicitly included. Furthermore, we identify an interaction between
vegetation community and temperature that indicates that CH, emissions in grazed areas will be the most
responsive to future temperature change.

Our study also has some limitations. First, due to challenges of measuring GHG fluxes in this remote location,
our sample size is fairly small. The small sample size may be one reason our study did not identify statistical
differences in GHG emissions between grazed and ungrazed Carex vegetation (except for GPP). Our analysis
of the drivers of GHG exchange indicates that grazing is important, so it is possible that differences in GHG
flux would be apparent with a larger sample size. Second, the effects of herbivory are confounded by the
influence of microtopography in our study region, because microtopography is largely responsible for deter-
mining the regions most heavily grazed by geese. Because our observational study was designed to measure
the variability in GHG emissions in response to ecologically relevant gradients of herbivory, it allows a some-
what limited interpretation of the influence of geese herbivory relative to the effects of microtopography on
environmental factors that control GHG flux. Future work could build on the processes and interactions out-
lined in this paper by quantifying the relative importance of herbivory as a driver of GHG flux relative to
microtopography and other environmental factors and by furthering our understanding of the mechanisms
by which herbivory influences CO,, CH4, and N,O fluxes in subarctic regions.

4.5. Changes in Response to Future Climate

Gas exchange between terrestrial ecosystems and the atmosphere in the YK Delta is driven by interacting fac-
tors of environmental conditions and vegetation characteristics that may be affected by future climate and
global change. This region has experienced the largest increases in summer season temperatures of the
entire circumpolar region [Bhatt et al., 2010], and along with continued decreases in the length of the sea
ice season [Serreze et al., 2007; Stroeve et al., 2012], and associated increases in coastal erosion [Jones et al.,
2009], these trends may result in further change to arctic and subarctic coastal regions. In vegetation commu-
nities with active sedimentation, such as the SL community, the elevation will likely remain in equilibrium
with sea level, and therefore, ecosystem composition and productivity may remain constant [Jorgenson
and Ely, 2001]. But in other regions of the YK Delta, increased deposition on slough levees may expand the
area of the basins and ponds behind the levees [Jorgenson and Ely, 2001]. Such changes would alter the rela-
tive area of pond margins, grazing lawns, and Carex meadows, and therefore regional gas fluxes.

The relative area of different vegetation communities in this region may also be determined by changes in
the number of geese that return to this colony in the summer to breed. Person et al. [2003] observed that area
of grazing lawn at this site was proportional to the number of breeding pairs of one goose species that
returned to the colony between 1987 and 2000. Further, they found that increase in grazing lawn area came
at the expense of the Carex meadows. These authors suggest a positive feedback between the number of
geese broods and the amount of grazing lawn: more grazing produces more grazing lawn, which then
increases the ability of the system to support more geese broods. Based on the greenhouse gas fluxes mea-
sured in our study, we estimate that change in areal extent of vegetation communities that occurred follow-
ing an increase in the number of geese broods from ~1000 to ~5000 in the 1990s [Person et al., 2003], may
have increased the global warming potential of the net GHG emissions from this site by ~150%. Changes
in goose population and in areas used by geese are occurring elsewhere in coastal Alaska as a result of cli-
mate and other environmental changes [Flint et al., 2008, 2014; Tape et al., 2013], and our results suggest that
such changes could have substantial implications for GHG fluxes from these regions.
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