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Abstract—We introduce a transfer-function-guided 3D block-
based saliency-aware compression scheme for volumetric data
that is both content- and spatially-scalable. Salient 3D volumetric
blocks are identi� ed and weighted with the help of a transfer
function which is used to render the data. We describe our
method in the form of a framework for processing, progressive
transmission, and visualization of volumetric data on a target
device, such as a mobile device with limited computational
resources. In particular, we address the transmission bottleneck
incurred when transferring 3D volumetric data. Identi� ed salient
regions are progressively transmitted to the target device. The
received data is rendered progressively in the respective order
with a prede� ned or user-de� ned transfer function. Our method
is developed with medical applications in mind, where preserva-
tion of all information is essential for clinical diagnosis. Because
our method is integrated into a resolution scalable coding scheme
with an integer wavelet transform of the image, it allows the
rendering of each signi� cant region at a different resolution up
to fully lossless reconstruction. We perform a thorough qualitative
and quantitative evaluation of the saliency detection method and
the resulting saliency-aware compression schemes. Our results
show reduced error in representation of the volumetric data with
our method.

Index Terms—Compression, saliency, volume visualization,
wavelets, discrete cosine transform.

I. INTRODUCTION

W
ITH the size of volumetric data constantly growing,
demand is increasing for efficient compression, storage,

transmission, and visualization of volumetric data. There have
been several approaches in the multimedia domain to progres-
sively transmit a compressed 3D mesh with minimum packet
loss [1] and to compress depth data [2] and 3D meshes [3, 4].
Unlike 3D mesh data, volumetric data consists of voxels,
and often only a certain region or a sub-volume of a large
dataset is of interest to the user. Extraction of this region can
help in reducing compression, transmission, and visualization
time, as well as storage space. For example, non-uniform
encoding allocates fewer bits or completely disregards less
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significant regions, thus providing a higher compression ratio.
Another option is the transmission of the region/volume of
interest (ROI/VOI) first at low quality or resolution and then
progressively refining the result.

These content-aware techniques require prior analysis of the
relevant visual importance or relevance of the data. In this
paper, we consider the situation when the relevance of specific
regions within the volume is unknown but can be derived
from the underlying data values. We suggest reordering data
based on a computational model of the transfer function (TF)-
guided visual saliency. We construct a 3D block-based saliency
map from weighted averaging coefficients such as the 3D
discrete cosine transform (DCT) by analyzing low-level fea-
tures: intensity, color differences, texture energy, orientation,
and gradient. Our technique is best suited for applications
where the TF is fixed or easily generated via a semi-automatic
method [5] based on the material properties, such as data
from computed tomography (CT) in medicine and industry.
For example, medical scanners produce large volumes of data
per patient at high resolution. Not only has the handling and
storage of such data become an issue, but remote transmission
to a medical expert for analysis is also a challenge. Since not
all of the obtained information is essential for diagnosis, both
compression and transmission techniques that handle VOI are
particularly important.

Our method considers two main requirements of the target
applications: the need for lossless reconstruction of the data
and a transmission bottleneck associated with volumetric data.
One of the main target domains for our framework is com-
pression of 3D medical images. Such compression methods
should be visually lossless [6]. The 3D block-based saliency
is integrated into a fully reversible integer wavelet transform
(IWT) and a quality scalable coding technique, thus allowing
progressive transmission up to lossless reconstruction. En-
coding and transmission start with the salient regions of the
volume and proceed in several iterations. Selection of IWT
coefficients is performed in the frequency domain, thus re-
quiring only one transform on the entire volume. Additionally,
selected voxels are grouped based on spatial proximity, which
allows for reconstruction of more volumetric blocks with fewer
coefficients.

In our work, we analyze the problem of user-adaptive
informative visualization for progressive compression and
transmission of volumetric data. Our contributions are:
• A 3D block-based saliency analysis for automatic computa-

tion of VOI.
• A framework design, integrating the 3D view-independent

visual saliency representation of the data and grouping vox-
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els into any scalable compression scheme to progressively
compress, transmit, and visualize volumetric data.

• Quantitative measurement of the processing speed of the
saliency detection and compression rates in comparison to
methods without saliency.

• A qualitative and quantitative evaluation of the saliency
detection method based on the ground truth volumetric
saliency as defined by a gaze tracking study.

• A user study of subjective qualitative evaluation of the visual
information with saliency-aware compression against the
methods without saliency that shows reduced error in the
representation of volumetric information.

II. RELATED WORK

A. Saliency Detection

Salient regions are the most conspicuous areas of the image
to the human eye. As shown by Itti et al. [7], low-level
features, such as color, intensity, and orientation can determine
saliency of the image regions. Many applications make use of
the salient information for region of interest (ROI) extraction,
image retargeting and resizing for arbitrary size displays [8, 9],
and visual enhancement for visualization [10, 11]. Computa-
tion of saliency, even for 2D images [7, 12], is often expensive
and requires choosing parameters for optimal performance.

The use of the coefficients of a DCT has been studied
and used for enhancement of perceptual quality of compres-
sion [13], definition of edge structures [14], object localiza-
tion [15], and comparison of image similarity [16]. Fang et
al. [17] use JPEG compressed images for saliency detection in
adaptive image retargeting [18]. In this work, DC coefficients
are converted from YCbCr to RGB to compute intensity,
red/green and blue/yellow double opponency. Texture com-
putation utilizes only the Y component frequencies. Final
feature maps are computed by the Euclidean distance weighted
by a Gaussian with a coherent normalization-based fusion
method. The idea to determine saliency from the transform
coefficients has been extended to the wavelet transform domain
by Imamoglu et al. [19] through local and global saliency
of the images. Saliency is also used in reducing attention-
grabbing coding artifacts and adjusted in ROI and non-ROI in
an H.264 video coding [20], which improves the visual quality
of the coded video. The spatio-temporal saliency model serves
for fast detection of salient regions in video sequences [21].
Statistical information in the wavelet compressed domain was
used for volumetric data quality assessment [22]. Saliency-
cognizant schemes in video compression can be used to
conceal errors [23]. When high resolution blocks are not
matched, low resolution blocks with a good saliency match
are used as a replacement.

Unlike the work described above, we use the saliency map
to guide the transmission of volumetric data and visualize the
data. For this purpose, we perform construction of the full
3D saliency map for the weighted averaging which makes it
computationally affordable for volumetric data and, given our
implementation, potentially parallelizable. Our method utilizes
multiple features by extending them from 2D to 3D and
more importantly adding unique 3D features that allow us to

prioritize significant areas occupied by 3D salient objects, and
not only their borders and edges.

B. Volumetric Data Compression

Typically, image usage determines the choice of a compres-
sion method. When some degradation of image quality is per-
mitted, lossy compression techniques achieve higher compres-
sion ratios. Lossless techniques are used when any degradation
is undesirable and allow for much smaller compression ratios.
In particular, for medical images, loss of information can affect
the reliability of the diagnosis. Lossy-to-lossless compression
techniques adapt to low network bandwidth. In such schemes,
significant information is embedded at the beginning of the
bitstream, thus allowing for the progressive transmission from
initial lossy up to a lossless representation.

Discrete wavelet transform (DWT) or IWT based methods
allow for resolution or quality scalable coding based on a
decomposition of the wavelet and enhancement layer of the
coding algorithm [24]. Among them are 3D set partitioning
in hierarchical trees coding (SPIHT) [25], embedded block
coding with optimized truncation (EBCOT) [26], embedded
subband coding with optimized truncation (ESCOT) [27], and
other modifications of those schemes. There are some methods
to visualize data with limited memory via tensor approxima-
tion [28], volumetric compressed sensing [29], and dictionary
learning with sparse coding technique [30]. These methods
can significantly reduce the amount of data to represent input
volumes, but they are lossy compression approaches.

The structural similarity (SSIM) index [31] and a foveated
just-noticeable-distortion model [32] have been used to achieve
the better perceptual quality of an encoded video in an H.264
video coding. These approaches improved the perceptual qual-
ity of the encoded videos for lossy compression and even can
achieve perceptually lossless compression [32].

VOI compression for medical images has been explored for
both 2D images and volumetric data. General ROI-based scal-
ing (GSB) and MAXSHIFT methods are part of JPEG2000.
These are the basic variations of ROI compression methods
that consider regions of arbitrary form with full or partial
loss of the background information. Medical image coding
also utilized 3D ROI or VOI with a scalable 3D SPIHT algo-
rithm [33]. This method uses a mask to determine transform
coefficients that also undergo compression. Additionally, the
resulting VOI can become prioritized during visualization with
either iso-surface or ray casting.

In the client-server scenario, the data can be compressed
once, and upon the c����� s request, the bit stream is reordered
to allow rendering of the VOI with fading quality of the back-
ground [34, 35]. Unlike [34, 35], in our work, we automatically
determine and transmit the VOI as the most salient region in
the volume without user specification and eventually transmit
all the data. Additionally, our approach can utilize any wavelet-
based scalable compression scheme, such as SPIHT, EBCOT,
and ESCOT.

C. Visualization of the Compressed Data

Volume rendering directly from the DCT compressed do-
main has been proposed by Chieh et al. [36] and Yeo and
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Fig. 1: Overview of our framework. After selecting a pre-defined transfer function (TF) or generating a TF semi-automatically,
the saliency map is computed and the integer wavelet transform (IWT) coefficients are split according to the coefficient maps
to represent subvolumes that are compressed for transmission and decompressed and progressively rendered on the receiving
device.

Bede [37]. Fout and Ma [38] have proposed a block-based
transform coding scheme for fast decompression and progres-
sively rendering a volume by approximation. Ljung et al. [39]
have used a TF to guide the selection of the level of detail
scheme during data decompression. This technique reduces the
amount of data to be decompressed and rendered but does not
assist in informative rendering, meaning it does not present
overview information about the data. A compression-based
multiresolution rendering scheme has been suggested for ren-
dering data on a regular grid using wavelet representation [40].
Wavelet decompression of volume data for visualization in a
block-based scheme has been proposed by Nguyen et al. [41]
for rapid visualization. Some methods address the complexity
that is associated with compression and decompression and
preserve features of the data while distorting the grid [42].
For a more detailed review of state-of-the-art approaches, we
refer the reader to the survey papers [43, 44].

Volumetric rendering on mobile devices is generally sub-
divided into two approaches: thin client (remote) rendering
and rendering directly on the device. In our work, rendering
occurs directly on the device and we can use any efficient
volume rendering technique for mobile devices such as [45].
The most similar work is by Campoalegre et al. [46] who use
a TF aware lossy compression scheme and user-defined ROI
for multiresolution visualization on mobile devices. However,
their method is for lossy compression and the TF cannot be
changed on the mobile devices. Here we also refer the reader
to additional techniques surveyed by Noguera et al. [47].

Unlike the papers mentioned above, which lose some infor-
mation, our method first compresses and transmits the most
salient regions and then progressively adds less salient regions.
Therefore, we can losslessly reconstruct salient regions with
a relatively small size coefficient map. Moreover, users can
modify the TF on the receiving device for already received
data at any time.

III. OVERVIEW

We introduce saliency into a scalable coding scheme [25,
26] for progressive transmission and rendering. This method

serves prioritization of salient volumetric regions as well as
their quality refinement up to fully lossless reconstruction.
First and foremost, our framework (Fig. 1) is based on the
semi-automatic design of a TF for the volumetric data as
it is intended to be viewed by the user. The following two
steps of our framework are executed concurrently. In one step,
weighted averaging is performed on the volume colored by
the TF. Weighted averaging (3D DCT) blocks are analyzed
to construct the 3D block-based saliency map. At the same
time, the fully reversible IWT is applied to the volumetric
scalar data. The coefficient map defines a correspondence
between the IWT coefficient voxels and the DCT saliency
map. Transmission of data is prioritized based on the computed
saliency map, and, similarly, progressively decompressed and
rendered on the receiving side.

Our approach focuses on domain specific scenarios with
known data types. Such applications have a focused scope
and are often used by non-computer experts, and thus require
a pre-defined or semi-automatically generated set of TFs. The
user is provided with an interface to change between the TF
presets. In this paper, we use an approach which generates an
optimal TF by only evaluating small images generated with
similar potential TFs [5]. Here, we show two examples:

1. Medical CT and CTA application. Medical software used
in clinical practice utilizes a set of pre-set TFs and facilitates
a simplified interface for their adjustment. Analysis of CTA
data generally follows a protocol, for example, CTA of the
thoracic aorta [48] includes pre-set TFs in the software, such
as that of TeraRecon (San Mateo, CA). In the user interface
of the software, the default value of the TF is specified in
two ways. First, the default TF is grayscale, set as a linear
ramp from black to white (window width 324, window center
186) at full opacity. Second, the TF is set in a red to yellow
range on a triangle ramp (window width 200, window center
106) at opacity 0.4. Properties of CT allow for such fixed
differentiation between tissues types (Fig. 2 (a)) [49]. Fig. 2
(b) shows a use case, where we select identical TFs for two
datasets, similar to those used in the medical software, and
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(a)

(b)

Fig. 2: (a) A histogram of a heart dataset. The histogram is
separated into components based on the material properties: I
- Pulmonary parenchyma; II - Pericardium, diaphragm; III -
Myocardium, hepatica parenchyma, coronary arteries without
contrast; IV - Ventricles, coronary arteries with contrast, vein,
aorta, bone, pulmonary vessels. (b) A use case for two 512

3

heart datasets (top and bottom) with the same fixed TF used
for both datasets. The results of progressive transmission and
rendering at the first through fourth iteration (1-4).

produce progressive volume rendering, on the target device.
2. Industrial CT applications. In industrial manufacturing of

engine blocks and cylinder heads, manufactured parts undergo
a CT scan for quality assurance. One of the ways to approach
differentiation of materials on the CT scan considers isovalues
in the histogram of data values. For this engine dataset, there
are three known materials: two alloys at isovalues 120 and 165
(regions II & III on Fig. 3 (a)) and air [50]. Known values of
alloys can be used for TF initilization, as shown in Fig. 3 (b).

It is important to note that while only one TF is used
for the data compression, it can be freely modified on the
receiving device for the already received data at any time.
Fig. 1 illustrates the entire process of our framework, and each
stage of the pipeline is detailed below.

IV. MAPS FOR COMPRESSION

Saliency and coefficients support the compression process.
The saliency map is computed in the transform domain of
weighted averaging (DCT) by extracting features of each
block, weighting them, and combining them into a single
saliency map. The coefficient map is computed from the rela-
tion between each saliency region and the position of a wavelet
coefficient in the tree structure of the wavelet transform.

(a)

(b)

Fig. 3: (a) A histogram of a Engine dataset. The histogram is
separated into components based on the material properties: I
- air, II and III - two alloys, where air is considered as noise
and then assigned low opacity in the TF. (b) A use case for a
256 × 256 × 128 Engine dataset with a fixed TF. The results
of progressive transmission and rendering at the first through
fourth iteration (1-4).

The combination of these maps allows for prioritization and
transmission of a reduced amount of initial information.

A. Weighted Averaging Based Saliency Map

Our method is based on the saliency detection in the com-
pressed domain. We have extended an approach introduced by
Fang et al. [17] (for 2D still images) to create a 3D saliency
map considering volumetric features. The benefit of using
DCT is twofold: first, the properties of the DCT allow us
to extract the required features; and second, the block-based
transform allows us to shrink the saliency map by orders of
magnitude compared to the size of the original volume.

We consider six types of low-level features derived from the
DCT and the input volume: intensity, two color components,

texture, orientation, and gradient. While the significance of
these features has been shown for 2D images [7, 17], we
highlight the differences and feature importance for volumetric
data. To construct the saliency map we use the DC coefficients
of the DCT that represent an average of the block, and the AC
coefficients that show frequency information.

Intensity and color features. Most commonly, the vol-
umetric data colored with a TF is rendered in RGB color
space, which we convert to YCbCr. The intensity and color
features are obtained from their average (DC) in each block.
By definition, the DC coefficient establishes local distinctness
in the neighborhood (saliency as distinctness [51]). Thus, a
distance-weighted difference between DCT blocks describes
saliency of the entire volume. As a result, we obtain the first
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two types of features: intensity I and the color features Cb

and Cr:
I = YDC, Cb = CbDC, Cr = CrDC, (1)

where YDC is the DC coefficient of the Y component, CbDC

is the DC coefficient of the Cb component, and CrDC is the
DC coefficient of the Cr component. We consider two color
channels to be one feature in the map.

Texture features. Well-defined boundaries of objects that
attract u���� attention [52] can be captured with a tex�u�� s
high-frequency information. DCT coefficients can be used
to obtain such information in both color and gray-scale 2D
images [18, 53, 54]. The AC coefficients show a texture
feature in a particular direction. We consider only the Y
component of the blocks because the others contain little high-
frequency information [55]. In fact, we fully exclude low
frequency components (similar to Tong and V�e���	e
�
u�
� s
approach [13]) as they can be associated with noise [52].
Uniquely to volumetric data rendering, we can assume that
the TF assigns low opacity (value less than 10) to noise and
exclude the corresponding blocks. Here the range of opacity
is between 0 to 255, and salient parts are assigned an opacity
value of at least 20.

Finally, the energy of texture block T is the difference
between the sums of all AC coefficients and the low frequency
AC coefficients:

T =
∑

i∈D
ACi −

∑

i∈L
ACi, (2)

where D is all the AC coefficients, and L is all the AC
coefficients with low frequency components.

Orientation and gradient features. Computation of edges
in 3D volumetric data is essentially similar to 2D images
with an added complexity of a third dimension. In this work
we simplify previously proposed approaches to accommodate
volumetric and save computation time.

The orientation of an edge can be computed in gray lumi-
nance space [56]. Considering only the Y component of the
DCT blocks we further save computation time when extending
this approach to 3D volumetric data.

An orientation feature component Or of each 8
3 block

along the x, y, and z axes could be estimated from eight 4
3

sub-blocks (by extending a 2D method [14]). Ignoring non-
significant components can further simplify each orientation,
thus making it suitable for the volumetric data.

As a result, each orientation is approximated as a single AC
coefficient:

Orx = 2|
√

2Xdct (1, 0, 0)/32|
Ory = 2|

√
2Xdct (0, 1, 0)/32| (3)

Orz = 2|
√

2Xdct (0, 0, 1)/32|

where Xdct (i, j, k) is a DCT coefficient from the Y component,
and Orm with m ∈ {x, y, z} indicates the orientation along the
m axis. For details see the supplementary material.

In 3D volumetric data, gradient differentiates homogenous
regions and regions of change, and because of that is fre-
quently used for TF assignment. Kniss et al. [57] showed

the use of a TF for separation of materials and boundaries
using a simple 2D TF. Additionally, gradient is used to extract
iso-surfaces in volumetric data, thus differentiating structures.
As our work builds upon the TF definition, we incorporate a
gradient feature into the saliency map.

We already compute the orientation of each axis, so we can
easily obtain the gradient of each block G as follows:

G =

√

Or2
x +Or2

y +Or2
z (4)

where Orm with m ∈ {x, y, z} indicates orientation along the
m axis.

Opacity. Opacity is an important and unique feature to visu-
alization of volumetric data. During transfer function design,
noise voxels are generally assigned to be more transparent,
thus leaving important voxels more opaque. In this case, only
visible parts in the volumetric rendering can be salient to the
viewer.

Since opacity has a strong in� uence on all the features,
they are weighted by opacity. The opacity Oc of each block
is computed by averaging the opacity values of the individual
voxels in that block:

F = Oc · F ′ F, F ′ ∈ {I,Cb,Cr,T,Orx,Ory .Orz,G} (5)

where Oc is opacity, and F ′ and F are features before and
after being weighted by the opacity, respectively.

Final saliency map. For each of the five types of features
(or six distinct features) extracted from the DCT blocks, we
compute a weighted feature map. The weights are based on the
L2 norm of the standard deviation and the distance between
between the values weighted by a Gaussian distribution [17] in
the DCT feature space. It is important to note that computation
of the distance in the volumetric space is more expensive and
may not represent the difference between the features.

In volumetric data, groups of materials/tissues have similar
feature properties, for example color and opacity. This enables
grouping of DCT blocks based on their quantized color and
opacity values. We compute the average of each feature,
the standard deviation, and the position of a group. In our
experiment, it significantly reduced the computational time for
a saliency map, which is shown in Section 6.

In a weighted feature map, the difference Dt
i j

between a
feature t, t ∈ I,Cb,Cr,T,G of two clusters can be defined as:

Dt
i j = |Ct

i − Ct
j | (6)

where Ct
i

and Ct
j

represent the value of the ith and jth cluster
in a feature t, respectively. For orientation features that consist
of directions, the distance is computed as:

DOr
ij =

∑

t′∈Orx,Ory,Orz

|Ct′
i − Ct′

j | (7)

where Ct′
i

and Ct′
j

represent the value of the ith and jth cluster
oriented along the x, y, or z axis, respectively. The final feature
value Ft

i
is defined as:

Ft
i = Oci ·

∑

j,i

1

σ
√

2π

e
−

d2
i j

2σ2
Dt

i j , i, j = 1 . . . (M/8)3 (8)
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Fig. 4: Comparison of saliency map features for the Bonsai, Foot, and Heart datasets (top to bottom rows). (a) Original
dataset, with applied TF and saliency maps for (b) gradient, (c) intensity, (d) Cr color component, (e) Cb color component,
(f) orientation, and (g) texture features.

where σ is the standard deviation of the Gaussian, di j is
the sum of the L2 norm of the standard deviation and the
Euclidean distance between two clusters in the extracted
feature space, and Dt

i j
is the difference of a feature t,

t ∈ I,Cb,Cr,T,Or,G between two clusters defined in Eqs. 6
and 7. Here, σ represents the relative locality of the feature
maps, depending on the size of the input volume, where the
decrease of σ emphasizes smaller neighboring regions while
the increase of σ considers a more global structure of the
feature values for saliency. We set σ to 5 to balance local and
global structures of the maps in our examples.

Finally, all of the above feature maps are linearly combined
into a saliency map S:

S =
1

n

∑

i∈t
Fi
, t ∈ {I,Cb,Cr,T,G,Or}, n = 6 (9)

To illustrate the contribution of each feature to the saliency
map, we show each component separately in Fig. 4. The TF
color implies the saliency value, with the highest being red,
then green, and the lowest blue.

The saliency map values are sorted based on the ranges for
each iteration. In the next step, we create coefficient maps
corresponding to the range of each transmission.

B. Coefficient Map

The saliency map guides the selection of the transform
coefficients for progressive transmission. As a single voxel in
the input volume decomposes into multiple coefficients, such
selection is not straightforward and is enabled with the help
of a coefficient map.

The vector of the wavelet transform coefficients consists
of detail and approximation coefficients. At each level of the
transform in the 1D case, a detail coefficient i is partially
affected by 2

i elements in the input data. (log2M + 1)3
coefficients are required to reconstruct one voxel in the M3

volume data. Essentially, the same coefficients are needed to
reconstruct two adjacent voxels at positions v2i and v2i+1.

Algorithm 1 : Coefficient selection method for each block
corresponding to a saliency value

1: lvl = level of wavelet transform
2: for all possible approximation coefficients at last level (lvl) do
3: if a coefficient affects a block of saliency region then
4: Save the index of a current coefficient
5: end if
6: end for
7: for each level from last(lvl) to 1 do
8: for all possible detailed coefficients at current level do
9: if a coefficient affects a block of saliency region then

10: Save the index of a current coefficient
11: end if
12: end for
13: end for

We exploit this redundancy when selecting the transform
coefficients that are representative of the salient regions (as
shown in Algorithm 1).

With the increase in the number of wavelet transform
levels, the redundancy between neighboring voxels of different
saliency ranges also increases. In a single-scale coefficient
map, volumetric blocks are selected solely based on their
saliency values. The multi-scale coefficient map reduces this
redundancy by grouping neighboring voxels and blocks. The
multi-scale map has a maximum resolution of 2

maxwav , where
maxwav is the maximum wavelet transform level.

The multi-scale coefficient map is constructed as follows:

• For each voxel Si, j,k in a saliency map within a current
saliency range, we first check whether the voxel was
processed in the previous saliency range. If yes, we skip
the voxel. Otherwise, we check the neighboring voxels,
Si+i′, j+j′,k+k′ , i′, j ′, k ′ ∈ {0, 1}. If more than half of the
neighboring voxels are within the range, we group them
all together.

• Repeat the scan (log2ω− 3) times, doubling the range of
i′, j ′, k ′ each time, where ω is the defined resolution.

Fig. 5 compares the structure of single- and multi-scale
maps. The two maps are similar even though there are more
voxels in its quantized version of multi-scale maps.
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(a) (b)

(c) (d)

Fig. 5: Correlation between quantized saliency maps (left
column) and coefficient maps (right column) of the Bonsai
tree dataset. The first row shows a single-scale (a) quantized
saliency map and (b) coefficient map. The second row shows
a multi-scale (c) quantized saliency map and (d) coefficient
map. In the multi-scale quantized saliency map, 8

3, 16
3, and

32
3 resolutions are represented by each color: yellow, blue,

and green, respectively.

In our method, we use the 3D Haar wavelet transform with
a lifting scheme as it has been shown to be the most optimal.
Since one of our target applications is medical imaging, we
compare its performance with Cohen-Daubechies-Feauveau
(CDF) 9/7 and 5/3 wavelets, used in that domain. Additionally,
this approach can be further extended to include Daubechies
wavelets D4 and D6. With our method, there is no additional
overhead information about the position of the region that
has to be transmitted, as in VOI methods, because only
selected coefficients are encoded. Thus, our coefficient maps
can utilize any wavelet-based scalable compression scheme for
progressive transmission. In our study, we have used quality
scalable codecs: 3D SPHIT [25], EBCOT [26], and 3D
ESCOT [27].

V. PROGRESSIVE TRANSMISSION

Progressive transmission is an inherent part and goal of
scalable coding algorithms, such as SPIHT, EBCOT, and
ESCOT. Based on similarities between subbands in a wavelet
decomposition of an image, SPIHT creates a spatial orientation
tree (SOT) and then performs initialization, a sorting pass, a
refinement pass, and quantization-setup update. EBCOT is a
block-based compression algorithm. In EBCOT, each subband
from the wavelet transform is divided into small blocks,
namely code-blocks, which are coded independently. EBCOT
has three passes: significant propagation pass, magnitude re-
finement pass, and clean up pass. ESCOT is an extension
of EBCOT, where the main difference is the way to code
each subband. These methods first encode the information that

Fig. 6: Comparison of the progressively rendered Bonsai
volume after the (a) first, (b) second, and (c) fourth (last) trans-
mission. After the last transmission a lossless reconstruction
is obtained.

yields the highest distortion reduction by placing coefficients
with larger magnitude at the beginning of the bitstream. If
the receiver truncates the bitstream at any point, the highest
possible mean-squared error (MSE) up to that point will be
achieved.

In addition to prioritization of the bitstream by magnitude
as designed by the coding algorithm, we organize the data
stream based on the saliency intervals from the computed
maps. We split IWT coefficients of the original volume into
several different parts based on the saliency intervals of the
computed maps and encode them separately. Hence, with every
step of the transmission, we have the same scalability benefit
of the coding scheme. The most salient blocks will be fully
transmitted first, followed by the sets of blocks from the
remaining intervals.

The saliency intervals can be either set as constant (i.e.
constant determined by the data type, 8-bit, 16-bit, 32-bit),
or determined dynamically. In the latter case, the range of the
salient region can be computed dynamically from prominent
peaks in the histogram plot of intensities of the saliency map.
Local minimum points on the plot can serve as transition
points between the saliency levels. Since the number of such
“separation” points can be pretty high, one can establish a
slope threshold. If the change between two points on the
histogram is less than a given threshold, then the transition
point can be omitted.

The most significant difference is noticed only during the
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TABLE I: Computation time (sec) of DCT, averaging 8 × 8 × 8 voxels (Avg.), and saliency maps (Sal.). We also compare
decoding time (sec) for multi-iteration (Iter. 1-4) transmission based on our saliency-guided scheme, as well as the total
combined sum of all, and the first three iterations with lossless compression for the full dataset using Haar wavelet and SPIHT
(top: performed on LG Nexus 4; bottom: performed on Microsoft Surface Pro).

Dataset Size DCT Avg. Sal. Iter. 1 Iter. 2 Iter. 3 Iter. 4 Combined (Iter.1-4) Combined (Iter.1-3) Full dataset

Engine 256×256×128 0.16 0.10 0.45 0.98 0.52 0.07 1.82 3.38 1.56 2.55

0.59 0.29 0.06 1.12 2.06 0.94 1.74

Bonsai 256×256×256 0.41 0.22 1.05 2.02 0.52 0.34 2.42 5.30 2.88 5.65

1.38 0.35 0.21 1.40 3.33 1.93 2.9

Foot 256×256×256 0.33 0.22 0.94 3.09 0.75 0.11 2.52 6.47 3.95 5.33

1.80 0.48 0.09 1.48 3.85 2.38 3.44

Heart 256×256×256 0.36 0.22 1.07 3.56 1.92 0.67 2.50 8.65 6.15 5.97

1.76 1.17 0.36 1.10 4.39 3.42 3.76

Korean 256×256×256 0.35 0.19 1.09 3.63 0.62 0.08 2.30 6.62 4.33 4.99

1.90 0.36 0.04 1.10 3.40 2.31 3.08

Vismale 256×256×256 0.32 0.22 0.94 1.64 0.35 0.07 1.65 3.70 2.06 2.94

1.01 0.24 0.05 0.95 2.24 1.29 2.01

Heart1 512×512×512 2.88 1.56 7.09 16.14 4.84 1.56 147.01 169.54 22.53 278.86

9.32 3.01 1.03 79.10 92.46 13.36 173.64

Heart2 512×512×512 2.92 1.52 6.94 17.99 12.66 6.84 65.90 103.39 37.49 265.70

10.38 7.86 4.54 35.46 58.24 22.78 165.45

first step of the transmission, as later the entire volume is
fully reconstructed. Fig. 6 shows progressive refinement after
consecutive transmissions of the Bonsai tree.

VI. RESULTS

In this section, we discuss and compare the construction
of the saliency maps, their quality based on both objective
and subjective perceptual metrics, and the performance of the
coding algorithms. Compression is done on an Intel Xeon E5-
2620 2.0GHz workstation with 8 GB RAM and GeForce GTX
670 graphics with 2 GB memory. Decompression is performed
on two mobile devices: LG Nexus 4 (Qualcomm Snapdragon
S4 Pro 1.5GHz and 2 GB RAM) and Microsoft Surface
Pro (Intel i5-3317U 1700.0 MHz, Intel HD4000). The only
requirement of the method is support for decoding algorithms
such as SPIHT, EBOCT, or ESCOT.

A. Objective Evaluation

For objective quality evaluation, we first assess the per-
formance of the saliency maps. We then evaluate the visual
quality of the rendered objects based a visual quality metric.
Lastly, we compare the compression rates between our method
and SPIHT, EBCOT, and ESCOT, and decoding times between
our method and SPIHT.

Computation time and performance of saliency maps.

In order to justify the use of saliency maps, the overall
computation overhead of these maps should be insignificant.
Table I shows the computation time for the saliency maps.
Although our implementation for creating saliency maps is not
fully optimized, the average computation times of the saliency
map for a 256

3 volume and 512
3 volume are 1.02 and 7.01

seconds, respectively.
Three out of six features (intensity and two colors) can

be obtained by averaging voxels. Hence, we compare the
computation time for the DCT-based saliency map and the
simple voxel averaging based method (Table I). Essentially,

(a) (b)

(c) (d)

Fig. 7: Comparison of DCT-based (left column) and averaging-
based (right column) saliency maps. (a) and (b) Bonsai dataset,
and (c) and (d) Foot dataset. Generally, DCT based saliency
maps capture more details than averaging based saliency maps.

averaging voxels results in some reduction of time, however,
it is only suitable for simple objects (Fig. 7).

Compression rates, decoding time, and decoding CPU

samples. Progressive transmission and compression of the
volumetric data according to the constructed maps enables the
initial examination of the most salient regions. Refinement
of the data in the order of its saliency allows the viewer
to explore a large amount of information much faster. Our
experiments have shown that separate salient regions result in
a good compression ratio, and carry a sufficient amount of the
information for data exploration, as determined by the user
who selected or designed the TF.

Table II shows the compression rates for each saliency
region. For comparison, we set the number of saliency re-
gions/iterations to four and define ranges of the regions to be
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TABLE II: Compression rate (bits per voxel) comparison. We compare the compression rate for our multi-iteration (Iter.)
transmission based on our saliency-guided scheme, as well as the total combined sum of all, and the first three iterations with
the lossless compression ratio for the full dataset. Three coding algorithms (SPIHT, EBCOT, ESCOT) have been evaluated
with Haar wavelet transform. All the datasets are in 8-bit precision.

Dataset Size Iter. 1 Iter. 2 Iter. 3 Iter. 4 Combined (Iter. 1-4) Combined (Iter. 1-3) Full dataset
Engine (SPIHT) 256×256×128 0.77 0.39 0.08 1.45 2.70 1.24 2.22
Engine (EBCOT) 256×256×128 0.60 0.26 0.03 1.24 2.35 1.12 1.87
Engine (ESCOT) 256×256×128 0.59 0.26 0.03 1.22 2.09 0.88 1.83
Bonsai (SPIHT) 256×256×256 0.87 0.24 0.41 0.78 2.30 1.52 1.85
Bonsai (EBCOT) 256×256×256 0.67 0.12 0.23 0.54 1.57 1.02 1.44
Bonsai (ESCOT) 256×256×256 0.65 0.13 0.24 0.67 1.68 0.01 1.42
Foot (SPIHT) 256×256×256 1.19 0.32 0.06 0.97 2.54 1.57 2.23
Foot (EBCOT) 256×256×256 1.00 0.21 0.02 0.79 2.01 1.22 1.92
Foot (ESCOT) 256×256×256 0.94 0.20 0.02 0.84 2.00 1.16 1.91
Heart (SPIHT) 256×256×256 1.15 0.78 0.25 0.73 2.90 2.18 2.40
Heart (EBCOT) 256×256×256 0.97 0.62 0.16 0.60 2.34 1.74 2.11
Heart (ESCOT) 256×256×256 0.83 0.54 0.15 0.80 2.32 1.51 2.09
VisMale (SPIHT) 256×256×256 0.68 0.15 0.02 0.46 1.31 0.85 1.17
VisMale (EBCOT) 256×256×256 0.48 0.10 0.01 0.45 1.03 0.58 0.97
VisMale (ESCOT) 256×256×256 0.48 0.10 0.01 0.49 1.09 0.60 0.95
Heart1 (SPIHT) 512×512×512 0.71 0.24 0.08 1.36 2.40 1.03 2.04
Heart1 (EBCOT) 512×512×512 0.37 0.11 0.03 0.97 1.47 0.51 1.34
Heart1 (ESCOT) 512×512×512 0.48 0.13 0.03 1.07 1.71 0.64 1.30
Heart2 (SPIHT) 512×512×512 0.64 0.46 0.25 0.96 2.30 1.35 1.93
Heart2 (EBCOT) 512×512×512 0.35 0.24 0.12 0.70 1.41 0.71 1.26
Heart2 (ESCOT) 512×512×512 0.49 0.30 0.13 0.80 1.73 0.93 1.22
Heart (SPIHT) 512×512×1024 0.78 0.14 0.03 1.43 2.27 0.96 2.03
Heart (EBCOT) 512×512×1024 0.48 0.14 0.04 1.00 1.65 0.65 1.52
Heart (ESCOT) 512×512×1024 0.60 0.13 0.04 1.01 1.78 0.77 1.34

TABLE III: CPU sample comparison for decoding by using the sampling profiling method on a mobile device (Microsoft
Surface Pro). We compare the decoding CPU samples for our multi-iteration (Iter.) transmission based on our saliency-guided
scheme, as well as the total combined sum of all, and the first three iterations with the lossless compression ratio for the full
dataset, using the SPIHT coding scheme. All the datasets are in 8-bit precision.

Dataset Size Iter. 1 Iter. 2 Iter. 3 Iter. 4 Combined (Iter. 1-4) Combined (Iter. 1-3) Full dataset
Abdomen CT 256×256×256 396 11 11 370 788 418 764
Bonsai 256×256×256 278 20 22 304 624 320 549
Heart1 512×512×512 9,930 2,681 860 50,971 64,442 13,471 109,638

constant across datasets. At the first iteration, the amount of
data to be transmitted is often less than half compared to the
lossless compression of the entire dataset. The time to decode
the data (Table I) at the first iteration takes less than half or one
tenth of the lossless decoding time for 256

3 datasets and 512
3

datasets, respectively. However, the viewer can already see
most of the data without any additional noise (Figs 8(b) and
2(b)(1)) after the first iteration. The rendering is progressively
refined further as the remaining data is received. Furthermore,
we moved voxels with non-zero opacity in the last iteration
to the third iteration because most of the voxels in the last
iteration of our progressive transmission have zero opacity.
Thus, all of the voxels in the last iteration have zero opacity.
As a result, on the target device, 3D rendering with a TF used
for creating the saliency map will result in visually lossless
rendering, while the remaining data is transmitted and received
in the background. Additionally, we measured CPU samples
for decoding by using the sampling profiling method because
we can predict the performance of our method by using it,
and it has a significant effect on power consumption [58]. As
shown in Table III, for the first three iterations, the amount

of CPU samples for decoding is less than half compared to
the lossless compression of the entire dataset while we can
achieve visually lossless rendering of the input dataset. As
data accumulates on the receiving device, regions are merged,
and lossless reconstruction of the entire volume is obtained at
effectively no cost due to the lack of redundancy between the
regions.

Compression with and without saliency maps. To evaluate
visual quality of the rendered objects objectively, we used
the percentile based multi-scale structural similarity index
(PMS-SSIM) metric [59] between input volume colored by
the TF and transformed data (Table IV). We have constrained
the bit budget of the compression without saliency maps
to the number of bits required for the transmission of the
corresponding saliency interval and computed the PMS-SSIM
metric on the decompressed volumes. In the first iteration,
compression without saliency maps has given quantitatively
better results in most cases, except for the abdomen CT and
brain MRI datasets. However, in the second iteration, the
visual quality of more than half of the datasets with our
method is similar to or better than one without saliency maps.
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Fig. 8: Progressive rendering of the sample 256
3 datasets: I. Heart, II. Foot, III. Visible Korean. (a) Saliency maps and the

results of transmission (b) at the first iteration, (c) second iteration, (d) third iteration, and (e) fourth iteration. Top: rendered
image; bottom: corresponding blocks in quantized saliency maps.

TABLE IV: Comparison of the percentile based multi-scale structural similarity index (PMS-SSIM) [59] for the entire volume
(Vol) in each iteration (Iter.) and the signal-to-noise ratio (SNR) and the peak signal-to-noise ratio (PSNR) for the blocks of a
given saliency interval (Blk) in the first iteration, using the SPIHT coding scheme with and without our saliency-aware method
(Sal.) constrained by the same bit budget for compression. Bit budget was determined based on the budget required by the
corresponding iteration of our method.

Dataset Vol: SSIM Blk: SNR (dB) PSNR (dB)
Iter. 1 Iter. 2 Iter. 3 Iter. 1

W/ Sal. W/O Sal. W/ Sal. W/O Sal. W/ Sal. W/O Sal. W/ Sal. W/O Sal. W/O Sal.
Abdomen CT 0.9975 0.9868 0.9975 0.9869 1 0.987 Inf 27.86 44.90

Brain MRI 0.9984 0.9883 0.9984 0.9983 1 0.9884 Inf 31.98 44.10
Bonsai 0.7745 0.9649 0.9373 0.9671 1 0.9704 Inf 27.51 42.36
Engine 0.4186 0.9418 0.815 0.9447 1 0.9532 Inf 32.11 43.94

Foot 0.8016 0.9678 0.9919 0.9743 1 0.9754 Inf 22.44 41.37
Heart CT 0.6814 0.9694 0.893 0.9771 1 0.9884 Inf 24.25 41.85
VisKorean 0.6609 0.9787 0.8889 0.9811 1 0.9817 Inf 31.27 42.83
VisMale 0.8353 0.9649 0.9586 0.9698 1 0.9702 Inf 17.06 41.12

Moreover, in the third iteration, our approach is better than the compression without saliency maps. Additionally, we used
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(a) (b)

(c) (d)

(e) (f)

Fig. 9: Compression with and without saliency maps. (a), (c)
and (e) Brain MRI and (b), (d) and (f) abdomen CT. (a) and (b)
show the original data. (c) and (d) show the result of SPIHT
with a saliency map. (e) and (f) show the results from SPIHT
without a saliency map. The size of the compressed volume
from both of our methods and the SPIHT without saliency are
the same.

the signal-to-noise ratio (SNR) and the peak signal-to-noise
ratio (PSNR) to measure noise only for the blocks within
a given saliency interval in the first iteration. Our method
achieves perfect reconstruction in the salient regions while
the standard method without saliency suffers from noise in
those areas (Table IV). PMS-SSIM might not be an optimal
way of qualitative comparison of the decompressed volumetric
data. We think that it may be subjective to the viewer whether
an image with additional noise is acceptable (Fig.9), so we
included this aspect in our subjective evaluation.

Wavelet-based scalable coding vs. H.264 & HEVC. Our
method is based on a wavelet-based scalable coding. Recently,
H.264 and HEVC have been used for 3D lossy compression
and even for 3D lossless compression [60]. We ran H.264
and HEVC (Main-Rext profile) with inter-frame prediction
mode and computed the compression rates (Tablee V). For

TABLE V: Compression rate (bits per voxel (BPV)) compar-
ison. We compare the compression rate between H.264 and
HEVC. We also compute the BPV difference between HEVC
and a wavelet based scalable coding (EBCOT). All the datasets
are in 8-bit precision.

Dataset Size H.264 HEVC ∆BPV
Engine 256×256×128 2.00 1.74 -0.13
Bonsai 256×256×256 1.35 1.16 -0.27
Foot 256×256×256 2.05 1.82 -0.09
Heart 256×256×256 2.26 1.99 -0.11
VisMale 256×256×256 0.89 0.80 -0.15
Heart1 512×512×512 1.93 1.58 0.24

Heart2 512×512×512 1.85 1.51 0.25

Heart 512×512×1024 1.89 1.54 0.03

TABLE VI: Compression rate (bits per voxel) comparison. We
compare the compression rate for multi-iteration (Iter.) and
transmission based on our saliency-guided scheme, as well
as the total combined sum of all iterations to the lossless
compression ratio for the full dataset using Haar, CDF 5/3 and
9/7 wavelets, using the SPIHT coding scheme. The datasets
are 8-bit, 256

3.

Wavelet Iter. 1 Iter. 2 Iter. 3 Iter. 4 Combined Full dataset
Haar 0.68 0.15 0.02 0.46 1.31 1.18

CDF 5/3 0.58 0.38 0.05 0.73 1.74 1.04
CDF 9/7 0.86 0.70 0.12 1.10 2.78 1.41

volumetric datasets, HEVC outperformed H.264. HEVC out-
performed a wavelet-based scalable coding (EBCOT) for small
volumetric datasets (≤ 256 × 256 × 256). However, for large
volumetric datasets (≥ 512 × 512 × 512), the wavelet-based
scalable coding was better than HEVC in terms of compression
rates. Medical data, one of our target domains, contains more
noise as compared to many other 3D volumetric data. This
might explain why the wavelet based coding is better than
HEVC for medical datasets with high resolution. Modern
medical scanners produce large volumes of data per patient
at high resolution, so the wavelet coding can be optimal for
these large medical datasets.

Types of wavelet transforms. Earlier, we mentioned the se-
lection of the Haar wavelet transform. While this transform can
be replaced for analysis of spatial and temporal redundancy, in
our case, it provides a better compression ratio. It is intuitively
correct because the Haar wavelet results in a higher proximity
of transform coefficients. Construction of the coefficient maps
directly benefits from the proximity of the coefficients, as more
of them can be grouped together. Table VI shows a numeric
comparison of the resulting compression ratios for the Visible
Korean dataset based on the Haar wavelet transform and CDF
5/3 and 9/7 wavelet transforms when used with the SPIHT
coding scheme.

B. Subjective Evaluation

To evaluate the quality of saliency maps subjectively, we
conducted a user study consisting of two parts: an eye tracking
based study of the data saliency and a subjective quality
evaluation of the results of progressive transmission. A total
of 17 participants took part in the study (3 female), ages 23 to
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TABLE VII: Performance (AUC) comparison for saliency
maps between the proposed model and other existing meth-
ods [7, 19].

Dataset Orientation Itti et al. [7] Imamoglu et al. [19] our model
Abdomen CT 1 0.73 0.73 0.77
Abdomen CT 2 0.71 0.69 0.76

Bonsai 1 0.76 0.77 0.77
Bonsai 2 0.79 0.80 0.79

Heart CT 1 0.75 0.77 0.77
Heart CT 2 0.72 0.76 0.77

37 (mean 29.4±4.5). All of the participants were asked about
their experience in visualization (mean 3.06±1.56) and image
processing (mean 3.06 ± 1.3) on a scale from 1 (novice) to 5
(expert).

Eye tracking based evaluation results. In the eye tracking
experiment, participants were asked to look at three datasets
such as bonsai, heart, and abdomen CT from two different
orientations each for 5 seconds. We used the Pupil Labs
eye-tracker which can record eye movements continuously at
120Hz. The study was conducted on a 15-inch LCD monitor
with a resolution of 1920×1080, placed at a distance of 60cm
from the subjects. Between each viewing, a square with a cali-
bration circle in one of the corners was shown for 2 seconds to
the user to avoid any artificial center bias [61]. The locations of
the circles were counterbalanced between participants. Since
there are no standard metric to evaluate similarity between
eye fixation density maps and 3D saliency maps, we used the
area under the receive operating characteristics curve (AUC)
exploited in previous work [62] for evaluating stereoscopic
3D visual saliency. Table VII shows that our method is as
good/better as previously proposed methods [7, 19]. Our goal
is to transmit salient parts/objects first, so we need to detect
salient objects, not salient points/voxels. However, the eye
fixation density maps can provide us with only gazed points,
so evaluation with the eye fixation density maps can reveal the
effectiveness of our saliency maps partially. For example, our
method selects more region of the heart, as compared to [19]
(Fig. 10).

Subjective quality evaluation results. In this part of the
study participants were asked to compare the resulting ren-
derings of the datasets compressed with and without saliency
against the original data. The study was conducted on a 27-
inch LCD monitor with a resolution of 2560×1440, placed at
a distance of 60cm from the subjects. For each comparison
the user was asked the following questions:

• Which rendering is visually better as compared to the
original?

• Is a rendering image similar to the original?
• Can you see salient parts clearly as compared to the original?

The results of the later two questions were recorded on
a 7 point Likert scale for both renderings with and without
saliency. Each participant was asked to perform 72 compar-
isons (3 datasets x 2 rotations x 2 clipping planes x 2 zoom
factors x 3 iterations).

Table VIII summarizes selections broken down by dataset,
their rotations, zoom factor, presence of the clipping plane,
and iteration. A two-sided Chi-square test was performed on

(a)

(b)

(c)
Fig. 10: Comparison of saliency maps obtained with two
different TFs (left and right columns). (a) Rendered datasets,
(b) with averaged IWT-based saliency maps, and (c) with our
DCT-based saliency maps.

all of the levels of independent variables (in Table VIII) to
determine whether there is no preference between methods
with and without saliency. All of the variables have shown to
have statistical significance (p < 0.001). Hence, two methods
cannot be considered to have the same subjective quality.
As the percentages in Table VIII show, participants have
indicated more preferences towards the method with saliency.
On average, the rendering resulting from compression with a
saliency-based method was selected to be visually better as
compared to the original in 74.7% of the cases. Participants
were more likely to select the saliency-based compression
method on the third iteration (82%) of the transmission.
However, the selection varied among the datasets.

Likert scores were analyzed using two-way repeated ordi-
nal regression with cumulative link mixed models (CLMM).
While the goal of our analysis is to evaluate the effect of the
iteration on the Likert score among two methods (with and
without saliency), there was a difference in total number of
user preferences across the datasets as well. Hence, for this
analysis, first, we consider two independent variables, iteration
and method, as well as possible differences between the partic-
ipants (a blocking variable), assuming that some participants
may be consistently lower/higher in all responses. Second, we
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TABLE VIII: Summary of the user preferences in the sub-
jective evaluation study: percent of selection of the saliency-
based compression method (number of selections/number of
renderings at this independent variable level).

Variables Levels
Iteration I II III

70% (287/408) ** 72% (294/ 408) ** 82% (335/408) **
Dataset Abdomen CT Heart Bonsai

95% (388/408) ** 67% (275/408) ** 62% (253/408) **
View Zoomed Clipped Rotated

75% (457/612) ** 75% (456/612) ** 76% (462/612) **

**= p < 0.001

Fig. 11: Median Likert score for interactions between itera-
tion/dataset and method.

also analyze the effect of dataset on Likert scores among two
methods. We perform analysis using the R language clmm

function from the ordinal package. p-values for the main and
interaction effects were obtained using ANOVA analysis of
the deviance table. When a significant effect was determined,
a post-hoc analysis was performed using least square means
for multiple comparisons with Tukey adjustment.

Clarity of the rendering. ANOVA has shown a significant
main effect of both iteration (χ2(df = 2) = 13, p = 0.002)
and method (χ2(1) = 320, p < 0.001) on user selection based
on rendering clarity. Additionally, there was an interaction
between method and iteration (χ2(2) = 25, p < 0.001). In
this and all of the analysis below N = 2448.

ANOVA has shown a significant main effect of both dataset
(χ2(2) = 50, p < 0.001) and method (χ2(1) = 331, p < 0.001)
on user selection based on rendering clarity, and an interaction
between method and dataset (χ2(2) = 303, p < 0.001).

Similarity of the rendering. ANOVA has shown a signifi-
cant main effect of both iteration (χ2(2) = 27, p < 0.001) and
method (χ2(1) = 468, p < 0.001) on user selection based on
similarity of the renderings, and interaction between dataset
and iteration (χ2(2) = 25, p < 0.001). Additionally, ANOVA

TABLE IX: Mean Likert score for the zoom factor (zoom and
no zoom) in the Bonsai dataset with (W/) and without (W/O)
saliency.

Question Dataset Iter. 1 Iter. 2 Iter. 3
W/ W/O W/ W/O W/ W/O

Similarity Zoom 5.20 5.19 5.46 5.25 6.02 5.16
No Zoom 5.12 5.46 5.22 5.49 5.96 5.09

Clarity Zoom 5.22 5.53 5.35 5.56 6.10 5.47
No Zoom 5.15 5.60 5.27 5.59 5.99 5.47

has shown a significant main effect of both dataset (χ2(2) =
102, p < 0.001) and method (χ2(1) = 476, p < 0.001) on user
selection on similarity of the renderings, and an interaction
between method and dataset (χ2(2) = 396, p < 0.001).

Post-hoc analysis for clarity and similarity. Because
interaction terms in all of the models were significant, we
plot interaction between the variables (Fig. 11). Interactions
sharing a letter in each chart are not significantly different at
the α = 0.05 level. From this it is easy to see that median
Likert score for method with saliency is consistently higher
for all iterations (Fig. 11 top and bottom left charts). Our
method with saliency on the second and third iteration is
actually considered to be within the same group (Fig. 11 top
left chart), even though the median Likert scores are different.
Thus, there is an indication that the our method with saliency
produces equivalent results on second and third iteration. The
Abdomen CT dataset appears to be in a different group from
both the Heart CT and Bonsai (Fig. 11 bottom right chart).
It is interesting to see this pattern because this may indicate
dependence of the method not only on the data type (medical
CT or other data CT) but also on the transfer function used.
In Fig 11, there is little difference between two methods on
median Likerts scores of similarity and clarity for the bonsai
dataset. However, when we zoomed the images, participants
expressed that the compression with saliency was closer to
the original datasets for all iterations, as compared to the one
without saliency (Table IX). Moreover, at the third iteration,
the compression with saliency was overall better than the one
without saliency in terms of similarity and clarity.

VII. DISCUSSION

There are several important modification that one might
consider for the proposed saliency-based compression method.
First, the question becomes, why not exploit IWT for the
saliency computation [19] as it is already computed for the
lossless compression which is the target of our application?
In order to compare the IWT based saliency map to the DCT
based map at the same scale, we downsampled the IWT map
by averaging to the size of the DCT one (Fig. 10 (b)). Thus, the
size of the computed wavelet saliency map is equal to the size
of our DCT-based map, which is only (M/B)3 (M = volume
size, B = block size). Selection of IWT transform results in
a different type of saliency map. As Fig. 10 (b) shows, the
averaged wavelet-based saliency map assigns higher saliency
values to edges of structures, which is what is to be expected
due to wavelet properties. The DCT-based map selects the
entire region of the heart to be more salient against the lungs
due to its region or block-based nature. The latter will result
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(a) (b) (c)

Fig. 12: (a) and (b) Saliency maps from different TFs for a
heart dataset, and (c) a saliency map from averaging (a) and
(b).

in the selection of the heart and areas around it to be coded
and transmitted first. Note that the selection of the TF applied
to the scan is arbitrary and for an illustrative purpose and does
not carry any diagnostic significance.

Secondly, a modification of DCT, called overlapped DCT,
may be used to reduce decompression artifacts for encoding
in some applications. Our method employs DCT only for the
computation of a volumetric block saliency and not for the
encoding itself. Hence, such modification is not suitable in
this case.

In general, the saliency of the volumetric data should be
defined for the final image on the screen, so it needs to
account not only for the volumetric data itself, but also for
the TF that has been applied to it, and, most importantly,
camera position. However, when a camera position is used,
it is necessary to recompute a saliency map whenever a user
interacts with the volumetric object and the camera position
changes. In our scenario, this puts a significant burden on
the transmission channel instead of alleviating it. Hence,
we approximate the saliency of objects and generate a 3D
camera-independent saliency map that fits the requirement for
progressive rendering.

Saliency map generation relies on a TF which can be pre-
defined for a specific application (for example, medical CT
data), or presented in the form of thumbnail images for user
selection.

There are several options to create saliency maps based on
TFs. For example, one can generate a saliency map based on
a single TF. Another method applies different TFs to the same
dataset and averages the intensity and color from different TFs
to one volume. In the latter method, the computation time for
a saliency map from the final volume increases slightly (2%
in Fig. 12), but the result of the method highlights common
salient objects (Fig. 12) among different TFs.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel framework for
progressive saliency-based visualization of compressed vol-
umetric data. Our method detects the 3D volumetric salient
regions by incorporating a block-based weighted averaging
(3D DCT) with a predefined or user-defined TF. The size
of the created saliency map is orders of magnitude smaller
than the original volume, which results in a block structure
of the map. In order to utilize these maps for progressive
transmission and rendering, we first separate the volume into
several parts. These salient volume parts are constructed based
on the ranges of the values in the saliency map. The ranges can

be constant or vary dynamically. More importantly, we reduce
additional redundancy in the transform coefficients before the
coding step of the compression by combining blocks with their
neighbors depending on the saliency similarity. Compression
and transmission of the 3D volumetric data is scheduled based
on the ranges of the saliency values starting from the highest.
The receiver obtains only a set of data from one saliency range
at a time without losing any details, and decompresses and
renders it after combining it with previously obtained data.
Users can see most of the data in the first two ranges, which
reduces the size of the compressed data and the decompression
time compared to the lossless compression of the entire data.

In our method, the TF must be set by the user before
starting the computation of the saliency map. We plan to
study a way to detect saliency of data based on clustering
voxel values, gradient magnitudes, curvatures, and/or occlu-
sion without applying the TF. An alternative to our step-
by-step transmission with several separate bitstreams would
be reordering a single bitstream based on the saliency order.
Hence, we would obtain volumetric scalability by saliency,
which is similar to scalability by VOI. Lastly, we will apply
our method to other types of data such as 3D mesh and
depth data. For example, users can set the priority of objects
in a scene, which is similar to assigning opacity to voxels
in designing TFs. Objects then are progressively transmitted
based on their priorities.
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