Lo~ WU B WN R

13

14
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

In situ 3C and $'30 microanalysis by SIMS: A method for characterizing the
carbonate components of natural and engineered CO:-reservoirs

Maciej G. SLIWINSKI", Kouki KITAJIMA!, Reinhard KOZDON"2 Michael J. SPICUZZA,
Adam DENNY' and John W. VALLEY"

! WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI, 53706
*Corresponding author: msliwinski@wisc.edu

2 Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, 10964

Abstract
This work addresses the potential utility of in sifu carbon and oxygen isotope microanalysis (813C and 5'%0)

by secondary ion mass spectrometry (SIMS) in carbon sequestration research. A desirable long-term consequence of
COs-injection into underground rock formations at prospective sequestration sites (such as deep saline sandstone
aquifers capped by impermeable strata) is the precipitation of carbonate mineral cements, the isotopic fingerprinting
of which is a central theme here. More specifically, we focus on the unique advantage of the SIMS technique, which
lies in the capability of analyzing very small sample volumes that are otherwise inaccessible to sampling techniques
in conventional isotope ratio mass spectrometry (IRMS). For example, single carbonate crystallites as small as 3-10
pnm across can be readily analyzed by SIMS with sub per-mil (%o) accuracy and precision. Importantly, the ability to
perform micrometer-scale measurements in sifu from either thin sections or 1-inch (25 mm) diameter polished core
plugs preserves the petrographic context of measured carbonate §'*0 and 8'*C values.

We provide a preliminary characterization of the pre-injection mineralogy and isotopic fingerprints of
carbonate cements in the Mount Simon Sandstone reservoir and the overlying shaly caprock (the Eau Claire
Formation) at the Illinois Basin Decatur Project, a demonstration and research site for exploring the feasibility of
long-term CO- storage in a deep saline aquifer. By drawing upon published data on ambient reservoir conditions and
the isotopic composition of the injected CO,, we make simple predictions regarding possible §'3C values of calcite,

dolomite-ankerite, and siderite cements that may form in response to long-term CO; storage.

Key words: carbon sequestration, natural analogues, carbonate cements, carbon isotopes, SIMS

microanalysis, Illinois Basin, Illinois Basin Decatur Project
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Introduction

Geological storage of carbon dioxide gas (CO-) emissions produced by human industrial
and agricultural activities is actively being evaluated as a means of mitigating global climate
change (e.g., Bachu et al., 1994; Celia et al., 2015; DePaolo and Cole, 2013; DOE, 2010; IPCC,
2005; Lackner et al., 1995; Matter et al., 2016; Power et al., 2013). Capturing CO; from
stationary point sources (e.g., coal-fired power plants) and storing it in geological environments,
such as in deep saline aquifers, 1s a technologically feasible (e.g., Hosa et al., 2011; Michael et
al., 2010, 2009) and potentially viable stand-in solution for some time to come as societies
gradually transition to alternative, and more sustainable, clean energy-producing technologies
(e.g., Baines and Worden, 2004a; Bickle, 2009; Celia et al., 2015; Gale, 2004; Hoffert et al.,
2002; Lackner, 2003). At present, the large-scale deployment and implementation of this carbon
capture and storage (CCS) strategy is seemingly impeded first and foremost by economic
inconvenience (e.g., Celia et al., 2015; Gibbins and Chalmers, 2008; Michael et al., 2009; Orr,
2009; Wigley et al., 1996).

An important objective of research efforts concerned with the feasibility of sequestering
carbon 1n a variety of potentially suitable geological environments (e.g., deep saline sandstone
aquifers, depleted oil and gas reservoirs, unmineable coal seams, flood basalt provinces or
ultramafic rock formations; Baines and Worden, 2004a; McGrail et al., 2006) is the ability to
make realistic predictions about the long-term fate of stored CO; (on a time scale exceeding
10,000 years). A recent volume of Reviews in Mineralogy and Geochemistry showcases some of
the modern techniques and approaches that are being applied in this field of research (DePaolo

and Cole, 2013) and outlines the leading geologically-oriented thematic questions; among others,
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these include the following: What i1s the relative importance of different CO»-trapping
mechanisms in different types of prospective reservoirs, and how long are they effective (e.g.,
structural/stratigraphic or solubility trapping vs. carbon mineralization; Gunter et al., 2004)?
What geochemical reactions are likely to occur (and at what rates) between the waters/brines in
geological formations that become reactive due to CO»-charging and the specific mineralogy of a
given reservoir-caprock system? What is the capacity for reactions to consume CO> and produce
carbonate mineral cements, where in the system will such cements form, and over what time
scales are such reactions likely to occur? This process, referred to as carbon mineralization (or
mineral trapping), is the most secure and effectively permanent form of long-term CO> storage.
Much insight into many of the above questions concerning the long-term fate of
sequestered CO> comes from studies of so called natural analogues, or geological environments
where large quantities of CO; have accumulated and remained confined over geologic time
scales (e.g., Baines and Worden, 2004b; Bickle et al., 2013). Such accumulations exist, for
example, 1 certain deeply-buried permeable sandstone formations (saline aquifers/reservoirs)
that are overlain by effectively impermeable sediments that act as seals (or 'caprocks', e.g., shales
or salt beds; Haszeldine et al., 2005; Heinemann et al., 2013; Lu et al., 2011, 2009; Pearce et al_,
1996; Sathaye et al., 2014; Watson et al., 2004; Wilkinson et al., 2009). For a given reservoir-
caprock system, studies of natural analogues help to characterize the predominant fluid-mineral
reactions that could be reasonably expected during engineered CO; storage and allow for
estimating rates of carbon mineralization. They further provide a means of ground-truthing (or
'history-matching') the results of geochemical models that seek to predict how a particular type
of reservoir will evolve in the long-term as its mineralogy is subjected to a CO; charge. In this

regard, the knowledge gained from natural analogues is indispensable for the simple reason that
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rates of geochemical reactions are generally not well constrained at the relatively low
temperature conditions of many prospective CO; storage reservoirs, which severely limits the
predictive power of models. Gaines and Worden (2004b) make an elegant point in noting that a
model generally "tells us how a rock [or given reservoir unit] should evolve to reach
thermodynamic equilibrium, not whether it will evolve," and does not "inform us how long (or
even if) a reaction will occur."

With regards to estimating rates of carbon mineralization in a given reservoir-caprock
system, a substantial difficulty in natural analogue studies commonly lies in distinguishing
carbonate cements that precipitated as an eventual consequence of natural CO;-charging from
those cements that may have formed during earlier stages of sediment alteration (Heinemann et
al., 2013; Wilkinson et al., 2009). In the case of sandstone reservoirs, the presence of earlier-
formed carbonates would not be unusual as carbonate minerals are a predominant cement type in
such rocks types (Morad, 2009). Measurements of stable isotope ratios of carbon and oxygen
(8'3C and 80, respectively) can serve as a useful diagnostic tool; however, drawing distinctions
based on the results of conventional sampling techniques (or step-wise acid-digestion
procedures) can be complicated because a thorough mechanical separation of different carbonate
cement populations is often not possible due to small crystal size (or steep compositional
gradients in larger crystals).

This study aims to demonstrate the applicability in carbon sequestration research of
recent advances in the analytical methods of measuring carbon and oxygen isotope ratios in
carbonate minerals by secondary ion mass spectrometry (SIMS). This technique allows for
micrometer-scale measurements to be made in situ from either thin sections or 1-inch diameter

core plugs, thus preserving the petrographic context of analyzed sample volumes (e.g., Sliwinski
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et al., 2015a, 2015b; Valley and Kita, 2009). To this end, we provide a preliminary
characterization of the mineralogy and the isotopic fingerprints of the major existing carbonate
cement generations in the upper Mt. Simon Sandstone reservoir and the overlying Eau Claire
shale at the Illinois Basin Decatur Project site (IBDP; Fig. 1), where 1 million metric tons of CO»
have now been successfully injected to demonstrate the technological feasibility of sequestration
in a deep saline sandstone reservoir (DOE, 2010; Leetaru et al., 2009; Leetaru and Freiburg,
2014). The technique we describe may more broadly find use as a tool for monitoring the
progress of carbonate mineral cement-forming reactions within reservoir-caprock systems,
especially during the early post-injection period (years to decades?), when only small volumes of
new carbonate will likely be forming. As little as 3 micrometers (um) of new cement growth
could be readily analyzed by SIMS with sub-per mil accuracy and precision, and such data could
conceivably be the basis for quantitative, up-scaled reservoir simulations that attempt to predict
the eventual volume of CO. that may become securely trapped in mineral form. Smaller,
nanometer-scale domains can be analyzed using a sub-um spot (Page et al., 2007) for systems

where compositional contrasts are greater.

2. Methods

The sandstone beds examined in this study were collected from the transition zone
between the upper unit of the Upper Cambrian Mt. Simon Sandstone and the basal unit of the
overlying Eau Claire Fm. from core material recovered from the IBDP Verification Well #1 (Fig.
1), at depths of 1680.4 m (5513.2 ft), 1677.3 m (5502.9 ft), and 1676.8 m (5501.3 ft) (this depth
interval corresponds to Unit A of Palkovic (2015) - see Fig. 4.1 therein). Due to sampling

restrictions, the overlying Eau Claire Fm. was sampled from core material from a well in a
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nearby county, ~75 km (~45 miles) to the WSW of IBDP (C13637, at a depths of 1096.5 m
(3597.5 ft), 1096.7 m (3598 ft) and 1094.8 m (3592 ft); Fig. 1).

Subsamples of core (Fig. 2) were first roughly polished using a series of diamond-
embedded abrasive pads (20, 10 and 6-um) and examined by scanning electron microscopy
(SEM; Hitachi S3400-N) to quickly and efficiently locate carbonate-cemented intervals. For this
initial examination, the sample surfaces were not coated with a conductive material (e.g., with
carbon, Au, Ir, etc.) as is customary for high-resolution imaging, and the SEM was instead
operated in variable-pressure mode to reduce the detrimental effects of charging on image
quality. Carbonate cements were identified using energy-dispersive x-ray fluorescence
spectroscopy (ED-XRF; ThermoFisher detector coupled to SEM).

A further sub-sample (ca. 1 cm?) was taken from well-cemented intervals and cast into
25-mm diameter epoxy mount (Mt. Simon sampled at 1680.4m / 5513.2 ft (see Fig. 2c), Eau
Claire at 1096.5 m / 3597.5 ft). As is standard practice at the WiscSIMS laboratory, several
grains of microanalytical reference materials (RMs) were embedded in the center of each mount
for the purposes of monitoring instrumental drift and for correcting sample matrix effects during
subsequent isotope ratio analyses by SIMS. The following RMs were used: dolomite "UW6220"
(80 = 22.60%o relative to Vienna Mean Standard Ocean Water (VSMOW), §C = 0.84%o
relative to the Vienna PeeDee Belemnite standard (VPDB); Sliwiniski et al., 2015a,b) and quartz
"UWQ-1" (830 = 12.33%0 VSMOW:; Kelly et al., 2007). The mount was then polished to a
0.25-pm finish, cleaned with ethanol and deionized water, and lastly coated with a thin layer of
gold (25 nm thickness) to make the sample surface electrically conductive for subsequent 6*C

and 8'®0 analyses by SIMS. The gold coat was later removed and replaced with a coat of carbon
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(25 nm thickness) for electron probe microanalysis (EPMA) to determine the chemical
composition of different carbonate cement zones.

Samples were examined petrographically by means of high-resolution back-scattered
electron (BSE) and cathodoluminescence (CL, Gatan PanaCL) SEM imaging; in the case of the
Mt. Simon Sandstone sample, CL-imaging of quartz cements (quartz-overgrowths) was essential
to establishing the relative order of major stages in the quartz and carbonate cementation
histories (SA 1). CL-imaging of quartz cements was performed with the sample very thinly
coated with carbon (~5 nm) to maximize the signal strength; no filters were employed. We found
that many of the CL-features visible in the images of quartz cements that follow were either
heavily subdued or not discernable altogether with a standard thickness carbon coat (25 nm).

We provide here an abridged account of the SIMS methodology. The interested reader is
referred to Sliwinski et al. (2015a,b, 2016) for further details. Jn sifu carbon and oxygen isotope
ratio measurements were performed using a CAMECA IMS 1280 large radius multicollector ion
microprobe (Department of Geoscience, University of Wisconsin-Madison). Measured isotope
ratios are reported using conventional d-notation, which expresses the per mil (%o) deviation of a
measured ratio from an internationally accepted reference value (VSMOW for 620 and VPDB
for 8'3C analyses).

The analytical precision of SIMS §'®0 measurements at WiscSIMS is typically = 0.3%o
(2SD, standard deviations) for a sample spot-size of 10 micrometers and + 0.7%o (2SD) for 3-
micrometer spots; this follows from the spot-to-spot repeatability of replicate measurements (n =
8) of a running standard (or drift monitoring material, in this case dolomite "UW6220") which
bracket each set of about 10 sample analyses. For '*C measurements employing a 6-micrometer

spot-size, the typical precision is 0.6-1.2%o (2SD).
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The analytical accuracy of SIMS 820 and §'*C measurements is affected by instrumental
mass fractionation and sample matrix effects (collectively referred to as the 'bias’; e.g., Eiler et
al., 1997; Hervig et al., 1992; Kita et al., 2009; Valley and Kita, 2009). This bias is a measure of
the per mil (%o) difference between measured 'raw' and 'true' (i.e., VPDB or VSMOW) values of
813C or 8'%0. For a given configuration of the secondary ion mass spectrometer, the influence of
instrumental parameters to total bias during an analytical session can be held nearly constant; any
instrumental drift that occurs can be monitored and corrected by regularly analyzing a running
standard (or drift-monitoring material). For minerals that exhibit solid-solution behavior, this
leaves the component of total bias that is a function of variable chemical composition (i.e., the
sample matrix effect) in need of calibrating. The development of reference materials along with
calibration schemes for the analysis of carbonate mineral compositions that fall along the
dolomite-ankerite solid solution series was previously reported by Sliwinski et al. (2015a,b).
These bias corrections require that the chemical composition in the immediate vicinity of each
SIMS pit be known with a high degree of precision, especially in the case of low-Fe dolomites
(up to several wt.% Fe). To correct the data presented here, chemical analyses were performed
by EPMA (using a CAMECA SX-51 at the Cameron Electron Microprobe Laboratory,
Department of Geoscience, University of Wisconsin-Madison).

The accuracy of sample analyses is determined in large part by the residuals of the SIMS
8180 and 8'3C calibration curves for carbonates of dolomite-ankerite series. The residuals reflect
how well the bias correction scheme for each isotope system reproduces data for a suite of 13
reference materials in relation to the certified reference material NBS-19. For O-isotope analyses
employing a 10-pum diameter spot-size and C-isotope analyses employing a 6-pm spot-size, the

residual is typically constrained to £ 0.3%o (2SD). The residual increases slightly to £ 0.4%o
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(2SD) when analyzing O-isotope ratios using a 3-pm diameter spot-size Sliwifiski et al.

(2015a,b).

3. Results
3.1. Chemical zoning patterns in carbonate cements

On the basis of BSE imaging by SEM - a mode that is sensitive to variations in chemical
composition - we identified six major stages of carbonate (dolomite-ankerite) cementation within
the examined sandstone bed of the upper Mt. Simon Fm. Each successive stage appears as a
concentric zone with a distinct 'BSE texture' and sharp compositional boundaries with the
preceding and/or succeeding cement zones (Fig. 3b; SA 1). Texturally, zones 4-6 are
predominately characterized by layering/banding; this is evidenced by subtle, concentric, within-
zone variations in the shades of gray seen in BSE images (indicative of changes in chemical
composition that are more subtle within zones than they are among zones). In contrast, the
texture of zones 1-3 can be described as 'mottled’ and suggests some degree of recrystallization
(sensu Machel, 1997). The carbonate cement morphology takes the form of poikilotopic crystals
measuring up to ~500 um across, with well-developed crystal faces where pore space permits
(Fig. 3b, SA 1).

Carbonate cement zones were classified in terms of chemical composition/mineralogy
according to the scheme of Chang et al. (1998), where the dolomite-ankerite solid-solution series
1s sub-divided on the basis of Fe-content as follows: 1) non-ferroan dolomite (NFD:; Fe#: 0.0-0.1,
where Fe# = molar Fe/(Mg+Fe), equivalent to 0-5 mole% Fe (i.e. Fe/(Ca+tMg+Fe)), 2) ferroan
dolomite (FD; Fe#: 0.1-0.2, equivalent to 5-10 mole% Fe), and 3) ankerite (Ank; Fe# > 0.2,

equivalent to >10 mole% Fe). Accordingly, zones 1 and 2 straddle the boundary between ferroan
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dolomite and ankerite; zone 3 is a low-Fe ankerite (Fe#: 0.20-0.25); zone 4 is a ferroan dolomite;
and zones 5 and 6 are distinctly Fe-rich ankerites (Fe#'s extending to 0.5; Fig. 4a-b, Table 1).

Six major stages of carbonate (dolomite-ankerite) cementation were also identified within
the examined Eau Claire shale sample (Figs. 3a, 5), although we cannot establish how these
correlate to the cement zones in the Mt. Simon Sandstone. The cement morphology is dominated
by euhedral crystals, typically measuring < 100 pm across. The chemical zoning pattern is
concentric, with no major dissolution features or mottled textures that would suggests some
degree of recrystallization (Figs. 3a, 5). An abrupt change in composition is noted between:
zones 0 (NFD) and la (FD-Ank); zones 1b (FD) and 2a (Ank); and again between zones 2b
(Ank) and 3 (NFD) (Figs. 5 and 6a-b). In contrast, the change in composition is more gradational
between zones la (Ank-FD) and 1b (FD) and again between zones 2a and 2b; nonetheless, two
distinct sub-domains are evident in both instances in BSE-imagery: a relatively Fe-rich inner

domain (zones 1a and 2a) and a less Fe-rich outer domain (zones 1b and 2b; Figs. 5 and 6a-b).

3.2. Trends in the isotopic composition (6'°C and 6'%0) of carbonate cements

The results of in situ SIMS 8*C and &'0 analyses are summarized in Tables 1 and 2 and
are presented graphically in Figs. 3-6. Throughout this article, values of 8*C are expressed
relative to the VPDB standard, whereas those of §'®0 are expressed relative to VSMOW:; for
convenience, 5'0 values are also tabulated relative to VPDB in Tables 1 and 2. The complete
dataset, which includes all measured signals (e.g. count rates, backgrounds, counting statistical
errors, etc.) from reference materials and analyzed sample regions, as well as the calibration
model parameters used to correct for sample matrix effects, is provided in Supplementary

Appendices 2-4. Supporting petrographic documentation, which includes individually-annotated
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SIMS pits, 1s provided as a SA 1. Patches of carbonate cement in multiple sample sub-domains
were analyzed to ensure that measured values are representative ('sample regions' in Tables 1 and
2 and SA 1).

Two distinct data clouds are apparent in cross-plotting 8°C vs §'®0 (Fig. 3c); one is
populated by sample data from the upper Mt. Simon sandstone beds, and is generally
characterized by increasingly negative §>C values that extend from +1 to -9%0 (VPDB) (to a
first-order across zones 0 through 6). The other data cloud represents the overlying silty-shaly
Eau Claire Fm. and stands in stark contrast, being characterized by positive 6'°C values that
extend from +2 to +16%0 (VPDB) (to a first-order across zone 0 through 3). Given the small
sample subset at this stage of research, however, it 1s too early to generalize about differences on
a formation-wide scale. Please note that based on conventional isotope analyses performed on a
larger suite of bulk samples, it is known that carbonate §'C variability exists among the four Eau
Claire sub-units at the IBDP site (Palkovic, 2015). To a first-order, differences in bulk §'*C
values — extending from approx. -4%o to +4%o0 VPDB up through the section — correlate to
changes in lithology, although depth-dependent changes within individual sub-units are also
evident (most clearly seen in the top-most Unit D; refer to Fig. 5.8 in Palkovic, 2015). Additional
in situ characterizations of lower Eau Claire carbonate cements from across the Illinois Basin are
reported elsewhere (Sliwinski et al., 2015¢, 2016). What we in-part attempt to demonstrate here
1s the ability to retrieve another layer of information by interrogating isotopic records on a finer
spatial scale. Some potential applications where this may be useful in relation to carbon-
sequestration research are discussed later on.

A moderate linear correlation is apparent in the cross-plot of carbonate 8'*C and §'®0

values measured from the Mt. Simon Sandstone (adjusted R? = 0.61; Fig. 3c). To a first-order,
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8180 values progressively decrease across early-to-late cement generations from a high of ~22%o
VSMOW (zone 1) to a low of ~16%o (zone 6) (Figs. 3d and 4c). Notably, however, carbonate
8180 values measured from zone 4 abruptly break this trend and transiently increase to a high of
~24%o (values also increase throughout this stage of cement development from ~20 to 24%o; SA
1). The corresponding carbonate 5!*C values measured from zones 1-3 fall within the relatively
narrow range between 0 and -3%o (VPDB), and then systematically decrease down to -9%o across
zones 4-6 (Fig. 4d; SA 1).

Carbonate §'°C and §'%0 values measured from different cement generations of the Eau
Claire shale show no correlation (Fig. 3¢). Nonetheless, carbonate 520 values progressively
decrease across early-to-late cement generations from a high of ~26%o (zone 0) to a low of
~22%o (zone 3) (Fig. 6¢). It is notable that, on average, 5'*0 values measured from the shale bed
cements are ~4%o higher than those in the underlying sandstone (same first-order decreasing
trend with a ~4%o offset; compare Figs. 4c and 6¢). The 8°C values of the earliest stage of
cement development (zone 0) fall between 3-4%o (VPDB) and, in stark contrast to the sandstone
beds, increase abruptly during subsequent stages of cement growth; values span the range
between +7 and +15%o across zones la and 1b, but fall somewhat to between +6 and +11%o

across zones 2a, 2b, and 3 (Fig. 6d).

3.2. Trends in the isotopic composition (6'°0) of quart; cement in the upper Mt. Simon
Sandstone

On the basis of CL-imaging, we identified four major stages of quartz cementation (QO
1-4) within the examined sandstone bed of the upper Mt. Simon Fm. (Fig. 7; SA 1). Detrital

quartz grains are indistinguishable from their respective quartz overgrowths (cement) by BSE-
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imaging. However, this distinction can be readily made by employing a CL-detector coupled to
an SEM, which allows for observing layering/banding (if present) within individual overgrowths
(indicative of different cementation stages) (Fig. 7).

Quartz cement deposited during stages 1-3 is CL-luminescent, whereas quartz cement
formed during the final stage is characteristically non-luminescent and qualitatively constitutes
approx. one-half of the total cement volume (Fig. 7). In terms of 8'%0 values, quartz cement
zones 1, 2 and 3 fall between 24%o0 and 21%o, and a mild tendency towards lower values is
observed with each successive cement generation (Fig. 4e). Quartz cement zone 2 is conspicuous
in that 8'30 values abruptly break the trend defined by zones 1, 3 and 4 by transiently increasing
to ~27.5%o (Fig. 4e). For additional information on $'®*0 zoning in quartz-overgrowths of the Mt.
Simon Sandstone within the Illinois Basin, the interested reader is referred to the work of
Pollington et al. (2011). No quartz-overgrowths were analyzed from the Eau Claire shale in the

course of this study, but were previously examined by Hyodo et al. (2014).

3.3. Microstratigraphic relationships among cements (upper Mt. Simon Sandstone)
With regards to the microstratigraphic relationships among individual quartz-overgrowth

and carbonate cements zones, we have observed the following (refer also to SA 1):

1) Based on an image analysis, dolomite-ankerite cement zones 1-4 comprise approX. 75% of the
total carbonate cement volume (using ImagelJ; Schneider et al., 2012). These four generations of
cement precipitated before the onset of quartz cementation (Figs. 4f and 7; SA 1). Dolomite-
ankerite zones 1-4 developed atop detrital quartz grain boundaries, which were free of any

quartz-overgrowths at this stage of sediment lithification. Do note, however, that a portion of
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detrital quartz grains have partially corroded/embayed grain boundaries (see petrographic
documentation in SA 1); in sample regions where this is evident, carbonate cements appear to
locally replace quartz, but only to a limited extent (Burley and Kantorowicz, 1986a, 1986b). This
type of texture predominates where detrital quartz grains are in contact with dolomite-ankerite
cement zones 1-3, which, based on their mottled texture, appear to have recrystallized (Machel,
1997). Quartz-overgrowths are optically continuous with detrital cores, non-fibrous, and appear
pristine. Where present, the underlying detrital quartz grain boundaries show no corroded

textures.

2) The development of quartz-overgrowth zones 1 and 2 largely overlapped in time with the
formation of carbonate cement zone 5 (Fig. 4f). However, a portion of carbonate cement zone 5
was already in place at the onset of QO zone 1 growth; this stage of carbonate cementation also

continued for some time after QO zone 2 fully developed.

3) The development of quartz-overgrowth zones 3 and 4 largely overlapped in time with the
development of carbonate cement zone 6 (Fig. 4f). However, a portion of QO zone 3 was already
in place as carbonate cement zone 6 began forming, and this stage of carbonate cementation

continued for some time after the end of QO zone 4 growth.

4. DISCUSSION (Parts I and II)
The focus of the discussion that follows is two-fold: Part I is concerned with the IBDP
site and simple predictions regarding possible 8'°C values for carbonate cements that are

expected to form in response to long-term CO; storage. In Part II, we identify potential
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applications where carbonate isotope microanalysis by SIMS could contribute uniquely to
research efforts concerned with geologic carbon storage. In keeping with the largely
methodological theme of this article, a brief discussion on the evolution of isotope ratios in
cements that formed during sediment burial and alteration at/mear the IBDP site is provided as a

supplemental discussion (SA 5).

PART I: Relevance to the Illinois Basin Decatur Project

Distinguishing carbonate mineral cements that form in response to CO; injection at the
IBDP site from those that have formed naturally in response to prior, burial-related alteration of
the sediment (diagenesis) would entail establishing a pre-injection petrographic baseline (one
larger in scope than the small number of samples examined here) for the relevant carbonate-
cemented intervals of the reservoir and basal caprock units. Such a baseline could be strongly
reinforced by chemical and isotopic fingerprinting (33C and §'%0). However, only small
volumes of new carbonate are likely to form in the initial post-injection years, and so it may
difficult to perform isotopic fingerprinting by conventional techniques, especially in the likely
scenario where mechanical separation of new and preexisting cements will not be feasible. In
situ 1sotope microanalysis by the SIMS technique offers a way past these technical obstacles.

Volumetrically significant occurrences of carbonate cement (predominantly dolomite-
ankerite) locally occupy the pore space of the upper Mt. Simon Sandstone, nearby/within the
gradational contact (Leetaru and Freiburg, 2014) with the overlying shaly Eau Claire Fm.
(Bowen et al., 2011; Fishman, 1997; Hoholick et al., 1984). Although somewhat limited in
scope, our petrographic survey has additionally identified the presence of Mg-siderite cements in

the upper Mt. Simon in samples from the basin margin in northern Illinois (relatively shallow
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burial environment; max. burial = 1 km / 3,500 ft; after Rowan et al., 2002) and at depth in the
southern Illinois Basin (max burial ~ 5.5 km / 18,000 ft; Figs. 1 and SA 1, Plate 24). While we
did not observe such cements at the intermediate burial depths of this unit at the IBDP site, they
have been documented in IBDP wells (e.g., Palkovic, 2015). Limited analyses indicate that
carbonate minerals (calcite, dolomite) are also present in mudstone/shale interbeds at depth in the
general vicinity of the CO- injection zone within the lower Mt. Simon Sandstone (e.g., see Table
8.3 in Finley, 2005). These clay mineral-rich interbeds are considered to be the first reactive
environments that will be encountered by the emplaced CO- plume as it buoyantly rises through
the reservoir, and are estimated to have the same capacity for sequestrating carbon by mineral-
trapping reactions as the basal Eau Claire shale (Finley, 2005). Isotopic fingerprinting could aid
comparative studies of cements from these intervals in core material recovered at IBDP prior to
injection (2011-2014) and in sample material that may be recovered at some future time in the
post-injection/monitoring phase currently underway. Such studies could aid in ground-truthing
and/or refining reactive flow and transport models that attempt to: 1) predict the rate of mineral-
trapping reactions, 2) to delimit the likely spatial distribution of reaction products (carbonate
cements), and 3) to estimate the amount of CO, that will likely become permanently
immobilized in mineral form (e.g., Liu et al., 2011). Note that whereas the injection zone is
situated within the lower Mt. Simon Fm at the IBDP site, injection was also planned into the
upper portion of this reservoir unit at the nearby site of the FutureGen 2.0 project (now
defunded; e.g., Bonneville et al., 2013; Vermeul et al., 2016).

Within the diverse suite of lithofacies that comprise the Eau Claire shale, carbonate
cements are generally abundant, although somewhat heterogeneously distributed (e.g., Finley,

2005; Neufelder et al., 2012; Palkovic, 2015; Sliwinski et al., 2016). Carbon mineralization
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reactions are especially anticipated to occur along the reservoir-caprock interface where reactive
Fe-rich clay minerals and carbonate cements occur in abundance (Finley, 2005). Limited natural
analogue studies indicate that chemical reactions between CO; and the caprock mineralogy can
extend across a thickness of 10+ meters of the basal caprock layer (Bickle, 2009; Lu et al.,
2009). During the initial post-injection pH buffering stage, carbonate cements in this basal layer
may undergo partial to complete dissolution and subsequently re-precipitate higher within the
unit (e.g., Kaldi et al., 2011). The depth of CO: penetration/reaction can generally be traced by
means of '°C analysis (e.g., Lu et al., 2009), although the very small size of cement crystals in
mudrocks/shales can complicate attempts at obtaining end-member signals from different
carbonate components by means of conventional sampling/analytical techniques (e.g.,
Heinemann et al., 2013; Wilkinson et al., 2009).

A limited number of recent laboratory-scale experimental studies have investigated the
reactivity of the IBDP reservoir and caprock units under simulated CO; storage conditions.
Discernable changes in rock texture and mineralogy were noted within only a years' time, and
indicate a tendency for dissolution of clay minerals that line the pore throats of the Mt. Simon
Sandstone and for corrosion/degradation of illite, chlorite, K-feldspar, biotite and pyrite in the
Eau Claire shale (Yoksoulian et al., 2013). Iron-bearing clays were identified as a key reactant at
IBDP, and are expected to help contribute the aqueous cations (Fe?*, Mg?") necessary for carbon
mineralization (Carroll et al., 2013; see also, e.g,, Alemu et al., 2011; Kaldi et al., 2011).
Reactive transport model simulations estimate that at least 10 to 20% of the introduced CO> may
eventually be consumed in the precipitation of Fe-bearing carbonate cements (Liu et al., 2011),
although this estimate would likely increase if the reactivity of Fe-rich clays with CO»-charged

brine were taken into consideration (Carroll et al., 2013).
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4.1 Forecasting 6'3C values for sequestration-related carbonates at IBDP

Here we make use of available data on reservoir conditions and the C-isotope ratio of the
injected CO- at the IBDP site (e.g., Finley, 2005) to make simple predictions about the possible
isotopic fingerprints of different carbonate cement types (e.g., calcite, dolomite-ankerite,
siderite) that may form in response to long-term CO; storage.

Anticipated carbonate 5!*C values can be calculated using known temperature-dependent
equilibrium isotope fractionation factors between the different common carbonate minerals and
CO: (Table 4). The fractionation factor (ax-y) describes the difference in isotopic composition
between two phases 'X" and 'Y
(Eq. 1) ox-y= Rx/Ry= (ox+ 1000)/(6r+ 1000)
where Rx and Ry represent the *C/*C ratios for phases X and Y, respectively, whereas dx and dy
denote the per mil (%o) deviations of the 3C/*2C ratios of phases X and Y in relation to a certified

reference material (VPDB):

(Eq.2) 6y = 1000 X [R)‘;Rﬂ] and 8, = 1000 X [RY_RVPDB]

VPDB RyppB

Carbon 1sotope ratio measurements are expressed as a per mil (%o) deviation from the
13C/™2C ratio of the VPDB international reference standard (**C/**Cvpps = 0.0112372; Allison et
al., 1995; Craig, 1957).

Fractionation factors (ox-v) are related to temperature via equations of the form:

Ax10°
TZ

where T is the temperature in degrees Kelvin, whereas 4 and B are regressed parameters.

Comprehensive reviews of these concepts can be found in Faure (1998) and Hoefs (2009).
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Our calculations rely on the following constraints and assumptions: 1) The injected CO;
plume becomes the dominant dissolved inorganic carbon (DIC) source in the storage system. The
reservoir brine is initially acidified along zones of contact/interaction with the gradually
expanding plume (however complex the interaction geometry may be; e.g., Johnson et al., 2004;
Kampman et al., 2014). At some distance away from the injection site, silicate mineral
dissolution reactions eventually establish pH conditions that are conducive to carbonate
precipitation and provide the necessary divalent cations (e.g., Ca>*, Mg?*, Fe?*) . Note that as the
plume continues to expand over centuries to millennia, the carbonate cement volume that may
have formed at some distance by the end of the first post-injection decade, for example, should
re-dissolve and re-precipitate further away (e.g., Liu et al., 2011). New cements are thus assumed
to take on 8C values that reflect precipitation at an ambient reservoir temperature of ~50°C
(Labotka et al., 2015) and the §"°C the injected CO2 (-9 to -11%o at IBDP; Finley, 2005).
Although the DIC pool in the IBDP reservoir has not been isotopically characterized, the low
alkalinity of the Mt. Simon Formation brine (80 mg/L, as CaCOs; Panno et al., 2013) suggests
that upon interaction, the injected CO2 will likely exert a primary control on the brine's isotopic
composition. 2) The salinity/ionic composition of the reservoir brine (a Ca-Na-Cl type brine;
Labotka et al., 2015) does not impart any secondary C-isotope fractionation effects during CO»
dissolution. The current state of knowledge indicates that the influence of salinity on C-isotope
partiotining between COz and DIC (i.e, the 'salt-effect’) is negligible (however this is not the
case for O-isotopes); while studies in this field are still somewhat limited, Mayer et al. (2015)
observe that "there is currently no evidence that these effects would significantly compromise the

suitability of the stable isotopic composition of injected CO; as a tracer tool."
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Using available data on carbon isotope partitioning between carbonates and COxg) (Table
4), we calculate the following approximate 3'3C values for newly-formed cements: -2%0 VPDB
for calcite (based on the work of Chacko et al., 1991), -6%o for siderite (after Jimenez-Lopez and
Romanek, 2004), and -2%o for dolomite-ankerite (based on the recent experimental work of
Horita (2014) for end-member dolomite; Fig. 3). A fractionation factor between COx) and any
ankerite has not yet been experimentally calibrated, and it thus remains unknown how the Fe-
content in the dolomite-ankerite solid solution series affects equilibrium relations relative to end-
member dolomite. (Note that carbonate 5'®0 values cannot be forecast at present because, to our
knowledge, the 3'®0 of the supercritical CO, stream at the IBDP site has not been
determined/reported, although brine §'®0 values are known for various depths within the
reservoir unit; e.g., Labotka et al., 2015).

How would these values be affected by primary carbonate cement dissolution and mixing
of the resulting 6'3C signal with that of the injected CO,? At present we can only assess the
potential impact on newly formed dolomite, as calcite and siderite cements were not isotopically
characterized as part of this study (neither calcite nor siderite were encountered in the small
sample suite examined, although both are known constituents of the reservoir mineralogy; e.g.,
Palkovic, 2015). A bulk weighted average §*C value of -2.5%0 VPDB was calculated for the
representative patch of primary dolomite-ankerite cement shown in Fig. 3b. An image analysis
(using ImagelJ software; Schneider et al., 2012) was performed to estimate the volume fraction
represented by each cement zone (Zones (1-3), 4, 5 and 6 respectively comprise 55%, 20%, 15%
and 10% of the total volume). Rapid and complete dissolution of this cement volume at 50°C

would, under the experimental conditions described by Horita (2014), produce CO> ) with a
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813C value -11%0 VPDB. Thus, the impact of primary cement dissolution may not be discernable

considering that the §'C of the injected CO; stream varies between -9 to -11%o VPDB.

S. Part II: Broader Applications

Here we attempt to identify some areas of current research interest where in sifu isotope
microanalysis by SIMS could provide potentially unique insights to investigations concerned
with understanding how CO: will interact with geological reservoirs and caprocks under
engineered storage conditions. These include:
1) Identifying sequestration-related carbonate cements in engineered CO:z-storage
reservoirs. Only small cement volumes are anticipated in the initial years post-injection.
Nonetheless, as little as 3 micrometers (um) of new growth could be readily analyzed by the
methodology described here, thus potentially providing early inputs for calibrating geochemical
models that attempt to predict how the mineralogy of a given reservoir-caprock system will
evolve in the long-term in response to imposed CO» storage (and to derive more accurate
estimates regarding the fraction of CO» that will become securely trapped in mineral form over
time). Hypothetically, it may also be necessary in future monitoring studies at CCS sites to
verify, via 1sotopic fingerprinting, whether fracture-filling cements in caprock units are related to

CO; leakage.

2) Characterizing the carbonate components that pre-date COz2-charging of natural and/or
engineered reservoirs. Naturally-occurring accumulations of CO- in geological environments
are helping to build an understanding of how CO; interacts in the long-term (10°-10° years) with

reservoir-caprock systems (e.g., Bickle et al., 2013). Studies of these so-called natural analogues
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aid, for example, in: 1) identifying the dominant fluid-mineral reactions that are expected to
occur during engineered CO- storage; 2) allow for estimating rates of carbon mineralization; and
3) provide a means of calibrating geochemical models and reservoir simulations against the
natural world (e.g., Bickle et al., 2013; Higgs et al., 2015; Pearce et al., 1996; Sathaye et al.,
2014; Stevens et al., 2001; Watson et al., 2004). As they relate to carbon sequestration in deep
saline aquifers, the above three points have been identified as general knowledge gaps by the
IPCC Special Report on CO2 Capture and Storage (2005) (Michael et al., 2009). It was noted in a
recent review of natural analogues that "a complete model of the fluid-mineral reactions will
require both modeling of changes in fluid chemistry in conjunction with a full understanding of
the petrology of the sandstone aquifer in which it will be essential to distinguish reaction
products related to the present phase of [CO2-charge related] alteration from earlier detrital and
diagenetic phases" (Bickle et al., 2013). This point extends in relevance to the problem of
determining the depth to which CO; penetrates into the caprock units that overlie natural
reservoirs (as a means of assessing the likely long-term integrity of reservoir seals). Carbonate
813C and 8'®%0 signatures are a well-established tracer, although the ability of conventional
methods to fully resolve isotopic differences among different end-member components can be
hindered by small crystal size (e.g., Lu et al., 2009) and/or if chemo-isotopic zonation is present

at the micrometer scale (Heinemann et al., 2013; Wilkinson et al., 2009).

3) Characterizing experimental reaction products. This includes assessments of
reservoir/caprock reactivity under simulated COs-storage conditions in cases where reaction
product volumes are too small for conventional isotope ratio measurements. A further example is

the problem of constraining equilibrium isotope fractionation factors between fluids and minerals
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during precipitation. In experiments conducted at temperatures relevant to CO; storage in saline
aquifers (~50-150°C), precipitation rates are frustratingly slow for most common minerals.
Reaction product volumes that form over reasonable laboratory time-scales (months to several
years) are consequently quite small, as for example micrometer-scale overgrowths in instances

where seed crystals are used to stimulate mineral growth (e.g., Pollington et al., 2016).

4) Determining the carbon source(s) involved in carbonate cement-forming reactions in
sequestration environments other than deep saline aquifers. Broadly speaking, many of the
carbon sequestration strategies currently under consideration (e.g., Power et al., 2013) seek
efficient means (process routes) of converting CO; gas into carbonate minerals. Carbon
mineralization results in a product that 1s both environmentally benign and stable over geological
time scales. The fundamental idea underlying many strategies is essentially one of mimicking
natural geological processes (e.g., silicate mineral weathering reactions or microbial
mineralization) and devising efficient engineering solutions aimed at accelerating the rate at
which these processes operate in controlled settings. Although such sequestration concepts are
still 1n the basic research and development stage, research efforts to date indicate that they could
be effective in substantially offsetting annual anthropogenic CO> emissions if deployed in
tandem on a sufficiently large scale. In situ carbonation of peridotite is one such strategy (e.g.,
Kelemen et al., 2011; Kelemen and Matter, 2008; Lackner et al., 1995; Matter and Kelemen,
2009). Promoting the carbonation of ultramafic mine tailings is another (e.g., Wilson, 2006;
Wilson et al., 2009). It has been estimated, for example, that the annual sequestration capacity of

a large mine can exceed its annual CO> emissions (Power et al., 2013; Wilson, 2006).
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Abundant in ultramafic mine tailings are Ca-Mg-Fe-rich silicate minerals (e.g., olivine,
pyroxene, plagioclase feldspars) that are thermodynamically unstable at Earth surface conditions;
consequently, they weather rapidly. Carbonate minerals, particularly various forms of hydrated
Mg-carbonates (e.g., nesquehonite, dypingite, hydromagnesite, etc.), are among the common
reaction products, forming crusts that may exhibit mineralogical and/or stable carbon isotope
zonation (Wilson, 2006). In the case of micrometer-scale mineralogical banding, '*C zonation
could reflect differences in the degree to which different hydrated Mg-carbonate species
fractionate the stable isotopes of carbon during precipitation. It has also been recognized that
different varieties of hydrated Mg-carbonates likely form via distinctly different pathways; some
may be entirely abiotic in origin, whereas the precipitation of others may be microbially-
mediated (Ferris et al., 1994; Power and Southam, 2005; Wilson et al., 2009). Understanding the
relative efficiency of these end-member modes is significant for engineering efficient carbon
mineralization systems, which may in the future rely in-part on microbial organisms that have
been modified to locally accelerate the rate of silicate weathering and/or carbonate precipitation
(Cappuccio et al., 2012; Chen et al., 2012; Ferris et al., 1994; Kamennaya et al., 2012; Krieger et
al., 2012; Power et al., 2013). To this end, stable carbon and oxygen isotopic data, when used
together with quantitative mineralogical analyses, can be an effective tool for identifying the
carbon source(s) tapped during the formation of carbonate crusts (e.g., atmospheric or
biologically cycled CO», or carbon derived from dissolution of carbonate minerals in bedrock)

and for quantifying the rate of their formation (e.g., Wilson et al., 2009).

S. Concluding remarks
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Stable carbon and oxygen isotope analyses (813C and 8'®0, respectively) are an important
component of research into CO-sequestration strategies, especially in so-called natural
analogues studies. Research efforts directed at natural analogues seek in-part to quantify the rate
and extent of CO»-trapping via carbonate mineral cement formation (i.e., carbon mineralization
or mineral-trapping of CO;), and by so doing to make/refine quantitative predictions about the
probable long-term fate of CO: in prospective engineered reservoirs. Isotopic signatures (or
fingerprints) provide a means by which to distinguish different carbonate components present in
the reservoir-caprock system (i.e., those that pre-date from those that post-date CO;-charging).

However, clear interpretations of isotopic data acquired via conventional sampling
techniques in isotope ratio mass spectrometry (IRMS) (sampling typically at the 100-1000 pm?
scale) can be significantly hindered in situations where it is not possible to mechanically or
chemically separate different carbonate components (due to small crystal size and/or the
presence of chemo-isotopic zoning at the micrometer scale).

Advances in secondary ion mass spectrometer (SIMS) instrument design, analytical
techniques and standardization have brought about the capability to routinely perform §%0 and
8'*C measurements in situ from sample domains as small as 1-10 pm across, with preservation of
the petrographic context of the analyzed sample volume. Many of the common Ca-Mg-Fe
carbonates can now be accurately analyzed, including the full spectrum of compositions along
the dolomite-ankerite and magnesite-siderite solid-solution series. These advances - many of
which have occurred since the time when geologic carbon sequestration was first proposed in
mid-1990's (Bachu et al., 1994; Lackner et al., 1995) and research into natural analogues began
(Pearce et al., 1996) — expand the potential analytical toolkit available to the research community

concerned with developing effective carbon sequestration strategies.
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The analytical capability described here could provide potentially unique insights when
applied in studies concerned, for example, with following objectives (although this remains to be
critically evaluated):

e Verifying if, where, and at what rate carbonate cements precipitate in geological
reservoirs designated for engineered CO; storage;

e Characterizing the isotopic composition of carbonate components that pre-date the CO»-
charge in engineered reservoirs or their natural analogues;

e Determining or refining existing rate estimates (based on bulk isotope analyses) of
carbonate cement-forming reactions in a variety of natural analogue environments;

e Analyzing the isotopic composition of experimental reaction products in instances where
product volumes are sufficiently small so as to hinder analysis by conventional IRMS
methods (this applies to laboratory-scale experiments designed to elucidate how CO;

interacts with representative rock samples from a given reservoir-caprock system);
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FIGURE AND TABLE CAPTIONS

Fig. 1. (A) Locations of drill holes sampled for this study of the upper Mt. Simon Sandstone and
the overlying Eau Claire shale. These units respectively comprise the reservoir and the caprock
(impermeable seal) at the Illinois Basin Decatur Project (IBDP), a demonstration site for the
feasibility of engineered, long-term injection and storage of anthropogenic CO; in a deep saline
aquifer. Geographic extent of Illinois Basin traced after Kolata and Nimz (2010). (B) Cambrian
stratigraphy of the Illinois Basin (north of latitude 40°N); only the portion that is relevant to this

study 1s shown. Modified after Kolata (2005).

Fig. 2. From core to in situ isotope microanalysis of mineral cements. Segments of core showing
(A) the shaly Eau Claire Formation, the primary reservoir at IBDP (well C13637, depth interval:
1095-1097 m / 3592-3598.5 feet) and (B) the upper Mt. Simon sandstone reservoir at the Illinois
Basin Decatur Project site (ADM Verification Well #1, depth interval: 1678-1679.5 m / 5505-
5510 feet; see Fig. 1). (Image in (B) modified after Fig. 4.1 in Palkovic, 2015). Sample
preparation at WiscSIMS involves casting a small subsample of core (~1 cm® from C) into a 1-
inch (25-mm) diameter epoxy mount (D) and co-mounting an appropriate reference material
(RM) in the center. Areas of interest for analysis (e.g., 'A11" in D; see also SA 1) are identified
by BSE-SEM-imaging (the quartz-grain framework of this sample is uniformly dark gray in this
image, whereas the light-gray shades represent pore-filling, chemically zoned dolomite-ankerite

cements. Pyrite and K-feldspar appear white.)
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Fig. 3. Preliminary pre-injection characterization by in situ 1sotope microanalysis of the stable
carbon and oxygen isotope compositions (6*C and §'®0, respectively) of individual dolomite-
ankerite cement zones in the IBDP reservoir-caprock system (analysis performed by secondary
ion mass spectrometry — SIMS: note the analysis pits in A and B). BSE-SEM images showing
dolomite-ankerite cements (Dol-Ank) exhibiting micrometer-scale chemo-isotopic zoning in
samples of: (A) the Eau Claire shale (Core 13637, depth = 1096.5 m / 3597.5 ft; see Fig. 1) and
(B) the upper Mt. Simon Sandstone (ADM Verification Well #1, depth = 1680.4 m / 5513.2 ft;
see Fig. 1), along with corresponding isotopic data (C). Fe-bearing domains appear brighter in
these images. Note that due to sampling restrictions, the Eau Claire was sampled from core in a
nearby county (~75 km WSW of the IBDP site). Arrows labeled "Dol-Ank" and "Sd" (siderite) in
(C) indicate the anticipated 5'*C values of new carbonates that are expected to form in response
to long-term CO; storage (see Section 4.1 and Table 4). DF+OF = detrital K-feldspar with

diagenetic overgrowths; Qtz = Quartz.

Fig. 4. Select geochemical characteristics of individual carbonate and quartz cement zones
within the upper Mt. Simon Sandstone (IBDP, ADM Verification Well #1, depth = 1680.4 m /
5513.2 ft). (A) Ca-Mg-Fe ternary diagram showing the cation composition of each major
dolomite-ankerite cement zone along with the corresponding (B) Fe/Mg ratios (expressed as the
Fe#, or molar Fe/[Mg+Fe]) and stable isotope composition of oxygen (8'¥0; C) and carbon
(8'3C; D). (E) 6'®0 values of individual quartz-overgrowth cement zones. (F) Relative sequence
of quartz and carbonate cement zone development. For each cement zone depicted in (B-E),

datapoints are offset relative to one another only for clarity.
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Fig. 5. (A) BSE-SEM image showing chemo-isotopically zoned dolomite-ankerite cements (Dol-
Ank) in a sample of the Eau Claire shale and representative SIMS 1sotope microanalysis pits (6-
um 83C and 10-um 8'®0). Fe-bearing domains appear brighter. (Core 13637, depth = 1096.5 m /
3597.5 ft). Z0, Z1a, Z1b, Z2a, Z2b, Z3 = carbonate cement zones. DF+OF = detrital K-feldspar

with diagenetic overgrowths; Qtz = Quartz

Fig. 6. Select geochemical characteristics of individual carbonate cement zones within the Eau
Claire shale (Core 13637, depth = 1096.5 m / 3597.5 ft). (A) Ca-Mg-Fe ternary diagram showing
the cation composition of each major dolomite-ankerite cement zone along with the
corresponding (B) Fe/Mg ratios (expressed as the Fe#, or molar Fe/(Mg+Fe)) and stable isotope
composition of oxygen (%0, C) and carbon (63C, D). For each cement zone depicted in (B-D),

datapoints are offset relative to one another only for clarity.

Fig. 7. Cormresponding BSE-SEM and CL-SEM images showing the microstratigraphic
relationships among the different generations of quartz and carbonate cements identified within
the upper Mt. Simon Sandstone (IBDP, ADM Verification Well#1, depth = 1680.4 m / 5513.2
ft). Six major stages of carbonate cementation (Dol-Ank = dolomite-ankerite) and four distinct
quartz-overgrowth (QO) generations were observed within the examined sample. DQ = detrital

quartz; OF = overgrowth feldspar.
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Table 1. Isotopic composition (83C and 8'%0 by SIMS) and major element chemistry (by
EPMA) of carbonate cements in the upper Mt. Simon Sandstone (ADM Verification Well #1,

depth = 1680.4 m / 5513.2 ft). Refer to SA 1 for petrographic context of each spot-analysis.

Table 2. Isotopic composition (83C and 8'%0 by SIMS) and major element chemistry (by
EPMA) of carbonate cements in the Eau Claire shale (C13637, depth = 1096.5 m / 3597.5 ft).

Refer to SA 1 for petrographic context of each spot-analysis.

Table 3. Isotopic composition (830 by SIMS) of quartz-overgrowths in the upper Mt. Simon
Sandstone (ADM Verification Well #1; depth = 1680.4 m / 5513.2 ft). Refer to SA 1 for

petrographic context of each spot-analysis.

Table 4. Predicted C-isotope composition of sequestration-related carbonate cements at the

Illinois Basin Decatur Project site.

Supplemental Appendix 1. Petrographic documentation of all sample regions analyzed by

SIMS (in situ, micron-scale 5'%0 and 8*C analyses), with individually annotated analysis pits.

Supplemental Appendix 2. Complete SIMS data table: 10-pum spot-size O-isotope

measurements.

Supplemental Appendix 3. Complete SIMS data table: 3-pum spot-size O-isotope

measurements.
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Supplemental Appendix 4. Complete SIMS data table: 6-pm spot-size C-isotope

measurements.



Table 1: Isotopic composition (6130 and 6130}0f carbonate cements in the upper Mount Simon Sandstone (ADM Verification Well #1, depth = 5513.2 ft)

Session specific  SIMS  Sample Spot-size 5'°0% 5'0%  2SD Session specific 6°C% 2SD Zone  Fe# MgCO; CaCO; FeCO; MnCO;
sample |.D. session regionid. (um) PDB V-SMOW sample |.D. PDB (mol.%) (mol%) (mol%) (mol.%)
20140513@598.asc S7 Area 11 10 -84 223 04 20140404@268.asc 32 11 1 0.231 39.04 4814 11.75 1.08
20140513@595.asc S7 Area 11 10 -123 182 04 20140404@269.asc 28 11 1 0.238 3537 50.59 11.07 297
20140513@599.asc S7 Area 11 10 99 207 04 20140404@269.asc 28 11 1 0.238 3537 50.59 11.07 297
20140513@597 .asc S7 Area 11 10 -89 218 04 20140404@267 .asc 15 11 1 0.228 3853 49 42 11.40 0.66
20140513@596.asc S7 Area 11 10 91 215 04 20140404@270.asc -1.5 1.1 1 0.208 39.20 4995 10.27 0.59
20140513@607 asc S7 Area 11 10 -10.2 203 0.3 20140404@271.asc 04 11 2 0.197 3957 50.18 970 0.55
20140513@606 asc S7 Area 11 10 -103 203 0.3 20140404@272 asc 05 11 2 0.200 40.90 4835 1023 053
20140513@605.asc S7 Area 11 10 127 178 0.3 20140404@273.asc 34 11 3 0.208 38.08 4952 10.02 237
20140513@604 asc S7 Area 11 10 91 216 0.3 20140404@274 asc 03 11 4 0.160 4272 48.32 8.16 0.80
20140513@586 asc S7 Area 11 10 95 211 02 20140404@279.asc 02 12 4 0.193 39.05 4975 932 1.88
20140513@585.asc S7 Area 11 10 99 207 02 20140404@279.asc 02 12 4 0.193 39.05 4975 932 1.88
20140513@591.asc S7 Area 11 10 82 225 04 20140404@286.asc 04 12 4 0.141 4197 50.71 6.88 044
20140513@592 asc S7 Area 11 10 76 231 04 20140404@283.asc 1.3 12 4 0.120 4222 5137 574 067
20140513@592 asc S7 Area 11 10 76 231 04 20140404@282 asc 1.2 12 4 0.162 3967 5132 758 142
20140513@584 asc S7 Area 11 10 137 16.8 02 20140404@281.asc 24 12 5 0.213 3581 51.95 9.69 256
20140513@583.asc S7 Area 11 10 -10.2 204 02 20140404@280.asc 62 12 6 0.338 2833 5478 14 .48 241
20140513@581.asc S7 Area 11 10 -12.2 183 02 20140404@285 asc 62 12 6 0.390 24 87 56.19 1595 298
20140513@594 asc S7 Area 11 10 127 178 04 20140404@285 asc 62 12 6 0.390 24 87 56.19 1595 298
20140513@582 asc S7 Area 11 10 -135 17.0 02 20140404@284 asc 71 12 6 0.483 2093 5543 19.50 414
20140513@593.asc S7 Area 11 10 -138 16.7 04 20140404@284 asc 71 12 6 0.483 2093 5543 19.50 414
20140107@158.asc S2 Area 4 10 -109 197 05 20140404@243 asc 1.0 06 2 0.182 39.07 5175 8.71 047
20140107@155.asc S2 Area 4 10 -11.0 196 05 20140404@244 asc 15 06 4 0.184 3941 50.79 8.90 0.90
20140107@156.asc S2 Area 4 10 -104 202 05 20140404@245 asc 09 06 4 0.156 3995 5203 7.38 0.64
20140107@157 .asc S2 Area 4 10 -141 164 05 20140404@246 asc 54 06 5 0.251 3437 50.83 11.54 327
20140107@164.asc S2 Area 4 10 85 221 0.3 20140404@249 asc 57 06 67 0.294 3224 5333 13.40 1.02
20140107@163.asc S2 Area 4 10 -13.2 173 0.3 20140404@247 asc 73 06 6 0.430 2249 5742 16.73 3.36
20140107@165.asc S2 Area 4 10 -135 17.0 0.3 20140404@248 asc 83 06 6 0412 2351 5714 16.32 3.04
20140224@367 asc S4 Area 2 3 134 171 10 20140404@256.asc 86 11 6 0413 24 16 5598 16.97 289
20140224@368.asc S4 Area 2 3 117 188 10 20140404@257 .asc 65 11 6 0.376 26 47 5541 1595 217
20140107@144 asc S2 Area 2 10 -11.9 187 05 20140404@257 .asc 65 11 6 0.376 26 47 5541 1595 217
20140107@145.asc S2 Area 2 10 -12.2 184 05 20140404@257 .asc 65 11 6 0.376 26 47 5541 1595 217
20140224@371.asc S4 Area 2 3 141 164 10 20140404@256.asc 86 11 6 0413 24 16 5598 16.97 289
20140107@143.asc S2 Area 2 10 -14.2 16.3 05 20140404@259 asc 59 11 5 0.260 3484 4953 1223 34
20140107@142 asc S2 Area 2 10 -144 16.0 05 20140404@259 asc 59 11 5 0.260 3484 4953 1223 34
20140107@141.asc S2 Area 2 10 -10.2 204 05 20140404@258.asc 08 11 4 0.163 4117 50.27 7.98 0.58
20140107@141.asc S2 Area 2 10 -10.2 204 05 20140404@260.asc 19 11 4 0.163 4117 50.27 7.98 0.58
20140107@140.asc S2 Area 2 10 -11.0 196 05 20140404@261 asc 26 11 4 0.197 39.10 50.62 963 0.65
20140107@139.asc S2 Area 2 10 -105 201 05 - - - 3 0.239 3373 5153 10.59 415
20140224@348 asc S4 Area 10 3 62 246 06 20140404@231.asc 09 07 4 0.125 4155 5193 5.86 0.66
20140224@338.asc S4 Area 10 3 55 252 09 20140404@231.asc 09 07 4 0.125 4155 5193 5.86 0.66
20140224@347 asc S4 Area 10 3 68 239 06 20140404@231.asc 09 07 4 0.125 4155 5193 5.86 0.66
20140107@175.asc S2 Area 10 10 69 238 02 20140404@232 asc 06 07 4 0.125 4155 5193 5.86 0.66
20140107@177 asc S2 Area 10 10 69 238 02 20140404@238.asc 07 07 4 0.125 4155 5193 5.86 0.66
20140107@177 asc S2 Area 10 10 69 238 02 20140404@233.asc 04 07 4 0.125 4155 5193 5.86 0.66
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Table 2. Isotopic composition (6130 and 6180) of carbonate cements in the Eau Claire shale (C13637, depth = 3597.5 ft)

Session specific  SIMS  Sample Spot-size 5'°0%  5'°0% 2SD ©5°C% 2SD Zone Fe# MgCO; CaCO; FeCO; MnCO;

sample 1.D. session regioni.d. (um) PDB  V-SMOW PDB (mol.%) (mol.%) (mol.%) (mol.%)
20140212@156.asc ~ S3 A1R1 10 4.2 266 0.2 - - Z0  0.007 4191 57.74 0.31 0.04
20140212@163.asc ~ S3 A2 R2 10 4.4 263 0.2 - - Z0  0.007 4191 57.74 0.31 0.04
20140212@171.asc ~ S3 A3 R3 10 5.3 255 0.2 - - Z0  0.007 4191 57.74 0.31 0.04
20140212@178.asc ~ S3 A4 R4a 10 5.2 256 0.2 - - Z0  0.007 4191 57.74 0.31 0.04
20140212@206.asc ~ S3 A6 R6 10 4.6 26.1 0.4 - - Z0  0.007 4191 57.74 0.31 0.04
20140405@443.asc S5 An-1 6 - - - 4.2 08 Z0 0.007 4165 58.00 0.31 0.04
20140405@444.asc S5 An-1 6 - - - 3.1 08 Z0 0.007 4165 58.00 0.31 0.04
20140405@455.asc S5 An-2 6 - - - 2.6 07 Z0 0.007 4165 58.00 0.31 0.04
20140405@491.asc___ S5 A3 6 - - - 3.9 08 Z0  0.007 4165 58.00 0.31 0.04
Average of Zone 0 -4.7 26.0 - 35 - - 0.007  41.79 57.86 0.31 0.04
2SD 0.9 1.0 - 15 - - 0.000 0.27 0.27 0.00 0.00
20140212@164.asc ~ S3 A2 R2 10 5.9 249 02 - - Zla 0225 3140 58.90 9.10 0.50
20140212@166.asc ~ S3 A2 R2 10 6.2 245 0.2 - - Zla 0225 3140 58.90 9.10 0.50
20140405@447.asc S5 An-1 6 - - - 9.3 08 Z1a 0218  31.13 59.65 8.69 0.53
20140405@448.asc S5 An-1 6 - - - 9.7 08 Z1a 0.196 3354 57.81 8.19 0.46
20140405@456.asc S5 An-2 6 - - - 8.7 07 Z1a 0.168  36.00 56.33 7.26 0.41
20140405@462.asc S5 An-3 6 - - - 9.6 07 Zla 0236 3135 58.38 9.66 0.61
20140405@471.asc S5 A5 exp 6 - - - 113 07 Zla 023 3135 58.38 9.66 0.61
20140405@472.asc S5 A5 exp 6 - - - 125 07 Zla 023 3135 58.38 9.66 0.61
20140405@492.asc S5 A3 6 - - - 7.4 08 Z1a 0.182 3473 57.10 7.75 0.42
20140405@508.asc S5 A5 exp1 6 - - - 8.1 09 Zla 0217 3144 59.33 8.75 0.48
~ Average of Zone 1a _ -6.0 24.7 . 0.6 - - 0.214  32.37 58.32 8.78 0.51
2SD 0.5 0.5 - 3.3 - - 0.048 3.50 2.02 1.67 0.15
20140212@172.asc ~ S3 A3 R3 10 5.4 254 0.2 - - Zib 0.167 3446 57.77 6.89 0.88
20140212@179.asc ~ S3 A4 R4a 10 -5.0 258 0.2 - - Zib 0099  37.18 58.32 4.09 0.41
20140212@180.asc ~ S3 A4 R4a 10 5.6 25.1 0.2 - - Zib 0120 3471 59.79 472 0.78
20140212@183.asc ~ S3 A4 R4a 10 5.7 250 0.2 - - Z1b  0.121 35.24 59.45 4.88 0.43
20140212@198.asc ~ S3 A4 R4b 10 5.7 25.1 0.4 - - Zib 0127 3547 58.90 5.15 0.49
20140212@461.asc ~ S3 A1R1 10 5.9 249 02 - - Zib 0092 3865 57.02 3.90 0.43
20140212@471.asc ~ S3 A5 SR1 10 5.6 252 0.2 - - Zib 0114 3627 58.63 4.68 0.42
20140405@467.asc S5 An-3 6 - - - 104 07 Zib 0127 3505 59.38 5.10 0.47
20140405@468.asc S5 An-3 6 - - - 116 07 Zib 0127 3505 59.38 5.10 0.47
20140405@482.asc S5 A5 exp 6 - - - 131 08 Zib 0123 3655 57.95 5.13 0.36
20140405@486.asc S5 A5 exp 6 - - - 143 08 Zib 0123 3655 57.95 5.13 0.36



20140405@493.asc S5 A3 6 - - - 7.3 0.8 Z1b 0.137 35.06 58.92 5.56 0.46
20140405@516.asc S5 A5 exp5 6 - - - 1.7 09 Z1b 0.107 38.10 56.84 458 0.49
20140405@517.asc S5 A5 exp6 6 - - - 9.4 09 Z1b 0.132 35.46 58.48 542 0.64
20140405@518.asc S5 A5 exp7 6 - - - 7.2 0.9 Z1b 0.141 35.97 57.10 5.90 1.03
B Average of Zone 1b _ -5.5 25.2 - 10.6 - - 0.124 35.98 58.39 5.08 0.54

28D 0.6 0.6 - 5.2 - - 0.036 247 1.88 1.44 0.40

20140212@173.asc 83 A3 R3 10 -8.0 226 0.2 - - Z2a 0.289 27.41 61.10 11.14 0.35
20140212@181.asc S3 A4 R4a 10 -7.5 232 0.2 - - Z2a 0.253 30.93 59.08 9.52 0.47
20140405@445.asc S5 An-1 6 - - - 6.6 0.8 Z2a 0.295 29.20 58.21 12.26 0.33
20140405@461.asc S5 An-3 6 - - - 59 0.7 Z2a 0.231 32.05 57.84 9.62 0.50
20140405@4689.asc S5 An-3 6 - - - 7.2 0.7 Z2a 0.299 28.74 58.51 12.26 0.50
20140405@508.asc S5 A5 exp2 6 - - - 7.8 09 Z2a 0.290 29.78 57.62 12.18 0.42
20140405@519.asc S5 A5 exp2 6 - - - 9.7 09 Z2a 0.272 28.73 60.24 10.73 0.31
B Average of Zone 2a  -7.7 229 - 7.4 - - 0.276 29.55 58.94 11.10 0.41

28D 0.8 0.8 - 29 - - 0.050 3.08 2.59 2.41 0.16

20140212@158.asc S3 A1R1 10 -8.2 224 0.2 - - Z2b 0.245 31.11 58.47 10.12 0.31
20140212@174.asc S3 A3 R3 10 -8.0 226 0.2 - - Z2b 0.245 31.79 57.48 10.32 0.41
20140212@182.asc S3 A4 R4a 10 -8.2 224 0.2 - - Z2b 0.238 3213 57.38 10.05 0.44
20140212@184.asc S3 A4 R4a 10 -8.0 227 0.2 - - Z2b 0.232 29.94 60.58 9.03 0.45
20140212@210.asc S3 A6 R6 10 -7.2 234 0.4 - - Z2b 0.270 30.56 57.62 11.30 0.52
20140212@216.asc S3 A5 R5 10 -8.5 222 0.4 - - Z2b 0.237 31.20 58.67 9.70 0.43
20140212@462.asc S3 A1R1 10 -8.9 217 0.2 - - Z2b 0.253 32.66 55.73 11.00 0.60
20140212@473.asc S3 A5 SR1 10 -7.8 228 0.2 - - Z2b 0.232 33.21 56.51 10.04 0.24
20140212@479.asc S3 A5 SR1 10 -8.1 226 0.3 - - Z2b 0.229 32.44 57.34 9.64 0.58
20140405@446.asc S5 An-1 6 - - - 7.1 08 Z2b 0.222 34.05 55.94 9.69 0.32
20140405@473.asc S5 A5 exp 6 - - - 9.2 0.7 2Z2b 0.243 32.82 56.26 10.53 0.39
20140405@483.asc S5 A5 exp 6 - - - 10.2 08 Z2b 0.238 32.62 56.69 10.17 0.52
20140405@484.asc S5 A5 exp 6 - - - 10.8 08 Z2b 0.286 30.98 56.13 12.42 0.47
Average of Zone 2b  -8.1 225 - 9.3 - - 0.244 31.96 57.29 10.31 0.44

28D 0.9 0.9 - 3.3 - - 0.035 2.32 270 1.73 0.21

20140212@175.asc S3 A3 R3 10 -7.6 231 0.2 - - Z3 0.094 40.12 55.565 417 0.15
20140212@191.asc S3 A4 R4a 10 -7.6 231 0.4 - - Z3 0.109 38.69 56.38 474 0.19
20140212@193.asc S3 A4 R4b 10 -8.2 225 0.4 - - Z3 0.089 39.90 56.00 3.90 0.20
20140212@195.asc S3 A4 R4b 10 -6.4 243 0.4 - - Z3 0.081 39.15 57.21 3.42 0.22
20140212@196.asc S3 A4 R4b 10 -7.9 228 0.4 - - Z3 0.081 39.15 57.21 3.42 0.22
20140212@197 .asc S3 A4 R4b 10 -6.5 242 0.4 - - Z3 0.081 39.15 57.21 3.42 0.22
20140212@207 .asc S3 A6 R6 10 -7.0 23.6 0.4 - - Z3 0.089 39.90 56.00 3.90 0.20



20140212@208.asc S3 A6 R6 10 -1.7 23.0 0.4 - - Z3 0.096 39.95 55.56 427 0.22
20140212@472.asc S3 A5 SR1 10 -7.8 229 0.2 - - Z3 0.083 39.563 56.74 3.59 0.15
20140212@478.asc S3 A5 SR1 10 -6.8 23.8 0.3 - - Z3 0.094 42.07 53.39 4.36 0.18
20140212@464.asc S3 A1R1 10 -8.8 21.9 0.2 - - Z3 0.124 36.92 57.56 5.22 0.29
20140405@4489.asc S5 An-1 6 - - - 6.6 0.8 Z3 0.061 40.39 56.78 2.67 0.17
20140405@450.asc S5 An-1 6 - - - 55 0.8 Z3 0.050 40.63 57.01 2.14 0.22
20140405@474.asc S5 A5 exp 6 - - - 9.0 0.7 Z3 0.128 38.70 55.35 5.68 0.26
20140405@494.asc S5 A3 6 - - - 5.0 0.8 Z3 0.052 42.61 54.83 2.35 0.20
20140405@495.asc S5 A3 6 - - - 5.8 0.8 Z3 0.052 42.61 54.83 2.35 0.20
20140405@498.asc S5 An-1 6 - - - 7.1 0.8 Z3 0.085 41.60 54.39 3.88 0.14
20140405@515.asc S5 A5 exp4 6 - - - 8.6 0.9 Z3 0.125 38.72 5562 5.52 0.25
20140405@521.asc S5 A5 exp10 6 - - - 8.3 0.9 Z3 0.106 39.20 55.93 4.66 0.20
20140405@522.asc S5 A5 exp11 6 - - - 7.4 0.9 Z3 0.109 39.01 55.98 4.77 0.23
B Average of Zone 3 -7.5 23.2 - 7.0 - - 0.089 39.90 55.97 3.92 0.21

28D 14 1.5 - 29 - - 0.047 2.88 217 2.06 0.07



Table 3. Isotopic composition (6180) of quartz-overgrowths in the upper Mt. Simon
Sandstone (ADM Verification Well #1; depth = 5513.2 ft)

Session specific sIMS Sample Spot-size  5'°0%
sample I.D. session i.d. region i.d. (um) (VSMOW) *(28D) QO Zone
20140224@372.asc sS4 Area 2 3 224 1.0 1
20140224@370.asc sS4 Area 2 3 23.6 1.0 1
20140224@357 .asc sS4 Area 10 3 23.7 1.0 1
20140224@360.asc sS4 Area 10 3 22.7 1.0 1
20140224@359.asc sS4 Area 10 3 234 0.8 1
20140107@211.asc S2 Area 1 10 28.5 0.5 2
20140107@210.asc S2 Area 1 10 27.7 0.5 2
20140107@153.asc S2 Area 2 10 274 0.5 2
20140107@179.asc S2 Area 10 10 27.3 0.2 2
20140107@168.asc S2 Area 4 10 27.5 0.3 2
20140513@610.asc s7 Area 11 10 25.7 0.3 2
20140107@208.asc S2 Area 1 10 215 0.5 3
20140107@166.asc S2 Area 4 10 22.2 0.3 3
20140107@170.asc S2 Area 4 10 23.2 0.3 3
20140513@621.asc s7 Area 11 10 219 0.3 3
20140107@207 .asc S2 Area 1 10 211 0.5 4
20140107@214.asc S2 Area 1 10 21.0 0.5 4
20140107@212.asc S2 Area 1 10 22.0 0.5 4
20140107@213.asc S2 Area 1 10 20.8 0.5 4
20140107@154.asc S2 Area 2 10 21.2 0.5 4
20140224@369.asc sS4 Area 2 3 214 1.0 4
20140224@355.asc S4 Area 10 3 21.3 0.8 4
20140224@356.asc sS4 Area 10 3 21.8 0.8 4
20140107@180.asc S2 Area 10 10 21.3 0.2 4
20140513@608.asc s7 Area 11 10 21.7 0.3 4
20140513@612.asc s7 Area 11 10 22.0 0.3 4



Table 4. Predicted C-isotope composition of sequestration-related carbonate cements at the lllinois Basin
Decatur Project site.

Predicted
Carb. mineral - CO;(g) eq. fractionation Calibrated §'°C CO, Reservoir s
relationships Range (°C) (%o, VPDB)  T(°C) e :;F":B"E‘;
@ 10%Ina(siderite-CO,) = 2.53 (10°/ T?) - 20.20 25-197°C -10 50 6
®) 10°Ina(dolomite-CO,) = 1.637 (10°/ T%) - 7.29 100-250°C -10 50 2
© 10%na(calcite-CO,) = 1.648 (10°/ T?) - 8.02 25-200°C -10 50 2

(theoretical)

@ Jimenez-Lopez and Romanek (2004): Using the results presented in their Fig. 9a, specifically the linear trend that incorporates
their experimental results at 25°C and those of Carothers et al. (1988) out to 197°C, corrected for T and pH.

) Eq. 6 of Horita (2014) recast as 1000Ina(dolomite-CO,); originally presented as 1000Ina(CO,-dolomite)

© Chacko et al. (1991): Theoretical values from Table 7 between 25 and 200°C. Recast as 1000Ina(calcite-CO,); originally
presented as 1000Ina(CO4-calcite)
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Fig. 4
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Fig. 6
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SUPPLEMENTARY APPENDIX 5

A brief note on the possible origin of diagenetic carbonate cements in the Mount Simon-
Eau Claire system

We offer the following possible explanation for the contrasting evolution of carbon
1sotope ratios in the upper Mt. Simon Sandstone and the Eau Claire shale.

Positive '°C values of dolomite-ankerite cements in the Eau Claire shale indicate that
during sediment burial, conditions favorable to bacterial methanogenesis may have taken hold as
microbial communities acted to decompose/recycle sedimentary organic matter (OM). Microbial
OM recycling proceeds sequentially through several different characteristic stages, all of which
produce CO; that 1s released into porewaters; these stages are the following: aerobic oxidation,
followed by the reduction of nitrate (NOs>), Fe and Mn-oxides and sulfate (SO4>), and lastly
fermentation (bacterial methanogenesis, up to a temperature of ~75°C; e.g., Heese, 1999).
Certain distinctive trends have been recognized with regards to the C-isotope composition of the
CO; that is produced during these reactions (Irwin et al., 1977). The first three stages produce
CO; (which may equilibrate with porewaters to form dissolved HCOs and COs? ions) with §!*C
values that resemble that of the bulk organic matter (average of -25%. VPDB: e.g., Fig. 1 in
Irwin et al., 1977). Thus, the 83C of carbon dissolved in porewaters tends towards -25%o
(VPDB; depending on volume of OM-derived CO- that is generated). Carbonate cements that
precipitate during these stages take on negative 3"°C values. For example: if §*C of porewater
CO; = -25%o, the 5'C of dolomite will be -16.5%o at 50°C and -21.5%o at 120°C (Horita, 2014).
In contrast, bacterial methanogenesis can proceed, e.g., by consuming CO- (as an oxidizer; other
reaction pathways discussed are reviewed by Whiticar, 1999), yielding methane gas (CHs) with
exceptionally negative 5°C values (down to -110%o). The residual CO, reservoir thus becomes
enriched in *C, acquiring 8"*C values that are higher than those of CHa by 40-100%o (values
may reach +15-20%o; e.g., Fig. 1 in Irwin et al., 1977; Whiticar, 1999). Carbonate cements that
precipitate during this stage of OM recycling may take on positive §>C values (depending on the
extent to which the residual dissolved CO, pool is enriched in *C; e.g., Heese, 1999, Whiticar,
1999). For example: if 8'3C of porewater CO2 = +5%o, then the §*C value of dolomite will be
+16.75%0 at 20°C, +13.5%0 at 50°C, and +8.5%0 at 120°C (Horita, 2014). At the maximum
reconstructed burial depth of the examined Eau Claire shale bed (Fig. 1; ~2 km / 6500 ft; after
Rowan et al., 2002), temperatures due to burial alone, excluding late hydrothermal heating
associated with the genesis of regional Mississippi-Valley type ore deposits, are estimated at a
maximum of ~80°C (Makowitz et al., 2006; Rowan et al., 2002; Sliwinski et al., 2016). If the
carbonate cements within this shale bed formed at temperatures of 20-75°C (the approx.
temperature range from the sediment-water interface in a tropical seaway to the approx.
temperature above which bacterial activity in sediments declines decisively; e.g., Heese, 1999),
then the measured range of cement 5'*C values (+3 to +15%o; Figs. 3B, 6D) is consistent with
cement formation from *C-enriched precursor COs.



Within the sandstone beds of the upper Mt. Simon Fm., §'C values of dolomite-ankerite
cement zones 0 through 4 fall between -3 and +1%o, and are generally consistent with seawater
as the dominant source of dissolved inorganic carbon for early carbonate cement formation. The
more negative 5'°C values of the latest ankerite cement zones 5 and 6, which fall between -5 and
-9%o, suggest the involvement of two end-member processes in their formation: 1) contributions
of 1sotopically light CO; derived from the breakdown and recycling of organic matter, or simply
2) the effect of burial-related heating on the extent of carbon-isotope fractionation between DIC
in the pore-fluid and the precipitating carbonate phase. In the case of the first process, an external
source of carbon (perhaps from deeper in the basin) would have likely been needed, as these
arenitic sandstone beds were likely buried with only a minimal amount of organic matter. The
second process, on the other hand, can readily account for the observed ~10%o range in 6°C
values. For example, consider that lower Paleozoic strata of the Illinois Basin in central Illinois
are modeled to have experienced transient heating to 150-200°C during mid-Permian time (ca.
270 Ma). This is thought to have occurred in association with cross-basin brine migrations events
that resulted in the genesis of Mississippi-Valley type ore districts (Pb-Zn mineralization) on the
basins' northern and southern margins (at ca. 270 Ma) (Rowan et al., 2002). For a constant CO-
813C value, a temperature range of 20-150°C would result in a range of ~10%o in dolomite §'*C
values (8">Cdolomite Values at 150°C would be 10%o lower than at 20°C; a ~12%o range would be
observed if temperatures reached 200°C) (Horita, 2014).
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