
Nonlin. Processes Geophys., 25, 1–5, 2018
https://doi.org/10.5194/npg-25-1-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Brief communication: A nonlinear self-similar solution to
barotropic flow over varying topography
Ruy Ibanez1, Joseph Kuehl2, Kalyan Shrestha3, and William Anderson3

1Mechanical Engineering Department, University of Rochester, Rochester, NY 14627, USA
2Mechanical Engineering Department, University of Delaware, Newark, DE 19716, USA
3Mechanical Engineering Department, University of Texas Dallas, Dallas, TX 75080, USA

Correspondence: Joseph Kuehl (jkuehl@udel.edu)

Received: 1 November 2017 – Discussion started: 14 November 2017
Revised: 25 January 2018 – Accepted: 31 January 2018 – Published:

Abstract. Beginning from the shallow water equations
(SWEs), a nonlinear self-similar analytic solution is derived
for barotropic flow over varying topography. We study condi-
tions relevant to the ocean slope where the flow is dominated
by Earth’s rotation and topography. The solution is found to
extend the topographic β-plume solution of Kuehl (2014)
in two ways. (1) The solution is valid for intensifying jets.
(2) The influence of nonlinear advection is included. The
SWEs are scaled to the case of a topographically controlled
jet, and then solved by introducing a similarity variable,
η = cxnxyny . The nonlinear solution, valid for topographies
h= h0−αxy

3, takes the form of the Lambert W -function
for pseudo velocity. The linear solution, valid for topogra-
phies h= h0−αxy

−γ , takes the form of the error function
for transport. Kuehl’s results considered the case−1≤ γ < 1
which admits expanding jets, while the new result considers
the case γ <−1 which admits intensifying jets and a nonlin-
ear case with γ =−3.

1 Introduction

Slope topography represents both a barrier to large-scale
geophysical fluid transport as well as an important location
of mesoscale feature generation. Standard quasi-geostrophic
theory (Pedlosky, 1987) indicates that large-scale circulation
features act in such a way as to conserve their potential vor-
ticity, leading to the standard result of flow along (as opposed
to across) topographic contours. Thus, slope topography cre-
ates a barrier between the open and coastal oceans, often in-
hibiting the transport of nutrient-rich waters into the coastal

zone and at the same time trapping pollutants in the coastal
zone.

As both numerical and observational approaches have lim-
itations with respect to modeling the slope region, the ob-
jective of this brief communication is to provide an analytic
framework for flow along slope topographies. Such a frame-
work will serve as an idealized backbone upon which ob-
servational, numerical, experimental and further theoretical
work can build and provide a point of comparison for bet-
ter interpretation of the respective dynamics. In particular,
the results presented have implications for cross-topography
exchange and provide significant insight into the coupling
between the slope bottom boundary layer and interior water
column dynamics.

2 Problem formulation

The problem formulation considered in this work follows
that of Sansón and van Heijst (2002), Kuehl (2014) and
Kuehl and Sheremet (2014). A rotating, single fluid layer is
considered which flows along a sloping bottom topography
(i.e., along slope barotropic flow). The momentum equations
and continuity Eq. (1) for this situation are

ut − (f +ω)v =−(p+ e)x + ν∇
2u,

vt + (f +ω)u=−(p+ e)y + ν∇
2v,

ht + (hu)x + (hv)y +∇ ·5E = 0, (1)

(Pedlosky, 1987; Cushman-Roisin, 1994, provide the scal-
ing which leads to these equations) where u,v are the across
and along slope flow velocities, respectively, h is the fluid
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depth of the at rest state, p is the pressure anomaly divided
by water density (ρ), e = (u2

+ v2)/2 is kinetic energy per
unit mass, ν is the viscosity and f is the Coriolis parame-
ter. The effect of the viscous bottom boundary layer is ac-
counted for by a small correction term 5E =

1
2hEk̂×u, the

Ekman flux. Its divergence, ∇ · (5E)=−
1
2hEω, represents

first-order Ekman suction at a solid boundary with Ekman
layer depth, hE =

√
2ν/f . Taking the curl of the momen-

tum equations, defining the vorticity as ω = vx−uy , defining
an interior transport function ψ through hu= k̂×∇ψ +∇φ
(where ∇2φ =−∇ ·5E =

1
2hEω represents Ekman diver-

gence), and simplifying by letting q =
f+ω
h

, gives us the
vorticity-transport Eq. (2),

ωt + J (ψ,q)= ν∇
2ω−

hE

2
qω. (2)

The divergent component caused by the Ekman suction is
small (φ/ψ = hE/h=O(10−2), so φ can be neglected in
the vorticity advection terms. It is standard to expand the
Jacobian

[
J (ψ,q)= ψxqy −ψyqx

]
, J (ψ,q)= 1

h
J (ψ,ω)−

f

h2 J (ψ,η)+
β(x)

h
ψy −

β(y)

h
ψx , where β(x) = (hxf )/h and

β(y) = (hyf )/h are the average topographic beta-effects and
η is a small free-surface displacement and thus the total water
column depth is h+ η.

Kuehl (2014) provides a scaling analysis which justified
Ekman dissipation being the dominant dissipative term and
relative vorticity being dominated by cross-stream shear,
ω ≈ 1

h
ψxx . These assumptions are valid for flows which ex-

hibit scale separation between the along and cross flow (to-
pography) directions and are thus valid for flow along the
oceanic slope. These assumptions, along with the steady flow
assumption, truncate a Taylor expansion in 1

h
at leading order

(neglecting terms of O( 1
h2 ) ) and assume f � ω are again

made and result in a leading-order governing equation of the
form

ψxψxxy −ψyψxxx + f hxψy − f hyψx =−
f hE

2
ψxx . (3)

This equation (with appropriate boundary conditions) de-
scribes the linear and first-order nonlinear dynamics of a
barotropic flow along the oceanic slope. It is upon this equa-
tion that several analytic solutions will be presented.

3 Linear solutions

3.1 Expanding jet

Kuehl (2014) considered the linear case of Eq. (3),

f hxψy − f hyψx =−
f hE

2
ψxx . (4)

Noting its similarity to the heat equation, which has been
pointed out by others (in particular Csanady, 1978), Kuehl

attempted to find a similarity solution. The solution deriva-
tion will be sketched through here for completeness (details
in Kuehl, 2014). Assuming

– topography of the form h= h0−αxy
−γ ,

– similarity variable ζ = x(ky)n,

– boundary conditionsψ(−∞,y)= 0 andψ(∞,y)=Q,

– initial condition ψ(x,0)=Qsgn(x),

Eq. (4) reduces to −2ζg′ = g′′, where g = ψ/Q, with con-

ditions n=− 1+γ
2 and k =

[
α

2hE
(1− γ )

] 1
2n . This equation

has a well-known solution, ψ =Q
[

erf(ζ )+1
2

]
, and parame-

ters α and γ may be set to mimic the desired topography.
The “topographic β-plume” solution is valid in the parame-
ter range −1≤ γ < 1. For the solution to be real, we must
have γ < 1 and, for γ <−1, the jet would be compressing,
which does not satisfy the initial conditions. Physically, the
Ekman pumping in the bottom boundary layer relaxes the to-
pographic vorticity control, allowing the jet to spread across
isobaths.

3.2 Compressing jet

In nature, compressing (or intensifying) jets are often ob-
served and an analysis of ocean slope topography finds many
locations where γ <−1 is relevant (Ibanez, 2016). To ex-
tend the above result to the case of compressing jets, the ini-
tial condition used above must be revisited. Similarity so-
lutions require one point of reference to tether the solution.
It is most common to place this singularity at the origin, as
is done above and in many other classical cases such as the
Blasius boundary layer (Blasius, 1908; Rogers, 1992). How-
ever, in the present case, we choose to relocate the singularity
to y =∞. Upon relocation, the solution given above is still
valid, but the domain of physical relevance of the solution
has a slightly altered interpretation.

For the expanding jet case, the analytical solution is valid
over the domain y = [0 : ∞]. However, the physical rele-
vance of the solution demands the neglect of the region
near y = 0, due to the singularity, as well as the region near
y =∞, as this region violates the across and along jet scale
separation assumption, though the interior solution is indeed
a physically relevant description of geophysical systems. For
the compressing jet case, the situation is simply reversed. In
this case, the analytical solution is still valid over the domain
y = [0 : ∞]. However, the physical relevance of the solution
demands the neglect of the region near y = 0, as this region
violates the across and along jet scale separation assumption,
and the region near y =∞, due to the singularity, but again
the interior solution is a physically relevant description of
geophysical systems. The region of applicability is ultimately
governed by the assumption ω ≈ 1

h
ψxx (i.e., ψxx � ψyy),
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which is reasonable but should be checked in each particu-
lar application. Thus, we have adopted the terminology that
expanding jets are those with a singularity at the upstream
source region (y = 0) and compressing jets as those with the
singularity at the downstream exit region (y =∞).

4 Nonlinear solution

Motivated by the success and utility of the linear solutions
provided above, we seek a similarity solution for the non-
linear case (Eq. 3). Again, consider the normalized transport
function, g = ψ

Q
, and introduce a similarity variable of the

form η = cxnxyny , where c,nx,ny are constants. Note that
from this point on η will refer to the similarity variable and
not surface displacement. The relevant derivatives take the
forms

gy = g
′
∂η

∂y
= nycx

nxyny−1g′,

gx = g
′
∂η

∂x
= nxcx

nx−1ynyg′,

gxx =
∂

∂x

[
g′
∂η

∂x

]
= g′′

(
∂η

∂x

)2

+ g′
∂2η

∂x2

= n2
xc

2x2(nx−1)y2nyg′′+ nx(nx − 1)cxnx−2ynyg′,

gxxx = g
′′′

(
n3
xc

3x3(nx−1)y3ny
)

+ 3g′′
(
nxcx

nx−1yny
)(
nx(nx − 1)cxnx−2yny

)
+ g′

(
nx(nx − 1)(nx − 2)cxnx−3yny

)
,

gxxy = g
′′′

(
nycx

nxyny−1
)(
c2n2

xx
2(nx−1)y2ny

)
+ g′′

(
2nxcxnx−1yny

)(
nxnycx

nx−1yny−1
)

+ g′′
(
nycx

nxyny−1
)(
nx(nx − 1)xnx−2yny

)
+ g′

(
cnx(nx − 1)nyxnx−2yny−1

)
.

In this work, we are interested in straight slope topographies.
Upon setting nx = 1, it is seen that the nonlinear terms sim-
plify significantly. Specifically, all g′g′ terms are set to zero.
Also, it is found that the g′g′′′ terms cancel. Thus, the only
remaining nonlinear term is the g′g′′ term, which in Eq. (3)
takes the form Q2g′g′′c3nyy

3ny−1. Ultimately, Eq. (3) be-
comes

Qg′
[
hxf cnyxy

ny−1
−hyf cy

ny
]

︸ ︷︷ ︸
1

+Qg′′
[
f he

2
c2y2ny

]
︸ ︷︷ ︸

2

+Q2g′g′′
[
c3nyy

3ny−1
]

︸ ︷︷ ︸
3

= 0. (5)

It is now convenient to address the y dependences of the co-
efficients in terms 2 and 3 of Eq. (5). We require the y depen-
dency of terms 2 and 3 to balance, i.e., 2ny = 3ny−1, which

gives the condition ny = 1. Thus, the similarity variable has
the form η = cxy. Apply this condition, and upon division
by the coefficient of term 2, this yields

2
hec

g′
[
hxxy

−2
−hyy

−1
]

︸ ︷︷ ︸
1

+ g′′︸︷︷︸
2

+
2Qc
fhe

g′g′′︸ ︷︷ ︸
3

= 0. (6)

Next, the bracketed portion of Eq. (6) in term 1 is consid-
ered. Recall that h= h0−αxy

−γ , hx =−αy−γ and hy =
αγ xy−γ−1. We anticipate that the x must be absorbed into
an η term, so the bracketed terms become

−
α

c
ηy−γ−3(1+ γ ). (7)

The y dependence is removed with the condition γ =−3
and the terms in Eq. (7) reduce to 2α

c
η. It is then found that

Eq. (6) reduces to

4α
hec2 ηg

′
+ g′′+

2Qc
fhe

g′g′′ = 0. (8)

Note that, as expected, the limit of Eq. (8), asQ→ 0, recov-
ers the linear solutions provided above with 4α

hec2 = 2.

Thus, for topography of the form h= h0−αxy
3 and a

similarity variable of the form η = cxy, the nonlinear PDE,
Eq. (3), reduces to a nonlinear ODE of the form

ηg′ =−
(
K1+K2g

′
)
g′′, (9)

with K1 =
hec

2

4α and K2 =
Qc3

2f α .
Equation (9) can be solved for g′ by using separation of

variables. Let g′(η)= u(η) (the “pseudo velocity”) so ηu=
−(K1+K2u)

du
dη or ηdη =−(K1+K2u)

du
u

. Integrating both
sides yields

η2

2
+m=−(K1 lnu+K2u), (10)

where m is an integration constant related to the total trans-
port.

It is possible to solve Eq. (10) for u, by using the Lambert
W -function (W ),

u(η)=

K1W

(
K2
K1
e
−

2m+η2
2K1

)
K2

. (11)

The integral of u(η) is the analytic solution to the nor-
malized transport equation, whose boundary conditions are
g(−∞,y)= 0, g(∞,y)= 1 and g(x,∞)=Qsgn(x). How-
ever, the solution to the derivative of the transport function
(pseudo velocity, u) is sufficient to calculate the flow field, as
ψx =Qg

′(η)
dη
∂x

and ψy =Qg′(η)
dη
∂y

.
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Figure 1. Comparison between linear (open circles), nonlinear nu-
merical (thick dashed) and nonlinear analytic (solid lines) normal-
ized transport functions. Plotted is the ratioK2/K1 (nonlinear coef-
ficient over linear coefficient) of 0.001 (a), 10 (b) and 100 (c) with
K1 = 0.5.

Calculation

It can be seen thatm is related to total transport by taking the
analytic limit of Eq. (11) as K2→ 0 (which is an error func-
tion) and evaluating the transport boundary conditions. To
complete the analytic solution in the nonlinear case, Eq. (11)
can be integrated and an iterative method can be employed to
determine m based on the transport boundary condition. Al-
ternatively, Eq. (9) can be solved numerically. A fourth-order
Runge–Kutta method coupled with a shooting algorithm was
applied to iteratively meet the total transport boundary condi-
tion. It should be noted that the iterative numerical approach
is based on a very small and sensitive velocity boundary con-
dition, which cannot be taken at −∞ but must be approxi-
mated at a small finite value. In the linear and moderate non-
linear regimes, the numerical and analytical solutions show
good agreement (Fig. 1). However, as nonlinearity increases,
the velocity boundary condition becomes extremely sensi-
tive and difficult to iterate on. Thus, the great advantage of
an analytical solution is that it is easily applicable at any am-
plitude.

5 Discussion

The solutions presented above are relevant to barotropic,
along slope flow over generic topographies of the form h=

h0−αxy
−γ . For the linear solution cases, the Ekman pump-

ing relaxes the topographic vorticity control via the bottom
boundary layer. When −1≤ γ < 1, the Ekman pumping out
paces the topographic control and an expanding topographic
β-plume solution is found. This represents cross-topographic

transport due solely to bottom boundary layer processes.
When γ <−1, the Ekman pumping is not able to overcome
the topographic influence and a compressing topographic β-
plume solution is found. Such compressing solutions result
in intense currents, which may be subject to instability. For
the special case, h= h0−αxy

3, a nonlinear solution is found.
As seen in Fig. 1, the nonlinear solution broadens compared
to the linear solution. At first this may seem to be a contra-
diction; however, one must remember that in this case the
topographic slope is rapidly increasing, with the influence to
compress the jet. The influence of the nonlinear terms is to
resist this compression. This is consistent with the expected
tendency of flow inertia. The details of this nonlinear ten-
dency are then relevant to the onset of barotropic instability
(or other forms of instability, analysis of which is ongoing
work). Note also that the nonlinear solution limits to the lin-
ear solution (both analytically and numerically), as it must.

Code and data availability. This is an analytical paper: the codes
described are standard and easily reproduced from explanations
provided in the text.
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