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BOUNDARY TORSION AND CONVEX CAPS

OF LOCALLY CONVEX SURFACES

Mohammad Ghomi

Abstract

We prove that the torsion of any closed space curve which
bounds a simply connected locally convex surface vanishes at least
4 times. This answers a question of Rosenberg related to a prob-
lem of Yau on characterizing the boundary of positively curved
disks in Euclidean space. Furthermore, our result generalizes the
4 vertex theorem of Sedykh for convex space curves, and thus con-
stitutes a far reaching extension of the classical 4 vertex theorem.
The proof involves studying the arrangement of convex caps in a
locally convex surface, and yields a Bose type formula for these
objects.
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1. Introduction

When does a closed curve Γ in Euclidean space R3 bound a disk
of positive curvature? This question, which appears in Yau’s list of
open problems [72, #26], has been investigated by a number of authors
[21, 57, 27]. In particular, in 1993 Rosenberg [57, Sec. 1.3] asked
whether a necessary condition is that Γ have (at least) 4 vertices, i.e.,
points where the torsion vanishes (or the first three derivatives of Γ are
linearly dependent). Here we show that the answer is yes. To state our
main result, let M denote a topological disk, with boundary ∂M . A
locally convex immersion f : M → R3 is a continuous locally one-to-
one map which sends a neighborhood U of each point p of M into the
boundary of a convex body K in R3. We say that f is locally nonflat
along ∂M provided that for no point p ∈ ∂M , f(U) lies in a plane.
Further, f |∂M is of regularity class Ck≥1 if f : ∂M → R3 is k-times
continuously differentiable, and its differential is nonvanishing. The
torsion τ of f |∂M changes sign (at least) n times, provided that there
are n points cyclically arranged in ∂M where the sign of τ alternates.

Theorem 1.1 (Main Theorem, First Version). Let f : M → R3 be a
locally convex immersion. Suppose that f |∂M is C3, has no inflections,
and f is locally nonflat along ∂M . Then either τ vanishes identically,
or else it changes sign 4 times.

Note that if f is locally flat at a point p ∈ ∂M , then τ vanishes
throughout a neighborhood of p, which yields infinitely many vertices.
Thus the above theorem ensures the existence of 4 boundary vertices
for all locally convex immersions f : M → R3 for which τ is well de-
fined (f is not required to have any degree of regularity in the interior
of M). In particular, Theorem 1.1 generalizes a well-known result of
Sedykh [61] who had established the existence of 4 vertices in the case
where f embeds M into the boundary of a single convex body. In this
sense, Theorem 1.1 is a substantial extension of the classical four ver-
tex theorem for planar curves. Indeed points of vanishing torsion of a
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space curve are natural generalizations of critical points of curvature of
a planar curve, e.g., see [23, Note 1.5]. We should also note that the
local nonflatness assumption along ∂M here is necessary to ensure that
the sign of τ behaves in the claimed manner, see Example 7.1.

Corollary 1.2. Let f : M → R3 be a C3 immersion with nonnegative
curvature. Suppose that f has positive curvature on ∂M . Then either
τ vanishes identically, or else it changes sign 4 times.

Proof. Since f has positive curvature on ∂M , f |∂M is automatically
devoid of inflections, and thus τ is well-defined. Further f is locally
nonflat along ∂M . So, to apply Theorem 1.1, we just need to check
that f is locally convex. This has been shown in [2, Prop. 3.3]. Indeed,
even though [2, Prop. 3.3], which holds in Rn, has been stated subject
to f being C∞, the only regularity requirement used there is that f be
Cm+1, where m = dim(M), in order to invoke Sard’s theorem [19, Sec.
3.4.3] in [2, Lem. 3.1]. Thus, since m = 2 in the present case, we only
need f to be C3 in order to ensure local convexity. q.e.d.

Thus we obtain a new necessary condition for the existence of a pos-
itively curved disk spanning a given curve. Only one other nontrivial
obstruction, involving the self-linking number of the curve, has been
known up to now [57], see Example 7.3. The above result is of interest
also for studying the Plateau problem for surfaces of constant curvature
[63], since it has been shown in recent years by Guan and Spruck [32]
and Trudinger and Wang [66] that if a curve bounds a surface of posi-
tive curvature, then it bounds a surface of constant positive curvature,
see also Smith [62]. Further we should point out that there exists a disk
of everywhere zero curvature smoothly embedded in R3 whose torsion
changes sign only twice, and has only two vertices, see Example 7.2 and
the paper of Røgen [55]. Thus, in Corollary 1.2, the assumption that
the curvature be positive along ∂M is essential. The requirement that
the curvature be nonnegative in the interior of M is necessary as well,
see Example 7.3. Finally note that the C3 assumption on f was used
in the above proof only to ensure local convexity; therefore, if f has
everywhere positive curvature, then C2 regularity in the interior of M
is sufficient.

The rest of this paper is devoted to the proof of Theorem 1.1, although
our methods yield a substantial refinement of it (Theorem 6.16). The
main inspiration here is a proof of the classical four vertex theorem for
planar curves which dates back to H. Kneser [40] in 1922, and Bose
[13] in 1932. As we will describe in Section 2.1, this proof involves
studying circles of largest radius which may be inscribed at each point
of a simple closed planar curve. A key idea here, as has been pointed
out by Umehara [68], is to focus on the purely topological nature of
the partition which these inscribed circles induce on the curve. As



430 M. GHOMI

we will outline in Section 2.3, this argument may be adapted to the
setting of Theorem 1.1, where the role of inscribed circles will be played
by (convex) caps in our locally convex surface. Accordingly, we will
embark on an extensive study of these caps and develop a number of
their fundamental properties needed in this work, which may also be of
independent interest.

Convex caps play a major role in the seminal works of Alexandrov
[5] and Pogorelov [51] on the isometric embeddings of convex surfaces,
as well as in other fundamental results in this area such as the works
by van Heijenoort [70], Sacksteder [59], and Volkov [4, Sec. 12.1].
In these studies, however, the underlying Riemannian manifolds are
assumed to be complete, or nearly complete, as in the works of Greene
and Wu [28, 29]. In the present work, on the other hand, we study
caps of manifolds with boundary, as in the author’s previous work with
Alexander [2] and Alexander and Wong [3]. Thus we will be prompted
to refine a number of old results in this area, and establish some new
ones, such as Theorem 6.1 and the corresponding Bose formula, which
is a culmination of other results on uniqueness, extension, distortion,
and convergence of caps developed below.

The study of special points of curvature and torsion of closed curves
has generated a vast and multifaceted literature since the works of
Mukhopadhyaya [44] and A. Kneser [39] on vertices of planar curves
were published in 1910–1912, although aspects of these investigations
may be traced even further back to the study of inflections by Möbius
[42] and Klein [38], see [24, 23]. The first version of the four vertex
theorem for space curves, which was concerned with curves lying on
smooth strictly convex surfaces, was stated by Mohrmann [43] in 1917,
and proved by Barner and Flohr [9] in 1958. This result was finally ex-
tended to curves lying on the boundary of any convex body by Sedykh
[61] in 1994, after partial results by other authors [45, 11], see also
Romero-Fuster and Sedykh [56] for further refinements.

Among various applications of four vertex theorems, we mention a
paper of Berger and Calabi et al. [52] on physics of floating bodies,
and recent work of Bray and Jauregui [14] in general relativity. See
also the works of Arnold [7, 8] for relations with contact geometry, the
book of Ovsienko and Tabachnikov [47] for projective geometric aspects,
Angenent [6] for connections with mean curvature flow, which are also
discussed in [23], and Ivanisvili et al. [35, 36] for applications to the
study of Bellman functions. Other references and more background on
four vertex theorems may be found in [18, 65, 22, 48, 26].

2. Preliminaries

As has been pointed out by Umehara [68], and further studied by
Umehara and Thorbergsson [65], there is a purely topological partition
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of the circle S1, called an intrinsic circle system, which plays a funda-
mental role in a variety of four vertex theorems in geometry. Here we
review how a weaker notion, which we call a nested partition, quickly
leads to various generalizations of the classical four vertex theorem for
planar curves, and then outline how this argument may be adapted to
proving Theorem 1.1, which will then motivate the rest of this work.

2.1. Bose’s formula for nested partitions of S1. A partition P of
S1 is a collection of its nonempty subsets, or parts P , which cover it
and are pairwise disjoint. We say that P is nontrivial if it contains
more than one part. For each p ∈ S1, let [p] denote the part of P which
contains p. Further, for each part P ∈ P, let P ′ := S1 − P denote its
complement. We say that P is nested provided that for every P ∈ P
and p ∈ P ′, [p] lies in a (connected) component of P ′. This definition is
motivated by the following example:

Example 2.1. Let M be a topological disk, f : M → S2 be a locally
one-to-one continuous map into the sphere, and suppose that f |∂M is C2.
Let us say that C ⊂ M is a circle provided that f(C) is a circle, and f
is injective on C. Since f |∂M is C2, there exists a circle passing through
each point p ∈ ∂M . Further, one of these circles, which we denote by
Cp, is maximal, i.e., it is not contained inside any other circle passing
through p. Existence of Cp follows quickly from Blaschke’s selection
principle [60, Thm. 1.8.6] when f is one-to-one, or f(∂M) is a simple
curve; the general case, which is more subtle, follows for instance from
Proposition 4.6 below. Now set

[p] := Cp ∩ ∂M.

Then P := {[p]}p∈∂M is a partition of ∂M � S1, since maximal circles
are unique. We claim that P is nested. Suppose, towards a contradic-

M
C

p′ q′

q

p

Figure 1.

tion, that it is not. Then there is a pair C, C ′ of distinct maximal circles
in M such that C ′ has points p′, q′ in different components of ∂M −C,
see Figure 1. Further there are points p, q ∈ C ∩ ∂M which separate
p′ and q′ in ∂M . Consequently, each component of C ′ − {p′, q′} must
intersect both components of C − {p, q}, since M is simply connected.
Thus C ∩ C ′ and, consequently, f(C) ∩ f(C ′) contain at least 4 points.
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Since f(C) and f(C ′) are circles, it follows then that f(C) = f(C ′).
Thus C = C ′ which is the desired contradiction.

A part P ∈ P has rank n provided that it has a total of n components.
If rank(P ) = 1, then we say that P is singular, and if rank(P ) ≥ 3, then
P is called triangular. Our first lemma below gives a lower bound for
the number of singular parts of P in terms of the number of triangular
ones. To describe this estimate, let

Tri(P) := {P ∈ P | rank(P ) ≥ 3},
denote the set of triangular parts of P. Obviously, one way to measure
the size of Tri(P) would be by its cardinality, #Tri(P); however, follow-
ing Umehara [68], see also Romero-Fuster and Sedykh [56], we employ
a more refined measure:

(1) T :=
∑

P∈Tri(P)

(
rank(P )− 2

)
≥ #Tri(P).

This notion, which we call the triangularity of P, goes back to the
remarkable work of Bose [13]. Next let S denote the cardinality of the
set of singular parts of P:

(2) S := #{P ∈ P | rank(P ) = 1}.
The first statement in the following lemma, and its proof, is a close
variation on [68, Lem. 1.1], which according to Umehara [68] dates
back to H. Kneser’s work [40]. Further inequality (3) below is a “Bose
type formula”, which dates back to [13], and is similar to a formula
proved in [68, Thm. 2.7], see Note 2.5 below.

Lemma 2.2. Let P be a nested nontrivial partition of S1 and P ∈ P.
Then each component of P ′ contains a singular part of P. In particular,

(3) S ≥ T + 2.

Proof. Since P is nontrivial, P ′ �= ∅. Let I0 be a component of P ′,
of length �0. Let m0 be the midpoint of I0. If [m0] is connected we
are done, since [m0] ⊂ I0 by the nested property of P. Otherwise,
I0 − [m0] has a component I1 of length �1 ≤ �0/2 such that cl(I1) ⊂ I0,
where cl(I1) denotes the closure of I1 in S1. Let m1 be the midpoint
of I1. Again if [m1] is connected, we are done, since [m1] ⊂ I1 ⊂ I0.
Otherwise I1− [m1] contains a component I2 of length �2 ≤ �1/2 ≤ �0/4
such that cl(I2) ⊂ I1. Continuing this procedure inductively, we either
reach a stage where [mk] is connected for some k, in which case we are
done; or else we produce an infinite sequence of closed nested intervals
cl(I1) ⊃ cl(I2) ⊃ . . . such that Ik has length �k ≤ �0/(2

k). Then
Ik converge to a point m∞ ∈ cl(I1) ⊂ I0. By the nested property,
[m∞] ⊂ Ik for all k. Consequently, [m∞] = {m∞}. In particular [m∞]
is connected, which completes the proof of the first statement of the
lemma.
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Next, to establish (3), first suppose that T = 0, or Tri(P) = ∅. Then
we have to check that S ≥ 2. This follows immediately from the previous
paragraph if P has a part with rank 2. Otherwise every part of P is
singular. Thus again S ≥ 2, since P is nontrivial by assumption. So
we may suppose that Tri(P) �= ∅. Now let A ⊂ Tri(P) be an arbitrary
subset of finite cardinality |A|, and set

TA :=
∑

a∈A

(
rank(a)− 2

)
.

It suffices to show that

S ≥ TA + 2.

Let us say that a component of A′ := S1 −A is prime, provided that it
coincides with a component of a′ := S1 − {a} for some a ∈ A. Let SA

denote the number of prime components of A′. Then

S ≥ SA,

because each prime component of A′ contains a singular element of P
by the previous paragraph. Thus it suffices to show that

(4) SA = TA + 2,

which will be done by induction on |A|. First note that when |A| = 1,
or A = {a}, every component of A′ is a component of a′ and thus is
prime. So SA = rank(a) = TA + 2, as desired.

Next, to perform the inductive step on (4), we need the following
observation. Let us say that an element a ∈ A is prime provided that
with at most one exception each component of a′ is a component of A′.
We claim that A always contains at least one prime element. To see this
let a1 be any element of A. If a1 is prime, we are done. Otherwise let
a2 ∈ A be an element which lies in a component of a′1. Continuing this
process inductively, if ai−1 is not prime, we let ai ∈ A be an element
in a component of a′i−1 which does not contain ai−2. Since P is nested,
a1, . . . , ai are all distinct. Thus, since |A| is finite, this chain terminates
after k ≤ |A| steps. Then ak is the desired prime element.

Now assume that (4) holds whenever |A| = n, and suppose that we
have a set A with |A| = n + 1. Let a1 be a prime element of A. Since
now A has more than one element, a′1 has rank(a1) − 1 components
which are components of A′. Thus

SA−{a1} = SA − (rank(a1)− 1) + 1 = SA − rank(a1) + 2.

On the other hand, by the inductive hypothesis,

SA−{a1} = TA−{a1} + 2 =
n∑

i=2

(rank(ai)− 2) + 2.
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Setting the right hand sides of the last two displayed expressions equal
to each other, we obtain

SA =
n∑

i=2

(rank(ai)− 2) + rank(a1) =
n∑

i=1

(rank(ai)− 2) + 2 = TA + 2,

as desired. q.e.d.

Note 2.3. Another way to prove (4), which reveals the deeper com-
binatorial reason behind the Bose formula (3), is by observing that any
finite set A ⊂ Tri(P) gives rise to a tree T as follows. Let the vertices of
T be the elements of A and prime components of A′. We declare each
prime component of A′ to be adjacent to the corresponding element of
A. Further, we stipulate that ai ∈ A, i = 1, 2 are adjacent provided
that there are disjoint connected sets Ii ⊂ S1 such that ai ⊂ Ii, ∂Ii ⊂ ai,
and there is no element of A which separates Ii, i.e., has points in both
components of S1 − {I1 ∪ I2}.

Since A is nested, it follows that T is a tree, i.e., T is connected, and
contains no closed paths. Prime components of A′ form the leaves of T ,
or the vertices of degree 1, while elements of A are vertices of T with
degree ≥ 3. Thus (4) corresponds to

(5) #Leaves(T ) =
∑

deg(v)≥3

(deg(v)− 2) + 2,

which is a general property of all trees. To establish this equality let V ,
|V |, |Vi|, and |E| denote, respectively, the set of vertices, the number of
vertices, the number of vertices of degree i, and the number of edges of
T . Then we have

|E| = |V | − 1 =
∑

i

|Vi| − 1, and |E| = 1

2

∑

v∈V

deg(v) =
1

2

∑

i

i|Vi|.

The first equality is a basic characteristic property of trees, and the
second one is the “hand shaking lemma”, which holds for all graphs.
Setting the right hand sides of these expressions equal to each other
yields

|V1| =
∑

i≥3

(i− 2)|Vi|+ 2,

which is equivalent to (5).

2.2. Proof of the classical 4 vertex theorems. Let f : M → S2

be a topological immersion of a disk into the sphere, and P be the
partition induced on ∂M by the maximal circles of M , as described in
Example 2.1. We say that a maximal circle C is singular if C ∩ ∂M
is connected. Let S denote the number of singular maximal circles of
M , and T be the number of maximal circles C such that C ∩ ∂M has
at least 3 components. As we discussed in Example 2.1, P is nested.
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Thus Lemma 2.2 immediately yields the following observation, which is
a special case of our Theorem 6.1.

Corollary 2.4. Suppose that ∂M is not a circle, and let C ⊂ M be
a maximal circle. Then each component of ∂M − C contains a point
where the corresponding maximal circle is singular. In particular

(6) S ≥ T + 2.

Since the stereographic projection preserves circles, the above ob-
servation has a direct analogue for planar curves. An example of this
phenomenon is illustrated in Figure 2 which depicts an ellipse with a
pair of singular maximal circles on either side of a maximal circle of
rank 2.

Figure 2.

If Cp is a singular maximal circle of M at p, then it is well-known
that f(Cp) is the osculating circle of f |∂M at p; this follows for instance
by applying Taylor’s theorem to a stereographic projection of f |∂M into
R2. Let κ denote the geodesic curvature of f |∂M with respect to the
normal vector field which points locally into f(M). Then, since f(Cp)
lies on one side of f |∂M near p, it follows that κ has a local minimum at
p. So, since κ must have a local maximum between every pair of local
minima, we have

(7) V ≥ 2S ≥ 2(T + 2),

where V is the number of local extrema of κ, or vertices of f |∂M . In
particular V ≥ 4, which yields the 1912 theorem of A. Kneser [39]
for simple closed planar curves. Earlier, in 1909, Mukhopadhyaya [44]
had established this inequality for convex planar curves. The improved
inequality (7) was first established by Bose [13] for convex planar curves
in 1932, and was extended to all simple closed planar curves by Haupt
[33] in 1969. Prior to Bose, H. Kneser [40], who was A. Kneser’s son,
had shown that S ≥ 2 in 1922. The above corollary also improves
the theorem of Osserman [46] and dual results of Jackson [37] on the
relation between the vertices and the inscribed/circumscribed circles of
planar curves. Further, (7) yields the simply connected case of a theorem
of Pinkall [50] who in 1987 had obtained the first version of the 4 vertex
theorem for nonsimple curves which bound immersed surfaces in S2 (or
R2), see also [16, 67].
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Note 2.5. As we mentioned above, in [68] Umehara introduces a
partition of S1, called an intrinsic circle system, which is more restrictive
than the nested partitions discussed above. An intrinsic circle system is
a nested partition where each part is closed, and the parts satisfy a lower
semicontinuity property: if pi ∈ S1 converge to p, and qi ∈ [pi] converge
to q, then q ∈ [p]. Subject to these additional restraints, Umehara shows
that equality holds in (3), when S < ∞. See also Note 6.4 below.

Note 2.6. Another way to gain insight into the Bose formula in
Corollary 2.4, is by considering the locus T of the centers of maximal
circles in M . It is well-known [41] that when ∂M , or more precisely
f : ∂M → S2, is generic, T is a graph. The leaves of T correspond to
centers of singular circles, and, more generally, its vertices of degree n
correspond to circles of rank n. Further, since M is simply connected,
T is a tree. Thus the Bose formula (6) follows from the basic combi-
natorial property of trees described by (5). Also note that T is the set
of singularities of the distance function from ∂M , which is well defined
in any dimension. These sets have been studied by Mather [41] who
showed that generically they have a stratified structure in the sense of
Whitney. Further they have been called “the medial axis”, “Maxwell
graph”, or “the central set”, in various parts of the literature, and may
even arise as the cut-locus of Riemannian manifolds without conjugate
points. See the papers of Damon [17], Houston and van Manen [34],
and references therein.

2.3. Outline of the proof of the main theorem. The proof of The-
orem 1.1, or more precisely that of its refinement, Theorem 6.16 below,
is modeled on the proof of Corollary 2.4 and the subsequent inequality
(7) described above. Indeed Theorem 6.16 generalizes (7) to all locally
convex immersions f : M → R3 satisfying the hypothesis of Theorem
1.1. The key idea here is that the role of maximal circles in the above
argument may be played by maximal caps in our locally convex surface:

circles −→ caps.

Roughly speaking, caps are convex pieces of a locally convex surface
which are cut off by a plane, or lie on a plane. For instance every
circle in S2 bounds a cap, but we will also regard single points of S2 as
(degenerate) caps. In general, degenerate caps may take the form of a
line segment or a flat disk as well. The precise definition of caps will be
presented in Section 2.4.6.

Sections 3, 4, and 5 are devoted to proving the existence of a max-
imal cap at each point p ∈ ∂M . This will be done via a constructive
procedure which is easy to describe when f is smooth, and has positive
curvature near ∂M : start with a plane H which is tangent to f at p,
see Figure 3, and rotate it about the tangent line passing through p so
as to cut off a small cap from the surface; continue to rotate H in the
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Figure 3.

same direction as far as possible while the interior of the cut off region
remains disjoint from ∂M . The final cut off region will be the desired
cap.

To carry out the above construction in the general case we need to
address a number of technical issues. The first major complication is
that maximal caps may be degenerate. So first we characterize these
in Section 3. Subsequently some basic properties of general caps, in-
cluding their convergence, may be further developed in Section 4, which
culminates in a comprehensive structure theorem in Section 4.4. Next
we need to describe what we mean by a “tangent plane” when f is not
regular in the interior of M . This will require studying the tangent
cones of f along ∂M in Section 5.1. Using this tool, we then show, in
Section 5.2, that there exists a cap at each boundary point of M , and
subsequently prove the existence of a maximal cap Cp for each point
p ∈ ∂M in Section 5.3.

Once the existence of maximal caps has been established, we let [p] :=
Cp∩∂M be the partition that these caps induce on ∂M � S1, just as in
Example 2.1. Next we will show in Section 6.1 that this partition has
the nested property, which yields the estimate S ≥ T + 2 via Lemma
2.2. It remains then to establish the estimate V ≥ 2S, where V denotes
the number of times the torsion τ of f |∂M changes sign. To this end we
will show, in Section 6.2, that the plane H of a maximal cap Cp is the
osculating plane of f |∂M at p. Consequently, since f |∂M lies locally on
one side of H, it follows that τ vanishes at p. Moreover, it will be shown
in Section 6.3 that ∂M may be oriented so that f |∂M lies locally below
H, i.e., in the half-space opposite to where the binormal vector B(p)
points. This will ensure, as we will show in Section 6.4, that τ changes
sign from negative to positive as f |∂M crosses p. Thus we obtain the
desired inequality V ≥ 2S, which completes the proof.

2.4. Notation and terminology. Here we gather the frequently used
terms in this paper for easy reference. Most importantly, we will define
caps, which are the central objects of study in this work.

2.4.1. General terms. Rn stands for the n-dimensional Euclidean
space with standard inner product 〈·, ·〉 and corresponding norm ‖ · ‖.
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Further Sn−1 denotes the unit sphere centered at the origin of Rn. The
abbreviations int and cl will stand, respectively, for the interior and
closure, and ∂ will denote the boundary of a manifold or a subspace. A
segment is a topological space which is homeomorphic to the interval
[0, 1] ⊂ R. Finally, for any set X ⊂ Rn, conv(X) will denote the convex
hull of X, i.e., the intersection of all closed half-spaces which contain X.

2.4.2. Support planes and vectors. Hyperplanes of Rn will be de-
noted by H, and by a side of H we shall mean one of the closed half-
spaces H− or H+, which are determined by H. When H is oriented,
i.e., it comes with a preferred choice of a unit normal n, we say that n
is the outward normal of H, and assume H+ is the side of H into which
n points. We say that H supports a set A ⊂ Rn, if H passes through
a point p of A, and A lies on one side of H, which unless specified oth-
erwise, we assume to be H−. In this case, n will be called a support
vector of A at p. If, furthermore, H intersects A only at p we say that
H is a strictly supporting plane of A at p; accordingly, n will be called
a strict support vector of A at p.

2.4.3. The local nonflatness assumption. This refers simply to the
assumption in Theorem 1.1, and throughout the paper, that no point
p ∈ ∂M has a neighborhood U such that f(U) lies in a plane.

2.4.4. f and M . Unless noted otherwise, we shall assume that f and
M are as in Theorem 1.1, i.e., M is a topological disk, f : M → R3

is a locally convex immersion which satisfies the local nonflatness as-
sumption along ∂M , and f |∂M is C3 and has no inflections, i.e., points
where the curvature vanishes. Most of the statements which are estab-
lished below, however, often hold in wider contexts. For instance, the
C3 regularity of f |∂M is not needed before Section 6.3; until that point
f |∂M may be C2, and often even C1. Further, the simply connected
assumption on M is not required until Section 6.1, i.e., M may be any
compact connected 2-manifold with boundary up to that point. Finally,
the statement and proofs of many of the following results hold nearly
word by word in Rn, but for simplicity we will not distinguish these
from other results.

2.4.5. Convex neighborhoods. A convex bodyK ⊂ Rn is a compact
convex set with interior points in Rn. Recall that f : M → R3 is a
locally convex immersion provided thatM is a 2-dimensional topological
manifold, and f is a locally one-to-one continuous map which sends a
neighborhood U of each point p ∈ M into the boundary of a convex body
K ⊂ R3. Since f is locally-one-to-one, we may assume that U is so small
that f is one-to-one on cl(U) and, consequently, f : cl(U) → f(cl(U)) ⊂
∂K is a homeomorphism (any one-to-one map from a compact space
into a Hausdorff space is a homeomorphism onto its image). Further we
may assume that cl(U) is a topological disk and ∂U is a simple closed
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curve. When p ∈ ∂M , we will also assume that ∂U ∩ ∂M is connected,
and K = conv(f(U)) by the local nonflatness assumption. When all
these conditions hold, we say that U is a convex neighborhood of p with
associated body K.

2.4.6. Caps. We use the term cap, which is short for convex cap, to
refer both to certain subsets of R3 as well as corresponding subsets of
M which are mapped homeomorphically onto them. Further, in each
category we distinguish two varieties of caps: nondegenerate and degen-
erate, as described below.

A nondegenerate cap C in R3 is a topological disk which lies em-
bedded on the boundary of a convex body K, and meets a plane H
precisely along its boundary ∂C. Then H which will be called the plane
of C. By the Jordan curve theorem, C lies on one side of H, which
we designate by H+, and refer to as the half-space of C. In particular,
C = cl(∂K ∩ intH+). Conversely, if K ⊂ R3 is a convex body, H is
a plane such that H ∩ K has interior points in H, and H+ is a side
of H which contains an interior point of K, then cl(∂K ∩ intH+) is a
nondegenerate cap.

A degenerate cap in R3, on the other hand, is a compact convex
subset C of a plane H, i.e., C is either a point, a line segment, or a
convex disk in H. In this case we again say that H is a plane of C;
however, note that this plane is not unique when C is not a disk.

A closed connected set C ⊂ M will be called a cap provided that (i) f
maps C injectively onto a cap f(C) in R3, and (ii) if f(C) is degenerate,
then there exists a neighborhood U of C in M such f(U −C) is disjoint
from a half-space H+ of f(C). Note that since M is compact, C is
compact, and thus f : C → f(C) is a homeomorphism. So a cap in M
is either homeomorphic to a disk, a line segment, or a point.

We say that a cap C in M is degenerate (resp. nondegenerate) when
f(C) is degenerate (resp. nondegenerate). When C is nondegenerate,
then H, H+ will be called, respectively, the plane and half-space of C,
if they are the plane and the half-space of f(C), respectively. When C
is degenerate, we say that H is a plane of C provided that H is a plane
of f(C), and, furthermore, a half-space H+ of H satisfies condition (ii)
in the last paragraph.

A cap C ⊂ M is called maximal if it is contained in no other cap of
M , and is singular if C ∩ ∂M is connected. The number of components
of C ∩ ∂M is the rank of C. The partition which maximal caps induce
on ∂M will be denoted by P, and the corresponding quantities S, T
will be defined as in (2) and (1), respectively.

2.4.7. The uniqueness and extension properties. When C is a
nondegenerate cap in M , condition (ii) above is met automatically
(Proposition 4.1), which will be referred to as the extension property.
Another basic, but important, fact is that intersecting caps in M which
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have a common plane coincide (Proposition 4.3), which will be called
the uniqueness property. Since these properties are invoked often, we
will not always cite the respective propositions.

2.4.8. Other terms. The components of the Frenet–Serret frame of a
curve in R3 will be denoted by T , N , B which stand for the tangent,
principal normal, and binormal vectors, respectively. Further ν will
denote the conormal vector along f |∂M as defined in Section 5.1. The
curvature and torsion of a curve will be denoted by κ and τ , respectively,
and V will be the number of sign changes of τ . For any set X ⊂ Rn

and point p ∈ X, TpX will denote the tangent cone of X at p. Finally
the tangent plane of f at p (Section 5.1) will be denoted by Hp(0), and
its outward normal will be denoted by n or np(0).

3. Structure of degenerate caps

The main result of this section is Theorem 3.3 below which gives a
characterization for degenerate caps, and will be eventually subsumed
under Theorem 4.12. To obtain this result, first we need to record a
local characterization for degenerate caps, which follows from a classical
theorem of Tietze–Nakajima.

3.1. Local characterization. Let A ⊂ M . We say that f is locally
convex on A relative to a plane H provided that for every point p of
A there exists a convex neighborhood U of p in M such that f(U) is a
convex subset ofH. The next lemma is a version of the Tietze–Nakajima
characterization for convex sets [69], which has been extended in several
directions [58, 12, 10]. In particular, this lemma follows immediately
from [12, Thm. 15]. On the other hand, as has been pointed out in
the proofs of [2, Lem. 3.4] or [59, Lem. 1], the proof of the original
Tietze–Nakajima theorem, as presented for instance in [69, Thm. 4.4],
may be quickly adapted to the present setting.

Lemma 3.1 (Tietze–Nakajima [12]). Let A ⊂ M be a closed con-
nected set. Suppose that f is locally convex on A relative to a plane H.
Then f is one-to-one on A, and f(A) is a convex subset of H.

Next we adapt the above lemma to the precise form we need here:

Proposition 3.2. Let A ⊂ M be a closed connected set, and suppose
that f(A) lies in a plane H. Further suppose that each point of A has
a convex neighborhood U in M such that

(i) f(U ∩A) is convex,
(ii) f(U −A) is disjoint from H,
(iii) f(U) lies on one side of H.

Then A is a cap with plane H.
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Proof. By condition (i), f is locally convex on A relative to H. Thus,
by Lemma 3.1, f embeds A into a convex set in H. It remains to show
then that there is a neighborhood V of A in M such that f(V − A) is
disjoint from H, and lies on one side of it. Let V be the union of all
neighborhoods U in the statement of the proposition. We claim that V
is the desired neighborhood.

Condition (ii) quickly yields that f(V − A) ∩H = ∅, as desired. To
show that f(V − A) lies on one side of H, it suffices to check that
the neighborhoods U all lie either in H+ or in H−. Further, we only
need to check this for those U which intersect ∂A, for if U ⊂ A, then
f(U) ⊂ H ⊂ H±. So suppose that there is a point q ∈ ∂A such that
f(U) ⊂ H− for some U containing q. We claim then that, for every U
intersecting ∂A,

(8) f(U) ⊂ H−.

To establish this claim, which would finish the proof, first note that by
∂A here we mean the subset of A which corresponds to the topologi-
cal boundary of the convex set f(A) ⊂ H, under the homeomorphism
f : A → f(A). Thus ∂A is either homeomorphic to a point, a line seg-
ment, or a circle. In particular, ∂A is connected.

Let ∂A± be the set of points q ∈ ∂A such that for some U containing
q, f(U) ⊂ H±, respectively. Then ∂A± cover ∂A by condition (iii).
Further it is clear that ∂A± are open in ∂A. Next we claim that

(9) ∂A+ ∩ ∂A− = ∅.
This would show that ∂A± are closed. Since by assumption ∂A− �=
∅, and ∂A is connected, it would follow then that ∂A = ∂A−, which
would in turn yield (8), as desired. To establish (9), suppose towards
a contradiction that there is a point q ∈ ∂A+ ∩ ∂A−. Then there are
neighborhoods U± of q in M such that f(U±) ⊂ H±, respectively. Set
U := U+ ∩ U−. Then f(U) ⊂ H+ ∩ H− = H. Consequently, U ⊂ A,
since U ⊂ V and f(V − A) ∩ H = ∅. It follows then that q ∈ ∂M ,
because q ∈ ∂A, and U is a neighborhood of q in M . This violates
the local nonflatness assumption, and yields the desired contradiction.
q.e.d.

3.2. Global characterization. Here we use the local characterization
(Proposition 3.2) developed in the last section to obtain the following
global result on the structure of degenerate caps.

Theorem 3.3. Let p ∈ int(M), H be a local support plane of f at p,
and A be the component of f−1(H) which contains p. Then A is a cap
with plane H.

This observation generalizes [2, Lem. 3.4], where it had been assumed
that A ∩ ∂M = ∅, and thus was relatively simple to treat. The general
case, however, is considerably more subtle, as we will explore below. It is
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also worth noting that the assumption here that p ∈ int(M) is necessary.
For instance let M be the upper hemisphere of S2, f be the inclusion
map into R3, H be the xy-plane, and p := (1, 0, 0). Then f−1(H) =
M ∩H is a circle, not a cap. The basic strategy for proving the above
theorem is to show that A satisfies the local conditions in Proposition
3.2; however, this is not directly feasible for points of A∩∂M . Thus we
take another route via the following simple observation:

Lemma 3.4. Suppose that A0 ⊂ A is a cap with plane H. Then
A0 = A.

Proof. Since f(A0) ⊂ f(A) ⊂ H, A0 is degenerate. So there exists
a neighborhood U of A0 in M such that f(U − A0) ∩ H = ∅, by the
definition of degenerate caps. Consequently, (U − A0) ∩ A = ∅. Thus
A ∩ A0 = A ∩ U is open in A. But A ∩ A0 is also closed in A, since A
and A0 are both closed. Thus A ∩ A0 = A, since A ∩ A0 �= ∅ and A is
connected. So A ⊂ A0, which completes the proof. q.e.d.

So, to prove Theorem 3.3, it suffices to show that there is some subset
of A which is a cap with plane H. We choose this set to be

A0 := the component of cl(A ∩ int(M)) which contains p.

Note that A0 �= ∅ since p ∈ A0. Further, a particularly useful feature of
this set is that it satisfies condition (iii) of Proposition 3.2 fairly quickly,
via the theorem on the invariance of domain:

Lemma 3.5. H is a local support plane of f at all points of A0.

Proof. Let X ⊂ A consist of all points q ∈ A such that H locally
supports f at q. Then X is open in A. Indeed, if q ∈ X, then there is
a neighborhood U of q in M such that f(U) lies on one side of H. So
U ∩A ⊂ X.

We have to show that A0 ⊂ X. First note that X ∩ A0 �= ∅, since
p ∈ X ∩A0. It is also immediate that X ∩A0 is open in A0, since X is
open in A, and A0 ⊂ A. It remains then to show that X ∩A0 is closed
in A0, which will finish the proof, since A0 is connected. To this end,
let qi ∈ X ∩A0 be a sequence which converges to a point q ∈ A0:

X ∩A0 � qi −→ q ∈ A0.

We have to show that q ∈ X. Let U be a convex neighborhood of q
with associated body K. Then qi ∈ U , for a sufficiently large index i
which we now fix. Since qi ∈ A0, there are points of int(M) ∩ A which
converge to qi and so eventually lie in U as well. Thus there is a point
q′ ∈ int(M) ∩ A ∩ U . If q′ is sufficiently close to qi, then q′ ∈ X, since
qi ∈ X, and X is open in A. So

q′ ∈ int(M) ∩X ∩ U.
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Since q′ ∈ X, there is a neighborhood V of q′ in M such that f(V )
lies on one side of H, and since q′ ∈ int(M) ∩ U , we may assume that
V ⊂ int(M) ∩ U . Since V ⊂ int(M), f(V ) is open in ∂K, by the
invariance of domain. So H is a local support plane of K at f(q′). This
in turn yields that H is a global support plane of K, since K is convex.
So f(U) lies on one side of H, and thus q ∈ X as desired. q.e.d.

It remains then to show that A0 satisfies conditions (i) and (ii) of
Proposition 3.2 as well. To this end we need the following three lemmas.

Lemma 3.6. Let K ⊂ R3 be a convex body, p ∈ ∂K, B be a (closed)
ball of radius r centered at p, and D := B ∩ ∂K. Then there exists
an ε > 0 such that for all 0 < r ≤ ε, D is a topological disk, and
∂B ∩D = ∂D.

Proof. We may assume that p = o, the origin of R3, there exists
a disk Ω of radius ε centered at o in R2, and a nonnegative convex
function f : Ω → R, with f(o) = 0, such that f(Ω) ⊂ ∂K. Then the
upper hemisphere of ∂B is the graph of a concave function g : Ω → R.
Let Ω′ ⊂ Ω be the set where h := g− f ≥ 0. Then D is a graph over Ω′

and so is homeomorphic to it. It suffices then to show that Ω′ is convex,
since h(o) = 1 − 0 > 0, which means that Ω′ has interior points in the
xy-plane, and thus is a disk. Let x, y ∈ Ω′ and set z := λx+ (1− λ)y,
for λ ∈ [0, 1]. Then

f(z) ≤ λf(x) + (1− λ)f(y), and g(z) ≥ λg(x) + (1− λ)g(y),

since f is convex g is concave. Consequently, since h(x), h(y) ≥ 0,

h(z) = g(z)− f(z) ≥ λh(x) + (1− λ)h(y) ≥ 0.

Hence z ∈ Ω′, which means that Ω′ is convex as desired. To show that
∂D = ∂B ∩ D, note that h ≡ 0 on ∂Ω′. So ∂D ⊂ ∂B. It remains to
check that int(D) ∩ ∂B = ∅, or that h �= 0 on int(Ω′). To see this let
z ∈ int(Ω′). Then z = λo+ (1− λ)y, for some y ∈ ∂Ω′, and 0 < λ < 1.
Since h(o) = 1 and h(y) = 0, it follows that h(z) ≥ λ > 0 which
completes the proof. q.e.d.

Another basic fact which we need to record is the following elementary
observation. Again we include the proof for completeness.

Lemma 3.7. Let Γ ⊂ R3 be a C2 embedded curve segment, p ∈
int(Γ), and L be the tangent line of Γ at p. Suppose that the curvature
of Γ at p does not vanish. Then there exists a neighborhood U of p in Γ
which intersects L only at p.

Proof. Let γ : (−δ, δ) → Γ be a local unit speed parametrization with
γ(0) = p, and set h(t) := 〈γ(t) − γ(0), N(0)〉, where N := γ′′/‖γ′′‖
is the principal normal of γ. Then γ(t) �∈ L if h(t) �= 0. By the
Frenet–Serret formulas, and Taylor’s theorem, h(t) = s2κ(s)/2 for some
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s = s(t) ∈ (0, t), where κ := ‖γ′′‖ is the curvature of γ (e.g., see [64, p.
31]). Thus, since κ(0) �= 0, h > 0 on (−ε, ε) − {0} for some 0 < ε < δ.
Consequently, U := γ(−ε, ε) is the desired neighborhood. q.e.d.

Using the last two lemmas, we establish next the main observation
we need in order to prove Theorem 3.3. Again the interior points will
be relatively easy to treat here, due to the invariance of domain, but
boundary points will require more work.

Lemma 3.8. Every point of A0 has a convex neighborhood U ⊂ M
such that f(U) ∩H is convex.

Proof. Let q ∈ A0. There are two cases to consider: q ∈ int(M), and
q ∈ ∂M .

(Case 1) First suppose that q ∈ int(M). Then there exists a convex
neighborhood V of q with associated body K, such that V ⊂ int(M). So
f(V ) is open in ∂K, by the invariance of domain. Further, by Lemma
3.5, f(V ) lies on one side of H. Thus H is a local support plane of
K at f(q), which in turn yields that H is a (global) support plane
of K, since K is convex. Let B be a ball centered at f(q) and set
D := ∂K ∩B. Choosing B sufficiently small, we may assume that D is
a (topological) disk which meets ∂B only along its own boundary ∂D,
by Lemma 3.6. Further, we may assume that f(∂V ) lies outside B.
Then we claim that U := f−1(int(B)) ∩ V is the desired neighborhood,
that is f(U)∩H = int(D)∩H is convex. To this end it suffices to check
that H ∩D is convex, since H ∩ int(D) = H ∩D ∩ int(B), and if any
set X ⊂ B is convex, then so is X ∩ int(B).

To show that H ∩D is convex, let K ′ := B ∩K. Note that D ⊂ ∂K ′,
and ∂K ′ − D is an open subset of ∂B; see Figure 4. We claim that

f(q)

D

K′

K

B

Figure 4.

H ∩D = H ∩K ′, which is all we need, since K ′, and, therefore, H ∩K ′

is convex. To establish this claim recall that H is a support plane of K
and, therefore, of K ′, since K ′ ⊂ K. So

H ∩K ′ = H ∩ ∂K ′ = (H ∩D) ∪ (H ∩ (∂K ′ −D)).

Note that if H intersects ∂K ′ − D, then H will be a support plane of
∂K ′−D, which is open in ∂B. ThusH will be a support plane of B. But
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this is not possible because f(q), which by assumption lies on H, is in
the interior of B. So H∩(∂K ′−D) = ∅. Consequently, H∩K ′ = H∩D
as claimed.

(Case 2) It remains to consider the case where q ∈ ∂M . Again
let V be a convex neighborhood of q with associated body K. Recall
that, since q ∈ ∂M , K = conv(f(V )), by definition. Thus, since f(V )
lies on one side of H, K lies on one side of H as well. Let B be a
small ball centered at f(q), and set D := B ∩ ∂K as in the previous
case. Since ∂V coincides with a segment of ∂M near q, and f |∂M is
C1, we may assume that ∂B and, consequently, ∂D intersect f(∂V )
at only two points. So Γ := f(∂V ) ∩ D determines a pair of regions
in D, one of which is D′ := D ∩ f(V ), see Figure 5. Once again we
claim that U := f−1(int(B)) ∩ V is the desired neighborhood, that is
H ∩ f(U) = H ∩ D′ ∩ int(B) is convex. To this end, as we discussed
above, it suffices to check that H ∩D′ is convex, which we claim is the
case.

f(q) D′

D

Γ

Figure 5.

To establish the last claim, first suppose that H ∩ D has interior
points in H. Then we show that H ∩ D′ = H ∩ D, which is all we
need, since H ∩ D is convex as we showed in the previous case. Note
that H ∩ D′ ⊂ H ∩ D, since D′ ⊂ D. So it remains to check that
H ∩ D ⊂ H ∩ D′, or more simply that H ∩ D ⊂ D′. To this end first
note that if H ∩D has interior points in H, then it is homeomorphic to
a disk. Consequently, if H ∩ D were to have points in the interiors of
both sides of Γ in D, then the interior of H ∩D would have to intersect
Γ. This would in turn imply that there exists a neighborhood of a
point of ∂M which is mapped by f into a plane, which would violate
the local nonflatness assumption. So H ∩ D has to lie on one side of
Γ. To show that this side is D′, we just need to check that H ∩ D
contains an interior point of D′, or more simply that H ∩ int(D′) �= ∅.
This is indeed the case since q ∈ U ∩ A0 ⊂ cl(A ∩ int(M)). Thus,
since U is open, U ∩ A ∩ int(M) �= ∅. Let q′ ∈ U ∩ A ∩ int(M) =
(U − ∂M) ∩ A. Then f(q′) ∈ f(U − ∂M) ∩ H ⊂ int(D′) ∩ H, as
desired.

Finally we consider the case where H ∩ D has no interior points in
H. Then H ∩D is either a point or a line segment, since it is convex. If
H ∩D is a point, then so is H ∩D′, since D′ ⊂ D. In particular H ∩D′
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is convex as claimed. Suppose then that H ∩ D is a line segment, say
L. Then H ∩D′ = H ∩D ∩D′ = L ∩D′. Thus we just need to check
that L ∩ D′ is connected, since a connected subset of a line is convex.
To see this first note that if L is transversal to Γ at f(q), there is a
neighborhood of f(q) in Γ which intersects L only at f(q). By Lemma
3.7, the same holds as well when L is tangent to Γ at f(q). Thus by
choosing B small enough, we can make sure that L meets Γ only at
f(q). It follows then that the portion of L lying in D′ consists either
of all of L, or one of the two subsegments of it determined by f(q), or
just f(q) itself. In all these cases, L ∩D′ will be connected as claimed.

q.e.d.

Now we can prove the main result of this section:

Proof of Theorem 3.3. By Lemma 3.4 it suffices to show that A0 is a
cap. To this end, we will check that A0 satisfies the three conditions
of Proposition 3.2. By Lemma 3.5, A0 already satisfies condition (iii).
To check the other conditions, recall that, by Lemma 3.8, every point
q ∈ A0 has a convex neighborhood U such that f(U)∩H is convex. We
claim that if U is a such a neighborhood, then

(10) f(U) ∩H = f(U ∩A0).

If this equality holds, then f(U ∩ A0) is convex, which means that
condition (i) is met. Furthermore, f(U − A0) = f(U − U ∩ A0) =
f(U) − f(U ∩ A0) = f(U) − f(U) ∩ H = f(U) − H. So f(U − A0) is
disjoint from H, which means that condition (ii) holds as well. Thus it
suffices to establish (10).

To show that (10) holds, let y ∈ f(U) ∩ H. Then there is a point
x ∈ U ∩ f−1(H) such that f(x) = y. Since f(U) ∩ H is connected,
then so is U ∩ f−1(H). It follows then that U ∩ f−1(H) = U ∩ A,
because by definition A is a component of f−1(H); and, furthermore,
U ∩A �= ∅, since q ∈ U ∩A0 ⊂ U ∩A. Thus x ∈ U ∩A, and, therefore,
y = f(x) ∈ f(U ∩A). So f(U)∩H ⊂ f(U ∩A). As the reverse inclusion
is trivial, we conclude that

(11) f(U) ∩H = f(U ∩A).

In particular, f(U ∩A) is convex, since f(U) ∩H is convex. It remains
to show that U ∩ A = U ∩ A0. This equality, together with (11) would
establish (10), which would in turn complete the proof. So our last
claim will be

(12) U ∩A = U ∩A0.

To see this note that U ∩ A is homeomorphic to either a point, a disk,
or a line segment, since f(U ∩ A) is convex. If U ∩ A is a point, then
so is A, which yields that A = {p} = A0 and we are done. So we may
assume that U ∩A is either a line segment or a disk.
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If U ∩ A is a disk, then each point of it is a limit of points of A in
the interior of M . The same also holds when U ∩ A is a segment, say
L, because L ∩ ∂M cannot have any interior points in ∂M , since f |∂M
has no inflections by assumption. Thus

U ∩A = U ∩ cl(A ∩ int(M)).

In particular U ∩ cl(A∩ int(M)) is connected, since U ∩A is connected.
This in turn yields that

U ∩ cl(A ∩ int(M)) = U ∩A0,

since A0 has a point q in U , and A0 is a component of cl(A ∩ int(M))
by definition. The last two displayed expressions yield (12), which com-
pletes the proof. q.e.d.

4. Structure of general caps

Here we develop a number of fundamental properties of caps which are
required in this work. These observations culminate in a comprehensive
characterization, Theorem 4.12, which subsumes Theorem 3.3 proved in
the last section.

4.1. Extension and uniqueness. First we establish a pair of basic
properties of caps which had been mentioned in Section 2.4.6:

Proposition 4.1 (The extension property). Let C ⊂ M be a cap,
and H+ be a half-space of C. Then there exists a neighborhood U of C
in M such that

f(U − C) ⊂ int(H−).

In particular, C is a component of f−1(H+).

To establish this property we need the following observation:

Lemma 4.2. Suppose that C is nondegenerate. Let p ∈ ∂C, V be
a convex neighborhood of p with associated body K, and suppose that
V ∩ ∂C ∩ int(M) �= ∅. Then K intersects the interiors of both sides
of H.

Proof. Let p ∈ V ∩ ∂C ∩ int(M). Suppose, towards a contradiction,
that K lies on one side of H. Then H is a local support plane of f at
p. Let D be the component of f−1(H) which contains p. Then D is
a cap by Theorem 3.3, since p ∈ int(M). Further note that ∂C ⊂ D,
since p ∈ ∂C, ∂C is connected, and ∂C ⊂ f−1(H). So, since ∂C is
homeomorphic to S1, D cannot be a point or a segment and must,
therefore, be a topological disk. Further recall that f(int(C)) ∩H = ∅
by the definition of nondegenerate caps. So int(C) ∩ D = ∅. This in
turn yields that ∂C ⊂ ∂D. Thus ∂C = ∂D since both of these objects
are homeomorphic to S1. Consequently, C ∪D is a topological sphere.
But this is not possible since M is connected and ∂M �= ∅. q.e.d.
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We can now establish the extension property:

Proof of Proposition 4.1. Wemay assume that C is nondegenerate, since
otherwise U exists by definition. It suffices to show that every p ∈ ∂C
has a neighborhood V in M such that f(V − C) is disjoint from H+,
because the union of all these neighborhoods, together with C, then
yield the desired neighborhood U .

M

p

V

C

∂M

M

p

V

C

∂M

Figure 6.

Let V be a convex neighborhood of p in M with associated body K.
If a neighborhood of p in ∂C lies in ∂M , then we may choose V so small
that V ⊂ C, see the left diagram in Figure 6. Then f(V − C) ∩H+ =
∅ ∩H+ = ∅, as desired. So we may assume that V ∩ ∂C ∩ int(M) �= ∅,
as shown in the right diagram in Figure 6. Then K has points in the
interiors of both sides of H by Lemma 4.2.

Since, by definition, f is one-to-one on C, which is compact, there
exists a neighborhood A of C in M such that f is one-to-one on cl(A).
Thus f : A → f(A) ⊂ ∂K is a homeomorphism. For notational con-
venience we will identify A with f(A), C with f(C), and suppress f
altogether henceforth. Further we may assume that V ⊂ A. What we
need to show then is that

(13) (V − C) ∩H+ = ∅.
Since K intersects the interiors of both sides of H, ∂K∩H is a closed

convex planar curve which separates ∂K into a pair of regions including
(∂K)+ := ∂K ∩H+, see Figure 7. Let B be a ball centered at p. Set
W := int(B) ∩ ∂K, and W+ := W ∩ (∂K)+. Then

(14) W −W+ ⊂ ∂K − (∂K)+ ⊂ int(H−).

p

V ∩ C

∂K+

H
W+

W

∂K

H+

Figure 7.
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Note that V ∩ C is a neighborhood of p in (∂K)+; because V ∩ C is
a neighborhood of p in C, V ∩ C ⊂ ∂K ∩H+ = (∂K)+, and V ∩ ∂C ⊂
∂K ∩ H. Thus choosing B sufficiently small, we can make sure that
W+ ⊂ V ∩ C. So W+ ⊂ W ∩ V ∩ C, since W+ ⊂ W . Conversely,
W ∩ V ∩ C ⊂ W ∩ C ⊂ W ∩H+ = W+. Thus

(15) W+ = W ∩ V ∩ C.

Next note that W ∩V = int(B)∩∂K∩V = int(B)∩V = int(B)∩A∩V.
Thus W ∩ V is a neighborhood of p in A, since int(B) ∩ A and V are
both neighborhoods of p in A. So we may reset V := W ∩ V . This
together with (14) and (15) yields

V −C = V −V ∩C ⊂ W−V ∩C = W−W∩V ∩C = W−W+ ⊂ int(H−),

which in turn immediately yields (13) and thereby completes the proof.
q.e.d.

Using the extension property established above, we next prove the
other property of caps which is frequently used in this work:

Proposition 4.3 (The uniqueness property). Let C1, C2 ⊂ M be a
pair of caps. Suppose that C1, C2 share a plane, and C1∩C2 �= ∅. Then
C1 = C2.

Proof. Let H be a common plane, and p be a common point of Ci,
i = 1, 2. Further let H+ be the corresponding half-space of C1. If
H+ is also a half-space of C2, then, by Proposition 4.1, Ci are each the
component of f−1(H+) which contains p, and thus C1 = C2, as desired.
Suppose then, towards a contradiction, that H+ is not the half-space of
C2. Then H− must be the half-space of C2. So C2 is the component of
f−1(H−) which contains p, again by Proposition 4.1.

Let C̃i := Ci ∩ f−1(H). Then C̃i is connected. Indeed, if Ci is

degenerate, then C̃i = Ci, and if Ci is nondegenerate, then C̃i = ∂Ci.
Further, note that f(p) ∈ f(C1∩C2) = f(C1)∩f(C2) ⊂ H+∩H− = H.

Thus p ∈ Ci ∩ f−1(H) = C̃i. So it follows that C̃1 ⊂ C2, since C̃1 is
connected, contains p, and lies in f−1(H) ⊂ f−1(H−), while C2 is the

component of f−1(H−) containing p. But we also have C̃1 ⊂ f−1(H).

So C̃1 ⊂ C2 ∩ f−1(H) = C̃2. By symmetry, we also have C̃2 ⊂ C̃1. So

C̃1 = C̃2.
There are four possible cases to consider. (Case 1 ) If Ci are both

degenerate, then C1 = C̃1 = C̃2 = C2, which is a contradiction, since
Ci have different half-spaces. (Case 2 ) If Ci are both nondegenerate,

then ∂C1 = C̃1 = C̃2 = ∂C2. On the other hand, int(C1) ∩ int(C2) = ∅,
since f(int(C1)) ⊂ int(H+), and f(int(C2)) ⊂ int(H−). Thus C1 ∪ C2

is homeomorphic to S2, which is not possible, since M is connected and

∂M �= ∅. (Case 3 ) If C1 is degenerate and C2 is not, then C1 = C̃1 =
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C̃2 = ∂C2, which is again a contradiction, since ∂C2 is a topological
circle, while C1 can only be homeomorphic to a point, an interval, or a
disk. (Case 4 ) If C2 is degenerate and C1 is not, then, by symmetry,
C2 = ∂C1, which is not possible, as discussed in the previous case. Thus
every case leads to a contradiction as desired. q.e.d.

4.2. Distortion. Let X ⊂ Rn be a path connected set. For any pair
of points p, q ∈ X, we may define d(p, q), the intrinsic distance of p and
q in X, as the infimum of the lengths of all paths in X which join p
and q. Then the distortion of X, in the sense of Gromov [30, p. 11], is
defined as:

distort(X) := sup

{
d(x, y)

‖x− y‖
∣∣∣x, y ∈ X,x �= y

}
.

See [49, 31, 20] for recent developments on the distortion. In this
section we obtain an estimate for the distortion of caps C in Rn. Of
course if C is degenerate, i.e., it is a convex subset of a hyperplane, then
its distortion is 1, and thus we only need to consider the case where C
is nondegenerate (the definition in Section 2.4.6 for nondegenerate caps
of R3 extends directly to Rn). Let o be any point in the interior of the
region bounded by ∂C in H. We define the inradius (resp. outradius)
of C with respect to o as the radius of the largest (resp. smallest)
hemisphere in H+ centered at o which is contained in (resp. contains)
conv(C).

Proposition 4.4. Let C be a nondegenerate cap in Rn, o be a point
in the hyperplane H of C which is contained in the interior of the region
bounded by ∂C, and r, R denote, respectively, the inradius and outradius
of C with expect to o. Then

distort(C) ≤ 4(2 + π)
R

r
.

To obtain this estimate, we will make use of the following well-known
fact. Let K ⊂ Rn be a convex body. Then to each point x ∈ Rn −
int(K), there is associated a unique point π(x) ∈ ∂K which minimizes
the distance between x and points of ∂K. Thus we obtain a mapping
π : (Rn− int(K)) → ∂K which is known as the nearest point projection.
Then for every pair of points x, y ∈ Rn−int(K), ‖π(x)−π(y)‖ ≤ ‖x−y‖,
see [60, Thm. 1.2.2]. In particular it follows that for any rectifiable
curve segment Γ ⊂ Rn − int(K), length(π(Γ)) ≤ length(Γ). So we may
say that π is distance reducing or is a “short map”. For future reference,
let us record that:

Lemma 4.5 ([60]). For any convex body K ⊂ Rn, the nearest point
projection π : (Rn − int(K)) → ∂K is distance reducing.

Now we are ready to establish the main result of this section:
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Proof of Proposition 4.4. Note that distort(C) = distort(int(C)) since
the ratio d(x, y)/‖x − y‖ depends continuously on x and y. Let x,
y ∈ int(C) be distinct points. Since C is star-shaped with respect to
o, the points x, y, and o are not colinear. Thus there exists a unique
(2-dimensional) plane Π passing through x, y, and o. Further note that
Π �⊂ H, since x, y ∈ int(C). Consequently, Γ := Π ∩ C is a convex
arc (as opposed to a closed curve). In particular there exists a unique

segment of Γ bounded by x, y which we denote by
�
xy. Note that

d(x, y) ≤ length(
�
xy). Thus it suffices to show that

length(
�
xy)

‖xy‖ ≤ 4(2 + π)
R

r
,

where xy denotes the line segment connecting x and y. Let Br, BR

denote the half-balls centered at o such that Br ⊂ conv(C) ⊂ BR, then
Dr := Π∩Br, and DR := Π∩BR are half-disks centered at o such that

Dr ⊂ conv(Γ) ⊂ DR.

Then Lemma 4.5 implies that

length(Γ) ≤ length(∂ conv(Γ)) ≤ length(∂DR) = (2 + π)R.

Thus if ‖xy‖ ≥ r/4, then

length(
�
xy)

‖xy‖ ≤ length(Γ)

r/4
≤ (2 + π)R

r/4
= 4 (2 + π)

R

r
,

as desired. So we may assume that

‖xy‖ <
r

4
.

Let L be the line passing through x and y, see Figure 8, which depicts
the configuration in the plane Π. If o lies on L, then it has to be between
x and y, because Γ is star-shaped with respect to o. Consequently,
‖xy‖ = ‖x− o‖+ ‖o− y‖ ≥ 2r, which is not possible. Thus o lies in the
interior of one of the sides of L in Π, say o ∈ int(L−).

r
R

o

o′

H
S

x

y

o′′
L

x′

y′

Figure 8.

We may assume that
�
xy is not a line segment for otherwise

length(
�
xy)/‖xy‖ = 1 and there is nothing to prove. Thus, since

�
xy
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is convex arc, int(
�
xy) lies in the interior of one side of L. If int(

�
xy) ⊂

int(L−), then, since Γ is convex, the rest of Γ, including its end points
a, b lie in L+, which is not possible, since o ∈ ab. So we may assume

that int(
�
xy) ⊂ int(L+).

Next let o′ be the center of the circle S of diameter r contained in
Dr. We claim that o′ ∈ int(L−). Suppose, towards a contradiction, that
o′ ∈ L+. Then L ∩ oo′ �= ∅, since o ∈ L−. Let z ∈ L ∩ oo′. Then x and
y lie on the same side of z in L, since ‖xy‖ < r. We may suppose that
x ∈ int(zy). Let Q be a support line of Γ at x. Then z and y lie on the
same side of Q, since z ∈ Dr ⊂ conv(Γ), and y ∈ Γ. So zy ⊂ Q. But
z ∈ oo′ ⊂ int(Dr) ⊂ int(conv(Γ)). So Q ∩ int(conv(Γ)) �= ∅. This is the
desired contradiction since Q supports Γ.

Now let Qx, Qy be support lines of Γ at x, y, respectively. Then Qx,
Qy also support S, since S ⊂ Dr ⊂ conv(Γ). So, since ‖xy‖ < r, it
follows that Qx, Qy intersect at a point o′′. Further, since o′ ∈ int(L−),

o′′ ∈ L+. Finally, since
�
xy∩ int(L+) �= ∅, then Qx, Qy �= L. So it follows

that o′′ ∈ int(L+). This in turn yields that there are points x′, y′ on Qx,
Qy, respectively, such that ‖o′′x′‖ = ‖o′′y′‖ and o′ ∈ x′y′. Analyzing
the triangle o′′x′y′ yields our desired estimate as follows.

x

x′′ y

y′x′

o′′

a

b

o′

c

d

Figure 9.

Suppose that ‖o′′x‖ ≤ ‖o′′y‖, and let x′′ be the point on o′′x′ so that
x′′y is parallel to x′y′, see Figure 9. Further let a := ‖x′′y‖, b := ‖x′y′‖,
c be the distance between x′′y and x′y′, and d be the distance between
o′′ and x′′y. Then we have

a ≤ 2‖xy‖ ≤ r/2, b ≥ r, c ≤
√

r2 +R2.

The first estimate holds because o′′x′′y is an isosceles triangle. The
second estimate holds because o′ ∈ x′y′, but x′, y′ lie outside S. The
third estimate holds because c ≤ ‖o′x‖; further, since the angle �o′ox′ ≤
π/2, we have ‖o′x′‖2 ≤ ‖o′o‖2+‖ox′‖2 ≤ r2+R2. Next note that, since
d/a = (c+ d)/b,

d =
ac

b− a
≤ 2‖xy‖

√
r2 +R2

r/2
= 4

√

1 +

(
R

r

)2

‖xy‖.
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Recall that
�
xy lies on the same side of L as does o′′. So

�
xy is inscribed in

the triangle o′′xy. Consequently, by Lemma 4.5, length(
�
xy) ≤ ‖o′′x‖+

‖o′′y‖. So, since ‖o′′x‖ ≤ ‖o′′y‖, we have

length(
�
xy) ≤ 2‖o′′y‖ = 2

√
a2

4
+ d2

≤ 2

√

17 + 16

(
R

r

)2

‖xy‖ ≤ 2
√
33

R

r
‖xy‖,

where in the middle inequality we used the estimate a ≤ 2‖xy‖, and in
the last inequality we employed the assumption that R ≥ r. Now we
can compute that

length(
�
xy)

‖xy‖ ≤ 2
√
33

R

r
≤ 4(2 + π)

R

r
,

which completes the proof. q.e.d.

4.3. Convergence. Here we use the distortion estimate established in
the last section to obtain the following convergence result. A sequence
of caps Ci is nested provided that Ci ⊂ Ci+1.

Proposition 4.6. Let Ci ⊂ M be a nested sequence of caps. Then
cl(∪iCi) is also a cap.

To establish this result we need to recall some basic concepts from
metric geometry. If M is any metric space, then the Hausdorff distance
between any pair of compact subsets X, Y of M is defined as:

dH(X,Y ) := inf
r≥0

{X ⊂ Br(Y ) and Y ⊂ Br(X)},

where Br(X) denotes the set of all points of M which are within a
distance r of X. It is well-known that dH defines a metric on the space
of compact subsets of M [15, Sec. 7.3]. By convergence in this paper
we shall always mean convergence with respect to this metric, and we
write Xi → X when Xi converge to X. The following observation is a
simple exercise [15, p. 253].

Lemma 4.7 ([15]). Let M be a compact metric space and Xi be a
sequence of compact subsets of M.

(i) If Xi ⊂ Xi+1, then Xi → cl(∪iXi).
(ii) If Xi+1 ⊂ Xi, then Xi → ∩iXi.

When discussing convergence we will assume that various objects are
endowed with their natural metric. For instance, the boundary of a
convex body carries the metric which is induced on it from its ambient
space. Further, the metric associated to M will be the one induced on
it by f , which is well-defined since f is locally convex.
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Lemma 4.8. Let Ci be a sequence of nested caps in the boundary of
a convex body K ⊂ R3. Then Ci converge either to a cap or to ∂K.
Further, if Ci → ∂K, then ∂Ci converge either to a point or a line
segment.

Proof. By Lemma 4.7, Ci → C := cl(∪iCi). We need to show that
C is a cap or C = ∂K. First suppose that Ci is degenerate for some
i, then it follows from the uniqueness property (Proposition 4.3) that,
for all j ≤ i, Cj = Ci. Thus, if all Ci are degenerate, then all Ci

coincide, in which case C = Ci and we are done. Suppose then that Ci is
nondegenerate for some i. Then, for all j ≥ i, Cj is also nondegenerate.
Consequently, after a truncation of the sequence, we may assume that
all Ci are nondegenerate. Let Hi be the planes of Ci, and H+

i be the
corresponding half-spaces. Then

Ci = cl(∂K ∩ int(H+
i )).

Since each Hi intersects K, Hi converge to a plane H after passing to a
subsequence. Further, we may assume that H+

i → H+. More precisely,
after passing to another subsequence we may assume that the outward
normals of Hi converge to a normal of H which we designate as the
outward normal of H. We claim that

C = cl(∂K ∩ int(H+)),

which will finish the proof. To establish this claim, let p ∈ ∂K∩int(H+).
Then, for i sufficiently large, p ∈ ∂K ∩ int(H+

i ). Thus p ∈ Ci ⊂ C. So
∂K ∩ int(H+) ⊂ C. Since C is compact, it follows that

cl(∂K ∩ int(H+)) ⊂ C.

It remains then to obtain the reverse inclusion. If p ∈ ∂K ∩ int(H−),
then there exists a ball B centered at p such that B ∩H+ = ∅. So, for
i sufficiently large, B ∩ H+

i = ∅, which yields that B ∩ Ci = ∅. Since
Ci is nested, it follows then that B ∩ Ci = ∅ for all i. Thus p �∈ C. So
C ⊂ ∂K ∩H+. Now if we set D := H ∩K, then we have

C ⊂ ∂K ∩H+ = cl(∂K ∩ int(H+)) ∪ intH(D),

where intH(D) here denotes the interior of D in H. Thus if C ∩
intH(D) = ∅, then we are done. In particular, if H contains an in-
terior point of K, we are finished, since in that case intH(D) ⊂ int(K)
which is disjoint from ∂K ⊃ C. So we may assume that H supports K.
Then D = H ∩ ∂K = H− ∩ ∂K. Now we claim that

(16) C ∩ intH(D) = ∅,
which is all we need. Let Di := ∂K − int(Ci) = H−

i ∩ ∂K. Then
Di → H− ∩ ∂K = D. On the other hand, since Ci ⊂ Ci+1, Di+1 ⊂ Di.
Thus Di → ∩iDi by Lemma 4.7. So D = ∩iDi by the uniqueness of
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limits in metric convergence. In particular D ⊂ Di. So intH(D) ⊂
int(D) ⊂ int(Di) = ∂K − Ci. Hence

(17) Ci ∩ intH(D) = ∅.
Now note that intH(D) is open in ∂K. Thus, if C intersects intH(D),
then so does Ci for large i, which is not possible. Hence (17) implies
(16), which completes the proof of the first claim of the lemma.

To establish the second claim, suppose that Ci → ∂K. Then
intH(D) = ∅. Further recall that D is convex, since D = H ∩ K.
So D is either a point or a line segment. Finally since Di → D,
it is easy to see that ∂Ci = ∂Di → ∂D = D, which completes the
proof. q.e.d.

Lemma 4.9. Let Ci be a sequence of caps in R3 which converge to a
nondegenerate cap C. Then the distortion of Ci is uniformly bounded.

Proof. After rigid motions we may assume that the planes Hi of Ci

coincide with the plane H of C. Let o be a point in H which lies in
the interior of the region bounded by ∂C. Then there exists a pair of
concentric hemispheres in H+ centered at o which contain C in between
them, and are disjoint from C. Consequently, Ci will also lie in between
these hemispheres in H+ for i sufficiently large, and thus will have
uniformly bounded distortion by Proposition 4.4. q.e.d.

Lemma 4.10. Let Xi ⊂ M be a sequence of compact path connected
sets which converge to a set X. Suppose that f is injective on each Xi

and distort(f(Xi)) is uniformly bounded. Then f is injective on X.

Proof. Suppose, towards a contradiction, that there is a pair of dis-
tinct points x, y ∈ X such that f(x) = f(y). Since Xi → X, there are
sequences of points xi, yi ∈ Xi which converge to x, y, respectively. Let

d be the metric which f induces on M , and d̃i be the intrinsic distance

of f(Xi) ⊂ R3. Then d̃i(f(xi), f(yi)) ≥ d(xi, yi), since f is injective on
Xi. So

distort(f(Xi)) ≥
d̃i(f(xi), f(yi))

‖f(xi)− f(yi)‖
≥ d(xi, yi)

‖f(xi)− f(yi)‖
.

Note that d(xi, yi) → d(x, y) which is positive by assumption, while
‖f(xi)− f(yi)‖ → ‖f(x)− f(y)‖ = 0. Thus distort(f(Xi)) grows indef-
initely, which is the desired contradiction. q.e.d.

Now we are ready to establish the main result of this section:

Proof of Proposition 4.6. Let C := cl(∪iCi). We need to show that f is
injective on C and C := f(C) is a cap in R3. By Lemma 4.7, Ci → C.
Thus, since f is continuous, Ci := f(Ci) converge to C := f(C). For
each Ci let Ki be a convex body such that Ci ⊂ ∂Ki. Since Ci → C,
which is compact, we may assume that Ki lie in some large ball. Further
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we may assume that the inradii of Ki are bounded below, since Ci

are nested. Thus, by Blaschke’s selection principal for convex bodies
[60, Thm. 1.8.6], Ki converge to a convex body K, after passing to a
subsequence. Further it is well-known that ∂Ki → ∂K, e.g., see [5, p.
424]. Further note that for j ≥ i, Ci ⊂ Cj ⊂ ∂Kj . Thus Ci ⊂ ∂K,

which yields that C ⊂ ∂K. So it follows from Lemma 5.13 that C
is either a cap or C = ∂K. If C is a cap, then, by Lemma 4.9, Ci

have uniformly bounded distortion. Consequently, by Lemma 4.10, f is
injective on C, and we are done.

X

H

p

U

C+

iC−

i K

Figure 10.

It remains then to show that C �= ∂K. Suppose, towards a contra-
diction, that C = ∂K. Then ∂Ci converge to a point or line segment
X ⊂ ∂K, by Lemma 4.8. Let H be a plane which contains X, and an in-
terior point of K, see Figure 10. Further let H+ be one of the sides of H.
Since ∂Ci → X ⊂ H, there exists a sequence H+

i of nested half-spaces

converging to H+, such that ∂Ci ⊂ int(H−
i ). Let C+

i := f−1(H+
i )∩Ci.

Then C+
i form a nested sequence of caps in M . Thus, by Lemma 4.7,

C+
i converge to a compact set C+ ⊂ C. Note that C+ := f(C+) cannot

coincide with ∂K, since C+ ⊂ H+, and ∂K has points in int(H−). So

we conclude that C+ is a cap in R3, and, therefore, C+ is a cap in M , as
discussed in the previous paragraph. By applying the same argument to
the other side of H, we may also produce a cap C− ⊂ C with half-space
H−, which is a limit of a nested sequence of caps C−

i .
Now note that C+ ∩ C− �= ∅. To see this let p ∈ C be a point such

that p := f(p) ∈ H −X. Then p ∈ int(Ci) for large i, since ∂Ci → X.
So p ∈ int(Ci). Let U ⊂ int(Ci) be a neighborhood of p which is so
small that f is one-to-one on U . Then U := f(U) is open in ∂K by
the invariance of domain. Consequently, U has points in the interiors
of both sides of H. So U intersects C±

i for large i. Thus there are

sequences p±i ∈ C±
i ⊂ C± which converge to p. Since C± are compact,

p ∈ C±. So C+ ∩ C− �= ∅ as claimed. Consequently, C+ = C− by
the uniqueness property (Proposition 4.3), since H is the plane of both

caps. This is the desired contradiction, since C± lie on different sides
of H. q.e.d.
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Note 4.11. One might suspect that Proposition 4.6 hints at a more
general phenomenon, namely that the space of caps of M is compact;
however, this is not so. For instance let M be the surface obtained by
revolving the curve in Figure 11 about its axis of symmetry. Then M

pi

p

Figure 11.

is a nondegenerate cap. Let pi be a sequence of points in the interior
of M which converge to a point p ∈ ∂M . If pi are sufficiently close to
p, then each pi is a cap, since there is a neighborhood U of ∂M in M
such that U − ∂M is strictly convex. On the other hand p itself is not
a cap. Indeed, by the extension property (Proposition 4.1), if p were a
cap, then it would have to be a locally strictly convex point of M , which
is not the case.

4.4. The slicing theorem. The main result of this section is the fol-
lowing comprehensive structure theorem for caps:

Theorem 4.12. Let H ⊂ R3 be a plane, and C be a component of
f−1(H+). Suppose that

(i) f(C ∩ ∂M) ⊂ H,
(ii) C ∩ int(M) �= ∅.

Then C is a cap.

The prove the above theorem, let us recall that an immersion, or
locally one-to-one continuous map, f : M → R3, where M is a manifold
without boundary, is complete provided that the metric which f induces
on M is complete, i.e., all the Cauchy sequences in M converge. We
say f is locally strictly convex at some point p ∈ M , if there exists a
neighborhood U of p and a plane H such that f(U) ∩H = {f(p)}.

Lemma 4.13 (van Heijenoort [70]). Let M be a connected 2 di-
mensional manifold without boundary, and f : M → R3 be a complete
immersion. Suppose that f is locally convex on M , and is locally strictly
convex at some point of M . Then M is homeomorphic to R2, f is one-
to-one, and f(M) forms the boundary of a convex subset of R3.

The above lemma, via a projective transformation, yields:

Proposition 4.14. Let H+ be a half-space, and X be a component
of f−1(int(H+)). Suppose that X ∩ ∂M = ∅. Then cl(X) is a cap.
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Proof. First we show that f is locally strictly convex at some point p
of X. To see this, let ∂X denote the topological boundary of X in M .
Then ∂X is compact, since ∂X is closed in M , and M is compact. So
f(∂X) is bounded. Further note that f(∂X) ⊂ H. Consequently, it is
not hard to show that there exists a ball B in R3 which contains f(∂X)
but not all of f(X), since f(X) has a point outside of H by definition of
X. Let o be the center of B, define h : cl(X) → R by h(x) := ‖f(x)−o‖,
and let p be a maximum point of h. Since f(∂X) ⊂ B, it follows that
p ∈ X. Note that X is an open neighborhood of p in M , f(X) is
contained in a ball B′ of radius h(p) centered at o, and f(p) ∈ ∂B′.
Thus f is locally strictly convex at p, as desired.

After a rigid motion, we may suppose that H coincides with the xy-
plane and H+ is the upper half-space z ≥ 0. Consider the projective
transformation

int(H+) � (x, y, z)
φ�−→

(
x

z
,
y

z
,
1

z

)
∈ int(H+).

Then φ ◦ f : X → R3 is a complete locally convex immersion, which is
locally strictly convex at p. Further note that since X is open in M ,
and X ∩ ∂M = ∅, X is a manifold without boundary. Thus, by Lemma
4.13, φ◦f embeds X onto the boundary of a convex set A ⊂ R3. This in
turn implies that f = φ−1(φ ◦ f) maps X injectively into the boundary
of the convex body K := cl(φ−1(A)). It then follows that

f(X) = ∂K ∩ int(H+).

Now let H+
i be a sequence of nested half-spaces in int(H+) which con-

verge to H+, and set Ci := f−1(H+
i ) ∩X. Then

X = ∪iCi.

Note that Ci is compact and f is one-to-one on Ci since f is one-to-one
on X. Thus Ci is homeomorphic to f(Ci) = H+

i ∩ f(X) = H+
i ∩ ∂K.

Furthermore, H+
i ∩ ∂K is a cap since K has points in the interiors of

both sides of Hi. So Ci form a nested sequence of caps in M . Thus
cl(∪iCi) is a cap by Proposition 4.6. So cl(X) is a cap as claimed. q.e.d.

We now combine Proposition 4.14 with Theorem 3.3 to complete the
proof of the main result of this section:

Proof of Theorem 4.12. First suppose that f(C) ⊂ H. Then H locally
supports f at a point p ∈ int(M) and C is the component of f−1(H)
which contains p. So C is a cap by Theorem 3.3. We may assume then
that there is a point p ∈ C such that f(p) ∈ int(H+). Let C ′ be the
closure of the component of f−1(int(H+)) which contains p. Then C ′ is
a cap by Proposition 4.14. We claim that C = C ′, which will finish the
proof. That C ′ ⊂ C, follows immediately from the definition of C ′ and
connectedness of C. To establish the reverse inclusion, recall that, by
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the extension property (Proposition 4.1), there is a neighborhood U of
C ′ in M such that f(U −C ′) is disjoint from H+. So U −C ′ is disjoint
from C. Consequently, since C is connected, C ⊂ C ′. So C = C ′ as
claimed. q.e.d.

5. Existence of maximal caps

A cap C ⊂ M is maximal provided that it is contained in no other
cap of M . The main result of this section, Theorem 5.7, is that through
each point p ∈ ∂M there passes a maximal cap. The intuitive idea here,
as we described in Section 2.3, is to construct these caps by rotating
the tangent planes of f along its boundary. To this end, first we discuss
what we mean by a tangent plane in Section 5.1. Then we use these
planes to show that through each point p ∈ ∂M there passes some cap.
Finally we associate an angle to each cap at p in Section 5.3 and use this
notion, together with Theorem 4.12 (the slicing theorem) developed in
the last section, to prove the existence of maximal caps.

5.1. Tangent cones. Here we show that the C1 regularity assumption
on f |∂M together with the local convexity of f allow us to assign a plane
Hp(0) to each point p ∈ ∂M which coincides with the standard notion
of the tangent plane when f is differentiable at p. Furthermore, much
like its counterpart in the smooth case, Hp(0) will locally support f at
p. To establish these results, we start with a quick review of the concept
of tangent cones; for more background here see [25].

For any set X ⊂ Rn and p ∈ X, the tangent cone of X at p, which we
denote by TpX, consists of the limits of all (secant) rays which originate
from p and pass through a sequence of points pi ∈ X − {p} which
converge to p. A basic fact that we will employ in this work is that if
H ⊂ Rn is a hyperplane and π : Rn → H denotes the corresponding
orthogonal projection, then

(18) π(TpX) = Tπ(p)π(X).

The other more specific facts that we need about tangent cones of convex
bodies are enumerated in the next lemma. A subset X of Rn is a cone,
based at a point p, provided that for every point x ∈ X − {p} the ray
originating from p and passing through x is contained in X. If K ⊂ Rn

is a convex body and p ∈ ∂K, then the support cone, SpK, of K at p
is defined as the intersection of all closed half-spaces which contain K
and whose boundary passes through p.

Lemma 5.1. Let K ⊂ Rn be a convex body and p ∈ ∂K. Then

(i) TpK = SpK; in particular, TpK is a closed convex set.
(ii) ∂(TpK) = Tp∂K.

Proof. To see (i), let H be a support plane of K at p, and H− be
the side containing K. Then H− contains every ray which emanates
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from p and goes through a point of K. Furthermore, H− also contains
the limit of any family of such rays since it is closed. So TpK ⊂ SpK.
Now suppose, towards a contradiction, that TpK is a proper subset of
SpK. There exists then a ray r on the boundary of TpK which lies in
the interior of SpK. Let H be a support plane of TpK which contains
r and H− be the corresponding half-space which contains TpK. Then
H−∩SpK is a proper subset of SpK, which is the desired contradiction,
by the definition of SpK and since K ⊂ TpK ⊂ H−. For a proof of item
(ii), see [25, Lem. 5.6]. q.e.d.

A convex subset of R3 is a wedge provided that it is either a closed
half-space, or is the intersection of a pair of closed half-spaces deter-
mined by non-parallel planes. Note that a closed convex subset of R3

which has interior points in R3 is a wedge if and only if it is bounded
by a pair of half-planes with a common boundary line.

Lemma 5.2. Let K ⊂ R3 be a convex body, Γ ⊂ ∂K be a C1-
embedded curve segment, p be an interior point of Γ, and L be the
tangent line of Γ at p. Then Tp∂K consists of a pair of half planes
meeting along L. In particular, TpK is a wedge.

Proof. Note that L ⊂ TpK, since each of the two rays in L originating
from p is a limit of secant rays of Γ. Further recall that, by Lemma 5.1,
TpK is convex. Thus it follows that TpK is cylindrical with respect to
L, i.e., through each point of TpK there passes a line parallel to L, see
[53, Thm. 8.3]. Let Π be the plane orthogonal to L at p and consider
the cross section TpK ∩Π.

Since TpK is a convex cone, then so is TpK ∩ Π. Further note that
since Π meets Γ transversely, it cannot be a support plane of K. So
K∩Π has interior points in Π, which in turn yields that so does TpK∩Π,
since K ⊂ TpK. Thus TpK ∩ Π is a convex planar cone with interior
points, which yields that ∂(TpK ∩ Π) consists of a pair of half-lines
meeting at p.

Now note that ∂(TpK) is an orthogonal cylinder over ∂(TpK ∩ Π),
due to the cylindricity of TpK. Consequently, ∂(TpK) consists of a pair
of half-planes meeting along L. It only remains to note that ∂(TpK) =
Tp(∂K) by Lemma 5.1, which completes the proof. q.e.d.

We define the tangent cone of f a point p ∈ M as

Tpf := Tf(p)f(U),

where U is a neighborhood of p in M . Note that Tpf depends only
on an arbitrarily small neighborhood of f(p) in f(U) and thus is well
defined, i.e., it does not depend on the choice of U . Indeed, if U1, U2 are
neighborhoods of p in M which are embedded by f into the boundaries
of convex bodies, then Tf(p)f(U1) = Tf(p)f(U1 ∩U2) = Tf(p)f(U2). The
main result of this section is as follows:
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Proposition 5.3. Let p ∈ ∂M , U be a convex neighborhood of p in
M with associated body K, and L be the tangent line of f |∂M at p. Then
Tpf coincides with one of the half planes of Tf(p)∂K determined by L.

Proof. Let D := cl(U). Recall that by the definition of convex neigh-
borhoods, f : D → f(D) ⊂ ∂K is a homeomorphism. Thus we may
identify f(D) with D, and drop all references to f for convenience.
Then D is an embedded disk in ∂K, p ∈ ∂D, and ∂D is C1 near p. Now
we simply need to show that TpD coincides with one of the half planes
of Tp∂K determined by L.

Let H be a support plane of Tp(∂K) at p such that Tp(∂K) is a graph
over H. Then L lies in H. Let L+, L− denote the sides of L in H. As is
well-known, e.g., see [25], Tp(∂K) is the limit of the homothetic dilations
of ∂K based at p, and thus, ∂K is locally a graph over H near p. In
other words, if π : R3 → H denotes the orthogonal projection, then π
is one-to-one in a neighborhood of p in ∂K. So, we may assume that
π : D → H is one-to-one. Then D := π(D) is an embedded disk in H
whose boundary ∂D := π(∂D) is C1 near p and is tangent to L at p.

Since TpD ⊂ Tp∂K, and π : Tp∂K → H is one-to-one, we just need to
show that π(TpD) coincides with one of the sides of L in H. But recall

that π(TpD) = Tp(π(D)) by (18). So we just need to verify that Tp(D)

is one of the half-planes L+ or L−. To this end note that since ∂D is
tangent to L at p, there is a normal vector v to L at p which points
inside D. Let L+ be the side of L to which v points. Then it follows
that Tp(D) = L+.

To establish the last claim let r be a ray in H originating from p
which makes an angle of 0 ≤ θ ≤ π with v. If θ < π/2, then r ∩ D
contains a neighborhood of p in r. Thus r ⊂ TpD, which yields that

int(L+) ⊂ Tp(D). Of course L ⊂ Tp(D) as well, since L is the tangent

line of ∂D at p. So L+ ⊂ Tp(D). For the reverse inclusion, suppose that
θ > π/2. Then r lies in the interior of a cone based at p which does not
intersect D − {p} near p. It follows then that int(L−) is disjoint from
Tp(D), e.g., see [25, Lem. 2.1]. So Tp(D) ⊂ L+ which completes the
proof. q.e.d.

We may refer to Tpf as the tangent half-plane of f at p. Accordingly,
the (full) tangent plane of f at a point p ∈ ∂M may be defined as

Hp(0) := the plane containing Tpf.

Note that, by the last observation, Hp(0) is a local support plane of f at
p. Another useful notion is that of the conormal vector of f at p ∈ ∂M ,
which is defined as

ν(p) := the unit normal vector of f |∂M at p which points into Tpf .
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5.2. Caps at the boundary. Using the notion of tangent planesHp(0)
and the conormal vector ν(p) developed above, we next show that
through each point p ∈ ∂M there passes a cap. For every p ∈ ∂M ,
let

Cp(0) := the component of f−1(Hp(0)) which contains p.

When Cp(0) is a cap, we call it the tangential cap of M at p. Let N(p)
denote the principal normal of f |∂M at p. The main result of this section
is as follows:

Proposition 5.4. Through each point p ∈ ∂M there passes a cap.
In particular, Cp(0) is a cap whenever ν(p) �= −N(p).

First we require the following simple observation:

Lemma 5.5. Let C be a nondegenerate cap in R3 with plane H, D
be the region in H bounded by ∂C, and p ∈ ∂C. Then TpC∩ int(D) = ∅.

Proof. Let q ∈ int(D). Then there exists a ball B ⊂ R3 centered at
q which is disjoint from C. Let A := conv({p} ∪ B), or the union of
all line segments with an end point at p and the other in B, see Figure
12. To show that q �∈ TpC, it suffices to check that A ∩ C = {p}, as we

qp

C

BA

D
H

H+

Figure 12.

had mentioned in the proof of Proposition 5.3. To this end note that
A ∩ int(H−) is disjoint from C, since C ⊂ H+. Further A ∩ int(H+)
lies in the interior of K := conv(C), since B ∩ int(H+) ⊂ int(K), and
K is convex. So A∩ int(H+) is disjoint from C, since C ⊂ ∂K. Finally,
A ∩H − {p} lies in int(D), since B ∩D ⊂ int(D), and thus is disjoint
from C as well. q.e.d.

The last lemma yields the following observation. Note that the point
p below may be an end point of the segment I.

Lemma 5.6. Let p ∈ ∂M and H = Hp(0). Suppose that there exists
a segment I ⊂ ∂M containing p such that f(I) ⊂ H. Then

(i) There exists a neighborhood V of p in M such that f(V − ∂M) ∩
H = ∅.

(ii) ν(p) = −N(p).
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Proof. After replacing I with a subsegment containing p, we may
assume that I lies in a convex neighborhood U of M with associated
body K. Since f : cl(U) → f(cl(U)) ⊂ ∂K is a homeomorphism, we
may identify cl(U) with its image and suppress f henceforth. Recall that
H supports U by Lemma 5.3. So H supports K, since K = conv(U).
Thus D := H ∩∂K = H ∩K is convex. Further D has interior points in
H since it contains I, which is not a line segment, since by assumption
f |∂M has no inflections. Thus D is a convex disk, see Figure 13.

p

J

K
C

D

H

Figure 13.

Let H+ be the side of H which contains K, and set C := cl(∂K ∩
int(H+)). Then C is a convex cap, since H ∩K = D has interior points
in H. Let J := cl(U)∩∂M . Then I ⊂ J . Also recall that J is a segment
by the definition of U . Next note that if there is a point p′ ∈ J ∩ int(D),
then, f−1(int(D)) is a neighborhood of p′ in M which gets mapped to
D ⊂ H, and thus violates the local nonflatness assumption. So J ⊂ C.
This, together with the local nonflatness assumption, yields that there
exists a neighborhood V of p in U such that V −∂M = V −J is disjoint
from H. In particular, V ⊂ C. Consequently,

ν(p) ∈ Tpf = TpV ⊂ TpC.

Further recall that ν(p) ∈ Tpf ⊂ H. So ν(p) lies in H and points outside
D, by Lemma 5.5. On the other hand, since I ⊂ J ⊂ C, and I ⊂ H, it
follows that I ⊂ C ∩ H = ∂C = ∂D. Thus N(p) lies in H and points
inside D. So we conclude that ν(p) = −N(p) as desired. q.e.d.

Now we can prove the main result of this section:

Proof of Proposition 5.4. By Lemma 5.3, H := Hp(0) locally supports
f at p. Thus, by Proposition 3.3, C := Cp(0) is a cap as soon as it
contains an interior point of M , in which case we are done. We may
suppose then that C ⊂ ∂M. Then C is either a single point or else is
a segment containing p. In the former case again we are done. So we
may assume that C is a segment of ∂M . Then, by Lemma 5.6,

ν(p) = −N(p)

and f(V − ∂M) is disjoint from H for a neighborhood V of p in M . In
particular we have shown that C∩ int(M) = ∅ only if the above equality
holds. Consequently, if ν(p) �= −N(p), then C is a cap, as claimed.
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Next we are going to show that we may rotate H about the tangent
line of f at p so as to produce a nondegenerate cap at p which will finish
the proof. To this end, let U ⊂ V be a convex neighborhood of p with
associated body K. We may assume that I ⊂ U , after replacing I with
a subsegment containing p. Further, as in the proof of Lemma 5.6, we
may identify cl(U) with f(cl(U)) and suppress f henceforth. We will
show that U contains a cap passing through p as follows.

Let Γ := cl(U)∩∂M , and Γ̃ denote the projection of Γ intoH. Further
let L+ be the half plane of H determined by L into which ν(p) points.
Then, since N(p) = −ν(p), N(p) points into the opposite half plane L−,

see Figure 14. Consequently, Γ̃ ⊂ L− and Γ̃∩L+ = {p}, assuming that

ν(p) N(p)

Γ̃

L̃+

p

L−L+

L

Figure 14.

U is sufficiently small. This yields in particular that Γ ∩ L+ = {p}. So
it follows that

L+ ∩ ∂U = {p},
since ∂U − Γ ⊂ U − ∂M ⊂ V − ∂M is disjoint from H. In particular
Γ′ := cl(∂U − Γ) is disjoint from L+, since p ∈ int(Γ). Since Γ′ is
compact, we may then rotate L+ about L into the side of H containing

U so as to obtain a half plane L̃+ bounded by L such that L̃+ ∩Γ′ = ∅.
Further, since Γ̃ ⊂ L−, Γ lies in the half-space over L−. Thus we may

assume that L̃+ ∩ Γ = {p}. So

L̃+ ∩ ∂U = (L̃+ ∩ Γ) ∪ (L̃+ ∩ Γ′) = {p} ∪ ∅ = {p}.

Consequently, ∂U is contained in the wedge formed by L̃+ and L−. In

particular, if H̃ is the plane containing L̃+, then ∂U lies on one side of

H̃, say

∂U ⊂ H̃−.

In that case ν(p) points into int(H̃+). Thus

U ∩ int(H̃+) �= ∅.

So cl(U ∩ int(H̃+)) = cl(∂K ∩ int(H̃+)) is the desired cap. q.e.d.
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5.3. Angle of caps. Here we will prove the main result of Section 5:

Theorem 5.7. Through each point p ∈ ∂M there passes a maximal
cap.

First let us record the following elementary observation:

Lemma 5.8. Let H be a local support plane of f at p ∈ ∂M , n be
the outward normal to H, and N be the principal normal of f |∂M at p.
Then 〈n,N〉 ≤ 0.

Proof. Let φ : (−ε, ε) → ∂M be a local unit speed parametrization,
with φ(0) = p, and set γ := f ◦ φ. Further let h(t) := 〈γ(t) − f(p), n〉.
Then h has a local maximum at 0, since n is the outward normal of
H. Consequently, 0 ≥ h′′(0) = 〈N,n〉‖γ′′(0)‖, which completes the
proof. q.e.d.

Using the last observation, we next show that no degenerate cap of
M at p can be larger than the tangential cap Cp(0):

Lemma 5.9. Suppose that M has a degenerate cap C at p ∈ ∂M .
Then Cp(0) is also a cap and C ⊂ Cp(0).

Proof. First suppose that ν(p) = −N(p). Let H be a local sup-
port plane of f at p with outward normal n. Then, by Lemma 5.8,
〈n,N(p)〉 ≤ 0. On the other hand, by assumption f(U) ⊂ H−, for some
neighborhood U of p in M . Consequently, ν(p) ∈ Tpf ⊂ H−. Thus
0 ≥ 〈n, ν(p)〉 = −〈n,N(p)〉 ≥ 0. So 〈n, ν(p)〉 = 0, which yields that
H = Hp(0). So Hp(0) is the only local support plane of f at p. Now
recall that the plane of any degenerate cap at p locally supports f at p,
by the extension property. Thus Hp(0) is the plane of C. Consequently,
C = Cp(0) by the uniqueness property of caps (Proposition 4.3). In
particular Cp(0) is a cap.

It remains then to consider the case where ν(p) �= −N(p). In this case
Cp(0) is a cap by Proposition 5.4. So we just need to verify that C ⊂
Cp(0). To this end, it suffices to show that f(C) ⊂ Hp(0), because by
assumption C is a connected set containing p, and Cp(0) is by definition
the component of f−1(Hp(0)) containing p. To see that f(C) ⊂ Hp(0),
let H be a plane of C. Then H is a local support plane of f at p (again
by the extension property). In particular, it follows that H locally
supports f |∂M at p and, therefore, contains the tangent line L of f |∂M
at p. So if f(C) ⊂ L, then there is nothing to prove.

Suppose then that there is a point q ∈ C such that f(q) �∈ L. Let r
be the ray which emanates from f(p) and passes through f(q). Since
f(C) is convex, the segment of r between f(p) and f(q) lies in f(C). It
follows then that if U is any neighborhood of p in M , then f(U) contains
a subsegment of r with an end point at f(p). Thus r ∈ Tpf , which yields
that f(q) ∈ Tpf . So, since f(q) �∈ L, it follows that Tpf ⊂ H, and thus
H = Hp(0). So f(C) ⊂ Hp(0) as desired. q.e.d.
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The following lemma collects some basic facts for easy reference:

Lemma 5.10. Let C be a nondegenerate cap of M at p ∈ ∂M , H be
the plane of C, and L be the tangent line of f |∂M at p. Then L ⊂ H,
Tpf ⊂ H+, Tpf ∩H = L, and f(∂C) lies on one side of L.

Proof. It follows from the extension property (Proposition 4.1) that
H locally supports f |∂M at p. Thus L ⊂ H.

Recall that Tpf is a half-plane bounded by L. Thus to show that
Tpf ⊂ H+ it suffices to check that a point of Tpf−L lies in H+. To this
end note that Tf(p)f(C) ⊂ Tpf by the definition of Tpf , and Tf(p)f(C) ⊂
H+ since f(C) ⊂ H+. So it suffices to check that Tf(p)f(C) �⊂ L, which

is indeed the case since f(C) is nondegenerate. So Tpf ⊂ H+.
If Tpf ∩H �⊂ L, then Tpf ⊂ H. This in turn yields that Tf(p)f(C) ⊂

H, which again is not the case since f(C) is nondegenerate. So Tpf ∩
H = L.

Recall thatHp(0) locally supports f at p. ThusHp(0) locally supports
f(∂C), which in turn yields that Hp(0) globally supports f(∂C), since
f(∂C) is a convex curve. Further, since Tpf ∩H = L, we have Hp(0) ∩
H = L. Thus, L supports f(∂C). q.e.d.

The last two observations now yield the following basic fact:

Lemma 5.11. Suppose that M has a nondegenerate cap C at p ∈
∂M . Then C contains all degenerate caps of M at p.

Proof. If M has a degenerate cap at p, then, by Lemma 5.9, C ′ :=
Cp(0) contains all the degenerate caps of M at p. Thus it suffices to
show that C ′ ⊂ C. To see this let H+ be the half-space of C. Note
that Tpf ⊂ H+, by Lemma 5.10. Thus Tpf(C

′) ⊂ H+, since Tpf(C
′) ⊂

Tpf . Further note that since C ′ is degenerate, f(C ′) ⊂ Tpf(C
′). Thus

f(C ′) ⊂ H+. Now recall that, by Proposition 4.1, C is the component
of f−1(H+) which contains p. Thus, since C ′ is connected, p ∈ C ′, and
C ′ ⊂ f−1(H+), it follows that C ′ ⊂ C as desired. q.e.d.

Let C be a nondegenerate cap of M at p ∈ ∂M , H be the plane of C
and L be the tangent line of f |∂M at p. Then, by Lemma 5.10, f(∂C)
lies on one side of L in H, which we denote by L+. We define the angle
0 ≤ θ ≤ π of C at p as the angle between the half planes Tpf and L+,
see Figure 15. Note that one of these half-planes extends to the tangent
plane Hp(0), while the other lies on the plane of C. Thus the angle θ of
a nondegenerate cap uniquely determines its plane. Consequently, the
uniqueness property (Proposition 4.3) immediately yields that for each
angle 0 < θ ≤ π there exists at most one nondegenerate cap of M at p.

For 0 ≤ θ ≤ π, let νp(θ) be the unit normal to f |∂M at p which points
into Hp(0)

−, and makes an angle of θ with ν(p) = νp(0), the conormal of
f at p. Next letHp(θ) be the plane which contains L and νp(θ). Further,
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let np(0) be the outward normal of Hp(0), and np(θ) be the normal to
Hp(θ) at p so that the frame (νp(θ), np(θ)) induces the same orientation
on the orthogonal plane Π of f |∂M at p, as does (νp(0), np(0)). Then we
declare np(θ) to be the outward normal of Hp(θ). Accordingly, Hp(θ)

+

will denote the side where np(θ) points. Finally, we set

Cp(θ) := the component of f−1(Hp(θ)
+) which contains p.

Note that if Cp(θ) is a cap, then its angle is θ by construction. Let us
then summarize these observations as follows:

Lemma 5.12. Let p ∈ ∂M . Then for every 0 ≤ θ ≤ π there exists
at most one cap with angle θ at p. This cap, if it exists, coincides with
Cp(θ). q.e.d.

It now quickly follows that:

Lemma 5.13. Let p ∈ ∂M , and suppose that Cp(θ0) is a cap, for
some 0 ≤ θ0 ≤ π. Then so is Cp(θ) for all 0 ≤ θ < θ0, and Cp(θ) �

Cp(θ0).

Proof. Let us fix p and drop all references to it for convenience. If
θ0 = 0, then there is nothing to prove. So suppose that θ0 > 0. Now
if θ = 0, again we are done by Lemma 5.11, so we may assume that
θ > 0 as well. Then, since 0 < θ < θ0, it follows that H(θ) intersects
the interior of conv(f(C(θ0))). Further f(∂C(θ0)) lies in H(θ)−. Thus
H(θ)+∩f(C(θ0)) is a cap in R3, which in turn yields that f−1(H(θ)+)∩
C(θ0) is a cap of angle θ which is contained in C(θ0). Since this cap has
angle θ, it must coincide with C(θ) by Lemma 5.12. Thus C(θ) ⊂ C(θ0).
Finally, since θ < θ0, we have H(θ) �= H(θ0), i.e., C(θ) and C(θ0) have
different planes. So, since nondegenerate caps have unique planes, it
follows that C(θ) �= C(θ0), which completes the proof. q.e.d.

Now we are ready to prove the main result of this section:

Proof of Theorem 5.7. Let Θ be the set of all angles 0 ≤ θ ≤ π such
that Cp(θ) is a cap. By Proposition 5.4, Θ �= ∅. So the supremum θ of

Θ exists. First suppose that θ = 0. Then Θ = {0}. So Cp(0) is a cap.
Furthermore, all caps ofM at pmust be degenerate, since nondegenerate
caps have positive angles. But Cp(0) contains all degenerate caps of M
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at p, by Lemma 5.9. Thus Cp(0) is the desired maximal cap. Next

assume that θ > 0. Then, by Lemma 5.13, [0, θ) ⊂ Θ. Let θi ∈ (0, θ) be
an increasing sequence converging to θ. Then Ci := C(θi) is a nested
sequence of caps by Lemma 5.13. Hence, by Proposition 4.6, there exists
a cap C in M which contains all Ci. Then, by Lemma 5.13, the angle
of C cannot be smaller than any θi, and, therefore, must be equal to θ.
This in turn yields that C contains all caps at p, again by Lemma 5.13,
which completes the proof. q.e.d.

6. Proof of the Main Theorem

Here we complete the proof of the main result of this work, Theorem
6.16 below, which is a refinement of Theorem 1.1 mentioned in the
introduction. To this end we first show in Section 6.1 that the maximal
caps, whose existence were finally established in the last section, induce
a nested partition on ∂M . This will ensure the existence of singular
maximal caps, i.e., maximal caps which intersect ∂M along connected
sets. Next we show that the planes of these singular caps are osculating
planes of f |∂M in Section 6.2. Further we show in Section 6.3 that f |∂M
may be oriented so that each singular maximal cap lies on the side
of the osculating plane where the binormal vector B(p) points. This
will ensure, as we will show in Section 6.4, that torsion changes sign
in a consistent way near the points where each singular maximal cap
intersects ∂M , which quickly completes the proof.

6.1. Singular maximal caps. A cap C of M has rank n provided
that C ∩ ∂M has n components. We say that a maximal cap C ⊂ M
is singular provided that rank(C) = 1. For each p ∈ ∂M , let Cp be the
corresponding maximal cap (which exists by Theorem 5.7). Set

[p] := Cp ∩ ∂M, and P := {[p] | p ∈ ∂M}.
Let S be the number of singular parts of P, and T be the triangularity
of P as defined by (1). In this section we establish the following result,
which yields a Bose type formula for maximal caps of M .

Theorem 6.1. Suppose that M is not a cap. Then P is a nontrivial
nested partition of M . In particular, if C is a maximal cap of M , then
each component of ∂M−C has a point where the corresponding maximal
cap is singular. Thus

(19) S ≥ T + 2.

To prove the above theorem, we need to record a pair of simple ob-
servations:

Lemma 6.2. Distinct maximal caps of M may intersect only in the
interior of M .
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Proof. Suppose that Cp, Cq are maximal caps which intersect at x ∈
∂M . Then Cp, Cq ⊂ Cx, the maximal cap of M at x. In particular p,
q ∈ Cx, which implies that Cx ⊂ Cp, Cq, by the maximality of Cp, Cq.
Thus Cp = Cx = Cq. q.e.d.

Note that by interior in the next observation, we mean the interior of
a cap C as a manifold, as opposed to a subset of M . Thus for instance
if C is a segment, then its interior is homeomorphic to the open interval
(0, 1).

Lemma 6.3. Let C1, C2 be maximal caps of M which are degenerate.
Suppose that int(C1) ∩ int(C2) �= ∅. Then C1 = C2.

Proof. Let p ∈ int(C1) ∩ int(C2). Then p ∈ int(M), by Lemma 6.2.
Let H be a local support plane of f at p. Then H locally supports
Ci := f(Ci) at p := f(p), for i = 1, 2. Further p ∈ int(Ci), since
f : Ci → Ci is a homeomorphism. It follows then that Ci ⊂ H, since Ci

are planar convex sets. Let A be the component of f−1(H) containing p.
Then A is a cap by Theorem 3.3. Since Ci are connected, Ci ⊂ f−1(H),
and p ∈ Ci, it follows that Ci ⊂ A. Thus C1 = A = C2, since Ci are
maximal. q.e.d.

We are now ready to prove the main result of this section:

Proof of Theorem 6.1. We just need to check that P is a nested parti-
tion; the other claims then follow immediately from Lemma 2.2. First
we check that P is a partition, i.e., parts of P cover ∂M and are pairwise
disjoint. The former property is clear since p ∈ [p]. To see the latter
property, suppose that q ∈ [p]. Then q ∈ Cp. Thus, by maximality,
Cp ⊂ Cq. In particular, p ∈ Cq. So, again by maximality, Cq ⊂ Cp.
Thus Cq = Cp, which in turn yields [q] = [p] as desired.

It remains to establish that P is nested. Suppose, towards a contra-
diction, that it is not. Then there are maximal caps Ci, i = 1, 2, such
C2 intersects different components of ∂M − C1. Then Ci cannot be a
point, and thus each is either homeomorphic to a disk, or to a line seg-
ment. Further, recall that Ci may not intersect each other on ∂M , by
Lemma 6.2. Thus, since M is simply connected, int(Ci) must intersect
at a point p.

If int(Ci) intersect, then, by Lemma 6.3, Ci cannot both be degener-
ate. We may suppose then that C1 is nondegenerate. In particular, ∂C1

is a simple closed curve. Then, since p ∈ int(C1), it follows that C2 in-
tersects ∂C1 at a pair of points x, y which are separated in ∂C1 by points
of ∂M . There are two cases to consider: either C2 is homeomorphic to
a line segments or a disk. For any set X ⊂ M , set X := f(X).

(Case 1 ) First suppose that C2 is homeomorphic to a line segment.
Then C2 is a line segment. Also note that C2 passes through the points
x and y which belong to ∂C1, and thus lies in the plane H1 of C1. So
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C2 ⊂ H1, which in turn yields that p ∈ H1. But p ∈ int(C1), and thus
p ∈ int(C1), which is disjoint from H1. So we arrive at a contradiction.

(Case 2 ) Next suppose that C2 is a topological disk. Then C2 has
a unique plane H2. If H1 = H2 then we are done by the uniqueness
property. So suppose that H1 �= H2. Note that H1, H2 cannot be
parallel, for then it would follow that C1 ⊂ C2 or C2 ⊂ C2 which
is not possible by maximality. So H1 ∩ H2 = L, where L is a line.
Consequently, ∂C1 ∩ ∂C2 ⊂ (∂C1 ∩ H1) ∩ H2 = ∂C1 ∩ L. Since ∂C1

is a convex planar curve it follows that ∂C1 ∩ L can have at most two
components. Thus ∂C1 ∩ ∂C2 can have at most two components, which
implies the same for ∂C1∩∂C2. On the other hand, ∂Ci are simple closed
curves in M , and by assumption ∂C2 intersects different components of
∂M − ∂C1. Thus, just as we had argued in Example 2.1, since M is
simply connected, ∂C1 ∩ ∂C2 must have at least four components. So
again we arrive at a contradiction, which completes the proof. q.e.d.

Note 6.4. It is likely the case that the partition P in Theorem 6.1
is actually an intrinsic circle system as defined by Umehara [68], see
Note 2.5. In the present context, this means that the maximal caps of
M satisfy the following lower semicontinuity property: Let pi ∈ ∂M
be a sequence converging to p ∈ ∂M , Ci := Cpi be the corresponding
maximal caps of M , qi ∈ Ci, and q be a limit point of qi; then q ∈ Cp. If
this is indeed the case, then it would follow that P is an intrinsic circle
system, since we have already established in Theorem 6.1 that P is
nested. Consequently, Umehara’s generalization of Bose’s formula [68,
Thm. 2.7] would yield that whenever S < ∞, equality holds in (19).

6.2. Osculating planes. The osculating plane of f |∂M at a point p
is the plane which is tangent to f |∂M at p, and contains the principal
normal N(p). In this section we show that if C is a singular maximal
cap of M at p, then the plane H of C is the osculating plane of f |∂M at
p. Note that H is unique when C is nondegenerate. Further, by Lemma
5.9, when C is degenerate, C = Cp(0), the tangential cap defined in
Section 5.2. In particular, Hp(0) is a plane of C, which is what we
mean by the plane H of C. In short, singular maximal caps have a
well-defined plane.

Proposition 6.5. Let p ∈ ∂M , C be a singular maximal cap of M
at p, and H be the plane of C. Then H is the osculating plane of f |∂M
at p.

First we need to record the following three basic observations:

Lemma 6.6. Let Γ ⊂ R3 be a compact embedded C2 curve, p be an
interior point of Γ, NpΓ be the space of unit normal vectors of Γ at p,
and A ⊂ NpΓ consist of those normals n such that (i) n strictly supports
Γ at p, and (ii) 〈n,N(p)〉 < 0. Then A is open in NpΓ.
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Proof. Let n ∈ A, ε > 0, and ni ∈ NpΓ, i = 0, 1, be distinct normals
such that 〈n, ni〉 = 1− ε. For λ ∈ [0, 1], set

nλ :=
λn1 + (1− λ)n0

‖λn1 + (1− λ)n0‖
.

These vectors generate a segment Iε of NpΓ centered at n = n1/2, see
Figure 16. Note that length(Iε) → 0 as ε → 0. We claim that there

NpΓ

f(p)
n

n1

n0

Figure 16.

exists an ε such that Iε ⊂ A, which will finish the proof. To this end
let γ : (−δ, δ) → Γ, γ(0) = p, be a local unit speed parametrization, and
set

hλ(t) := 〈γ(t)− γ(0), nλ〉.
Then h′λ(0) = 〈T (p), nλ〉 = 0. Further h′′λ(0) = 〈κ(p)N(p), nλ〉. Thus
h′′1/2(0) < 0, since n1/2 = n ∈ A, and so 〈N(p), n1/2〉 < 0. Consequently,

if ε is sufficiently small, then h′′i (0) < 0. So, by Taylor’s theorem, there
exist 0 < δi ≤ δ such that

hi < 0,

on (−δi, δi)−{0}. Let δ := min{δ0, δ1}. Then, for every t ∈ (−δ, δ)−{0},

hλ(t) =
λh1(t) + (1− λ)h0(t)

‖λn1 + (1− λ)n0‖
< 0.

So we conclude that nλ is a strict support vector of U := γ((−δ, δ)),
which is a neighborhood of p in Γ. Let Hλ be the plane which passes
through f(p) and is orthogonal to nλ(p). Then Γ − U lies on one side
of H1/2 and is disjoint from it by assumption. Thus since Γ − U is
compact, the same holds for Hλ provided that ε is sufficiently small.
Hence nλ is a strict support vector of Γ. In addition, since by assumption
〈n1/2, N(p)〉 < 0, we can make sure that ε is so small that 〈nλ, N(p)〉 <
0. Thus Iε ⊂ A, as desired. q.e.d.

Lemma 6.7. Let p ∈ ∂M , C be a nondegenerate cap of M at p, and
H be the plane of C. Suppose that the angle of C at p is π. Then H is
the osculating plane of f |∂M at p.

Proof. Since the angle of C is π, Tpf ⊂ H, which in turn yields that
H = Hp(0). Consequently, the outward normal n of Hp(0) is orthogonal
to H. Furthermore, since f(C) ⊂ H+, n points into H−. Consequently,
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N(p) points into H+, since 〈n,N(p)〉 ≤ 0, by Lemma 5.8. On the
other hand, since f(C) ⊂ H+, f |∂M lies in H− near p, by the extension
property. Thus N(p) points into H−. So we conclude that N(p) lies in
H. Hence H is the osculating plane. q.e.d.

Lemma 6.8. If Cp(0) is a cap of M , for some p ∈ ∂M , then
f(Cp(0)) ⊂ Tpf .

Proof. Let C := Cp(0), and H := Hp(0). By definition C := f(C) ⊂
H, and C is convex. Further recall that Tpf is one of the half-planes
of H determined by the tangent line L of f |∂M at p. So we just need
to check that a neighborhood of f(p) in C lies on the same side of
L where Tpf lies. To see this let U be a convex neighborhood of p

in M with body K. Then U ∩ C := f(U ∩ C) is a neighborhood of
f(p) in C. Let W := Tf(p)K, and recall that Tpf = W ∩ H. Thus

U ∩ C = U ∩ C ∩H ⊂ K ∩H ⊂ W ∩H = Tpf , as desired. q.e.d.

Now we are ready to prove the main result of this section:

Proof of Proposition 6.5. Suppose that H is not the osculating plane.
Then we show that C is not maximal. Note that C ∩ ∂M is connected
by assumption. Thus if C ∩∂M �= {p}, then there is a segment I ⊂ ∂M
containing p such that f(I) ⊂ f(∂C) ⊂ H. Then N(p) lies in H, which
is not possible since H is not the osculating plane. So we may suppose
that

C ∩ ∂M = {p}.
Recall that, by the extension property, H locally supports f |∂M at p.
Thus, if n is the outward normal of H, then 〈n,N(p)〉 ≤ 0 by Lemma
5.8. Also note that 〈n,N(p)〉 �= 0, since H is not the osculating plane.
So we have

〈n,N(p)〉 < 0.

By the extension property, there exists a neighborhood U of C in M
such that

f(cl(U)− C) ⊂ int(H−).

After replacing U by a smaller subset, we may assume that Γ := ∂U
is a simple closed curve, which coincides with a segment of ∂M near p,
see Figure 17. Since C ∩ ∂M = {p}, we may assume that Γ ∩ C = {p}.

p

C

U
Γ

M

Figure 17.
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Further, since f is one-to-one on C, which is compact, we may suppose
that U is so small that f is one-to-one on cl(U). Consequently, Γ := f(Γ)
will be an embedded curve. Now note that, since Γ ∩ C = {p},

Γ− f(p) = f(Γ− p) ⊂ f(cl(U)− C) ⊂ int(H−).

Thus, n is a strict support vector of Γ. Further recall that 〈n,N(p)〉 < 0.
Thus n ∈ A ⊂ NpΓ, where A is as in Lemma 6.6. Consequently, we may
rotate H about the tangent line L of f |∂M at p by small angles, in either
direction, without compromising the property that Γ ⊂ H−. This will
allow us to enlarge C as follows.

(Case 1 ) First suppose that C is nondegenerate. Then the angle θ of
C at p is positive. Further, by Lemma 6.7, θ �= π. So 0 < θ < π. Recall
that f(∂C) lies on one side of L, say L+, in H by Lemma 5.10. Then θ
is the angle between L+ and TpM . So if W is the wedge bounded by L+

and Tpf , then W is a proper subset of H+. In particular there exists a

plane H̃ which intersects W only along L, see Figure 18. Let H̃+ be the

f(p)

n ñ

θ

H̃

H

W

Figure 18.

side of H̃ containing W , and ñ be the unit normal to H̃ which points

into H̃+. Then
f(C) ⊂ W ⊂ H̃+.

Further, recall that Γ ⊂ H−. Thus, by Lemma 6.6, we may assume that

Γ ⊂ H̃−,

by choosing ñ sufficiently close to n. Now let

C̃ := f−1(H̃+) ∩ cl(U).

Then C ⊂ C̃, since f(C) ⊂ H̃+. Furthermore, C̃ is contained in the

region of M bounded by Γ, and thus C̃ ∩ f−1(int(H̃+)) is disjoint from

∂M . Thus, by the slicing theorem (Theorem 4.12), C̃ is a cap. But

note that by construction the angle of C̃ at p is strictly bigger than that

of C. Hence, by Lemma 5.13, C is a proper subset of C̃. So C is not
maximal, as claimed.

(Case 2 ) It remains then to consider the case where C is degenerate.
Then, by Lemma 5.9, C = Cp(0), since C is maximal. Let U be a
convex neighborhood of p in M with associated body K. Recall that,
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by Lemma 5.2, W := Tf(p)K is a wedge bounded by a pair of half-
planes meeting along L, one of which is Tpf . In particular, the tangent
plane H = Hp(0) (which is just the extension of Tpf) supports W , and
H ∩W = Tpf . Further, by Lemma 5.10, f(C) ⊂ Tpf .

f(p)

n
ñ

Hp(0)
H̃

W

Figure 19.

Let H̃ be a plane which contains L and an interior point of W , ñ

be the unit normal to H̃ so that 〈n, ñ〉 > 0, and H̃+ be the side of H̃

into which ñ points, see Figure 19. Then Tpf ⊂ H̃+. Again, by Lemma

6.6, we may assume that Γ ⊂ H̃−, if ñ is sufficiently close to n. Let

C̃ := f−1(H̃+) ∩ cl(U). Then once again C̃ will be a cap by the slicing

theorem. Further, C ⊂ C̃, since f(C) ⊂ Tpf ⊂ H̃+, by Lemma 6.8.

Finally, by construction, the angle of C̃ is strictly bigger than that of

C, which is 0. Thus, again by Lemma 5.13, C is a proper subset of C̃,
and, therefore, is not maximal. q.e.d.

6.3. Orientation. An orientation of ∂M is the choice of a continu-
ous nonvanishing tangent vector field p �→ up along ∂M . Any such
choice generates a unit tangent vector field along f |∂M given by T (p) :=
dfp(up)/‖dfp(up)‖. Accordingly, the binormal vector field B := T × N
of f |∂M will be determined as well. Note that B is orthogonal to the
osculating planes of f |∂M and thus orients these planes in a continuous
way. If H is the osculating plane of f |∂M at p, then the side of H into
which B(p) points will be called the region above H, and the other side
will be referred to as the region below H. Recall that, by Proposition
6.5, the planes of singular maximal caps of M are osculating planes of
f |∂M , and thus are oriented by B, once ∂M has been oriented. Thus
we may talk about whether a singular maximal cap lies above or below
its plane, with respect to an orientation of ∂M . The main result of this
section is as follows:

Proposition 6.9. ∂M may be oriented so that each singular maximal
cap of M lies above its plane.

The chief difficulty in establishing this observation is that the conor-
mal vector field ν is not in general continuous. Note, however, that for
each p ∈ ∂M , (ν(p), n(p)) determines an orientation for the orthogonal
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plane of f |∂M at p, where n(p) is the outward to the tangent planeHp(0).
The following lemma shows that this orientation depends continuously
on p.

Lemma 6.10. ν × n is continuous on ∂M .

Proof. Fix an orientation for ∂M , and let T be the corresponding
tangent vector field along f |∂M . Then, for every p ∈ ∂M , either ν×n =
T or ν×n = −T . Let A± consist of points of ∂M such that ν×n = ±T ,
respectively. We need to show that either A+ = ∂M or A− = ∂M . If
A+ is open, then by symmetry A− is also open, which in turn implies
that A+ is closed. Thus, since ∂M is connected, it suffices to show that
A+ is open. To this end we proceed as follows.

First let us record the following observation. Let the left side L+
p of

Lp in Hp(0) be defined as the side to which n(p)×T (p) points. Further
note that ν(p) = n(p)×T (p) if and only if T (p) = ν(p)×n(p) or p ∈ A+.
Thus, since ν(p) ∈ Tpf , it follows that p ∈ A+ if and only if Tpf = L+

p .

Now let p ∈ A+, and U be a convex neighborhood of p in M with
associated body K. As usual, we will identify U with its image f(U) ⊂
∂K, and will suppress f . We need to show then that Γ := U∩∂M ⊂ A+.
More explicitly, given that TpU = L+

p , we claim that, for all q ∈ Γ,

(20) TqU = L+
q .

To establish the last claim, let H be a support plane of K at p such
that ∂K is a graph overH near p. Let π : R3 → H denote the orthogonal
projection, and for any object X ⊂ R3, set X := π(X). Then U will
be embedded in H, assuming that U is sufficiently small. Further, for
each q ∈ Γ, π : Hq(0) → H will be injective. Thus, (20) is equivalent to

(21) TqU = L+
q .

Define the left side (Lq)
+ of Lq in H as the side to which u × T

points, where u is the outward normal of H. Since 〈u, n(q)〉 > 0, it
follows that the left side of Lq projects onto the left side of Lq, or

L+
q = (Lq)

+. Further Lq coincides with the tangent line Lq of Γ at q.

Thus (Lq)
+ = L+

q . Finally TqU = TqU by (18). So (21) holds if and
only if

(22) TqU = L+
q .

Finally note that L+
q depends continuously on q, since it is determined

by u×T . Further TqU depends only on the inward normal of U along Γ,

which again depends continuously on q. Thus (22) holds for all q ∈ Γ,
since by assumption it holds when q = p. q.e.d.

The last lemma yields the key fact needed for the proof of Proposi-
tion 6.5:
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Lemma 6.11. ∂M may be oriented so that 〈ν,B〉 ≥ 0.

Proof. By Lemma 6.10, we may orient ∂M so that ν × n = T . Since
T is orthogonal to both ν and B,

〈ν,B〉 = 〈T × ν, T ×B〉 = 〈n,−N〉 = −〈n,N〉 ≥ 0,

where the last inequality holds by Lemma 5.8. q.e.d.

Now we are ready to prove the main result of this section:

Proof of Proposition 6.9. Let p ∈ ∂M , and C be a singular maximal
cap of M at p. If M = C, then it is clear that the proposition holds. So
assume that M �= C. Orient ∂M as in Lemma 6.11, and let H be the
plane of C, which is the osculating plane of f |∂M at p by Proposition
6.5. We need to show that B(p) points into the half-space H+ of C.

Recall that ν(p) ∈ Tpf ⊂ H+, by Lemma 5.10. If ν(p) points into
int(H+), then B(p) points into H+ as well, since 〈B, ν〉 ≥ 0 by Lemma
6.11, and B is orthogonal to H. So we may suppose that ν(p) lies in H.
Then H = Hp(0), the tangent plane of f |∂M at p, and so B(p) = ±n(p).
Note that here n(p) points into H− because it is the outward normal of
the tangent plane by definition and f(C) ⊂ H+. Thus if B(p) = −n(p),
then we are done. So we may suppose that B(p) = n(p). We will show
then that C = M , which is a contradiction and thereby completes the
proof.

First we claim that H is tangent to f |∂M all along A := C ∩ ∂M .
If A = {p} then there is nothing to prove. So suppose that there is
a point q ∈ A different from p. Then, since A is connected by as-
sumption, there exists a segment I ⊂ ∂M joining p and q. Conse-
quently, f(I) ⊂ f(∂C) ⊂ H. So B is constant along I. In particular,
B(q) = B(p) = n(p). Thus 〈ν(q), n(p)〉 = 〈ν(q), B(q)〉 ≥ 0, by Lemma
6.11. On the other hand, ν(q) points into H+, while n(p) points into
H−. So 〈ν(q), n(p)〉 ≤ 0. Hence 〈ν(q), n(p)〉 = 0, which means that ν(q)
lies in H. So H is the tangent plane of f |∂M at q as claimed.

Now it follows that H locally supports f along A. Consequently,
there is a neighborhood V of A in M such that

f(V ) ⊂ H+.

On the other hand, by the extension property, there is a neighborhood
U of C in M such that f(U − C) ⊂ int(H−). Note that U is also a
neighborhood of A since A ⊂ C. So we may assume that V ⊂ U . Then
it follows that

f(V − C) ⊂ int(H−).

So V −C = ∅, or V ⊂ C. This in turn yields that V ∩ ∂C ⊂ ∂M , since
V is open in M . Consequently, A is open in ∂M . But A is compact by
definition and, therefore, is closed in ∂M as well. Thus A = ∂M . This
yields that C = M , which is the desired contradiction. q.e.d.
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6.4. Sign of torsion; Finishing the proof. It is well-known that if
a curve lies locally on one side of its osculating plane then its torsion
vanishes, which is precisely how we establish the existence of vertices
in this work. Indeed Theorem 6.1 together with Proposition 6.5 have
already ensured the existence of at least two vertices along f |∂M . In
order to obtain two more vertices, we need to study how the torsion
changes sign when the curve lies on one side of its osculating plane. Our
first observation below may be regarded as a version of the maximum
principle for torsion:

Lemma 6.12. Let γ : [0, b] → R3 be a C3 immersed curve without
inflections. Suppose that τ ≥ 0 on [0, b]. Then there exists an ε > 0
such that γ([0, ε]) lies above the osculating plane of γ at 0.

Proof. After a rigid motion, we may suppose that γ(0) = (0, 0, 0), and
the Frenet frame (T,N,B) of γ at t = 0 coincides with the standard
basis (i, j, k) of R3. In particular, the tangent line of γ at t = 0 coincides
with the x-axis. Consequently, for ε sufficiently small, the projection of
γ([0, ε]) into the xy-plane, which coincides with the osculating plane of
γ at 0, is a graph over the x-axis. So after a reparametrization, we may
assume that

γ(t) = (t, y(t), z(t)),

for t ∈ [0, ε], assuming ε is sufficiently small. We need to show that, for
small ε, z ≥ 0 on [0, ε]. To this end, first note that

(0, 1, 0)=N(0)=
γ′′(0)− 〈γ′′(0), T (0)〉T (0)
‖γ′′(0)− 〈γ′′(0), T (0)〉T (0)‖ =

(0, y′′(0), z′′(0))√
(y′′(0))2 + (z′′(0))2

.

Thus y′′(0) > 0 and z′′(0) = 0. In particular we may choose ε so small
that y′′ > 0 on [0, ε]. Now recall that τ = det(γ′, γ′′, γ′′′)/(κ2‖γ′‖3),
where κ is the curvature of γ. Thus

κ2‖γ′‖3τ =

∣∣∣∣∣∣

1 y′ z′

0 y′′ z′′

0 y′′′ z′′′

∣∣∣∣∣∣
= z′′′y′′ − z′′y′′′ =

(
z′′

y′′

)′

(y′′)2.

Consequently, since z′′(0) = 0, it follows that, for any t ∈ [0, ε],

z′′(t)

y′′(t)
=

z′′(t)

y′′(t)
− z′′(0)

y′′(0)
=

∫ t

0

(
z′′

y′′

)′

ds =

∫ t

0

κ2‖γ′‖3τ
(y′′)2

ds ≥ 0,

since by assumption τ ≥ 0. Thus z′′ ≥ 0 on [0, ε], since y′′ > 0 on
[0, ε]. Further recall that z(0) = z′(0) = 0, since by assumption γ passes
through the origin and is tangent to the x-axis at t = 0. So for every

t ∈ [0, ε], there exists t ∈ [0, t] such that z(t) = z′′(t)t
2
/2, by Taylor’s

theorem. Hence z ≥ 0 on [0, ε], as desired. q.e.d.

The last observation quickly yields:
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Lemma 6.13. Let a < 0 < b, γ : [a, b] → R3 be a C3 immersed
curve without inflections, and H be the osculating plane of γ at 0. Sup-
pose that γ([a, b]) lies below H, and γ(a), γ(b) are disjoint from H.

Then there are points ã ∈ [a, 0) and b̃ ∈ (0, b] such that τ(ã) > 0 and

τ (̃b) < 0.

Proof. Existence of ã follows from that of b̃, since replacing t by −t

in γ switches the sign of τ . To find b̃ let o be the supremum of γ−1(H)
in [a, b]. Then o ∈ [0, b), since γ(b) �∈ H. After a translation of [a, b]
we may assume that o = 0 for convenience. Suppose now, towards a
contradiction, that τ ≥ 0 on [0, b]. Then, by Lemma 6.12, there exists
ε > 0 such that γ([0, ε]) lies above H. But γ([0, ε]) also lies below H by
assumption. Thus γ([0, ε]) ⊂ H. In particular 0 is not the supremum of
γ−1(H), which is the desired contradiction. q.e.d.

We need to record only one more lemma:

Lemma 6.14. Let C be a cap of M , H be a plane of C, and set
A := C ∩ ∂M . Suppose that A �= ∂M . Then there exists a segment
I ⊂ ∂M such that A ⊂ int(I), f(I) ⊂ H− and f(I −A) ∩H = ∅.

Proof. By the extension property (Proposition 4.1), there exists a
neighborhood U of C in ∂M such that f(U −C) ⊂ int(H−). Note that
U ∩ ∂M is a neighborhood of A. Thus, since A �= ∂M , and A is closed,
there exists a segment I ⊂ U ∩ ∂M such that A ⊂ int(I). This is the
desired segment, because I = A ∪ (I − A), f(A) ⊂ f(∂C) ⊂ H, and
f(I −A) ⊂ f(U − C) ⊂ int(H−). q.e.d.

The above lemmas now yield our penultimate result. Recall that S
denotes the number of singular maximal caps of M , and let V be the
number of times the torsion τ of f |∂M changes sign.

Proposition 6.15. Let C be a singular maximal cap of M , and set
A := C ∩ ∂M . Suppose that M is not a cap, and ∂M is oriented as
in Proposition 6.9. Then every neighborhood of A contains a segment I
containing A such that τ < 0 at the initial point of I and τ > 0 at the
final point of I. In particular,

V ≥ 2S.
Proof. Since M is not a cap, S ≥ 2 by Theorem 6.1. Let Ci, i =

1, . . . , k ≤ S be distinct singular maximal caps of M for some finite
integer k. Recall that Ai := Ci ∩ ∂M are disjoint, since, as we verified
in Theorem 6.1, the sets where the maximal caps of M intersect ∂M
form a partition of ∂M . Furthermore, Ai are proper subsets of ∂M ,
since M is not a cap by assumption. Thus we may let Ii ⊂ ∂M be
intervals containing Ai as in Lemma 6.14. Since Ai are disjoint, and k
is finite, we may suppose that Ii are disjoint as well.
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pi

M

ai

ãi

bi

b̃i

− +

Figure 20.

Identify each Ii with an interval [ai, bi] ⊂ R, where ai < 0 < bi, via an
orientation preserving parametrization which we suppress for simplicity,
see Figure 20. By Proposition 6.5, the planes Hi of Ci are osculating
planes of f |∂M at some points pi ∈ Ai ⊂ int(Ii), which we may identify
with 0 ∈ (ai, bi). By Proposition 6.9, f(Ci) lie above Hi. Thus, by
Lemma 6.14, f([ai, bi]) lie below Hi, while f(ai), f(bi) are disjoint from
Hi. Consequently, by Lemma 6.13, there are points ãi ∈ [ai, pi) and

b̃i ∈ (pi, bi] such that τ(ãi) < 0 and τ (̃bi) > 0. Since Ii are disjoint,

these points have the cyclic ordering [ã1, b̃1, . . . , ãk, b̃k] in ∂M . Thus
V ≥ 2k, which completes the proof. q.e.d.

The last proposition quickly completes the proof of Theorem 1.1, and
yields a refinement of it via Theorem 6.1 as follows:

Theorem 6.16 (Main Theorem, Full Version). Suppose that τ �≡ 0,
and let C ⊂ M be a maximal cap. Then each component U of ∂M − C
contains a point where the corresponding maximal cap is singular. Thus
τ changes sign in U , and

V ≥ 2S ≥ 2(T + 2).

Proof. If C is singular, then τ changes sign in U by Proposition 6.15.
So we may suppose that ∂M −C has more than one component. Then
cl(U) is a segment of ∂M . Let ∂M be oriented as in Proposition 6.9,
and p1, p2 be the initial and final points of cl(U), respectively. Each pi
belongs to a component Ai of ∂M ∩C. Let Ii be intervals containing Ai

as in Proposition 6.15. Then τ(ai) < 0 and τ(bi) > 0 where ai, bi are
the initial and final points of Ii, respectively. Choosing Ii sufficiently
small, we may ensure that b1, a2 ∈ U . So τ changes sign in U . Finally,
V ≥ 2S, by Proposition 6.15, and S ≥ T + 2, by Theorem 6.1, which
complete the proof. q.e.d.

7. Examples

Here we discuss a number of examples which establish the sharpness
of our main results in various respects.
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Example 7.1 (Local flatness on the boundary). There exists a C∞

embedded disk in R3 which is locally convex (and, therefore, has 4
boundary vertices by Theorem 1.1); however, its boundary torsion
changes sign only twice. Thus the local nonflatness assumption in The-
orem 1.1 is essential for ensuring that torsion either changes sign (at
least) 4 times, or else is identically zero. First we describe the bound-
ary curve. Let h : [0,∞) → R be the convex function defined by

h(t) :=

{
exp( 8

1−4t),
1
4 < t,

0, 0 ≤ t ≤ 1
4 .

Extend h to an odd function on R by setting h(t) := −h(−t). Next let
γ : [0, 2π] → R3 be the curve given by

γ(t) :=
(
cos(t),

(
5/4− sin2(t)

)
sin(t), 5h (cos(t))

)
,

and let Γ denote the trace of γ. Note that Γ lies on the cylindrical
surface S ⊂ R3 given by z = 5h(x). Further, Γ is a simple closed curve
on S as can be seen from its projection into the xy-plane, see Figure
21. Let M be the compact region bounded by Γ in S. Then M is
locally convex with respect to the inclusion map f : M → R3; however,
a calculation shows that the torsion of Γ changes sign only twice. The
graph of torsion appears on the right hand side of Figure 21.

x

y

x

z

t

τ

0 π 2π

τ

Figure 21.

Example 7.2 (Zero curvature on the boundary). There exists a C∞

embedded disk in R3 which has nonnegative curvature and only two
boundary vertices. Thus the condition in Corollary 1.2 that f have pos-
itive curvature on ∂M is necessary. This surface is another cylindrical
disk which is quite similar to the construction in Example 7.1 with the
exception that here the boundary has a different third coordinate:

γ(t) :=
(
cos(t),

(
5/4− sin2(t)

)
sin(t), cos3(t)/2

)
.

So Γ will have the same dumbbell shaped projection into the xy-plane as
in the previous example, but it will lie on a different cylindrical surface
S ⊂ R3 given by z = x3/2, see Figure 22. Once again we let M be the
compact region bounded by Γ in S. As the graph on the right hand side
of Figure 22 shows, the torsion of Γ vanishes only twice in this example.
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A curve with similar properties is discussed in a paper of Røgen [55, Ex.
13], where it is also shown that the boundary of a disk of zero curvature
in R3 always has at least two vertices.

x

y

x

z

t
0 π 2π

τ

Figure 22.

Example 7.3 (Negative curvature in the interior). There exists a C∞

simple closed curve Γ ⊂ R3 which has nonvanishing torsion, but bounds
a smooth immersion of a disk with positive curvature along Γ. Thus
the condition in Corollary 1.2 that the curvature of f be nonnegative
everywhere is essential. More generally, Theorems 1.1 or 6.16 do not
hold if f is locally convex only near ∂M .

As we mentioned in the introduction, Rosenberg [57] has shown that
a necessary condition for Γ to bound a surface with positive curvature
near Γ is that the self-linking number SL(Γ) be even. Here we show
that this condition is also sufficient.

First note that there are C∞ simple closed curves Γ ⊂ R3 with non-
vanishing torsion and even self-linking number. For instance, we may
let Γ be a torus knot of type (1, 2m) for large m. Indeed, the self-linking
number of any torus knot of type (1, q) is q. Thus,

SL(Γ) = 2m.

Furthermore, as has been studied by Costa [54], the torsion of Γ does
not vanish when m is sufficiently large. Alternatively, we may use a
result of Aicardi [1] who has constructed closed curves of nonvanishing
torsion with any self-linking number.

Next note that, as has been observed by Gluck and Pan [27], see
also [21], we may extend Γ, or any closed curve without inflections, to
a smooth embedded positively curved annulus A. More precisely, there
exists a C∞ embedding f : S1 × [0, 1] → R3 such that f(S1 × {0}) = Γ,
and f has positive curvature everywhere. Next recall that, by Lemma
5.8, 〈n,N〉 ≤ 0 along Γ, where N is the principal normal of Γ and n is
the outward normal of A. Set ñ := −n. Then

SL(Γ) := L(Γ,Γ + εN) = L(Γ,Γ + εñ),

where L stands for linking number, and Γ + εN , Γ + εñ denote, re-
spectively, small perturbations of Γ along the vector fields N , ñ. The
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second inequality above holds because, for small ε, and all θ ∈ [0, π/2],
h(θ) := Γ + ε(cos(θ)N + sin(θ)ñ) is disjoint from Γ, since 〈N, ñ〉 ≥ 0.
Thus h(θ) yields an isotopy between Γ+ εN , and Γ+ εñ in the comple-
ment of Γ.

So L(Γ,Γ + εñ) = 2m, which indicates that A “twists around” Γ an
even number of times. Consequently, by a deep result of Whitney [71,
Thm. 7], a neighborhood of Γ in A may be extended to a smooth im-
mersion of a disk, which yields our desired surface. More generally, for
any compact connected orientable surface M with connected boundary
∂M , Whitney constructs a smooth immersion f : M → R3 such that
f(∂M) = Γ, f is one-to-one on ∂M , and f(U) ⊂ A for some neighbor-
hood U of ∂M in M .

Example 7.4 (The complete case). There exists a C∞ complete non-
compact positively curved surface in R3 bounded by a closed curve with
only two vertices, where by “complete” we mean that the induced met-
ric on the surface is complete in the sense of convergence of Cauchy
sequences. Thus this example shows that Theorem 1.1 cannot be ex-
tended to complete surfaces which are noncompact. To generate this
surface we employ the well-known fact that the vertices of a spherical
curve coincide with critical points of its geodesic curvature. It follows
then that the curve in Figure 23(a) has only two vertices. Note that
this curve, which we call Γ, is contained in a hemisphere. By moving
Γ parallel to itself outward, we may generate an immersed annulus A
in the northern hemisphere bounded by Γ and a double covering of the
equator. Then the projective transformation (x, y, z) �→ (x/z, y/z, 1/z)
turns A into the desired complete surface.

(a) (b)

Figure 23.

Example 7.5 (The higher genus case). There exists a C∞ embed-
ded annulus with positive curvature in R3 whose boundaries have no
vertices. To construct this surface recall that, as we pointed out in Ex-
ample 7.3, there are plenty of torus knots with nonvanishing torsion.
For instance a curve of type (1, 10) on a thin torus is one such example,
see Figure 23 (b). By the discussion in Example 7.3, we may extend
this curve, say Γ, to a positively curved C∞ annulus A. Let M ⊂ A be
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a sub-annulus containing Γ whose boundary components are C3-close to
Γ. Then ∂M will have nonvanishing torsion. Thus the simply connected
assumption on M in Theorem 1.1 is not superfluous. On the other hand,
we do not know of any non-simply connected surface M with connected
boundary which violates Theorem 1.1.

Acknowledgments. The author thanks Harold Rosenberg for his inter-
esting question [57] which prompted this work. Further he is indebted
to the papers of Masaaki Umehara [68, 65], and Gudlaugur Thorbergs-
son [65] for developing the notion of intrinsic circle systems.
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