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A look-up table-based ray integration framework

for 2D/3D forward and back-projection in X-ray CT
Sungsoo Ha and Klaus Mueller, Senior Member, IEEE

Abstract—Iterative algorithms have become increasingly pop-
ular in Computed Tomography (CT) image reconstruction since
they better deal with the adverse image artifacts arising from
low radiation dose image acquisition. But iterative methods
remain computationally expensive. The main cost emerges in
the projection and backprojection operations where accurate
CT system modeling can greatly improve the quality of the
reconstructed image. We present a framework that improves
upon one particular aspect – the accurate projection of the
image basis functions. It differs from current methods in that
it substitutes the high computational complexity associated with
accurate voxel projection by a small number of memory opera-
tions. Coefficients are computed in advance and stored in look-up
tables parameterized by the CT system’s projection geometry.
The look-up tables only require a few kilobytes of storage and
can be efficiently accelerated on the GPU. We demonstrate our
framework with both numerical and clinical experiments and
compare its performance with the current state of the art scheme
– the separable footprint method.

Index Terms—iterative CT reconstruction, separable footprint,
look-up table, LUT, NVIDIA GPU, CUDA

I. INTRODUCTION

W ITH the increasing popularity of iterative reconstruc-

tion methods in medical computed tomography (CT),

modeling a realistic CT system in software is more crucial than

ever. The CT system model can be represented by a matrix

where each element indicates the contribution of a voxel to an

X-ray path. The process of evaluating the attenuation of X-

ray according to the properties of the material while traveling

across a discretized object is known as forward-projection,

while its reverse model, generally defined as the transpose

of forward projection, is known as back-projection. Since

the size of the CT system matrix is enormous, the elements

are typically computed on-the-fly during forward- and back-

projection. This, however, comes with high computational

cost making these operations the computational bottleneck of

iterative CT reconstruction methods.

The most intuitive and simplest way to model the CT system

is via line integration [1], [2]. In this model, an X-ray path is

depicted by a zero width line and the contribution of a voxel to

the ray integral is approximated by the line intersection length.

While this popular scheme has low computational complexity

it suffers from under-sampling and aliasing [3], [4].

A more accurate approach is volume integration (area

integration for fan-beam). While volume (or area) integration

does not take into account the exponential edge gradient effect
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[5], it affords a much closer model of a real CT system

than line integration. In the volume (area) integration model

a ray path is depicted by a 3D polyhedron (2D polygon)

that connects the X-ray source with the four edges (two

corners) of a detector bin. The contribution of a voxel to

the path is then the intersection volume (area). Yu et al.

[4] demonstrated the potential of this model for improving

spatial resolution and suppressing high-frequency artifacts,

while Zhang et al. [6] proposed an efficient algorithm which

computes the intersection area by categorizing the ray-voxel

intersections into six cases that can be calculated in a simple

algebraic fashion. Their scheme, however, was only described

for fan-beam geometry, and it is unclear how one could support

3D geometries such as cone-beam or helical scans without

losing the prescribed computational efficiency.

At the expense of accuracy there are also two popular

projection-space volume integration-based approaches. The

first is the distance-driven (DD) method [3] which maps the

boundaries of a voxel and a detector bin to a common axis

and approximates the intersection volume by the product of

a rectangular shaped footprint and an amplitude term. The

second approach is the separable footprint (SF) method [7]

which approximates the voxel footprint by a 2D separable

function. The SF has been shown to be more accurate than

the DD method, while keeping a similar time performance.

Our own recent work [8] introduced various voxel subdivi-

sion schemes that approximate the voxel volume integration

at arbitrary levels of precision directly in image space. These

schemes leverage GPU-acceleration [9], [10] to reduce their

high computational cost, but the speed is still too slow for

clinical use. More recently, we introduced a method [11] for

fan-beam geometries that pre-computes sampled intersection

volumes and stores them in a look-up table such that unknown

samples can be mapped into the table and then calculated via

a bilinear interpolation scheme. This look-up table-based ray

integration (LTRI) method showed very promising results both

in terms of accuracy and speed, but since it was only defined

for fan-beam geometry its practical use was limited.

Look-up tables are fairly popular and have been utilized in

many areas to save computation time. For example, Hensley et

al. [12] devised a GPU-accelerated method that quickly gener-

ates a summed-area table and employs it for real-time volume

rendering. Specifically for CT reconstruction, Entezari et al.

[13] utilized a lookup table to store the ray (but not volume)

integrals of a box-spline basis function. Ziegler et al. [14]

used lookup tables for radially-symmetric blob basis functions.

While their method models a blob’s volumetric contribution

it approximates the locally diverging beam by a piecewise
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This was repeated for each dimension separately to find the

optimal multidimensional LUT. Our error metric is:

error =
1

N

∑

d∈D

|EX(d)− LUT (d)| , (17)

where D is a reference data set with N data point vectors,

d, which are (Dline, θd) for the area LUT (aLUT ) and

(Dpl, θφ, θϕ) for the height LUT (hLUT ). In this equation,

EX(·) returns the exact solution of a voxel-ray intersection

area (or volume) as described in Section II-A (or III-A), while

LUT (·) returns the interpolated solution using the LUT under

investigation. We stopped increasing a dimension size when

the accuracy began to level off.

The reference set was built by uniformly sampling 4000×
360 data points over the range of Dline ∈ [0, Dt

line
] and θd ∈

[0, 45°], respectively, for aLUT , where Dt
line

was set to about

0.3 mm using (6). In the same way, for hLUT 4000×90×90
reference data points were collected over the range of Dpl ∈
[0, Dt

pl], θφ ∈ [0, θmax
φ ] and θϕ ∈ [0, 45°], respectively, in

which Dt
pl was 0.508 mm and θmax

φ was 10° according to (13)

and (14). Likewise, for the generation of the LUTs we also

used a uniform sampling scheme. We used the same ranges

as the reference data set but with different intervals according

to the selected dimension size.

Fig. 9(a,b) shows our experimental process to determine the

optimal aLUT . First, the Dline dimension length was varied

with the θd dimension size fixed to 360. The optimal size of

the Dline dimension was selected as 1500 because the accuracy

improvement was not significant after that. With the optimal

dimension size for Dline determined, the θd dimension size

was explored. We found that here the optimal size converged at

a value of 50. This yielded an optimal aLUT of size 1500×50
points which takes about 0.3 MB of memory space in single

precision. The optimal hLUT was determined in a similar

fashion (see Fig. 9(c,d,e)), resulting in a size of 1500×25×7
with 1.05 MB space complexity. For a smoother appearance,

we fit a non-linear regression curve to the error data points

in Fig. 9. This eliminated a few outlier data points that had

much smaller errors than the majority of their neighbors. These

outliers occurred because the uniform sampling scheme caused

some sampling points to match misleadingly well with the

reference data. Fitting the regression curve helped in the visual

assessment of the optimal dimension size.

The experimental results presented in Fig. 9 show that the

LUTs are more sensitive in the distance dimensions (Dline and

Dpl) than in the angular ones. This means that the functions for

the distance dimensions have a higher degree of non-linearity,

requiring a higher table resolution to keep the bi- or tri-linear

interpolation error low. Fig. 7 shows this non-linear behavior

for both aLUT and hLUT using a fixed angular dimension.

Especially, for the hLUT , the non-linearity is not as severe as

for aLUT and this validates the approximate methods of III-C

for the CT reconstructions presented in the following Section.

B. CT reconstruction with look-up tables

To competitively assess our LTRI method we compared it

with the separable footprint (SF) method [7]. The SF has

been shown to be more accurate than the (older) distance-

driven (DD) method [3] while keeping a comparable time

performance. Since the SF method was already compared

exhaustively with the DD method in [7] we have not conducted

a formal comparison with the DD method (see also [20])..

We begin by examining the accuracy of the two methods,

LTRI and SF, for forward projection only and then move to

comparing them within a complete iterative CT reconstruction

framework using both phantom and clinical CT data.

1) Accuracy of forward projector: Since the volume in-

tegration model can be used for both forward- and back-

projections, we focus on the forward projection to evaluate the

accuracy of our LTRI method. Our first test object is a simple

cube with side length 2 mm, uniform density. We placed the

center of this object at four different locations – at (0, 0, 0) mm

and (100, 150, 0) mm in the in-center plane, and at (0, 0,−100)

mm and (100, 150,−100) mm in an off-center plane. Forward

projection was simulated under an axial cone-beam X-ray CT

system with a flat detector. The source-detector distance is 949
mm and the source-axis distance is 541 mm. We generated 360
true projection data uniformly distributed over 360° by linearly

averaging 1000×1000 analytical line integrals of rays sampled

over each detector bin where ∆s = ∆t = 1 mm.

For the LTRI, there are three approaches. The first one used

a 1500 × 50 size aLUT and a 1500 × 25 × 7 hLUT as

we discovered in Section V-A, called LL. The other methods

replaced the hLUT with either the regression model in (15)

or the distance model in (16) while keeping the same aLUT .

We call these methods LL, LR and LD, respectively. For the

separable footprint (SF) methods, we used either two trapezoid

functions (TT) or one trapezoid and one rectangle function

(TR) with the A1 amplitude method [7].

To evaluate the accuracy of each tested forward projector

we define the maximum absolute error as

eθ = max
∣

∣P
an
θ −P

ap

θ

∣

∣ , (18)

where P
an
θ is the projection obtained with the analytical

method and P
ap

θ is the same projection obtained with one of

the tested approximate methods – LL, LR, LD, TT, and TR.

Fig. 10 plots the per-view eθ on a logarithmic scale over all

360 views, and Table II summarizes its average (maximum)

over this range of views, for all tested methods. We observe

that when the cube is located in the center slice (cases a and b),

for both LTRI and SF, the variants that approximate the height

term are just as accurate as their accurate counterparts. This

is because the height term is not relevant here. On the other

hand, when the cube is the center (z-) column (a, c), the LTRI

methods show about 1.6-2 times better accuracy than the SF

methods. Lastly, when the cube is in an off-center column

(b, d), then the LTRI methods are only slightly better or

equivalent. We believe this occurs because the approximation

of the geometric angular dispersion that all methods use have

a dominating effect. In practice, however, the off-center slice,

off-center column cubes (d) will be the most frequent. This

is where the accurate versions, LL and TT, as well as the

approximations LR, LD, and TR are about equivalent (within

5%). Finally, it is also interesting to see that the view-based
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TABLE III
TIME PERFORMANCE COMPARISONS [MSEC, (GUPS)]

LL LR LD TT TR

FP 44.3, (2.8) 19.0, (6.5) 18.7, (6.6) 19.9, (6.2) 18.2, (6.8)

BP 42.0, (2.9) 10.4, (12.0) 9.6, (13.0) 13.4, (9.3) 9.4, (13.1)

LR, LD, and TR which approximate the axial contribution

of a voxel to a detector bin with a simple model show better

time performance than either LL and TT due to the reduced

arithmetic/memory overhead. LD is slightly better than LR

because of its smaller amount of arithmetic operations – LR

requires three multiplications and three additions to calculate

the signed distance (Dpl) from a voxel to a plane which is

not required for LD. All LTRI methods need to compute the

distance from a voxel to the X-ray source for the geometric

spreading term – this adds an additional three additions and

one division operation which are not required by TR. Hence,

TR shows a slightly (2%) better time performance than LD.

3) Within iterative CT reconstruction: Next we plugged

the LTRI method into a simultaneous algebraic reconstruction

technique (SART) framework [22]. To investigate the perfor-

mance within SART, an axial cone-beam CT with 949.075 mm

for the source to detector distance and 647.7 mm for the source

to axis distance was used. A flat detector was assumed with

888 × 640 detector bins and 1.0279 × 1.0964 mm2 bin size.

Noiseless 360 CT projections uniformly distributed over 360°

of a modified Shepp-Logan phantom (SLP) were simulated by

linearly averaging a set of 8 × 8 analytical line integrals for

each detector bin [23]. We run SART for 500 iterations with

a 0.0025 relaxation factor.

Fig. 11 presents a qualitative comparison of the recon-

structed images for the Shepp-Logan phantom, captured after

500 SART iterations, for slices taken transversal, coronal, and

sagital for all variations of the LTRI and SF methods. The SLP

slices on the left indicate the direction of two profile plots (red

and yellow lines) and these plots are shown in the last row of

Fig. 11. We observe that the slices look virtually identical for

all methods and so do the profiles. Finally, for a quantitative

comparison of the two methods we measured the RMS error

after each SART iteration had completed:

eRMS =

√

√

√

√

1

M

M
∑

i=1

||f(i)− fSART (i)|| , (20)

where f is the original Shepp-Logan phantom used to generate

the projection data, fSART is the image reconstructed with

either SF (TT and TR) or LTRI (LL, LR and LD), and M is

the number of voxels. We found that the RMS error measured

after each SART iteration was virtually identical, and so was

the convergence rate for all methods.

The findings obtained for the phantom scenario fully extend

into the clinical setting. We obtained a set of 360 clinical CT

projections of a cervical region with 20 cm of field-of-view

using a Medtronic O-arm O2 surgical imaging system with

1147.7 mm source to detector distance and 647.7 mm source

to axis distance and a flat detector with 1024×386 bins of size

0.384×0.755 mm2. The object size for the reconstruction was

512×512×196 with a 0.415×0.415×0.83 mm3 voxel size. As

Fig. 12 shows, the reconstructions and profile plots obtained

with the clinical data set after 200 SART iterations are nearly

indistinguishable. For brevity,we only present reconstruction

results for LTRI-LL and SF-TT but confirm that all variations

show a similar visual appearance and profiles.

VI. CONCLUSIONS

Modeling a CT system as accurately as possible has be-

come an important goal in CT reconstruction research. It is

particularly crucial in iterative reconstruction where systematic

errors can hamper convergence. In this work we have focused

on performing the volumetric integration of the box-shaped

voxel basis function at high fidelity. In contrast to previous

efforts that have used projection space approaches to model

the basic function’s projective footprint, we have developed a

scheme that performs the voxel integration directly in image

space. Intersecting the box-shaped voxel with the pyramidal X-

ray beam segment defined by the boundaries of the respective

detector bin gives rise to an irregular polyhedron which is

difficult to integrate. To make this integration computationally

feasible we have devised an efficient lookup table-based ap-

proach which is amenable to GPU acceleration. We throughly

compared our image-space method with the state-of-the-art

projection space method – the separable footprint. For this

study we fully optimized GPU-implementations of both meth-

ods and also derived two mindful approximations for ours.

We find that our method and its variations have similar perfor-

mance both in time and accuracy than the respective variations

of the separable footprint method and by these measures it is

equivalent. Nevertheless, we believe that the extensive study

we performed sheds new light on understanding the accurate

modeling of voxel-based basis functions. Furthermore, all our

program code is open source and freely available on github.
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