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Nuclear Long Noncoding RNAs: Key

Regulators of Gene Expression

Qinyu Sun,"? Qinyu Hao,"? and Kannanganattu V. Prasanth’*

A significant portion of the human genome encodes genes that transcribe long
nonprotein-coding RNAs (IncRNAs). A large number of IncRNAs localize in the
nucleus, either enriched on the chromatin or localized to specific subnuclear
compartments. Nuclear IncRNAs participate in several biological processes,
including chromatin organization, and transcriptional and post-transcriptional
gene expression, and also act as structural scaffolds of nuclear domains. Here,
we highlight recent studies demonstrating the role of IncRNAs in regulating
gene expression and nuclear organization in mammalian cells. In addition, we
update current knowledge about the involvement of the most-abundant and
conserved IncRNA, metastasis-associated lung adenocarcinoma transcript 1
(MALAT1), in gene expression control.

Overview of Nuclear-Enriched IncRNAs

It is estimated that approximately 75% of the human genome is utilized for generating transcripts
with no apparent protein-coding potential, and these transcripts are classified as ncRNAs [1].
INcRNAs are grouped into transcripts that are >200-nucleotides long. The human genome is
estimated to contain approximately 16 000 IncRNA genes (statistics from Human GENCODE
Release version 27). A significant fraction of nuclear localized IncRNAs are transcribed by RNA
polymerase Il (RNA Pol ll), and share similar chromatin modifications on their regulatory elements
with other RNA Pol ll-transcribed protein-coding transcripts. Most of the INcCRNAs contain normal
5'-caps and 3’ poly(A) tails. However, recent studies identified INncRNAs that undergo unusual
processing within their 5 and 3’ ends, described in detail elsewhere [2,3] (Table 1). In this review,
we discuss recent studies on RNA Pol lI-transcribed nuclear INcRNAs, but direct readers to [4,5]
for more information on non-RNA Poal lI-transcribed nuclear INcRNAs (Box 1).

Most INncRNAs are expressed at low levels compared with protein-coding mRNAs, and show
tissue or cell type-specific expression. With the rapid growth of INcRNA research, functions of
many INcRNAs have been reported recently. A significant fraction of INCRNA is preferentially
localized in the nucleus, and several of the well-studied nuclear-retained INcRNAs participate in
vital molecular processes, including chromatin organization, transcription, and RNA processing
(Table 2) [6-10]. In addition, INcRNAs have essential roles in the organization of nuclear domains
[7-10].

Role of Nuclear-Retained IncRNAs in Chromatin Organization

A significant number of nuclear INcRNAs associate with chromatin and, thus, can be broadly
classified as chromatin-enriched RNAs (cheRNAs) [11]. Some nuclear IncRNAs can influence
chromatin architecture by interacting with chromatin-modulating proteins, such as Switch/
sucrose nonfermentable (SWI/SNF) (see Glossary) or Polycomb repressive complex
(PRC) subunits (Figure 1A), promoting their recruitment and/or association to chromatin,
thereby controlling transcriptional activity [12-27]. For example, in hepatocarcinoma cells,
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Table 1. Non-canonical processing of Nuclear Noncoding RNAs

Type Feature Refs
mMRNA-like INcCRNAs 5’-capping and 3’ poly(A) tails can be spliced [149,150]
Enhancer-derived ncRNAs Transcribed from enhancer regions, normally [60]
nonpolyadenylated, that could have short half-lives
Antisense transcripts Transcribed from divergent promoters, but Pol Il does not  [151-153]
extend on them as efficiently as on the corresponding
sense genes
IncRNAs with noncanonical 3’ end No 3’ poly(A) tails, have alternative 3’ processing [154,155]

pathways

IncTCF7 facilitates the transcription of TCF7 by recruiting the SWI/SNF complex to the TCF7
promoter [26]. In differentiating mouse embryonic stem cells, a pseudogene-derived INCRNA,
Oct4P4, is transcribed from the X-linked Oct4 pseudogene, which induces transcriptional
silencing of the ancestral Oct4 gene by facilitating the deposition of H3K9me3 and HP1a to the
Oct4 promoter [18].

Nuclear INcRNAs can also influence gene expression by preventing the association of specific
chromatin factors to specific gene loci. In such a scenario, a INCRNA acts as a ‘decoy’ and
prevents proteins, such as histone deacetylase [28], methyl transferase [29], or chromatin-
remodeling complexes [30,31], from interacting with a specific genomic locus (Figure 1B). In
adult mice, Myheart (Mhrt) antisense (AS)-IncBNAs, which are transcribed from the myosin
heavy chain 7 gene locus, antagonize the function of the chromatin remodeler Brg1 and, thus,
protect the heart from pathological hypertrophy [30]. Mhrt uses a ‘competitive inhibition
mechanism’ to prevent the interaction of Brg1 with chromatin, thereby repressing Brg1 activity.

Several IncRNAs influence chromatin organization and/or activity without directly interacting
with chromatin or chromatin modulators; they do so through their association with other
proteins (Figure 1C). For example, BCAR4 IncRNA activates the Hedgehog/GLI2 transcriptional
program in breast cancer cells by influencing p300 histone acetyl transferase activity [32].
BCAR4, by associating with the RNA-binding protein (RBP) SNIP1, releases the inhibitory effect

Box 1. Introduction of Non-Pol II-Transcribed INncBRNAs

RNA Pol lllis also known to generate several regulatory INcRNAs. Some of the examples include the repeat-containing
RNAs, such as Alu and B2 IncRNAs, and the nuclear speckle-enriched 7SK RNA. Human Alu is a repeat-containing
transcript of approximately 300 base pairs, and is generated from short interspersed elements (SINEs). Alu RNA is a
transcription repressor, because it competes with RNA Pol Il, thereby negatively regulating the binding of RNA Pol Il at
gene promoters [172]. The corresponding SINE-encoded transcript in mice is B2, which is reported to display similar
functions to human Alu transcripts [173]. The other Pol lll-transcribed RNA 7SK (~330 nucleotides) also negatively
regulates RNA Pol ll-mediated transcription by affecting the activity of positive transcription elongation factor b (p-TEFb)
[174]. Please see [4,175] for detailed descriptions of RNA Pol lll-transcribed regulatory INcRNAs.

Promoter-associated RNA (pRNA) is a family of RNAs transcribed by RNA Pol | from the rDNA promoter region located
upstream of the pre-rRNA transcription start site [176]. PRNA interacts with members of the Nucleolar chromatin-
remodeling complex (NoRC), and utilizes an RNA-dependent mechanism to activate heterochromatin formation and
rDNA silencing [176,177].

Plants, such as Arabidopsis, utilize RNA Pol V to produce noncoding transcripts from intergenic regions. These
transcripts have important roles in regulating heterochromatin formation, defining the boundaries of heterochromatin
and gene silencing [178,179].
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Glossary

Chromatin isolation by RNA
purification (CHIRP), capture
hybridization analysis of RNA
targets (CHART), RNA antisense
purification (RAP), and mapping
RNA genome interactions
(MARGI): four techniques developed
to map the genomic binding sites of
RNA. They are often used to
discover the roles and mechanisms
of IncRNAs on chromatin.

Nuclear speckle: Speckles are
conserved nuclear domains that are
present in the form of 10-30
irregularly shaped nuclear structures.
Speckles are enriched with RNAs
and proteins involved in pre-mRNA
processing and mRNP export. Initial
studies suggest that speckles act as
storage and/or assembly sites of
splicing factors, from where these
proteins are recruited to active genes
dispersed throughout the
nucleoplasm. Recent studies further
indicate that nuclear speckles act as
a structural domain that controls the
efficiency and integration of distinct
steps in gene expression, ranging
from transcription and splicing to
mRNA export.

Paraspeckles: a type of subnuclear
domain present in the interchromatin
space of mammalian cells. They are
nucleated by the INcRNA Neat1. The
core paraspeckle proteins include
PSF/SFPQ, P54NRB/NONO, and
PSPCH.

Polycomb repressive complex
(PRC): comprises two major types:
PRC1 and PRC2. These complexes
have important roles in chromatin
compaction and transcriptional
silencing.

Switch/sucrose nonfermentable
(SWI/SNF): a chromatin-remodeling
complex. This complex contains
multiple subunits, including ATPase,
which allows it to remodel
nucleosomes from the energy
generated through ATP hydrolysis.
X-chromosome inactivation (XCI):
a phenomenon observed during
mammalian female development,
whereby most of the genes are
inactivated (transcriptional silencing)
on one of the two X chromosomes.
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Table 2. Functional categorization of recently identified Nuclear Noncoding RNAs

Category Nuclear-Retained IncRNA Names and Refs

Transcription activation PINCR [49], MANTIS [25], IncKdm2b [12], Linc-RAM [50], LncPRESS1 [28],
upperhand (UPH) [63], HOTAIRM1 [13], RMRP [39], Linc-RoR [29], HoxBlinc [14],
DEANRT [156], MEG3 [23], IncTCF7 [26], myheart (mhrt) [30], BCAR4 [32], HERVH
[37], THRIL [40], Dali [20], LincRNA-p21 [157], aincRNA-EC7 [158], PACER [35],
Paupar [47], incRNA-Cox2 (also repression) [53], HOXD-AS1 [564], RBM5-AS1/LUST
[38], Evxlas [159], Khps1 [19], TARID [160], TERRA [34], SLERT [56]

Transcription repression HAUNT/Gm15055 [22,44], lincRNA-EPS [51], PAPAS [17,24], PARTICLE [15], TUG1
[161], Oct4P4 [18], Evf2/DIx6as [162], INcRNA-CD244 [163], PANDA [52], APTR
[145], ANRASSF1 [164], H19 [21], SChLAP1 [31], incRNA-Cox2 (also activation) [53],
GNG12-AS1 [165], APOA1-AS [45], ASTDHRS4 [16]

Post-transcriptional regulation  HOTAIR (ubiquitinylation) [166], Linc-RoR (c-myc stability [167] and p53 translation
[168]), asFGFR2 (splicing) [27], Pnky (splicing) [64], MALAT1 (pre-mRNA splicing)
UCAT (p16™ stability) [169], lincRNA-p21 (translation) [170]

Other regulations: HAUNT/Gm15055 (DNA locus) [44], Xist (XCI) [9], Neat1 (paraspeckle and pri-miR
processing) [9,80], Firre (nuclear organization) [48,144], DDSR (homologous
recombination) [171], TERRA (telomere stability) [34], AuRNA (nucleolar structure) [58]

of SNIP on p300 to enhance the acetylation of H3K18 on GL12 target gene promoters. BCAR4
further recruits another RBP, PNUTS, to acetylated H3K18, ultimately resulting in the activation
of GL12 target genes. In this scenario, BCAR4, by interacting with RBPs, influences signal-
induced epigenetic regulation of transcription of GL12 target genes.

With the development of new techniques, such as chromatin isolation by RNA purification
(CHIRP), capture hybridization analysis of RNA targets (CHART), and RNA antisense
purification (RAP), all of which determine genome-wide chromatin association of INcRNA [33],
one could anticipate that more insights into the chromatin association properties and/or
chromatin-modulating functions of INcCRNAs will be identified. For instance, by performing
genome-wide RNA mapping analyses, a recent study identified that the telomere-associated
INcRNA TERRA binds to several other sites on chromatin and modulates the transcription of
genes via antagonizing the activity of the RNA helicase ATRX [34].

LncRNAs as Transcriptional Regulators

LncRNAs activate or repress transcription (summarized in Table 1) by acting locally [near the
sites of their transcription (cis-regulation)] or distally [at sites that are located on other chro-
mosomes (trans-regulation)] (Figure 2A). For instance, IncKdm2b sustains the maintenance of
intestinal group 3 innate lymphoid cells (ILCs) by facilitating the transcriptional activation of a
transcription factor (TF), zfp292 [12]. LncKdm2b facilitates the recruitment of chromatin
organizer protein Satb1 and the nuclear remodeling factor (NURF) complex to the regulatory
elements of zfp292. In another example, the low-irradiation-induced INCRNA promoter of
MAT2A-antisense radiation-induced circulating INcRNA (PARTICLE) represses MAT2A expres-
sion by forming a DNA-RNA triplex at the MAT2A locus, and by recruiting transcription-
repressive complex proteins G9a and SUZ12 (a subunit of PRC2) to the MAT2A promoter
for methylation [15]. LncRNA PACER, which is transcribed from the antisense strand of the
COX2 gene, promotes the transcription of COX2 by sequestering the repressive p50 subunit of
NF-«kB away from the COX2 promoter [35]. It is not clear why p50 shows increased affinity for
PACER over the COX2 promoter, although in vitro studies may provide more insights into this
differential affinity.
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Figure 1. Role of Nuclear-Retained Long Noncoding (Inc)RNAs in Chromatin Organization. (A) Nuclear-
retained INcRNAs modulate chromatin by recruiting chromatin-modulating proteins to chromatin. (B) Nuclear-retained
IncRNAs can decoy chromatin-associated proteins away from chromatin. (C) Nuclear-retained INcRNAs can form indirect
interactions with chromatin modulators through other kinds of protein, eventually modulating chromatin.

LncRNAs also regulate transcription by influencing TF activity. A recent study identified a role for
a nuclear INcRNA in regulating the basal levels of tumor suppressor protein p53 [36]. In
colorectal cancer cells, PURPL IncRNA, by associating with the p53 stabilizing protein
MYBBP1A, prevents MYBBP1A-p53 complex assembly, thereby destabilizing the cellular pool
of p58. In this case, PURPL modulates transcription indirectly by regulating the levels of a major
TF, p53. Recent studies identified several more examples where INCRNAs regulate transcription
by influencing the localization and/or activity of TFs [37,38]. It is tempting to speculate that
several hundreds of the not-yet-characterized nuclear INcRNAs contribute to gene regulation
by modulating the association of TFs or co-factors to chromatin in a cell- or tissue-specific
manner.
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Figure 2. Nuclear-Retained Long Noncoding (Inc)RNAs Act as Transcriptional Regulators. (A) Nuclear-
retained InNcRNAs modulate transcription in cis (left) or in trans (right). (B) Nuclear-retained INcRNAs regulate the expression
of multiple genes (gene 1,2, and 3 in the model) that are in close proximity. (C) Nuclear-retained INcRNAs regulate the
transcription of several distally located genes (gene 1, 2, and 3 on different chromosomes in the model).

146  Trends in Genetics, February 2018, Vol. 34, No. 2



RBPs constitute a class of proteins that interact with single-stranded or double-stranded RNAs
and influence post-transcriptional regulation of gene expression. Interestingly, several RBPs
also act as transcriptional regulators, and IncRNAs are found to modulate their activity. In T
helper 17 (TH17) lymphocytes, the INcRNA RMRP interacts with the dead-box RNA helicase
DDX5 and promotes the interaction between DDX5 and the RAR-related orphan nuclear
receptor (RORyt) transcription factor [39]. DDX5 functions as a co-activator to facilitate
RORvyt-mediated transcription of TH17 genes. RMRP-depleted cells displayed reduced inter-
action between DDX5 and RORyt and defective transcription of selective TH17 genes,
supporting the argument that RMRP acts as a scaffold to facilitate the interaction between
an RBP and a TF. In another example, INcRNA THRIL-hnRNP L RNP complex facilitates the
transcription of several immune response genes, including that encoding TNFa, in macro-
phages [40]. Similarly, the lincRNA-p21-hnRNP K complex promotes the transcription repres-
sion and pluripotency of genes in the p53 pathway [41,42].

In several instances, INcRNAs modulate the expression of multiple genes. Such IncRNAs can
be broadly classified into two groups, based primarily on the genomic location of the genes
regulated by the INcCRNAs. In the first group, the INCRNA or its loci regulate the expression of
multiple genes, which are located in close proximity (Figure 2B). These INcCRNAs interact with
chromatin, transcription factors, or RBPs, thereby increasing their local concentration near the
transcription sites of INcRNAs [43]. Besides the INcCRNA, these proteins also interact with genes
or RNAs that are present in genomic proximity to potentially regulate their expression. In other
instances, INcCRNAs actively participate in the recruitment of these proteins to the nearby
genomic loci [13,14,16,22,37,44,45]. Finally, transcription from the INcCRNA gene locus but not
the INcRNA itself could have an important role in regulating the expression of nearby genes.
Genetic manipulation of a large number of gene loci, including those of INcRNA and protein-
coding genes, revealed that transcription from a particular genomic locus, not necessarily
involving the RNA that is synthesized from that locus, could have a crucial role in regulating the
expression of nearby genes [46].

In the second group, INcCRNAs can control the expression of both locally and distally located
genes (Figure 2C). Paupar IncRNA, transcribed from a locus upstream of the Paired Box 6
(PAXB6) gene, regulates the expression of PAX6 as well as several other genes located on distant
chromosomes in a transcript-dependent manner [47]. Paupar was found to associate with
approximately 3000 chromatin sites, and a significant fraction of those sites overlapped with
functional elements, such as promoters. Depletion of Paupar compromised the expression of
approximately 1000 genes, many of which contained Paupar-binding sites within their regula-
tory elements. Firre is another nuclear-enriched INncCRNA that is found to act both locally and
distally [48]. Firre occupies a chromatin area near its transcription site on the X chromosome
and also interacts with additional domains located on four other chromosomes. It is thought to
act as a scaffold to coordinate the association of these chromosomal loci, because genetic
deletion of Firre leads to loss of interaction between these chromosomal loci.

LncRNAs also regulate the expression of genes belonging to specific pathways and/or
biological processes [21,23,25,28,31,32,38,39,49-54]. For example, the p53-induced IncRNA
PINCR promotes the upregulation of a subset of p53 target genes involved in G1 arrest and
apoptosis [49]. PINCR, along with Matrin 3 and p53, associates with the enhancer region of the
candidate genes and modulates the induction of prosurvival genes upon DNA damage.
Another IncRNA, MANTIS, facilitates endothelial angiogenic function by promoting the expres-
sion of a subset of endothelial genes [25]. Mechanistically, MANTIS interacts with BRG1 (a
subunit of the SWI/SNF chromatin remodeling complex) to collaboratively facilitate the loading
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of RNA Pol Il onto the endothelial gene promoters. Furthermore, MANTIS improves the ATPase
activity of BRG1 by stabilizing its interaction with BAF155. Finally, Firre occupies chromatin
regions containing genes involved in energy metabolism and/or adipogenesis, with loss-of-
function studies revealing that Firre controls adipogenesis [48]. These studies highlight another
important function of INcRNA, which is to bring together unigue combinations of chromatin and/
or proteins to establish gene networks that regulate a particular cellular pathway.

RNA Pol lI-transcribed nuclear INcRNAs have also been shown to regulate the activity of other
RNA polymerases within the cell. For instance, INcRNAs such as PAPAS and SLERT regulate
the activity of RNA Pol |I. Promoter and pre-rRNA antisense (PAPAS) IncRNAs comprise a
group of RNA Pol Il transcripts that are transcribed in the antisense orientation from a fraction
of rDNA repeats [55]. PAPAS recruits suv4-20h2 histone methyl transferase to rDNA gene
promoters to mediate rDNA repression by triggering H4K20me3 and chromosome compac-
tion [17,24]. By contrast, small nucleolar (sno)RNA-ended INncRNA enhances preribosomal
RNA transcription (SLERT) is synthesized from the intronic region of the TBRG4 locus by
undergoing unusual processing [56]. SLERT is a member of the recently identified family of
sno-INcRNAs [57]. SLERT lacks a canonical 5’ cap or 3’ poly(A) tail, but contains a H/ACA
type of sno-RNAs on either end, and is guided to the nucleolus by the snoRNA sequences. In
the nucleolus, SLERT interacts with DDX21, and releases the inhibitory interaction between
DDX21 and RNA Pol | machinery, thereby positively regulating rDNA gene transcription [56].
In addition, a recent study reported that AlURNAs that are processed from intronic Alu
elements of RNA Pol Il-transcribed genes modulate rDNA transcription by influencing nucle-
olar structure [58].

Some of the enhancer sequences within the genome are transcribed to produce nuclear RNAs,
such as enhancer RNAs (eRNAs), elncRNAs, and ncRNAa [59,60]. In general, eRNAs are found
to regulate the expression of nearby protein-coding genes in an RNA-dependent manner.
Some eRNAs facilitate mediator- and/or cohesion-mediated enhancer—promoter interactions
through chromatin looping or activate promoter-mediated transcription. For example, upon
estrogen treatment, eRNAs transcribed from ERa-bound enhancers facilitate enhancer—pro-
moter looping of several ERa target genes. Besides such cis regulation, eRNAs also participate
in long-range intrachromosomal interactions to regulate gene expression [61,62]. Intrachro-
mosomal interactions between TFF1 and NRIP eRNA gene loci were observed due to chro-
mosomal looping in cells treated with 17B-estradiol (E2), and such interactions appear to be
regulated by NRIP eRNA. In the case of eRNA-mediated gene regulation, one needs to be
cautious in deciphering whether eRNA transcripts or the transcription from the eRNA-bearing
gene loci have vital roles in regulating gene expression. In that sense, some eRNAs could turn
out to be by-products of pervasive transcription events simply due to transcriptional activity
around enhancer regions. For example, transcription of Upperhand (Uph) INcRNA from a region
upstream of the heart-specific TF HAND2 gene is required to maintain the superenhancer
signature and the RNA Pol Il elongation through the Hand2 enhancer locus [63]. However, only
blocking of Uph transcription (not the depletion of the mature Uph transcript) inhibited Hand2
transcription, implying that, in the case of the Uph-Hand2 interaction, only the noncoding
transcription is important in establishing a permissive chromatin environment to facilitate Hand2
transcription.

LncRNAs as Post-Transcriptional Regulators

It is becoming increasingly evident that nuclear-restricted IncRNAs also regulate gene
expression by influencing post-transcriptional events. The antisense-FGFR2 IncRNA pro-
motes epithelial-specific alternative splicing of FGFR2 pre-mRNA [27]. AS-FGFR2 facilitates

148 Trends in Genetics, February 2018, Vol. 34, No. 2

Cell

REVIEWS



the recruitment of Polycomb-group proteins and histone demethylase KDM2a to the FGFR2
regulatory elements, thereby preventing the association and activity of a repressive-splicing
adaptor complex that promotes mesenchymal-specific splicing of FGFR2 pre-mRNA. This
study uncovers the role of an INncRNA in regulating cell type-specific alternative splicing by
modulating the underlying chromatin structure. The neural-specific INcCRNA Pinky (Pnky)
inhibits neurogenesis by modulating PTBP1-mediated alternative splicing of a set of genes
that control neurogenesis [64]. Finally, several studies have identified the involvement of
oncogenic nuclear INcRNA MALAT1 in alternative splicing regulation (see the section below
on MALAT1 for further details). The prostate cancer-specific INcRNA PCA3, synthesized as an
AS-IncRNA from the PRUNEZ locus, negatively regulates PRUNE2 mRNA levels in an
adenosine-to-inosine (A-to-1) editing-dependent manner [65]. Recent studies documented
the role of A-to-1 editing in influencing the stability of RNA [66]. However, it needs to be
determined how exactly A-to-l editing regulates the stability of PRUNE2 mRNA. Finally,
recently identified SPA IncRNAs, which are 5 snoRNP-ended and 3’ polyadenylated tran-
scripts, are suggested to modulate RNA processing by sequestering several RBPs, including
TDP43, RBFOX2, and hnRNP M [67].

Role of Nuclear-Retained IncRNAs in the Organization of Nuclear Structure
X-inactive specific transcript (Xist), one of the first functionally annotated nuclear IncRNAs,
regulates dosage compensation by promoting X-chromosome inactivation (XCl). Xist is
idealized by the scientific community as a perfect example of a nuclear INCRNA, because it
coordinates several nuclear processes to achieve XCl. For example, discrete regions within Xist
RNA are required for gene silencing, for the association of PRC2 to the inactive X chromosome
(Xi), and for the localization of Xist to the X chromosome [68]. Xist interacts with several protein
complexes, such as SHARP and PRC2, and recruits them to Xi to modulate epigenetic
changes that favor X chromosome transcriptional gene silencing [69-71].

Recent studies also provided compelling data supporting the role of Xist in modulating the 3D
architecture of Xi [72]. During the initial stages of XCI, the entire Xi is repositioned near the
nuclear lamina (the nuclear compartment that is associated with transcriptionally inactive
heterochromatic regions). Interestingly, Xist directly interacts with the Lamin B receptor
(LBR), an inner nuclear membrane-associated trans-membrane protein that also interacts
with the nuclear lamina. Depletion of LBR or disruption of the Xist-LBR interaction results in
defective recruitment of Xi to the nuclear periphery. In addition, in LBR-depleted cells or cells
with disrupted LBR-Xist interactions, Xist failed to associate with active genes across Xi, thus
abolishing Xist-mediated gene silencing. These results imply that Xist has an active role in
reshaping the chromatin structure by recruiting Xi to the nuclear lamina, and such tethering of Xi
is required for the efficient association of Xist to transcriptionally active genes to exert gene
silencing.

Firre, transcribed from the X chromosome, forms a punctate nuclear compartment containing
several chromosomal loci, and facilitates interchromosomal interactions and activation of
several genes that are transcribed from these gene loci. Firre interacts with nuclear matrix
factor hnRNP U and appears to act as a ‘scaffold’ to modulate interchromosomal interactions
[48].

Finally, IncRNAs are also known to nucleate and/or maintain specific nuclear domains (NDs).
NDs are nonmembranous structures that are enriched with a unique set of proteins and RNA.
Eukaryotic cells contain several NDs, including the nucleolus, nuclear speckles, and para-
speckles. Paraspeckles have been implicated in: (i) the nuclear retention of hyper-edited
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RNAs: (i) the sequestration of certain RBPs in the nucleus; and (jii) the immune response
[73-75]. Neat1 IncRNA has a vital role in the nucleation and/or maintenance of paraspeckles
[76-78]. Paraspeckles are initially formed at the site of Neat1 transcription, which is essential for
the formation of paraspeckles. In addition, recent studies also identified the potential involve-
ment of Neat1 in oncogene-induced cellular transformation and pri-miRNA processing [79,80].

Role of MALAT1 in Gene Regulation

MALAT1, also known as nuclear-enriched abundant transcript 2 (NEAT2), is perhaps the most-
abundant (~3000 copies/cell) nuclear-retained INcRNA. MALAT1 was initially identified as a
prognostic marker for stage | lung adenocarcinoma [81]. MALAT1 is highly conserved among
mammalian species [81-84] and its orthologs have been identified in zebrafish, lizard, and
Xenopus [85,86].

MALAT1 is ubiquitously expressed in all tissues, but its levels are tightly regulated during certain
physiological processes, such as the cell cycle [87] and cellular differentiation [88,89], by
various transcriptional and post-transcriptional mechanisms. Transcription factors, such as
ER/eNOS [90], Sp1 [91], HIF-2a [92-95], and CREB [96], recognize the MALAT1 promoter and
induce MALATT expression under different stress conditions. At the post-transcriptional level,
the long half-life of MALAT1 in many cell lines is attributed to its unique 3'-end RNA processing
[83,97,98]. The 3" end of the MALAT1 primary transcript forms a tRNA-like structure and is
cleaved by RNase P, yielding a 61-nucleotide RNA called ‘mascRNA’ [99,100]. The rest of the
3’ end sequence then folds into a triple-helix structure [101-103], which protects this end
against 3'-5’ exonucleases [103]. The antisense (AS) IncRNA, TALAM1, was recently shown to
form an RNA duplex with the 3’ end of MALAT1, which stabilizes MALAT1 by facilitating its 3’
processing [104].

Molecular Function of MALAT1

MALAT1 is almost strictly retained in the nucleus [105]. A large fraction of MALAT1 is localized
within nuclear speckles [82,83] and interacts with several of the speckle-enriched proteins,
including splicing factors. Since MALAT1 preferentially localizes in nuclear speckles, NDs that
are suggested to coordinate transcription and pre-mRNA processing, it is proposed that
MALAT1 controls gene expression by modulating speckle-ascribed functions, including tran-
scriptional and post-transcriptional gene regulation.

In the nucleus, MALAT1 is found to preferentially associate with transcriptionally active genes
[106—-108]. MALAT1-depleted cancer cells display reduced expression of cell cycle- or metas-
tasis-associated genes without affecting the processing of their RNAs, implying a direct
involvement of MALAT1 in transcriptional regulation [109,110]. MALAT1 might act as an
‘anchorage point’ for the localization of certain genes near nuclear speckles and facilitate
their transcriptional activation (Figure 3A). In support of this, MALAT1-depleted cells showed
defects in the: (i) association of cell cycle genes next to speckles; and (i) expression of these cell
cycle genes [111]. Such gene relocalization events partially rely on the interaction between
MALAT1 and Pc2 [111]. Pc2 is a member of the PRC1 complex, and its methylation and/or
demethylation play a vital role in regulating the expression of E2F target genes. Upon serum
stimulation, MALAT1 interacted with unmethylated Pc2 and drove the translocation of this
protein along with a group of associated cell cycle genes, from Polycomb bodies to nuclear
speckles. The MALAT1-interacting pool of demethylated Pc2 then promoted the SUMOylation
of E2F1, resulting in the activation of cell cycle genes [111]. In addition to Pc2, several studies
showed direct interactions between MALAT1 and PRC2 components, including EZH2
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Figure 3. Model Depicting Potential Mode of Action of Metastasis-Associated Lung Adenocarcinoma
Transcript 1 (MALATT). (A) MALAT1, along with MALAT1-interacting proteins, such as unmethylated Pc2, relocates
genomic loci from the nucleoplasm or other nuclear domains to the nuclear speckle periphery and promotes the activation
of corresponding genes. (B) MALAT interacts with multiple chromatin modifiers and transcription factors to modulate
transcription. (C) MALAT1 serves as a scaffold in nuclear speckles for RNA-binding proteins (RBPs) and influences various
co- and post-transcriptional processes.

[112-117] and Suz12 [116,118]. These results imply that MALAT1 promotes the activation or
repression of genes by facilitating the recruitment of specific chromatin modulators to target
genes in a cell type-specific manner (Figure 3B).
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Recent RAP-sequencing (seq) studies revealed that MALAT1 preferentially interacts with
alternatively spliced pre-mRNAs in a protein mediator-dependent manner [107]. In addition,
MALAT1 interacts with a large number of RBPs, such as pre-mRNA splicing factors, hnRNPs,
and RNA export factors [119-129] (Figure 3C). For example, it was shown that MALAT1
interacts with several members of the SR family of splicing factors [83,119-121,130]. SR
proteins are multifunctional proteins that participate in several steps of RNP maturation,
including pre-mRNA splicing, RNA export, mRNA decay, and translation [131,132]. In human
cells, MALAT1 modulates the localization of SR proteins to speckles [120] and transcription
sites [83]. Furthermore, MALAT1 expression-altered cells showed changes in the phosphor-
ylation status of SR proteins and displayed defects in the interaction of SR proteins to their
target pre-mRNAs [120,133], implying the involvement of MALAT1 in modulating SR protein
activity. This was strengthened by the observation that MALAT1 expression-altered cells
showed defects in the alternative splicing of several of the SR target pre-mRNAs
[87,120,1383,134]. The cancer-promoting activity of MALAT1 could also be attributed to its
involvement in regulating the alternative splicing of several oncogenic and tumor-suppressor
gene pre-mRNAs. For example, in breast and liver cancer cells, overexpression or depletion of
MALAT1 altered the splicing of several SRSF1-target gene pre-mRNAs [133-135]. In the case
of hepatocellular carcinoma, inhibition of SRSF1 abolished the oncogenic properties of cells
overexpressing MALAT1 [133]. Given that SR proteins often display collaborative or sometimes
redundant functions, MALAT1 may also regulate the binding kinetics of different SR proteins to
fine-tune the processing of certain pre-mRNA targets.

It is still not clear exactly how MALAT1 controls the activity of speckle-localized proteins. It was
observed that tethering MALAT1 to a chromatin locus facilitated the recruitment of several
splicing factors [130]. Furthermore, MALAT1-depleted human cells showed disassembly of
proteins from speckles [120]. By associating with several proteins, MALAT1 could act as a
nucleation site to facilitate productive interactions between speckle proteins for the assembly of
functional complexes. In addition, MALAT1 interacts with nascent transcripts, preferentially
alternatively spliced pre-mRNA of several hundreds of transcriptionally active genes through
protein intermediates. Based on these observations, we propose that MALAT1 acts as a
‘molecular scaffold’ to enhance protein—protein, protein—-RNA, and protein-DNA interactions in
or near speckles (Figure 3). By concentrating in speckles, MALAT1 facilitates the interaction
between MALAT1-interacting RBPs, such as SRSF1, and pre-mRNAs of transcriptionally
active genes, thereby influencing their post-transcriptional processing. By contrast, MALAT1
can help to reposition a group of genes to the periphery of speckles via protein mediators and
influence their expression.

Most of the data ascribing a role for MALAT1 in transcription and pre-mRNA processing were
observed from studies using cell lines. However, MALAT 1-knockout mice did not display any
abnormality in terms of development, viability, or fertility [84,136,137]. There could be several
explanations for the absence of phenotype. One possible explanation is that other INncRNAs or
alternate cellular pathways compensate for the loss of MALAT1. A candidate for this compen-
sation could be the paraspeckle-localized INcCRNA, NEAT1, which is transcribed from the
neighboring genomic locus of MALAT1. NEAT1 has been reported to have overlapping
behaviors with MALAT1 in aspects of its gene association and protein interaction [106]. Finally,
similar to what has been observed for several miRNAs, MALAT1 could have essential roles
under specialized conditions, such as pathological stress, and may show significant pheno-
types if MALAT1-depleted cells or mice are exposed to such conditions [138]. This hypothesis
is supported by the fact that MALAT1 deregulation has been found in increasing numbers of
diseases and pathological conditions.
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Involvement of MALAT1 in Cancer Progression and Metastasis

Ever since the initial identification of MALAT1 as a marker of metastatic lung cancer, a
considerable number of studies have intimately linked MALAT1 to tumor progression and
metastasis [139,140]. Elevated levels of MALAT1 are observed in a broad spectrum of cancers,
and are frequently correlated with poor prognoses and chemo- or radiotherapy resistance in
patients [114,134,141]. Furthermore, alterations in the levels of MALAT1 in multiple cancer cell
lines and in animal tumor models significantly affect tumorigenic properties, including cell
proliferation, invasion, migration, and metastasis. For example, Malat1-knockout cells or cells
depleted of Malat1 by antisense oligonucleotides in a mouse MMTV-PyMT breast cancer
model system showed reduced tumor growth and metastasis, accompanied with enhanced
differentiation into cystic tumors [142]. It was recently demonstrated that MALAT1 facilitated
cell proliferation, tumor progression, and metastasis of triple-negative breast cancer (TNBC)
cells [134]. Finally, increased MALAT1 levels were associated with decreased disease-specific
survival in patients with the ER-negative, lymph node-negative HER2 and TNBC molecular
subtypes [134]. These results identify MALAT1 as a metastasis driver and its potential use as a
prognostic marker is better suited for patients with ER-negative, lymph node-negative breast
cancer, who might otherwise be classified as having low recurrence risk.

Altered expression of MALAT is also a factor in hepatocellular carcinoma development. In this
case, MALAT1 was found to act as a proto-oncogene by promoting the oncogenic activity of
splicing factor SRSF1, ultimately resulting in the induction of Wnt and mTOR signaling [133]. In
the case of breast cancer and hepatocellular carcinoma, MALAT1 depletion altered the
expression and pre-mRNA splicing of genes involved in cancer progression and metastasis,
indicating that Malat1/MALAT1 regulates processes that are important for cancer pathogene-
sis [133,134].

Concluding Remarks

The human genome encodes approximately 16 000 IncRNAs, of which a significant fraction is
retained in the nucleus. Nuclear INcRNAs are involved in almost all physiological and/or
biological and disease-related processes. Most nuclear INCRNAs associate with chromatin
and influence gene expression in a cis or trans fashion. Chromatin-associated INcRNAs control
the recruitment or stabilization of various chromatin proteins or RNA-binding proteins to
regulatory sequences within the gene or RNA, thereby influencing transcriptional or post-
transcriptional processes. However, we still do not know how IncCBRNAs associate to specific
chromatin regions in the genome. Some aspects of specificity could be attributed to the ability
of INcRNAs to recognize DNA via forming RNA:DNA hybrids. Alternatively, INcRNA could be
recruited to a chromatin site by chromatin-associated proteins. Retention of INCRNAs in the
nucleus and their localization to specific nuclear compartments could be controlled by active or
passive regulatory mechanisms. LncRNAs, such as Xist and eRNAs, could be retained in the
nucleus via their association with chromatin. LncRNAs are also known to contain specific
sequence motifs, domains, or repeat sequences within them that potentially act as nuclear
retention signals [23,71,143-145]. In addition, association of nuclear proteins to IncRNAs could
ensure the nuclear retention of INcRNAs [70,77,146]. Future studies on a large number of
nuclear INcRNAs will help to identify the novel mechanisms utilized by INcRNAs for their nuclear
localization and chromatin association (see Outstanding Questions).

Our understanding of the physiological role of INncRNAs is limited because of the lack of an
adequate number of organismal studies to date. Some recent studies indicate that several
INcRNAs have a vital role in embryonic and adult tissue development [147,148]. Future studies
aimed at determining the molecular function of the vast number of human nuclear INncRNAs
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Outstanding Questions

Several nuclear-retained  INcRNAs
work in trans. How do trans-acting
INcRNAs transport from their sites of
transcription to other gene loci where
they act?

Unlike proteins whose nuclear reten-
tion signals could be predicted by the
existence of a nuclear-localization sig-
nal (NLS), the nuclear localization of
INcRNAs is controlled by several inde-
pendent mechanisms. What type of
sequence or structural elements within
IncRNAs dictates their nuclear reten-
tion, DNA recognition, and protein
association?

Multiple nuclear-retained INcRNAs are
reported to interact with PRC2 or its
subunits. However, research now
identifies several instances in which
PRC2 might interact promiscuously
with  RNA molecules. Hence, one
needs to use more-stringent measures
to confirm functional interactions
between IncRNAs and Polycomb
complex proteins.

The human genome is predicted to
contain approximately 16 000 IncRNA
(Gencode.org) genes. How many of
these INcRNAs have important biologi-
cal roles and how many are by-prod-
ucts of spurious transcription?
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would help us to better appreciate the role of INcCRNAs in gene expression and nuclear
organization, as well as their potential involvement in diseases.
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