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Fluctuating interaction network and time-varying 
stability of a natural fish community
Masayuki Ushio1,2,3,4, Chih-hao Hsieh5,6,7, Reiji Masuda8, Ethan R Deyle9, Hao ye9,10, Chun-Wei Chang6, George Sugihara9 & 
Michio Kondoh1

Ecological theory suggests that large-scale patterns such as 
community stability can be influenced by changes in interspecific 
interactions that arise from the behavioural and/or physiological 
responses of individual species varying over time1–3. Although 
this theory has experimental support2,4,5, evidence from natural 
ecosystems is lacking owing to the challenges of tracking rapid 
changes in interspecific interactions (known to occur on timescales 
much shorter than a generation time)6 and then identifying the 
effect of such changes on large-scale community dynamics. Here, 
using tools for analysing nonlinear time series6–9 and a 12-year-long 
dataset of fortnightly collected observations on a natural marine fish 
community in Maizuru Bay, Japan, we show that short-term changes 
in interaction networks influence overall community dynamics. 
Among the 15 dominant species, we identify 14 interspecific 
interactions to construct a dynamic interaction network. We show 
that the strengths, and even types, of interactions change with 
time; we also develop a time-varying stability measure based on 
local Lyapunov stability for attractor dynamics in non-equilibrium 
nonlinear systems. We use this dynamic stability measure to 
examine the link between the time-varying interaction network 
and community stability. We find seasonal patterns in dynamic 
stability for this fish community that broadly support expectations 
of current ecological theory. Specifically, the dominance of weak 
interactions and higher species diversity during summer months 
are associated with higher dynamic stability and smaller population 
fluctuations. We suggest that interspecific interactions, community 
network structure and community stability are dynamic properties, 
and that linking fluctuating interaction networks to community-
level dynamic properties is key to understanding the maintenance 
of ecological communities in nature.

The dynamics of ecological communities are influenced by inter-
specific interactions occurring at multiple temporal and spatial scales. 
Earlier studies have focused mainly on long-term effects; specifically 
those that focus on the timescale of the birth–death process (for 
 example, predator–prey interactions)10–13 or those that relate com-
munity stability to gross properties of the interaction network such 
as mean interaction strength, preponderance of weak interactions 
and species diversity10,14,15. However, more recent theoretical and 
experimental studies have revealed that temporally variable ecological 
and/or biological responses (including physiological and behavioural 
responses) can have considerable effects on community dynamics1,2,4. 
In other words, short-term responses such as adaptive resource choice, 
inter-habitat movement or physiological metabolic responses can in 
principle generate rapid changes in interaction strength, influence 
population dynamics and even reverse the classic relationship between 
community complexity and stability1.

Although the arguments are compelling, evidence is lacking for 
whether and how short-term fluctuations in interspecific interactions 
influence the overall stability of ecological communities in nature. 
There are two main challenges here: (1) quantifying fluctuating 
interspecific interactions and (2) evaluating fluctuating community 
stability. First, there is the practical challenge of measuring rapidly 
changing multiple interactions as they occur in nature. Traditional 
approaches such as direct observation and experimental manipulations 
(for  example, species exclusions) have provided insights into species 
interactions and their consequences for community  dynamics2,16,17. 
For example, manipulative experiments have shown that the interac-
tions of species are often variable and that this variability can strongly 
 influence the dynamics of a local community5,17. However, as has  
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Figure 1 | Reconstructed interaction network of a subset of the Maizuru 
Bay fish community. Arrows indicating interspecific interactions are 
assigned on the basis of the results of convergent cross mapping (Extended 
Data Table 1). Blue and red colours indicate positive and negative 
interactions, respectively, calculated by the S-map method based on the 
12-year average. All fish images by R.M.
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previously been shown6, these approaches are labour-intensive and 
are not feasible for studying large ecological communities in nature. 
Second, because interspecific interactions vary over time, the resultant 
community stability also varies3; this means that evaluating  community 
stability is not at all straightforward. Natural ecosystems do not 
 typically exhibit  equilibrium dynamics7–9,18 that would accommodate 
a standard calculation of stability. Thus, for non-equilibrium systems 
that possess intrinsic variability (that is, systems that exhibit nonlinear  
dynamics) the magnitude of population fluctuations (for example, 
coefficient of variation of abundance) may not be a good indicator of 
community stability or resilience, because there exists the potential for 
confounding effects. Here we look instead at a measure that accounts 
for nonlinear dynamics and that tracks community stability as it varies 
through time. Relating fluctuating interaction networks to community 
stability is crucial for understanding how natural ecological commu-
nities are maintained.

Fluctuating ecological interaction networks can be identified 
and measured with empirical dynamic modelling6–9,18,19—tools 
based on attractor reconstruction that are specifically designed for 
 analysing nonlinear dynamical systems from their time series6–9,18,19  
(see Extended Data Fig. 1, Methods and Supplementary Information 
section 1).

We begin by applying convergent cross mapping7, an empirical 
dynamic modelling causality test, to identify the linkages defining the 
interaction network for the fish community in Maizuru Bay, a 12-year-
long monitoring study that collected observations once every two 
weeks20 (Extended Data Fig. 2). Overall, we identify 14 interspecific 
interactions among the 15 dominant fish species (Fig. 1, Extended Data 
Fig. 3 and Extended Data Table 1). Most of the detected interactions 

are ecologically interpretable (Supplementary Information  section 
2), and all the species—except Engraulis japonicus—have at least one 
 interaction, which indicates that interspecific interactions have a 
non-trivial role in the community dynamics.

The attractor for a set of causally related fish species is constructed by 
plotting their abundances as a point in a coordinate space in which the 
axes are the set of causally related species (see Methods), and tracing 
the position forward in time to delineate a trajectory7 (https://youtu.
be/fevurdpiRYg). As the system travels along its attractor, S-maps 
 (sequential locally weighted global linear maps) can be used to com-
pute sequential Jacobian matrices9, the elements of which are partial 
derivatives that describe the changing interactions between species6; 
this is known as the multivariate S-map method6,9,18 (see Methods).

Figure 2a shows that interactions in the Maizuru Bay fish commu-
nity are not static; this contradicts a common assumption of ecological 
research. Instead, they change over time, as expected for a system with 
nonlinear dynamics (Extended Data Table 2). Of the 14 interspecific 
interactions, on average 8 are negative and 6 are positive. The right-
skewed distribution of mean interaction strengths in Fig. 2b shows that 
the interaction network is dominated by weak links; this domination is 
hypothesized to be a stabilizing property14,15. There is also a clear sea-
sonal pattern at the community level; weak interactions become more 
dominant during summer months than during winter months (Fig. 3), 
with a lower median:maximum interaction strength ratio (as this index 
decreases, weak interactions become more dominant). These fluctu-
ations in interaction strengths could be driven by a number of mech-
anisms acting independently or together; these include time-varying 
behavioural and/or physiological responses1–3, fluctuations in species 
diversity21, or a weakening of interactions among fish species due to 
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Figure 2 | Time-varying interspecific interactions in a subset of the 
Maizuru fish community. a, Fourteen interspecific interactions quantified 
by the S-map method. The x axis indicates the sampling time (2-week 

intervals) from 2002 to 2014. b, The distribution of average interaction 
strengths over the 12-year sampling period.
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higher primary productivity during the summer that results in higher 
fish abundance20.

Community stability at each time point is evaluated by computing 
the dominant eigenvalue of the time-varying interaction matrix: this 
sequentially computed ‘local Lyapunov stability’ is hereafter referred to 
as ‘dynamic stability’ (see Methods). Our analysis reveals that dynamic 
stability varies in a non-random way (Extended Data Table 2); commu-
nity dynamics are mainly stable in the summer (that is, the dynamic 
stability is less than 1.0; Fig. 3a), and unstable in the winter (that is, the 
dynamic stability is more than 1.0; Fig. 3a). Sensitivity analyses show 
that dynamic stability is robust when including less abundant species 
in the analysis, as well as when incorporating observation errors in the 
census data (Extended Data Fig. 4 and Supplementary Information 
sections 3, 4). Finally, we find that the stable time period (dynamic 
stability <  1.0) contains smaller variations in population abundances 
than the unstable period (Extended Data Fig. 5 and Supplementary 
Information section 5), and this supports the proposition that  
population fluctuations reflect community stability in the Maizuru Bay 
fish community, given that the level of stochastic noise through time 
is relatively constant.

We identify two large-scale properties as being responsible for 
the fluctuation in dynamic stability (Fig. 4a–c; see also Extended 
Data Figs 6, 7): overall interspecific interaction strength and species 
diversity. Figure 4d shows that the dominance of weak interactions 
is the strongest driver of dynamic stability, with the largest absolute 

effect. Therefore, the co-occurrence of weaker interactions and stable 
conditions during summer (Fig. 3a, c) seems to reflect a true causal 
relationship. This provides empirical support for the theory that weak 
interactions are stabilizing14,22. The analysis also identifies species 
diversity (Simpson’s diversity index) as a stabilizing factor (Fig. 4c), 
supporting recent findings from manipulative experiments23 and 
addressing the long-standing question of how species diversity influ-
ences community dynamics1,11,23,24. Our results show that the Maizuru 
Bay fish community tends to recover faster from perturbations when 
species diversity is higher. In fact, higher species diversity seems to be a 
necessary condition for the dominance of weak interactions (Extended 
Data Fig. 8) and more stable communities (Fig. 4d). Because diversity 
seems to be a weaker driver of stability than interaction strength, it is 
likely that the latter is a more proximate driver of dynamic  stability. 
Further investigations drawing on additional observational time series 
could reveal whether and how different interspecific  interactions—
for example, diet choice, anti-predator defence and inter-habitat 
movement—are involved in the maintenance of the Maizuru Bay fish 
community.

Here we present a framework based on attractor reconstruction from 
observational time series that quantifies the dynamic nature of the 
community interaction network and provides an estimate of dynamic 
stability. Although the exact individual-level behaviour that gives rise to 
the interspecific effect cannot be addressed by this  analysis, the analysis 
does enable quantitative identification of the essential interactions that 
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Figure 3 | Time-varying stability, interaction strength and Simpson’s 
diversity index. a, The dynamic stability of the fish community. 
Dynamic stability is computed as the absolute value of the real part of the 
dominant eigenvalue of the interaction matrix at each time point. The fish 
community tends to recover from perturbations if the dynamic stability 
is lower than 1 (dashed line). b–d, Mean interaction strength (b), weak 
interaction index (median interaction strength:maximum interaction 
strength ratio; a lower ratio indicates increasing dominance of weak 
interactions) (c) and Simpson’s diversity index (d) of the fish community. 
White or grey shading delineate each 1-year interval (from January to 
December).
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influence community dynamics. Further applications of this framework 
to ecological time series in different geographical regions—for exam-
ple, Arctic and tropical regions3—will enable tests of the generality 
of the present results, and aid in identifying other  critical  patterns in 
the dynamic stability of natural ecological communities. Such applica-
tions of empirical dynamic modelling could also clarify the relation-
ships between interaction strengths, properties of the distribution (for 
 example, the dominance of weak interactions, skewness and standard 
deviations), network structure (for example, arrangements and topol-
ogies) and community dynamics (such as the relationship between 
dynamic stability and population variation observed in this study), 
enabling a more in-depth investigation of the mechanisms by which 
dynamic interactions and species diversity govern the behaviour of a 
wide range of natural ecosystems.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MethOdS
Fish community time-series data. Long-term time-series data of the fish 
 community were obtained by underwater direct visual census conducted approxi-
mately once every two weeks along the coast of the Maizuru Fishery Research 
Station of Kyoto University (Nagahama, Maizuru: 35° 28′  N, 135° 22′  E) from  
1 January 2002 to 2 April 2014 (285 time points during approximately 12 years)20. 
This high-frequency census enables the detection of short-term interspecific 
 interactions. The area was within 50 m of the shore and at a water depth of 1–10 m. 
A 600-m visual transect line, composed of three parts, was set: each transect line 
was 200 m long with a 2-m-width survey area. Each transect included a rocky 
reef, brown algae macrophyte and filamentous epiphyte vegetation, live oysters 
(Crassostrea gigas) and their shells, a sandy or muddy silt bottom and an artificial 
vertical structure that functioned as a fish reef. The vegetation in the area was 
dominated by Sargassum tortile and Sargassum thunbergii on the rocky substrate 
and patches of Zostera marina on the shallow (1–2 m) sandy bottom substrate.

Species and sizes of individual fish observed within 1 m of each census line (thus 
triplicated in the survey area) were recorded on waterproof paper. Each census was 
conducted on a sunny day and commenced around 12:00 with high tide of 2–3 h. 
The census was undertaken by diving using scuba equipment. Water temperature 
was measured near the surface and at the deepest point of the census line (10-m 
depth) during the diving. Visibility ranged from 1 to 15 m but was normally 3–5 m. 
Daily observations at 10:00 revealed that surface water temperature and salinity 
in the area ranged from 1.2 to 30.8 °C and from 4.14 to 34.09 parts per thousand, 
respectively. The mean ±  s.d. surface salinity was 30.0 ±  2.9 (n =  1,753) and did not 
show clear seasonality. Importantly, the same scientist conducted this field survey 
throughout the 12-year research term. Thus, inconsistency in fish identification 
and counting is diminished in the time series.

We selected dominant fish species (that is, with a total observation count that 
was larger than 1,000) for analyses, because rare species that were not observed 
during most of the census term (that is, with many zero values) were not suitable for 
the time-series analysis. We used time series of 14 fish species and 1  jellyfish species 
(Extended Data Fig. 2). Jellyfish data were included because jellyfish are abun-
dant in this region, and are thought to have notable influences on the  community 
dynamics of fishes25. Including less abundant species in the analyses does not 
change the conclusion (see Extended Data Fig. 4). Before the analyses, the time 
series were normalized to unit mean and variance26.
Convergent cross mapping. Convergent cross mapping (CCM) was performed 
to determine the causal relationships among the 15 dominant species in Maizuru 
Bay. CCM is based on Takens’s theorem for nonlinear dynamical systems. For 
multi-variable dynamical systems in which only some of variables are observable, 
Takens’s theorem27—with several extensions (for example, ref. 28 and references 
therein)—proves that it is possible to represent the system dynamics in a state space 
by substituting time lags of the observable variables for the unknown variables. 
The information in the unobserved variables is encoded in the observed time 
series, and a single time series can therefore be used to reconstruct the original 
state space. This gives a time-delayed coordinate representation (or embedding) of 
the system trajectories, and this operation is sometimes referred to as state space 
reconstruction.

An important consequence of the state space reconstruction theorems27 is that 
if two variables X and Y are part of the same dynamical system, then the recon-
structed state spaces of X and Y will topologically represent the same attractor (with 
a one-to-one mapping between the reconstructed attractors of X and Y). Therefore, 
it is possible to predict the current state of variable X using time lags of variable Y.  
We can look for the signature of a cause variable (for example, X) in the time series 
of an effect variable (for example, Y) by testing whether there is a correspond-
ence between their reconstructed state spaces (that is, cross  mapping)7. In this 
study, cross mapping from one variable to another was performed using  simplex 
 projection8. In the simplex projection, a set of neighbouring points of Y(t) that 
have similar historical processes to those of Y(t) can find their time- corresponding 
points of X. If the time-corresponding set in X is also the  neighbouring points 
of X(t), then it is possible to estimate X(t) accurately by cross-mapping. The 
cross-mapping skill (that is, predictability) can be evaluated using the correlation 
coefficient (ρ) between cross-map estimates and observations. Significant skill of 
the cross mapping is one necessary condition for the detection of causality (see the 
test for significance in ‘Phase-lock twin surrogate method’).

In addition, the cross-map skill will increase as the library length (that is, the 
 number of points in the reconstructed state space of an effect variable) increases if 
two variables are causally coupled7 (that is, convergence). As the number of points 
in the state space increases (that is, the time series becomes longer), the trajectory 
defining the attractor fills in, which results in closer nearest neighbours and declining  
estimation error (a higher correlation coefficient). Therefore, convergence is 
another necessary condition for the detection of causality. Practical criteria for 
the causality are described later (see ‘Phase-lock twin surrogate method’).

CCM results are sensitive to the choice of embedding dimension (that is, how 
many time-lag coordinates are used for state space reconstruction). Therefore, 
the embedding dimension (E) should be carefully determined. In this study,  
E was determined by evaluating out-of-sample predictability through trials of dif-
ferent embedding dimension, using univariate simplex projection8 as previously 
described29. In brief, the value for E that gives maximum predictability was chosen, 
which ensured that E was sufficiently large to capture the dynamics of the system 
without including extraneous dimensions. Predictability can be measured using 
mean absolute error, root mean squared error or correlation (ρ) between predic-
tions and observations. To determine the best E value we used mean absolute 
error, as described previously29. The best E value was examined from 1 to 24, as 
our dataset came from a census conducted once every two weeks (24 points per 
year), which allows for the influence of previous populations (up to one year prior). 
After the determination of the best E value, CCM was applied to the normalized 
abundance time-series data of the dominant fishes.
Phase-lock twin surrogate method. Most of our data show strong seasonality 
(Extended Data Figs 2, 6), and time-series data with strong seasonality often exhibit 
a high cross-map skill even when there is no causal relationship between variables 
(Extended Data Fig. 3). This means that synchronization driven by seasonality 
can lead to misidentification of causality (that is, false positives). To deal with 
this problem, we developed the phase-lock twin surrogate method, which takes 
seasonality into account. This new method is modified from the twin surrogate 
method30, which generates time series that preserve the shape of an attractor but 
exhibit no causal relationship with a target time series.

The twin surrogate time series is generated by the following steps: (1) construc-
tion of a recurrence matrix, (2) identification of twin points on the recurrence 
matrix, (3) selection of the starting point of the surrogate, and (4) generation of 
the surrogate time series by switching trajectories at the twin points. In brief, the 
recurrence matrix is constructed using the following equation:

δ= Θ − || − ||R x i x j( ( ) ( ) )i j,

in which Θ  denotes the Heaviside function (Θ (a) is 1 if a is positive and 0 
 otherwise), | | ∙| |  indicates the maximum norm, δ is a predefined threshold and x(i) 
denotes the system state at time i. We initially set δ =  0.125. Results do not change 
significantly for δ values between 0.05 and 0.2030. By coding Ri,j =  1 in the matrix 
as black dots and Ri,j =  0 as white dots, we obtained recurrence plots. The recur-
rence plot contains all topological information about the attractor. In the recur-
rence plot there can be identical columns; that is, = ∀R R kk i k j, , , called twins. 
These two points are not only neighbours but also share the same neighbourhood. 
Twins are special points of the time series that are indistinguishable in the recur-
rence plot, but have different pasts and futures in time series. After identifying the 
twins in the recurrence plot, we randomly chose an entry (l) of the original time 
series (x(l)), as the starting point of the surrogate time series, xs(1). Then, we 
 followed the trajectory in the state space—xs(1) =  x(l), xs(2) =  x(l + 1), 
xs(3) =  x(l + 2) and so on—in order to generate the surrogate. If we suppose that 
entry m of the surrogate xs(m) may be given by entry j of the original time series 
(x(j)), if x(j) has no twins we set xs(m + 1) =  x(j + 1). If x(k) is a twin of x(j), we set 
xs(m + 1) =  x(j + 1) or xs(m + 1) =  x(k + 1) with equal probability. This step is iter-
ated until the surrogate time series reaches the same length as the original time 
series. By performing the above steps, the twin surrogate time series preserves only 
the nonlinearity (that is, the shape of the attractor), but not any of the remaining 
causal influences.

To take seasonality into account, we added another constraint to the twin 
 surrogate method: twins in the recurrence plot must also be from the same season 
(that is, phase-locking). In our dataset, there are 24 points per year; therefore, if 
a reconstructed state represents an observation in early January, only observa-
tions in early January (from a different year) can be considered for switching of 
the  trajectory. With this constraint, the surrogate time series preserves both the 
 seasonality and the shape of the attractor (Extended Data Fig. 3b).

To evaluate the phase-lock twin surrogate method, we generated artificial time 
series with seasonality by using the following equations:

β+ = − +X t X t X t Y t( 1) ( ){4 3 ( ) ( )}yx0 0 0 0

β+ = . − . +Y t Y t Y t X t( 1) ( ){3 8 3 8 ( ) ( )}xy0 0 0 0

+ = + +X t X t a( 1) ( 1) seasonalityx0

+ = + +Y t Y t a( 1) ( 1) seasonalityy0

in which βxy and βyx indicate interspecific interactions, and αx and αy indicate 
the strength of the seasonality. ‘Seasonality’ is defined by a sine curve. In this 
 analysis, the time-series length is 288 (that is, equivalent to a 12-year census with 
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24  observations per year). To examine the effects of seasonality on the cross-map 
skill (ρ) and convergence, we set βxy =  βyx =  0 (no causality between X(t) and Y(t)) 
and ax =  ay =  0.3 (moderate seasonality). We found that even a moderate strength 
of seasonality resulted in a relatively high predictability and convergence of cross-
map skill (a false positive) (Extended Data Fig. 3a).

The phase-lock twin surrogate method generates time series with the same non-
linearity and seasonality (Extended Data Fig. 3b). Intuitively, αx =  αy =  1.0 indicates 
strong seasonality in the time series (Extended Data Fig. 3b and Supplementary 
Information section 6). By changing αx and αy from 0 to 2.0, we examined the 
performance of the new surrogate method under various strengths of  seasonality. 
We examined conditions of no interaction between X and Y (βxy =  βyx =  0), 
 unidirectional interaction from X to Y and bidirectional interactions between X 
and Y (Extended Data Fig. 3e–h).

Analyses of model simulations show that the phase-lock twin surrogate method 
gives a conservative criteria (that is, low possibility of false positives) for detecting 
causality among time series that exhibit seasonality (Extended Data Fig. 3). In 
this study, the CCM was regarded as significant if the following two criteria were 
satisfied: (1) cross-mapping for the real time series showed higher skill (ρ) than 
95% confidence intervals of phase-lock twin surrogate data (that is, significant 
predictability), and (2) the difference between the cross-map skill at the smallest 
and largest library sizes (Δ ρ) was larger than 0.1 (that is, convergence). Although 
Δ ρ >  0 is a minimum and simpler criterion for convergence, observation error 
can cause fluctuations in ρ and Δ ρ, and we therefore used a more conservative 
criterion instead.
The multivariate S-map method. The multivariate S-map method enables quan-
tification of dynamic (that is, time-varying) interactions6,9. If we consider a  system 
that has E different interacting species, and the state space at time t is given by 
x(t) =  {x1(t), x2(t), …, xE(t)}, for each target time point t* , the S-map method 
 produces a local linear model C that predicts the future value x1(t* + p) from the 
multivariate reconstructed state-space vector x(t* ). That is,

⁎ ⁎∑+ = +
=

Cx t p C x tˆ ( ) ( )
j

E

j j1 0
1

The linear model is fit to the other vectors in the state space. However, points that 
are close to the target point x(t*) are given greater weighting. The model C is the 
singular value decomposition solution to the equation B =  A∙C, in which B is an 
n-dimensional vector (n is the number of observations) of the weighted future 
values of x1(ti) for each historical point ti, given by

⁎= || − || +x xB w t t x t p( ( ) ( ) ) ( )i i i1

A is then the n × E dimensional matrix given by

⁎= || − ||x xA w t t x t( ( ) ( ) ) ( )ij i j i

The weighting function w is defined by

θ
=




−



w d d

d
( ) exp

which is tuned by the nonlinear parameter θ � 0 and normalized by the average 
distance between x(t* ) and the other historical points,

⁎∑= || − ||
=

x xd
n

t t1 ( ) ( )
j

n

j
1

The Euclidian distance between two vectors in the E-dimensional state space is 
given by | | x −  y| | . Note that the model C is separately calculated (and thus poten-
tially unique) for each time point t. The coefficients of the local linear model (C) are 
a proxy for the interaction strength between variables6; these interaction strengths, 
defined as partial derivatives in a multidimensional state space, quantify the 
 population-level interaction between two species and do not assume any  particular 
form of interaction, such as mutualism or competition. Instead, one might be able 
to infer the type of interactions after calculating the interaction strength.
Evaluations of the multivariate S-map method. Here we also show that the 
long-term averaged interaction strength estimated from the multivariate S-map 
method is equivalent to the interaction coefficient, βij in the following equations 
(Extended Data Fig. 1). These equations provide the explicit system of equations 
for the two-species model:

β+ = + +X t X t r s X t Y t( 1) ( ){ ( ) ( )}x x yx

β+ = + +Y t Y t r s Y t X t( 1) ( ){ ( ) ( )}y y xy

in which rx and sx (for species x) or ry and sy (for species y) represent an intrinsic 
growth rate and a self-regulation term, respectively. βyx is an effect of Y on X and 
βxy is an effect of X on Y.

In a unidirectional two-species model, βyx was set to 0 and βyx was set to − 0.31. 
Other parameters were set as follows: rx =  4, sx =  − 3, ry =  3.1 and sy =  − 3.1. The 
length of the time series was 1,000 and the initial abundances of X and Y were set 
at 0.5. Before the multivariate S-map analysis, the time series were normalized to 
unit mean and variance. We used a fully multivariate embedding, {X(t), Y(t)}, to 
reconstruct the attractor.

In a bidirectional two-species model, βyx was changed from − 0.5 to 0.2, with 
an interval of 0.1. βxy was changed from − 0.5 to 0.25, with an interval of 0.005. 
Other parameters were set as follows: rx =  3.8, sx =  − 3.8, ry =  3.5 and sy =  − 3.5. 
The length of the time series was 1,000 and the initial abundances of X and 
Y were set at 0.5. The attractor was reconstructed using a fully multivariate 
embedding.

To further test the effectiveness of the S-map method, we applied it to experi-
mental systems in which signs of interactions were known on the basis of biological 
background knowledge about organisms. We applied the S-map method to two 
experimental systems; one was a classic predator–prey system, and the other was 
a more complex rotifer–algae system.

The data of the classic Paramecium–Didinium protozoan prey–predator 
 system have previously been published31 and can also be found at http:// 
robjhyndman.com/tsdldata/data/veilleux.dat (Extended Data Fig. 1e). A 
previous study32 identified conditions that produced sustained oscillations 
in  predators (Didinium  nasutum) and prey (Paramecium aurelia). Initial 
 densities of Paramecium and Didinium in medium were 15 and 5 individuals 
per  millilitre, respectively. Abundance measurements were taken every 12 h. 
The first 10 data points were removed to eliminate transient behaviour in the 
initial period of the experiment. The time series were then normalized to unit 
mean and variance before analysis.

The data of the rotifer–chlorella system were from an experimental  predator–
prey system33. The predator–prey system consisted of Brachionus calyciflorus  
(an asexually reproducing predatory rotifer) and Chlorella vulgaris (an asexually 
reproducing algal prey) (Extended Data Fig. 1g). One type of algal clone has a 
higher population growth rate, whereas another type of algal clone is more defen-
sive against rotifer predation (hereafter algae r and algae K, respectively). The 
changes in clonal frequency in the algal population (that is, natural selection in the 
population) were quantified using the allele-specific quantitative PCR technique. 
Detailed experimental protocols were as described33.

Among the 63 data points, 7 were not available (days 10, 14, 17, 18, 26, 57 and 
59). The missing data were estimated using simple linear interpolation. Before 
quantifying interaction strengths between the species, CCM was performed to 
detect causality. CCM detected causalities between all pairs in the system; thus, 
there are six causal relationships in the system. We then quantified interaction 
strength using the S-map method. The S-map method was performed using full 
multivariate embedding that is, {Rotifer(t), Algae_r(t), Algae_K(t)}. To forecast the 
abundance of the rotifer, algae r and algae K, nonlinear parameters (θ) were set as 
0.1, 1.8 and 1.2, respectively.
Reconstruction of the dynamic interaction matrix of the fish community. CCM 
with the phase-lock twin surrogate method identified 14 causal links among the 
fish species (Fig. 1 and Extended Data Table 1). To approximate the interaction 
matrix (Jacobian matrix) of the fish interaction network at each time point, we 
used the multivariate S-map method6,9.

The estimation of interaction strengths by the multivariate S-map method is 
sensitive to the choice of variables included in state space reconstruction, and 
these variables should therefore be determined carefully. In the analysis of the 
Maizuru fish community, variables included in the state space reconstruction were 
as follows: if species x1 is causally influenced by x2 and x3, and if the best E of x1 
is 5 (determined by the simplex projection; see ‘Convergent cross mapping’), the 
state space is reconstructed by {x1(t), x2(t), x3(t), x1(t − 1), x1(t − 2)}. That is, the 
number of variables used to reconstruct the attractor must be equal to the best E: 
to fulfil this requirement, the time lags of the target variable were included in the 
embedding space when the number of candidate species was smaller than E. This 
was done to capture fully the dynamics of the system without including extraneous 
dimensions. The best nonlinear parameter (θ) was chosen for the multivariate 
embedding on the basis of the mean absolute error, as previously described29. 
In this study, the coefficients of the local linear model for x2(t) and x3(t) were 
regarded as interspecific interaction strengths, and other coefficients (that is, for 
x1(t), x1(t − 1) and x1(t − 2)) were not interspecific and thus excluded from the 
calculations for indices of interspecific interactions (see later).
Dynamic stability of the fish community and indices of interspecific 
 interactions. The interaction strength quantified by the multivariate S-map 
method is an approximation of the partial derivative for each time point. Thus, 
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using the multivariate S-map method, population dynamics including time-lag 
effects are described as
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in which x̂1 indicates the predicted abundance of species i in the community (x̂1 
for species 1, in this example), and C0 indicates the intercept. Note that the partial 
derivatives and intercept are calculated using the S-map method as described ear-
lier6. For simplicity, here we describe a case in which +x tˆ ( 1)1  includes only one 
time lag (x1(t − 1)), but the following descriptions can easily be extended to cases 
that include more time-lag terms. In a matrix notation, the community dynamics 
are described as

+ = + − +   X X X Ct J t J t( 1) ( ) ( 1) (1)1 2

in which X indicates the n-dimensional vector of the abundance of n species, Ji is 
the n ×  n-dimensional matrix of partial derivatives (interaction strengths), and 
C is the n-dimensional vector of the intercepts. If we write the unity matrix, zero 
matrix and zero vector as I, O and O, respectively, then we can describe X(t) as

= + − +X X X Ot I t O t( ) ( ) ( 1) (2)

By combining equations (1) and (2), we get the following:
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Then equation (3) can be written as:

+ = +W W Bt A t( 1) ( ) (4)

Assuming that W*  is the abundance of the steady state (note that assuming W* 
here does not assume the existence of the local stable equilibrium of the community 
dynamics), equation (4) can be written as 

= +∗ ∗W W BA (5)

− =∗W BI A( ) (6)

By substituting equation (5) from equation (4), we get

+ − = −∗ ∗W W W Wt A t( 1) ( ( ) )

For the purpose of convenience, we write W(t + 1) − W*  as Z(t + 1), and then 
equation (4) can be written as:

+ =Z Zt A t( 1) ( )

Therefore, the stability of this system can be examined by investigating eigenvalues 
of the interaction matrix A, which correspond to the Lyapunov exponents. In this 
study, for the purpose of convenience, we describe the local Lyapunov stability 
as the absolute value of the real part of the dominant eigenvalue of the interac-
tion matrix A, and this stability is called ‘dynamic stability’. A dynamic stability 
value of less than 1 indicates that the community tends to recover faster from 
perturbations, if the interspecific interaction strengths (off-diagonal elements in 
the  interaction matrix J1) and self-regulation effects (diagonal elements in the inter-
action matrix J1 and J2) are kept constant. Although our analysis may be analogous 
to local  stability analyses, the calculation of dynamic stability does not require an 
assumption of a locally stable equilibrium: because the multivariate S-map method 
actually generates a state-dependent (and hence time-varying) interaction matrix, 
it is applicable to non-equilibrium systems and reflects whether the trajectories at 
any particular time are converging or diverging6. In addition, we computed several 
properties of the interaction network structure including mean, weak interaction 
index (indicated by the median interaction strength:maximum interaction strength 
ratio), standard deviations and skewness, using the absolute value of off-diagonal 
elements in J1. Previous theoretical studies have suggested that these indices are 
potential drivers of community stability10,15,16.
Sensitivity of the dynamic stability to the inclusion of subdominant species. 
In the main analyses, we included only a subset of the whole community; only 

 dominant species were selected. To test the robustness of our analysis to the inclu-
sion of a less abundant species, we performed a sensitivity analysis to look at how 
the dynamic stability is affected. In this sensitivity analysis, four subdominant 
species were chosen. These were Ditrema temminckii, Pseudoblennius cottoides, 
Takifugu niphobles and Takifugu poecilonotus. The total abundance of each of 
these species during the census term is between 1,000 and 100; furthermore, 
they do not show too many ‘0’ observations during the census period. Each of 
the subdominant species was added separately in reconstructing an interaction 
network. The same procedure described in the above sections was applied to the 
network reconstruction, quantification of interaction strength and calculation 
of the dynamic stability.
Sensitivity of the dynamic stability to observation errors. To test the sensitivity of 
the dynamic stability to observation errors in the visual census data, we calculated 
the dynamic stability after artificial observation errors were added to the visual 
census data. In this analysis, we assumed that observation errors are proportional to 
the number of observed fish individuals. More specifically, observation errors were 
added using the following R script: error < - rnorm(1, mean =  0, sd =  error_percent *  
data). Error_percent represents the magnitude of observation errors added to the 
original value, and data indicates the number of fish individuals at a particular 
time point.
Calculations of coefficient of variation. To compare the dynamic stability in this 
study and coefficient of variation (CV) of the fish community, we calculated mean 
values of CV of fish populations (that is, 15 fish species). First, we determined a 
target time point and selected three time points before and after the target point, 
which generated a three-month window. Then, we calculated the mean value, 
standard deviations and CV for each species within the window. The mean CV was 
calculated at each window by taking the average of the CVs of the 15 fish species. 
This procedure was repeated throughout the census period.
Relationships between dynamic stability and other variables. Using CCM and 
the phase-lock twin surrogate method, we investigated the following possible causal 
drivers of dynamic stability: (1) measures of the strength of interspecific interac-
tions such as mean interaction strength and weak interaction index (Fig. 4a, b);  
(2) diversity indices (such as species richness and Simpson’s diversity index) (Fig. 4c  
and Extended Data Fig. 6); (3) water temperature and total fish abundance 
(Extended Data Fig. 6); and (4) measures of the distribution of interspecific inter-
actions such as s.d. and skewness (Extended Data Fig. 6).
Abundance-based stability index. An alternative and more intuitively under-
standable measure of stability of the community dynamics would be the 
Euclidean  distance of the species abundance between time point t and t + 1,  
| | W(t + 1) − W(t)| | . Here we show that this abundance-based stability index is 
directly related to the eigenvalue-based stability (that is, dynamic stability). From 
equation (4), the abundance-based stability can be written as

+ − = − +W W W Bt t A I t( 1) ( ) ( ) ( ) (7)

Using equation (6), equation (7) can be written as

+ − = − + − ∗W W W Wt t A I t I A( 1) ( ) ( ) ( ) ( )

+ − = − − ∗W W W Wt t A I t( 1) ( ) ( )( ( ) ) (8)

Equation (8) indicates that the abundance-based stability can be expressed as the 
product of (A − I) and (W(t) − W* ); this (W(t) − W* ) describes the difference 
between the steady state and the abundance at time t. It is important to note that 
assuming W* does not assume the existence of the local stable equilibrium of 
the community dynamics. Equation (8) indicates how the difference between the 
steady state and the abundance at time t will be amplified in the next time step. In 
other words, (W(t  + 1) – W(t)), (A – I) and (W(t) – W*) indicate the community- 
level fluctuation, the potential to change the abundance of each population 
and how the present state differs from the steady state, respectively. The inter-
specific interactions caused an abundance-based stability index (W(t + 1) – W(t)) 
(Extended Data Fig. 7), which suggests that interspecific interactions also drive 
fluctuations in the realized population abundance.
Effects of interspecific interactions and species diversity on the dynamic 
stability. To determine how interspecific interactions and species diversity 
affect dynamic stability, we quantified the causal effect using the multivariate 
S-map method (Fig. 4d), which is described above. Before the analysis, all data 
were normalized. When using the multivariate S-map method, we used fully 
multivariate embedding (reconstructed state space =  {DynamicStability(t), 
MeanInteractionStrength(t), WeakInteractionIndex(t), Simpson’sDiversity(t), 
and time-lag terms}), and the partial derivatives were then calculated.
Computation. Simplex projection, the S-map method and CCM were performed 
using the ‘rEDM’ package (version 0.2.4)19, and all statistical analyses were  
performed in the statistical environment R v.3.2.134.
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Code availability. The R scripts used for the main analyses are available at https://
doi.org/10.5281/zenodo.1039387.
Data availability. Time-series data of the Maizuru fish community are available 
at https://doi.org/10.5281/zenodo.1039387. All other data are available from the 
corresponding author(s) upon reasonable request.
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Extended Data Figure 1 | Effectiveness of the S-map method examined 
in two-species model systems and laboratory experiment systems.  
a, Illustration of the unidirectional two-species model system. X has 
a direct influence on Y, but Y does not have an influence on X. b, An 
example of the dynamics of the two-species system. The interaction 
strength from X to Y was set at − 0.31 in this example. c, The estimation 
of interaction strength using the S-map method. True interaction strength 
is − 0.31, whereas the mean of the S-map coefficients is − 0.309. The length 
of the time series used for the analysis was 1,000. d, Test of the S-map 
method in a two-species bidirectional system. Interaction strength from  
Y to X was fixed for each panel (as denoted in the header of each panel), 
and interaction strength from X to Y was changed (x axis). The length of 

the time series used for each analysis was 1,000 (see Methods). Dashed 
lines indicate 1:1 lines. Dynamics that show strong linearity (for example, 
limit cycle and equilibrium) were excluded from the analysis; that is, 
regions around the origin were excluded. e, Population dynamics of 
Didinium (predator) and Paramecium (prey). f, Estimation of interaction 
strength between Didinium and Paramecium. g, Population dynamics 
of the rotifer (predator) and two types of algae (prey). Inset illustrates 
the three-species experimental system. R, Ar and AK indicate rotifers, 
r-strategy algae and K-strategy algae, respectively. Units for the y axis are 
106 cells per ml for the algae, and 10 individual females per ml for the 
rotifer. h, i, Estimation of pair-wise interaction strength among r-strategy 
algae, K-strategy algae and rotifers.
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Extended Data Figure 2 | Time series of dominant fish species and jellyfish in Maizuru Bay in Japan. During a 12-year census (2002–2014), 285 
surveys were conducted. The width of the grey region corresponds to a 1-year interval that runs from January to December (24 observations per year).
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Extended Data Figure 3 | Evaluation of the phase-lock twin surrogate 
method. a, A false high cross-map skill and convergence, owing to 
seasonality. We set βxy =  βyx =  0 (no causality between X(t) and Y(t)) 
and ax =  ay =  0.3 (moderate seasonality). b, An example of the phase-
lock twin surrogate time series. The original time series with strong 
seasonality is shown as a black solid line (Y(t); βxy =  − 0.3, βyx =  0, αx =  1.0 
and αy =  1.0). The surrogate time series, with the same seasonality and 

nonlinearity as the original data, is shown as a solid red line. c–h, Cross-
map skill (terminal ρ) and terminal ρ − 95% upper limit; ρ of 100 surrogate 
data by CCM between X and Y, when X and Y have no interaction (c, d), 
unidirectional interaction (e, f) and bidirectional interaction (g, h). The 
length of the time series used for the evaluation was 288 (equivalent to a 
12-year census with 24 observations per year).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



Letter reSeArCH

Stability of 15-spp community

S
ta

bi
lit

y 
of

 1
6-

sp
p 

co
m

m
un

ity

Stability of 15-spp community

S
ta

bi
lit

y 
of

 1
6-

sp
p 

co
m

m
un

ity

Stability of 15-spp community

S
ta

bi
lit

y 
of

 1
6-

sp
p 

co
m

m
un

ity

Stability of 15-spp community

S
ta

bi
lit

y 
of

 1
6-

sp
p 

co
m

m
un

ity

Ditrema temminckii included Pseudoblennius cottoides included

Takifugu niphobles included Takifugu poecilonotus included

1.0

1.2

1.4

1.6

1.0 1.2 1.4 1.6

1.0

1.2

1.4

1.6

1.0 1.2 1.4 1.6

1.0

1.2

1.4

1.6

1.0 1.2 1.4 1.6

1.0

1.2

1.4

1.6

1.0 1.2 1.4 1.6

a b

dc

0.00

0.25

0.50

0.75

1.00

0 10 20 30
Error added (%)

R
2

e

1.0

1.5

2.0

2.5

1.0 1.2 1.4 1.6 1.8
Original dynamic stability index

D
yn

am
ic

 s
ta

bi
lit

y 
in

de
x 

w
/ e

rr
or Error added = 1%f

1.0

1.5

2.0

2.5

1.0 1.2 1.4 1.6 1.8
Original dynamic stability index

D
yn

am
ic

 s
ta

bi
lit

y 
in

de
x 

w
/ e

rr
or Error added = 5%g

1.0

1.5

2.0

2.5

1.0 1.2 1.4 1.6 1.8
Original dynamic stability index

D
yn

am
ic

 s
ta

bi
lit

y 
in

de
x 

w
/ e

rr
or Error added = 10%h

1.0

1.5

2.0

2.5

1.0 1.2 1.4 1.6 1.8
Original dynamic stability index

D
yn

am
ic

 s
ta

bi
lit

y 
in

de
x 

w
/ e

rr
or Error added = 20%i

1.0

1.5

2.0

2.5

1.0 1.2 1.4 1.6 1.8
Original dynamic stability index

D
yn

am
ic

 s
ta

bi
lit

y 
in

de
x 

w
/ e

rr
or Error added = 30%j

Extended Data Figure 4 | See next page for caption.
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Extended Data Figure 4 | Sensitivity to the inclusion of subdominant 
species and observation errors. a–d, Relationship between the dynamic 
stability calculated from the community of 15 dominant species versus 
that of a 16-species community. A subdominant species (D. temminckii (a),  
P. cottoides (b), T. niphobles (c) or T. poecilonotus (d)) was added to 
the community of 15 dominant species, and the dynamic stability was 
calculated by the procedure described in the Methods. Inset shows 
the interaction network structures of the 16-species community. Solid 
black line indicates the 1:1 line. Red circle indicates the newly included 
subdominant species. Blue and red arrows indicate positive and 
negative time-averaged interactions, respectively, associated with the 
subdominant species. Grey arrows and circles indicate the edges and 

nodes, respectively, of the original community of 15 dominant species. 
e–j, Effects of observation errors on the calculations of the dynamic 
stability. e, Observation errors were added to the original time series (see 
Methods), R2 was calculated between the original dynamic stabilities and 
those calculated from the time series with an added error. This procedure 
was repeated 100 times for each error magnitude (%). Midline, box limits, 
whiskers and points indicate median, upper and lower quartiles, 1.5×  
interquartile range and outliers, respectively (n =  100 for each box).  
f–j, Examples illustrating the relationships between the original dynamic 
stabilities versus those calculated after the addition of 1% (f), 5% (g),  
10% (h), 20% (i) and 30% (j) observation errors. The solid line indicates 
the 1:1 line. The dashed line indicates the dynamic stability =  1.0.
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Extended Data Figure 5 | Relationship between dynamic stability and 
coefficient of variation of fish abundance. a, Time series of mean values 
of CV. CV was calculated using a moving window (window width =  6 time 
points; 3 months) for population dynamics of each fish species. Mean 
values of CV were then calculated by averaging CV values of the 15 fish 
species. b, Comparison of CV between stable and unstable periods  

(n =  56 for stable conditions and n =  203 for unstable conditions). Under 
stable conditions (dynamic stability <  1.0), the CV is significantly lower 
than it is under unstable conditions (P <  0.0001, two-sided t-test). 
Midline, box limits, whiskers and points indicate median, upper and lower 
quartiles, 1.5× interquartile range and outliers, respectively.
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Extended Data Figure 6 | CCM between dynamic stability and surface 
water temperature, species richness, total fish abundance and the s.d. 
and skewness of the interaction strength distribution. a–c, Time series 
of surface water temperature (a), richness of dominant fish species (b) and 
total abundance of dominant fish species (c). The width of the grey region 
corresponds to a 1-year interval (24 observations per year). d–f, Results of 
CCM analysis between dynamic stability and surface water temperature (d),  
species richness (e) and total fish abundance (f). g–h, Results of CCM 
between the dynamic stability and s.d. of interaction strength (g) and 
skewness of the interaction strength distribution (h). Dark solid lines 

indicate cross-map skill (ρ) from dynamic stability to another variable. 
Shaded regions indicate 95% confidence intervals of 100 surrogate time 
series. Significant cross-map skills (ρ) are highlighted in red (d–h).  
i, j, Correlations between median:maximum interaction strength (IS) 
(weak interaction index) and s.d. of interaction strength (i) and the 
skewness (j) (n =  261 for each panel). The dynamic stability is indicated 
in blue. The weak interaction index and s.d. and skewness of interaction 
strength were predominantly linearly correlated, which suggests that the 
s.d. and skewness of interaction strength are alternative representations of 
the weak interaction index in our data.
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Extended Data Figure 7 | Abundance-based stability index of the fish 
community. a, Temporal dynamics of the abundance-based stability  
index. Euclidean distance between W(t + 1) and W(t) was calculated  
(see Methods for the definition of W(t)). Note that the abundance of each 
fish species was standardized before calculating the Euclidean distance.  
b–g, Results of CCM between the abundance-based stability and 

interspecific interactions, species richness, diversity and surface water 
temperature. Dark solid lines indicate cross-map skill (ρ) from the 
abundance-based stability to another variable. Shaded regions indicate 
95% confidence intervals of 100 surrogate time series. Significant cross-
map skills (ρ) are highlighted in red.
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Extended Data Figure 8 | Results of quantile regressions between 
Simpson’s diversity index and properties of the distributions of 
interaction strengths. a–h, Quantile regressions and their regression 
coefficients of the mean IS (a, b), median:maximum interaction  
strength (c, d), skewness (e, f) and s.d. of interaction strength (g, h) were 

plotted against Simpson’s diversity index. The solid red line indicates 
the 50% quantile and the dashed black lines enclose the 2.5% and 97.5% 
quantiles (a, c, e, g; n =  261 for each panel). Regression coefficients 
(slopes) were plotted against quantiles (b, d, f, h), and show that all 
coefficients exhibit an increasing trend as the quantile increases.
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extended data table 1 | result of CCM for the dominant fish species in Maizuru Bay

The significance of the CCM was judged using two criteria: (1) the terminal ρ is higher than the 95% confidence intervals of phase-lock twin surrogate, and (2) the initial ρ minus the terminal ρ (Δ ρ) is 
larger than 0.1.

Jellyfish Engraulis Plotosus Sebastes Trachurus Girella Pseudolabrus Parajulis
Jellyfish - -0.003 0.030 0.012 0.131 0.169 0.035 0.097
Engraulis japonicus -0.005 - -0.003 0.046 0.067 0.125 0.144 -0.030
Plotosus japonicus 0.077 -0.030 - 0.197 0.263 0.028 0.333 0.195
Sebastes cheni 0.044 -0.022 0.112 - 0.311 0.339 0.269 0.334
Trachurus japonicus 0.391 0.133 0.309 0.269 - 0.481 0.447 0.552
Girella punctata 0.168 0.090 0.243 0.191 0.421 - 0.296 0.358
Pseudolabrus sieboldi 0.418 -0.030 0.417 0.342 0.643 0.546 - 0.594
Parajulis poecilepterus 0.188 0.029 0.071 0.570 0.370 0.425 0.359 -
Halichoeres tenuispinis 0.215 0.110 0.072 0.360 0.394 0.324 0.319 0.688
Chaenogobius gulosus 0.101 -0.058 0.049 -0.026 0.043 0.037 0.071 0.023
Pterogobius zonoleucus 0.009 -0.086 0.062 0.087 0.287 0.138 0.408 -0.008
Tridentiger trigonocephalus 0.022 -0.131 -0.002 0.075 0.142 0.103 -0.029 0.186
Siganus fuscescens 0.078 0.018 0.175 -0.018 0.215 0.180 0.180 0.328
Sphyraena pinguis 0.048 -0.045 0.004 -0.010 0.340 0.154 0.028 0.153
Rudarius ercodes 0.092 0.056 0.069 -0.005 0.411 0.149 0.284 0.117

Halichoeres Chaenogobius Pterogobius Tridentiger Siganus Sphyraena Rudarius
Jellyfish 0.019 0.019 0.032 -0.025 0.064 0.032 0.077
Engraulis japonicus -0.043 -0.061 -0.042 0.141 -0.059 -0.024 0.145
Plotosus japonicus 0.019 0.064 0.053 0.337 0.047 -0.010 0.123
Sebastes cheni 0.285 0.117 0.102 0.127 0.229 0.003 0.257
Trachurus japonicus 0.415 0.190 0.296 0.215 0.266 0.465 0.499
Girella punctata 0.229 -0.022 0.353 0.105 0.244 0.047 0.224
Pseudolabrus sieboldi 0.567 0.336 0.371 0.339 0.401 0.204 0.530
Parajulis poecilepterus 0.656 0.119 0.200 0.270 0.336 -0.042 0.313
Halichoeres tenuispinis - 0.209 0.236 0.182 0.312 -0.027 0.374
Chaenogobius gulosus 0.005 - 0.005 0.044 0.069 -0.027 0.091
Pterogobius zonoleucus 0.095 0.243 - 0.002 0.086 -0.047 0.551
Tridentiger trigonocephalus 0.232 0.325 0.125 - 0.084 0.130 0.241
Siganus fuscescens 0.209 -0.014 -0.016 0.133 - 0.014 0.100
Sphyraena pinguis 0.014 0.090 0.003 0.104 -0.021 - 0.153
Rudarius ercodes 0.148 0.131 0.081 0.061 0.028 0.127 -
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extended data table 2 | dimensionality and nonlinearity of the stability index and interaction strength

Embedding dimension was examined from E =  1 to 24, and the best nonlinear parameter was examined from θ =  0 to 10.

Index or interspecific interactions Best embedding dimension (E) Best nonlinear parameter ( )
Dynamic stability  24 2

Individual interspecific interactions
Cause species Effect species
Trachurus japonicus Aurelia sp. 2 1.3
Parajulis poecilepterus Sebastes cheni 10 0.8
Sphyraena pinguis Trachurus japonicus 12 0.8
Rudarius ercodes Trachurus japonicus 7 1.9
Plotosus japonicus Pseudolabrus sieboldi  24 0.8
Pterogobius zonoleucus Pseudolabrus sieboldi 6 2.4
Halichoeres tenuispinis Parajulis poecilepterus 5 1.5
Siganus fuscescens Parajulis poecilepterus 5 2.3
Pterogobius zonoleucus Chaenogobius gulosus 6 1.2
Tridentiger trigonocephalus Chaenogobius gulosus 7 0
Girella punctata Pterogobius zonoleucus 4 1.2
Plotosus japonicus Tridentiger trigonocephalus  24 0
Trachurus japonicus Sphyraena pinguis 8 1.6
Pterogobius zonoleucus Rudarius ercodes 3 0

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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1.   Sample size

Describe how sample size was determined. Sample size was restricted by the size of the existing time series.

2.   Data exclusions

Describe any data exclusions. Time series of dominant fish species were selected for analyses because rare 
species that were not observed during most of the census term were not suitable 
for the time series analysis. In Extended Data Figure 1, artificial time series that 
show strong linearity (e.g., limit cycle and equilibrium) were excluded from the 
analysis.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

The analysis results can be reproduced using R code deposited in https://
doi.org/10.5281/zenodo.1039387. Time series observations were not replicated.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Any manipulative experiments were not performed and thus randomization is not 
relevant to our study.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Any manipulative experiments were not performed and thus blinding is not 
relevant to our study.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
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The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted
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Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

"rEDM" package v0.2.4 (Ye et al. 2015 PNAS) of R v3.2.1 (R Core Team 2015) was 
used to analyze the data. R scripts are available in https://doi.org/10.5281/
zenodo.1039387.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

No unique materials were used in our study.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used in our study.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used in our study.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used in our study.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used in our study.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No eukaryotic cell lines were used in our study.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

No animals were used in our study.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

No human participants were involved in our study.
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