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Abstract—The K -receiver degraded broadcast channel with
secrecy outside a bounded range is studied, in which a transmitter
sends K messages to K receivers, and the channel quality
gradually degrades from receiver K to receiver 1. Each receiver k
is required to decode message W1, . . . ,Wk, for 1 ≤ k ≤ K , and to
be kept ignorant of Wk+2, . . . ,WK , for k = 1, . . . , K −2. Thus,
each message Wk is kept secure from receivers with at least two-
level worse channel quality, i.e., receivers 1, . . ., k−2. The secrecy
capacity region is fully characterized. The achievable scheme
designates one superposition layer to each message with binning
employed for each layer. Joint embedded coding and binning
are employed to protect all upper-layer messages from lower-
layer receivers. Furthermore, the scheme allows adjacent layers
to share rates so that part of the rate of each message can be
shared with its immediate upper-layer message to enlarge the rate
region. More importantly, an induction approach is developed to
perform Fourier-Motzkin elimination of 2K variables from the
order of K2 bounds to obtain a close-form achievable rate region.
An outer bound is developed that matches the achievable rate
region, whose proof involves recursive construction of the rate
bounds and exploits the intuition gained from the achievable
scheme.
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I. INTRODUCTION

THE broadcast channel models an important type of
scenarios in which the transmitter’s signal can simulta-

neously reach multiple receivers, and it has been widely used
in wireless communications. Within the communication range
of the transmitter, some receivers are intended while some are
non-intended or even eavesdroppers from which the messages
should be kept secure. Due to this broadcast nature of wireless
communications, security has arisen as an important issue.
Various broadcast channel models with different transmission
reliability constraints (i.e., legitimate receivers should decode
messages destined for them) and different secrecy constraints
(i.e., eavesdroppers should be kept ignorant of messages) have
been intensively studied (see recent surveys [4]–[9]).
The basic broadcast channel with a secrecy constraint was

the wiretap channel initiated by Wyner [10], in which a
transmitter has a message intended for a legitimate receiver
and wishes to keep this message secure from an eavesdropper.
Csiszár and Körner further generalized this model to the
case with one more common message intended for both the
legitimate receiver and the eavesdropper in [11].
These broadcast models were further generalized to the

multi-receiver case in [12] and [13], in which a transmitter
has a number of messages intended for a set of receivers,
and all messages need to be secure from an eavesdropper.
Another type of extension is the broadcast channel with
layered decoding and layered secrecy [13]–[15], in which the
transmitter has a number of messages intended for a set of
receivers, and as the channel quality of a receiver gets one level
better, one more message is required to be decoded, and this
message is required to be secure from all receivers with worse
channel quality. More specifically, a K -receiver broadcast
channel is considered in [15] (K = 3 in [13] and [14]),
in which a transmitter sends K messages to K receivers.
The channel quality gradually degrades from receiver K to
receiver 1. Receiver k is required to decode the first k messages
W1, . . . ,Wk for 1 ≤ k ≤ K , and to be kept ignorant of
messages Wk+1, . . . ,WK for 1 ≤ k ≤ K − 1.

We note that for the model considered in [13]–[15], the addi-
tional message decoded by a better receiver needs to be
kept secure from the receiver with only one level worse
channel quality. Here, any message Wk should be decoded
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by receiver k, and be kept secure from receiver k − 1. Such
a model is well defined when receivers k and k − 1 have
nonzero difference in channel quality so that nonzero secrecy
rate can be achieved for Wk . However, such a model is not
useful if the difference in channel quality between the adjacent
receivers becomes asymptotically small (i.e., close to zero),
because essentially no secrecy rate can be achieved under the
secrecy requirement of the model. For example, consider a
fading broadcast channel, in which the channel to each receiver
is determined by a channel gain coefficient with amplitude h,
where h is continuous (the larger h, the better the channel).
Here, the channel gains between two adjacent receivers can be
arbitrarily close, and hence zero secrecy rate can be achieved
for a message required to be decoded by one receiver and
secured from the other receiver.
In this paper, we are interested in a model in which any

message decoded at a certain receiver is not required to be
kept secure from the one-level-worse receiver, but kept secure
from the m-level-worse (m > 1) receiver. Such a model is
valid as long as the “m levels” create nonzero differences in
channel quality between receivers. In the fading channel, such
a model captures scenarios in which messages intended for
receivers with h > h0 be kept secure from receivers with
h < h0 −!, i.e., the messages are not necessarily kept secure
from receivers with channel quality between h0 − ! and h0.
Here, ! > 0 guarantees nonzero difference between receivers
required to decode the messages and receivers required to be
ignorant of the messages, so that nonzero secrecy rate can be
achieved. We refer to such a secrecy requirement as secrecy
outside a bounded range.
We note that although this paper focuses on the case with

! corresponding to two levels of channel quality (as we
describe below in more detail), the technical treatment here
already contains all the necessary ingredients to design
capacity-achieving secrecy schemes for the general case with
secrecy outside arbitrary m levels of channel quality. We dis-
cuss this generalization in Section V. We also note that we
recently applied/generalized this study to the fading channel
in [16].
More formally, we consider the K -receiver degraded broad-

cast channel with secrecy outside a bounded range (see Fig. 1),
in which a transmitter sends K messages to K receivers. The
channel satisfies the degradedness condition, i.e., the channel
quality gradually degrades from receiver K to receiver 1.
Furthermore, receiver k is required to decode the first k
messages, W1, . . . ,Wk , for 1 ≤ k ≤ K , and to be kept secure
of Wk+2, . . . ,WK for k = 1, . . . , K − 2. Each message Wk
is required to be secure from the receiver k − 2, which has
two level worse channel quality, for 3 ≤ k ≤ K . In this way,
the secrecy is required outside a range of two-level channel
quality.
The main result of this paper lies in the complete charac-

terization of the secrecy capacity region for the K -receiver
degraded broadcast channel with secrecy outside a bounded
range. To understand the challenges of the problem and the
novelty of the paper, we first describe special cases, namely
three-receiver and four-receiver models, studied by the authors
in earlier conference versions of this study [1], [2]. For the

Fig. 1. The K -receiver broadcast channel with secrecy outside a bounded
range.

three-receiver model, we show in [1] that superposition of
messages and joint binning and embedded coding (using lower
layer messages to protect higher layer messages) achieves
the secrecy capacity. However, in [2] we show that a natural
generalization of such a scheme does not provide the capacity
region for the four-receiver model. A novel rate splitting and
sharing scheme was proposed in [2], which is shown to be
critical to further enlarge the achievable region and establish
the secrecy capacity region for the four-receiver model. The
idea is to first use lower-layer messages as random sources to
protect higher-layer messages. If the message at a certain layer
(say layer k) is more than enough to protect the higher-layer
messages, then such a message can also partially protect the
message at layer k. Consequently, the protected message at
layer k can be shared between layer k and its upper layer to
enlarge the secrecy rate region.
Further generalization of the capacity characterization for

the above four-receiver model to the arbitrary K -user case
becomes very challenging due to the following reasons.
(1) Based on the understanding in the four-receiver model,
each message as well as the random bin number at each layer
can potentially serve as sources of randomness to protect all
higher-layer messages (from lower layer receivers). The design
of joint embedded coding and binning is very complicated
to handle. For example, consideration of whether to adopt
binning at layer k depends on whether embedded coding of
layer k−1 is sufficient to protect Wk from receiver k−2, and
whether embedded coding of layer k−2 and (possible) binning
in layer k − 1 are sufficient to protect Wk−1 and Wk from
receiver k−3, and so on. Incorporating all these considerations
into the design of an achievable scheme is not feasible for
arbitrary K -user model. (2) Due to rate splitting and sharing
across adjacent layers, the rate region is expressed in terms
of individual rate components. A typical technique to convert
the rate region in terms of the (total) rate for each message
is Fourier-Motzkin elimination. However, for the arbitrary
K -user model, a large number of rate variables (more specif-
ically, 2K ) should be eliminated from the order of K 2 rate
bounds. Such procedure is not analytically tractable in general.
(3) Because we employ joint embedded coding and binning
to secure multiple messages, the analysis of secrecy guarantee
is much more involved than the cases with only one or two
messages secured by binning.
Despite the challenges mentioned above, in this paper,

we fully characterize the secrecy capacity region for the
K -receiver model with secrecy outside a bounded range. Our
solution of the problem includes the following new ingredi-
ents. (1) Our achievable scheme employs binning in each layer,
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which avoids the complex consideration of whether or not
it is necessary to employ binning for each layer. We also
make an important observation that rate sharing only between
adjacent layers is sufficient. This observation is critical to
keep the obtained rate region simple enough for further
manipulation. (2) We design an induction algorithm to perform
Fourier-Motzkin elimination. Instead of directly eliminating
2K variables from the order of K 2 rate bounds, we eliminate
a pair of variables at a time. We then further show that
the region after each elimination step possesses a common
structure by induction. (3) In order to obtain the strong secrecy
guarantee for the case with arbitrary K users, we generalize
the arguments in [17]–[21] in which strong secrecy is obtained
through channel resolvability. (4) Our development of the
converse proof involves recursive construction of upper bounds
on the rate of each message such that proper terms cancel out
across adjacent messages, and manipulation of the terms by
exploiting intuition in achievable schemes.
The remainder of this paper is organized as follows.

In Section II, we introduce our system model. In Section III,
we present two example models with three receivers and
four receivers, respectively, which motivate the design of the
achievable scheme for the model with arbitrary K receivers.
In Section IV, we present our main results for the model
with arbitrary K receivers. In Section V, we discuss potential
extensions of our results. Finally, in Section VI, we conclude
our paper.

II. CHANNEL MODEL

In this paper, we consider a K -receiver degraded broadcast
channel model with secrecy outside a bounded range (see
Fig. 1). A transmitter sends information to K receivers through
a discrete memoryless channel. The channel transition proba-
bility function is PY1···YK |X , where X ∈ X denotes the channel
input, and Yk ∈ Yk denotes the channel output at receiver k,
for 1 ≤ k ≤ K . The channel is assumed to be degraded,
i.e., the following Markov chain condition holds:

X → YK → YK−1 → · · · → Y1. (1)

Hence, the channel quality gradually degrades from receiver K
to receiver 1. There are in total K messages W1,W2, . . . ,WK
intended for K receivers with the following decoding and
secrecy requirements. Receiver k is required to decode mes-
sages W1,W2, . . . ,Wk , for k = 1, 2, . . . , K , and to be kept
secure of Wk+2, . . . ,WK , for k = 1, . . . , K − 2 (see Fig. 1).

A (2nR1 , . . . , 2nRK , n) code for the channel consists of
• K message sets: Wk ∈ Wk = {1, . . . , 2nRk } for k =
1, . . . , K , which are independent from each other and
each message is uniformly distributed over the corre-
sponding message set;

• A (possibly stochastic) encoder f n : W1 × · · ·×WK →
X n that maps a message tuple to an input xn;

• K decoders gnk : Yn
k → (W1, . . . ,Wk) that maps

an output ynk to a message tuple (ŵ1, . . . , ŵk) for
k = 1, . . . , K .

A rate tuple (R1, . . . , RK ) is said to be achievable, if there
exists a sequence of (2nR1 , . . . , 2nRK , n) codes such that as

Fig. 2. The three-receiver broadcast channel with secrecy outside a bounded
range.

n → ∞, the average error probability

Pn
e = Pr

(
∪K
k=1{(W1, . . . ,Wk) ̸= gnk (Y

n
k )}

)
→ 0, (2)

and the secrecy metric at receiver k

I (Wk , . . . ,WK ; Y n
k−2) → 0, (3)

for k = 3, . . . , K . Here, we consider the strong secrecy metric
instead of the weak secrecy metric as in [10] and [11], which
requires the mutual information in (3) averaged over the block
length n go to zero as n goes to infinity. The results in
this paper may also be extended to an even stronger security
notion, namely the semantic security [22], which enables
quantifying the security of codes at finite lengths and is of
practical importance in cryptography.
The asymptotically small error probability in (2) implies

that each receiver k is able to decode messages W1, . . . ,Wk ,
and the asymptotically small secrecy metric in (3) for each
receiver k implies that Wk , . . . ,WK and Y n

k−2 are asymptoti-
cally independent, i.e., receiver k is kept ignorant of messages
Wk+2, . . . ,WK . Our goal is to characterize the secrecy capac-
ity region which consists of all achievable rate tuples.

III. MOTIVATING EXAMPLES

In this section, we study two motivating examples with
K = 3 and K = 4. The purpose is to motivate the development
of the optimal achievable scheme for the case with arbitrary
K receivers step by step. More specifically, we study the
example with three receivers to introduce the technique of joint
embedded coding and binning. We study the example with
four receivers to introduce the technique of rate splitting and
sharing. These schemes turn out to be necessary to achieve the
secrecy capacity region for the case with arbitrary K receivers.

A. Lessons Learned From K = 3

We start with the case in which there are three receivers
(see Fig. 2). In this case, receiver 1 is required to decode W1,
receiver 2 is required to decode W1,W2, and receiver 3 is
required to decode W1,W2,W3. The system is also required
to satisfy the secrecy constraint that the message W3 is kept
secure from receiver 1.
For such a model, a natural idea is to design superposition

coding for encoding three messages W1,W2,W3 into three
layers, and then apply binning in the third layer to protect W3
from receiver 1. However, such a scheme is suboptimal
because it ignores an important fact that the random mes-
sage W2, which is not required to be decoded by receiver 1, can
provide additional randomness to protect W3 from receiver 1.
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Fig. 3. The four-receiver broadcast channel with secrecy outside a bounded
range.

This is referred to as embedded coding. In fact, if such a ran-
dom source of W2 is sufficient to protect W3 from receiver 1,
binning is not necessary. If this is not sufficient to protect W3,
we apply binning in the third layer to further protect W3
from receiver 1. The novelty of such an achievable scheme
lies in exploiting the superposition layer of W2 as embedded
coding in addition to the binning scheme to protect W3. Such
a scheme turns out to achieve the secrecy capacity region as
characterized in the following proposition.
Proposition 1: Consider the three-receiver degraded broad-

cast channel with secrecy outside a bounded range as
described in Section II. The secrecy capacity region contains
rate tuples (R1, R2, R3) satisfying

R1 ≤ I (U1; Y1),
R2 ≤ I (U2; Y2|U1),

R3 ≤ min{0, I (U2; Y2|U1) − I (X; Y1|U1)} + I (X; Y3|U2)

(4)

for some PU1U2X such that the following Markov chain con-
dition holds

U1 → U2 → X → Y3 → Y2 → Y1. (5)
Proof: The proof can be found in [1].

!
The idea of the achievable scheme is also reflected in the

expression of the capacity region in (4). The two bounds in
“min” are corresponding to the two cases with the second
layer of W2 being sufficient and insufficient to protect W3,
respectively. If I (U2; Y2|U1) > I (X; Y1|U1), the randomness
of W2 is sufficient to exhaust receiver 1’s decoding capability,
and hence is good enough for protecting W3. Thus, in this
case, no binning is required in layer 3, and R3 ≤ I (X; Y3|U2).
On the other hand, if I (U2; Y2|U1) ≤ I (X; Y1|U1), binning is
required at layer 3 to protect W3 in addition to randomness
of W2, and hence, R3 ≤ I (U2; Y2|U1) − I (X; Y1|U1) +
I (X; Y3|U2).
We note that a graphical representation of rate and equiv-

ocation quantities for the scalar Gaussian broadcast channel
with secrecy outside a bounded range (K = 3) is presented
in [23], which is based on the fundamental relationship
between the mutual information and the minimum mean
square error (MMSE) (I-MMSE approach [24]).

B. Lessons Learned From K = 4

In this subsection, we study the model with four receivers
(see Fig. 3). In this model, receiver k is required to decode
messages W1, . . . ,Wk , for 1 ≤ k ≤ 4. Furthermore, the

message W3 is required to be secure from receiver 1,
and the message W4 is required to be secure from
receivers 1 and 2.
Although this four-receiver model seems to be a straight-

forward generalization of the three-receiver model, our explo-
ration turns out to show that the achievable scheme for
the three-receiver model is not sufficient to establish the
secrecy capacity region for the four-receiver model. In order
to understand this, we note that a direct generalization of the
achievable scheme for the three-model involves first applying
superposition coding to encode the four messages, and then
use the random message W3 as embedded coding together
with the binning in layer 4 (if necessary) to protect W4, and
use the random message W2 as embedded coding together with
the binning in layer 3 and layer 4 (if necessary) to protect W3
and W4. Such a scheme then yields an achievable region with
rate tuples (R1, R2, R3, R4) satisfying

R1 ≤ I (U1; Y1),
R2 ≤ I (U2; Y2;U1),
R3 ≤ I (U3; Y3|U2)

+ min
(
0, I (U2; Y2|U1) − I (U3; Y1|U1)

)
,

R4 ≤ I (X; Y4|U3),
R4 ≤ I (X; Y4|U3)+ I (U3; Y3|U2) − I (X; Y2|U2),

R3 + R4 ≤ I (U3; Y3|U2)+ I (X; Y4|U3)+ I (U2; Y2|U1)

− I (X; Y1|U1), (6)

for some PU1U2U3X satisfying the Markov chain condition
U1 → U2 → U3 → X → Y4 → · · · → Y1. It turns out to
be very difficult to develop the converse proof for the bound
R4 ≤ I (X; Y4|U3) in the above region. Thus, the optimality
of the region (6) cannot be guaranteed.
The major novelty in our scheme for this four-receiver

model lies in the design of rate splitting and sharing, which
helps enlarge the achievable region and thus establish the
secrecy capacity region. More specifically, if W3 is sufficient
to protect W4, we further split W3 into two parts, i.e., W3,1
and W3,2, such that W3,1 serves as a random source to secure
both W3,2 and W4 from receiver 2. Thus,W3,2 satisfies both the
decoding and secrecy requirements for W4, and hence the rate
of W3,2 can be counted towards the rate of either W3 or W4.
In this way, the achievable region can be enlarged. In fact,
such an enlarged region is shown to be the secrecy capacity
region as characterized in the following proposition.
Proposition 2: Consider the four-receiver degraded broad-

cast channel with secrecy outside a bounded range as
described in Section II. The secrecy capacity region consists
of rate tuples (R1, R2, R3, R4) satisfying

R1 ≤ I (U1; Y1),
R2 ≤ I (U2; Y2|U1),

R3 ≤ I (U3; Y3|U2)

+ min
(
0, I (U2; Y2|U1) − I (U3; Y1|U1)

)
,

R4 ≤ I (X; Y4|U3)+ I (U3; Y3|U2) − I (X; Y2|U2),

R3 + R4 ≤ I (U3; Y3|U2)+ I (X; Y4|U3)

+ min
(
0, I (U2; Y2|U1) − I (X; Y1|U1)

)
, (7)



2108 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 3, MARCH 2018

for some PU1U2U3X such that the following Markov chain
condition holds

U1 → U2 → U3 → X → Y4 → Y3 → Y2 → Y1. (8)
Proof: The proof can be found in [2]. !

We note that by using rate splitting and sharing, the bound
R4 ≤ I (X; Y4|U3) in the region (6) is replaced by the bound
R3 + R4 ≤ I (U3; Y3|U2) + I (X; Y4|U3) in the region (7).
Clearly, the region (7) is larger than the region (6) (for a
given distribution of auxiliary random variables). Furthermore,
the converse proof for the new bound on R3 + R4 in (7) can
be derived, and thus establishes the region (7) as the secrecy
capacity region.
Moreover, although we learn useful coding ingredients from

the three-receiver and four-receiver cases, direct generalization
to arbitrary K -receiver model still gives rise to an analytically
intractable achievable scheme. More specifically, the consider-
ation of whether or not to use binning in the higher layers and
whether or not to split and share the rates will be complex. For
example, when K = 5, whether to use binning in the fifth layer
depends on whether the embedded coding in the third layer and
(possibly) binning in the fourth layer are sufficient to protect
W4,W5 from receiver 3 and whether the embedded coding
in the fourth layer is sufficient to protect W5 from receiver 3.
Such considerations become intractable when K is large. Thus,
the major design issue for the arbitrary K -receiver case is to
develop an achievable scheme that effectively incorporates the
necessary coding ingredients as well as yielding a tractable
rate region for analysis. This is the focus of the following
section.

IV. MAIN RESULTS

In this section, we first present our main result of charac-
terization of the secrecy capacity region for the K -receiver
model, and then describe the idea behind the design of the
achievable scheme.

A. Secrecy Capacity Region

The following theorem states our main result. For simplicity
of notation, we define UK = X .
Theorem 1: Consider the K -receiver degraded broadcast

channel with secrecy outside a bounded range as described in
Section II. The secrecy capacity region consists of rate tuples
(R1, R2, . . . , RK ) satisfying

R1 ≤ I (U1; Y1), (9a)
k∑

j=2

R j ≤
k∑

j=2

I (Uj ; Y j |Uj−1), for 2 ≤ k ≤ K , (9b)

k∑

j=l

R j ≤

⎛

⎝
k∑

j=l−1

I (Uj ; Y j |Uj−1)

⎞

⎠ − I (Uk ; Yl−2|Ul−2),

for 3 ≤ l ≤ k ≤ K , (9c)

for some PU1U2...UK such that the following Markov chain
condition holds:

U1 → U2 → · · · → UK → YK → · · · → Y2 → Y1. (10)

Proof: The proof of the achievability and the
proof of converse are provided in Appendices A and C,
respectively. !
In the above capacity region, the bounds (9a) and (9b)

are due to the decoding requirements, i.e., receiver k should
decode messages W1, . . . ,Wk , for 1 ≤ k ≤ K . The sum rate
bounds (9b) are due to the rate sharing scheme we design. The
bounds (9c) are due to the secrecy requirements, i.e., messages
Wl , . . . ,Wk need to be kept secure from receiver l − 2 for
3 ≤ l ≤ k ≤ K . Furthermore, the bounds (9c) can be further
written as

k∑

j=l

R j ≤
k∑

j=l−1

(
I (Uj ; Y j |Uj−1) − I (Uj ; Yl−2|Uj−1)

)
,

which has clear intuitive interpretation. The term I (Uj ;
Y j |Uj−1) − I (Uj ; Yl−2|Uj−1) is corresponding to the rate
in layer j that can be secure from receiver l − 2 given the
knowledge of layer j − 1. Those rates I (Uj ; Y j |Uj−1) −
I (Uj ; Yl−2|Uj−1) for l−1 ≤ j ≤ k can all be counted towards∑k

j=l R j in accordance to the secrecy requirement of keeping
Wl , . . . ,Wk secured from receiver l − 2.
If we set K = 3 and K = 4, the region in Theorem 1

reduces to equivalent but different forms from the regions in
Proposition 1 and Proposition 2. The equivalence is justified
by the converse proofs. However, the achievable schemes for
the three-receiver model in Section III-A and the four-receiver
model in Section III-B cannot be easily generalized to the
arbitrary K -receiver model.
Our design of the achievable scheme for the general arbi-

trary K -receiver model is different from those for the three-
receiver and four receiver models, and includes the following
new ingredients. The scheme employs binning in each layer,
which avoids the complex consideration of whether or not it is
necessary to employ binning for each layer. The rate sharing
scheme is limited only between adjacent layers which captures
the essence of the problem and helps simplify the obtained
rate region. Furthermore, we design an induction algorithm
to perform Fourier-Motzkin elimination, which makes the
problem of eliminating 2K variables from the order of K 2

bounds analytically tractable. These ideas are described in
more detail in Subsection IV-B.
The converse for the achievable region can be developed.

The bounds (9a) and (9b) can be derived following standard
steps. However, the proof for the bounds (9c) is more involved
and requires careful recursive construction of the terms such
that proper terms cancel out across adjacent messages.

B. Achievable Scheme

In this subsection, we introduce the idea of the achievable
scheme for the arbitrary K -receiver model, which is based
on superposition coding, binning, embedded coding, and rate
splitting and sharing. We also sketch the novel induction idea
to analyze Fourier-Motzkin elimination to characterize the
achievable region.
1) Superposition, Binning, Embedded Coding: We design

one layer of codebook for each message, i.e., layer k cor-
responds to Wk , for 1 ≤ k ≤ K . To avoid the complex
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consideration of whether to use binning, we employ binning
in each layer. We divide the codewords in each layer into a
number of bins, where the bin number contains the information
of the corresponding message. We use joint embedded coding
and binning to provide randomness for secrecy.
2) Rate Splitting and Sharing: We design rate splitting and

sharing to enlarge the achievable region. More specifically,
within the k-th layer, we split the message Wk into two
parts Wk,1 and Wk,2. The message Wk,1 serves as embedded
coding which is a random source in addition to the binning to
protectWk,2 and the higher layer messages from receiver Yk−1,
i.e., we require that (Wk,2,Wk+1,1,Wk+1,2, . . . ,WK ,1,WK ,2)
be secure from receiver Yk−1, for 2 ≤ k ≤ K−1. Furthermore,
the upstream receiver Yk+1 can also decode Wk,2 because
Yk+1 has a better channel quality than Yk . Thus, the message
Wk,2 satisfies both the decoding and secrecy requirements for
message Wk+1, and hence, the rate of Wk,2 can be counted
towards the rate of either Wk or Wk+1. By such a rate sharing
strategy, the achievable region is enlarged.
The rate can only be shared between adjacent receivers,

which is an important observation of this problem, and is
critical to reduce the complexity of the design of the rate
splitting and sharing strategy. More specifically, the rate
of Wk,2 cannot be counted towards the rates of Wk+2, . . . ,WK ,
because Wk+2, . . . ,WK are required to be secure not only
from receiver Yk−1 but also from Yk that are required to
decode Wk,2.
Based on the above achievable scheme, we obtain the

following achievable region:

R1 ≤ I (U1; Y1),
Rk,1 + Rk,2 ≤ I (Uk ; Yk |Uk−1), for 2≤ k≤ K ,

Rk−1,2 +
j∑

i=k

(Ri,1 + Ri,2) ≤
j∑

i=k−1

I (Ui ; Yi |Ui−1)

−I (Uj ; Yk−2|Uk−2),

for 3≤k≤K , k − 1≤ j≤K ,

(11)

where we use the convention that
∑k

i= j Xi = 0 if j > k.
The above region are expressed in terms of component rates

due to rate splitting. In order to express the above region
in terms of total rate for each message, we introduce the
technique of rate sharing. We define Rk = Rk−1,2 + Rk,1 for
3 ≤ k ≤ K − 1, R2 = R2,1 and RK = RK−1,2+ RK ,1+ RK ,2.
We then wish to project the region (11) onto the rate space
(R1, . . . , RK ). This can be done by adding the above rate
definitions to the achievable region (11) and then perform the
Fourier-Motzkin elimination to eliminate Rk,1 and Rk,2 for
2 ≤ k ≤ K .
3) Fourier-Motzkin Elimination via Induction: The total

number of bounds in the achievable region (11) is on the order
of K 2 with 2K variables to be eliminated. Directly apply-
ing Fourier-Motzkin elimination is not analytically tractable.
In order to solve this problem, we design the following
induction algorithm to perform Fourier Motzkin elimination.
We eliminate the rate pairs Rk−1,2 and Rk,1 for 3 ≤ k ≤ K
one at each step, and wish to show that the region Rk after

eliminating Rk−1,2 and Rk,1 possesses the following structure:

R1 ≤ I (U1; Y1),
j∑

i=2

Ri ≤
j∑

i=2

I (Ui ; Yi |Ui−1), for 2 ≤ j ≤ k − 1,

k∑

i=2

Ri + Rk,2 ≤
k∑

i=2

I (Ui ; Yi |Ui−1),

j∑

i=l

Ri ≤
j∑

i=l−1

I (Ui ; Yi |Ui−1) − I (Uj ; Yl−2|Ul−2),

for 3 ≤ l ≤ j ≤ k − 1,
k∑

i=l

Ri + Rk,2 ≤
k∑

i=l−1

I (Ui ; Yi |Ui−1) − I (Uk ; Yl−2|Ul−2),

for 3 ≤ l ≤ k + 1. (12)

Such a claim can be easily verified for the case when
k = 3, 4, 5. If such a claim holds for Rk , we then are able
to show (see Appendix B for detailed proof) that the region
Rk+1 after eliminating Rk,2 and Rk+1,1 possesses the same
structure given by

R1 ≤ I (U1; Y1),
j∑

i=2

Ri ≤
j∑

i=2

I (Ui ; Yi |Ui−1), for 2 ≤ j ≤ k,

k+1∑

i=2

Ri + Rk+1,2 ≤
k+1∑

i=2

I (Ui ; Yi |Ui−1),

j∑

i=l

Ri ≤
j∑

i=l−1

I (Ui ; Yi |Ui−1) − I (Uj ; Yl−2|Ul−2),

for 3 ≤ l ≤ j ≤ k,
k+1∑

i=l

Ri+Rk+1,2 ≤
k+1∑

i=l−1
I (Ui ; Yi |Ui−1)− I (Uk+1; Yl−2|Ul−2),

for 3 ≤ l ≤ k + 2. (13)

The last step is to eliminate (RK−1,2, RK ,1, RK ,2). Thus,
the above induction algorithm and arguments yield the achiev-
able region in Theorem 1.

V. EXTENSIONS

In this paper, we have focused on the case with secrecy
outside two levels of channel quality. In fact, such a case
captures the essence of this type of model, and the design
of the capacity-achieving secrecy schemes already consists of
all the necessary ingredients to address the general case with
secrecy outside arbitrary m levels of channel quality, i.e., the
techniques of joint embedded coding and binning, rate splitting
and sharing, and inductive Fourier-Motzkin elimination.
For m > 2 the rate splitting and sharing are more involved

than for the case with m = 2. Each message Wk should be split
into m submessages, Wk,1, . . . ,Wk,m . All the submessages in
layers indexed from k − m + 1 to k − 1 but {Wk−i,i+1}m−1

i=1
serve as embedded coding in addition to binning to protect
{Wk−i,i+1}m−1

i=1 and all higher-layer (with index no less than k)
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submessages from receiver Yk−m . Here, we index the sub-
messages such that Wk,i is secured from receiver Yk−m+i−1,
for 1 ≤ i ≤ m and 2 ≤ k ≤ K . The upstream receiver Yk
can also decode all the submessages {Wk−i,i+1}m−1

i=1 . Hence,
{Wk−i,i+1}m−1

i=1 satisfy both the decoding and secrecy require-
ments for message Wk . Then the rates of {Wk−i,i+1}m−1

i=1 can
be counted towards the rate of Wk . We then define the rate
sharing such that Rk = ∑m−1

i=0 Rk−i,i+1 . Based on the above
achievable scheme, we can obtain an achievable region in
terms of Wk, j , for 1 ≤ k ≤ K and 1 ≤ j ≤ m. We then
project this region onto the rate space (R1, . . . , RK ). This can
be done by a similar but rather complicated inductive Fourier-
Motzkin elimination.
The results here can be further generalized to models with

continuously changing channel state parameters, e.g., Gaussian
fading channel [25], and Gaussian multiple input multiple
output (MIMO) channel [26]. For example, in our recent
work [16], we study the fading channel with secrecy outside
a bounded range. More specifically, we first quantify the
continuous channel state with infinitely many discrete channel
states, and then apply/generalize the techniques in this paper.

VI. CONCLUSION

In this paper, we have studied the K -receiver degraded
broadcast channel with secrecy outside a bounded range.
We have proposed a novel achievable scheme based on super-
position coding, joint embedded coding and binning, and rate
splitting and sharing. The combination of embedded coding
and binning to achieve secrecy captures the fact that lower-
layer messages can serve as embedded coding to protect
higher-layer messages. Rate splitting and sharing are critical
to enlarge the achievable region for which the converse proof
can be established. Moreover, our design exploits an important
property that the rate sharing should be only between adjacent
receivers, which significantly reduces the complexity of the
achievable scheme. We have further proposed a novel induc-
tion algorithm to perform Fourier-Motzkin elimination on the
achievable region with 2K variables to be eliminated from
the order of K 2 bounds. We have also constructed a converse
proof, which involves careful recursive construction of rate
bounds, and exploits the intuition gained from embedded
coding in the achievable scheme. By the converse proof,
we have demonstrated the optimality of our achievable scheme
and established the secrecy capacity region.
This paper has focused on characterizing the information

theoretic performance limits which are based on random
coding arguments. It is of further interest to design practical
coding schemes such as polar codes [27]–[33] and low density
parity check (LDPC) codes [34] to achieve secrecy capacity.

APPENDIX A
ACHIEVABILITY PROOF OF THEOREM 1

The achievability proof is based on superposition coding,
embedded coding, binning, rate splitting and sharing. We use
random codes and fix a distribution PU1U2...,UK−1X PY1...YK |X
satisfying the Markov chain condition in (10). Let
T n

ϵ (PU1...UK−1XY1...YK ) denote the strongly jointly ϵ-typical set

based on the fixed distribution [35, ch. 3], [36]. The achievable
scheme is designed as follows:

A. Random Codebook Generation

For simplicity, we define UK = X in the following proof,
i.e., PU1···UK−1X = PU1···UK .

• Generate 2nR1 independent and identically distributed
(i.i.d.) un1 with distribution

∏n
i=1 P(u1,i ). Index these

codewords as un1(w1), w1 ∈ [1, 2nR1].
• For each un1(w1), generate 2n(R2,1+R2,2) i.i.d. un2 by∏n

i=1 P(u2,i |u1,i). Partition these codewords into 2nR2,2
bins. Index these codewords as un2(w1, w2,1, w2,2), w2,1 ∈
[1, 2nR2,1 ], w2,2 ∈ [1, 2nR2,2 ].

• For each un2(w1, w2,1, w2,2), generate 2n(R3,1+R3,2+R3,3)

i.i.d. un3 by
∏n

i=1 P(u3,i |u2,i ). Partition these codewords
into 2nR3,1 bins, and further partition each bin into 2nR3,2
sub-bins. Hence, there are 2nR3,3 un3 in each sub-bin.
We use w3,1 ∈ [1 : 2nR3,1 ] to denote the bin number,
w3,2 ∈ [1 : 2nR3,2 ] to denote the sub-bin number, and
l3 ∈ [1 : 2nR3,3 ] to denote the index within the bin. Hence,
each un3 is indexed by (w1, w2,1, w2,2, w3,1, w3,2, l3).

• For 4 ≤ k ≤ K , for each unk−1(w1, . . . , wk−1,1,
wk−1,2, lk−1), generate 2n(Rk,1+Rk,2+Rk,3) i.i.d. unk by∏n

i=1 P(uk,i |uk−1,i ). Partition these codewords into 2nRk,1
bins, and further partition each bin into 2nRk,2 sub-bins.
Hence, there are 2nRk,3 unk in each sub-bin. We use wk,1 ∈
[1 : 2nRk,1 ] to denote the bin number, wk,2 ∈ [1 : 2nRk,2 ] to
denote the sub-bin number, and lk ∈ [1 : 2nRk,3 ] to denote
the index within the bin. Hence, each unk is indexed by
(w1, . . . , wk−1,1, wk−1,2, lk−1, wk,1, wk,2, lk).

The codebook is revealed to both the transmitter and the
receivers.

B. Encoding

To send a message tuple

(w1, w2,1, w2,2, . . . , wK ,1, wK ,2),

the transmitter randomly and uniformly generates lk ∈ [1 :
2nRk,3 ] for 3 ≤ k ≤ K , and sends

xn(w1, . . . , wK ,1, wK ,2, l3, . . . , lK ).

C. Decoding

• Receiver 1 claims that ŵ1 is sent, if there exists a unique
ŵ1 such that

(
un1(ŵ1), yn1

)
∈ T n

ϵ (PU1Y1).

Otherwise, it declares an error.
• Receiver 2 claims that (ŵ1, ŵ2,1, ŵ2,2) is sent, if there
exists a unique tuple (ŵ1, ŵ2,1, ŵ2,2) such that

(
un1(ŵ1), un2(ŵ1, ŵ2,1, ŵ2,2), yn2

)
∈ T n

ϵ (PU1U2 Y2).

Otherwise, it declares an error.
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• For 3 ≤ k ≤ K , receiver k claims that
(ŵ1, . . . , ŵk,1, ŵk,2) is sent, if there exists a unique tuple
(ŵ1, . . . , ŵk,1, ŵk,2, l̂3, . . . , l̂k) such that

(
un1(ŵ1), . . . , unk (ŵ1, . . . , ŵk,1, ŵk,2, l̂3, . . . , l̂k), ynk

)

∈ T n
ϵ (PU1···UkYk ).

Otherwise, it declares an error.

D. Analysis of Error Probability

By the law of large numbers and the packing lemma [37],
receiver k decodes the message (w1, . . . , wk,1, wk,2) for
2 ≤ k ≤ K and receiver 1 decodes the message w1
with asymptotically small error probabilities if the following
inequalities are satisfied:

R1 ≤ I (U1; Y1),
R2,1 + R2,2 ≤ I (U2; Y2|U1),

Rk,1 + Rk,2 + Rk,3 ≤ I (Uk ; Yk|Uk−1), for 3 ≤ k ≤ K .

(14)

E. Analysis of Secrecy

We require that

(Wk−1,2,Wk,1,Wk,2, . . . ,WK ,1,WK ,2)

be secure from receiver Yk−2, for 3 ≤ k ≤ K . It then suffices
to show that as n → ∞,

I
(
Wk−1,2 ,Wk,1,Wk,2, . . . ,WK ,1,WK ,2; Y n

k−2

∣∣∣∣C
)

→ 0,

(15)

for 3 ≤ k ≤ K , where C denotes a random codebook over
the codebook ensemble. This implies the existence of one
codebook that guarantees secrecy.
We note that lk in random codebook generation is a realiza-

tion of the random variable Lk . For notational convenience,
let Lk

j = (L j , . . . , Lk), lkj = (l j , . . . , lk) for 3 ≤ j ≤
k ≤ K , andMk = (Wk−1,2,Wk,1,Wk,2, . . . ,WK ,1,WK ,2), for
3 ≤ k ≤ K .
By the independence of the messages, i.e., Mk and

(W1, . . . ,Wk−2,1,Wk−2,2, Lk−2) are independent, and the
fact that given C, Un

k−2 is a deterministic function of
(W1, . . . ,Wk−2,1,Wk−2,2, Lk−2), it follows that Un

k−2 is inde-
pendent of Mk , and thus

I (Mk; Y n
k−2|C) = H (Mk|C) − H (Mk|Y n

k−2, C)
= H (Mk|Un

k−2, C) − H (Mk|Y n
k−2, C)

≤ H (Mk|Un
k−2, C) − H (Mk|Y n

k−2,U
n
k−2, C)

≤ I (Mk; Y n
k−2|Un

k−2, C). (16)

Connecting the idea of channel resolvability to
secrecy [18]–[21], it follows that

I (Mk; Y n
k−2|Un

k−2, C)

= E log
P(Mk ,Y n

k−2|Un
k−2, C)

P(Mk |Un
k−2, C)P(Y

n
k−2|Un

k−2, C)

= E log
P(Y n

k−2|Mk,Un
k−2, C)

P(Y n
k−2|Un

k−2, C)

= E
[

log
P(Y n

k−2|Mk,Un
k−2, C)

P(Y n
k−2|Un

k−2)

+ log
P(Y n

k−2 |Un
k−2)

P(Y n
k−2|Un

k−2, C)

]

≤ E
[

log
P(Y n

k−2|Mk,Un
k−2, C)

P(Y n
k−2|Un

k−2)

]

, (17)

where the last step is due to the fact that

E
[

log
P(Y n

k−2|Un
k−2)

P(Y n
k−2|Un

k−2, C)

]

= −E
[
D(PYn

k−2 |Un
k−2,C∥PYn

k−2 |Un
k−2

)
]

≤ 0, (18)

where

D(P||Q) =
∑

i

P(i) log
P(i)
Q(i)

is the Kullback-Leibler divergence between two distributions
P and Q.
Conditioned on a realization C of the random codebook C,

we obtain that

P
(
ynk−2|wk−1,2, wk,1, wk,2, . . . , wK ,1, wK ,2, unk−2,C

)

=
∑

wk−1,1,lKk−1

[
P
(
ynk−2,wk−1,1,lKk−1|wk−1,2,wk,1,

wk,2,...,wK ,1,wK ,2,unk−2,C
)

]

=

∑

wk−1,1,lKk−1

[
P
(
ynk−2|wk−1,1,wk−1,2,...,wK ,1,

wK ,2,lKk−1,u
n
k−2,C

)
]

2n(Rk−1,1+Rk−1,3+...+RK ,3)

=

∑

wk−1,1,lKk−1

[
P
(
ynk−2|unK (w1,...,wk,1,wk,2,

...,wK ,1,wK ,2,lK3 ),C
)

]

2n(Rk−1,1+Rk−1,3+...+RK ,3)

=

∑

wk−1,1,lKk−1

[
P
(
ynk−2|unK (w1,...,wk,1,wk,2,

...,wK ,1,wK ,2,lK3 )
)

]

2n(Rk−1,1+Rk−1,3+...+RK ,3)
, (19)

where the last step is due to the Markov chain condition

C → Un
K → Y n

k−2.

Due to the symmetry of the random codebook con-
struction, when computing the expectation in (17), we can
assume that all the indices except (Wk−1,1, LK

k−1) are fixed
constants and equal to one. For notational convenience,
we only include the indices (Wk−1,1, LK

k−1) and ignore
all those fixed indices when labeling the codewords. For
example, instead of unk−2(w1, . . . , wk−2,1, wk−2,2, lk−2) and
unK (w1, . . . , wk,1, wk,2, . . . , wK ,1, wK ,2, l K3 ), we use unk−2 and
unK (wk−1,1, l Kk−1).
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Following steps similar to those in [19], we obtain
that

E
[

log
P(Y n

k−2|Mk,Un
k−2, C)

P(Y n
k−2|Un

k−2)

]

(a)=
∑

C

P(C)
∑

ynk−2

P(ynk−2|1, . . . , 1, unk−2,C)

× log
P(ynk−2|1, . . . , 1, unk−2,C)

P(ynk−2|unk−2)

=
∑

C

P(C)
∑

ynk−2

1
2n(Rk−1,1+Rk−1,3+...+RK ,3)

×
∑

wk−1,1,lKk−1

P(ynk−2|unK (wk−1,1l Kk−1))

× log

∑

w̃k−1,1,l̃ Kk−1

P(ynk−2|unK (w̃k−1,1, l̃ Kk−1))

2n(Rk−1,1+Rk−1,3+...+RK ,3)P(ynk−2|unk−2)

(b)=
∑

C

P(unk−2)
∏

ŵk−1,1,l̂k−1

[
P(unk−1(ŵk−1,1, l̂k−1)|unk−2)

×
[
· · ·

∏

l̂K

P(unK (ŵk−1,1, l̂ Kk−1)|unK−1(ŵk−1,1, l̂ K−1
k−1 ))

]]

×
∑

ynk−2

1
2n(Rk−1,1+Rk−1,3+...+RK ,3)

×
∑

wk−1,1,lKk−1

P(ynk−2|unK (wk−1,1l Kk−1))

× log

∑

w̃k−1,1,l̃ Kk−1

P(ynk−2|unK (w̃k−1,1, l̃ Kk−1))

2n(Rk−1,1+Rk−1,3+...+RK ,3)P(ynk−2|unk−2)

(c)= 1
2n(Rk−1,1+Rk−1,3+...+RK ,3)

∑

C

∑

ynk−2

∑

wk−1,1,lKk−1

P(unk−2)

×
∏

ŵk−1,1,l̂k−1

[
P(unk−1(ŵk−1,1, l̂k−1)|unk−2)

×
[
· · ·

∏

l̂K

P(unK (ŵk−1,1, l̂ Kk−1)|unK−1(ŵk−1,1, l̂ K−1
k−1 ))

]]

× P(ynk−2|unK (wk−1,1l Kk−1))

× log

⎛

⎜⎜⎜⎝

∑

w̃k−1,1,l̃ Kk−1

P(ynk−2|unK (w̃k−1,1, l̃ Kk−1))

2n(Rk−1,1+Rk−1,3+...+RK ,3)P(ynk−2|unk−2)

⎞

⎟⎟⎟⎠
, (20)

where in (a), by the symmetry of the random codebook
construction, we let Un

k−2 = unk−2(1, . . . , 1), Mk =
(1, . . . , 1); and in (b) and the following equations, C con-
sists only of those codewords with all the indices except
(wk−1,1, l Kk−1) being one; (c) is obtained by reordering those
summations.
From (20), we further obtain (21) on bottom of this page,

where (a) follows by the concavity of the logarithm and
Jensen’s inequality applied to the expectation over all the
codewords except

(
unk−2, u

n
k−1(wk−1, lk−1), . . . , unK (wk−1, l Kk−1)

)
.

E
[

log

(
P(Y n

k−2|Mk,Un
k−2, C)

P(Y n
k−2|Un

k−2)

)]

= 1
2n(Rk−1,1+Rk−1,3+...+RK ,3)

∑

wk−1,1,lKk−1

∑

ynk−2

∑

unk−2

∑

unk−1(wk−1,1,lk−1)

· · ·
∑

unK (wk−1,1lKk−1)

P(ynk−2, u
n
K (wk−1,1l Kk−1), . . . , u

n
k−2)

∑

C\{unk−2,...,

unK (wk−1,1lKk−1)}

∏

ŵk−1,1,l̂k−1

[
P(unk−1(ŵk−1,1, l̂k−1)|unk−2)

×
[
· · ·

∏

l̂K

P(unK (ŵk−1,1, l̂ Kk−1)|unK−1(ŵk−1,1, l̂ K−1
k−1 ))

]]
log

⎛

⎜⎝

∑

w̃k−1,1 ,l̃
K
k−1

P(ynk−2|unK (w̃k−1,1,l̃ Kk−1))

2n(Rk−1,1+Rk−1,3+...+RK ,3)P(ynk−2|unk−2)

⎞

⎟⎠

P(unk−1(wk−1, lk−1), . . . , wK (wk−1, l Kk−1)|unk−2)

(a)
≤ 1

2n(Rk−1,1+Rk−1,3+...+RK ,3)

∑

wk−1,1,lKk−1

∑

ynk−2

∑

unk−2

∑

unk−1(wk−1,1,lk−1)

· · ·
∑

unK (wk−1,1lKk−1)

P(ynk−2, u
n
K (wk−1,1l Kk−1), . . . , u

n
k−2) log

⎛

⎜⎜⎜⎝

∑

(w̃k−1,1,l̃ Kk−1) ̸=(wk−1,1,lKk−1)

E
[
P(ynk−2|Un

K (w̃k−1,1,l̃ Kk−1))
]

P(ynk−2|unk−2)2
n(Rk−1,1+Rk−1,3+...+RK ,3)

+ P(ynk−2|unK (wk−1,1,lKk−1))

2n(Rk−1,1+Rk−1,3+...+RK ,3)P(ynk−2|unk−2)

⎞

⎟⎟⎟⎠
(21)
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We now consider the expectation in (21) for different values
of (w̃k−1,1, l̃ Kk−1). We first define

P(ynk−2|unK (wk−1,1, l Kk−1))

2n(Rk−1,1+Rk−1,3+...+RK ,3)P(ynk−2|unk−2)

!= AK . (22)

For (w̃k−1,1, l̃ K−1
k−1 ) = (wk−1,1, l K−1

k−1 ) but l̃K ̸= lK , we obtain

∑

l̃K ̸=lK

P(ynk−2|unK−1(wk−1,1, l K−1
k−1 ))

2n(Rk−1,1+Rk−1,3+...+RK ,3)P(ynk−2|unk−2)

≤ P(ynk−2|unK−1(wk−1,1, l K−1
k−1 ))

2n(Rk−1,1+Rk−1,3+...+RK−1,3)P(ynk−2|unk−2)
!= AK−1. (23)

More generally, for any k − 1 ≤ j ≤ K − 1, for
(w̃k−1,1, l̃

j
k−1) = (wk−1,1, l

j
k−1) but l̃ j+1 ̸= l j+1, we obtain

∑

l̃ Kj+1:l̃ j+1 ̸=l j+1

P(ynk−2|unj (wk−1,1, l
j
k−1))

2n(Rk−1,1+Rk−1,3+...+RK ,3)P(ynk−2|unk−2)

≤
P(ynk−2|unj (wk−1,1, l

j
k−1))

2n(Rk−1,1+Rk−1,3+...+R j,3)P(ynk−2|unk−2)
!= A j . (24)

For (w̃k−1,1, l̃k−1) ̸= (wk−1,1, lk−1), we obtain
∑

(w̃k−1,1,l̃ Kj+1):
(w̃k−1,1,l̃k−1) ̸=(wk−1,1,lk−1)

1
2n(Rk−1,1+Rk−1,3+...+RK ,3)

≤ 1. (25)

Combining (22) (24) and (25) yields that the term within
the log in (21) is upper bounded by 1 + ∑K

j=k−1 A j , which
further implies that

E
[

log
P(Y n

k−2 |Mk,Un
k−2, C)

P(Y n
k−2|Un

k−2)

]

≤ E log

⎛

⎜⎝1+
K∑

j=k−1

P(Y n
k−2|Un

j (Wk−1,1, L
j
k−1))[

P(Yn
k−2|Un

k−2)

×2n(Rk−1,1+Rk−1,3+...+R j,3)

]

⎞

⎟⎠

≤
K∑

j=k−1

E log

⎛

⎜⎝1+
P(Y n

k−2|Un
j (Wk−1,1, L

j
k−1))[

P(Yn
k−2 |Un

k−2)

×2n(Rk−1,1+Rk−1,3+...+R j,3)

]

⎞

⎟⎠. (26)

By the symmetry of the random codeword generation,
we assume that (Wk−1,1, LK

k−1) are fixed, and thus in the
following proof, we ignore these indices. For any k − 1 ≤
j ≤ K , it then follows that

E log

(

1+
P(Y n

k−2|Un
j )

2n(Rk−1,1+Rk−1,3+...+R j,3)P(Y n
k−2|Un

k−2)

)

=
∑

(unk−2,u
n
j ,y

n
k−2)∈Tn

ϵ (PUk−2U j Yk−2 )

P(unk−2, u
n
j , y

n
k−2)

× log

(

1+
P(ynk−2|unj )

2n(Rk−1,1+Rk−1,3+...+R j,3)P(ynk−2|unk−2)

)

+
∑

(unk−2,u
n
j ,y

n
k−2)/∈T n

ϵ (PUk−2U j Yk−2 )

P(unk−2, u
n
j , y

n
k−2)

× log

(

1+
P(ynk−2|unj )

2n(Rk−1,1+Rk−1,3+...+R j,3)P(ynk−2|unk−2)

)

!= d1 + d2. (27)

Using the inequalities in [36, Appendix] and following steps
similar to those in [19], we have

d1 ≤
∑

(unk−2,u
n
j ,y

n
k−2)∈Tn

ϵ (PUk−2U j Yk−2 )

P(unk−2, u
n
j , y

n
k−2)

× log

(

1+ 2−n(1−ϵ)H(Yk−2|Uj )

2n(Rk−1,1+Rk−1,3+...+R j,3)−n(1+ϵ)H(Yk−2|Uk−2)

)

≤ log

(

1+ 2−n(1−ϵ)H(Yk−2|Uj )

2n(Rk−1,1+Rk−1,3+...+R j,3)−n(1+ϵ)H(Yk−2|Uk−2)

)

(28)

which vanishes as n → ∞ if

Rk−1,1 + Rk−1,3 + . . .+ R j,3

> I (Uj ; Yk−2|Uk−2)+ 2ϵH (Yk−2|Uk−2). (29)

To show d2 → 0 as n → ∞, it follows that

d2 ≤
∑

(unk−2,u
n
j ,y

n
k−2)

/∈T n
ϵ

(
PUk−2U j Yk−2

)

(
unk−2,u

n
j ,y

n
k−2

)

∈supp
(
PUn

k−2 ,U
n
j ,Y

n
k−2

)

P(unk−2, u
n
j , y

n
k−2) log

(
1+

(
1
µ

)n)

≤ 2|Uk−2||U j ||Yk−2|e−ϵ2φn/3n log
(
1+ 1

µ

)

→ 0, as n → ∞. (30)

where supp(PX ) is defined to be the support of a distribution
PX , |Uk−2|, |U j | and |Yk−2| are the support sizes of Uk−2, Uj
and Yk−2, respectively, and

µ = min
(uk−2,yk−2)∈supp

(
PUk−2Yk−2

) P(yk−2|uk−2),

φ = min
(uk−2,u j ,yk−2)∈supp

(
PUk−2U j Yk−2

) P(uk−2u j yk−2). (31)

Therefore, if the following conditions are satisfied for
3 ≤ k ≤ K and k − 1 ≤ j ≤ K :

Rk−1,1 + Rk−1,3 + . . .+ R j,3 > I (Uj ; Yk−2|Uk−2), (32)

then, for 3 ≤ k ≤ K ,

I (Mk; Y n
k−2|Un

k−2, C) → 0, as n → ∞. (33)

Combining the bounds in (14) and (32), and by choosing
Rk,1 + Rk,2 + Rk,3 = I (Uk ; Yk |Uk−1), we conclude that
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the rate tuple (R1, R2,1, R2,2, . . . , RK ,1, RK ,2) is achievable
if

R1 ≤ I (U1; Y1),
Rk,1 + Rk,2 ≤ I (Uk ; Yk |Uk−1), for 2 ≤ k ≤ K ,

Rk−1,2 +
j∑

i=k

(Ri,1 + Ri,2)

≤
j∑

i=k−1

I (Ui ; Yi |Ui−1) − I (Uj ; Yk−2|Uk−2),

for 3 ≤ k ≤ K , and k − 1 ≤ j ≤ K . (34)

F. Rate Sharing

We note that our achievable scheme guarantees
Wk−1,2,Wk,1,Wk,2, . . . ,WK ,1,WK ,2 to be secure from
receiver Yk−2, for 3 ≤ k ≤ K . Furthermore, due to the degrad-
edness condition, Wk−1,2 can be decoded by receiver Yk . Thus,
Wk−1,2 satisfies both the decoding and secrecy requirements
as Wk . Hence, the rate of Wk−1,2 can be counted towards
either Rk−1 or Rk . Based on such an understanding,
we design the following rate sharing scheme. We define
R2 = R2,1, Rk = Rk−1,2 + Rk,1 for 3 ≤ k ≤ K − 1, and
RK = RK−1,2 + RK ,1 + RK ,2, and include these equations to
the above achievable region. We then perform Fourier-Motzkin
elimination to eliminate Rk,1, Rk,2 for 2 ≤ k ≤ K and obtain
a closed-form achievable rate region. Such a process involves
eliminating 2K − 2 variables from the order of K 2 bounds,
which is intractable for arbitrary K . We propose an inductive
Fourier Motzkin elimination approach as shown in Appen-
dix B, and obtain the achievable region given in Theorem 1.

APPENDIX B
INDUCTIVE FOURIER-MOTZKIN ELIMINATION

As we have shown in Appendix A, we need to eliminate
Rk,1, Rk,2 for 2 ≤ k ≤ K in the following region:

R1 ≤ I (U1; Y1), (35a)

Rk,1 + Rk,2 ≤ I (Uk ; Yk |Uk−1), for 2 ≤ k ≤ K , (35b)

Rl−1,2 +
j∑

i=l

(Ri,1 + Ri,2)

≤
j∑

i=l−1

I (Ui ; Yi |Ui−1) − I (Uj ; Yl−2|Ul−2),

for 3 ≤ l ≤ K , l − 1 ≤ j ≤ K , (35c)

R2 = R2,1, (35d)

Rk = Rk−1,2 + Rk,1, for 3 ≤ k ≤ K − 1, (35e)

RK = RK−1,2 + RK ,1 + RK ,2, (35f)

where the bounds (35a), (35b) and (35c) correspond to the
achievable region after rate splitting, which are expressed in
terms of component rates, and the bounds (35d), (35e) and
(35f) are corresponding to the rate sharing strategy.
It can be seen that the total number of bounds in the

above region is on the order of K 2 over which 2K − 2
variables need to be eliminated. Directly applying Fourier-
Motzkin elimination is not analytically tractable. We design

an inductive algorithm, in which we eliminate the rate pairs
(Rk−1,2, Rk,1) for 3 ≤ k ≤ K − 1 one at each step, and
finally eliminate (RK−1,2, RK ,1, RK ,2). We first replace R2,1
with R2, Rk−1,2 + Rk,1 with Rk for 3 ≤ k ≤ K − 1, and
RK−1,2+ RK ,1+ RK ,2 with RK , and we obtain the following
region:

R1 ≤ I (U1; Y1),
R2 + R2,2 ≤ I (U2; Y2|U1),

Rk,1 + Rk,2 ≤ I (Uk ; Yk |Uk−1), for 3 ≤ k ≤ K ,
j∑

i=l

Ri + R j,2 ≤
j∑

i=l−1

I (Ui ; Yi |Ui−1) − I (Uj ; Yl−2|Ul−2),

for 3 ≤ l ≤ K , l − 1 ≤ j ≤ K − 1,
K∑

i=l

Ri ≤
K∑

i=l−1

I (Ui ; Yi |Ui−1) − I (UK ; Yl−2|Ul−2),

for 3 ≤ l ≤ K ,

Rk = Rk−1,2 + Rk,1, for 3 ≤ k ≤ K − 1,

RK = RK−1,2 + RK ,1 + RK ,2. (36)

To start, we first eliminate (R2,2, R3,1) from the inequali-
ties given below, corresponding to the decoding and secrecy
requirements of receiver 1 to receiver 3:

R1 ≤ I (U1; Y1),
R2 + R2,2 ≤ I (U2; Y2|U1),

R3,1 + R3,2 ≤ I (U3; Y3|U2),

R2,2 ≤ I (U2; Y2|U1) − I (U2; Y1|U1),

R3 + R3,2 ≤
3∑

i=2

I (Ui ; Yi |Ui−1) − I (U3; Y1|U1),

R3,2 ≤ I (U3; Y3|U2) − I (U3; Y2|U2),

R3 = R2,2 + R3,1. (37)

We then obtain the following inequalities after elimination:

R1 ≤ I (U1; Y1),
R2 ≤ I (U2; Y2|U1),

3∑

i=2

Ri + R3,2 ≤
3∑

i=2

I (Ui ; Yi |Ui−1),

R3 + R3,2 ≤
3∑

i=2

I (Ui ; Yi |Ui−1) − I (U3; Y1|U1),

R3,2 ≤ I (U3; Y3|U2) − I (U3; Y2|U2), (38)

which we denote as R3.
We then eliminate (R3,2, R4,1) from the inequalities in R3

and the inequalities given below, which together are cor-
responding to the decoding and secrecy requirements of
receiver 1 to receiver 4:

R4,1 + R4,2 ≤ I (U4; Y4|U3),
4∑

i= j

Ri + R4,2 ≤
4∑

i= j−1

I (Ui ; Yi |Ui−1) − I (U4; Y j−2|Uj−2),

for 3 ≤ j ≤ 5,

R4 = R3,2 + R4,1. (39)
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We then obtain the following bounds after elimination:

R1 ≤ I (U1; Y1),
j∑

i=2

Ri ≤
j∑

i=2

I (Ui ; Yi |Ui−1), for 2 ≤ j ≤ 3,

4∑

i=2

Ri + R4,2 ≤
4∑

i=2

I (Ui ; Yi |Ui−1),

j∑

i=l

Ri ≤
j∑

i=l−1

I (Ui ; Yi |Ui−1) − I (Uj ; Yl−2|Ul−2),

for 3 ≤ l ≤ j ≤ 3,
4∑

i=l

Ri + R4,2 ≤
4∑

i=l−1

I (Ui ; Yi |Ui−1) − I (U4; Yl−2|Ul−2),

for 3 ≤ l ≤ 5, (40)

which we denote as R4.
As we observe, the region R3 and R4 conform to the

following structure for k = 3 and k = 4:

R1 ≤ I (U1; Y1),
j∑

i=2

Ri ≤
j∑

i=2

I (Ui ; Yi |Ui−1), for 2 ≤ j ≤ k − 1,

k∑

i=2

Ri + Rk,2 ≤
k∑

i=2

I (Ui ; Yi |Ui−1),

j∑

i=l

Ri ≤
j∑

i=l−1

I (Ui ; Yi |Ui−1) − I (Uj ; Yl−2|Ul−2),

3 ≤ l ≤ j ≤ k − 1,
k∑

i=l

Ri + Rk,2 ≤
k∑

i=l−1

I (Ui ; Yi |Ui−1) − I (Uk; Yl−2|Ul−2),

for 3 ≤ l ≤ k + 1. (41)

We next show that the region Rk takes the structure (41)
for any 3 ≤ k ≤ K − 1 using induction. We have verified
such a claim for k = 3, 4. If such a claim holds for Rk ,
we eliminate Rk,2 and Rk+1,1 from the inequalities in Rk and
the inequalities given below, which together are corresponding
to the decoding and secrecy requirements of receiver 1 to
receiver k + 1:

Rk+1,1 + Rk+1,2 ≤ I (Uk+1; Yk+1|Uk),
k+1∑

i= j

Ri + Rk+1,2 ≤
k+1∑

i=j−1

I (Ui ; Yi |Ui−1)

− I (Uk+1; Y j−2|Uj−2), for 3≤ j≤k+2,

Rk+1 = Rk,2 + Rk+1,1. (42)

Then the resulting region, following standard steps of Fourier-
Motzkin elimination to eliminate Rk,2 and Rk+1,1, equals (41)
for k + 1.

Finally, we eliminate (RK−1,2, RK ,1, RK ,2), and obtain the
achievable region in Theorem 1.

APPENDIX C
CONVERSE PROOF OF THEOREM 1

We note that the converse proof is based on the weak
secrecy requirement, which is necessarily valid under the
strong secrecy requirement. Such a converse proof also implies
that the secrecy capacity region under the weak and strong
secrecy requirements are the same.
By Fano’s inequality and the secrecy requirements, we have

the following inequalities:

H (Wk|Y n
k ) ≤ nϵn, for 1 ≤ k ≤ K , (43)

I (Wk , . . . ,WK ; Y n
k−2) ≤ ϵn ≤ nϵn, for 3 ≤ k ≤ K , (44)

both of which implies that for 3 ≤ k ≤ K ,

I (Wk , . . . ,WK ; Y n
k−2|W1, . . . ,Wk−2) ≤ nϵn . (45)

We denote Y i−1
k := (Yk,1, . . . ,Yk,i−1), and Y n

k,i+1 :=
(Yk,i+1, . . . ,Yk,n). We set U1,i := (W1,Y i−1

1 ), U2,i :=
(W1,W2,Y i−1

2 ), Uk,i := (W1, . . . ,Wk,Y i−1
k ,Y n

k−2,i+1), for
3 ≤ k ≤ K . We note that Y n

0 = Y n
−1 = $.

Due to the degradedness condition, it can be verified
that (U1,i ,U2,i , . . . ,UK−1,i ,UK ,i , Xi ) satisfy the following
Markov chain condition for 1 ≤ i ≤ n:

U1,i → . . . → UK ,i → Xi → YK ,i → . . . → Y1,i . (46)

We first bound the rate R1. Since W1 is only required to be
decoded by receiver Y1, we obtain the following bound:

nR1 = H (W1)

= I (W1; Y n
1 )+ H (W1|Y n

1 )
(a)
≤ I (W1; Y n

1 )+ nϵn

=
n∑

i=1

I (W1; Y1i |Y i−1
1 )+ nϵn

≤
n∑

i=1

I (W1,Y i−1
1 ; Y1i)+ nϵn

=
n∑

i=1

I (U1,i ; Y1,i)+ nϵn, (47)

where (a) is due to Fano’s inequality.
We further bound the rate R2 as follows:

nR2 = H (W2) = H (W2|W1)

= I (W2; Y n
2 |W1)+ H (W2|Y n

2 ,W1)
(a)≤ I (W2; Y n

2 |W1)+ nϵn

=
n∑

i=1

I (W2; Y2,i |W1,Y i−1
2 )+ nϵn

(b)
≤

n∑

i=1

I (W1,W2,Y i−1
2 ; Y2,i |W1,Y i−1

1 )+ nϵn

=
n∑

i=1

I (U2,i ; Y2,i |U1,i )+ nϵn, (48)

where (a) is due to Fano’s inequality, and (b) is due to the
Markov chain condition Y i−1

1 → Y i−1
2 → (W1,W2,Y2,i ).
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We then bound the sum rate bounds on
∑k

i=2 Ri , for
3 ≤ k ≤ K :

n
k∑

j=2

R j = H (W2, . . . ,Wk)

(a)= H (W2|W1)+ H (W3|W1,W2)

+ . . .+ H (Wk|W1, . . . ,Wk−1)
(b)≤ I (W2; Y n

2 |W1)+ I (W3; Y n
3 |W1,W2)

+ . . .+ I (Wk ; Y n
k |W1, . . . ,Wk−1)+ n(k − 1)ϵn

=
n∑

i=1

I (W2; Y2,i |W1,Y i−1
2 )+ I (W3; Y3,i |W1,W2,Y i−1

3 )

+ . . .+ I (Wk ; Yk,i |W1, . . . ,Wk−1,Y i−1
k )+ n(k − 1)ϵn

= n(k − 1)ϵn +
n∑

i=1

(
I (W2,Y i−1

2 ; Y2,i |W1,Y i−1
1 )

− I (Y i−1
2 ; Y2,i |W1,Y i−1

1 )

+ I (W3,Y i−1
3 ,Y n

1,i+1; Y3,i |W1,W2,Y i−1
2 )

− I (Y i−1
3 ; Y3,i |W1,W2,Y i−1

2 )

− I (Y n
1,i+1; Y3,i |W1,W2,W3,Y i−1

3 )

+
k∑

j=4

(
I
(
Wj ,Y i−1

j ,Y n
j−2,i+1; Y j,i |W1, . . . ,Wj−1,

Y n
j−3,i+1,Y

i−1
j−1

)
+ I (Y n

j−3,i+1; Y j,i |W1, . . . ,Wj−1,Y i−1
j )

− I (Y i−1
j ; Y j,i |W1, . . . ,Wj−1,Y n

j−3,i+1,Y
i−1
j−1)

− I (Y n
j−2,i+1; Y j,i |W1, . . . ,Wj ,Y i−1

j )

))

(c)
≤ n(k − 1)ϵn +

k∑

j=2

n∑

i=1

I (Uj,i ; Y j,i |Uj−1,i), (49)

where (a) is due to the independence between the messages
(W1, . . . ,Wk), (b) is due to Fano’s inequality, and (c) is due
to the facts that

−I (Y i−1
2 ; Y2,i |W1,Y i−1

1 ) ≤ 0, (50)

−I (Y i−1
3 ; Y3,i |W1,W2,Y i−1

2 ) ≤ 0, (51)

−I (Y n
k−2,i+1; Yk,i |W1, . . . ,Wk,Y i−1

k ) ≤ 0, (52)

and the following inequalities:

−I (Y n
j−2,i+1; Y j,i |W1, . . . ,Wj ,Y i−1

j )

+ I (Y n
j−2,i+1; Y j+1,i |W1, . . . ,Wj ,Y i−1

j+1)

− I (Y i−1
j+1; Y j+1,i |W1, . . . ,Wj ,Y n

j−2,i+1,Y
i−1
j )

(a)= −I (Y i−1
j ; Y j−2,i |W1, . . . ,Wj ,Y n

j−2,i+1)

+ I (Y i−1
j+1; Y j−2,i |W1, . . . ,Wj ,Y n

j−2,i+1)

− I (Y i−1
j+1; Y j+1,i |W1, . . . ,Wj ,Y n

j−2,i+1,Y
i−1
j )

(b)= I (Y i−1
j+1; Y j−2,i |W1, . . . ,Wj ,Y n

j−2,i+1,Y
i−1
j )

− I (Y i−1
j+1; Y j+1,i |W1, . . . ,Wj ,Y n

j−2,i+1,Y
i−1
j )

(c)= −I (Y i−1
j+1; Y j+1,i |W1, . . . ,Wj ,Y n

j−2,i+1,Y
i−1
j ,Y j−2,i )

≤ 0, (53)

where (a) is due to Csiszár’s sum identity property [11], and
(b) and (c) are due to the degradedness condition (1).
We next bound the sum rate bounds on

∑k
j=l R j , for

3 ≤ l ≤ k ≤ K , which correspond to the secrecy constraints:

k∑

j=l

nR j = H (Wl, . . . ,Wk)+ H (Wl−1) − H (Wl−1)

(a)
≤

k∑

j=l−1

H (Wj ) − H (Wl−1)+ nϵn

− I (Wl . . . ,Wk ; Y n
l−2|W1, . . . ,Wl−2)

(b)
≤

k∑

j=l−1

H (Wj )+ nϵn

− I (Wl−1 . . . ,Wk ; Y n
l−2|W1, . . . ,Wl−2) (54)

where (a) is due to the secrecy requirement (45) and the
independence of the messages, and (b) is due to the fact that

−H (Wl−1) − I (Wl . . . ,Wk ; Y n
l−2|W1, . . . ,Wl−2)

= −H (Wl−1) − H (Wl . . . ,Wk |W1, . . . ,Wl−2)

+ H (Wl . . . ,Wk |Y n
l−2,W1, . . . ,Wl−2)

= −H (Wl−1 . . . ,Wk |W1, . . . ,Wl−2)

+ H (Wl . . . ,Wk |Y n
l−2,W1, . . . ,Wl−2)

≤ −H (Wl−1 . . . ,Wk |W1, . . . ,Wl−2)

+ H (Wl−1,Wl . . . ,Wk |Y n
l−2,W1, . . . ,Wl−2)

= −I (Wl−1 . . . ,Wk ; Y n
l−2|W1, . . . ,Wl−2). (55)

We next bound each term in (54) one by one. We first bound
H (Wj ) for l ≤ j ≤ k as shown in (56) on next page, where
(a) is due to the independence of the messages and the Fano’s
inequality (45), (b) is due to Csiszár sum identity property,
(c) is due to the degradedness condition (1) and the fact that

I (Y i−1
j ; Y j−3,i |W1, . . . ,Wj−1,Y n

j−3,i+1)

= I (Y i−1
j ; Y j−3,i |W1, . . . ,Wj−1,Y n

j−3,i+1,Y
i−1
j−1)

+ I (Y i−1
j−1; Y j−3,i |W1, . . . ,Wj−1,Y n

j−3,i+1), (57)

the inequality (d) is due to the degradedness condition (1) and
the fact that

−I (Y i−1
j ; Y j,i |W1, . . . ,Wj−1,Y i−1

j−1,Y
n
j−3,i+1)

+ I (Y i−1
j ; Y j−3,i |W1, . . . ,Wj−1,Y n

j−3,i+1,Y
i−1
j−1)

= −I (Y i−1
j ; Y j,i |W1, . . . ,Wj−1,Y i−1

j−1,Y
n
j−3,i+1,Y j−3,i)

≤ 0, (58)

and (e) is due to Csiszár’s sum identity property.
Following the intermediate step in (56), H (Wj ) is also

upper bounded as follows:

H (Wj ) ≤ nϵn +
n∑

i=1

(
I (Uj,i ; Y j,i |Uj−1,i)

− I (Y i−1
j ; Y j,i |W1, . . . ,Wj−1,Y i−1

j−1,Y
n
j−3,i+1)

+ I (Y n
j−3,i+1; Y j,i |W1, . . . ,Wj−1,Y i−1

j )

− I (Y n
j−2,i+1; Y j,i |W1, . . . ,Wj ,Y i−1

j )
)
. (59)
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H (Wj )
(a)
≤ H (Wj |W1, . . . ,Wj−1)+ nϵn − H (Wj |Y n

j ,W1, . . . ,Wj−1)

= I (Wj ; Y n
j |W1, . . . ,Wj−1)+ nϵn

= nϵn +
n∑

i=1

I (Wj ; Y j,i |W1, . . . ,Wj−1,Y i−1
j )

=
n∑

i=1

(
I (Wj ,Y i−1

j ,Y n
j−2,i+1; Y j,i |W1, . . . ,Wj−1,Y i−1

j−1,Y
n
j−3,i+1) − I (Y i−1

j ; Y j,i |W1, . . . ,Wj−1,Y i−1
j−1,Y

n
j−3,i+1)

+ I (Y n
j−3,i+1; Y j,i |W1, . . . ,Wj−1,Y i−1

j ) − I (Y n
j−2,i+1; Y j,i |W1, . . . ,Wj ,Y i−1

j )
)
+ nϵn

= nϵn +
n∑

i=1

(
I (Uj,i ; Y j,i |Uj−1,i) − I (Y i−1

j ; Y j,i |W1, . . . ,Wj−1,Y i−1
j−1,Y

n
j−3,i+1)

+ I (Y n
j−3,i+1; Y j,i |W1, . . . ,Wj−1,Y i−1

j ) − I (Y n
j−2,i+1; Y j,i |W1, . . . ,Wj ,Y i−1

j )
)

(b)= nϵn +
n∑

i=1

(
I (Uj,i ; Y j,i |Uj−1,i) − I (Y i−1

j ; Y j,i |W1, . . . ,Wj−1,Y i−1
j−1,Y

n
j−3,i+1)

+ I (Y i−1
j ; Y j−3,i |W1, . . . ,Wj−1,Y n

j−3,i+1) − I (Y n
j−2,i+1; Y j,i |W1, . . . ,Wj ,Y i−1

j )
)

(c)=
n∑

i=1

(
I (Uj,i ; Y j,i |Uj−1,i) − I (Y i−1

j ; Y j,i |W1, . . . ,Wj−1,Y i−1
j−1,Y

n
j−3,i+1)+ I (Y i−1

j−1; Y j−3,i |W1, . . . ,Wj−1,Y n
j−3,i+1)

+ I (Y i−1
j ; Y j−3,i |W1, . . . ,Wj−1,Y n

j−3,i+1,Y
i−1
j−1) − I (Y n

j−2,i+1; Y j,i |W1, . . . ,Wj ,Y i−1
j )

)
+ nϵn

(d)
≤ nϵn +

n∑

i=1

(
I (Uj,i ; Y j,i |Uj−1,i)+ I (Y i−1

j−1; Y j−3,i |W1, . . . ,Wj−1,Y n
j−3,i+1) − I (Y n

j−2,i+1; Y j,i |W1, . . . ,Wj ,Y i−1
j )

)

(e)= nϵn +
n∑

i=1

(
I (Uj,i ; Y j,i |Uj−1,i)+ I (Y n

j−3,i+1; Y j−1,i |W1, . . . ,Wj−1,Y i−1
j−1) − I (Y n

j−2,i+1; Y j,i |W1, . . . ,Wj ,Y i−1
j )

)

(56)

Hence, substituting (56) for l ≤ j ≤ k, and (59) for j = l−1
into the first term in (54), we obtain,

k∑

j=l−1

H (Wj )

≤ n(k − l + 2)ϵn +
n∑

i=1

k∑

j=l−1

I (Uj,i ; Y j,i |Uj−1,i)

+ I (Y n
l−4,i+1; Yl−1,i |W1, . . . ,Wl−2,Y i−1

l−1 )

− I (Y i−1
l−1 ; Yl−1,i |W1, . . . ,Wl−2,Y i−1

l−2 ,Y
n
l−4,i+1)

− I (Y n
k−2,i+1; Yk,i |W1, . . . ,Wk,Y i−1

k ). (60)

We then bound the third term in (54) for 3 ≤ l ≤ k ≤ K as
shown in (61) on next page, where (a) is due to the following
fact:

n∑

i=1

−I (Y i−1
l−2 ; Yl−2,i |W1, . . . ,Wl−2,Y n

l−4,i+1)

+ I (Y n
l−2,i+1; Yl−2,i |W1, . . . ,Wl−2,Y n

l−4,i+1)

=
n∑

i=1

H (Yl−2,i |W1, . . . ,Wl−2,Y i−1
l−2 ,Y

n
l−4,i+1)

− H (Yl−2,i |W1, . . . ,Wl−2,Y i−1
l−2 )

=
n∑

i=1

−I (Y n
l−4,i+1; Yl−2,i |W1, . . . ,Wl−2,Y i−1

l−2 ). (62)

Substituting (60) and (61) into (54), we obtain

n
k∑

j=l

R j

≤
k∑

j=l−1

H (Wj )+ nϵn

− I (Wl−1 . . . ,Wk ; Y n
l−2|W1, . . . ,Wl−2)

≤ n(k − l + 3)ϵn +
n∑

i=1

(( k∑

j=l−1

I (Uj,i ; Y j,i |Uj−1,i)

)

− I (Uk,i ; Yl−2,i |Ul−2,i )
+ I (Y n

l−4,i+1; Yl−1,i |W1, . . . ,Wl−2,Y i−1
l−1 )

− I (Y i−1
l−1 ; Yl−1,i |W1, . . . ,Wl−2,Y i−1

l−2 ,Y
n
l−4,i+1)

− I (Y n
k−2,i+1; Yk,i |W1, . . . ,Wk ,Y i−1

k )

− I (Y n
l−4,i+1; Yl−2,i |W1, . . . ,Wl−2,Y i−1

l−2 )

+ I (Y i−1
k ,Y n

k−2,i+1; Yl−2,i |W1, . . . ,Wk,Y n
l−2,i+1)

)
,

(a)
≤ n(k − l + 3)ϵn +

n∑

i=1

(( k∑

j=l−1

I (Uj,i ; Y j,i |Uj−1,i)

)

− I (Uk,i ; Yl−2,i |Ul−2,i )

)
, (63)
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−I (Wl−1 . . . ,Wk; Y n
l−2|W1, . . . ,Wl−2)

=
n∑

i=1

−I (Wl−1 . . . ,Wk ; Yl−2,i |W1, . . . ,Wl−2,Y n
l−2,i+1)

=
n∑

i=1

−I (Wl−1 . . . ,Wk ,Y i−1
k ; Yl−2,i |W1, . . . ,Wl−2,Y n

l−2,i+1)

+ I (Y i−1
k ; Yl−2,i |W1, . . . ,Wk ,Y n

l−2,i+1)

=
n∑

i=1

−I (Wl−1 . . . ,Wk ,Y i−1
k ,Y n

l−2,i+1; Yl−2,i |W1, . . . ,Wl−2,Y n
l−4,i+1)

+ I (Y n
l−2,i+1; Yl−2,i |W1, . . . ,Wl−2,Y n

l−4,i+1)+ I (Y i−1
k ; Yl−2,i |W1, . . . ,Wk ,Y n

l−2,i+1)

=
n∑

i=1

−I (Wl−1 . . . ,Wk ,Y i−1
k ,Y n

k−2,i+1; Yl−2,i |W1, . . . ,Wl−2,Y i−1
l−2 ,Y

n
l−4,i+1)

+ I (Y n
k−2,i+1; Yl−2,i |W1, . . . ,Wk ,Y i−1

k ,Y n
l−2,i+1) − I (Y i−1

l−2 ; Yl−2,i |W1, . . . ,Wl−2,Y n
l−4,i+1)

+ I (Y n
l−2,i+1; Yl−2,i |W1, . . . ,Wl−2,Y n

l−4,i+1)+ I (Y i−1
k ; Yl−2,i |W1, . . . ,Wk ,Y n

l−2,i+1)

=
n∑

i=1

−I (Uk,i ; Yl−2,i |Ul−2,i )

+ I (Y n
k−2,i+1; Yl−2,i |W1, . . . ,Wk ,Y i−1

k ,Y n
l−2,i+1) − I (Y i−1

l−2 ; Yl−2,i |W1, . . . ,Wl−2,Y n
l−4,i+1)

+ I (Y n
l−2,i+1; Yl−2,i |W1, . . . ,Wl−2,Y n

l−4,i+1)+ I (Y i−1
k ; Yl−2,i |W1, . . . ,Wk ,Y n

l−2,i+1)

(a)=
n∑

i=1

−I (Uk,i ; Yl−2,i |Ul−2,i )

− I (Y n
l−4,i+1; Yl−2,i |W1, . . . ,Wl−2,Y i−1

l−2 )+ I (Y i−1
k ,Y n

k−2,i+1; Yl−2,i |W1, . . . ,Wk ,Y n
l−2,i+1) (61)

where (a) is due to the following two facts. The first fact is
shown as follows:

n∑

i=1

I (Y i−1
k ,Y n

k−2,i+1; Yl−2,i |W1, . . . ,Wk,Y n
l−2,i+1)

− I (Y n
k−2,i+1; Yk,i |W1, . . . ,Wk ,Y i−1

k )

=
n∑

i=1

H (Yl−2,i |W1, . . . ,Wk,Y n
l−2,i+1)

− H (Yl−2,i |W1, . . . ,Wk ,Y i−1
k ,Y n

k−2,i+1)

− H (Yk,i |W1, . . . ,Wk ,Y i−1
k )

+ H (Yk,i |W1, . . . ,Wk ,Y i−1
k ,Y n

k−2,i+1)

= H (Y n
l−2|W1, . . . ,Wk) − H (Y n

k |W1, . . . ,Wk)

+
n∑

i=1

H (Yk,i |W1, . . . ,Wk ,Y i−1
k ,Y n

k−2,i+1,Yl−2,i )

= −H (Y n
k |W1, . . . ,Wk ,Y n

l−2)

+
n∑

i=1

H (Yk,i |W1, . . . ,Wk ,Y i−1
k ,Y n

k−2,i+1,Yl−2,i )

=
n∑

i=1

−H (Yk,i |W1, . . . ,Wk ,Y n
l−2,Y

i−1
k )

+ H (Yk,i |W1, . . . ,Wk ,Y i−1
k ,Y n

k−2,i+1,Yl−2,i )

≤ 0, (64)

where the last inequality is due to the Markov chain condition
in (1). The second fact is shown as follows:
n∑

i=1

I (Y n
l−4,i+1; Yl−1,i |W1, . . . ,Wl−2,Y i−1

l−1 )

− I (Y i−1
l−1 ; Yl−1,i |W1, . . . ,Wl−2,Y i−1

l−2 ,Y
n
l−4,i+1)

− I (Y n
l−4,i+1; Yl−2,i |W1, . . . ,Wl−2,Y i−1

l−2 )

=
n∑

i=1

H (Yl−1,i |W1, . . . ,Wl−2,Y i−1
l−1 )

− H (Yl−1,i |W1, . . . ,Wl−2,Y i−1
l−1 ,Y

n
l−4,i+1)

− H (Yl−1,i |W1, . . . ,Wl−2,Y i−1
l−2 ,Y

n
l−4,i+1)

+ H (Yl−1,i |W1, . . . ,Wl−2,Y n
l−4,i+1,Y

i−1
l−1 )

− H (Yl−2,i |W1, . . . ,Wl−2,Y i−1
l−2 )

+ H (Yl−2,i |W1, . . . ,Wl−2,Y i−1
l−2 ,Y

n
l−4,i+1)

= H (Y n
l−1|W1, . . . ,Wl−2) − H (Y n

l−2|W1, . . . ,Wl−2)

−
n∑

i=1

H (Yl−1,i |W1, . . . ,Wl−2,Y n
l−4,i+1,Y

i−1
l−2 ,Yl−2,i )

= H (Y n
l−1|W1, . . . ,Wl−2,Y n

l−2)

−
n∑

i=1

H (Yl−1,i |W1, . . . ,Wl−2,Y n
l−4,i+1,Y

i−1
l−2 ,Yl−2,i )

=
n∑

i=1

H (Yl−1,i |W1, . . . ,Wl−2,Y n
l−2,Y

i−1
l−1 )

− H (Yl−1,i |W1, . . . ,Wl−2,Y n
l−4,i+1,Y

i−1
l−2 ,Yl−2,i )

≤ 0. (65)
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Furthermore, based on (49), we bound
∑K

j=2 R j as follows:

n
K∑

j=2

R j ≤ n(k − 1)ϵn +
K∑

j=2

n∑

i=1

I (Uj,i ; Y j,i |Uj−1,i)

≤ n(k − 1)ϵn +
K−1∑

j=2

n∑

i=1

I (Uj,i ; Y j,i |Uj−1,i)

+
n∑

i=1

I (Xi ; YK ,i |UK−1,i). (66)

Based on (63), we bound
∑K

j=l R j as follows:

n
K∑

j=l

R j

≤ n(K − l + 3)ϵn +
n∑

i=1

(( K∑

j=l−1

I (Uj,i ; Y j,i |Uj−1,i)

)

− I (UK ,i ; Yl−2,i |Ul−2,i )

)

= n(K − l + 3)ϵn +
n∑

i=1

(( K−1∑

j=l−1

I (Uj,i ; Y j,i |Uj−1,i)

)

+ I (UK ,i ; YK ,i |UK−1,i ) − I (UK ,i ; Yl−2,i |Ul−2,i )

)

(a)
≤ n(K − l + 3)ϵn +

n∑

i=1

(( K−1∑

j=l−1

I (Uj,i ; Y j,i |Uj−1,i)

)

+ I (Xi ; YK ,i |UK−1,i) − I (Xi ; Yl−2,i |Ul−2,i )

)
, (67)

where (a) is due to the Markov chain condition (46).
The proof of the converse is then completed by defining

a uniformly distributed random variable Q ∈ {1, . . . , n}, and
setting Uk " (Q,Uk,Q ), Yk " Yk,Q , for k ∈ [1 : K ], and
X " (Q, XQ ).
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