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Abstract—The problem of secure broadcasting with indepen-
dent secret keys is studied. The particular scenario is analyzed in
which a common message has to be broadcast to two legitimate
receivers, while keeping an external eavesdropper ignorant of
it. The transmitter shares independent secret keys of sufficiently
high rates with both legitimate receivers, which can be used in
different ways: they can be used as one-time pads to encrypt the
common message, as fictitious messages for wiretap coding, or as
a hybrid of these. In this paper, capacity results are established
when the broadcast channels involving the three receivers are
degraded. If both legitimate channels are degraded versions of
the eavesdropper’s channel, it is shown that the one-time pad
approach is optimal for several cases, yielding corresponding
capacity expressions. Alternatively, the wiretap coding approach
is shown to be optimal if the eavesdropper’s channel is degraded
with respect to both legitimate channels, establishing capacity
in this case as well. If the eavesdropper’s channel is neither
the strongest nor the weakest, an intricate scheme that carefully
combines both concepts of one-time pad and wiretap coding with
fictitious messages turns out to be capacity-achieving. Finally we
also obtain some results for the general non-degraded broadcast
channel.

Index Terms—Broadcast channel, common message, secret
key, secrecy capacity, one-time pad, wiretap coding, fictitious
messages.

I. INTRODUCTION

SHANNON was the first who studied in [3] the problem
of secure communication from an information theoretic

perspective. He considered a noiseless communication sce-
nario, in which transmitter and receiver share a secret key
that is unknown to an eavesdropper. Used as a one-time pad,
this secret key enables secure transmission of the confidential
message.
Subsequently, Wyner considered the noisy case in [4], where

he introduced the so-called wiretap channel. He extended
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the problem studied by Shannon insofar that the legitimate
receiver and the eavesdropper now observe noisy versions of
the channel input. In addition, there is no secret key available
as in [3] so that the communication must be secured solely
by exploiting the properties of the noisy channel. Recently,
this area of information theoretic security or physical layer
security has drawn considerable attention especially in the
area of wireless communication where it provides a promising
complement to cryptographic approaches; see for example
[5]–[9] and references therein. These concepts have been
extended to several multi-user scenarios such as the broadcast
channel [10]–[13], multiple access channel [14], [15], and
interference channel [16]. All these works have in common
that no secret key is available to the legitimate users.
These two approaches were combined in [17]–[19], which

study the (noisy) wiretap channel with a shared secret key.
This was done from a rate-distortion point of view in [17]
and [18], while [19] established the secrecy capacity for
the case in which no distortion is allowed at the legitimate
receiver. The wiretap channel with a shared secret key and its
main concepts and results are briefly reviewed in Section II.
Related to this problem is the wiretap channel with secured
feedback, as this feedback can be used to create a shared secret
key [20]–[22].
A secret key shared between a transmitter and a receiver

can be used to securely transmit to that receiver. If the rate
of the secret key is sufficiently high, the problem becomes
trivial in the single user setting (i.e., the wiretap channel with
shared secret key) as the whole message can be encrypted with
the secret key and the secrecy capacity is simply given by the
regular channel capacity. However, when the transmitter shares
independent secret keys with multiple receivers, a certain
secret key can be used to securely transmit to the respective
receiver, but might harm other receivers which do not share
this key. Thus, multiple secret keys can result in conflicting
payoffs at different receivers making it a challenging and non-
trivial problem.
Surprisingly, to the best of our knowledge the use of mul-

tiple secret keys in noisy multi-user communication scenarios
has not been studied previously. Accordingly, the question
of secure communication in broadcast channels (BC) with
independent secret keys is an interesting extension in this
direction. In particular, this setting describes the problem
of securely broadcasting a common message to two legiti-
mate receivers, while keeping an eavesdropper ignorant of it.
The transmitter shares independent secret keys of arbitrary
key rates with the two receivers. This model is introduced
in Section III.
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Secure communication can now be realized by different
approaches. As shared secret keys are available at the
transmitter and both receivers, this suggests to follow [3] and
use them as one-time pads to encrypt the common message.
However, each receiver is aware of only one secret key. Thus,
the more the secret key of one receiver is used to secure the
message, the more the other receiver is hurt as the unknown
secret key creates a useless message for it that interferes
with the desired one. We show that when the eavesdropper
has the “strongest” channel (i.e. both legitimate channels
are degraded versions of it), the one-time pad approach is
indeed capacity-achieving. More specifically, both secret keys
are used to create two encrypted messages which are then
accordingly encoded and transmitted with the help of a regular
capacity-achieving (non-secure) broadcast channel code.
On the other hand, the properties of the noisy channels

can be exploited by applying information theoretic secrecy
concepts such as wiretap coding [5]–[9]. This approach is
based on the idea of allocating some of the available rate
for additional randomization to “confuse” the eavesdropper.
The drawback of this is that it reduces the remaining rate
available for the actual transmission of the confidential mes-
sage. However, this approach turns out to be optimal if the
eavesdropper’s channel is the “weakest” among all channels
(i.e. it is degraded with respect to both legitimate channels).
To this end, the secret keys are used as fictitious messages
for the randomization. As each receiver knows one of the
secret keys, the randomization overhead to be decoded at the
receivers is reduced.
While in the previous cases the eavesdropper has either the

strongest or the weakest channel, the much more challenging
and complicated scenario occurs when one legitimate channel
is stronger and one is weaker than the eavesdropper’s channel.
In this case, it is shown that, to achieve capacity, a careful
combination of one-time pad and wiretap coding with fictitious
messages is needed. The converse involves a non-trivial “sum-
rate”-like upper bound on the common message rate.
The above results are obtained in the context of discrete

memoryless channels (DMCs). We further consider Gaussian
channels, in which the legitimate receivers’ and the eavesdrop-
per’s channel observations are impaired by additive Gaussian
noise. The previous results are extended to this case resulting
in a complete characterization of the capacity of the Gaussian
BC with independent secret keys.
All results are stated in Section IV, while the corresponding

proofs are delegated to Section V. A conclusion is then given
in Section VI.

Notation

Discrete random variables are denoted by capital letters and
their realizations and ranges by lower case and script letters,
respectively; N and R+ are the sets of positive integers and
non-negative real numbers; X − Y − Z denotes a Markov
chain of random variables X , Y , and Z in this order; for a
sequence Xn = (X1, X2, . . . , Xn) we frequently write Xi−1 =
(X1, X2 . . . , Xi−1) and Xn

i+1 = (Xi+1, Xi+2, . . . , Xn); all
logarithms, exponentials, and information quantities are with

Fig. 1. Wiretap channel with a shared secret key.

respect to the base 2; H (·) and I (·; ·) are the traditional
entropy and mutual information; P(·) is the set of all
probability distributions; ⊕ denotes modulo addition and [a]+
abbreviates max{a, 0}; lhs := rhs assigns the value of the
right hand side (rhs) of an equation to its left hand side (lhs).

II. WIRETAP CHANNEL WITH SHARED SECRET KEY

In this section we review the wiretap channel with shared
secret key as depicted in Fig. 1. This model generalizes and
combines two important communication models: Shannon’s
cypher system [3] and the classical (noisy) wiretap channel
as introduced by Wyner in [4]. Both lead to fundamentally
different approaches of how secrecy is realized. These are
presented and discussed as well.

A. System Model

Let X , Y , and Z be finite input and output sets. For input and
output sequences xn ∈ X , yn ∈ Y n , and zn ∈ Zn of length n,
the discrete memoryless wiretap channel is given by the tran-
sition probability Pn

Y Z |X (y
n, zn|xn) := ∏n

i=1 PY Z |X (yi , zi |xi ).
The transmitter wishes to send a message M to the legiti-

mate receiver while keeping the eavesdropper ignorant of it.
The transmitter and legitimate receiver share a common secret
key K of rate RK which is unknown to the eavesdropper.
The message M and the secret key K are assumed to be
independent of each other and uniformly distributed over the
sets M := {1, . . . ,Mn} and K := {1, . . . , Kn}.
Definition 1: An (n,Mn , Kn)-code for the wiretap channel

with shared secret key consists of a (stochastic) encoder

E : M × K → P(Xn) (1)

and a decoder at the legitimate receiver

ϕ : Y n × K → M . (2)

Then the average probability of decoding error at the
legitimate receiver is given by

ēn = 1
|M ||K |
×

∑

m∈M

∑

k∈K

∑

xn∈Xn

∑

yn :ϕ(yn,k) ̸=m

Pn
Y |X (y

n|xn)E(xn|m, k)

(3)

where E(xn|m, k) denotes the probability that the message
m ∈ M and the secret key k ∈ K are encoded into the
codeword xn ∈ Xn .
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To ensure the confidentiality of the message, we require

I (M; Zn) ≤ δn (4)

for δn > 0 with M the random variable uniformly distributed
over the set of messages M and Zn = (Z1, . . . , Zn) the
channel output at the eavesdropper. This condition is termed
strong secrecy [23], [24] and the motivation is to have the total
amount of information leaked to the eavesdropper small.
Definition 2: For a given key rate RK > 0, a rate R > 0 is

an achievable secrecy rate for the wiretap channel with shared
secret key if for every τ > 0 there exists an n(τ ) ∈ N and a
sequence of (n,Mn , Kn)-codes such that for all n ≥ n(τ ) we
have 1

n logMn ≥ R − τ , 1
n log Kn = RK , and I (M; Zn) ≤ δn

while ēn, δn → 0 as n → ∞. The secrecy capacity C is given
by the supremum of all achievable secrecy rates R.
The wiretap channel with shared secret key has been studied

in [17]–[19]. The secrecy capacity has been established and is
restated in the following theorem.
Theorem 1 [19]: The secrecy capacity C of the wiretap

channel with shared secret key of rate RK is

C = max
PUV X

min
{
[I (V ; Y |U) − I (V ; Z |U)]++RK , I (V ; Y )

}

(5)

such that U − V − X − (Y, Z) form a Markov chain.
Depending on whether the term I (V ; Y |U) − I (V ; Z |U)

in (5) is positive or not, capacity can be achieved by using two
fundamentally different approaches for realizing secrecy: the
one-time pad approach or the principle of wiretap coding with
fictitious messages. Both ingredients become most evident by
considering either reversely degraded channels, i.e., X−Z−Y
form a Markov chain, or degraded channels, i.e., X − Y − Z
form a Markov chain. In these cases, the secrecy capacity
simplifies as given in the following.
Corollary 1: The secrecy capacity C of the reversely

degraded wiretap channel with shared secret key of rate RK
is

C = max
PX

min
{
RK , I (X; Y )

}
(6)

if X − Z − Y form a Markov chain.
Corollary 2: The secrecy capacity C of the degraded wire-

tap channel with shared secret key of rate RK is

C = max
PX

min
{
I (X; Y ) − I (X; Z)+ RK , I (X; Y )

}
(7)

if X − Y − Z form a Markov chain.
Next we discuss both approaches of one-time pad and

wiretap coding in detail and show how they achieve capacity
in the respective scenarios.

B. One-Time Pad

In this approach, we use the shared secret key for encryption
to secure the message transmission. Following the thinking of
[3], the secret key can be used as a one-time pad, for which
the secret key and message must be of the same rate, so that
the secrecy capacity is immediately limited by the secret key

rate RK . Then, the encrypted message is obtained based on a
modulo-|K | addition as

M⊕ = M ⊕ K . (8)

The encrypted message is then encoded using a classical
channel encoder and transmitted over the noisy channel so that
the secrecy capacity is further limited by the regular channel
capacity, i.e., maxPX I (X; Y ). Having decoded the encrypted
message M̂⊕, the legitimate receiver can then use the secret
key to recover the original message M̂ , i.e., M̂⊕ ⊕ K =
M̂ ⊕ K ⊕ K = M̂ . Since M and K are uniformly distributed
and independent of each other, M is perfectly secret from the
eavesdropper, i.e., I (M; Zn) = 0, even if it would be able
to decode the encrypted message M⊕. We conclude that the
one-time pad approach achieves the rate

R = max
PX

min
{
RK , I (X; Y )

}
. (9)

We observe that the rate in (9) is independent of the
eavesdropper’s channel and depend only on the available key
rate and the legitimate channel. Accordingly, this approach
works for any configuration of legitimate and eavesdropper’s
channels.
In particular, in the case of reversely degraded channels, i.e.,

X−Z−Y , the one-time pad approach is optimal as it achieves
the secrecy capacity as given in Corollary 1. However, we
observe that in the case of degraded channels, i.e., X −Y − Z ,
the one-time pad approach is suboptimal as the achieved
rate (9) is in general strictly smaller than the secrecy capacity
as given in Corollary 2 since I (X; Y ) − I (X; Z) > 0.
Remark 1: We immediately also obtain the corresponding

result for Shannon’s cypher system, which corresponds to the
noiseless case, i.e., X = Y = Z . The secrecy capacity C of
the noiseless wiretap channel with shared secret key of rate
RK is

C = max
PX

min
{
RK , H (X)

}
. (10)

Remark 2: For sufficiently large key rate, we see from (6)
and (10) that the secrecy capacity is limited by the regu-
lar channel capacity, i.e., C = maxPX I (X; Y ) and C =
maxPX H (X) respectively. The influence of the eavesdropper
on the capacity completely vanishes in this case.

C. Wiretap Coding With Fictitious Messages

In contrast to the one-time pad approach, this approach
exploits the noisy channel to realize secure communication.
If there is no secrecy requirement, all available resources are
used for message transmission. To incorporate secrecy, the
crucial idea of wiretap coding [5]–[9] is now to use a certain
part for randomization by introducing “dummy” messages.
This induces multiple valid codewords for each confidential
message and the one used for the actual transmission is chosen
uniformly at random. The key insight is now to choose the
randomization rate (i.e. the rate of the dummy message) for
each confidential message according to the eavesdropper’s
channel quality, i.e., roughly as I (X; Z). This will saturate the
eavesdropper with useless information carried by the dummy
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messages leaving no remaining resources for decoding the
confidential message itself [25].
In the following we present a wiretap coding scheme and

show how the secret key is incorporated. Let us assume that
I (X; Y ) − I (X; Z) > 0 and RK ≤ I (X; Z). For any input
distribution PX ∈ P(X) we generate |M ||K ||J | independent
codewords xnmkj ∈ Xn where

|M | < 2n(I (X;Y )−I (X;Z)+RK−2ϵ) (11a)

|K | = 2nRK (11b)

|J | > 2n(I (X;Z)−RK+ϵ). (11c)

The crucial idea here is to treat the secret key as a fictitious
message for additional randomization. As the size of the secret
key and the dummy randomization messages satisfy

1
n
log(|K ||J |) > I (X; Z)+ ϵ, (12)

we have enough resources allocated to saturate the eavesdrop-
per to ensure that I (M; Zn) ≤ δn holds, i.e., strong secrecy (4)
is satisfied, cf. for example [26]–[28].
It remains to verify that the legitimate receiver can reliably

decode the confidential message. Since the legitimate receiver
has the secret key k ∈ K as side information available, the
remaining unknown indices are m ∈ M and j ∈ J which are
appropriately chosen to satisfy

|M ||J | ≤ 2n(I (X;Y )−ϵ). (13)

It is easy to verify that this enables the legitimate receiver to
reliably decode the remaining indices.
In particular, in the case of degraded channels, i.e., X−Y−Z

so that I (X; Y )− I (X; Z) > 0, wiretap coding with fictitious
messages is optimal as it achieves the secrecy capacity as
given in Corollary 2. However, we observe that in the case of
reversely degraded channels, i.e., X − Z − Y , wiretap coding
with fictitious messages is in general suboptimal (except for
sufficiently large key rates for which the secrecy capacity
becomes maxPX I (X; Y )).
Remark 3: From (12) we observe that the maximum useful

secret key rate is I (X; Z). Indeed, even if RK > I (X; Z), it
suffices to only use RK = I (X; Z)+ϵ as this already saturates
the eavesdropper’s channel. The secrecy capacity in this case
is then maxPX I (X; Y ) and there is no need for additional
dummy messages for randomization in this case, i.e., J = ∅.
Remark 4: If I (X; Y ) − I (X; Z) < 0, e.g., for reversely

degraded channels X − Z − Y , wiretap coding with fictitious
messages in general performs worse than the one-time pad
approach. In particular, if I (X; Z) ≥ I (X; Y )+RK , no secure
communication is possible at all, i.e., R = 0, while the one-
time pad approach still achieves the rate R = maxPX I (X; Y )
in this case.
From the previous reasoning and particularly Theorem 1 and

Corollary 2 we obtain the corresponding secrecy capacity for
the classical wiretap channel without shared key, i.e., RK = 0,
as stated next.
Corollary 3: The secrecy capacity C of the wiretap channel

is

C = max
PV X

[
I (V ; Y ) − I (V ; Z)

]
(14)

such that V − X − (Y, Z) form a Markov chain. If the wiretap
channel is degraded, i.e., X − Y − Z form a Markov chain,
the secrecy capacity C becomes

C = max
PX

[
I (X; Y ) − I (X; Z)

]
. (15)

D. A Combination of Both

The previous discussion has shown that neither of the two
approaches of one-time pad and wiretap coding with fictitious
messages is superior to the other. In fact, whenever the eaves-
dropper’s channel is “stronger” than the legitimate channel
(I (X; Y ) − I (X; Z) < 0) the one-time pad performs better
than the wiretap coding approach and vice versa when the
eavesdropper’s channel is weaker (I (X; Y ) − I (X; Z) > 0).
In the following, we present a scheme that combines both

approaches of one-time pad and wiretap coding. To make
things non-trivial, we assume RK < I (X; Y ), since otherwise
the secrecy capacity is C = maxPX I (X; Y ) as discussed
above. The main idea is now to use the secret key as a one-
time pad to encrypt as much of the message as possible and
use the wiretap coding approach to protect the remaining part
of the message. Accordingly, we split the message M into two
parts

M = (M ′,M⊕) (16)

with rates R′ and RK , where the part M ′ will be protected
by the wiretap coding approach and M⊕ by the one-time pad
approach. For any input distribution PX ∈ P(X) we generate
|M ′||M⊕||J | independent codewords xnm′m⊕ j ∈ Xn where

|M ′| < 2n([I (X;Y )−max{I (X;Z),RK }]+−2ϵ) (17a)

|M⊕| = 2nRK (17b)

|J | =
{
2n([I (X;Z)−RK ]++ϵ) if I (X; Y ) > I (X; Z)
0 if I (X; Y ) ≤ I (X; Z). (17c)

First, we observe that whenever I (X; Y ) − I (X; Z) ≤ 0, the
sets M ′ and J are empty and we are falling back to the one-
time pad approach as discussed in Section II-B. If I (X; Y )−
I (X; Z) > 0, we use both approaches and secrecy is ensured
similarly as in (12) and (13). To be specific, the sets are chosen
appropriately to satisfy

1
n
log(|M⊕||J |) > I (X; Z)+ ϵ, (18)

which gives us secrecy, and further

|M ′||M⊕||J | ≤ 2n(I (X;Y )−ϵ), (19)

which gives us reliability.
Remark 5: For both wiretap coding with fictitious mes-

sages, cf. Section II-C, and the combined approach, the secret
key contributes to the equivocation of the eavesdropper by
saturating its channel. But note that in wiretap coding with
fictitious messages the secret key does not carry any useful
information while in the combined approach it further carries
part of the confidential message.
Remark 6: For the case I (X; Y ) − I (X; Z) > 0, both

approaches have the same performance in terms of achiev-
able secrecy rate. However, they fundamentally differ in
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Fig. 2. Broadcast channel in which the transmitter shares independent secret
keys K1 and K2 with legitimate receivers 1 and 2 respectively. A common
message M is sent to both legitimate receivers keeping the eavesdropper
ignorant of it.

the construction and their codebooks are of different size.
In particular, while the overall codebook size of the combined
approach is matched to the legitimate channel (as the receiver
has to decode all three indices), wiretap coding with fictitious
messages uses a codebook whose size is larger than the
legitimate channel would allow, but the receiver can use its
secret key as side information to reduce it to a suitable subset.

III. BC WITH INDEPENDENT SECRET KEYS

In the remainder of this paper we study the broadcast chan-
nel (BC) with independent secret keys as depicted in Fig. 2. Let
X , Y1, Y2, and Z be finite input and output sets. For input and
output sequences xn ∈ Xn , yn1 ∈ Y n

1 , y
n
2 ∈ Y n

2 , and zn ∈ Zn

of length n, the discrete memoryless broadcast channel is
given by the transition probability Pn

Y1Y2Z |X (y
n
1 , y

n
2 , z

n|xn) :=∏n
i=1 PY1Y2Z |X (y1,i , y2,i , zi |xi ).
Throughout the rest of the paper we study the particular

communication scenario in which the transmitter broadcasts a
common message M to receivers 1 and 2, while keeping the
eavesdropper ignorant of it. The transmitter shares independent
secret keys K1 and K2 with receivers 1 and 2. The message
and both keys are assumed to be independent of each other
and uniformly distributed over the sets M := {1, . . . ,Mn} and
Ki := {1, . . . , Ki,n }, i = 1, 2. We also write K12 = (K1, K2)
and K12 = K1 × K2 for short.

Definition 3: An (n,Mn , K1,n, K2,n)-code for the BC with
independent secret keys consists of a (stochastic) encoder

E : M × K1 × K2 → P(Xn) (20)

and decoders at receivers 1 and 2

ϕ1 : Y n
1 × K1 → M , (21a)

ϕ2 : Y n
2 × K2 → M . (21b)

Then the average probability of decoding error at receiver i ,
i = 1, 2, is given by

ēi,n = 1
|M ||K12|
×

∑

m∈M

∑

k12∈K12

∑

xn∈Xn

∑

yni :ϕi (yni ,ki ) ̸=m

Pn
Yi |X (y

n
i |xn)

× E(xn|m, k12). (22)

As for the wiretap channel with a shared secret key, we
require strong secrecy of the common message, i.e.,

I (M; Zn) ≤ δn (23)

with δn > 0.
Definition 4: A rate R > 0 is an achievable secrecy rate

for the BC with independent secret keys if for every τ > 0
there exists an n(τ ) ∈ N, key rates R1 > 0, R2 > 0, and a
sequence of (n,Mn , K1,n, K2,n)-codes such that for all n ≥
n(τ ) we have 1

n logMn ≥ R − τ , 1
n log Ki,n = Ri , i = 1, 2,

and I (M; Zn) ≤ δn while ē1,n, ē2,n, δn → 0 as n → ∞. The
secrecy capacity C is given by the supremum of all achievable
secrecy rates R.
Remark 7: Note that in contrast to Definition 2, the rates

of the secret keys are not fixed and specified a priori. In
particular, Definition 4 allows us to choose arbitrary key rates
R1 and R2. In other words, the key rates are sufficiently high
in the sense that we are provided with as much secret key as
we desire.
From the problem definition, in principle there are different

methods possible to keep the common message secret. The
shared secret keys suggest that we might use a one-time pad
approach which protects the message with the help of the
secret keys similarly as discussed in Section II-B. On the other
hand, the transmitter can exploit the nature of the wireless
channel by using a channel code based on the idea of wiretap
coding as discussed in Section II-C. In the following we
will explore these different approaches and show that which
particular approach should be used depends on the channel
conditions.

IV. MAIN RESULTS

In this section we present the main results for the BC
with independent secret keys and discuss the insights that we
obtain from them. The corresponding proofs are relegated to
Section V and the appendix, respectively.

A. Equal Channel Outputs

We start with the simplest scenario, in which both legitimate
receivers and the eavesdropper receive signals of the same
quality and, in particular, Y = Y1 = Y2 = Z .
If a legitimate receiver has no advantage over the eaves-

dropper at the physical layer, wiretap coding as discussed
in Section II-C cannot be used. Accordingly, to secure the
message transmission, we use the secret keys as one-time
pads as presented in Section II-B to create two encrypted
messages

M1 = M ⊕ K1, and M2 = M ⊕ K2. (24)

These two messages are independent of each other and then
encoded using a classical broadcast channel encoder and
transmitted to the corresponding receivers. Having decoded the
encrypted messages M1 and M2, each receiver can then use
its own secret key to obtain the desired original message M̂ ,
i.e., M̂1 ⊕ K1 = M̂ ⊕ K1 ⊕ K1 = M̂ and M̂2 ⊕ K2 =
M̂ ⊕K2 ⊕K2 = M̂ respectively. It becomes apparent that this
one-time pad approach requires a total secret key rate of twice



SCHAEFER et al.: SECURE BROADCASTING USING INDEPENDENT SECRET KEYS 649

Fig. 3. One-time pad approach to the BC with independent secret keys. The shared keys K1 and K2 are used to encrypt the common message M by creating
two independent messages M1 and M2. These two messages are encoded by a classical broadcast channel encoder and transmitted over the channel. Having
decoded the individual messages M̂1 and M̂2, the legitimate receivers obtain the desired common message M̂ with the help of the shared keys.

the common message rate. Since the message M and both
keys K1 and K2 are uniformly distributed and independent of
each other, M is kept perfectly secret from the eavesdropper,
i.e., I (M; Zn) = 0, even if it would be able to decode
the encrypted messages M1 or M2. This encoding-decoding
process is depicted in Fig. 3.
For the case of equal channel outputs we then obtain the

following result.
Theorem 2: The secrecy capacity C of the BC with inde-

pendent secret keys for equal channel outputs is

C = max
PX

1
2
I (X; Y ), (25)

with Y = Y1 = Y2 = Z, i.e., time-sharing between both
legitimate receivers is optimal.

Proof: Achievability follows from using the secret keys
as one-time pads to create encrypted individual messages
as in (24) and time-sharing between these two encrypted
messages. The converse follows from Fano’s inequality and
the standard properties of entropy and mutual information
to exploit the tension from using independent secret keys
from the two receivers. A detailed proof can be found in
Section V-A.
From this we immediately obtain the result for the noiseless

case where the output at all receivers equals the input, i.e.,
X = Y1 = Y2 = Z .
Corollary 4: The secrecy capacity C of the noiseless BC

with independent secret keys is

C = max
PX

1
2
H (X), (26)

with X = Y1 = Y2 = Z, i.e., time-sharing between both
legitimate receivers is optimal. !
Remark 8: These results show that in the case of equal

channel outputs the simple strategy of time-sharing is already
capacity-achieving. Thereby, the secret keys are used as one-
time pads to transform the common message into multiple
individual encrypted messages.

B. Strongest Eavesdropper

After having obtained some first insights for the case of
equal channel outputs, we now turn to the case in which all
channel outputs are of different quality but the eavesdropper
has the strongest channel among all receivers in a certain
sense.
Let us first assume that the channels are reversely

degraded, i.e., we have the following Markov chain: X − Z −
Y1 − Y2.

Theorem 3: The secrecy capacity of the BC with indepen-
dent secret keys for reversely degraded channels is

C = max
PUX

min
{
I (X; Y1|U)
I (U ; Y2)

}
, (27)

such that U − X − Z − Y1 − Y2 form a Markov chain, i.e.,
superposition coding is optimal. Further, the cardinality of the
range of U can be bounded by |U| ≤ |X | + 1.

Proof: Achievability follows from using the secret
keys as one-time pads to create encrypted individual mes-
sages and then using superposition coding. The converse
follows from Fano’s inequality and standard arguments for
the degraded broadcast channel. A detailed proof is given
in Section V-B.
Remark 9: The fact that the eavesdropper’s channel is the

strongest among all channels (in the sense that both legitimate
channels are degraded versions of it) suggests to use the secret
keys as one-time pads to secure the message as classical
wiretap coding approaches will not work. In addition, the fact
that the legitimate channels themselves can be ordered due to
their degradedness suggests then to use a superposition coding
scheme (as for the classical degraded BC). The previous result
shows that this reasoning indeed yields a capacity-achieving
coding scheme.
We have seen that using the secret keys in this way essen-

tially turns the problem of securely broadcasting a common
message into the problem of broadcasting two independent
individual messages. Having this observation in mind, we
immediately obtain the following achievable rate which is
based on the idea of Marton coding for the classical BC,
cf. [29, Sec. 8.4].
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Lemma 1: An achievable secrecy rate for the BC with
independent secret keys is given by

R = min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

I (U,W ; Y1),
I (V ,W ; Y2),
1
2
[I (U,W ; Y1)+ I (V ; Y2|W ) − I (U ; V |W )],

1
2
[I (V ,W ; Y2)+ I (U ; Y1|W ) − I (U ; V |W )]

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(28)

for any PUVW X (u, v,w, x) such that (U, V ,W ) − X −
(Y1,Y2, Z) form a Markov chain.

Proof: A sketch of the proof is provided in
Appendix A.

We want to stress that Lemma 1 yields an achievable secrecy
rate for the BC with independent secret keys for the general
case, i.e., no constraints on the channels to the legitimate
receivers and the eavesdropper are imposed.
The previous Theorem 3 assumed that the channels are

reversely degraded. Let us now generalize this discussion
in the sense that we do not impose any ordering between
the legitimate channels Y1 and Y2. But we still assume that
the eavesdropper’s channel is the “strongest” of all channels
in the sense that the following Markov chains are satisfied:
X − Z − Y1 and X − Z − Y2. Then we obtain the following
outer bound which is somewhat similar to the UV-outer bound
[30] or the Körner-Marton outer bound [31].
Theorem 4: The secrecy capacity C of the BC with

independent secret keys for reversely degraded channels
X − Z − (Y1,Y2) is upper bounded by

C ≤ min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

I (U ; Y1),
I (V ; Y2),
1
2

[
I (U ; Y1)+ I (X; Y2|U)

]
,

1
2

[
I (V ; Y2)+ I (X; Y1|V )

]

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(29)

for all PUV X (u, v, x) such that (U, V )−X−Z−(Y1,Y2) form
a Markov chain. Further, the cardinalities of the ranges of U
and V can be bounded by |U| ≤ |X | + 1 and |V | ≤ |X | + 1.

Proof: The proof of the upper bound in (29) resembles
those of the UV-bound [30] and Körner-Marton bound [31].
A detailed proof is given in Section V-C.

Remark 10: Similar to the achievability schemes discussed
before, the UV-type upper bound indicates that in the case of a
strongest eavesdropper, the communication problem resembles
the structure of the BC with two independent individual
messages (stemming from the two independent secret keys).
Accordingly, similar to the classical UV-outer bound for the
BC with two individual messages, our UV-type upper bound
becomes tight for the previous special cases of equal channel
outputs and reversely degraded channels. Thus, it recovers the
converses of the corresponding Theorems 2 and 3.
Finally, we want to address the case of deterministic

broadcast channels, for which the channel outputs at the
legitimate receivers Y1 and Y2 are functions of the input X , i.e.
Y1 = φ1(X) and Y2 = φ2(X). For reversely degraded channels
X − Z − (Y1,Y2) we then obtain the following.

Theorem 5: The secrecy capacity C of the BC with
independent secret keys for reversely degraded channels
X − Z − (Y1,Y2), for which Y1 and Y2 are deterministic
functions of X, is given by

C = max
PX

min

⎧
⎪⎨

⎪⎩

H (Y1),
H (Y2),
1
2
H (Y1,Y2)

⎫
⎪⎬

⎪⎭
. (30)

Proof: Achievability follows from the Marton coding
appraoch in Lemma 1 and the converse follows from the
UV-type upper bound in Theorem 4. A detailed proof is given
in Section V-D.

C. Weakest Eavesdropper

Next, we study the opposite case in which the eavesdropper
has the weakest channel among all receivers in a certain sense.
As the legitimate receivers now have an advantage over the
eavesdropper at the physical layer, it is possible to use wiretap
coding principles as discussed in Section II-C. Recall that
the basic idea of wiretap coding is not to use all available
rate for transmitting the message, but to allocate some of the
rate to “confuse” the eavesdropper by applying randomized
encoding strategies [5]–[9]. If a sufficient amount of rate is
spent for confusion, the eavesdropper will not be able to
decode the transmitted message. Obviously, the more rate
is allocated to this confusion, the less rate is available for
the actual transmission of the message. Here is where the
shared secret keys enter the picture in this approach. They
will be treated as fictitious messages playing the role of the
randomization resources which are (partly) available at the
legitimate receivers. This approach is visualized in Fig. 4.
In the following we consider the case in which the eaves-

dropper has the “worst” channel in the sense that its channel
is degraded with respect to both legitimate channels. Thus, we
assume Markov chains X − Y1 − Z and X − Y2 − Z ; how-
ever, we impose no ordering between the legitimate channels
themselves.
Theorem 6: The secrecy capacity C of the BC with inde-

pendent secret keys and degraded channels X − Y1 − Z and
X − Y2 − Z is

C = max
PX

min

⎧
⎪⎨

⎪⎩

I (X; Y1),
I (X; Y2),
1
2
[I (X; Y1)+ I (X; Y2) − I (X; Z)]

⎫
⎪⎬

⎪⎭
. (31)

Proof: Achievability follows by treating the secret keys as
fictitious messages as part of the wiretap code. The converse
follows by Fano’s inequality applied to a suitably chosen sum-
rate like bound. A detailed proof is given in Section V-E.
Remark 11: An interesting observation is that in a capacity-

achieving coding scheme, the sum rate of both secret keys
must be equal to the eavesdropper’s channel quality. This
saturation leaves then no remaining resources for decoding
of the actual common message.
Next, we want to weaken the “worst” eavesdropper channel

assumption in the sense that we study the case of less noisy
channels instead of degraded channels.
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Fig. 4. Wiretap coding approach to the BC with independent secret keys. The shared keys K1 and K2 are treated as fictitious messages and are used by the
wiretap encoder as randomization resources. The wiretap decoders each have one fictitious message as side information available so that it remains for them
to decode the other (useless) fictitious message and the desired common message M.

Definition 5: A BC given by its joint probability PY Z |X is
said to be less noisy if

I (U ; Y ) ≥ I (U ; Z) (32)

holds for all PUX (u, x) such that U − X − (Y, Z) form a
Markov chain. In this case we say receiver Y is less noisy
than receiver Z and write Y ≽ Z .
Accordingly, we assume Y1 ≽ Z and Y2 ≽ Z and,

again, we impose no ordering between the legitimate channels
themselves. The following shows that the capacity result given
in Theorem 6 for degraded channels also holds for less noisy
channels.
Theorem 7: The secrecy capacity C of the BC with indepen-

dent secret keys and less noisy channels Y1 ≽ Z and Y2 ≽ Z
is

C = max
PX

min

⎧
⎪⎨

⎪⎩

I (X; Y1),
I (X; Y2),
1
2
[I (X; Y1)+ I (X; Y2) − I (X; Z)]

⎫
⎪⎬

⎪⎭
. (33)

Proof: Achievability follows immediately from
Theorem 6. The converse is an adaptation of that used
in Theorem 6 incorporating the less noisy condition.
A detailed proof is given in Section V-F.

D. Eavesdropper in the Middle

The previous considerations either used the secret keys
solely as one-time pads or solely as fictitious messages.
In particular, the first approach is optimal if the eavesdropper
has the “strongest” channel and the second approach is optimal
if the eavesdropper has the “weakest” channel. The analysis
becomes much more involved if the eavesdropper’s channel is
neither the strongest nor the weakest.
Accordingly, we study what happens if the eavesdropper’s

channel is in the middle (i.e. X −Y1 − Z −Y2 form a Markov
chain). That is, it is stronger than one legitimate channel, but
weaker than the other one. In this case, a combination of one-
time pad and fictitious messages is capacity-achieving.
Theorem 8: The secrecy capacity C of the BC with inde-

pendent secret keys for X − Y1 − Z − Y2 is

C = max
PUX

min

{
I (U ; Y2),
1
2

[
I (X; Y1)+ I (U ; Y2) − I (U ; Z)

]
}

(34)

such that U − X − Y1 − Z − Y2 form a Markov chain. The
cardinality of the range of U can be bounded by |U| ≤ |X |+1.

Proof: Achievability follows by applying a combination
of the one-time pad approach and the fictitious messages
approach. In particular, a superposition coding scheme is
used in which the auxiliary random variable U serves as
a “cloud center” protecting the confidential message using
the fictitious messages approach. On top of that, “satel-
lite codewords” for the stronger receiver are superimposed
protected by the one-time pad approach. The converse fol-
lows from Fano’s inequality applied to a suitably cho-
sen sum-rate like bound with a careful identification of
the auxiliary random variable. A detailed proof is given
in Section V-G.

E. Gaussian Channels

The results above can be extended to Gaussian channels,
where input-output relations are given by

Y1 = X + N1, (35)

Y2 = X + N2, (36)

Z = X + NZ , (37)

where the additive Gaussian noise terms N1, N2, and NZ
have zero means and variances σ 2

1 , σ 2
2 , and σ 2

Z , i.e., Ni ∼
N (0, σ 2

i ), i ∈ {1, 2, Z}. We consider an average transmit
power constraint P .
Since Gaussian broadcast channels are inherently degraded,

the relation among the noise variances σ 2
1 , σ 2

2 , and σ 2
Z

immediately determines the degradedness order. Accordingly,
we extend the previous results to completely characterize the
Gaussian case. W.l.o.g. we assume σ 2

1 ≤ σ 2
2 , making receiver 1

the stronger of the two legitimate receivers.
1) Strongest Eavesdropper (σ 2

Z ≤ σ 2
1 ≤ σ 2

2 ): The eaves-
dropper having the smallest noise power, i.e., the ordering
is σ 2

Z ≤ σ 2
1 ≤ σ 2

2 , is analogous to the Markov chain
condition X − Z − Y1 − Y2. Then the eavesdropper has
the strongest channel as discussed in Section IV-B. In this
case, the secrecy capacity is established in the following
theorem.
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Theorem 9: The secrecy capacity C of the Gaussian BC
with independent secret keys for σ 2

Z ≤ σ 2
1 ≤ σ 2

2 is

C = max
0≤α≤1

min

⎧
⎪⎪⎨

⎪⎪⎩

1
2
log

(
1+ αP

σ 2
1

)
,

1
2
log

(
1+ (1 − α)P

αP + σ 2
2

)

⎫
⎪⎪⎬

⎪⎪⎭
. (38)

Proof: Achievability follows immediately from Theo-
rem 3 by extending the achievability scheme from the discrete
memoryless case to the Gaussian case. The converse follows
also from Theorem 3 and from the converse for the classical
Gaussian BC, cf. for example [29, Th. 5.3]. The details are
omitted for brevity.

2) Weakest Eavesdropper (σ 2
1 ≤ σ 2

2 ≤ σ 2
Z ): The eaves-

dropper having the highest noise power, i.e., the ordering is
σ 2
1 ≤ σ 2

2 ≤ σ 2
Z , is analogous to the Markov chain condition

X − Y1 − Y2 − Z . Then the eavesdropper has the weakest
channel as discussed in Section IV-C. In this case, the secrecy
capacity is established in the following theorem.
Theorem 10: The secrecy capacity C of the Gaussian BC

with independent secret keys for σ 2
1 ≤ σ 2

2 ≤ σ 2
Z is

C = min

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2
log

(
1+ P

σ 2
2

)
,

1
4

[
log

(
1+ P

σ 2
1

)
+ log

(
1+ P

σ 2
2

)

− log
(
1+ P

σ 2
Z

)]

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (39)

Proof: Achievability follows immediately from
Theorem 6 by extending the achievability scheme from
the discrete memoryless case to the Gaussian case. The
converse follows also from Theorem 6 together with the ideas
for the converse of the classical Gaussian wiretap channel,
cf. for example [29, Example 22.2]. The details are omitted
for the sake of brevity.
3) Eavesdropper in the Middle (σ 2

1 ≤ σ 2
Z ≤ σ 2

2 ): When
the eavesdropper’s noise power satisfies σ 2

1 ≤ σ 2
Z ≤ σ 2

2 , it is
analogous to the Markov chain condition X−Y1−Z−Y2. Then
the eavesdropper has neither the strongest nor the weakest
channel as discussed in Section IV-D. In this case, the secrecy
capacity is established in the following theorem.
Theorem 11: The secrecy capacity C of the Gaussian BC

with independent secret keys for σ 2
1 ≤ σ 2

Z ≤ σ 2
2 is

C ≤ max
0≤α≤1

min

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2
log

(
1+ αP

(1−α)P+σ 2
2

)
,

1
4

[
log

(
1+ P

σ 2
1

)
+ log

(
1+ αP

(1−α)P+σ 2
2

)

− log
(
1+ αP

(1−α)P+σ 2
Z

)]

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

(40)

Proof: Achievability follows immediately from Theorem 8
by extending the achievability scheme from the discrete
memoryless case to the Gaussian case. The converse follows
from Theorem 8 together with careful applications of the
entropy power inequality and the maximum entropy theorem
for Gaussian random variables. A detailed proof is given in
Section V-H.

Fig. 5. Secrecy capacity of the Gaussian BC with independent secret keys
for P = 2, σ 2

1 = 3, σ 2
2 = 5, and varying σ 2

Z .

4) Numerical Evaluation: Here we present a numerical
evaluation of the secrecy capacity of the Gaussian BC with
independent secret keys. Fig. 5 illustrates the behavior of the
secrecy capacity for fixed noise variances of the legitimate
receivers as the noise variance of the eavesdropper increases.
As long as σ 2

Z < σ 2
1 , the eavesdropper has the strongest

channel and the optimal coding scheme relies solely on the
one-time pad approach. Accordingly, the secrecy capacity is
constant in this regime since it depends only on the fixed legit-
imate channels and is independent of the actual eavesdropper
channel. If σ 2

Z ≥ σ 2
1 but σ 2

Z < σ 2
2 , the eavesdropper is in the

middle and the secrecy capacity is achieved by a combination
of one-time pad and wiretap coding. Finally, if σ 2

Z ≥ σ 2
2 , the

eavesdropper has the weakest channel and the optimal coding
scheme is wiretap coding using the secret keys as fictitious
messages. At some point, the sum-rate-like bound is no longer
active and the secrecy capacity is given by the capacity of the
weaker link to the second receiver.

V. PROOFS

In this section we present the proofs of the main results.

A. Proof of Theorem 2

As both legitimate receivers and the eavesdropper all receive
channel outputs of the same quality, we use the secret keys
K1 and K2 as one-time pads to create secure individual
messages M1 and M2 as in (24). Since M , K1, and K2 are
independent of each other, we immediately have ensured that
I (M; Zn) = 0. Thus, the communication problem reduces
to the reliable transmission of two independent individual
messages. Obviously, the rate in (25) is easily achievable via
time-sharing. (Note that achievability also follows immediately
from the Marton coding approach in Lemma 1. By setting
U = V = W = X in (28) we obtain the desired rate (25).
However, the time-sharing interpretation is more intuitive and
yields valuable insights for the converse.)
Thus, it remains to show that time-sharing is already opti-

mal. At receiver i , i = 1, 2, we have the following version of
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Fano’s inequality:

H (M|Ki ,Y n) ≤ nϵi,n (41)

with ϵi,n → 0 as n → ∞. Making extensive use of the
definition of mutual information and the chain rule, we get

nR = H (M|Ki) (42)

≤ I (M; Y n |Ki )+ nϵi,n (43)

≤ I (M; Ki ,Y n)+ nϵi,n (44)

= I (M; Ki |Y n)+ I (M; Y n)+ nϵi,n (45)

≤ I (M; Ki |Y n)+ nϵi,n + nδn (46)

= H (Ki |Y n) − H (Ki |M,Y n)+ nϵi,n + nδn (47)

≤ H (Ki) − H (Ki |M,Y n)+ nϵi,n + nδn (48)

where (42) follows from the independence of M and Ki ,
(43) from Fano’s inequality (41), and (46) from the secrecy
condition.
As (48) must hold for both receivers simultaneously,

we obtain

nR ≤ min
i∈{1,2}

{
H (Ki) − H (Ki |M,Y n)+ nϵi,n + nδn

}
(49)

≤ 1
2

[
H (K1)+ H (K2)

− H (K1|M,Y n) − H (K2|M,Y n)+ nϵn
]

(50)

≤ 1
2

[
H (K12) − H (K12|M,Y n)+ nϵn

]
(51)

= 1
2

[
H (K12)+ H (Y n|M) − H (K12,Y n |M)+ nϵn

]

(52)

= 1
2

[
H (K12)+ H (Y n|M)

− H (K12|M) − H (Y n|M, K12)+ nϵn
]

(53)

= 1
2

[
H (Y n|M) − H (Y n|M, K12)+ nϵn

]
(54)

≤ 1
2

[
H (Y n) − H (Y n|M, K12)+ nϵn

]
(55)

= 1
2

[
I (M, K12; Y n)+ nϵn

]
(56)

≤ 1
2

[
I (Xn; Y n)+ nϵn

]
(57)

≤ 1
2
n
[
I (X; Y )+ ϵn

]
(58)

with ϵn = ϵ1,n + ϵ2,n + 2δn and ϵn → 0 as n → ∞.
Here, the last step follows from Jensen’s inequality and from
defining the distribution PX in (58) as the average of all PXi ,
i = 1, .., n. This completes the converse and proves the desired
result. !

B. Proof of Theorem 3

As for the equal channel case in Theorem 2 we generate
individual messages M1 and M2 by using the available secret
keys K1 and K2 as one-time pads, cf. (24). Then the achiev-
ability of (27) follows immediately by superposition coding.
Here, we choose the auxiliary random variable U to carry the
individual message M1 (as the “cloud center”) for the weaker
receiver 2. The other message M2 for the stronger receiver
1 is superimposed as a “satellite codeword” in X . (Again,
achievability can also be deduced from the Marton coding

approach in Lemma 1. By setting U = X and V = ∅ in (28)
we obtain the desired rate (27).)
Again, the crucial part is the converse. We have to show that

this superposition coding strategy is already optimal. Using
Fano’s inequality (41) as in the proof of Theorem 2 led to (43)
from which we proceed as follows:

nR ≤ I (M; Y n
i |Ki )+ nϵi,n (59)

≤ I (M, Ki ; Y n
i )+ nϵi,n (60)

= I (Ki ; Y n
i |M)+ I (M; Y n

i ) − I (M; Zn)+ nϵn (61)
≤ I (Ki ; Y n

i |M)+ nϵn (62)

with ϵn = δn + ϵ1,n where (61) follows from the chain rule
and the secrecy condition, and (62) from the degradedness so
that I (M; Y n

i ) − I (M; Zn) ≤ 0, i = 1, 2.
Now, we define the auxiliary random variable

Ui := (M, K2,Y i−1
1 ) (63)

and obtain for the weaker receiver 2

nR ≤ I (K2; Y n
2 |M)+ nϵn (64)

≤
n∑

i=1

I (M, K2; Y2,i |Y i−1
2 )+ nϵn (65)

≤
n∑

i=1

I (M, K2,Y i−1
2 ; Y2,i )+ nϵn (66)

≤
n∑

i=1

I (M, K2,Y i−1
1 ,Y i−1

2 ; Y2,i )+ nϵn (67)

=
n∑

i=1

I (M, K2,Y i−1
1 ; Y2,i )+ nϵn (68)

=
n∑

i=1

I (Ui ; Y2,i)+ nϵn (69)

where (68) follows from the degradedness condition. Now,
let Q be a time-sharing random variable independent of all
others in the model and uniformly distributed over {1, . . . , n}.
We set U = (UQ, Q), X = XQ , Y1 = Y1,Q , and Y2 = Y2,Q
and obtain

nR ≤ nI (UQ; Y2,Q |Q)+ nϵn (70)
≤ nI (U ; Y2)+ nϵn . (71)

With the same definition of Ui , cf. (63), we obtain for the
stronger receiver 1

nR ≤ I (K1; Y n
1 |M)+ nϵn (72)

≤ I (K1; Y n
1 |M, K2)+ nϵn (73)

=
n∑

i=1

I (K1; Y1,i |M, K2,Y i−1
1 )+ nϵn (74)

≤
n∑

i=1

I (K1, Xi ; Y1,i |M, K2,Y i−1
1 )+ nϵn (75)

=
n∑

i=1

I (Xi ; Y1,i |Ui )+ nϵn (76)

= nI (XQ ; Y1,Q|UQ , Q)+ nϵn (77)
= nI (X; Y1|U)+ nϵn (78)

with ϵn = δn + ϵ2,n which proves the converse.
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The bound |U| ≤ |X | + 1 on the cardinality of the range of
the auxiliary random variable U follows from the strengthened
version of Carathéodory’s theorem, cf. for example [32], and
standard arguments. The details are omitted for the sake of
brevity. This completes the proof of the theorem. !

C. Proof of Theorem 4

The proof of the upper bound in (29) resembles ideas of
[30] and [31]. Proceeding as in the proof of Theorem 3 we use
Fano’s inequality (41) and the fact that Y1 and Y2 are degraded
with respect to Z to conclude on (62), i.e., at receiver i ,
i = 1, 2, the rate is upper bounded by

nR ≤ I (Ki ; Y n
i |M)+ nϵn (79)

with ϵn = max{ϵ1,n, ϵ2,n} + δn . Now, we define the auxiliary
random variables

Ui := (M, K1,Y n
1,i+1,Y

i−1
2 ) (80)

Vi := (M, K2,Y n
1,i+1,Y

i−1
2 ) (81)

and obtain for receiver 1

nR ≤ I (K1; Y n
1 |M)+ nϵn (82)

≤ I (M, K1; Y n
1 )+ nϵn (83)

=
n∑

i=1

I (M, K1; Y1,i |Y n
1,i+1)+ nϵn (84)

≤
n∑

i=1

I (M, K1,Y n
1,i+1; Y1,i )+ nϵn (85)

≤
n∑

i=1

I (M, K1,Y n
1,i+1,Y

i−1
2 ; Y1,i)+ nϵn (86)

=
n∑

i=1

I (Ui ; Y1,i)+ nϵn . (87)

Similarly, we obtain for receiver 2

nR ≤
n∑

i=1

I (Vi ; Y2,i )+ nϵn . (88)

We continue by considering the sum of the rates in (79) of
both receivers. We obtain

n2R ≤ I (K2; Y n
2 |M)+ I (K1; Y n

1 |M)+ nϵn (89)

≤ I (K2; K1,Y n
2 |M)+ I (M, K1; Y n

1 )+ nϵn (90)

=
n∑

i=1

I (K2; Y2,i |M, K1,Y i−1
2 )

+
n∑

i=1

[
I (M, K1,Y i−1

2 ; Y n
1,i) − I (M, K1,Y i

2; Y n
1,i+1)

]

+ nϵn (91)

where (90) follows from the chain rule for mutual
information and the last step follows the idea of the
Gelfand-Pinsker converse in [33], cf. also [34, Sec. 7.9.2]

and [29, Th. 8.5 and Appendix 8B] for similar derivations.
We continue as

n2R

≤
n∑

i=1

[
I (K2; Y2,i |M, K1,Y i−1

2 )+ I (M, K1,Y i−1
2 ; Y n

1,i+1)

+ I (M, K1,Y i−1
2 ; Y1,i |Y n

1,i+1)

− I (M, K1,Y i−1
2 ; Y n

1,i+1)

− I (Y2,i ; Y n
1,i+1|M, K1,Y i−1

2 )
]
+ nϵn (92)

=
n∑

i=1

[
I (K2; Y2,i |M, K1,Y i−1

2 )

+ I (M, K1,Y i−1
2 ; Y1,i |Y n

1,i+1)

− I (Y2,i ; Y n
1,i+1|M, K1,Y i−1

2 )
]
+ nϵn (93)

=
n∑

i=1

[
H (Y2,i |M, K1,Y i−1

2 ) − H (Y2,i |M, K1, K2,Y i−1
2 )

+ H (Y1,i |Y n
1,i+1) − H (Y1,i |M, K1,Y n

1,i+1,Y
i−1
2 )

− H (Y2,i |M, K1,Y i−1
2 )+ H (Y2,i |M, K1,Y n

1,i+1,Y
i−1
2 )

]

+ nϵn (94)

≤
n∑

i=1

[
H (Y1,i)−H (Y1,i |Ui )+H (Y2,i|Ui )−H (Y2,i |K2,Ui )

]

+ nϵn (95)

≤
n∑

i=1

[
I (Ui ; Y1,i )+ H (Y2,i |Ui ) − H (Y2,i |Ui , Xi )

]
+ nϵn

(96)

≤
n∑

i=1

[
I (Ui ; Y1,i )+ I (Xi ; Y2,i |Ui )

]
+ nϵn . (97)

Similarly, by interchanging the order of Y1 and Y2 we obtain

n2R ≤ I (K1; Y n
1 |M)+ I (K2; Y n

2 |M)+ nϵn (98)

≤ I (K1; K2,Y n
1 |M)+ I (M, K2; Y n

2 )+ nϵn (99)

=
n∑

i=1

I (K1; Y1,i |M, K2,Y n
1,i+1)

+
n∑

i=1

[
I (M, K2,Y n

1,i+1; Y i
2) − I (M, K2,Y n

1,i ; Y i−1
2 )

]

+ nϵn (100)

where the last step follows the idea of the Gelfand-Pinsker
converse, cf. [33]. We continue as

n2R ≤
n∑

i=1

[
I (K1; Y1,i |M, K2,Y n

1,i+1)

+I (M, K2,Y n
1,i+1; Y i−1

2 )+ I (M, K2,Y n
1,i+1; Y2,i |Y i−1

2 )

−I (M, K2,Y n
1,i+1; Y i−1

2 )− I (Y1,i;Y i−1
2 |M, K2,Y n

1,i+1)
]

+ nϵn (101)

=
n∑

i=1

[
I (K1; Y1,i |M, K2,Y n

1,i+1)

+I (M, K2,Y n
1,i+1; Y2,i |Y i−1

2 )

−I (Y1,i ; Y i−1
2 |M, K2,Y n

1,i+1)
]
+ nϵn (102)
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=
n∑

i=1

[
H (Y1,i |M, K2,Y n

1,i+1)−H (Y1,i|M, K1, K2,Y n
1,i+1)

+H (Y2,i |Y i−1
2 ) − H (Y2,i |M, K2,Y n

1,i+1,Y
i−1
2 )

−H (Y1,i |M, K2,Y n
1,i+1)

+H (Y1,i |M, K2,Y n
1,i+1,Y

i−1
2 )

]
+ nϵn (103)

≤
n∑

i=1

[
H (Y2,i)−H (Y2,i|Vi )

+H (Y1,i |Vi ) − H (Y1,i |K1, Vi )
]
+ nϵn (104)

≤
n∑

i=1

[
I (Vi ; Y2,i )+H (Y1,i|Vi )−H (Y1,i|Vi , Xi )

]
+ nϵn

(105)

≤
n∑

i=1

[
I (Vi ; Y2,i )+ I (Xi ; Y1,i |Vi )

]
+ nϵn . (106)

Now, let Q be a time-sharing random variable independent
of all others in the model and uniformly distributed over
{1, . . . , n}. We set U = (UQ , Q), V = (VQ, Q), X = XQ ,
Y1 = Y1,Q , and Y2 = Y2,Q and obtain for (87)

nR ≤
n∑

i=1

I (Ui ; Y1,i )+ nϵn (107)

= nI (UQ ; Y1,Q|Q)+ nϵn (108)

≤ nI (U ; Y1)+ nϵn (109)

and similarly for (88)

nR ≤ nI (V ; Y2)+ nϵn . (110)

Accordingly, we get for (97) and (106)

n2R ≤
n∑

i=1

[
I (Ui ; Y1,i)+ I (Xi ; Y2,i |Ui )

]
+ nϵn (111)

= n
[
I (UQ; Y1,Q |Q)+ I (XQ; Y2,Q |UQ, Q)

]
+ nϵn

(112)

≤ n
[
I (U ; Y1)+ I (X; Y2|U)

]
+ nϵn (113)

and

n2R ≤ n
[
I (V ; Y2)+ I (X; Y1|V )

] + nϵn . (114)

This establishes the desired bounds in (29) and it remains to
bound the cardinalities as stated. This can be done exactly
as for the UV-bound for the classical BC in [35, Sec. II-C]
and is therefore omitted for brevity. This completes the
proof. !

D. Proof of Theorem 5

Achievability follows from the Marton coding approach in
Lemma 1. By setting U = Y1, V = Y2, and W = ∅, the rate
expression (28) simplifies to the desired rate (30).
The converse follows then from the UV-type upper bound

in Theorem 4. We observe that the first two bounds in (29)

can be bounded as I (U ; Y1) ≤ H (Y1) and I (V ; Y2) ≤ H (Y2).
Further,

I (U ; Y1)+ I (X; Y2|U)
= I (U ; Y1)+ H (Y2|U) (115)
= H (Y1) − H (Y1|U)+ H (Y2|U) (116)
= H (Y1)+ H (Y2|Y1)

−H (Y2|Y1) − H (Y1|U)+ H (Y2|U) (117)
≤ H (Y1,Y2) − H (Y2|Y1,U) − H (Y1|U)+ H (Y2|U)

(118)
= H (Y1,Y2) − H (Y1,Y2|U)+ H (Y2|U) (119)
≤ H (Y1,Y2) (120)

where (115) follows from H (Y2|X,U) = 0 since the chan-
nel is deterministic and (120) follows from the fact that
−H (Y1,Y2|U) + H (Y2|U) ≤ 0. In a similar way we also
get 1

2 [I (V ; Y2) + I (X; Y1|V )] ≤ H (Y1,Y2) which give the
desired bounds. !

E. Proof of Theorem 6

We start with the achievability of the rate (31) and then
prove the corresponding converse.
1) Proof of Achievability: The following equivalent descrip-

tion of (31) turns out to be beneficial for the proof of
achievability.
Lemma 2: The rate expression in (31) can equivalently be

expressed as

C = max
PX

max
0≤α≤1

min
{
I (X; Y1) − α I (X; Z)
I (X; Y2) − (1 − α)I (X; Z)

}
. (121)

Proof: A proof is provided in Appendix B.
Thus, instead of proving the achievability of (31), we prove

the achievability of (121) for any 0 ≤ α ≤ 1.
Next we sketch the proof of achievability. Basically, it

follows the ideas of [27], [28], and [36] which all present
coding schemes that achieve strong secrecy as required in (23).
Accordingly, for any input distribution PX ∈ P(X) and
α ∈ [0, 1] we generate |M ||K1||K2| independent codewords
xnmk1k2

∈ Xn where

|K1| > 2n((1−α)I (X;Z)+ϵ) (122a)

|K2| > 2n(α I (X;Z)+ϵ) (122b)

|M | < min
{
2n(I (X;Y1)−α I (X;Z)−2ϵ)

2n(I (X;Y2)−(1−α)I (X;Z)−2ϵ)

}
. (122c)

The crucial idea is to use the available secret keys as random-
ization resources instead of generating “dummy” randomiza-
tion indices as in the classical wiretap coding approach. As the
sizes of the secret keys satisfy

1
n
log(|K1||K2|) > I (X; Z)+ 2ϵ (123)

we have enough randomization resources to show that
I (M; Zn) ≤ δn holds, i.e., strong secrecy (23) is satisfied.
This can be done similarly as in [27], [28], and [36].
Next, we check the reliability constraints at the legitimate

receivers. Receiver 1 has the secret key k1 ∈ K1 as side
information available and therefore the unknown indices of
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the transmitted codeword are m ∈ M and k2 ∈ K2. As its size
satisfies

|M ||K2| ≤ 2n(I (X;Y1)−ϵ), (124)

it is straightforward to show that receiver 1 can decode the
remaining indices m ∈ M and k2 ∈ K2. Similarly, receiver 2
has k2 ∈ K2 as side information available and the unknown
indices are m ∈ M and k1 ∈ K1 of size

|M ||K1| ≤ 2n(I (X;Y2)−ϵ). (125)

Again, it is easy to show that receiver 2 can decode the
remaining indices m ∈ M and k1 ∈ K1. Thus, we conclude
that (121) is an achievable rate.
Remark 12: For classical wiretap coding, the rate needed

for additional randomization is roughly I (X; Z). This suffices
to keep the eavesdropper ignorant of the transmitted message.
The use of secret keys as the randomization resource has the
advantage that parts of the needed randomization resource are
already available as side information at the receivers. This
reduces the loss in rate in the sense that it is only reduced
by the remaining unknown randomization part (and not by the
whole amount of randomization).
2) Proof of the Converse: It remains to show the optimality

of the above presented coding scheme. The first two bounds
in (31) are the obvious single-user bounds and follow imme-
diately. The crucial part is to prove the third “sum-rate”-like
bound. We proceed as follows:

n2R ≤ H (M)+ H (M) (126)
= H (M|K1)+ H (M|K2) (127)
≤ I (M; Y n

1 |K1)+ I (M; Y n
2 |K2)+nϵ1,n+nϵ2,n (128)

≤ I (M; Y n
1 |K1)+ I (M; Y n

2 |K2)

−I (M; Zn)+ nϵn (129)
≤ I (M, K1; Y n

1 )+ I (M, K2; Y n
2 )

−I (M; Zn)+ nϵn (130)
= I (M, K12; Y n

1 )+ I (M, K12; Y n
2 )

−I (M, K12; Zn) − I (K2; Y n
1 |M, K1)

−I (K1; Y n
2 |M, K2)+ I (K12; Zn|M)+ nϵn (131)

≤ I (M, K12; Y n
1 )+ I (M, K12; Y n

2 )

−I (M, K12; Zn)+ nϵn (132)

with ϵn = δn+ϵ1,n+ϵ2,n and ϵn → 0 as n → ∞. Here, (128)
follows from Fano’s inequality, cf. (41), (129) from the secrecy
criterion, and (132) from the fact that −I (K2; Y n

1 |M, K1) −
I (K1; Y n

2 |M, K2) + I (K1, K2; Zn|M) ≤ 0. To see this last
step, we write

−I (K2; Y n
1 |M, K1) − I (K1; Y n

2 |M, K2)+ I (K12; Zn|M)

= −H (K2|M, K1)+ H (K2|M, K1,Y n
1 )

−H (K1|M, K2)+ H (K1|M, K2,Y n
2 )

+H (K12|M) − H (K12|M, Zn) (133)
= H (K2|M, K1,Y n

1 )+ H (K1|M, K2,Y n
2 )

−H (K12|M, Zn) (134)
≤ H (K2|M, K1, Zn)+ H (K1|M, K2, Zn)

−H (K12|M, Zn) (135)
≤ 0 (136)

where (134) follows from the fact that M , K1, and K2
are independent so that −H (K2|M, K1) − H (K1|M, K2) +
H (K12|M) = 0, and (135) from the Markov chain relation-
ships X − Y1 − Z and X − Y2 − Z due to the degradedness.
Now, with this we can proceed with the “sum-rate” in (132)
as

n2R ≤ I (M, K12; Y n
1 )+ I (M, K12; Y n

2 )

−I (M, K12; Zn)+ nϵn (137)

= I (M, K12; Y n
1 |Zn)+ I (M, K12; Y n

2 )+ nϵn (138)

≤ I (Xn; Y n
1 |Zn)+ I (Xn; Y n

2 )+ nϵn (139)

≤ n
[
I (X; Y1|Z)+ I (X; Y2)

]
+ nϵn (140)

= n
[
I (X; Y1)+ I (X; Y2) − I (X; Z)

]
+ nϵn (141)

where (138) and (141) follow from the degradedness of the
channels. This completes the proof of the converse. !

F. Proof of Theorem 7

The proof of achievability follows immediately from
Theorem 6 so that it remains to prove the converse for
the less noisy case. In the following we will highlight the
differences from the converse proof for the degraded case in
Theorem 6.
Following the lines (126)-(132) for the “sum-rate” term we

also obtain

n2R ≤ I (M, K12; Y n
1 )+ I (M, K12; Y n

2 )

−I (M, K12; Zn) − I (K2; Y n
1 |M, K1)

−I (K1; Y n
2 |M, K2)+ I (K12; Zn|M)+ nϵn (142)

≤ I (M, K12; Y n
1 )+ I (M, K12; Y n

2 )

−I (M, K12; Zn)+ nϵn (143)

with ϵn = δn + ϵ1,n + ϵ2,n and ϵn → 0 as n → ∞. Here,
(143) follows again from the fact that −I (K2; Y n

1 |M, K1) −
I (K1; Y n

2 |M, K2) + I (K1, K2; Zn|M) ≤ 0. To see that this
also holds for less noisy channels, we proceed as follows.
With I (K1, K2; Zn|M) = I (K1; Zn|M) + I (K2; Zn|M, K1)
we observe that

−I (K2; Y n
1 |M, K1)+ I (K2; Zn|M, K1) ≤ 0 (144)

which is a consequence of the less noisy condition Y1 ≽ Z ,
cf. for example [37, Proposition 1]. With I (K1; Zn|M) ≤
I (K1; Zn|M, K2) we also have

−I (K1; Y n
2 |M, K2)+ I (K1; Zn|M, K2) ≤ 0 (145)

which validates the correctness of the inequality in (143).
Now, we can proceed with the “sum-rate” in (143) as

n2R

≤ I (M, K12; Y n
1 )+ I (M, K12; Y n

2 )

−I (M, K12; Zn)+ nϵn (146)

≤
n∑

i=1

[
I (M, K12; Y1,i |Y i−1

1 ) − I (M, K12; Zi |Zn
i+1)

]

+I (Xn; Y n
2 )+ nϵn (147)
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=
n∑

i=1

[
I (M, K12; Y1,i |Y i−1

1 , Zn
i+1)

−I (M, K12; Zi |Y i−1
1 , Zn

i+1)
]
+ I (Xn; Y n

2 )+ nϵn (148)

=
n∑

i=1

[
I (Vi ; Y1,i |Ui ) − I (Vi : Zi |Ui )

]
+ I (Xn; Y n

2 )+ nϵn

(149)

where (148) follows from the Csiszár sum identity
[10, Lemma 7] and (149) from the definition of auxiliary
random variables Ui := (Y i−1

1 , Zn
i+1) and Vi := (M, K12,Ui ).

Now, let Q be a time-sharing random variable independent
of all others in the model and uniformly distributed over
{1, . . . , n}. We set U = (UQ , Q), V = VQ , X = XQ ,
Y1 = Y1,Q , and Z = ZQ to obtain

n2R ≤ n
[
I (V ; Y1|U) − I (V ; Z |U)+ I (X; Y2)

]
+ nϵn

(150)

≤ n
[
I (V ∗; Y1) − I (V ∗; Z)+ I (X; Y2)

]
+ nϵn (151)

= n
[
I (X; Y1) − I (X; Y1|V ∗)

−I (X; Z)+ I (X; Z |V ∗)+ I (X; Y2)
]
+ nϵn (152)

≤ n
[
I (X; Y1)+ I (X; Y2) − I (X; Z)

]
+ nϵn (153)

where (151) follows from letting V ∗ be a random variable
distributed according to the choice U = u∗ that maximizes
the difference in (150). Finally, the inequality in (153) fol-
lows from the less noisy condition Y ≽ Z which implies
I (X; Y1|V ∗) ≥ I (X; Z |V ∗). This concludes the proof of the
converse. !

G. Proof of Theorem 8

Proof of Achievability: For achievability we want to exploit
both previously discussed approaches: secret keys as one-time
pads and secret keys as fictitious messages in wiretap codes.
Therefore, we split the message M into two parts

M = (M ′,M⊕) (154)

with rates R′ and R⊕, where the part M ′ will be protected
by the wiretap coding approach and M⊕ by the one-time pad
approach. Accordingly, we split the secret keys as

K1 = (K ′
1, K

⊕
1 ) andK2 = (K ′

2, K
⊕
2 ) (155)

such that R⊕ = R⊕
K1

= R⊕
K2

to ensure that M⊕ can
be protected following the one-time pad idea by creating
encrypted messages

M⊕
1 = M⊕ ⊕ K⊕

1 and M⊕
2 = M⊕ ⊕ K⊕

2 (156)

both of rate R⊕.
We use a superposition coding scheme with two layers. For

the random code construction, for any PU we first generate
“cloud centers” carrying M ′, K ′

1, K
′
2, and M⊕

2 . Here, M ′ will
be protected by a wiretap code approach. Then, according to
PX |U we generate “satellite codewords” carrying M⊕

1 .
Now, the stronger receiver 1 decodes the cloud center

(having K ′
1 as side information available) and the satellite

codeword, while the weaker receiver 2 decodes only the cloud

center (having K ′
2 as side information available). If we choose

the rates of all messages such that they satisfy

R′ + R′
K2

+ R⊕ ≤ I (U ; Y1) (157)

R′ + R′
K1

+ R⊕ ≤ I (U ; Y2) (158)

R⊕ ≤ I (X; Y1|U) (159)

R′
K1

+ R′
K2

+ R⊕ > I (U ; Z) (160)

R⊕ > I (X; Z |U) (161)

the average probabilities of error become arbitrarily small.
Having decoded M⊕

1 and M⊕
2 respectively, the receivers obtain

the desired part M⊕ with the help of their side information
K⊕
1 and K⊕

2 respectively.
It remains to check the security of the transmitted message.

As R′
K1

+ R′
K2

+ R⊕ > I (U ; Z) and R⊕ > I (X; Z |U), the
rate of the fictitious messages is high enough to show that
I (M ′; Zn) ≤ δn holds, i.e., strong secrecy (23) is satisfied.
This can be done similarly as in [27], [28], and [36]. Note
that no information about M⊕ is leaked to the eavesdropper
due to the one-time pad K⊕

2 even if the eavesdropper is able
to decode the encrypted message M⊕

2 . The second part M⊕
1

in the satellite codeword is immediately protected by the
one-time pad K⊕

1 .
Now, by applying Fourier-Motzkin elimination to get rid

of R′, R⊕, R′
K1
, and R′

K2
in (157)-(161) having in mind that

R = R′ + R⊕, yields

R ≤ min

⎧
⎪⎨

⎪⎩

I (U ; Y1),
I (U ; Y2),
1
2

[
I (X; Y1)+ I (U ; Y2) − I (U ; Z)]

⎫
⎪⎬

⎪⎭
(162)

where we observe that the first condition can be omitted as
I (U ; Y2) ≤ I (U ; Y1) holds due to the degradedness. This
concludes the proof of achievability.
Remark 13: We want to highlight the difference from the

previous approach in Theorem 6. There, the available secret
keys are solely used as fictitious messages. From a legitimate
receiver’s perspective, using its own secret key as a fictitious
message increases the equivocation rate at the eavesdropper
but does not contribute to the message rate. However, The-
orem 6 shows that for degraded channels X − Y1 − Z and
X − Y2 − Z this is already sufficient to achieve capacity, cf.
Theorem 6.
The one-time pad approach enters the picture when one

legitimate receiver is stronger than the eavesdropper. Addition-
ally to using the secret keys as fictitious messages, one part
of the secret key is used to create an encrypted message M⊕

2
which is also used as a fictitious message part to increase the
equivocation rate. Again, it does not contribute to the message
rate of receiver 1, but it is useful for receiver 2. To resolve
the mismatch, the stronger receiver 1 receives the missing part
encrypted in the satellite codeword.
This approach is in particular beneficial if receiver 2 is

much weaker than the eavesdropper while receiver 1 and the
eavesdropper are close in terms of channel quality.
Proof of the Converse: We define the auxiliary random

variable

Ui := (M, K2, Zi−1). (163)
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The first bound in (34) is a single-user bound and follows as

nR ≤ I (M; Y n
2 |K2)+ nϵ1,n (164)

≤ I (M, K2; Y n
2 )+ nϵ1,n (165)

≤
n∑

i=1

I (M, K2; Y2,i |Y i−1
2 )+ nϵ1,n (166)

≤
n∑

i=1

I (M, K2,Y i−1
2 ; Y2,i)+ nϵ1,n (167)

≤
n∑

i=1

I (M, K2,Y i−1
2 , Zi−1; Y2,i )+ nϵ1,n (168)

≤
n∑

i=1

I (M, K2, Zi−1; Y2,i )+ nϵ1,n (169)

=
n∑

i=1

I (Ui ; Y2,i )+ nϵ1,n (170)

with ϵ1,n → 0 as n → ∞. Here, (164) follows from Fano’s
inequality and (170) from the definition of Ui , cf. (163).
The crucial part is the second “sum-rate”-like bound. From

the proof of [1, Th. 6], we know that n2R ≤ I (M, K1; Y n
1 )+

I (M, K2; Y n
2 ) − I (M; Zn)+ nϵn . Following this, we obtain

n2R ≤ I (M, K1; Y n
1 )+ I (M, K2; Y n

2 )

− I (M; Zn)+ nϵn (171)

= I (M, K12; Y n
1 )+ I (M, K2; Y n

2 ) − I (M, K2; Zn)

− I (K2; Y n
1 |M, K1)+ I (K2; Zn|M)+ nϵn (172)

≤ I (M, K12; Y n
1 )+ I (M, K2; Y n

2 )

− I (M, K2; Zn)+ nϵn (173)

with ϵn = δn + ϵ1,n + ϵ2,n and ϵn → 0 as n → ∞.
Here, (173) follows from the fact that −I (K2; Y n

1 |M, K1) +
I (K2; Zn|M) ≤ 0. Now we proceed as

n2R ≤ I (M, K12; Y n
1 )+ I (M, K2; Y n

2 )

− I (M, K2; Zn)+ nϵn (174)

= I (M, K12; Y n
1 )+ I (M, K2; Y n

2 ) − I (M, K12; Zn)

+ I (K1; Zn|M, K2)+ nϵn (175)

where the first and third term are bounded as

I (M, K12; Y n
1 ) − I (M, K12; Zn)

= I (M, K12; Y n
1 |Zn) ≤ I (Xn; Y n

1 |Zn) (176)

≤ n
[
I (X; Y1|Z)

]
= n

[
I (X; Y1) − I (X; Z)

]
. (177)

Here, (176) holds due X − Y1 − Z . The second term becomes

I (M, K2; Y n
2 ) ≤

n∑

i=1

I (Ui ; Y2,i ) (178)

which follows as in (165)-(170). And finally, the last term is

I (K1; Zn|M, K2) =
n∑

i=1

I (K1; Zi |M, K2, Zi−1) (179)

≤
n∑

i=1

I (K1, Xi ; Zi |M, K2, Zi−1) (180)

=
n∑

i=1

I (Xi ; Zi |M, K2, Zi−1)

=
n∑

i=1

I (Xi ; Zi |Ui ). (181)

Now, by following standard arguments of introducing a time-
sharing random variable independent of all others and uni-
formly distributed over {1, . . . , n}, it is straightforward to
finally obtain R ≤ I (U ; Y2) + ϵ1,n and 2R ≤ [

I (X; Y1) +
I (U ; Y2) − I (U ; Z)

]
+ ϵn .

The bound |U| ≤ |X | + 1 on the cardinality of the range of
the auxiliary random variable U follows from the strengthened
version of Carathéodory’s theorem, cf. [32]. !

H. Proof of Theorem 11

Achievability follows from the corresponding scheme for
discrete memoryless channels in Theorem 8, where we choose
U ∼ αP (wiretap coding), V ∼ (1−α)P (additional one-time
pad part), and X = U + V with 0 ≤ α ≤ 1 parametrizing the
power allocation between the two schemes.
The converse follows from an application of the entropy

power inequality and the maximum entropy theorem. We write
the first condition in (34) as

I (U ; Y2) = h(Y2) − h(Y2|U) (182)

with h(·) the differential entropy. By the maximum entropy
theorem, the first term is upper bounded by h(Y2) ≤
1
2 log(2πe(P+σ 2

2 )). For the second term h(Y2|U) we observe

1
2
log(2πeσ 2

2 ) = h(N2) = h(Y2|X) ≤ h(Y2|U) (183)

≤ h(Y2) ≤ 1
2
log(2πe(P + σ 2

2 )) (184)

so that there must exist an α ∈ [0, 1] such that

h(Y2|U) = 1
2
log

(
2πe((1 − α)P + σ 2

2 )
)
. (185)

With this, we obtain for the first expression in (34)

I (U ; Y2) ≤ 1
2
log

(
1+ αP

(1 − α)P + σ 2
2

)
(186)

which already establishes the first bound in (40) as desired.
With I (X; Z) = I (U ; Z) + I (X; Z |U) we can write the

second condition in (34) as

I (X; Y1)+ I (U ; Y2) − I (X; Z) + I (X; Z |U). (187)

In the following, we will bound each term separately. From
(186) we already know that I (U ; Y2) ≤ 1

2 log(1+ αP
(1−α)P+σ 2

2
).

Following the proof for the classical Gaussian wiretap channel
by using the entropy power inequality, we further get

I (X; Y1) − I (X; Z) ≤ 1
2
log

(
1+ P

σ 2
1

)
− 1

2
log

(
1+ P

σ 2
Z

)
.

(188)

Thus, it remains to bound the last term I (X; Z |U) as

I (X; Z |U) = h(Z |U) − h(Z |U, X) (189)

= h(Z |U) − 1
2
log(2πeσ 2

Z ). (190)



SCHAEFER et al.: SECURE BROADCASTING USING INDEPENDENT SECRET KEYS 659

To bound the remaining term, we apply the entropy power
inequality as follows:

h(Y2|U) = h(Z + Ñ |U) (191)

≥ 1
2
log

(
22h(Z |U ) + 22h(Ñ |U )

)
(192)

= 1
2
log

(
22h(Z |U ) + 2πe(σ 2

2 − σ 2
Z )

)
(193)

where Ñ is Gaussian distributed with variance σ 2
2 −σ 2

Z . Now,
we choose α as in (185) to obtain

2πe((1 − α)P + σ 2
2 ) ≥ 22h(Z |U ) + 2πe(σ 2

2 − σ 2
Z ) (194)

so that

h(Z |U) ≤ 1
2
log

(
2πe((1 − α)P + σ 2

Z )
)
. (195)

Now, putting everything together yields

I (X; Y1)+ I (U ; Y2) − I (U ; Z)
≤ 1

2

[
log

(
1+ P

σ 2
1

)
+ log

(
1+ αP

(1 − α)P + σ 2
2

)

− log
(
1+ αP

(1 − α)P + σ 2
Z

)]
(196)

which yields the remaining bound in (40). This completes the
converse and therewith the proof. !

VI. CONCLUSION

A secret key shared between a transmitter and a receiver
clearly helps to securely communicate in the presence of
an eavesdropper. In the “single-user” user scenario of the
wiretap channel with shared secret key, the gain in secrecy
capacity can immediately be quantified. It corresponds to the
key rate of the shared secret key which agrees with common
intuition. The same question becomes much more involved
and non-trivial to answer for more complex communication
scenarios in which multiple secret keys are shared among
the legitimate users. Shared secret keys suggest the use of
one-time pads to encrypt confidential messages for keeping
external eavesdroppers ignorant. However, a secret key shared
between the transmitter and one receiver might harm other
receivers which do not share this key. Thus, multiple secret
keys can result in conflicting payoffs at different receivers,
which raises the question of how these keys should be used
in an optimal way. In this paper, we have studied the BC
with independent secret keys in which a common message
must be securely transmitted to two legitimate receivers each
of which shares an independent secret key with the trans-
mitter. This is the simplest extension beyond the single-
user wiretap channel that captures the above mentioned
effects.
For situations in which the eavesdropper’s channel is

“stronger” than the legitimate channels, classical wiretap cod-
ing does not work and the message must be protected by using
the secret keys as one-time pads. For several special cases
such as the noiseless BC, BC with equal channel outputs,
or degraded BC, it has been shown that this strategy is
actually optimal and the secrecy capacity has been established.

On the other hand, in situations in which the eavesdropper’s
channel is the “weakest” channel, it has been shown that it
is optimal to use the secret keys not as one-time pads but
as fictitious messages for randomization in wiretap coding.
The corresponding secrecy capacity has been established as
well. The most challenging case is when the eavesdropper has
neither the strongest nor the weakest channel. Here, a care-
ful combination of the one-time pad approach and wiretap
coding with fictitious messages is needed to establish the
secrecy capacity for this case. First, these problems have been
addressed for the situation in which all channels are discrete
memoryless. Then, Gaussian channels have been considered
and the previous results have been extended to this case as well
yielding a complete characterization of the secrecy capacity of
the Gaussian BC with independent secret keys.
For future work, it would be interesting to study how

these results obtained for the case of two legitimate receivers
extend to an arbitrary number of legitimate receivers. Another
direction for future work would be to characterize how large
of secret key rates are needed to achieve capacity and what
happens if the secret key rates are bounded below those rates.

APPENDIX

A. Sketch of Proof of Lemma 1

As described in Section IV-A, the secret keys are used as
one-time pads to create individual encrypted messages M1 =
M⊕K1 and M2 = M⊕K2, cf. (24) and Fig. 3, which are then
encoded and transmitted. As M , K1, and K2 are independent
of each other, we immediately have I (M; Zn) = 0 even if the
eavesdropper would able to decode the encrypted messages
M1 or M2.
Now, the achievability of the rate given in (28) follows

from the idea of Marton coding for the classical BC,
cf. [29, Sec. 8.4]. In particular, the created individual
messages M1 and M2 are encoded following this approach
which yields the bounds on the rate as given in (28),
cf. [29, Proposition 8.1]. !

B. Proof of Lemma 2

With the function

f (t) =

⎧
⎪⎨

⎪⎩

(1 − t)I (X; Y1)+ t[I (X; Y2) − I (X; Z)] if t ≤ 1
2

(1 − t)[I (X; Y1) − I (X; Z)] + t I (X; Y2) if t ≥ 1
2

(197)

we can express the rate expression in (31) as

C = max
PX

min
0≤t≤1

f (t). (198)

As the function f (t) is piecewise linear, it is sufficient to
evaluate it at the corner points, i.e., when t = 0, t = 1, and
t = 1

2 , to convince ourself that the rate expressions in (31)
and (198) are equivalent.
Now we have to show that (198) is equivalent to the desired

expression (121). Therefore, we rewrite (121) (where we omit
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the outer maximization for short) as

max
0≤α≤1

min
0≤t≤1

[
(1 − t)

[
I (X; Y1) − α I (X; Z)

]

+ t
[
I (X; Y2) − (1 − α)I (X; Z)

]]

= min
0≤t≤1

max
0≤α≤1

[
(1 − t)

[
I (X; Y1) − α I (X; Z)

]

+ t
[
I (X; Y2) − (1 − α)I (X; Z)

]]
(199)

where the equality follows from the minimax theorem. Now
eliminating α in (199) yields for t ≤ 1

2 and t ≥ 1
2 the

corresponding expressions in (198) which are then equivalent
to the original formulation (31). !
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