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Abstract—Alternating direction method of multipliers (AD-
MM) is a promising approach to solve ‘“big data” problems
due to its efficient variable decomposition and fast convergence.
However, it is subject to the following two fundamental assump-
tions: no contradiction among multiple controllers’ objectives
and ideal feedback from the agents to the controllers. In this
paper, a multiple-leader multiple-follower (MLMF) game-based
ADMM is developed to balance the conflicting objectives among
the controllers as well as those between the controllers and the
agents. Both analytical and simulation results verify that the
proposed method reaches a hierarchical social optimum and
converges at a linear speed. More importantly, the convergence
rate is independent of the network size, which indicates that the
MLMF game-based ADMM can be used in a very large network
for big data processing.

Index Terms—Big data, large-scale network, game theory,
ADMM

I. INTRODUCTION

In recent years, the alternating direction method of multipli-
ers (ADMM) [1]-[3] has been recognized as a useful algorithm
to deal with “big data” problems, such as data classification,
due to its effectiveness in both fast convergence and variable
decomposition. Through ADMM, a controller, with an objec-
tive function to optimize, can divide the needed computation
into smaller problems and implement them at different agents
in a distributed manner [1]. Even though the variable updates
of ADMM can be performed separately on a number of agents,
the method of updating is specified by the controller. Hence,
ADMM cannot work properly when multiple controllers want
to optimize multiple conflicting objectives simultaneously or
the agents have their own objectives to achieve and do not
feed variables back as the controllers expect.

Fig. 1 shows an example of a mobile crowd sourcing net-
work [4], in which the controllers (as servers) collect sensing
data from the agents (as mobile devices) to achieve their
systematic objectives. We denote by z; ; the data collected
from agent j to controller i. (—g; j(x;;)) is defined as the
gain when controller i obtains x; ; from agent j. Hence,
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Fig. 1. Problem illustration in a mobile crowd sourcing network with multiple
controllers and multiple agents.

the systematic objective for controller ¢ can be expressed as
ming, ; >, gi,j(%;,;). However, each agent can only sense
limited data (expressed as » .x;; = x; for each agent
7) due to the sensing capacity constraint. Therefore, the
controllers have to compete for the sensing services of the
agents, where controller ¢’s minimization on g; j(x; ;) may
increase gy, ; (xk j) for another controller k. Thus, those servers
cannot run the ADMM independently for data collection due
to the first limitation above. Besides, when there are multiple
controllers in the system, each agent has the opportunity to
select desirable controllers to collect data. This incentivizes
each agent to work for the controllers with the highest
payments/benefits. Therefore, without incentives, each agent
J 1is usually willing to update variables x; ; to minimize its
own objective, denoted by H;(xy j,...,%; j,...), rather than
gi,j(x; ;) for each controller i due to the second limitation
above.

To balance the objectives among different controllers, and
overcome the influence of the individual objectives of the
agents, incentive mechanisms, such as Stackelberg games [5],
[6], can be applied for the controllers to motivate the agents to
update the variables as the controllers expect. The controllers
can be regarded as buyers that pay the agents for optimiz-
ing the objectives for the controllers. Thus, the controllers’



2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

objectives can be driven towards some rational goal, such as
the Pareto optimum or the social optimum [6], [7]. Although
the existing game-theoretic methods have found some ways to
balance objectives among the multiple controllers and helped
design incentive mechanisms, they require a prohibitively large
number of iterations to converge, especially when the network
size is very large. This can hardly meet the needs of big data
networks [8], [9].

From the above discussion, it is natural to combine the
ADMM with game theory to address the tradeoff and con-
vergence issues. To this end, we develop a multi-leader multi-
follower (MLMF) game-based ADMM as an incentive mecha-
nism, which exploits the advantages of both ADMM and game
theory. In summary, we have the following major contributions
in this paper:

o We develop an MLMF game-based ADMM to achieve a
hierarchical social optimum, which theoretically connect
optimization methods (such as the ADMM) and game
theory for big data networks.

o We demonstrate its linear convergence regardless of the
network size as long as the objective functions are sepa-
rable and strongly convex.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider a big data network with multiple controllers
and multiple agents, as shown in Fig. 1. The number of
controllers and agents can be very large. Each agent holds
resources and leases them to the controllers. We denote by
x;; the resources leased from agent j to controller i. We
assume that the system consists of K controllers and N agents.
Obviously, with large K and N, there exist millions or billions
of variables {z; ;i = 1,2,...,K; j = 1,2,...,N} to be
processed, which makes centralized optimization impractical.
For convenience, we use a K x N matrix X £ (x”)tKjfl to
represent all resources.

We define the objective for each controller in the leasing
process as a general minimization problem. Mathematically,
the objective of controller ¢ can be modeled as a typical
ADMM-form optimization problem [1] expressed as

N
min G;(X;,+) = Zgi,j(‘fi«,j)v M
j=1

Xi,*

N
s.t. ZAi,jxi,j - B; =0, (la)
j=1

where X, . £ (xi1,%i2,..., 2, n) 1S a row vector that
represents the set of resources from N agents, g; ;(x; ;) can be
regarded as the cost (or —g; j(z; ;) as the gain) of controller
i when it obtains resource z; ; from agent j, and G;(x; )
is defined as the cost function for controller 7. The linear
constraint for controller ¢ as in (la) can be regarded as the
largest requirement, B;, where all {4; ;|7 =1,2,..., N} and
B; are real and scalar constants.

The objective for each agent j can be also written as a
general minimization problem,

K
min H;(x. ;) £ Zhi,j(xi,j): 2

Xy i
J i=1

K
s.t. ZCi,jxi,j - Dj = 07 (2a)
i=1
where h; ;(z; ;) is the cost for agent j when agent j leases
resource x; ; to controller ¢, H;(x. ;) denotes the cost function
of agent j, and X.; = (z1,%2;,...,2k,;)". The linear
constraint in (2a) for agent j indicates the limited total
resources held by agent j, where all {C; ;i = 1,2,..., K}
and D; are real and scalar constants.

It is worth pointing out that the ADMM cannot be imple-
mented directly to reach the controllers’ objectives in (1) since
resources leased by K controllers from the same agent j, are
coupled with the constraint, Zfil C; jxi; = Dj, in (2a). Note
that the controllers’ objectives in (1) and the agents’ objectives
in (2) may conflict as well. We denote by X* = (xf])fjjil
the optimal matrix of resources for the controllers’ objectives
in (1), and by X 2 (:%”)ffil the optimal point for agents’
objectives in (2). Since the resources are held by agents, the
value of X is determined by agents. Thus, the result probably
reaches X instead of the optimal matrix, X*. To motivate
agents to change their actions in reaching X* but not X, the
controllers need to provide incentives for the agents [10].

We formulate the incentive mechanism design problem as
a multiple-leader multiple-follower game so that the optimal
result of the game corresponds to a hierarchical social opti-
mum, which balances the controllers’ objectives in (1) and
simultaneously considers the agents’ objectives in (2).

Mathematically, the incentive mechanism is determined by
a set of incentive functions. Denote by ®;(H;(x. ;),0x ;)
an incentive function to describe the interaction between all
controllers and agent j, where 0;; denotes the incentive
factor adjusted by controller i to influence H,(x, ;), and
0.; = (61;,02;,...,0k,)T represents the incentive factor
corresponding to agent j. For the financial incentive in [10],
0. ; is the actual payment or payment per unit (prices) for
agent j'.

B. Problem Formulation

With the incentive mechanism in Fig. 1, our problem can
be formulated as an MLMF game as

Leaders’ Game: argmin G; (X;,+), (3a)
0,
Followers’ Game: argmin ®; (H;(xx;), 0+,5), (3b)
X, j
N
Leaders’ Constraints: s.t. ZALJ':I:'[,’]' —B; =0, (3c)
j=1
K
Followers’ Constraints: s.t. Z Cijzri; —D; =0, (3d)

i=1

'In this paper, we adopt the financial incentive for the incentive mechanism
design [10].
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for all + = 1,2,...,K and 57 = 1,2,..., N, where the
controllers and the agents are regarded as the leaders and the
followers, respectively?.

There typically exists no feasible solution that simultane-
ously minimizes all objective functions for the leaders and
incentive functions for the followers. Instead, we will find the
hierarchical social optimum [6], [7] as a reasonable result, as
given below.

Definition 1: Hierarchical Social Optimum. Denote by X
and © the feasible set of the resource matrices, X, and
the feasible set of the matrices of incentive factors, @ £
(Oi,j)fj?gl, respectively. A point (X*,©*) € (X,0) is a
hierarchical social optimum if the following two conditions
are simultaneously satisfied:

1) There is no other point, (X,®) € (X, ©), such that

YLy Gilxin) < Si, Gilx;,); and

2) Given an optimal point of incentive factors, ®* £

(9;‘])”’ ,» there exists no other point (X,©*) €
(X,0), such that for at least one follower 7,

D (Hj(xx5), 0% ;) < ®;(Hj(xx;),0% ), and for other

followers ®,,(H,,(Xxn), 0% ,) < @n(Hn(x%,) 05,),

ne{l,2,j—1,j+1,...,N}.
The first condition in the above assures that the sum of
the costs for the leaders is minimized and the second one
indicates that all followers reach a Nash equilibrium given
the optimal incentive factors from the controllers [11]. Even
though the result of the hierarchical social optimum is defined
for a centralized goal of all leaders, it can also balance the
objectives among different leaders, since the social optimum
can guarantee a Pareto optimum among leaders [7].

C. Assumptions

To ensure the convergence of the MLMF game-based AD-
MM, we need the following assumptions:

1) Each term in each leader’s objective function in (1),
gi, (;5), is strongly convex in variable x; ;. That is to
say, there exists a v > 0, for each g; ;j(z; ;), such that

given any z; ; and z o

9i,i (Ti5) > 9, (wig) + Ve, ;90 (i) (2] 5 — i 5)

2 2
+ L1t — sl

“)

2) Each term in each follower’s objective function in (2),
hi j(x; ), is a convex function with a feasible minimum
point h;; > —oo. Mathematically, given any z;; and

z; > the followmg inequality is satisfied:

hij (x5 5) = hi(ig) + Va, jhij (@) (@5 — i), (5)

3) The objective function of each follower satisfies a uni-
form Lipschitz gradient condition [3], [12]. There exists
k>0, for each H;(x. ;), given any X ; = X,

5
Vi, Hi (X4 ) = Ve, jHj (%0 5) X6 (xhj —%a5),  (6)

2For convenience, we call the controllers the leaders and the agents the
followers in the rest of this paper.

where y < z denotes that each element of vector y is

less than or equal to the corresponding one of vector z.

The assumptions above clarify the generality and feasibility
of our framework. We emphasize that all the assumptions are
common [2], [3], [12] and many general functions satisfy these

assumptions®.

III. MULTIPLE-LEADER MULTIPLE-FOLLOWER
GAME-BASED ADMM

In this section, we first present the incentive function design.
Then, we describe the iteration process of our MLMF game-
based ADMM. Finally, we discuss the linear convergence of
our algorithm.

A. Incentive Function Design

Leader ¢ wants follower j to optimize g; j(z; ;) through a
payment, which is proportional to the resources provided from
follower j, as 0; jx; ;, where 6; ; is the payment per unit, i.e.,
the price [10]. Denote 95? the price at the iteration step p.
With the payment, follower j helps to minimize g; ;(z; ;) and
simultaneously considers its pure individual part h; ;(z; ;). As
a result, the incentive function for each follower j can be
constructed at step p as

K
®; (Hj(X*J o(p)) Z(gu Tij) + hi (@i ;) — 9( )xw>
i=1
(7
B. MLMF Game-based ADMM

The operation process consists of a two-tier iteration. The
process to achieve X (P) at each step p is called the inner loop,
where ¢ is the iteration index for the inner loop. The one to
update ® from step p to step p + 1 is called the outer loop.
The two-tier iteration can be described as follows.

1) Inner loop: The leaders and the followers find optimum
resource allocation to minimize the incentive functions
in (7) with an ADMM iterative process at each step p.

a) When t = 0: each follower j sets x”)(¢) = x*~") and

N1 (-

each leader i sets A\ (t) = , where x,(f p 2

/\Z(p Y are the optimal point for the resource allocation
and dual variable, respectively, at step p — 1.

b) When ¢ > 0: The followers update the primal variables,
X, sequentially,

xP)(t+1)

and

K
= argmin ; (Hj (X5 9?’;) SN () Ay
X5 i=1
2
P = (P) ®
+§Z Z Aznx +A ]mlj_Bi 9

—1
2 n=1,n#j 2
K
> Cijwiy—
i=1

3Many widely used functions in communication networks and big data areas
satisfy these assumptions, such as the segmental log-function — log(1 + z)
with 7, < z < z g and the second order norm Ha:H% [12].

Dj =0,
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Algorithm 1: MLMF game-based ADMM
Input: 0, ; =0, i = 1,2,...,K,j: 1,2,...,N,p=0
Output: 0; ;*, =}, i=1,2,..., K, j_ 1,2,...,N
while HZZI; Gi(xl('i)) Zz 1G (x; v 1))H > e do

(a) Optimization with ADMM (1nner loop):
To achieve X®) and {\;,P|i =1,2,... K};
(b) Followers’ feedback and leaders’ incentive factors
des1gn (outer loop)
0 p+1 - vzt RN (mgf‘)j))’
©p=p+1;
end
Result:
Optimal values of variables: X* = X (P);
Optimal value of incentive factors: @* =

[e)28

for j = 1,2,...,N, p > 0 is a damping factor, and
t=t+1whenn < jand =t when n > j.
The leaders update the dual variables, A, concurrently,

<ZA”$(’)> t+1) B)

©

AP +1) = AP (1)

fori=1,2,..., K.
Repeat steps a) and b) until each x( ) and each )\(p )
have no significant change.

2) Outer loop: After the leaders and the followers achieve a
current optimal point of resources, X (), each follower J
feeds back its marginal cost of resources to each leader
1, which is used to update the incentive factor as

0.5 = Vi, has(al?),

(10)
fore=1,2,...,K,and j =1,2,...,N.

The outer loop stops at step p when the sum of the
leaders’ objective functions cannot change much, which
mathematically satisfies a primal stopping criterion given
as follows:

<e, (11)

where € is a pre-determined threshold. Further details on
the MLMF game-based ADMM are provided in Algo-
rithm 1.

C. Convergence

In this section, we demonstrate the linear convergence of
the MLMF game-based ADMM regardless of the network
size, which is critical for big data processing in a very large
network.

We at first define an augmented Lagrangian function
L(X, A, ) as a potential function for the whole network as

in [12] as the following:

L(X, A p) = ZG (%4,4)

K N
Z)\i (Z Ai,jmi,j — BZ>

i=1 =

_ Z“j (Z C@jl‘i,j — Dj) (12)
j=1 i=1
K p N 2
+Z§ ZAi,jmi,j — Bl ,
= j=1 5
where A = (A, Aa,...,A\k) and p = (u1,po,..., uN)

are dual variables to guarantee the constraints in (la) and
constraints in (2a), respectively, are satisfied.
Then, we show that the augmented Lagrangian function
decreases at a linear speed before it reaches its minimum point.
Theorem 1: Given any positive small scalar €y, when the
primal residue of the augmented Lagrangian function in (12)
is less than eg, that is,

ILXP AP @@y — LX* A%, wh)|| < eo, (13)
the iteration step,
1 L(X°, X% p®) — L(X*, A, u*
< Og(( ( I 7/‘1’) ( ? ,/,L))/E(]). (14)

log %

ﬁ is the step size, and X%, A%, and u® are the
initial values of the primal variables and dual variables.

It can be derived directly that the relation between ¢y and
¢ in the stopping criterion in (11), is g0 = =.

We omit the proof here due to space limitations.

where 7 =

IV. SIMULATION RESULTS

In this section, we illustrate the performance of the MLMF
game-based ADMM. Without loss of generality, we use the
mobile crowd network in Fig. 1 as an example in our sim-
ulation. The leaders (servers) collect the transmit power in-
formation, X, from the followers (users) to perform statistical
power control. The followers want to maximize their capacity
through optimizing their transmission power.

The objective functions of the leaders in (1) are selected
as commonly used functions in big data statistics and learning
problems, such as in the Tikhonov regularization for the model
fitting problem [1],

Gi(xin) = [[xix|l3 — @i Xis, (15)

where ¢; is a random column constant, with an independent
uniform distribution between 0 and 1 in our simulation.

Shannon capacity for an additive Gaussian channel is used
as the objective function of each follower in (2), that is,

K
Hj(x4,;) = — Zlog(l + i iTig),

i=1

(16)

where ; ; represents a channel-to-noise ratio and is uniformly
distributed between 0 and 10 for different indices ¢ or j in our
simulation.
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Fig. 2. Comparison of the convergence speeds of different algorithms, when
K =10, N =30,and e = 1072,

Aij, By, C;j, and Dj in constraints (la) and (2a) are
random parameters, with independent uniform distributions
between 0 and 1 for different indices ¢ or j.

Fig. 2 compares the convergence speeds of the MLMF
game-based ADMM, the Stackelberg game-based ADMM,
and the naive approach. The naive approach is generated
from the intuitive logic in the game theory [11], where
each follower j increases x; ; with a small value § = 0.1
for leader ¢ when the incentive factor 6, ; is positive, and
it decreases x; ; otherwise. Correspondingly, each leader ¢
increases the incentive factor 6; ; for follower j with a small
positive value § = 0.1 when its marginal cost is positive,
that is, Vg, h;j(z;;) > 0, and decreases 0;; otherwise.
The Stackelberg game-based approach [5] guarantees that the
inner loop in Algorithm 1 reaches a current optimal point for
the followers at each step. However, the adjustment of the
incentive factors, ©, is the same as in the naive approach. The
hierarchical social optimal is represented by the optimal value
of the sum of leaders’ objectives. From the figure, the naive
approach may not converge. In addition, our MLMF game-
based approach converges much faster than the Stackelberg
game-based approach since we carefully select the incentive
factors in (10) in our proposed method.

Fig. 3 demonstrates the required number of iterations versus
the accuracy, €, for stopping iterations when K = 10,30 and
N = 10,30, 100, respectively. The results in the figure are
averaged over 100 trials. From the figure, the relation between
the required number of iterations and log,, (1) is linear, which
confirms the linear convergence as indicated in Theorem 14.
Given the prescribed accuracy, for example, ¢ = 1073, the
required number of iterations is always about 26, which is
independent of the numbers of leaders or followers. This
indicates that the MLMF game-based ADMM can deal with
the network with a large size.

V. CONCLUSION

In this paper, we have proposed an MLMF game-based
ADMM for networks with multiple leaders and multiple

50 T

—e— K=10, N=10
451 %

=W = k=10, N=30
40l | =%="K=30, N=30
L@ K=10, N=100

Average Required Number of Iterations

IOg](J(%)

Fig. 3. The relation between the accuracy ¢ in stopping criterion in (11) and
the required number of iteration, when K = 10,30 and N = 10, 30, 100.

followers. The proposed method can reach the hierarchical
social optimum in a distributed manner. It converges linearly
and regardless of the network size. Therefore, the proposed
MLMF game-based ADMM can efficiently cope with big
data networks with large numbers of leaders (controllers) and
followers (agents). In addition to the mobile crowd network
scenario, many other applications such as small cell caching
for 5G virtualized networks can be implemented with our
algorithm for service providers to induce the network operators
to share their storage resources.
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