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Abstract A widely used assumption in boundary layer meteorology is the z independence of turbulent

scalar fluxes Fs throughout the atmospheric surface layer, where z is the distance from the boundary.

This assumption is necessary for the usage of Monin-Obukhov Similarity Theory and for the interpretation

of eddy covariance measurements of Fs when using them to represent emissions or uptake from the surface.

It is demonstrated here that the constant flux assumption offers intrinsic constraints on the third-order

turbulent transport of Fs in the unstable atmospheric surface layer. When enforcing z independence of Fs
on multilevel Fs measurements collected above different surface cover types, it is shown that increasing

instability leads to a novel and universal description of (i) the imbalance between ejecting and sweeping

eddy contributions to Fs and (ii) the ratio formed by a dimensionless turbulent transport of Fs and a

dimensionless turbulent transport of scalar variance. When combined with structural models for the

turbulent transport of Fs, these two findings offer a new perspective on “closing” triple moments beyond

conventional gradient diffusion schemes. A practical outcome is a diagnostic of the constant flux

assumption from single-level Fs measurements.

1. Introduction

In an idealized atmospheric surface layer (ASL), the turbulent flux Fs of a scalar entity s is z independent and

is given by the emission or uptake rate from the surface, where z is the height above the ground (or a zero-

plane displacement for canopies). This assumption is essential for interpreting eddy covariance measure-

ments when they are used to represent surface fluxes (Baldocchi et al., 2001). It is also a necessary condition

for the applicability ofMonin-Obukhov Similarity Theory (MOST) (Monin &Obukhov, 1954), which is common

to all parametrizations of surface atmosphere gas exchanges inweather and climatemodels (Stensrud, 2007).

For any scalar s (e.g., potential temperature 𝜃, water vapor q, and CO2), the attainment of a “constant flux” layer

(i.e., 𝜕Fs∕𝜕z=0, where Fs=w′s′) can be derived from the budget equation for s̄ subject to what can be labeled

as “idealized” conditions. These conditions necessitate that theASL flow is stationary andplanar homogeneous

at sufficiently large Reynolds and Peclet numbers with no large-scale subsidence (Garratt, 1992; Stull, 1988).

Here and throughout, u, v, and w are instantaneous longitudinal, lateral, and vertical velocity components

along Cartesian coordinates x, y, and z, respectively, t is time, overbar indicates time-averaging, and primed

quantities denote turbulent fluctuations around the time-averaged state. The representative scalar s is assumed

to be 𝜃 throughout, and extensions to other scalars such as q are discussed in the supporting information.

During daytime conditions, the ASL interacts with an overlying convective boundary layer (CBL), a layer char-

acterized by a vertically well-mixed 𝜃̄ (i.e., 𝜕𝜃̄∕𝜕z = 0) due to the role of large-scale eddies (Garratt, 1992; Stull,

1988). The CBL, however, cannotmaintain a stationary 𝜃̄ necessitating a revision to themean scalar continuity

equation, now given by

𝜕𝜃̄

𝜕t
= −

𝜕w′𝜃′

𝜕z
. (1)

Upon differentiating equation (1) with respect to z and enforcing 𝜕𝜃̄∕𝜕z = 0, the mean scalar continuity

equation in the CBL reduces to

−
𝜕2w′𝜃′

𝜕z2
= 0. (2)
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Twice-integrating equation (2) with respect to z leads to the common linear flux profile connecting Fs=w′𝜃′

in the ASL to w′𝜃′ at the top of the CBL (i.e., the entrainment flux). As the instability increases, the ASL and

the CBL become increasingly coupled, casting doubts on the validity of the constant flux layer assumption.

Thecouplingbetween theASLand theCBLoriginates from large-scale eddies in thewell-mixedCBL impinging

on the ASL. A number of features about these eddies have now been reasonably established. They contribute

to w′𝜃′ throughout the atmospheric boundary layer (including the ASL), and they do not abide by gradient

diffusion arguments of the formw′𝜃′∝𝜕𝜃̄∕𝜕z as reviewed elsewhere (Ghannamet al., 2017; Holtslag&Moeng,

1991; Holtslag & Boville, 1993; van Dop & Verver, 2001; Zilitinkevich et al., 1999). Moreover, contributions to Fs
fromejections and sweepsbecome increasingly imbalanced (Katul, Kuhn, et al., 1997; Li &Bou-Zeid, 2011)with

increasing instability. Ejections and sweeps are two types of coherent eddymotions that are commonly delin-

eated by conditional sampling and quadrant analysis (Wallace, 2016) applied tow′ and 𝜃′. One implication of

such imbalance between sweeps and ejections is that the third-order turbulent transport of Fs (i.e., w
′w′𝜃′)

becomes locally asymmetric (Ghannam et al., 2017). Asymmetric transport here refers to flux contributions

by ejections and sweeps being not identical. This definition is related to but not identical to the definition in

earlier studies (Wyngaard, 1985; Wyngaard & Weil, 1991) referring to the asymmetry between “bottom-up”

and “top-down” diffusion processes. Can the ASL still satisfy the constant flux assumption under the influence

of such asymmetric transport induced by large eddies? More importantly, does maintaining 𝜕w′𝜃′∕𝜕z = 0

in the ASL impose any constraints on the behavior of w′w′𝜃′ and its gradient with increasing instability?

Answering these questions frames the scope of this study.

To address these questions, a link betweenw′w′𝜃′, its gradient, coherent structures and their asymmetric sig-

nature in sweep-ejection events, and Fs must be developed. The theoretical underpinning to building such

a link is the so-called structural parameterization of w′w′𝜃′ as discussed elsewhere (Fer et al., 2004; Nagano

& Tagawa, 1988, 1990). Conventional turbulence closure schemes (Katul et al., 2001; Meyers & Paw U, 1987;

Siqueira & Katul, 2002) that relate w′w′𝜃′ to 𝜕w′𝜃′∕𝜕z predict w′w′𝜃′=0 when 𝜕w′𝜃′∕𝜕z=0 is maintained in

the ASL. That is, conventional turbulence closure schemes fail to offer any “realistic” constraint onw′w′𝜃′ in a

constant flux ASL (other than their complete absence). However, structuralmodels relatew′w′𝜃′ tow′𝜃′ while

accounting for some characteristics of coherent motions such as ejections and sweeps based on dimensional

analysis and other considerations. These structural models are given as w′w′𝜃′ ∝ w′𝜃′ and have been pro-

posed for theCBL as discussed elsewhere (Abdella &McFarlane, 1997; Canuto et al., 1994; Gryanik&Hartmann,

2002). Structural models derived from third-order cumulant expansions of the joint probability density func-

tion of w′ and u′ or 𝜃′ have been successful in describing triple moments for momentum/scalars in canopy

flows (Cava et al., 2006; Poggi et al., 2004), ASL and CBL flows (Ghannam et al., 2017; Katul, Kuhn, et al., 1997;

Katul, Hsieh, et al., 1997), boundary layers below ice sheets (Fer et al., 2004), and flows over complex topog-

raphy (Francone et al., 2012; Poggi & Katul, 2007). The work here further develops and employs structural

models for scalars to identify the constraints on the ejection-sweep asymmetry and other properties of triple

moments when 𝜕w′𝜃′∕𝜕z=0 is a priori imposed on the ASL. Using a combination of data analysis and model

derivation, it is shown that 𝜕w′𝜃′∕𝜕z= 0 results in a universal scaling for the imbalance between sweep and

ejection contributions to Fs with increasing instability.

2. Theory

Unless otherwise stated, an idealized ASL flowwith 𝜕w′u′∕𝜕z=0 is assumed. Also, the momentum flux at the

boundary is assumed to be finite and represented by the squared friction velocity u2
∗
=𝜏∕𝜌, where 𝜏 > 0 is the

surface drag and 𝜌 is themean air density. As such, the free convection regimewhere u∗=0 is not considered.

2.1. Constant Flux Layer and Nonlocal Transport

The budget equation for the turbulent heat fluxw′𝜃′ is given by (Stull, 1988)

𝜕w′𝜃′

𝜕t
= 0 = −w′w′Γ −

𝜕w′w′𝜃′

𝜕z
−

1

𝜌
𝜃′
𝜕p′

𝜕z
+ 𝛽𝜃′𝜃′. (3)

The terms on the right-hand side of equation (3) represent (in order) a production term due to the presence

of a mean potential temperature gradient (Γ=𝜕𝜃̄∕𝜕z), a term that represents the third-order turbulent trans-

port of heat flux (also called a turbulent flux transport term), a pressure decorrelation termdue to interactions

between pressure (p) and temperature, and a buoyancy term arising from thermal stratification (𝛽=g∕𝜃̄ and
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g is the gravitational acceleration). For s other than 𝜃, the buoyancy term involves the covariance 𝜃′s′ instead

of 𝜃′𝜃′. Themolecular destruction term is not listed in equation (3) as this term is much smaller than the pres-

sure decorrelation term (Katul et al., 2013, 2014; Stull, 1988). In contrast to equation (1), equation (3) applies

to the ASL and CBL without modifications (i.e., 𝜕w′𝜃′∕𝜕t=0 is acceptable in both layers).

The Rotta model (Rotta, 1951) is now invoked for parametrization of the pressure decorrelation term (Moeng

& Wyngaard, 1986; Mellor & Yamada, 1974, 1982; Pope, 2000; Yamada, 1975). A Rotta model that retains the

linear (or slow) component and the buoyancy component (Moeng &Wyngaard, 1986; Yamada, 1975) is used

−
1

𝜌
𝜃′
𝜕p′

𝜕z
= −

w′𝜃′

𝜏𝜃
− 𝛼1𝛽𝜃

′𝜃′, (4)

where 𝜏𝜃 is a relaxation time scale that indicates how fast a turbulent eddy loses its coherency and 𝛼1 is a

constant (Ghannam et al., 2017). Substituting equation (4) into equation (3) leads to

w′𝜃′ = 𝜏𝜃

(
−w′w′Γ + 𝛼𝛽𝜃′𝜃′ −

𝜕w′w′𝜃′

𝜕z

)
, (5)

where 𝛼=1−𝛼1. This equation shows thatw
′𝜃′ includes a gradient diffusion term, a buoyancy distortion term,

and a turbulent flux transport term that requires closure. It also shows that when Γ=0 in the CBL, w′𝜃′ must

be due to the buoyancy and the turbulent flux transport terms.

A parameterization for w′w′𝜃′ is now discussed. Traditional turbulent closure schemes parametrize w′w′𝜃′

asa functionof𝜕w′𝜃′∕𝜕z. Theseclosure schemespredictw′w′𝜃′=0when 𝜕w′𝜃′∕𝜕z=0. However,many studies

report finitew′w′𝜃′ (Ghannamet al., 2017). An alternative to gradient diffusion closure is structural parameter-

izations (Nagano & Tagawa, 1988, 1990) based on cumulant expansion methods. For a third-order cumulant

expansion of the joint probability density function of w′ and 𝜃′ (i.e., only asymmetry is retained as the main

deviation from Gaussian joint probability density function), it can be shown that w′w′𝜃′ = fu∗w
′𝜃′. The con-

nection between f and characteristics of coherent structures will be elaborated upon in section 2.2. It suffices

to state here that w′w′𝜃′ ∝ w′𝜃′ has been used in CBL studies before though the relation between the

proportionality constant and the flow statistics varies among studies (Ghannam et al., 2017). Substituting

w′w′𝜃′= fu∗w
′𝜃′ into equation (5) yields

f
𝜕w′𝜃′

𝜕z
+

(
𝜕f

𝜕z
+

1

𝜏𝜃u∗

)
w′𝜃′ =

−w′w′Γ + 𝛼𝛽𝜃′𝜃′

u∗
. (6)

Connections between the constant flux condition and the turbulent flux transport term are now explored for

cases that satisfy the following three conditions: (1) the third-order term w′w′𝜃′ is identically zero (i.e., f =0),

(2) the normalized vertical velocity variance, the normalized potential temperature variance, and the normal-

ized mean potential temperature gradient are only functions of the stability parameter 𝜁 = −z∕L (L is the

Obukhov length) described by MOST, and (3) the 𝜏𝜃 is chosen so that a constant flux layer is attained when

the aforementioned two conditions are satisfied.Multiplying equation (6) by 𝜅vz∕(u
2
∗
𝜃∗), where u∗ is again the

friction velocity assumed finite and constant with z and 𝜃∗=−(w
′𝜃′)s∕u∗, is the surface temperature scale, and

introducing h=w′𝜃′∕(w′𝜃′)s result in

f
𝜕h

𝜕z
+

(
𝜕f

𝜕z
+

1

𝜏𝜃u∗

)
h =

𝜙2
ww

𝜙h + 𝛼𝜁𝜙2
𝜃𝜃

𝜅vz
, (7)

where 𝜙ww=𝜎w∕u∗, 𝜙𝜃𝜃=𝜎𝜃∕𝜃∗, and 𝜙h=(𝜅vz∕𝜃∗)Γ. The functions 𝜙ww , 𝜙h, and 𝜙𝜃𝜃 have been shown to rea-

sonably followMOST (Garratt, 1992).More importantly, these functions donot affect the key results as shall be

seen later. The u∗ and 𝜃∗ are defined at the surface (or canopy top) and are not functions of z. Whenw′w′𝜃′=0,

or equivalently, f =0,

h =
𝜏𝜃u∗

𝜅vz

[
𝜙2
ww

𝜙h − (𝛼)𝜁𝜙2
𝜃𝜃

]
. (8)

In the ASL, 𝜏𝜃u∗∕𝜅vz = g1(𝜁 )may be interpreted as a dimensionless time scale that varies with atmospheric

stability via a similarity function g1(𝜁 ) resulting in

h = g1(𝜁 )
[
𝜙2
ww

𝜙h − 𝛼𝜁𝜙2
𝜃𝜃

]
. (9)
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To ensure a constant flux layer (or h = 1) for any 𝜁 ,

g1(𝜁 ) =
[
𝜙2
ww

𝜙h − 𝛼𝜁𝜙2
𝜃𝜃

]−1
. (10)

The cases where |f |> 0 are now considered while maintaining 𝜙ww , 𝜙h, and 𝜙𝜃𝜃 to be only functions of 𝜁 as

before. Under such conditions, 𝜏𝜃u∗∕𝜅vz = g2(𝜁 ) is further assumed. The g2 depends on 𝜁 but can differ from

g1 as the finite turbulent flux transport term may interact with the relaxation time scale of the Rotta model.

With these assumptions,

𝜅vzf
𝜕h

𝜕z
+

(
𝜅vz

𝜕f

𝜕z
+

1

g2

)
h =

1

g1
. (11)

From the above equation, a necessary condition for h = 1 is

𝜅v𝜁
𝜕f

𝜕𝜁
=

1

g1
−

1

g2
. (12)

Here the identity z(𝜕f∕𝜕z) = 𝜁 (𝜕f∕𝜕𝜁 ) has been employed. Because g1 and g2 are assumed to be functions of

𝜁 , f must be a function of 𝜁 . Hence, h = 1 can be satisfied provided equation (12) holds and f is only a function

of 𝜁 (but f does not have to be identically zero). While the requirement of f being only a function of 𝜁 agrees

with expectation from MOST, it was not explicitly assumed. Instead, this outcome was derived from the heat

flux budget equation when enforcing the constant flux assumption. Naturally, the constant flux assumption

is common to both the derivation here and MOST. However, the f dependence on 𝜁 is required by MOST but

not the heat flux budget used here.

2.2. Linking f to Ejections and Sweeps

As earlier noted, f can be linked to asymmetry in ejections and sweeps contributions to Fs using quadrant

analysis and the incomplete third-order cumulant expansion method (ICEM) (Cava et al., 2006; Katul, Kuhn,

et al., 1997; Katul, Hsieh, et al., 1997; Nagano & Tagawa, 1988, 1990; Poggi et al., 2004). This expansion results

in (Cava et al., 2006)

f = 2
√
2𝜋

ΔSo𝜙ww

𝛾
, (13)

where ΔSo ∈ [−1, 1] is the fractional scalar flux imbalance between sweeps and ejections (sweeps minus

ejections) and 𝛾 =M21∕M12 − 1 where M21 = 𝜃′2w′∕(𝜎2
𝜃
𝜎w), M12 = 𝜃′w′2∕(𝜎𝜃𝜎

2
w
), and 𝜎 refers to the standard

deviation of a flow variable. To use equation (13) whenw′𝜃′> 0, an axis transformation is needed as discussed

elsewhere (Cava et al., 2006; Katul, Kuhn, et al., 1997; Katul, Hsieh, et al., 1997). It is clear that 𝛾 is a ratio formed

by a dimensionless turbulent transport of Fs (i.e.,w
′2𝜃′∕(𝜎2

w
𝜎𝜃)) and a dimensionless turbulent transport of the

scalar variance (i.e.,w′𝜃′2∕(𝜎w𝜎
2
𝜃
)). While equation (13) seems to suggest that f has a singularity when 𝛾=0, it

is noted thatΔSo also becomes zero when 𝛾=0 (i.e., sweep contributions to Fs are balanced by their ejection

counterparts and the turbulent transport is completely symmetric) (Katul, Kuhn, et al., 1997).

The fact that the constant flux layer can exist without requiring f = 0 suggests that a constant flux layer may

impose constraints on ΔSo and 𝛾 that have not been previously realized. It has been shown that a constant

flux layer with finite nonlocal transport described by equation (12) requires f to be only a function of 𝜁 . Hence,

ΔSo and 𝛾 must also be functions of 𝜁 . Are ΔSo and 𝛾 only functions of 𝜁 when the constant flux condition is

a priori imposed?

More importantly, how far is 𝜅v𝜁 (𝜕f∕𝜕𝜁) from zero? While imposing the constant flux condition does not

require 𝜅v𝜁𝜕f∕𝜕𝜁 =0, the significance of 𝜅v𝜁 (𝜕f∕𝜕𝜁)=0 is twofold: first, it is a “sufficient” condition for the flux

to be constant in the ASL (see Text S1 in the supporting information); second, in a constant flux layer it indi-

cates that the vertical gradient ofw′w′𝜃′, which appears directly in the flux budget equation (i.e., equation (3),

is identically zero. The latter is because in a constant flux layer, one can express

𝜅vz

u∗w
′𝜃′

𝜕w′w′𝜃′

𝜕z
= 𝜅v𝜁

𝜕f

𝜕𝜁
. (14)

A 𝜅v𝜁 (𝜕f∕𝜕𝜁 ) = 0 is automatically satisfied when 𝜁=0 (neutral ASL). As instability increases, the change in f

with respect to 𝜁 depends on how 𝜙ww ,ΔSo, and 𝛾 all covary with 𝜁 . Among these three terms, 𝜙ww has been

extensively studied (Garratt, 1992;Wyngaard, 2010) and is often expressed as𝜙ww=a (1 − b𝜁 )1∕3, where a and

b are similarity constants to be determined from field data. The “one-third” power law scaling for 𝜙ww stems
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Figure 1. The comparison between measured and modeled f for 𝜃.

The data are from the lake site (crosses) and the dryland site (pluses).

The black markers represent cases when no control is imposed on

turbulent flux variations with z among the four levels, and the red

markers represent cases when fluxes among the four levels have to

be within 5% (10%) of each other at the lake (dryland) site.

from the fact that u∗ should become dynamically unimportant under con-

vective conditions (Kader & Yaglom, 1990). The variations of the other two

variables (ΔSo and 𝛾) with 𝜁 are less studied.

3. Data

The analysis makes use of two eddy covariance data sets. One data set was

collected over a uniform lake surface (with minimal wave height), and the

otherwas collected over a dryland shrub surface. These twodata sets are cho-

sen because each has eddy covariance measurements at four different levels

in the ASL so that the constant flux layer assumption can be experimentally

verified or data selection can be conditioned on it. The lake data set has mea-

surements at 1.65, 2.30, 2.95, and 3.65 m (Bou-Zeid et al., 2008; Vercauteren

et al., 2008). The dryland data set has measurements at 2, 8, 16, and 64 m

(Finn, Clawson, et al., 2016; Finn, Reese, et al., 2016). The site characteristics,

instrument details, and quality checks were presented in prior studies (Li &

Bou-Zeid, 2011; Li et al., 2012, 2015; Finn et al., 2016, 2016) and are not dis-

cussed here. The computation of turbulent fluxes follows the methodology

described in Li and Bou-Zeid (2011). For each 30 min data segment, linear

detrending and double rotation are first applied to the measured time series.

TheWebb correction is applied to the computed latent heat flux (LE) and CO2

flux. Data segments that satisfy the following conditions are discarded: (1) the

mean wind originates from the back of the tower, (2) sensible heat flux (H),

latent heat flux (LE), andu∗ are too small (H<5W/m2, LE<5W/m2,u∗<0.05m/s).

In addition, only data collected under unstable conditions are included here

given the interest in possible interactions between the ASL and the overlying CBL. At the lake site, the mea-

sured H is consistent across all four levels. For example, if the constant flux layer is defined as that turbulent

fluxes at the four levels are within 5% of each other, there is a significant amount of data segments that satisfy

this requirement. At the dryland site, flux variations among the four levels are larger partly because the mag-

nitude of the sensible heat fluxes were 2–5 times larger than their lake counterpart. The H still satisfies the

constant flux layer assumption if the previously assumed 5% criterion is increased to 10%. After the constant

flux layer condition is imposed, no height dependencewas found at the 95% confidence level for the sensible

heat fluxes at both sites. Using regression analysis, the similarity coefficients a=1 and b=4were determined

by fitting 𝜙ww to measurements of the two data sets (see Figure S1 in the supporting information).

4. Results

First, ICEM predictions of f from equation (13) are compared with measured f (= w′w′𝜃′∕(u∗w
′𝜃′)). This is

needed as a number of assumptions were made to arrive at equation (13) as discussed elsewhere (Cava et al.,

2006; Katul, Kuhn, et al., 1997; Katul, Hsieh, et al., 1997). Figure 1 shows such comparison for two cases: (1)

when no control is imposed on turbulent flux variations with z among the four levels (represented by black

markers) and (2) when fluxes among the four levels have to be within 5% (10%) of each other at the lake

(dryland) site (represented by red markers). The agreement between the ICEM approximation and measure-

ments is acceptable (R2= 0.78 and R2=0.95 for cases 1 and 2, respectively), lending support to the use of

equation (13) for modeling f . This finding is consistent with previous studies showing that the ICEM captures

ΔSo under a variety of landscapes (Katul et al., 2006), including highly heterogeneous urban terrain (Wang

et al., 2014). The comparison for q at the lake site is presented in Figure S3 in the supporting information, and

the agreement is also acceptable.

The links between the constant flux layer, ΔSo, and 𝛾 are explored next. We choose to impose sequentially

more stringent criteria for defining a constant flux layer. Figure 2 showsΔSo (left) and 𝛾 (right) for s = 𝜃 using

the lake data. The four different rows represent four situations: (1) no control is imposed on turbulent flux

variations with z among the four levels (Figures 2a and 2b), (2) fluxes among the four levels have to be within

50% of each other (Figures 2c and 2d), (3) fluxes among the four levels have to be within 10% of each other

(Figures 2e and2f), and (4) fluxes among the four levels have tobewithin 5%of eachother (Figures 2g and2h).

It is clear that as the criteria for “constant” flux become more stringent (from Figures 2a to 2g), the scatter
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Figure 2. The ΔSo (a, c, e, and g) and 𝛾 (b, d, f, and h) for 𝜃 at the lake site when (a and b) no control is imposed on

turbulent flux variations among the four levels, (c and d) fluxes among the four levels have to be within 50% of each

other, (e and f) fluxes among the four levels have to be within 10% of each other, and (g and h) fluxes among the four

levels have to be within 5% of each other. The fitted blue lines in (g) and (h) are ΔSo=0.3
[
e12𝜁 − 1

]
, 𝛾=−1.1 (−𝜁 )1∕3 − 1.

in ΔSo and 𝛾 is reduced. Both variables become unambiguous functions of 𝜁 when measured Fs among the

four levels have to be within 5% of each other (Figures 2g and 2h). This finding is also supported bymeasure-

ments for other scalars (e.g., q) at the lake site (see Figure S4 in supporting information) andmeasurements of

𝜃 at the dryland site (see Figure S5 in supporting information). Note that the 𝜙ww follows MOST expectations

even when there is no control on flux variations among the four levels (see Figure S1).

We now show that imposing a constant flux layer does not require 𝜅v𝜁 (𝜕f∕𝜕𝜁) = 0 under all instability condi-

tions. However, at the two extremes (i.e., neutral and convective conditions), 𝜅v𝜁 (𝜕f∕𝜕𝜁)=0 is satisfied. Again,

𝜅v𝜁 (𝜕f∕𝜕𝜁 ) = 0 is automatically satisfied under neutral conditions since 𝜁 = 0. Under convective conditions

(𝜁 → −∞),ΔSo approaches a constant (−0.3) and 𝛾 scales with (−𝜁 )1∕3, as shown in Figures 2g and 2h, when

measuredH at the four levels are within 5% of each other (i.e., when the constant flux layer assumption is best
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Figure 3. (a) f , (b) 𝜅v𝜁 (𝜕f∕𝜕𝜁 ), and (c) 1∕g1 and 1∕g2 computed based on fitted functions in Figures 2g and 2h. The inset in (b) shows 𝜅v𝜁 (𝜕f∕𝜕𝜁 ) in the range of

10<−𝜁 <104 to emphasize the fact that 𝜅v𝜁 (𝜕f∕𝜕𝜁 ) approaches zero under convective conditions. To obtain g1 and g2 , the following functions are also needed:

𝜙h = (1 − 16𝜁 )−1∕2 , 𝜙𝜃𝜃=(−𝜁 )−1∕3, and 𝛼=2∕3 (Garratt, 1992; Ghannam et al., 2017). While other functional forms for 𝜙h and 𝜙𝜃𝜃 and other values for 𝛼 have

been used, it is noted that 𝜙h , 𝜙𝜃𝜃 , and 𝛼 only affect g1 and g2 but do not affect the results of f .

satisfied). As a result,ΔSo𝜙ww∕𝛾 approaches a constant at large instabilities. Given that f =2
√
2𝜋(ΔSo𝜙ww∕𝛾),

it is expected that f also approaches a constant and thus 𝜕f∕𝜕𝜁 approaches zero under convective conditions,

as shall be seen later.

Previous studies showed that ΔSo approaches a constant under convective conditions in the ASL (Katul,

Kuhn, et al., 1997; Li & Bou-Zeid, 2011). In addition, earlier work showed thatM21 andM12 vary with instability.

For example, using fitted MOST functions for normalized 𝜃′2w′ and w′2𝜃′ in Kader and Yaglom (1990),

Katul, Kuhn, et al. (1997) showed that M21 and M12 reduce to constants in the dynamic sublayer, dynamic-

convective sublayer, and free convective sublayer of the ASL. While they obtained different constants in the

three sublayers, they did not report a one-third power law scaling ofM21∕M12 with respect to 𝜁 . This difference

is related to the experimental challenge of obtaining accurate third-order turbulent statistics (M21 and M12)

over a 30 min averaging interval while maintaining stationarity. As can be seen in Figure 2, the variability in

𝛾 remains significant even when the constant flux layer condition is best satisfied. Other reasons for the scat-

ter include that 𝜃′2w′ is a variance transport term, whereasw′2𝜃′ is a flux transport term. Hence, any noise or

weak trends in 𝜃′
2
that differ from their counterparts inw′2 contribute to the scatter in 𝛾 .

Based on the fitted functions for ΔSo and 𝛾 shown in Figures 2g and 2h, which also capture the q data over

the lake site and the 𝜃 data over the dryland site (see Figures S4 and S5), Figures 3a and 3b present the vari-

ations of f and 𝜅v𝜁 (𝜕f∕𝜕𝜁) across all instability conditions, respectively. Note again that f is only a function

of 𝜁 in the constant flux layer. It is evident that f initially increases from zero with increasing instability, and

then the increase of f with 𝜁 becomes slower as near-convective conditions are approached. The increase

in f leads to a positive 𝜅v𝜁 (𝜕f∕𝜕𝜁 ), which according to equation (14) indicates positive or upward turbulent

flux transport under unstable conditions consistent with previous studies (Garratt, 1992; Stull, 1988). The fact

that 𝜅v𝜁 (𝜕f∕𝜕𝜁 ) is nonzero (except under neutral and convective conditions) implies that a near constant

flux layer is compatible with a nonzero turbulent flux transport term. However, the value of 𝜅v𝜁 (𝜕f∕𝜕𝜁 ) does

approach 0 under near-convective conditions, as can be inferred from the observed saturation of ΔSo and

the (−𝜁 )1∕3 scaling of 𝛾 with increasing instability. This finding suggests that to maintain a constant flux layer

under near-convective conditions, the turbulent transport term in the flux budget equation must be zero.

Together, these results demonstrate that a constant flux layer is harder to attain under convective conditions

as it requires the turbulent flux transport term to be identically zero. Figure 3c further shows the calculated

g1 and g2. Deviation of g2 from g1 caused by a finite turbulent flux transport term is nearly an order of mag-

nitude smaller than g1 itself, with themaximumdeviation occurring around−𝜁 =0.1whereΔSo starts to reach

its saturation value. This result suggests that the relaxation time scale of the slow component of the pressure-

scalar interaction term is not appreciably impacted by a finite turbulent flux transport term (at least in the

constant flux layer).

5. Conclusions and Discussion

A constant scalar flux with z does not necessarily require w′w′𝜃′=0 as predicted from conventional gradient

diffusion closure schemes for the aforementioned triple moment. The 𝜕Fs∕𝜕z= 0 in the ASL leads to a novel
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and possibly universal description of the imbalance between ejecting and sweeping eddy contributions to Fs
(i.e.,ΔSo) with increasing instability. Specifically, for near-neutral conditions,ΔSo≈0 (symmetry), whereasΔSo
saturates at≈−0.3 as near-convective conditions are approached (maximumasymmetry).Moreover, 𝜕Fs∕𝜕z=0

leads to similarity in the ratio (i.e., 𝛾) formed by a dimensionless turbulent transport of Fs (i.e., w
′2𝜃′∕𝜎2

w
𝜎𝜃)

and a dimensionless turbulent transport of the scalar variance (i.e., w′𝜃′2∕𝜎w𝜎
2
𝜃
). This ratio appears to only

vary with the atmospheric stability parameter 𝜁 and scales with (−𝜁 )1∕3 under convective conditions when

enforcing 𝜕Fs∕𝜕z=0 in the ASL.

A structural parameterization for the third-order transport term is shown to lead to w′w′𝜃′ = fu∗w
′𝜃′, where

f = 2
√
2𝜋ΔSo𝜙ww∕𝛾 . In the constant flux layer, this structural parameterization results in 𝜅vz∕(u∗w

′𝜃′)

(−𝜕w′w′𝜃′∕𝜕z)=𝜅v𝜁𝜕f∕𝜕𝜁 . Hence, the aforementioned universal patterns forΔSo and 𝛾 can be used tomodel

the turbulent flux transport term in the constant flux layer or compare it toother terms in thebudget equation.

Interestingly, measured variations in ΔSo and 𝛾 with respect to 𝜁 lead to positive and nonzero values of

𝜅v𝜁𝜕f∕𝜕𝜁 , highlighting that a near constant flux layer does not necessarily require the turbulent flux trans-

port term to be identically 0. However, the fact that 𝜅v𝜁𝜕f∕𝜕𝜁 approaches 0 as the ASL becomes convective

suggests that tomaintain a constant flux layer under convective conditions, the turbulent flux transport term

in the budget equation has to be zero.

Another implication of the work here is that single-level measurements of w′ and 𝜃′ permit some diagnostic

of the constant flux assumption. If the observedΔSo (determined from quadrant analysis) versus measured 𝜁

falls on or near the curve provided here, then the constant flux assumptionmay be plausible. This finding is of

practical significance given the lack ofmultilevelmeasurements of scalar fluxes inmany field experiments and

long-termmonitoring initiatives. Future large eddy simulation studies are well suited to assess the generality

or deficiency of this finding.
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