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Abstract A widely used assumption in boundary layer meteorology is the z independence of turbulent
scalar fluxes F, throughout the atmospheric surface layer, where z is the distance from the boundary.

This assumption is necessary for the usage of Monin-Obukhov Similarity Theory and for the interpretation
of eddy covariance measurements of F; when using them to represent emissions or uptake from the surface.
It is demonstrated here that the constant flux assumption offers intrinsic constraints on the third-order
turbulent transport of F, in the unstable atmospheric surface layer. When enforcing z independence of F,
on multilevel F; measurements collected above different surface cover types, it is shown that increasing
instability leads to a novel and universal description of (i) the imbalance between ejecting and sweeping
eddy contributions to F, and (ii) the ratio formed by a dimensionless turbulent transport of F, and a
dimensionless turbulent transport of scalar variance. When combined with structural models for the
turbulent transport of F,, these two findings offer a new perspective on “closing” triple moments beyond
conventional gradient diffusion schemes. A practical outcome is a diagnostic of the constant flux
assumption from single-level F, measurements.

1. Introduction

In an idealized atmospheric surface layer (ASL), the turbulent flux F; of a scalar entity s is z independent and
is given by the emission or uptake rate from the surface, where z is the height above the ground (or a zero-
plane displacement for canopies). This assumption is essential for interpreting eddy covariance measure-
ments when they are used to represent surface fluxes (Baldocchi et al., 2001). It is also a necessary condition
for the applicability of Monin-Obukhov Similarity Theory (MOST) (Monin & Obukhov, 1954), which is common
to all parametrizations of surface atmosphere gas exchanges in weather and climate models (Stensrud, 2007).
For any scalar s (e.g., potential temperature 6, water vapor g, and CO,), the attainment of a “constant flux” layer
(i.e., OF/0z=0, where F, =w's’) can be derived from the budget equation for 5 subject to what can be labeled
as “idealized” conditions. These conditions necessitate that the ASL flow is stationary and planar homogeneous
at sufficiently large Reynolds and Peclet numbers with no large-scale subsidence (Garratt, 1992; Stull, 1988).
Here and throughout, u, v, and w are instantaneous longitudinal, lateral, and vertical velocity components
along Cartesian coordinates x, y, and z, respectively, t is time, overbar indicates time-averaging, and primed
guantities denote turbulent fluctuations around the time-averaged state. The representative scalar s is assumed
to be 0 throughout, and extensions to other scalars such as g are discussed in the supporting information.

During daytime conditions, the ASL interacts with an overlying convective boundary layer (CBL), a layer char-
acterized by a vertically well-mixed 8 (i.e., 08 /dz = 0) due to the role of large-scale eddies (Garratt, 1992; Stull,
1988). The CBL, however, cannot maintain a stationary 6 necessitating a revision to the mean scalar continuity
equation, now given by

08 _ _owo
ot oz

m

Upon differentiating equation (1) with respect to z and enforcing 08/0z = 0, the mean scalar continuity
equation in the CBL reduces to
o*w'e’
T2

()
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Twice-integrating equation (2) with respect to z leads to the common linear flux profile connecting F;W
in the ASL to W@’ at the top of the CBL (i.e., the entrainment flux). As the instability increases, the ASL and
the CBL become increasingly coupled, casting doubts on the validity of the constant flux layer assumption.
The coupling between the ASL and the CBL originates from large-scale eddies in the well-mixed CBL impinging
on the ASL. A number of features about these eddies have now been reasonably established. They contribute
to w6’ throughout the atmospheric boundary layer (including the ASL), and they do not abide by gradient
diffusion arguments of the form w’@’ « 30 / 9z as reviewed elsewhere (Ghannam et al., 2017; Holtslag & Moeng,
1991; Holtslag & Boville, 1993; van Dop & Verver, 2001; Zilitinkevich et al., 1999). Moreover, contributions to F,
from ejections and sweeps become increasingly imbalanced (Katul, Kuhn, et al., 1997; Li & Bou-Zeid, 201 1) with
increasing instability. Ejections and sweeps are two types of coherent eddy motions that are commonly delin-
eated by conditional sampling and quadrant analysis (Wallace, 2016) applied to w’ and 8’. One implication of
such imbalance between sweeps and ejections is that the third-order turbulent transport of F; (i.e.,, w'w’6’)
becomes locally asymmetric (Ghannam et al., 2017). Asymmetric transport here refers to flux contributions
by ejections and sweeps being not identical. This definition is related to but not identical to the definition in
earlier studies (Wyngaard, 1985; Wyngaard & Weil, 1991) referring to the asymmetry between “bottom-up”
and “top-down” diffusion processes. Can the ASL still satisfy the constant flux assumption under the influence
of such asymmetric transport induced by large eddies? More importantly, does maintaining 6W/az =0
in the ASL impose any constraints on the behavior of w/w’¢’ and its gradient with increasing instability?
Answering these questions frames the scope of this study.

To address these questions, a link between w/w’¢’, its gradient, coherent structures and their asymmetric sig-
nature in sweep-ejection events, and F; must be developed. The theoretical underpinning to building such
a link is the so-called structural parameterization of w/w’6’ as discussed elsewhere (Fer et al., 2004; Nagano
& Tagawa, 1988, 1990). Conventional turbulence closure schemes (Katul et al., 2001; Meyers & Paw U, 1987;
Siqueira & Katul, 2002) that relate w/w’6’ to ow’0’ /9z predict w'w’6’ =0 when ow’0’ /6z=0 is maintained in
the ASL. That is, conventional turbulence closure schemes fail to offer any “realistic” constraint on ww’é’ in a
constant flux ASL (other than their complete absence). However, structural models relate w/w’6’ to w’¢’ while
accounting for some characteristics of coherent motions such as ejections and sweeps based on dimensional
analysis and other considerations. These structural models are given as w/w’6’ « w'0’ and have been pro-
posed for the CBL as discussed elsewhere (Abdella & McFarlane, 1997; Canuto et al., 1994; Gryanik & Hartmann,
2002). Structural models derived from third-order cumulant expansions of the joint probability density func-
tion of W’ and U’ or 8’ have been successful in describing triple moments for momentum/scalars in canopy
flows (Cava et al.,, 2006; Poggi et al., 2004), ASL and CBL flows (Ghannam et al., 2017; Katul, Kuhn, et al., 1997;
Katul, Hsieh, et al., 1997), boundary layers below ice sheets (Fer et al., 2004), and flows over complex topog-
raphy (Francone et al., 2012; Poggi & Katul, 2007). The work here further develops and employs structural
models for scalars to identify the constraints on the ejection-sweep asymmetry and other properties of triple
moments when ow’6’ /0z=0 is a priori imposed on the ASL. Using a combination of data analysis and model
derivation, it is shown that ow’8’ /dz =0 results in a universal scaling for the imbalance between sweep and
ejection contributions to F, with increasing instability.

2. Theory

Unless otherwise stated, an idealized ASL flow with ow’u’ /0z=0 is assumed. Also, the momentum flux at the
boundary is assumed to be finite and represented by the squared friction velocity u>=7/p, where 7 > 0 is the
surface drag and p is the mean air density. As such, the free convection regime where u, =0 is not considered.

2.1. Constant Flux Layer and Nonlocal Transport
The budget equation for the turbulent heat flux w’é’ is given by (Stull, 1988)

10! - '\w!' 0! op’ R
WY _ o= —wwr — WO 19’a—i+ﬂ9’0’. 3)

ot 0z p

The terms on the right-hand side of equation (3) represent (in order) a production term due to the presence
of a mean potential temperature gradient (I'=08/0z), a term that represents the third-order turbulent trans-
port of heat flux (also called a turbulent flux transport term), a pressure decorrelation term due to interactions
between pressure (p) and temperature, and a buoyancy term arising from thermal stratification (=g/0 and
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g is the gravitational acceleration). For s other than 6, the buoyancy term involves the covariance 8's’ instead
of 86’. The molecular destruction term is not listed in equation (3) as this term is much smaller than the pres-
sure decorrelation term (Katul et al., 2013, 2014; Stull, 1988). In contrast to equation (1), equation (3) applies
to the ASL and CBL without modifications (i.e., ow’8’ /dt=0 is acceptable in both layers).

The Rotta model (Rotta, 1951) is now invoked for parametrization of the pressure decorrelation term (Moeng
& Wyngaard, 1986; Mellor & Yamada, 1974, 1982; Pope, 2000; Yamada, 1975). A Rotta model that retains the
linear (or slow) component and the buoyancy component (Moeng & Wyngaard, 1986; Yamada, 1975) is used
op’ 19! —
- lg/ﬂ W a,p0'0’, 4
p 0z Ty

where 7, is a relaxation time scale that indicates how fast a turbulent eddy loses its coherency and «, is a
constant (Ghannam et al., 2017). Substituting equation (4) into equation (3) leads to

—_— —_— —_— ! O

wo' =1, <—W’W’F +afo'o’ — ow'w'o ) ’ 5)
0z

where a =1 —a;. This equation shows that w’¢’ includes a gradient diffusion term, a buoyancy distortion term,

and a turbulent flux transport term that requires closure. It also shows that when I'=0 in the CBL, w6’ must

be due to the buoyancy and the turbulent flux transport terms.

A parameterization for w/w’@’ is now discussed. Traditional turbulent closure schemes parametrize w/w’6’
asafunction of w6’ /9z. These closure schemes predict w'w’6’ =0 when ow’6’ / 0z = 0. However, many studies
report finite w'w’¢’ (Ghannam et al., 2017). An alternative to gradient diffusion closure is structural parameter-
izations (Nagano & Tagawa, 1988, 1990) based on cumulant expansion methods. For a third-order cumulant
expansion of the joint probability density function of w’ and ¢’ (i.e., only asymmetry is retained as the main
deviation from Gaussian joint probability density function), it can be shown that w'w’6’ = fu,w’¢’. The con-
nection between f and characteristics of coherent structures will be elaborated upon in section 2.2. It suffices
to state here that w'w’@’ o« w'6’ has been used in CBL studies before though the relation between the
proportionality constant and the flow statistics varies among studies (Ghannam et al., 2017). Substituting
w'w'e’ =fu,w’6’ into equation (5) yields

T _wiw! 0107
W' +<af+ 1 )w/9'= wwT +ap0'o’ ©)

0z 0z  Tyu, u

%

Connections between the constant flux condition and the turbulent flux transport term are now explored for
cases that satisfy the following three conditions: (1) the third-order term w/w’@’ is identically zero (i.e., f=0),
(2) the normalized vertical velocity variance, the normalized potential temperature variance, and the normal-
ized mean potential temperature gradient are only functions of the stability parameter { = —z/L (L is the
Obukhov length) described by MOST, and (3) the 7, is chosen so that a constant flux layer is attained when
the aforementioned two conditions are satisfied. Multiplying equation (6) by «,z/(u26,), where u, is again the
friction velocity assumed finite and constant with zand 6,=—(w’¢’), /u,, is the surface temperature scale, and
introducing h=W/(W’0’)S resultin

(L LYo Tt

0z 0z  TyU,

@)

K,Z

where ¢,,,,=0,,/U,, b9 =0,/6,,and ¢, =(x,z/0,)I". The functions ¢,,,,, ¢, and ¢4, have been shown to rea-
sonably follow MOST (Garratt, 1992). More importantly, these functions do not affect the key results as shall be
seen later. The u, and 6, are defined at the surface (or canopy top) and are not functions of z. When w'w’¢’ =0,
or equivalently, f=0,

TyU,
h= % (62,8 — (@Cd7,] - 8)

In the ASL, 7yu, /x,z = g,({) may be interpreted as a dimensionless time scale that varies with atmospheric
stability via a similarity function g, ({) resulting in

h=g,Q) [¢2,,bn — ald?,] . )
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To ensure a constant flux layer (or h = 1) forany ¢,
9:1(0) = (@2, — ald?,] . (10

The cases where |f| > 0 are now considered while maintaining ¢,,,,, ¢;,, and ¢;, to be only functions of { as
before. Under such conditions, 7yu, /x,z = g,({) is further assumed. The g, depends on ¢ but can differ from
g, as the finite turbulent flux transport term may interact with the relaxation time scale of the Rotta model.
With these assumptions,

szf%+ sza_f+l h=l. (11)
0z 0z g, g,
From the above equation, a necessary condition for h = 1 is
of 1 1
K== —— —. (12)
o g9 g,

Here the identity z(0f /0z) = {(df /9{) has been employed. Because g, and g, are assumed to be functions of
¢, f must be a function of {. Hence, h = 1 can be satisfied provided equation (12) holds and f is only a function
of ¢ (but f does not have to be identically zero). While the requirement of f being only a function of ¢ agrees
with expectation from MOST, it was not explicitly assumed. Instead, this outcome was derived from the heat
flux budget equation when enforcing the constant flux assumption. Naturally, the constant flux assumption
is common to both the derivation here and MOST. However, the f dependence on ¢ is required by MOST but
not the heat flux budget used here.

2.2. Linking f to Ejections and Sweeps

As earlier noted, f can be linked to asymmetry in ejections and sweeps contributions to F, using quadrant
analysis and the incomplete third-order cumulant expansion method (ICEM) (Cava et al., 2006; Katul, Kuhn,
et al., 1997; Katul, Hsieh, et al., 1997; Nagano & Tagawa, 1988, 1990; Poggi et al., 2004). This expansion results
in (Cava et al., 2006)

AS
f= 2\/2n%, (13)

where AS, € [-1,1] is the fractional scalar flux imbalance between sweeps and ejections (sweeps minus
ejections) and y = M,, /M,, — 1 where M, =0">w' /(c30,,), My, = 0'w? /(6,062), and o refers to the standard
deviation of a flow variable. To use equation (13) when w’6’> 0, an axis transformation is needed as discussed
elsewhere (Cava et al.,, 2006; Katul, Kuhn, et al., 1997; Katul, Hsieh, et al., 1997). Itis clear that y is a ratio formed
by a dimensionless turbulent transport of F_ (i.e., w26’ / (6, 6,4)) and a dimensionless turbulent transport of the

scalar variance (i.e., w’6’2/(awa§ ). While equation (13) seems to suggest that f has a singularity when y =0, it
is noted that AS, also becomes zero when y =0 (i.e., sweep contributions to F; are balanced by their ejection
counterparts and the turbulent transport is completely symmetric) (Katul, Kuhn, et al., 1997).

The fact that the constant flux layer can exist without requiring f = 0 suggests that a constant flux layer may
impose constraints on AS, and y that have not been previously realized. It has been shown that a constant
flux layer with finite nonlocal transport described by equation (12) requires f to be only a function of {. Hence,
AS, and y must also be functions of {. Are AS, and y only functions of  when the constant flux condition is
a priori imposed?

More importantly, how far is x,{(df /d¢) from zero? While imposing the constant flux condition does not
require k, £ 0f /0§ =0, the significance of k,{(0f /d{) =0 is twofold: first, it is a “sufficient” condition for the flux
to be constant in the ASL (see Text S1 in the supporting information); second, in a constant flux layer it indi-
cates that the vertical gradient of w'w’6’, which appears directly in the flux budget equation (i.e., equation (3),
is identically zero. The latter is because in a constant flux layer, one can express

K2 owwe __of

= —. 14
u,w'e’ 0z v a¢ (4)

A k,¢(0f /0¢) = 0 is automatically satisfied when =0 (neutral ASL). As instability increases, the change in f
with respect to { depends on how ¢,,,,, AS,, and y all covary with {. Among these three terms, ¢,,,, has been
extensively studied (Garratt, 1992; Wyngaard, 2010) and is often expressed as ¢,,,, =a (1 — b&)'?, where aand
b are similarity constants to be determined from field data. The “one-third” power law scaling for ¢,,,, stems
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from the fact that u, should become dynamically unimportant under con-

Modeled f

x

lake

dryland

vective conditions (Kader & Yaglom, 1990). The variations of the other two
variables (AS, and y) with ¢ are less studied.

3. Data

The analysis makes use of two eddy covariance data sets. One data set was
+ collected over a uniform lake surface (with minimal wave height), and the
A 1 other was collected over a dryland shrub surface. These two data sets are cho-
" sen because each has eddy covariance measurements at four different levels

in the ASL so that the constant flux layer assumption can be experimentally
1 verified or data selection can be conditioned on it. The lake data set has mea-
surements at 1.65, 2.30, 2.95, and 3.65 m (Bou-Zeid et al., 2008; Vercauteren
et al, 2008). The dryland data set has measurements at 2, 8, 16, and 64 m
R%2-098 | (Finn, Clawson, et al., 2016; Finn, Reese, et al., 2016). The site characteristics,

. instrument details, and quality checks were presented in prior studies (Li &

-5

-4

-3

-2

-1

Measured f

0 1 2 3 4 5 Bou-Zeid, 2011; Li et al., 2012, 2015; Finn et al., 2016, 2016) and are not dis-
cussed here. The computation of turbulent fluxes follows the methodology
described in Li and Bou-Zeid (2011). For each 30 min data segment, linear

Figure 1. The comparison between measured and modeled f for 6. detrending and double rotation are first applied to the measured time series.

The data are from the lake site (crosses) and the dryland site (pluses).
The black markers represent cases when no control is imposed on
turbulent flux variations with z among the four levels, and the red

The Webb correction is applied to the computed latent heat flux (LE) and CO,
flux. Data segments that satisfy the following conditions are discarded: (1) the

markers represent cases when fluxes among the four levels have to mean wind originates from the back of the tower, (2) sensible heat flux (H),

be within 5% (10%) of each other at the lake (dryland) site.

latent heat flux (LE), and u, are too small (H<5W/m?, LE<5W/m?, u,<0.05 m/s).
In addition, only data collected under unstable conditions are included here
given the interest in possible interactions between the ASL and the overlying CBL. At the lake site, the mea-
sured H is consistent across all four levels. For example, if the constant flux layer is defined as that turbulent
fluxes at the four levels are within 5% of each other, there is a significant amount of data segments that satisfy
this requirement. At the dryland site, flux variations among the four levels are larger partly because the mag-
nitude of the sensible heat fluxes were 2-5 times larger than their lake counterpart. The H still satisfies the
constant flux layer assumption if the previously assumed 5% criterion is increased to 10%. After the constant
flux layer condition is imposed, no height dependence was found at the 95% confidence level for the sensible
heat fluxes at both sites. Using regression analysis, the similarity coefficients a=1 and b=4 were determined
by fitting ¢,,,, to measurements of the two data sets (see Figure S1 in the supporting information).

4, Results

First, ICEM predictions of f from equation (13) are compared with measured f(= W’W’e’/(u*W)). This is
needed as a number of assumptions were made to arrive at equation (13) as discussed elsewhere (Cava et al.,
2006; Katul, Kuhn, et al., 1997; Katul, Hsieh, et al., 1997). Figure 1 shows such comparison for two cases: (1)
when no control is imposed on turbulent flux variations with z among the four levels (represented by black
markers) and (2) when fluxes among the four levels have to be within 5% (10%) of each other at the lake
(dryland) site (represented by red markers). The agreement between the ICEM approximation and measure-
ments is acceptable (R?= 0.78 and R?=0.95 for cases 1 and 2, respectively), lending support to the use of
equation (13) for modeling f. This finding is consistent with previous studies showing that the ICEM captures
AS, under a variety of landscapes (Katul et al., 2006), including highly heterogeneous urban terrain (Wang
etal., 2014). The comparison for g at the lake site is presented in Figure S3 in the supporting information, and
the agreement is also acceptable.

The links between the constant flux layer, AS_, and y are explored next. We choose to impose sequentially
more stringent criteria for defining a constant flux layer. Figure 2 shows AS (left) and y (right) for s = 6 using
the lake data. The four different rows represent four situations: (1) no control is imposed on turbulent flux
variations with zamong the four levels (Figures 2a and 2b), (2) fluxes among the four levels have to be within
50% of each other (Figures 2c and 2d), (3) fluxes among the four levels have to be within 10% of each other
(Figures 2e and 2f), and (4) fluxes among the four levels have to be within 5% of each other (Figures 2g and 2h).
It is clear that as the criteria for “constant” flux become more stringent (from Figures 2a to 2g), the scatter
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Figure 2. The AS, (a, ¢, e,and g) and y (b, d, f, and h) for 8 at the lake site when (a and b) no control is imposed on
turbulent flux variations among the four levels, (c and d) fluxes among the four levels have to be within 50% of each
other, (e and f) fluxes among the four levels have to be within 10% of each other, and (g and h) fluxes among the four
levels have to be within 5% of each other. The fitted blue lines in (g) and (h) are AS,=0.3 [e!% — 1], y=—1.1 =O)"3 1.

in AS, and y is reduced. Both variables become unambiguous functions of { when measured F, among the
four levels have to be within 5% of each other (Figures 2g and 2h). This finding is also supported by measure-
ments for other scalars (e.g., g) at the lake site (see Figure S4 in supporting information) and measurements of
0 at the dryland site (see Figure S5 in supporting information). Note that the ¢,,,, follows MOST expectations
even when there is no control on flux variations among the four levels (see Figure S1).

We now show that imposing a constant flux layer does not require «,{(df /0¢) = 0 under all instability condi-
tions. However, at the two extremes (i.e., neutral and convective conditions), k,{(0f /0{) =0 is satisfied. Again,
k,£(0f /0¢) = 0 is automatically satisfied under neutral conditions since ¢ = 0. Under convective conditions
(¢ » —o0), AS, approaches a constant (—0.3) and y scales with (—=¢)'/3, as shown in Figures 2g and 2h, when
measured H at the four levels are within 5% of each other (i.e, when the constant flux layer assumption is best
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Figure 3. (a) f, (b) k,£(0f/3¢), and (c) 1/g, and 1/g, computed based on fitted functions in Figures 2g and 2h. The inset in (b) shows «,{(9f /9¢) in the range of
10<—¢ < 10* to emphasize the fact that «,¢(9f /d¢) approaches zero under convective conditions. To obtain g; and g,, the following functions are also needed:
dn =0 =162, ppe=(—=¢)"1/3, and @=2/3 (Garratt, 1992; Ghannam et al., 2017). While other functional forms for ¢, and ¢,y and other values for a have
been used, it is noted that ¢, ¢y, and a only affect g; and g, but do not affect the results of f.

satisfied). As a result, AS ¢, /v approaches a constant at large instabilities. Given that f =24/2z(AS b, /7),
it is expected that f also approaches a constant and thus of /d¢ approaches zero under convective conditions,
as shall be seen later.

Previous studies showed that AS, approaches a constant under convective conditions in the ASL (Katul,
Kuhn, etal.,, 1997; Li & Bou-Zeid, 2011). In addition, earlier work showed that M,; and M, , vary with instability.
For example, using fitted MOST functions for normalized 8’>w’ and w’?6’ in Kader and Yaglom (1990),
Katul, Kuhn, et al. (1997) showed that M,, and M, reduce to constants in the dynamic sublayer, dynamic-
convective sublayer, and free convective sublayer of the ASL. While they obtained different constants in the
three sublayers, they did not report a one-third power law scaling of M, /M, with respect to ¢. This difference
is related to the experimental challenge of obtaining accurate third-order turbulent statistics (M,;, and M,,)
over a 30 min averaging interval while maintaining stationarity. As can be seen in Figure 2, the variability in
y remains significant even when the constant flux layer condition is best satisfied. Other reasons for the scat-

ter include that 82w is a variance transport term, whereas w’26" is a flux transport term. Hence, any noise or
weak trends in 6’2 that differ from their counterparts in w'? contribute to the scatter in y.

Based on the fitted functions for AS, and y shown in Figures 2g and 2h, which also capture the g data over
the lake site and the 8 data over the dryland site (see Figures S4 and S5), Figures 3a and 3b present the vari-
ations of f and «,{(df /9¢) across all instability conditions, respectively. Note again that f is only a function
of ¢ in the constant flux layer. It is evident that f initially increases from zero with increasing instability, and
then the increase of f with { becomes slower as near-convective conditions are approached. The increase
in f leads to a positive x,{(df /9¢), which according to equation (14) indicates positive or upward turbulent
flux transport under unstable conditions consistent with previous studies (Garratt, 1992; Stull, 1988). The fact
that k,£(9f /9¢) is nonzero (except under neutral and convective conditions) implies that a near constant
flux layer is compatible with a nonzero turbulent flux transport term. However, the value of k,{(df /9¢) does
approach 0 under near-convective conditions, as can be inferred from the observed saturation of AS, and
the (—¢)'/3 scaling of y with increasing instability. This finding suggests that to maintain a constant flux layer
under near-convective conditions, the turbulent transport term in the flux budget equation must be zero.
Together, these results demonstrate that a constant flux layer is harder to attain under convective conditions
as it requires the turbulent flux transport term to be identically zero. Figure 3c further shows the calculated
g, and g,. Deviation of g, from g, caused by a finite turbulent flux transport term is nearly an order of mag-
nitude smaller than g, itself, with the maximum deviation occurring around —{ =0.1 where AS starts to reach
its saturation value. This result suggests that the relaxation time scale of the slow component of the pressure-
scalar interaction term is not appreciably impacted by a finite turbulent flux transport term (at least in the
constant flux layer).

5. Conclusions and Discussion

A constant scalar flux with z does not necessarily require w/w’8’ =0 as predicted from conventional gradient
diffusion closure schemes for the aforementioned triple moment. The dF,/dz =0 in the ASL leads to a novel
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and possibly universal description of the imbalance between ejecting and sweeping eddy contributions to F
(i.e., AS,) with increasing instability. Specifically, for near-neutral conditions, AS, =0 (symmetry), whereas AS,
saturates at & —0.3 as near-convective conditions are approached (maximum asymmetry). Moreover, doF /0z=0
leads to similarity in the ratio (i.e., y) formed by a dimensionless turbulent transport of F, (i.e., w26’ /67 6,)
and a dimensionless turbulent transport of the scalar variance (i.e., W’_H’Z/awag). This ratio appears to only
vary with the atmospheric stability parameter ¢ and scales with (—¢)'/3 under convective conditions when
enforcing oF,/0z=0 in the ASL.

A structural parameterization for the third-order transport term is shown to lead to w/'w’¢’ = fu*W, where
f= 2\/ﬂASO¢WW/y. In the constant flux layer, this structural parameterization results in sz/(u*w’_e’)
(—ow'w'0’ [0z)=k ,{ of /0. Hence, the aforementioned universal patterns for AS, and y can be used to model
the turbulent flux transport term in the constant flux layer or compare it to other terms in the budget equation.
Interestingly, measured variations in AS, and y with respect to ¢ lead to positive and nonzero values of
k,C0f /d¢, highlighting that a near constant flux layer does not necessarily require the turbulent flux trans-
port term to be identically 0. However, the fact that k,{of /0 approaches 0 as the ASL becomes convective
suggests that to maintain a constant flux layer under convective conditions, the turbulent flux transport term
in the budget equation has to be zero.

Another implication of the work here is that single-level measurements of w’ and ¢’ permit some diagnostic
of the constant flux assumption. If the observed AS, (determined from quadrant analysis) versus measured ¢
falls on or near the curve provided here, then the constant flux assumption may be plausible. This finding is of
practical significance given the lack of multilevel measurements of scalar fluxes in many field experiments and
long-term monitoring initiatives. Future large eddy simulation studies are well suited to assess the generality
or deficiency of this finding.
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