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Abstract

Thrombolites are build-ups of carbonate that exhibit a clotted internal structure formed
through the interactions of microbial mats and their environment. Despite recent advances,
we are only beginning to understand the microbial and molecular processes associated with
their formation. In this study, a spatial profile of the microbial and metabolic diversity of
thrombolite-forming mats of Highborne Cay, The Bahamas, was generated by using 16S
rRNA gene sequencing and predictive metagenomic analyses. These molecular-based
approaches were complemented with microelectrode profiling and in sifu stable isotope
analysis to examine the dominant taxa and metabolic activities within the thrombolite-
forming communities. Analyses revealed three distinctive zones within the thrombolite-
forming mats that exhibited stratified populations of bacteria and archaea. Predictive
metagenomics also revealed vertical profiles of metabolic capabilities, such as photosynthesis
and carboxylic and fatty acid synthesis within the mats that had not been previously
observed. The carbonate precipitates within the thrombolite-forming mats exhibited isotopic
geochemical signatures suggesting that the precipitation within the Bahamian thrombolites is
photosynthetically induced. Together, this study provides the first look at the spatial
organization of the microbial populations within Bahamian thrombolites and enables the
distribution of microbes to be correlated with their activities within modern thrombolite

systems.
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1. Introduction
With their long evolutionary history, microbialites serve as important model systems to
explore and understand the co-evolutionary dynamics among lithifying microbial
communities and their local environment. These carbonate structures are formed via the
metabolic activity of microbes, which influence and drive biological processes associated
with sediment capture and microbiologically induced organomineralization. Microbialites
have been found in a wide range of habitats including brackish (e.g., Laval et al., 2000;
Breitbart et al., 2009; White et al., 2015; Chagas et al., 2016), marine (e.g., Dravis, 1983;
Reid et al., 2000; Stolz et al., 2009; Casaburi et al., 2016), and hypersaline (e.g., Logan 1961;
Glunk et al., 2011; Wong et al., 2015; Ruvindy et al., 2016; Suosaari et al., 2016; Paul et al.,
2016) environments and are classified based on their internal microfabrics (Burne and
Moore, 1987; Dupraz et al., 2009). Two of the most well-studied types of microbialites are
stromatolites, which exhibit laminated internal fabrics (Walter et al., 1994; Reid et al., 2000),
and thrombolites with irregular clotted fabrics (Aitken, 1967; Kennard and James, 1986).
Much of our understanding of microbialite formation comes from the study of modern
systems (e.g., Reid et al., 2000; Breitbart et al., 2009; Petrash et al., 2012; Russell et al.,
2014; Valdespino-Castillo ef al., 2014; Saghai et al., 2015; Casaburi ef al., 2016; White et
al., 2015; Ruvindy et al., 2016; Warden et al., 2016; White et al., 2016; Chagas et al., 2016).
Microbialites in The Bahamas have been particularly important in expanding research in this
area, as they are the only known modern open marine microbialite system and serve as
potential analogs to ancient systems (Reid ef al., 2000). In Bahamian stromatolites, processes
underlying formation include iterative growth by cycling microbial mat communities and
seasonal environmental controls; the resulting lamination represents a chronology of past
surface communities (Visscher et al., 1998; Reid ef al., 2000; Bowlin et al., 2012). In

thrombolites, the processes that form the clotted fabrics are not well defined. In some



Bahamian thrombolites, the clots appear to be products of calcified cyanobacterial filaments,
which through their metabolism cause shifts in the carbonate saturation state and thereby
drive precipitation (Dupraz et al., 2009; Planavsky et al., 2009; Myshrall et al., 2010).
Alternatively, it has been suggested that the clotted textures in thrombolites are sometimes
linked to disruption or modification of microbial fabrics (Planavsky and Ginsburg, 2009;
Bernhard et al., 2013; Edgcomb et al., 2013).

To further explore the formation of clotted fabrics, the thrombolites of Highborne
Cay, The Bahamas, were targeted as they represent one of the few modern locations of
actively accreting thrombolitic microbialites in open marine environments (Planavsky et al.,
2009; Myshrall et al., 2010; Mobberley et al., 2012; Mobberley et al., 2013; Mobberley et
al., 2015). These marine thrombolites form in the intertidal zone of a 2.5 km fringing reef
complex that extends along the eastern margin of Highborne Cay (Fig. 1A; Reid ef al., 1999).
The thrombolites range in size from up to one meter in height to several meters in length
(Andres and Reid, 2006; Myshrall ef al., 2010) and are covered with several distinct
microbial mat types (Mobberley et al., 2012).

The dominant mat type associated with the Bahamian thrombolites, referred to as
"button" mat, harbors tufts of vertically orientated calcified cyanobacterial filaments (Fig.
1B; Myshrall et al., 2010; Mobberley et al., 2012). The dominant cyanobacterium identified
within these tufts with both morphological and molecular tools is Dichothrix sp. (Planavsky
et al., 2009; Mobberley et al., 2012). At the surface, these Dichothrix-enriched button mats
are calcified with aragonite precipitates located in the exopolymeric sheath of the cell. With
depth, precipitates undergo dissolution and filaments degrade (Planavsky ef al., 2009). In
addition to the tufts of calcified filaments, the thrombolite-forming button mats also harbor a
genetically diverse and active microbial community that appears to form vertical gradients of

metabolic activity (Myshrall ez al., 2010; Mobberley et al., 2013; Mobberley et al., 2015).



Previous work in other microbialite systems, such as stromatolites, has shown that the
relationship among active, distinct microbial guilds can alter the local physiochemical
environment and generate discrete gradients of both solutes and redox conditions (e.g.,
Dupraz et al., 2009; Glunk et al., 2011; Wong et al., 2015). Within these microenvironments,
the microbial activity can alter both the carbonate saturation index (i.e., carbonate alkalinity
and availability of free calcium) and the cycling of exopolymeric substances (EPS; Braissant
et al., 2009), which serve as important nucleation sites for precipitation (Dupraz and
Visscher, 2005). Certain metabolisms, such as photosynthesis and some types of sulfate
reduction, can lead to an increase in pH and thereby promote precipitation (Visscher et al.,
1998; Dupraz et al., 2009; Gallagher et al., 2012). Contrastingly, some metabolisms, such as
sulfide oxidation, aerobic respiration, and fermentation, can increase dissolved inorganic
carbon (DIC) concentrations but lower the pH and carbonate saturation state of the local
environment and promote dissolution (Walter et al., 1994; Visscher et al., 1998; Dupraz et
al., 2009). Together, it is the parity between categories of metabolisms that determines the
extent and net precipitation potential within the lithifying mat community (Visscher and
Stolz, 2005).

In addition to the precipitation potential, another component that is critical to the
formation of microbialites is the availability of nucleation sites, which can be controlled by
the production and degradation of EPS material. The EPS matrix serves several essential
roles in the formation of microbialites as it binds cations (e.g., Ca®") critical for carbonate
precipitation, serves as attachment sites for microbes to withstand the high energy wave
impacts, and protects microbes from environmental stresses, such as UV exposure and
desiccation (Dupraz et al., 2009). Metagenomic analyses of both stromatolites and
thrombolites across the globe have shown that Cyanobacteria and Proteobacteria are the two

primary producers of EPS material (Khodadad and Foster, 2012; Mobberley et al., 2013;



Mobberley et al., 2015; Casaburi ef al., 2016; Ruvindy et al., 2016; Warden et al., 2016).
Alteration or restructuring of the EPS through microbial degradation can reduce the cation-
binding capability and thereby facilitate the precipitation of calcium carbonate on the EPS
matrix (Dupraz et al., 2004; Dupraz and Visscher 2005; Dupraz et al., 2009).

There have been major advances in understanding the processes controlling
stromatolite formation; in contrast, the factors controlling carbonate precipitation in
thrombolites are less understood. Several recent studies have begun to use meta-omic
approaches to understand thrombolite communities and how they may initiate precipitation.
For example, metatranscriptomic sequencing of the Bahamian thrombolite-forming mats at
midday revealed distinct profiles of gene expression within the thrombolites (Mobberley et
al., 2015). This study, however, captured only those metabolically active communities and
did not provide a comprehensive assessment of the total microbial population within the
observed thrombolites zones. Additionally, previous shotgun metagenomic studies have been
used to examine the overall metabolic potential in thrombolite ecosystems, including those at
Highborne Cay (Mobberley et al., 2013) and in hypersaline thrombolites of Lake Clifton
(Warden et al., 2016); however, neither of these metagenomic studies provided spatial
information of the thrombolite-forming communities.

In the present study, we build on this previous research by examining the spatial
distribution of the bacterial and archaeal diversity associated with the button mats of
Bahamian thrombolites using a targeted phylogenetic marker gene approach coupled with a
predictive computational reconstruction of the metagenome to ascertain how thrombolite-
forming communities change, both taxonomically and functionally, with depth. These
molecular-based approaches are complemented by stable isotope analysis with Secondary Ion
Mass Spectrometry (SIMS), a high resolution technique that has not been previously used in

any microbialite study, to provide additional constraints on carbonate precipitation in the



Dichothrix calcified filaments. Together, these methodologies elucidate the juxtapositioning
of the taxa and metabolic functions associated with the thrombolite-forming mats as well as
provide key insight into the metabolic metabolisms that initiate precipitation within these

lithifying ecosystems.

2. Methods

2.1. Sample collection

Thrombolite-forming button mats were collected from the island of Highborne Cay, The
Bahamas, (76°49° W, 24°43°N) in February 2010 and October 2013 from an intertidal
thrombolitic platform from Site 5 (Andres and Reid, 2006). The 2010 mats were partitioned
in the field into three distinct vertical sections (0 — 3 mm; 3 — 5 mm; and 5 — 9 mm depth
horizons, respectively) with a sterile scalpel to cut the thrombolite-forming mats, and the
sections were immediately placed into RNAlater (Life Technologies, Inc., Grand Island,
NY). These samples were transported to Space Life Sciences Lab, Merritt Island, Florida,
where they were stored at -80°C until processing. The 2013 mats were processed for isotope

analyses as described below.

2.2. Microelectrode measurements

Depth profiles of oxygen, sulfide, and pH were determined in triplicate with needle
microelectrodes (Visscher et al., 1991, 1998; Pages et al., 2014) either in situ or ex situ under
ambient temperature and light intensity. Microelectrodes with a tip diameter between 60 and
150 um were deployed in 250 pm depth increments with a manual micromanipulator
(National Aperture, Salem, NH). Oxygen profiles were measured in submerged mats (in ca.
5-15 cm water) with a polarographic Clark-type needle electrode with an outer diameter of

0.4 mm, and readings were recorded with a picoammeter (PA2000; Unisense, Aarhus,



Denmark). Polarographic sulfide electrodes (Unisense, Denmark) were used in combination
with a Unisense PA 2000 picoammeter, and pH and S*" electrodes (Diamond General, Ann
Arbor, MI) were connected to a high-impedance millivolt meter (Microscale Measurements,
The Netherlands). Both electrode types were encased in needles (outer diameter 0.5 mm).
Sulfide electrodes were calibrated before and after each deployment with buffers of three
different pH values that span the pH range observed in the thrombolite (i.e., pH 7, 8, and 9).
Under an oxygen-free atmosphere, aliquots of a sulfide stock solution were added in
increments to the buffer, and electrode signals were recorded. Subsamples of the buffer were
taken to ascertain the actual concentration of sulfide in the calibration cocktail by using the
methylene blue method. The pH electrodes were calibrated at pH 5, 7, and 10. The pH

profiles were used to calculate the actual sulfide concentration at each depth.

2.3. Generation and sequencing of 16S rRNA gene libraries

DNA was extracted in triplicate from each vertical section with a modified MoBio PowerSoil
DNA isolation kit that included a xanthogenate pre-treatment, as previously described (Green
et al., 2008). The DNA was then PCR amplified in triplicate with fusion 454-primers that
included a unique eight base pair barcode on the 3’ end (Supplemental Table S1). The PCR
reactions for the bacterial 16S rRNA libraries targeted the V1-2 region and included the
following: 1 x Pfu Reaction Buffer (Stratagene, La Jolla, CA), 280 uM dNTPs, 2.5 ug bovine
serum albumin (BSA), 600 nM of each primer, 1 ng of genomic mat DNA, 1.25 U of Pfu
DNA Polymerase (Stratagene, La Jolla, CA), and nuclease-free water (Sigma, St. Louis, MO)
in a volume of 25 pl. The amplification parameters included a 95°C denaturation for 5 min,
followed by 30 cycles of 95°C for 1 min, 64°C for 1 min, 75°C for 1 min, and a final

extension at 75°C for 7 min.



The archaeal libraries required a nested PCR approach that included two rounds of
amplification and targeted the V3-5 region. The reactions contained the same concentrations
as the bacterial library with the exception of 400 nM of 23F and 958R primers (Delong,
1992; Barns et al., 1994) and 10 ng of thrombolitic mat DNA in round one, whereas 400 nM
of primers 334F and 915R (Casamayor et al., 2002) with 10 ng of round one amplicon
material as a template. The amplification parameters in round one included a denaturation
step of 95°C for 2 min, followed by 35 cycles of 95°C for 30 sec, 55°C for 1 min, 72°C for 2
min with an extension of 72°C for 10 min. In round two the parameters were similar except
that the annealing temperature was changed to 61°C.

For each library, the PCR amplicons were purified with the Ultraclean PCR Clean-Up
Kit (MoBio, Carlsbad, CA) and combined into equimolar ratios. Sequencing was performed
per manufacturers protocol by a 454 GS-FLX platform with Titanium chemistry (Roche,
Branford, CT) at the University of Florida’s Interdisciplinary Center for Biotechnology
Research. The raw sequence data files were deposited into the NCBI sequencing read archive

under number SRP068710 (bacteria) and SRP068710 (archaea) under project PRINA305634.

2.4. Bioinformatic analysis of 16S rRNA gene libraries

The recovered bacterial and archaeal 16S rRNA gene sequences were analyzed by
Quantitative Insights Into Microbial Ecology (QIIME; version 1.9.1; Caporaso et al., 2010).
Preprocessing was completed to separate the replicate libraries by depth, remove barcode
adaptors, and filter for quality by using default parameters including: minimum sequence
length of 200 bp; maximum sequence length of 1000 bp; minimum quality score of 25;
maximum ambiguous bases of 6; and maximum homopolymer length of 6. Operational
taxonomic units (OTUs) were assigned to the filtered reads at 97% identity against the

Greengenes database (v13.8; DeSantis ef al., 2006) using the UCLUST method within



QIIME. Further filtering was completed including removal of unassigned reads and filtering
for most abundant OTUs (> 0.005%). The generated OTU table was used for taxonomic
comparison, filtering the OTUs at 0.005% and producing taxonomic trees with Meta Genome
Analyzer (MEGANS; Huson et al., 2007). OTU tables were filtered at 0.1%, and hierarchal
taxonomic pie charts were created with the Krona tool (Ondov ef al., 2011). The
representative sequences were aligned with PyYNAST (v1.2.2; Caporaso et al., 2010) to the
Greengenes Core reference alignment and a phylogenetic tree was built by FastTree (v2.1.3;
Price et al., 2010). The phylogenetic tree was used for downstream community

analyses. Diversity analyses were performed at a sequence depth of 3587 for archaea and
3691 for bacteria.

Alpha diversity indices were calculated by using observed species and Faith’s
Phylogenetic Diversity (PD) measure (Faith, 1992), and the averaged results were used to
generate rarefaction curves. Beta diversity comparisons were visualized by using Principal
Coordinates Analyses (PCoA) and Emperor (Vazquez-Baeza et al., 2013) generated from
unweighted UniFrac distance matrices (Lozupone and Knight, 2005). Statistical significance
between the mat depths was calculated by adonis, a nonparametric, permutation-based

metric.

2.5. Reconstruction of functional metagenome using the PICRUSt algorithm

Functional gene content from each of the three vertical sections was predicted from the
recovered 16S rRNA gene sequences by using the algorithm Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States (PICRUSt v.1 .0; Langille et al.,
2013), as previously described (Casaburi ef al., 2016). Results were collapsed at Kyoto
Encyclopedia of Genes and Genomes (KEGG) Orthologs (KO) Level 3 within the pathway

hierarchy of KEGG (Kanehisa and Goto, 2000). For comparison purposes, a shotgun
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metagenomic dataset of whole Bahamian thrombolite-associated mats previously collected
from Highborne Cay (Mobberley ef al., 2013) was downloaded from the MG-RAST database
with accession number 4513715.3. Raw reads were filtered by SICKLE (v. 1.2; Joshi and
Fass, 2011) with default parameters. Filtered reads were re-annotated for functionality at
different KEGG levels by the Metagenome Composition Vector (MetaCV v. 2.3.0) with
default parameters (Liu ef al., 2012). Resulting hits were filtered at a correlation score > 30,
collapsed at KO Level 3, and finally compared to the 16S rRNA gene predicted functional

profile.

2.6. Bulk stable isotope analysis

Samples of thrombolite-forming mats were collected for isotopic analysis during the same
collection trip as the molecular samples from Site 5 (Andres and Reid, 2006) of Highborne
Cay in October 2013. The mat samples were dried and examined by bulk isotope analysis for
both inorganic and organic signatures. Calcified filaments were dissected from the button
mats, dried, and ground to a fine powder in triplicate. Aliquots of the carbonate (i.e.,
aragonite; Planavsky et al., 2009) were measured for inorganic 8'*C and §'%0 with a
Finnigan-MAT 252 isotope ratio mass spectrometer coupled with a Kiel III

carbonate preparation device.

For isotopic analysis of organic matter, calcified filaments were dissected and treated
with an acid solution (6N HCI) at room temperature overnight until all CaCO3; was removed
and rinsed with distilled water to remove HCIL. Samples were loaded into tin capsules and
placed in a 50-position automated Zero Blank sample carousel on a Carlo Erba NA1500
CNHS elemental analyzer. After flash combustion in a quartz column containing chromium
oxide and silvered cobaltous/cobaltic oxide at 1000°C in an oxygen-rich atmosphere, the

sample gas was transported in a He carrier stream and passed through a hot reduction column
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(650°C) consisting of reduced elemental copper to remove oxygen. The effluent stream then
passed through a chemical (magnesium perchlorate) trap to remove water followed by a 3
meter GC column at 45°C to separate N> from CO,. The sample gas next passed into a
ConFlo II preparation system and into the inlet of a Thermo Electron Delta V Advantage
isotope ratio mass spectrometer running in continuous flow mode where the sample gas was
measured relative to laboratory reference N> and CO» gases. All carbon and oxygen isotopic
results are expressed in standard delta notation relative to Vienna Pee Dee Belemnite
(VPDB), whereas nitrogen isotopic results are expressed in standard delta notation relative to
air (AIR). The standard used for bulk C and O measurements was NBS-19, whereas USGS40
and USGS41 were used for N. Measurements were conducted in triplicate at the Light Stable
Isotope Mass Spectrometry Laboratory in the Department of Geological Sciences at the
University of Florida. Instrument precision was better than 0.10%o for all bulk isotope

measurements.

2.7. Stable isotope analysis using Secondary lon Mass Spectrometry (SIMS)

Additional mat samples, collected in Oct 2013, were prepared as thin-sections at the
WiscSIMS laboratory, UW-Madison. Samples were cast with EpoxiCure resin in 25 mm
epoxy rounds, cut with a Buehler IsoMet™ low speed to expose the most suitable section for
analysis, and turned, together with two grains of UWC-3 WiscSIMS calcite standard (8!3C =
-0.91 £0.04%o; 6'80 = -17.87%o + 0.03%0 VPDB (Kozdon ef al., 2009), into ~100 pm-thick
thin sections. An aragonite standard (UWArg-7, 8§'°C = 5.99%o; 6'*0 = -10.84%0 VPDB;
Orland, 2012; Linzmeier et al., 2016) was also run at the beginning of each day of analysis to
correct for the differences in instrumental mass fractionation between calcite and aragonite,
which was 1.3%o for 5'%0 and 1.5%o for 3'3C. The epoxy rounds were ground to expose

features of interest for analysis. Petrographic microscopy was conducted with an Olympus
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BH-2 microscope with plane-polarized and cross-polarized transmitted light at various
magnifications to identify potential sites suitable for SIMS analysis. The samples were then
polished and sputter coated with palladium for scanning electron microscopy (SEM) at the
University of Miami’s Center for Advanced Microscopy (UMCAM) to identify areas of
precipitate for analysis and to screen for potential textural anomalies that might impede in
situ 8'3C and 8'%0 measurements. The SEM analysis was conducted on a FEI XL-30 Field
Emission ESEM/SEM instrument with energy dispersive spectrometer (EDS). The SEM
analysis was to insure integrity of the sample and to identify specific target sites. After SEM
analysis, the palladium coating was removed with 0.25 pm polish on a lapidary wheel, dried,
and recoated with gold.

The thrombolite mat samples were then analyzed for 8'°C and §'%0 on a CAMECA
ims-1280 secondary ion microprobe mass spectrometer (SIMS) using a '**Cs* primary ion
beam at the WiscSIMS Laboratory, Department of Geoscience, University of Wisconsin-
Madison. A primary beam of 600 pA, with mean 0.77 %o spot-to-spot precision (2SD), was
used for 8'°C, and 1.7 nA was used for 6'*0 with a 10 um spot size (precision ~0.3%o).
WiscSIMS carbonate analysis has been described in detail in previous publications (Orland et
al., 2009; Valley and Kita, 2009; Kozdon et al., 2011; Williford et al., 2016).

Analysis of the thrombolitic mat sections (10 — 15 spot analyses per sample) were
bracketed by 8 - 10 repeat measurements on the UWC-3 standard grain by using the same
parameters as the samples to help determine instrumental mass fractionation corrections for
each set of measurements. After completion of each analytical session, the samples were
returned to University of Miami for SEM inspection of the pits to evaluate any features that
may have impacted accuracy (e.g., cracks or epoxy). Additionally, for those measurements
that penetrated down to epoxy material (depths of 1-2 um) and had high secondary ion count

rates (i.e., > 100% for 2C of the measured counts per second on the standard grain), the final
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three to six cycles (of 20) were excluded from computations, and the values for the spots
were recalculated as in the work of Vetter et al. (2014). Visualization of the data was
conducted in R (v.3.2.2; R Core Team, 2015) by using the package ggplot2 (Wickham,

2009).

3. Results

3.1. Microelectrode profiling of thrombolite button mats

The in situ concentrations of oxygen and sulfide were measured with microelectrodes during
early afternoon representing peak photosynthesis (i.e., 12:30pm and 2:00pm) and at the end
of the night, which marks the end of a prolonged anoxic period (i.e., 4:00am — 6:00am) (Fig.
1C). The profiles reveal steep vertical gradients that fluctuated throughout the diel cycle.
During the day, the oxic zone extended through the first 5 mm of the button mat with the
peak of oxygen production (> 600 uM) occurring in the upper 3 mm (Fig. 1C). At night,
however, oxygen levels decreased significantly and were detectable only in the upper 2 mm
of the mat suggesting rapid consumption at night and limited diffusion of O, from the
overlying water column. Contrastingly, sulfide levels were low during the day with levels
detectable only below 6 mm. At night, sulfide levels built-up and were detectable at 4 mm
with a peak concentration occurring at a depth of 8 - 10 mm within the mat.

In addition to oxygen and sulfide, pH was also monitored throughout the vertical
profile of the button mat revealing a wide shift throughout the diel cycle. At peak
photosynthesis, the localized pH ranged from 8.4 to 10.4 throughout the depth profile with
the highest pH occurring at a depth of 3 mm (Fig. 1C). At night, however, the pH steadily
decreased to as low as 7.1 at depths below 5 mm. Based on these oxygen, sulfide, and pH
microelectrode profiles three distinct spatial zones emerged. Zone 1 included the upper 3

mm of the button mat and contained a supersaturated oxic zone that was suggestive of high
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rates of oxygen production and consumption. Zone 2 represented a transitional area 3 — 5 mm
beneath the surface where oxygen levels decreased and sulfide levels began to build. Finally
Zone 3, which included depths below 5 mm, represented a primarily anoxic region of the

thrombolite-forming mat.

3.2. Phylogenetic composition of Bacteria in thrombolite communities with depth
Immediately after the microelectrode profiles were generated, the thrombolite mats were then
sectioned based on these three observed zones (Zone 1, 0 — 3 mm; Zone 2, 3 — Smm; and
Zone 3, 5 —9 mm), and each of these spatial regions was subsequently examined for
taxonomic diversity (Fig. 1D). Three replicate amplicon libraries were generated for each
zone targeting the 16S rRNA gene for both the Bacteria and Archaea. A summary of the data
associated with the amplicon libraries is provided in Table 1. The overall bacterial diversity
increased with depth (Supplemental Fig. S1A) with 2044 operational taxonomic units
(OTUs) at 97% sequencing similarity in the upper oxic Zone 1 and 2947 and 3525 OTUs
recovered from Zone 2 and 3, respectively. The number of recovered OTUs was much higher
then previous diversity assessments of the Highborne Cay thrombolites (Myshrall et al.,
2010; Mobberley et al., 2012) and likely reflects the increased sequencing coverage as
determined by Good’s estimates (Table 1).

A total of 16 phyla were recovered from the three spatial zones within the
thrombolite-forming mat with the Proteobacteria, Cyanobacteria, Bacteroidetes, Chloroflexi,
and Acidobacteria being highly represented in each zone (Supplemental Fig. S2). Distinct
taxonomic differences, however, were observed across the three spatial regions of the
thrombolite mat at the family level (Fig. 2, 3; Supplemental Fig. S2). In the upper Zone 1, the
most abundant family represented within the mat is the cyanobacterial family Rivulariaceae

(Fig. 2; Supplemental Fig. S2). This taxon contains the genus Dichothrix, which was
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previously identified in the thrombolite mats as forming extensive tufts of calcified filaments
(Fig. 1B) and has rarely been found in laminated stromatolites (Foster and Green, 2011). The
Rivulariaceae dominated the oxic Zone 1 comprising 21% of annotated reads compared to
15% in the transitional Zone 2 and only 5% of the total recovered reads in Zone 3 (Fig. 2;
Supplementary Fig. S2). In addition to Rivulariaceae, other prevalent Cyanobacteria in the
oxic Zone 1 included Pseudanabaenaceae (11%), Xenococcaceae (5%), and
Synechococcaceae (4%; Fig. 2; Supplemental Fig. S2).

Although Cyanobacteria was the dominant phylum recovered from Zone 1, there was
also a diverse population of Proteobacteria, specifically, the class Alphaproteobacteria.
Within the Alphaproteobacteria there was enrichment of the photoheterotrophic
Rhodobacteraceae (19%) and Rhodospirillaceae (7%) families, and to a lesser extent the
Rhizobiales (5%). These taxa were not only abundant in Zone 1 but were highly represented
throughout the thrombolite vertical profile (Fig. 3; Supplemental Fig. S2). Other
proteobacterial taxa that were abundant in Zone 1 compared to the other two zones included
the sulfate-reducing Deltaproteobacteria family Desulfovibrionaceae (3%) and the
Gammaproteobacteria family Thiotrichaceae (0.8%), which harbors several sulfide-oxidizing
taxa (Fig. 3). A detailed krona plot of the upper 3 mm of the thrombolite mat is provided in
Supplemental Fig. S3.

Zone 2 represented a transitional phase in the thrombolite-forming mats with several
taxa first appearing in this 3 — 5 mm zone and gradually increasing in relative abundance in
the anoxic Zone 3 (Fig. 3; Supplemental Fig. S2, S4). For example, in the
Deltaproteobacteria the sulfate-reducing families Desulfobacteraceae and
Syntrophobacteraceae were enriched in Zones 2 and 3 compared to Zone 1. Additionally, the
purple sulfur bacterial Gammaproteobacteria family Ectothiorhodospiraceae (order

Chromatiales) and the sulfide-oxidizing Piscirickettsiaceae (order Thiotrichales) also
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exhibited a gradual increase in relative abundance with depth (Fig. 3). In addition to the more
prevalent taxa there were several families that appeared to a lesser extent only at depth and
included the photoheterotrophic Gemmatimonadetes, purple non-sulfur bacteria
Rhodobiaceae, and nitrite-oxidizing Nitrospiraceae. Detailed taxonomic profiles of Zone 2
and 3 are depicted as krona plots in Supplementary Figs. S4 and S5.

In addition to analysis of the bacterial composition, a beta diversity analysis was
completed to assess whether these observed taxonomic differences were statistically
significant. Unweighted UniFrac distance matrices were generated for the Bacteria amplicon
libraries and visualized with a jackknifed principal coordinate analysis (PCoA; Fig. 4A). The
statistical analyses revealed that each of the three spatial zones represented distinctive
bacterial communities with low standard deviation amongst the library replicates (Fig. 4A).
The R? value showed an effect size of 0.402, indicating that approximately 40% of the
variation in the bacterial populations could be explained by depth and potentially other
environmental factors within the mats (p=0.001; R?>=0.402, adonis; Fig. 4A). Depth likely
accounted for at least 27% (PC1) of the variation among the three zones based on the PCoA

plots (Fig. 4A).

3.3. Phylogenetic composition of Archaea in thrombolite communities with depth

With regard to the overall archaeal diversity (e.g., Shannon Index), there was little difference
across the three zones with the recovered OTUs ranging from 506 to 671 (Table 1;
Supplementary Fig. S1B). Of the three recovered phyla, the Thaumarchaeota were dominant
in all three zones of the thrombolite forming mats with most of the reads sharing similarity to
the ammonia-oxidizing family Cenarchaeaceae (Fig. 5), specifically the genus
Nitrosopumilus. There were, however, some taxonomic differences between the different

spatial regions in the thrombolites. For example, phototrophic Halobacteriales showed the
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highest abundance in the upper oxic Zone 1, as did the ammonia-oxidizer Nitrososphaeraceae
(Fig. 5). Although few methanogenic archaeal taxa were detected in each of the three zones,
they had the highest representation in the transitional Zone 2 with most of the reads sharing
similarity to the class Thermoplasmata and the family Methanocarcinaceae (Fig. 5). A beta
diversity test was also completed for the archaeal libraries and showed increased statistical
variation between replicates (Fig. 4B). Although the archaeal populations did not have as
high of an effect size (R?) as the bacterial population, 30% of variation within the archaea
could be explained by environmental factors, such as depth. Based on the beta diversity
analysis, just as in the bacterial population, the three zones did appear to have spatially
distinct Archaea populations with approximately 20% of the variation between the zones

likely being associated with depth (p=0.017; R?>=0.307, adonis; Fig. 4B).

3.4. Spatial profiling of functional gene complexity of thrombolite-forming mats using
predictive sequencing analysis

In addition to profiling the microbial diversity within the thrombolite button mat, a
reconstruction of the functional gene complexity was generated for each zone by using the
16S rRNA gene sequences and the PICRUSt algorithm (Langille et al., 2013). As the number
of available reference genomes has steadily increased, PICRUSt has emerged as an effective
tool to accurately predict the functional complexity of the metagenomes based on taxonomic
information (Langille et al., 2013). The tool has successfully been used to reconstruct the
metagenomes of a wide range of ecosystems including nonlithifying microbial mats and
stromatolites (Langille et al., 2013; Casaburi ef al., 2016). A predicted metagenome was
generated for each spatial zone with the QIIME taxonomic output, which was then
statistically compared to a previously published metagenome of the entire button mat (0 — 9

mm; Mobberley et al., 2013) to determine whether differences in the metabolic capabilities
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could be observed between zones. The previously sequenced thrombolite metagenome was
re-annotated by using MetaCV to update the metagenomic dataset and enabling comparable
annotations to the PICRUSt predictive metagenomes.

A total of 272 KEGG functions were identified in the three zones corresponding to
328 level 3 KO entries, which was consistent with the 268 KEGG functions observed in the
re-annotated whole-mat metagenome (Supplemental Table S2). Additionally, there was a
strong correlation between the PICRUSt predictive metagenomes and the whole mat
metagenome (r = 0.93, Pearson), with most of the KOs (n = 222) showing little or no
variation between zones (Supplemental Table S2). Of the 59 KOs that did show variation (>
0.1%), several of the differences occurred between the upper oxic Zone 1 and the two deeper
Zones 2 and 3 (Fig. 6). In Zone 1, there was an increase in the relative abundance of KO
pathways associated with photosynthesis including the antennae proteins, porphyrin, and
chlorophyll metabolism, whereas there was a lower abundance of genes associated with
carboxylic acid metabolism (e.g., butanoate, benzoate, caprolactam metabolism; Fig. 6).
Deeper within the mat in Zones 2 and 3 there was a higher relative abundance of genes
associated with fatty acid metabolism and lipopolysaccharide (LPS) biosynthesis compared
to Zone 1. Despite these few select differences, many highly represented pathways in the
thrombolite-forming mats, such as DNA repair proteins, two-component signaling, and
bacterial motility, showed no differences among the three spatial zones and likely reflect the

central metabolisms associated with the thrombolite microbiome.

3.5. Stable isotope analyses of thrombolitic carbonates
The calcified carbonate filaments associated with the Dichothrix cyanobacteria in the
upper Zone 1 were examined by using a combined bulk isotopic analysis and targeted SIMS

approach coupled, which enabled an in sifu high-spatial resolution analysis (Valley and Kita
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2009; Kozdon et al., 2009; Kita et al., 2011) (Fig. 7). Bulk samples of dissected calcified
filaments had 6'0 values with a mean of -0.5 + 0.1%0 VPDB suggesting that the precipitates
associated with the filaments were not the result of evaporation, which would cause an
enrichment in heavy isotopes. Bulk 8'*Ccan, values of the dissected filaments had a mean of
5.0 + 0.03%o, which was similar to the surrounding carbonate sediments within the
thrombolite structure (+4.0%o to +4.9%o; mean = 4.6 + 0.3%o). The §'*C values for the
organic matter associated with the filaments was depleted compared to the sediment with
values ranging -9.9%o and -9.2%o (mean = -9.6 + 0.2%o), suggesting a relatively muted
fractionation during organic matter uptake, similar to what has been produced in other
modern microbial mats (Canfield and DesMarais, 1993). The §!* N, values associated with
the filaments ranged from -1.1%o to -0.1%o (mean = -0.8 + 0.3%o), suggesting that nitrogen
fixation is a predominant means of N assimilation (Sigman et al., 2009) within the
thrombolite-forming mats and correlates with the high number of recovered diazotrophic
Cyanobacteria and Alphaproteobacteria from the mats.

To complement the bulk stable isotope analyses, the calcified filaments were also
analyzed in situ with SIMS to provide a higher spatial resolution (10 pm spot size) of the
8!80 and 8'*C compositions of the calcified filaments. Micrographs depicting the SIMS target
sites along the filaments and associated carbonate precipitate are shown in Fig. 8. The §!%0
value of the surrounding carbonate sediments ranged from -2.0%o to -0.6%o (mean =-1.3 +
0.5%o0), whereas the filaments exhibited a more depleted oxygen signature ranging from -
7.7%o to -2.0%o (mean = -3.2 + 1.1%o) (Fig. 7). The 8'3C values of the surrounding sediments
(i.e., ooids) in the thrombolite button mats had a narrow range of values (+3.6%o to +4.6%eo;
mean = 4.1 £ 0.4%o) and matched values from previous studies of sediments that surround the

thrombolite structures (e.g. ooids; Swart and Eberli, 2005), whereas the filaments had a much
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wider range (+0.1%o to +5.5%o0; mean = 2.7 £1.3%o). All stable isotope measurements are

presented in order of analysis in supplementary Tables S4-S5.

4. Discussion
4.1. Microbial diversity within thrombolite-forming mats are highly structured

The presence of discrete spatial zones of microbial and biochemical activity have
been well documented in stromatolites (e.g., Visscher et al., 1998; Wong et al., 2015);
however, the occurrence of similar zonation in mats that form clotted thrombolites has only
been recently suggested (Mobberley et al., 2015). In this study, statistical analysis of the
bacterial and archaeal communities revealed significantly different profiles of taxa with depth
(Fig. 4) suggesting the microbes are not only active at different depths (Mobberley et al.,
2015) but that there are also distinct populations that are forming discrete microenvironments
within the thrombolite-forming mats.

In the upper oxic Zone 1, the dominance of cyanobacterial sequences with similarity
to the filamentous Rivulariaceae reinforces the morphological observation that Dichothrix
sp., a member of the Rivulariaceae, serves as a "hot spot" for photosynthetic activity and
carbonate deposition within the thick EPS matrix associated with the filaments (Planavsky et
al., 2009). Future sequencing of the Dichothrix sp. genome will help to expand the relatively
small database of filamentous, heterocystous cyanobacteria as well as delineate the specific
pathways associated with EPS production in this keystone organism. In addition to the
cyanobacteria, taxonomic analyses also revealed an enrichment of diazotrophic
photoorganoheterotrophs primarily associated with the Rhodobacterales, Rhodospirillales,
and Rhizobiales increasing with depth (Fig. 3). These metabolically flexible
Alphaproteobacteria are ubiquitous in marine microbial communities including all previously

characterized microbialites, coral symbioses, and sediments (e.g., Dang et al., 2013;
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Houghton et al., 2014; Wong et al., 2015; Casaburi et al., 2016; Hester et al., 2016; Suosaari
et al., 2016) and may be contributing to the carbon fixation rates deeper within the
thrombolitic mats where there are fewer cyanobacteria due to the reduced light levels and the
presence of sulfide. Additionally, the diazotrophic photoheterotrophs may be helping to
maintain the bioavailability of nitrogen in the thrombolite-forming communities.

Another key microbial functional group enriched within the thrombolite-forming
communities was sulfate-reducing bacteria (SRB), whose activity has been directly correlated
to deposition of carbonate in actively accreting stromatolites (Visscher ef al., 2000; Decho et
al., 2010). There was a pronounced vertical stratification of SRB in the thrombolite-forming
communities. Taxa associated with Desulfovibrionaceae were enriched in the upper oxic
Zone 1, whereas the Desulfobacteraceae increased in their relative abundance with depth.
This vertical stratification of SRBs has been seen in the non-lithifying hypersaline mats of
Guerrero Negro, Mexico (Risatti et al., 1994) and Solar Lake Egypt (Minz et al., 1999).
Several species of sulfate-reducing Desulfovribionaceae (e.g., Desulfovibrio spp. and
Desulfomicrobium spp) have been shown to be prevalent in the oxic zone of microbial mats
(Krekeler et al., 1997), and high levels of sulfate reduction activity have been recorded in the
upper oxic zone of non-lithifying and stromatolite-forming mats (e.g., Canfield and
DesMarais, 1991; Visscher et al., 1992, 2000). The abundance of SRB in the oxic zone may
be, in part, due to the presence of sulfide-oxidizing bacteria (SOB). There was an enrichment
of the families Thiotrichaceae and Chromatiaceae in the upper Zone 1, which are known to
harbor many sulfide-oxidizing taxa (Pfennig and Triiper, 1992; Lenk et al., 2011). The SOB
may be removing the O, and S* generated by the cyanobacteria and SRBs, both of which can
be toxic to the SRB at high enough levels (Decho ef al., 2010). Together, this enrichment of
SOB, oxygen-tolerant SRB, and their vertical stratification in the thrombolite-forming may

suggest that, much like the stromatolites, these different phylogenetic groups may be playing
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distinctive community functions in response to variable carbon and electron donor
availability at different depths as well as the diel flux of oxygen and sulfide.

The archaeal population also exhibited stratification of certain taxa within the
thrombolite-forming mat. There was an enrichment of Halobacteriales in the upper oxic Zone
1 of the thrombolitic mats. Members of this order are typically chemoorganoheterotrophic
and can grow on a wide range sugars, carboxylic acids, alcohols, and amino acids. This
aerobic taxon has been observed in both lithifying and nonlithifying microbial mat
communities primarily in hypersaline environments (Burns et al., 2004; Arp et al., 2012;
Schneider ef al., 2013) and may be contributing to the heterotrophic degradation of EPS
material associated with the calcified filaments. It should be noted that the salinity of the
porewater in the upper part of the microbialites increases significantly (~135 PSU; Visscher
unpubl) upon exposure to the atmosphere during low tide, creating temporary hypersaline
conditions.

Sequences were also recovered from methanogenic archaea in primarily Zone 2, and
these were primarily associated with the Methanocarcinaceae and Thermoplasmata. These
taxonomic results correspond to recovered methyltransferase-encoding genes in the
thrombolite metagenome (Mobberley et al., 2013), and there was an enrichment of recovered
sequences from Zone 2 (Fig. 5). Members of the Methanocarcinaceae can perform
methanogenesis using CO», acetate, and C; compounds (Feist ez al., 2006) and have been
shown to elevate pH levels in mat communities via CO; consumption (Kenward et al., 2009).
More recently, methanogenic lineages of the Thermoplasmata have been identified in human
and rumen gut microbiomes as well as wastewater sludge habitats that also can use
methanogenic substrates (Dridi ef al., 2012; Poulson ef al., 2013; Iino ef al., 2013). Although
not the dominant archaea within the thrombolite-forming mats, the recovered taxa in this

study coupled with functional genes observed in the thrombolite metagenome (Mobberley et
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al., 2013) suggest that methanogenesis may have a potential, albeit minor, role in promoting
an alkaline environment within these thrombolitic mats. Methane production has been
observed within the thrombolites and adjacent stromatolites (Visscher unpublished), and
further work to more fully characterize methane levels within each zone may help elucidate
the role of methanogenesis, if any, in the Bahamian thrombolite formation.

By far the largest component of the archaeal population within the thrombolite
forming mat were the Thaumarchaeota specifically Cenarchaeaceae, which harbor many
ammonia-oxidizing taxa (Fig. 5). Although the Cenarchaeaceae were found in all three zones,
there was an enrichment in the lower two regions of the mat (Fig. 5). Thaumarchaeota have
been found in a wide range of lithifying and non-lithifying microbial mat habitats (e.g.
Ruvindy et al., 2016) and likely play a role in nitrogen cycling within the thrombolite-
forming communities. Previous studies in which the metagenomics of lithifying systems have
been examined found a paucity of bacterial nitrification genes (Breitbart et al., 2009;
Mobberley et al., 2013; Ruvindy et al., 2016), and ammonia-oxidizing archaea, such as those

taxa within the Thaumarchaeota, may be facilitating the metabolism of ammonia to nitrite.

4.2. Predictive metagenome reconstruction shows strong correlation with taxa and function.

The PICRUSt predictive metagenome strongly correlated (r = 0.93) with the
previously published whole shotgun library, which had targeted the entire thrombolite-
forming mat community and provided no spatial information regarding the metagenome
(Mobberley et al., 2013). The PICRUSt reconstruction identified key differences between the
different spatial zones thereby providing further evidence that 16S rRNA gene libraries can
provide useful insight into the metabolic capabilities of microbial ecosystems. For example,
there was extensive overlap in the relative abundance of functional genes between the

different depths in several pathways, such as nucleotide and amino acid metabolism, genetic
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information processing, and environmental information responses with the shotgun sequence
library suggesting there are key central metabolisms in the thrombolite-forming mat
microbiome at all depths (Fig. 6). Additionally, genes associated with several key
metabolisms associated with the promotion (e.g., photosynthesis, sulfate reduction) and
dissolution (e.g., sulfide oxidation, fermentation, ammonia oxidation) of carbonate
precipitation were observed within the thrombolite-forming mats.

Despite the extensive overlap between the core metagenome at each depth,
differences were observed between the mat zones. The enrichment of genes associated with
photosynthesis pathways in the upper Zone 1 and the increase of genes associated with
different carboxylic, fatty acid and LPS metabolisms deeper within the mat reveal distinctive
metabolic transitions throughout the mat profile. The increase in LPS production at depth
likely reflects the oxygen-limiting environment deeper in the thrombolite-forming mat.
Previous studies with model organisms, such as Escherichia coli and Pseudomonas
aeruginosa, have shown that anaerobic conditions can positively regulate production of LPS
(Landini et al., 2002; Sabra et al., 2003). These spatial differences in metabolic capabilities
are also reflected in the biochemical gradients observed within the mats (Fig. 1). These
functional genes could serve as ideal targets to examine the potential regulation of these
metabolisms within the thrombolite ecosystems potentially providing insight into the
molecular response to changing environmental variables, such as pH, oxygen, and sulfide.
Additionally, by tracking these specific molecular pathways, it may be possible to elucidate
the specific genes and taxa involved in the diagenetic alteration of organic material in the
thrombolites over both spatial and temporal scales, which represents an important area of

future microbialite research.
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4.3. Stable isotope profiling suggests photosynthesis is the major inducer of precipitation in
thrombolite-forming mats.

In addition to the microbial and functional gene analyses, the stable isotope profiling
provided new insights into the microbial nitrogen cycling and the mechanisms driving
carbonate precipitation. Additionally, the SIMS approach enabled for one of the most highly
spatially resolved carbonate oxygen and carbon isotopic datasets to date on modern
thrombolites. Organic N isotope values approached 0%o, indicating nitrogen fixation was the
dominant N source (Hoering and Ford, 1960; Minagawa and Wada, 1986; Sigman et al.,
2009), which is consistent with the abundance of heterocystous cyanobacteria, such as
Dichothrix sp., and numerous nitrogen fixing anoxygenic phototrophs identified in Zone 1
(Fig. 8). These results are also consistent with the high number of nitrogen fixation genes
(e.g., nifD, nifH, nifK) recovered from the metagenome and metatranscriptome of the
thrombolites (Mobberley et al., 2015). Additionally, the enrichment of ammonia-oxidizing
archaea and high number of recovered transcripts associated with ammonia monooxygenase
(amoA; Mobberley et al., 2015) within the mat coupled with the low numbers of bacterial
nitrification genes observed in both the predictive and whole shotgun libraries suggest that
these archaeal chemolithotrophs may be playing an important role in controlling nitrification
and the cycling of fixed nitrogen within the thrombolite-forming mats.

Analysis of 3'%0 values by using both bulk and SIMS analyses did not provide
evidence of an evaporative signal, the results of which suggest biologically induced
precipitation. The high rates of photosynthesis within the thrombolite-forming mats
(Myshrall et al., 2010) coupled with the previously published observations that red algae
distributed throughout the tufts of Dichothrix sp. filaments lack precipitates (Planavsky et al.,
2009) make it unlikely that non-biological processes, such as CO» degassing, are driving the

precipitation within the thrombolites. The SIMS 8'30 values for filaments are highly depleted

26



compared to the values associated with the sediments, and previous studies have shown that
increased '%0 depletion under elevated pH (Spero and Lea, 1996) is potentially suggestive of
rapid rates of carbonate precipitation (McConnaughey, 1989). However, the offset between
the bulk and SIMS 8'%0 values cannot yet be fully explained, as systematically lower SIMS
values have been observed up to 2%o (Orland ef al., 2015) and may be the product of water or
organics within the sample site. Despite this potential, there is low variability in the '*OH/'°O
values (Supplemental Table S4), which suggests that the zonation revealed by the SIMS data
is accurate. The difference between SIMS and bulk measurements may, in part, reflect the
extensive grinding during sample preparation for bulk isotope analysis. Previous studies in
corals have shown that the friction generated during milling or drilling of the carbonate
samples can cause inversion of aragonite to calcite (Waite and Swart, 2015). As a result of
extensive processing (e.g., milling), the §'%0 values cause correction errors from 0.2 %o per
1% of inversion from aragonite to calcite (Waite and Swart, 2015). Such differences between
the two approaches reinforce the value of using a SIMS-based approach to capture the
extensive variability that likely exists within the microenvironments of thrombolite forming
mats.

The bulk 8'3C values of the organic matter associated within the thrombolites were
heavy (mean -9.6 £+ 0.2%o) relative to RuBisCO-mediated carbon fixation, which exhibits
fractionations that typically span between -35 to -23%o in both plant and microbial
ecosystems and can be highly species-dependent (Farquhar et al., 1989; Falkowski, 1991).
The values also appear heavier than other known microbialite systems. For example,
unlaminated nodules of Pavilion Lake exhibit a mean bulk organic 8'3C value of -26.8%o
(Brady et al., 2010) ,and microbialites in Cuatros Ciénegas range from -25%o and -27%o
(Breitbart et al., 2009). These 6'3C —enriched values in the Bahamian thrombolites may

reflect diffusion limitations of CO; into the intertidal microbialites, differences in light
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intensities (Cooper and DeNiro, 1989), and the relatively high rates of photosynthesis
(Myshrall ef al., 2010). Values of organic 8'*C similar to the Bahamian thrombolites have
been observed in microbial mats found in the hypersaline Solar Lake (-5.7 & 1.4%0) and
Gavish Sabkha (-10 £+ 2.6%0) and have been attributed to EPS-rich materials on the surface of
mats that impede transport of CO» into the mats (Schidlowski et al., 1984). Previous studies
have also shown that external factors, such as increased salinity and temperature, also
decrease the solubility of CO> (Mucci, 1983). Therefore, the abundance of EPS material
within the thrombolite-forming mats coupled with high rates of productivity (Myshrall et al.,
2010) may result in a potential shortage of CO, that may reduce isotopic discrimination of
13C and is consistent with the idea of HCO3 dissociation driving a pH shift and inducing
carbonate precipitation.

The overall carbon isotope profiles of the carbonate suggest that the thrombolites of
Highborne Cay are primarily the result of photoautotrophic carbon fixation, which correlates
to several lacustrine microbialite systems, such as Lake Clifton, Pavilion Lake, Great Salt
Lake, Green Lake, and Bacalar (for review see Chagas et al., 2016). The bulk isotope data for
carbonates also correlates well with previous analyses on the Dichothrix calcified filaments
(Planavsky et al., 2009), as well as several lacustrine microbialites, such as Pavilion Lake (-
1.2 — 2.3 %o; Brady et al., 2010; Russell et al., 2014), Kelly Lake (4 — 5%o; Ferris et al.,
1997), Lake Van (6%o), Lake Alchichia (6.5%0), and Great Salt Lake (4.2%o) (Chagas et al.,
2016). Interestingly, the thrombolite measurements are also higher than the §!3C values of
the adjacent stromatolites located only a few meters away in the subtidal zone. The
discrepancy may reflect the role of heterotrophic processes in carbonate precipitation in the
Bahamian stromatolites (Andres et al., 2006), and similar results have been observed in the

fresh water microbialites of Cuatros Ciénegas (Breitbart et al., 2009) suggesting that
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heterotrophic process may be also be influencing carbonate precipitation in the Mexican
system.

Although SIMS data from Highborne Cay thrombolites show greater variability than
bulk isotopes, the means are not statistically different. Some of the extensive variability in the
SIMS 8'3Cecars values for filaments is tied to variations in the microenvironments along the
vertically orientated cyanobacteria filaments. The lightest SIMS 8!3C values in filaments may
reflect the presence of localized organics (e.g., EPS material) associated with the calcified
filaments, given that organic carbon has higher ionization efficiency than carbonate.
However, as SIMS threshold cutoffs were applied to eliminate any spots that might include
organics, the lower 8 13C values likely accurately capture filament carbonate values. In
contrast, the isotopically enriched samples, relative to values predicted from precipitation
from local marine DIC, provide evidence for carbonate precipitation in a microenvironment
influenced by carbon dioxide uptake, which increases the pH (Visscher et al., 1991, 1998,
2005; Planavsky et al., 2009). The highest SIMS §'3C values are more isotopically enriched
than any previously reported Highborne Cay bulk thrombolite or filament §'3C values
(Planavsky et al., 2009). Planavsky et al., (2009) used an offset between Dichothrix filament
and detrital sediment 3'3C values to argue for photosynthetic carbon dioxide consumption as
the initiation factor for carbonate precipitation within the filament sheaths. The observed
markedly enriched filament 3'3C values strengthen the case for a photosynthetic carbonate

precipitation trigger in the Bahamian thrombolites.

5. Conclusions
The integrated approaches of microbial diversity, metagenome prediction, microelectrode,
and stable isotope analysis address several important gaps in our previous understanding of

modern thrombolite-forming communities. This study provides a comprehensive spatial
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portrait of thrombolite-forming communities revealing that, despite having unlaminated,
clotted microstructures, these thrombolitic communities form distinct taxonomic and
metabolic stratifications. Additionally, the SIMS results, the first ever generated for a
microbialite-forming ecosystem, reveal SIMS §'3C values that are more isotopically enriched
than any previously reported bulk thrombolite values (Planavsky et al., 2009; Warden et al.,
2016), providing direct evidence of a photosynthetic trigger for carbonate precipitation in the
thrombolite-forming communities, which differs from stromatolites. Even within the same
environment, where thrombolites are juxtaposed to stromatolites under similar environmental
conditions (e.g., pH, salinity, temperature, UV flux), these differences between their taxa and
metabolic activities appear to generate very distinct carbonate microstructures. Elucidating
how these disparate structural fabrics arise will require a more detailed look into the
networking and connectivity of the microbial interactions and metabolisms. Regulation of
these processes on both diel and seasonal time scales will help assess the patterns associated
with microbial activities and their response to their changing environment. Together, these
analyses help elucidate the pathways associated with microbialite formation and represent a
valuable tool to help reconstruct the microbiological and environmental conditions of the

past.
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Figure Legends

FIG. 1. The thrombolites of Highborne Cay, The Bahamas. (A) Intertidal thrombolite
platforms from Site 5. Bar, 1 m. (B) Light micrograph of a thrombolite forming button mat
revealing extensive vertical assemblages of calcified filaments (arrows). Bar, 500 pm. (C) In
situ depth profiles of oxygen (square), sulfide (triangle), and pH (circle) collected at peak of
photosynthesis (open symbols) or respiration (filled symbols). Shaded areas reflect the

targeted areas collected for analysis. Depths below 9 cm were not sampled, as that region
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shared the same biochemical profile as in Zone 3. (D) Cross section of button mat depicting
the three spatial regions including an oxic Zone 1 (0 — 3 mm), transitional Zone 2 (3 — 5 mm),

and anoxic Zone 3 (5 — 9 mm). Bar, 3 mm.

FIG. 2. Taxonomic distribution of cyanobacteria within the thrombolite-forming mats
derived from MEGANS using the Greengenes database. Overall percentages based on read
counts are presented logarithmically depicting the distributions for Zone 1 (blue), Zone 2
(green), and Zone 3 (red). Read abundance data for each taxonomic level are included in

parentheses.

FIG. 3. Taxonomic distribution of Bacteria within the thrombolite-forming mats derived
from MEGANS using the Greengenes database. Overall percentages based on read counts are
presented logarithmically depicting the distributions for Zone 1 (blue), Zone 2 (green), and

Zone 3 (red). Read abundance data for each taxonomic level are included in parentheses.

FIG. 4. Comparison of diversity analyses of three spatial zone within the thrombolite-
forming mats. Principal coordinate analysis of communities from unweighted UniFrac
distance matrix of Zone 1 (0 — 3 mm, blue), Zone 2 (3 — 5 mm, green), and Zone 3 (5 -9
mm, red) in (A) Bacteria and (B) Archaea populations. Ellipses represent standard deviation
over ten rarefaction samplings. Adonis tests suggest that depth is a significant predictor of
community composition for both bacterial (R=0.402, p=0.001) and archaeal (R=0.307,

p=0.017) communities.

FIG. 5. Taxonomic distribution of Archaea within the thrombolite-forming mats derived

from MEGANS using the Greengenes database. Overall percentages based on read counts are
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presented logarithmically depicting the distributions for Zone 1 (blue), Zone 2 (green), and

Zone 3 (red). Read abundance data for each taxonomic level are included in parentheses.

FIG. 6. Functional gene comparison of the three thrombolitic mat spatial zones from 16S
rRNA metabolic prediction (PICRUSt) and whole shotgun sequencing. Pearson correlation
value (r) is shown for the comparison of metabolic predictions for Zone 1 (blue), Zone 2

(green), and Zone 3 (red) and the whole mat shotgun metagenome.

FIG 7. Stable isotope results for calcified filaments located in the upper 3 mm of thrombolite
forming button mat. (A) Oxygen isotope values of organic and inorganic fractions using both
bulk and SIMS analysis. Analyses were completed for both background carbonate
precipitates (sediment), calcified filaments (filaments) and untreated whole mat samples. (B)
Carbon and nitrogen isotope values of both organic and inorganic fractions using both bulk
and secondary ion mass spectroscopy (SIMS) analysis. (C) Comparative plot of SIMS values
collected for oxygen and carbon isotopes. All results are expressed in delta notation with
respect to the carbon/oxygen Vienna Peedee Belemnite (VPDB) or nitrogen air (AIR)

standard.

FIG. 8. Overview of target areas for SIMS analyses within the thrombolite forming mat. (A)
Petrographic thin section of Dichothrix sp. filaments (f) and associated carbonate precipitate
(cp) surrounded by sediments such as ooids (o). (B) Gold-coated reflected light image as
viewed by the SIMS instrument. (C) SEM micrograph showing the numerous 6-10 um pits
formed during the SIMS analysis. Boxes depict representative pits that show both high
(green) and low (red) quality targets within the sample. (D) Higher resolution SEM

micrograph of representative high quality pit (corresponding to green box in C) showing no
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textural anomalies or cracks. (E) SEM micrograph of low quality pit (corresponding to red
box in C) showing crack within the targeted sample site. All low quality target sites were

removed from down-stream analyses.

Supplemental FIG. S1. Rarefaction plots for number of observed species approaching
asymptote at read cutoffs of (A) 3691 for Bacteria and (B) 3587 for Archaea. Error bars
represent standard deviation of three biological replicates for Zone 1 (0 — 3 mm, blue), Zone

2 (3 — 5 mm, green) and Zone 3 (5 — 9 mm, red).

Supplemental FIG. S2. Relative abundance of bacterial population. Lines depict family-
level OTU (97% cutoff) differences between depth zones grouped by phylum. Taxonomy

was assigned using the Greengenes database and filtered by abundance (0.005%).

Supplemental FIG. S3. Taxonomic abundance diversity of bacteria associated with Zone 1
(0 - 3 mm) of the thrombolite forming mats as visualized in a hierarchal Krona plot. Each
ring within the plot represents a different taxonomic level (i.e., phylum, class, order, family).

Taxa comprising less than 0.1% of the community were omitted.

Supplemental FIG. S4. Taxonomic abundance diversity of bacteria associated with Zone 2
(3 - 5 mm) of the thrombolites as visualized in a hierarchal Krona plot. Each ring within the
plot represents a different taxonomic level (i.e., phylum, class, order, family). Taxa

comprising less than 0.1% of the community were omitted.

Supplemental FIG S5. Taxonomic abundance diversity of bacteria associated with Zone 3

(5 - 9 mm) of the thrombolites as visualized in a hierarchal Krona plot. Each ring within the
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plot represents a different taxonomic level (i.e., phylum, class, order, family). Taxa

comprising less than 0.1% of the community were omitted.

Supplementary Table S1. Primer list used to generate titanium 454 barcoded libraries for

bacteria and archaea.

Supplemental Table S2. Functional gene complexity of predicted and whole shotgun
metagenome in the thrombolite forming mats of Highborne Cay, The Bahamas. (please note

this table format is an excel worksheet but had to be uploaded as csv file).

Supplemental Table S3. Percent of key elements by weight found in the thrombolite-

forming microbial mat.

Supplemental Table S4: Ion microprobe raw and corrected oxygen isotope ratios from 77
analyses of thrombolite samples 10B1 and 10B2 from Highborne Cay, The Bahamas. (Please

note this table format is excel worksheet but had to be uploaded as two page csv file).

Supplemental Table S5: lon microprobe raw and corrected carbon isotope ratios from 92

analyses of thrombolite samples 10B1 and 10B2 from Highborne Cay, The Bahamas. (Please

note this table format is excel worksheet but had to be uploaded as two page pcsv file).
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Ectothiorhodospiraceae (8, 13, 43)
Coxiellaceae (0, 4, 0)
Legionellaceae (0, 7, 0)
Methylococcales (0, 0, 4)
Oceanospirillales (14, 8, 2)
Piscirickettsiaceae (96, 162, 544)
Thiotrichaceae (75, 16, 13)
Spirochaetaceae (9, 22, 29)
Caldithrix (0, 4, 5)
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Crenarchaeota

Archaea

(82, 5, 23)

Halobacteriaceae

Euryarchaeota

Halobacteriales
(1578, 102, 16)

: Methanosarcinaceae
Methanosarcinales (7. 24, 0)

Thermoplasmata
(1554, 4674, 1099)

Thaumarchaeota

Cenarchaeales Cenarchaeaceae
(7293, 15977, 17892)

Nitrososphaerales Nitrososphaeraceae
. (26,0, 2)
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TABLE 1. SUMMARY STATISTICS FOR THROMBOLITE SAMPLES BY ZONE FOR BACTERIA AND ARCHAEA

SAMPLES
Bacteria Archaea
Zone 1 Zone 2 Zone 3 Zone 1 Zone 2 Zone 3
Depth 0-3 mm 3-5mm 5-9 mm 0-3 mm 3-5mm 5-9 mm
No. of Reads 25609 21535 31217 14253 22794 21646
Normalized Reads?® 3691 3691 3691 3587 3587 3587
Total OTUS® 2044 2947 3525 671 506 654
OTUs >0.005% 729 949 956 178 169 172
Shannon Index’® 6.59 8.67 8.59 4,91 3.58 3.97
xsd +0.026 +0.026 +0.016 +0.008 +0.020 +0.024
(confidence) (0.029) (0.029) (0.019) (0.009) (0.023) (0.027)
% coveraged 94.5 87.8 92.3 97.9 98.2 98.2
+sd 0.13 5.02 0.71 0.07 0.09 0.31

®Randomized sequence count of each replicate for each zone used to measure diversity.

®OTU identification used a 97% similarity threshold.

°Shannon diversity index calculated over ten iterations for three replicate samples.

4Goods coverage estimate.
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Supplemental Figure S3
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SUPPLEMENTARY TABLE S1. PRIMER LIST USED TO GENERATE TITANIUM 454 BARCODED LIBRARIES FOR BACTERIA AND ARCHAEA

Specificity Primer ID Sample P:::]i 2 Barcode” Linker 16S Primer 16%;2’;’;5 ;/Cmer
bacteria Bac27F-T Bacteria A none TC AGAGTTTGATCCTGGCTCAG Suzuki & Giovannoni, 1996
universal Bac338R-01-T  Zone 1 B CCAACCTT CA TGCTGCCTCCCGTAGGAGT Suzuki & Giovannoni, 1996
universal Bac338R-02-T Zone 1 B GGAATTGG CA TGCTGCCTCCCGTAGGAGT Suzuki & Giovannoni, 1996
universal Bac338R-03-T Zone 1 B AACCAACC CA TGCTGCCTCCCGTAGGAGT Suzuki & Giovannoni, 1996
universal Bac338R-04-T Zone 2 B TTAAGGCC CA TGCTGCCTCCCGTAGGAGT Suzuki & Giovannoni, 1996
universal Bac338R-05-T Zone 2 B CCGGCCTT CA TGCTGCCTCCCGTAGGAGT Suzuki & Giovannoni, 1996
universal Bac338R-06-T Zone 2 B AAGGCCTT CA TGCTGCCTCCCGTAGGAGT Suzuki & Giovannoni, 1996
universal Bac338R-07-T Zone 3 B AACGAAGC CA TGCTGCCTCCCGTAGGAGT Suzuki & Giovannoni, 1996
universal Bac338R-08-T Zone 3 B TTCGAAGC CA TGCTGCCTCCCGTAGGAGT Suzuki & Giovannoni, 1996
universal Bac338R-09-T Zone 3 B AATACCGC CA TGCTGCCTCCCGTAGGAGT Suzuki & Giovannoni, 1996
archaea Arc23F° Archaea none none none ATTCCGGTTGATCCTGC Barns et al., 1994
archaea Arc958R™® Archaea none none none YCCGGCGTTGAMTCCATTT Delong, 1992
archaea Arc344F-T¢ Archaea A none TC ACGGGGYGCAGCAGGCGCGA Casamayor et al., 2002
archaea Arc915R-01-T  Zone 1 B CCAACCAA CA GTGCTCCCCCGCCAATTCCT Casamayor et al., 2002
archaea Arc915R-02-T  Zone 1 B CGAACCAT CA GTGCTCCCCCGCCAATTCCT Casamayor et al., 2002
archaea Arc915R-03-T  Zone 1 B AGACAGTG CA GTGCTCCCCCGCCAATTCCT Casamayor et al., 2002
archaea Arc915R-04-T  Zone 2 B AGACACAG CA GTGCTCCCCCGCCAATTCCT Casamayor et al., 2002
archaea Arc915R-05-T Zone 2 B CCAACGTA CA GTGCTCCCCCGCCAATTCCT Casamayor et al., 2002
archaea Arc915R-06-T  Zone 2 B CATCTCGT CA GTGCTCCCCCGCCAATTCCT Casamayor et al., 2002
archaea Arc915R-07-T  Zone 3 B CATCTCCA CA GTGCTCCCCCGCCAATTCCT Casamayor et al., 2002
archaea Arc915R-08-T  Zone 3 B CAGTGTGT CA GTGCTCCCCCGCCAATTCCT Casamayor et al., 2002
archaea Arc915R-09-T  Zone 3 B CCGGATTA CA GTGCTCCCCCGCCAATTCCT Casamayor et al., 2002

a. 454 Life Sciences sequence primers A (CTATGCGCCTTGCCAGCCCGCTCAG) and B (CGTATCGCCTCCCTCGCGCCATCAG) with a
TC or CA linker, respectively, preceding the 16S primer sequence.

roooT

Barcodes sequences from Hamady et al., 2008.
References are for 16S rRNA gene primer.
Primers contain degenerate bases: Y (C,T), M (A,C).
Archaea specific 16S rBRNA gene primers used for initial amplification of a nested PCR.



SUPPLEMENTAL TABLE S3. PERCENT OF KEY ELEMENTS BY WEIGHT
FOUND IN THE THROMBOLITE-FORMING MICROBIAL MAT
n %C (s.e.) %N (s.e.)
Whole mat 12 12.05 (0.037)
Organic 6  43.1(0.598)
Inorganic 6 - - 93.33 (0.649)
Filament 1 - - 45.87 (n/a)

%CaCOa3 (s.e.)

0.17 (0.003)  91.72 (0.24)
3.26 (0.168)
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