

Slab-Triggered Arc Flare-up in the Cretaceous Median Batholith and the Growth of Lower Arc Crust, Fiordland, New Zealand

Decker, M.,¹ Schwartz, J.J.,^{1*} Stowell, H.H.,² Klepeis, K.A.,³ Tulloch, A.J.,⁴ Kitajima, K.,⁵ Valley, J.W.,⁵ Kylander-Clark, A.⁶

5

The Mesozoic continental arc in Fiordland, New Zealand, records a ca. 110 Ma history of episodic, subduction-related magmatism that culminated in a terminal surge of mafic to intermediate, high-Sr/Y, calc-alkalic to alkali-calcic magmas. During this brief, 10-15 Ma event, more than 90% of the Cretaceous plutonic arc root was emplaced; however the source of these rocks and the degree to which they represent lower crustal mafic and/or metasedimentary recycling versus the addition of new lower arc crust remains uncertain. We report whole-rock geochemistry and zircon trace-element, O-isotope and Hf-isotope analyses from 18 samples emplaced into lower arc crust (30-60 km depth) of the Median Batholith with the goals of: a) evaluating processes that triggered the Cretaceous arc flare-up event, and b) determining the extent to which the Cretaceous arc flare up resulted in net addition of lower arc crust. We find that $\delta^{18}\text{O}$ (Zrn) values from the Western Fiordland Orthogneiss ranges from 5.2 to 6.3‰ and yields an error-weighted average value of $5.74 \pm 0.04\text{‰}$ (2SE, 95% confidence limit). LA-MC-ICPMS results yield initial ϵHf (Zrn) values ranging from -2.0 to +11.2 and an error-weighted

¹ Department of Geology, California State University Northridge, CA, 91330, USA

² Department of Geological Sciences, The University of Alabama, AL 35487, USA

³ Department of Geology, The University of Vermont, VT, 05405, USA

⁴ GNS Science, Private Bag 1930, Dunedin, NZ

⁵WiscSIMS, Dept. of Geoscience, University of Wisconsin, Madison, WI 53706, USA

⁶ Department of Earth Science, University of California Santa Barbara, Santa Barbara, CA, 93106, USA

* corresponding author: email: joshua.schwartz@csun.edu; tel. (401) 742-2583

20 average value of $+4.2 \pm 0.2$. We explore the apparent decoupling of O- and Hf-isotope systems
21 through a variety of mass-balance mixing and assimilation-fractional crystallization models
22 involving depleted- and enriched-mantle sources mixed with supra-crustal contributions. We find
23 that the best fit to our isotope data involves mixing between an enriched, mantle-like source and
24 up to 15% subducted, metasedimentary rocks. These results together with the homogeneity of
25 $\delta^{18}\text{O}$ (Zrn) values, the high-Sr/Y signature, and the mafic character of Western Fiordland
26 Orthogneiss magmas indicate that the Cretaceous flare-up was triggered by partial melting and
27 hybridization of subducted oceanic crust and enriched subcontinental lithospheric mantle. We
28 argue that the driving mechanism for the terminal magmatic surge was the propagation of a
29 discontinuous slab tear beneath the arc, or a ridge-trench collision event, at ca. 136-128 Ma. Our
30 results from the Early Cretaceous Zealandia arc contrast with the strong crustal signatures that
31 characterize high-flux magmatic events in most shallow to mid-crustal, circum-Pacific orogenic
32 belts in the North and South American Cordillera and the Australia Tasmanides; instead, our
33 results document the rapid addition of new lower arc crust in <<15 m.y. with lower crustal
34 growth rates averaging $40\text{-}50 \text{ km}^3/\text{Ma/arc-km}$ from 128-114 Ma, and peaking at $150\text{-}210$
35 $\text{km}^3/\text{Ma/arc-km}$ from 118-114 Ma when ~70% of the arc root was emplaced. Our results
36 highlight the significant role of Cordilleran arc flare-up events in the rapid, net generation of
37 continental crust through time.

38

39 **Keywords: arc flare up, lower arc crust, zircon, oxygen isotopes, Hf isotopes,**
40 **high Sr/Y melts**

41

42 **INTRODUCTION**

43 Continental arcs are often considered factories of crustal growth whereby partial melting
44 of mantle adds to the growth of the evolving continental crust (Tatsumi and Stern, 2006; Scholl
45 and von Huene, 2007; 2009; Hawkesworth et al., 2010; Voice et al., 2011). In circum-Pacific
46 orogens, the long-term (>100 m.y.) magmatic evolution of continental arcs is dominated by
47 mantle-derived magmatism (Collins et al., 2011); however, the pace of magmatism in arcs has
48 long been recognized to be non-steady state, characterized by episodic periods of high-volume
49 magmatic pulses, termed high magma addition rate (MAR) events, that occur within a
50 background of lower-volume activity (Armstrong, 1988). These high-MAR events represent
51 short-term (<20 m.y.) excursions from long-term magmatic trends, yet they overwhelmingly
52 dominate arc magma addition rates (Scholl and von Huene, 2007; Ducea and Barton, 2007;
53 Ducea et al., 2015a; Paterson et al., 2015; Ducea et al., 2017). Their cause(s) and the degree to
54 which they contribute to the net addition of new continental crust are fundamental and yet
55 unresolved problems in understanding geodynamic controls on continental crustal growth
56 through time.

57 In well-studied Phanerozoic continental arcs, geochemical and isotopic data suggest that
58 high-MAR events involve significant reworking of pre-existing crust, and evidence for
59 significant volumes of mantle-derived melts is often conspicuously absent (e.g., Ducea, 2001;
60 Saleeby et al., 2003; Lackey et al., 2005; Ducea and Barton, 2007; Paterson et al., 2011; Ducea et
61 al., 2015a; Paterson et al., 2015). This problem is underscored in various circum-Pacific arc
62 segments of the North and South American Cordilleran and the Australian Tasmanides where
63 high-MAR events are particularly well documented. For example, in the eastern Peninsular
64 Ranges batholith, voluminous tonalitic to granodioritic magmas of the La Posta Pluton (94-91
65 Ma) display elevated $\delta^{18}\text{O}$ values (9-12.8‰) and radiogenic isotope signatures that reflect

66 significant contributions from ancient crustal sources (Taylor and Silver, 1978; Silver et al.,
67 1979; Kistler et al., 2014). In other shallow- to mid-crustal batholiths, such as the Cretaceous
68 Sierra Nevada batholith, geochemical and isotopic studies demonstrate that ~50% or more of the
69 magmatic budget was derived from pre-existing, upper-plate crustal material (Ducea, 2001; Lee
70 et al., 2006; Ducea and Barton, 2007; Lackey et al., 2008; Lackey et al., 2012; Ducea et al.,
71 2015b). On the opposite side of the Pacific basin in the Australian Tasmanides, repeated arc
72 retreat followed by closure of oceanic back-arc basins produced wide-spread melting of craton-
73 derived turbiditic metasedimentary rocks and the generation of 'classic' S-type granites (Kemp et
74 al., 2009). Taken as a whole, geochemical and isotopic patterns from large portions of circum-
75 Pacific magmatic belts reveal complex tectonic reorganizations through time and the reworking
76 of pre-batholithic basement and supra-crustal rocks in the generation and modification of arc
77 crust during voluminous magmatic surges (e.g., Ducea and Barton, 2007; Lackey et al., 2008;
78 DeCelles et al., 2009; Chapman et al., 2013).

79 A key problem in understanding crustal growth processes in circum-Pacific magmatic
80 belts is that much of our information is dominated by studies of shallow to mid-crustal plutons
81 that may have undergone significant assimilation of wall rocks during ascent through the crustal
82 column, and/or hybridization of original mantle-derived magmas at depth in lower crustal
83 melting, assimilation, storage and homogenization zones (Hildreth and Moorbath, 1988). This
84 problem is particularly acute in over-thickened continental arcs where the crustal column may
85 reach 70-75 km (Beck et al., 1996). The involvement of mantle-derived melts in high-MAR
86 events has long been noted in whole rock and mineral isotopic data (Cui and Russell, 1995;
87 Kemp et al., 2007; Kemp et al. 2009; Appleby et al., 2010; Shea et al., 2016); however, the
88 significance of mantle processes in triggering high-MAR events remains controversial in part

89 due to a lack of exposure of deep portions of the crust generated during voluminous arc
90 magmatism (Ducea, 2001; de Silva et al., 2015; Paterson and Ducea, 2015; Ducea et al., 2017).

91 Here, we investigate a deep-crustal flare-up along the Mesozoic, paleo-Pacific margin of
92 southeast Gondwana, now isolated and preserved in the largely submerged continent 'Zealandia'
93 (Mortimer et al. 2017) with the goals of: a) evaluating processes that triggered the voluminous
94 surge of mafic to intermediate magmatism, and b) determining the extent to which the
95 Cretaceous arc flare up resulted in the addition of new lower continental crust. We focus on the
96 western Fiordland sector of the Mesozoic Median Batholith (Fig. 1) because it exposes a section
97 of lower continental arc crust (1.0 to 1.8 GPa, or 35 to 65 km paleo-depth: Allibone et al.,
98 2009a,b; De Paoli et al., 2009) generated in a high-flux magmatic episode during which the
99 entire Mesozoic plutonic arc root was emplaced in ~14 m.y. from 128 to 114 Ma (Schwartz et
100 al., 2017). This unique lower crustal exposure allows us to investigate the geochemical and
101 isotopic composition of the lower arc rocks that have not been significantly modified by
102 transport through the crustal column during ascent.

103 Results from our study indicate that $\delta^{18}\text{O}$ (Zrn) values from the Cretaceous arc root give
104 uniformly mantle-like values ranging from 5.2 to 6.3‰ and yield an error-weighted average
105 value of $5.74 \pm 0.04\text{‰}$ (2SE; n=126). These results indicate that the surge of lower crustal arc
106 magmas was primarily sourced from the underlying mantle with only limited contributions from
107 upper plate materials. We present a model whereby the arc flare-up was triggered by widespread
108 partial melting of a metasomatized, subcontinental lithospheric mantle with contributions from
109 partially melted, subducted eclogite-facies metasedimentary rocks and oceanic crust. Our
110 isotopic results reveal that the terminal Cretaceous flare-up resulted in the rapid addition of new
111 continental crust to the base of the Median Batholith in <<15 m.y. with crustal production rates

112 averaging ~40-50 km³/Ma/arc-km from 128-114 Ma, and peaking at ~150-210 km³/Ma/arc-km
113 from 118-114 Ma.

114

115 **GEOLOGIC FRAMEWORK**

116 **The Median Batholith in Fiordland**

117 The Median Batholith outcrops over 10,000 km² and is located within the Western
118 Province of New Zealand (Mortimer et al., 1999; Tulloch and Kimbrough, 2003; Mortimer et al.,
119 2014). It consists of two margin-parallel plutonic belts, which are compositionally distinct: an
120 older, low-Sr/Y (<40), outboard arc located primarily in eastern Fiordland, and an inboard
121 plutonic belt of high-Sr/Y character (>40) located primarily in central and western Fiordland.
122 Collectively, these belts preserve a record of episodic magmatism active over >150 Ma along the
123 southeastern Gondwana margin from 260-114 Ma. Arc magmatism resulted in at least two
124 recognized surges of low- and high-Sr/Y magmas at ca. 147-136 Ma and 128-114 Ma,
125 respectively, both of which occurred over ca. 10-15 Ma each (Schwartz et al., 2017). The latter
126 surge of magmatism resulted in emplacement of the Separation Point Suite (SPS) shortly before
127 termination of arc magmatism and the initiation of extensional orogenic collapse beginning at
128 108-106 Ma (Schwartz et al., 2016). The boundary between the inboard and outboard arcs is
129 marked by the Grebe Mylonite zone (Fig. 1) (Allibone et al., 2009a; Scott et al., 2009; Scott et
130 al., 2011; Scott, 2013) and other major subvertical contractional to transpressional shear zones
131 (Klepeis et al., 2004; Marcotte et al., 2005).

132

133 *Outboard arc*

134 The primary Mesozoic component of the outboard arc is the low-Sr/Y Darran Suite (Muir
135 et al., 1995; Tulloch and Kimbrough, 2003). Darran Suite magmatism occurred on or near the
136 paleo-Pacific margin of southern Gondwana from 230-136 Ma with peak magmatic activity
137 taking place between 147-136 Ma (Kimbrough et al., 1994; Muir et al., 1998; Schwartz et al.,
138 2017 and references therein). It is characterized by mafic and felsic (gabbroic to granitic) I-type
139 plutonic rocks likely derived from mantle wedge melting and/or mafic sources (Muir et al.,
140 1998). Whole rock $\delta^{18}\text{O}$ values in the Darran Suite range from 4.6 to 5.4‰ with an average value
141 of 5.03‰ (n=12; Blattner and Williams, 1991). Decker (2016) reported that some Darran Suite
142 rocks emplaced from 169-135 Ma have low $\delta^{18}\text{O}$ (Zrn) values ranging from 3.8 to 4.9‰. The
143 Early Cretaceous Largs Group volcanic rocks located in NE Fiordland also display anomalously
144 low whole rock (WR) $\delta^{18}\text{O}$ values ranging from +3.3 to -12.3‰ (n=26) indicating hydrothermal
145 alteration by meteoric fluids at high latitudes or high paleo-elevations (Blattner and Williams,
146 1991; Blattner et al., 1997). Initial Hf isotope (Zrn) values from Darran Suite plutons give values
147 ranging from +8 to +11 (Scott et al., 2011; Decker, 2016). Whole rock initial ϵNd values range
148 from +3 to +4 (Muir et al., 1998), and initial $^{87}\text{Sr}/^{86}\text{Sr}$ ratios range from ca. 0.7037 to 0.7049.

149 Darran Suite magmatism terminated at ca. 136 Ma and was followed by the emplacement
150 of high-Sr/Y tonalites and granodiorites of the SPS from 128 to 105 Ma at depths of
151 approximately 0.2-0.7 GPa (Muir et al. 1995; 1998; Tulloch and Challis, 2000; Tulloch and
152 Kimbrough, 2003; Allibone and Tulloch, 2004: 2008; Bolhar et al., 2008). Although the SPS
153 plutonic belt mostly lies inboard of the Darran Suite plutonic belt, intrusions into the outboard
154 Darran Suite are also common and have been extensively studied (Muir et al., 1998; Tulloch and
155 Kimbrough, 2003; Bolhar et al., 2008). Both Darran and SPS plutonic suites are calc-alkalic to
156 alkali-calcic in composition (Tulloch and Kimbrough, 2003). Muir et al. (1998) report that SPS

157 plutons display a small range of positive, whole rock initial ϵ Nd values of ca. +3, and low
158 $^{87}\text{Sr}/^{86}\text{Sr}$ initial ratios of ca. 0.7038. Bolhar et al. (2008) report initial ϵ Hf (Zrn) values ranging
159 from +8.1 to +11.8 from the same plutonic rocks east of the Grebe Mylonite Zone. Zircon $\delta^{18}\text{O}$
160 values for the same rocks range from 1.0 to 5.2‰. They argue that SPS magmas east of the
161 Grebe Mylonite zone were primarily sourced from remelted mafic arc crust (e.g., Darran Suite
162 rocks) and assimilated small amounts of hydrothermally altered, low $\delta^{18}\text{O}$ crust at the level of
163 emplacement.

164

165 *Inboard arc, including the Separation Point Suite*

166 Mesozoic magmatism in the inboard belt is dominated by Cretaceous SPS and related
167 plutons (Muir et al. 1995; 1998; Tulloch et al., 2003). Tonalites and granodiorites west of the
168 Grebe Mylonite zone occur in central and southwestern Fiordland and give zircon crystallization
169 dates ranging from 120.8 to 116.3 Ma (Scott and Palin, 2008; Ramezani and Tulloch, 2009). No
170 isotopic data are reported from tonalitic to granodioritic rocks west of the Grebe Mylonite zone.

171 In western Fiordland, deep-crustal plutons of the SPS were emplaced at 1.0-1.8 GPa and
172 formed the Western Fiordland Orthogneiss (Allibone et al., 2009a,b; DePaoli et al., 2009). These
173 lower crustal rocks are the focus of this study and include seven major plutons: Worsley, McKerr
174 Intrusives (Western and Eastern), Misty, Malaspina, Breaksea Orthogneiss, and Resolution
175 Orthogneiss. Plutonic rocks are primarily diorites and monzodiorites and locally intruded the
176 Deep Cove Gneiss at 128-114 Ma (Mattinson et al., 1986; Tulloch and Kimbrough 2003; Hollis
177 et al., 2003; Allibone et al., 2009a; Schwartz et al., 2017). The Deep Cove Gneiss is a
178 heterogeneous unit chiefly consisting of quartzofeldspathic paragneiss, marble, calc-silicate, and
179 hornblende-plagioclase gneiss (Oliver, 1980; Gibson, 1982). Emplacement of the Western

180 Fiordland Orthogneiss was synchronous with regional transpression/contractional deformation in
181 northern Fiordland (Pembroke Valley and Mt. Daniel) and in the Caswell Sound fold-and-thrust
182 belt in western Fiordland (Daczko et al., 2001; 2002; Klepeis et al., 2004; Marcotte et al., 2005).
183 Subsequent granulite- to upper amphibolite-facies metamorphism occurred from 116 to 102 Ma
184 and overlapped with the initiation of extensional orogenic collapse in the deep crust at 108-106
185 Ma (Hollis et al., 2003; Flowers et al., 2005; Stowell et al., 2014; Klepeis et al., 2016; Schwartz
186 et al., 2016). For deformation and metamorphic descriptions of the Western Fiordland
187 Orthogneiss see: Oliver (1976, 1977), Gibson & Ireland (1995), Clarke et al. (2000), Daczko et
188 al. (2002), Hollis et al. (2004), and Klepeis et al. (2004, 2007), Allibone et al. (2009b), Stowell et
189 al. (2014), and Klepeis et al. (2016).

190 Plutonic rocks from the Western Fiordland Orthogneiss are characterized by low SiO₂
191 (<50-60 wt.%), Y (<20 ppm) and HREE concentrations (Yb < 2.0 ppm); and high Al₂O₃ (>18
192 wt.%), Na₂O (4.0 wt.%), Sr (>1000 ppm), and Sr/Y and La/Yb values (>50 and >15,
193 respectively) (McCulloch et al., 1987). They display steeply fractionated LREE/HREE ratios and
194 lack positive or negative europium anomalies. Relative to NMORB, they display LILE
195 enrichment with pronounced positive Pb and Sr anomalies, and negative Rb, Nb and sometimes
196 Zr anomalies (McCulloch et al., 1987). Isotopically, they display weak enrichment in ⁸⁷Sr/⁸⁶Sr
197 initial ratios of 0.70380 to 0.70430, and weakly negative to positive ϵ_{Nd} values ranging from -
198 0.4 to +2.7 to (McCulloch et al., 1987; Muir et al., 1998). Geochemical modeling of Western
199 Fiordland Orthogneiss magmas from the Malaspina Pluton demonstrate that the variation in
200 major-element chemistry reflects fractional crystallization of low silica phases including garnet,
201 clinopyroxene and plagioclase (Chapman et al., 2016). Although Western Fiordland Orthogneiss
202 plutonic rocks bear strong similarities to high-Sr/Y granitic plutons in eastern and central

203 Fiordland, their low SiO₂ concentrations and more evolved radiogenic isotope values distinguish
204 them from their shallower level counterparts. Similar composition lavas are commonly known as
205 adakites, and Archean analogues are referred to as tonalite-trondhjemite-granodiorites (TTGs)
206 (see comprehensive review in Moyen, 2009). However, we prefer the term ‘high-Sr/Y plutonic
207 rocks’ to describe the Western Fiordland Orthogneiss as the term avoids genetic connotations
208 (see discussion in Tulloch and Kimbrough, 2003). Western Fiordland Orthogneiss plutonic rocks
209 bear strong similarities to a subclass of high-Sr/Y rocks termed “low-silica adakites” (Martin et
210 al., 2005) that are commonly interpreted to have formed from interactions between slab melts
211 and peridotitic mantle (e.g., Rapp et al., 1999; Kelemen et al. 2003; Kelemen et al. 2014). We
212 return to this idea and the petrogenesis of the Western Fiordland Orthogneiss in the discussion
213 section.

214

215 **METHODS**

216 **Whole-rock geochemistry**

217 Whole-rock samples were powdered in an alumina ceramic shatter box and major and
218 trace-element analyses were conducted at Pomona College. Oxygen isotope analyses were
219 conducted at the University of Wisconsin-Madison by laser fluorination as described by Valley
220 et al. (1995) and Spicuzza et al. (1998a,b). All $\delta^{18}\text{O}$ values are reported relative to Vienna
221 Standard Mean Ocean Water (VSMOW).

222

223 **Zircon trace-element geochemistry**

224 Zircon trace-element geochemical data were collected simultaneously with U-Pb
225 isotopes, and age data for these zircons are reported in Schwartz et al. (2017). Detailed

descriptions of methods are given in the Appendix, and sample locations are provided in Appendix Table 1. Analyses for U-Pb and trace elements were performed on the SHRIMP-RG ion microprobe at the USGS-Stanford laboratory utilizing an O²⁻ primary ion beam, varying in intensity from 4.3 to 6.4 nA, which produced secondary ions from the target that were accelerated at 10 kV. The analytical spot diameter was between ~15-20 microns and a depth of 1-2 microns for each analysis performed in this study. Prior to every analysis, the sample surface was cleaned by rastering the primary beam for 60-120 seconds, and the primary and secondary beams were auto-tuned to maximize transmission. The duration of this procedure typically required 2.5 minutes prior to data collection. The acquisition routine included ⁸⁹Y+, 9-REE (¹³⁹La+, ¹⁴⁰Ce+, ¹⁴⁶Nd+, ¹⁴⁷Sm+, ¹⁵³Eu+, ¹⁵⁵Gd+, ¹⁶³Dy¹⁶O+, ¹⁶⁶Er¹⁶O+, ¹⁷²Yb¹⁶O+), a high mass normalizing species (⁹⁰Zr₂¹⁶O+), followed by ¹⁸⁰Hf¹⁶O+, ²⁰⁴Pb+, a background measured at 0.045 mass units above the ²⁰⁴Pb+ peak, ²⁰⁶Pb+, ²⁰⁷Pb+, ²⁰⁸Pb+, ²³²Th+, ²³⁸U+, ²³²Th¹⁶O+, and ²³⁸U¹⁶O+. Measurements were made at mass resolutions of M/ΔM = 8100-8400 (10% peak height), which eliminated interfering molecular species, particularly for the REE. For some samples, the analysis routine was the same as above, but also included masses ³⁰Si¹⁶O+, ⁴⁸Ti+, ⁴⁹Ti+, and ⁵⁶Fe+. Measurements for these samples were performed at a mass resolutions of M/ΔM = 9000-9500, which was required to fully separate the ⁴⁸Ti+ peak from the nearby ⁹⁶Zr++ peak. Analyses consisted of 5 peak-hopping cycles stepped sequentially through the run table. The duration of each measurement ranged between 15-25 minutes on average. Count times for most elements were between 1-8 seconds, with increased count times ranging from 15-30 seconds for ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, and ²⁰⁸Pb to improve counting statistics and age precision. Similar to previous studies, U concentrations were quite low (roughly <200 ppm) for zircons from mafic to intermediate composition rocks. Zircon standard, R33, was analyzed after every 3-5 unknown

249 zircons. Average count rates of each element were ratioed to the appropriate high mass
250 normalizing species to account for any primary current drift, and the derived ratios for the
251 unknowns were compared to an average of those for the standards to determine concentrations.
252 Spot-to-spot precisions (as measured on the standards) varied according to elemental ionization
253 efficiency and concentration.

254 For the zircon standards MAD-green (4196 ppm U, Barth and Wooden, 2010) and
255 MADDER (3435 ppm U), precision generally ranged from about $\pm 3\%$ for Hf, $\pm 5\text{--}10\%$ for the Y
256 and HREE, typically $\pm 10\text{--}15\%$, but up to $\pm 40\%$ for La, which was present most often at the ppb
257 level (all values at 2σ). Trace elements (Y, Hf, REE) were measured briefly (typically 1 to 3
258 sec/mass) immediately before the geochronology peaks in mass order. All peaks were measured
259 on a single EPT® discrete-dynode electron multiplier operated in pulse counting mode. Analyses
260 were performed using 5 scans (peak-hopping cycles from mass 46 through 254), and counting
261 times on each peak were varied according to the sample age as well as the U and Th
262 concentrations in order to improve counting statistics and age precision. Chondrite normalized
263 plots were calculated using values from McDonough & Sun (1995).

264

265 **Zircon Secondary Ion Mass Spectrometry O isotopes**

266 Zircon oxygen isotope analyses were conducted at the University of Wisconsin-Madison
267 using the CAMECA IMS 1280 ion microprobe following the procedures outlined in Kita et al.
268 (2009) and Valley and Kita (2009). All mounts were polished using 6, 3, and $1\mu\text{m}$ diamond
269 lapping film to expose the surface of the zircons just below the bottom of the existing pits from
270 U-Pb SHRIMP-RG analysis. Where U-Pb pits were visible after polishing, they were avoided so
271 that O-implantation from SHRIMP-RG analyses did not affect oxygen isotope ratios. Zircons

272 were imaged by reflected light and by SEM-cathodoluminescence at CSUN to aid in the
273 selection of oxygen isotope analysis spot locations. Mounts were cleaned using a series of
274 ethanol and deionized water baths in an ultrasonic cleaner, then dried in a vacuum oven at ~40
275 °C for 1 hour, and gold-coated in preparation for SIMS analysis. Zircon mounts were mounted
276 with the KIM-5 oxygen isotope standard (Valley 2003, $\delta^{18}\text{O} = 5.09\text{\textperthousand}$ VSMOW). Extra care was
277 taken to achieve a smooth, flat, low relief polish. A focused, 10kV $^{133}\text{Cs}^+$ primary beam was used
278 for analysis at 1.9-2.2 nA and a corresponding spot size of 10-12 μm . A normal incident electron
279 gun was used for charge compensation. The secondary ion acceleration voltage was set at 10kV
280 and oxygen isotopes were collected in two Faraday cups simultaneously with $^{16}\text{O}^{1}\text{H}$. Ratios of
281 OH/O provide a monitor of “water”, which can identify domains of metamict zircon or
282 inclusions (Wang et al. 2014). Four consecutive measurements of zircon standard KIM-5 were
283 analyzed at the beginning and end of each session, and every 8-10 unknowns throughout each
284 session. The average values of the standard analyses that bracket each set of unknowns were
285 used to correct for instrumental bias. The average precision (reproducibility) of the bracketing
286 standards for this study ranged from ± 0.12 to ± 0.44 and averaged $\pm 0.28\text{\textperthousand}$ (2SD). After the
287 oxygen isotope analysis was complete, ion microprobe pits were re-imaged by the SEM at
288 CSUN to ensure that there were no irregular pits or inclusions.

289

290 **Zircon LA-MC-ICPMS Lu-Hf Isotopes**

291 Hafnium isotopes were analyzed via laser ablation at the University of California Santa
292 Barbara using a MC-ICP-MS (multicollector –inductively coupled plasma-mass spectrometer) in
293 an analytical session on August 6 and 7, 2015. Whenever possible, O-isotope spot locations were
294 resampled for Hf isotopes to target the same chemical domain. Mounts were polished between

295 U-Pb, O, and Hf analysis such that the original U-Pb spot was no longer visible. Careful
296 documentation of the CL images allowed for accurate placement of spots during analysis. A
297 50 μ m beam diameter, 3.5 mJ energy (approximately 80 nm per pulse), and a 10 Hz repetition
298 rate were used for all ablations. Analyses were conducted over a 30 second ablation period with
299 a 45 second washout between measurements. Masses 171-180 (Yb, Hf, Lu) were measured
300 simultaneously on an array of 10 Faraday cups at 1-amu spacing. Data reduction was preformed
301 using Iolite 2.3 (Paton et al., 2011).

302 The MC-ICP-MS is not able to differentiate between ^{176}Yb , ^{176}Lu , and ^{176}Hf , therefore,
303 the ^{176}Hf intensity must be corrected for isobaric interferences. Natural $^{173}\text{Yb}/^{171}\text{Yb}=1.123575$
304 was used to calculate the Yb mass bias factor and and Lu mass bias (Thirlwall and Anczkiewicz
305 2004), and $^{179}\text{Hf}/^{177}\text{Hf}=0.7325$ was used to calculate the Hf mass bias (Patchett and Tatsumoto
306 1980; Vervoort et al., 2004). $^{176}\text{Yb}/^{173}\text{Yb}=0.786847$ and $^{176}\text{Lu}/^{175}\text{Lu}=0.02656$ were used to
307 subtract isobaric interferences on ^{176}Hf (Patchett and Tatsumoto 1980; Thirlwall and
308 Anczkiewicz 2004; Vervoort et al., 2004). A variety of zircon hafnium standards with known
309 hafnium compositions were analyzed before and after \sim 10 unknowns, and yield weighted
310 averages within uncertainty of their accepted values (see Appendix file).

311

312 **RESULTS**

313 **Sample descriptions**

314 Geochemical data consist of 56 new whole-rock samples collected from $>2300\text{ km}^2$ of
315 lower crust in Western Fiordland (Fig. 2). Our data span \sim 130 km parallel and \sim 30 km
316 perpendicular to the strike of the paleo-arc axis, which is roughly approximated by the present-
317 day western Fiordland coastline. Samples for isotopic analysis consist of a subset and include

318 eight samples from the Misty Pluton, five samples from the Malaspina Pluton, two samples from
319 the Worsley Pluton, one sample from the Resolution Orthogneiss, one sample from the Breaksea
320 Orthogneiss, and one sample from the Eastern McKerr Intrusives (Fig. 1). Oxygen and Hf
321 isotope measurements were conducted on the same chemical domain as U-Pb isotope
322 determinations where possible (see Fig. 3). Zircon trace element, $\delta^{18}\text{O}$ and initial ϵHf isotope
323 values are shown in Figs. 4-9.

324

325 **Whole-rock geochemical data**

326 Rocks from the Western Fiordland Orthogneiss range in composition from trachy-basalts
327 to trachy-andesites (Fig. 2A). They are magnesian, calc-alkalic to alkali-calcic, and
328 metaluminous (Fig. 2B-D), similar to plutonic rocks in other Cordilleran plutons and batholiths
329 (Frost et al., 2001). Molar Mg#s range from 56 to 43, and display fractional crystallization trends
330 consistent with removal of high-pressure mineral assemblages including clinopyroxene + garnet
331 (Chapman et al., 2016). All plutonic rocks from the Western Fiordland Orthogneiss display high
332 average Al_2O_3 (18.6 wt.%), Na_2O (4.9 wt.%), Ni (26 ppm), Cr (83 ppm), Sr (1300 ppm), Sr/Y
333 values (128), and low average Y (14 ppm) and heavy rare earth element concentrations (Yb=1.4
334 ppm) (n=175). Compared to NMORB, plutonic rocks have pronounced positive Ba, K, Pb, and
335 Sr anomalies, and negative Nb and Zr anomalies. Measured $\delta^{18}\text{O}$ (WR) ranges from 5.3 to 6.8‰,
336 with one sample as low as 4.5‰ (13NZ22). The mean value of all $\delta^{18}\text{O}$ (WR) values (excluding
337 the outlier) is $6.0 \pm 0.4\text{‰}$ (Table 1).

338

339 **Zircon trace-element geochemistry**

340 Zircons from the Western Fiordland Orthogneiss are distinguished from continental arc
341 and mid ocean ridge (MOR) zircons by strongly enriched U/Yb values at low Hf concentrations
342 (Fig. 4A). Misty Pluton zircons show the highest Hf concentrations of all zircons. Western
343 Fiordland Orthogneiss zircons are also characterized by high Gd/Yb and low Yb values
344 reflecting strongly fractionated middle/heavy rare earth element concentrations and depletions in
345 heavy rare earth element concentrations (Fig. 4B-E). Western Fiordland Orthogneiss zircons are
346 also characterized by high Ti concentrations, which reflect high average crystallization
347 temperatures using the Ferry and Watson (2007) calibration (typically $>750^{\circ}\text{C}$ assuming $\text{aSiO}_2=1$
348 and $\text{aTiO}_2=0.6$; see Schwartz et al., 2017 for zircon-thermometry details) (Fig. 4D-E). Western
349 Fiordland Orthogneiss zircons also display enrichments in Ce/Yb (Fig. 4C). Using the calibration
350 in Trail et al. (2011), Ce/Ce* values from Western Fiordland Orthogneiss zircon data give an
351 average $f\text{O}_2$ of ~ 5.0 log units above the value defined by the fayalite-magnetite-quartz (FMQ)
352 buffer (± 3.2 log units).

353

354 **Zircon oxygen isotope ratios**

355 Individual zircon $\delta^{18}\text{O}$ values in the Western Fiordland Orthogneiss range from 5.2 to
356 $6.3\text{\textperthousand}$ (Table 1; Supplementary file). The mean value of all zircons is $5.76 \pm 0.46\text{\textperthousand}$ (2SD), and
357 the error-weighted average is $5.74 \pm 0.04\text{\textperthousand}$ (2SE, 95% confidence limit) (Fig. 5A). In samples
358 where we measured internal and external domains, we see no measurable difference in $\delta^{18}\text{O}$
359 values (e.g., 15NZ27: Fig. 3). Within individual samples, measured values tightly cluster and
360 yield standard deviations ranging from 0.08 to $0.59\text{\textperthousand}$ (2SD). Intra-pluton $\delta^{18}\text{O}$ standard
361 deviations are also small, $<0.6\text{\textperthousand}$. From north to south, mean intra-pluton values and 2SD are:
362 $5.73 \pm 0.59\text{\textperthousand}$ (Worsley Pluton), $5.77 \pm 0.35\text{\textperthousand}$ (Eastern McKerr Intrusives), $5.82 \pm 0.39\text{\textperthousand}$

363 (Misty Pluton), $5.73 \pm 0.29\text{\textperthousand}$ (Malaspina Pluton), $5.85 \pm 0.59\text{\textperthousand}$ (Resolution Orthogneiss), and
364 $5.30 \pm 0.59\text{\textperthousand}$ (Breaksea Orthogneiss). All individual zircons and mean intra-pluton values for
365 the Western Fiordland Orthogneiss lie within analytical SIMS error of the high-temperature
366 mantle value for zircon ($5.3 \pm 0.80\text{\textperthousand}$: 2SD; Valley, 2003). There are no temporal or latitudinal
367 trends in $\delta^{18}\text{O}$ (Zrn) values (Fig. 6A-B).

368 Calculated WR values from measured $\delta^{18}\text{O}$ (Zrn) using the equation of Lackey et al.
369 (2008) generally agree with measured $\delta^{18}\text{O}$ whole rock; however, several samples display
370 deviations towards lower $\delta^{18}\text{O}$ (WR) values. (Fig. 7; Table 1). Samples with the largest
371 deviations include two samples from the Malaspina Pluton (13NZ22, which also has the lowest
372 $\delta^{18}\text{O}$ (WR) value, and 13NZ16B), the two Worsley Pluton samples (15NZ02, and 15NZ27), and
373 one sample from the Misty Pluton (12NZ36b).

374

375 **Zircon Lu-Hf isotopes**

376 Initial epsilon hafnium values in the Western Fiordland Orthogneiss range from -2.0 to
377 $+11.3$, and the error-weighted average for all zircons is $+4.2 \pm 0.2$ (MSWD = 0.6; n = 354) (Fig.
378 5B). From north to south, weighted average initial ϵHf values for plutons are: $+5.0 \pm 0.5$ for the
379 Worsley Pluton (MSWD = 0.3; n = 40), $+3.8 \pm 0.7$ for the Eastern McKerr Intrusives (MSWD =
380 1.1; n = 20), $+4.2 \pm 0.2$ for the Misty Pluton (MSWD = 0.5; n = 160), $+3.9 \pm 0.3$ for the
381 Malaspina Pluton (MSWD = 0.6; n = 94), $+3.9 \pm 0.7$ for the Resolution Orthogneiss (MSWD =
382 0.5; n = 20), and $+4.6 \pm 0.7$ for the Breaksea Orthogneiss (MSWD = 0.4; n = 20). In general,
383 Western Fiordland Orthogneiss values are significantly more evolved than Cretaceous depleted
384 mantle ($\sim +15$), and our results overlap with existing results from the Western Fiordland
385 Orthogneiss (Bolhar et al., 2008; Milan et al., 2016).

386

387 **DISCUSSION**

388 **Zircon geochemical constraints on lower crustal magma sources**

389 Zircons from the Western Fiordland Orthogneiss are distinguished from arc and N-
390 MORB zircons by enrichment in U/Yb values suggesting either significant crustal input or
391 derivation from an enriched mantle source (Fig; 4A). Mantle-like $\delta^{18}\text{O}$ values for all zircons in
392 this study (see discussion below and Figs. 5-6) preclude significant, if any, crustal input, and
393 implies that the source of elevated trace element values is an enriched mantle source. Strongly
394 fractionated middle/heavy rare earth element concentrations and depletions in heavy rare earth
395 element concentrations (Fig. 4B-C) further indicate the presence of garnet as a fractionating
396 and/or residual phase in the source region. These features also characterize Hawaiian and
397 Icelandic zircons. Weak trends in Ti-Yb space can be indicative of either garnet and/or late-stage
398 amphibole crystallization (Fig 4D); however, even the most primitive zircons with the highest Ti
399 values show strong depletions in Yb concentrations indicating that Western Fiordland
400 Orthogneiss magmas were depleted in heavy rare earth elements, likely from residual garnet in
401 the source region, prior to zircon crystallization.

402 Western Fiordland Orthogneiss also display enrichments in Ce/Yb relative to MOR,
403 intraplate and other continental zircons (Fig. 4C), suggesting crystallization from relatively
404 oxidizing magmas. These features are consistent with high average calculated $f\text{O}_2$ values (~5.0
405 log units above the value defined by the FMQ buffer), and petrologic observations of Bradshaw
406 (1989, 1990) who noted that Western Fiordland Orthogneiss oxide assemblages are characterized
407 by intergrowths of exsolved ilmenite and hematite, indicating relatively oxidizing conditions of
408 crystallization. Collectively, zircon trace element data indicate that zircons crystallized from

409 trace element enriched, mafic magmas that were relatively oxidizing, and depleted in heavy rare
410 earth elements.

411

412 **Zircon O and Hf isotope constraints on lower crustal magma sources**

413 Zircons from the lower crust of the Median Batholith are characterized by uniformly low
414 $\delta^{18}\text{O}$ values with all analyses lying within analytical SIMS error of high-temperature mantle
415 values (Fig. 5A) indicating equilibration between Western Fiordland Orthogneiss zircons and
416 mantle-like melts. Whole rock $\delta^{18}\text{O}$ values from the same rocks are also characterized by mantle-
417 like values; however, several samples display evidence for modest open-system exchange after
418 magmatic crystallization (Fig. 7; Table 1). We therefore base our interpretations primarily on
419 $\delta^{18}\text{O}$ (Zrn), which is highly retentive of magmatic $\delta^{18}\text{O}$ even in rocks that have undergone
420 subsolidus exchange and hydrothermal alteration (Valley, 2003; Lackey et al., 2006; Page et al.,
421 2007; Lackey et al., 2008).

422 In addition to their mantle-like character, zircons display very little intra- and inter-
423 sample variation in $\delta^{18}\text{O}$ values, consistent with the lack of measurable differences between
424 internal and external domains (Fig. 3). This observation is remarkable given the wide geographic
425 distribution of our samples that span >2300 km² of lower arc crust (Fig. 1). Together, the
426 homogeneity of $\delta^{18}\text{O}$ (Zrn) values, the mantle-like $\delta^{18}\text{O}$ character of both zircon and whole rock,
427 and the low SiO₂ whole rock values for Western Fiordland Orthogneiss rocks in this study (54.7
428 \pm 2.3: 1SD) support the interpretation that Western Fiordland Orthogneiss magmas were derived
429 from partial melting of a high-temperature mantle or mantle-like sources.

430 In contrast to the mantle-like $\delta^{18}\text{O}$ zircon and whole rock values, initial ϵHf (Zrn) values
431 range from -2.0 to +11.2 with a mean of +4.2 (Table 1; Fig. 6B). These values are significantly

432 lower than Cretaceous depleted MORB mantle (~15: Vervoort et al., 1999) and average modern
433 island-arc values (~13: Dhuime et al., 2011). Since the Hf budget of crustal rocks is largely
434 contained within zircon, contamination from pre-existing zircon-bearing sources is likely to
435 strongly affect the distribution of Hf-isotope values. A curious feature of the Western Fiordland
436 Orthogneiss zircons is that their strong mantle-like $\delta^{18}\text{O}$ values and lack of xenocrystic zircon
437 cargo appear inconsistent with significant crustal contamination.

438 We explore possible explanations for decoupling of O- and Hf-isotopes by considering a
439 variety of mixing and assimilation-fractional crystallization (AFC) scenarios involving wall rock,
440 subducted metasedimentary rocks, and various depleted- and 'enriched'-mantle sources. Here we
441 use 'enriched' to describe ϵHf values significantly lower than Cretaceous depleted mantle (+15).
442 Epsilon Hf values for the assimilated wall rock were calculated from average ϵNd values of
443 Takaka metasedimentary rocks in Tulloch et al. (2009) using the Vervoort et al. (1999) 'crustal'
444 Hf-Nd relationship. The average Takaka value ($\epsilon\text{Nd}=-7.9$) is similar to that of a metasedimentary
445 rock reported from George Sound ($\epsilon\text{Nd}=-9$: McCulloch et al. 1987) and either value is
446 considered viable. Epsilon Hf values and Hf concentrations for subducted sediment were
447 selected from average pelagic sediments reported in Vervoort et al. (1999). Hf concentrations
448 were selected from average values of metasedimentary rocks from western Fiordland (J.
449 Wiesenfeld and J. Schwartz, unpublished data) and average values of arc lavas from the Mariana
450 arc reported in Tollstrup and Gill (2005).

451 Results of binary mixture models are illustrated in Figs. 8A-B, and AFC models are
452 shown in Figs. 8C-D. In all scenarios, mixing and AFC scenarios involve <20% interaction with
453 Deep Cove Gneiss (Fig. 8A and C), and <10% interaction with pelagic sediments (Figs. 8B and
454 D). Figure 8 also illustrates two important features of our data: 1) in both mixing and AFC

455 scenarios, no single model adequately describes the distribution of Western Fiordland
456 Orthogneiss zircon isotope data; and 2) Western Fiordland Orthogneiss zircons show no apparent
457 mixing trends, but instead they plot in a clustered field within the mantle array centered at $\epsilon\text{Hf} =$
458 +4. We also observe that models with a depleted mantle source end member ($\epsilon\text{Hf} = +15$) fail to
459 describe the distribution of tightly clustered Western Fiordland Orthogneiss data. Similarly, the
460 average modern island-arc source ($\epsilon\text{Hf} = +13$) is a poor fit in both mixing and AFC models.
461 Models that involve an ‘enriched’ mantle end member ($\epsilon\text{Hf} +3$ to +9) intersect the majority of
462 the data; however as mentioned above, our data lack obvious evidence for mixing trends. These
463 observations suggest that neither mixing nor AFC processes involving supra-crustal sources in
464 the lower crust are likely the primary explanation for O and Hf enrichment in the Western
465 Fiordland Orthogneiss; instead, Hf isotopic enrichment is a primary feature of Western Fiordland
466 Orthogneiss, reflecting derivation of an enriched source region.

467

468 **Evaluating Triggering Mechanisms for the Zealandia High-MAR Event**

469 Zircon trace element and isotopic results from the lower crust of the Median Batholith
470 underscore the role of an enriched mantle-like source region with limited supra-crustal
471 interaction in the petrogenesis of the Western Fiordland Orthogneiss from 128 to 114 Ma. The
472 mantle-like oxygen isotope signatures of the Western Fiordland Orthogneiss in particular
473 distinguish the terminal Zealandia flare-up from other Phanerozoic flare-ups, especially those in
474 the North and South American Cordillera where widespread partial melting and/or
475 devolatilization of fertile crustal material is commonly invoked to explain the isotopically
476 evolved character of magmatic rocks (e.g., Ducea, 2001; Haschke et al., 2002, 2006; Kay et al.,
477 2005; Ducea and Barton, 2007; DeCelles et al., 2009; Ramos, 2009; Chapman et al., 2013;

478 Ramos et al., 2014; DeCelles and Graham, 2015). Existing whole rock Pb-isotope data also rule
479 out triggering of the flare-up by interaction with a HIMU plume (McCoy-West et al., 2016) as
480 Western Fiordland Orthogneiss magmas have low $^{206}\text{Pb}/^{204}\text{Pb}$ signatures that are distinct from
481 later Cretaceous intraplate lavas (Mattinson et al., 1986). Lithospheric foundering is also unlikely
482 as a triggering mechanism as there is no evidence for significant Jurassic or Early Cretaceous
483 magmatism or a geochemical signature of a thick lithospheric root (e.g., high Sr/Y, low heavy
484 rare earth element concentrations) in western Fiordland prior to the Cretaceous flare-up.

485 In considering other possible triggering mechanisms, we note that petrologic models must
486 address both the high-Sr/Y and calc-alkaline signature of the Western Fiordland Orthogneiss
487 (Fig. 2). High-Sr/Y values and low heavy rare earth element concentrations, particularly Yb and
488 Lu in Western Fiordland Orthogneiss whole rock and zircons are characteristic features and
489 signify the presence of garnet in the source or as a fractionating phase (McCulloch et al. 1987;
490 Muir et al. 1998; Chapman et al. 2016). In contrast, calc-alkaline signatures reflect melting of a
491 mantle source that was previously enriched in LILEs by a hydrous fluid phase or a melt in
492 equilibrium with garnet (Kelemen et al., 2003; 2014). In order to explain both of these features,
493 we consider two potential scenarios including: 1) partial melting of an amphibole-rich lower
494 crust (Muir et al. 1995; 1998; Tulloch and Kimbrough, 2003), and/or 2) partial melting and
495 hybridization of eclogite-facies metasedimentary rocks and basalt from a subducting slab with
496 mantle-derived melts from the subcontinental lithospheric mantle.

497 Before considering these petrologic scenarios, we note that the brief surge of magmatism
498 from 128-114 Ma was linked to distinctive tectonic and magmatic features that provide insights
499 into the geodynamic setting during the flare-up event. These features including: a) transpression
500 and regional thrusting from ca. 130-105 Ma (Daczko et al., 2001; 2002; Marcotte et al., 2005;

501 Klepeis et al., 2004; Allibone and Tulloch, 2008), b) crustal thickening and possibly loading of
502 the Western Fiordland Orthogneiss in Northern Fiordland from 128-116 Ma (Brown, 1996; Scott
503 et al., 2009; 2011), c) a transition from dominantly low-Sr/Y magmatism from 230-136 Ma to
504 voluminous, high-Sr/Y magmatism at 128-114 Ma (Mattinson, 1986; Muir et al., 1998; Tulloch
505 and Kimbrough, 2003; Hollis et al., 2004; Bolhar et al., 2008; Scott and Palin, 2008; Schwartz et
506 al., 2016), d) an apparent gap in magmatism from 136-128 Ma (Tulloch and Kimbrough, 2003;
507 Tulloch et al. 2011), e) the initiation of early granulite facies metamorphism synchronous with
508 magmatism at ca. 134 Ma, peaking at ca. 120-112 Ma (Gibson and Ireland, 1995; Hollis et al.,
509 2004; Flowers et al., 2005; Stowell et al., 2010; Tulloch et al., 2011; Stowell et al., 2014; Klepeis
510 et al., 2016; Schwartz et al., 2016); f) migration of magmatism towards Gondwana (Tulloch and
511 Kimbrough, 2003), and g) northward drift of the Pacific Plate relative to Gondwana during the
512 Aptian (125-112 Ma) (Davy et al. 2008). These features collectively point to a major transition in
513 subduction zone dynamics along the southeast Gondwana margin during the interval from 136 to
514 128 Ma, which preceded extensional orogenic collapse of Zealandia starting at 108-106 Ma.
515 Below we explore possible petrologic and geodynamic scenarios that may explain these features
516 and our geochemical and isotopic data.

517

518 *Partial melting of mafic lower crust*

519 McCulloch et al. (1987) and Muir et al. (1995, 1998) proposed that the Cretaceous surge
520 of high-Sr/Y magmas in the Western Fiordland Orthogneiss and SPS resulted from partial
521 melting of basaltic lower crust leaving behind an eclogite to garnet amphibolite root. In the
522 McCulloch et al. (1987) model (later refined by Tulloch and Kimbrough, 2003), the Western
523 Fiordland Orthogneiss originated from partial melting of a LREE-enriched, low-Rb/Sr, mid- to

524 late-Paleozoic crustal protolith equivalent to the Darran Leucogranite ($\text{SiO}_2 = 51.0\text{--}53.6$ wt.%).
525 Muir et al. (1995, 1998) presented a similar model in which trenchward-directed, retroarc
526 underthrusting of a putative backarc beneath the arc triggered widespread partial melting of
527 mafic crust resulting in the surge of Separation Point Suite magmatism. Geologic mapping of
528 western Fiordland has not identified either mid- to late-Paleozoic Darran Suite rocks or remnants
529 of a mafic back-arc basin beneath the Western Fiordland Orthogneiss. Instead, the deepest
530 portions of the arc root consist of complexly interlayered granulite facies metadiorite and
531 eclogite, the latter of which are interpreted to represent high-pressure magmatic cumulates
532 produced by fractional crystallization of the Western Fiordland Orthogneiss (DePaoli et al. 2009;
533 Chapman et al. 2016).

534 Existing petrologic models involving melting of mafic crust also have considerable
535 difficulty in reproducing the geochemical and isotopic features of the Western Fiordland
536 Orthogneiss. Data from this study and data compiled from the literature (Fig. 2A) show that SiO_2
537 values extend to as low as 47.2 wt.%. These low values cannot be attributed to partial melting of
538 amphibole-rich source rocks at reasonable partial melting percentages, which would produce
539 high SiO_2 (55 to >70 wt.%) and low Mg# (20-45) melts at reasonable partial melting values (e.g.,
540 10-30%; Rapp and Watson, 1995). Figure 2F illustrates this point by comparing melts derived
541 from partial melting of mafic crust (grey field labeled 'slab melts') with the distribution of
542 Western Fiordland Orthogneiss data. Note that Western Fiordland Orthogneiss data show
543 decreasing Sr/Y with decreasing Mg# (purple line) indicating likely fractionation of both a high
544 MgO and heavy rare earth element enriched phase. Mass balance numerical simulations of
545 elemental data show that the diversity in Western Fiordland Orthogneiss compositions can be
546 successfully modeled by fractionation of assemblages involving garnet + clinopyroxene from a

547 basaltic to trachy-basaltic parental magma (Fig. 2A, E) (Chapman et al., 2016). Layered igneous
548 garnet pyroxenites at the base of the Western Fiordland Orthogneiss in the Breaksea Orthogneiss
549 are likely cumulates generated by this process and provide strong support for the existence of an
550 extensive ultramafic arc root beneath the Western Fiordland Orthogneiss consistent with
551 observed high seismic velocities ($V_p > 7.5 \text{ km s}^{-1}$) (Eberhart-Phillips and Reyners, 2001). Isotopic
552 data from the Darran Leucogranite also preclude it as a source for the Western Fiordland
553 Orthogneiss as it is characterized by low $\delta^{18}\text{O}$ (Zrn) values of $3.97 \pm 0.32\text{\textperthousand}$, and radiogenic
554 initial ϵHf (Zrn) values of 8.4 ± 3.1 (2SD; Decker, 2016) that are unlike the Western Fiordland
555 Orthogneiss. Thus, geochemical and isotopic considerations appear to rule out melting of
556 underthrusted mafic rocks as the primary source for the Western Fiordland Orthogneiss.

557 Further, experimental studies also present difficulties in producing the large volumes of
558 mafic to intermediate magmas over the timescales that we observe in the Western Fiordland
559 Orthogneiss. Clemens and Vielzeuf (1987) demonstrated that fluid-undersaturated melting of
560 amphibolites yields relatively low-melt volumes compared to melting of pelites and
561 quartzofeldspathic rocks, and melt volumes decrease with increasing depth. Melt volumes are
562 also strongly dependent on the fertility of the source rock, which is controlled by the modal
563 abundance of hydrous phases (e.g., muscovite, biotite and amphibole). In lower arc crust,
564 voluminous andesitic melts are unlikely to be generated by melting of underplated basaltic
565 source rocks unless they experienced low-grade, fluid-present metamorphism resulting in a
566 significant modal increase in amphibole content (Clemens and Vielzeuf, 1987). As discussed
567 above, no backarc basin rocks have been identified beneath the Western Fiordland Orthogneiss,
568 and hydrous metasedimentary host rocks show little evidence for melting except within the
569 immediate contact aureole of the Western Fiordland Orthogneiss (Allibone et al. 2009b; Daczko

570 et al. 2009). The mantle-like $\delta^{18}\text{O}$ (Zrn) values for the Western Fiordland Orthogneiss also
571 preclude significant involvement of high- $\delta^{18}\text{O}$ sources like the Deep Cove Gneiss (~10.4‰) or
572 putative underthrusted, hydrothermally altered mafic crust (7–15‰: Gregory and Taylor, 1981;
573 Alt et al., 1986; Staudigel et al., 1995). Numerical simulations of amphibolite partial melting
574 based on repeated injection of basalt into the lower crust also conclude that voluminous magma
575 chambers are not likely to form from basaltic protoliths (Petford and Gallagher, 2001; Dufek and
576 Bergantz, 2005). Direct field and geochemical observations from the lower crust of the
577 Famatinian arc, Argentina, also show little evidence for dehydration melting of amphibole, and
578 instead emphasize the role of fractional crystallization of mantle-derived melts in the
579 diversification of lower and mid-crustal crustal arc rocks (Walker et al. 2015). In Fiordland, the
580 sustained production of Separation Point Suite magmas from 128 to 105 Ma, and especially the
581 production of voluminous mafic to intermediate melts in the Western Fiordland Orthogneiss
582 from 118–114 Ma, also point to a mantle heat source in triggering the terminal Zealandia flare-
583 up.

584

585 *Partial melting of the subducted crust and hybridization with the mantle*

586 Another possibility is that the distinctive chemistry of the Western Fiordland Orthogneiss
587 reflects interaction of partially melted, subducted eclogite-facies metabasalt and/or
588 metasedimentary rocks with the overlying mantle wedge. Slab-derived melts are thought to occur
589 from partial melting of young crust (~5–10 m.y.: Defant and Drummond, 1990; Peacock et al.,
590 1994), or where torn subducted plates are exposed to mantle flow (Yogodzinski et al. 2001).
591 Thermal models that incorporate temperature-dependent viscosity, and/or non-Newtonian
592 viscosity, predict temperatures in the wedge and the top of the slab higher than the fluid-

593 saturated solidus for both basalt and sediment (e.g., Johnson and Plank, 2000) at normal
594 subduction rates and subducting plate ages (Kelemen et al., 2003; van Keken et al., 2002;
595 Kelemen et al. 2014). Thus, partial melts of eclogite-facies metasedimentary rocks and
596 metabasalts likely make up an important component of arc magmas, particularly in high Mg#
597 andesites (>50), and are abundant features in unusually hot subductions zones where ‘tears’
598 and/or young subducting plates yield a larger proportion of eclogitic partial melt relative to the
599 overlying mantle wedge (Kelemen et al., 2003; Moyen et al. 2009; Kelemen et al., 2014).

600 Magmas generated by partial melting and hybridization of subducted oceanic crust with
601 mantle peridotite have distinctive geochemical features that allow us to compare to Western
602 Fiordland Orthogneiss compositions. Slab melts are typically andesitic to dacitic in composition
603 with high Sr/Y (>100) and Al₂O₃ (>15 wt.%) values, and steeply fractionated REE patterns
604 suggestive of an eclogite residue (e.g., Rapp and Watson, 1995). Primitive andesites (Mg#>60)
605 and high-Mg# andesites (Mg#>50) with high-Sr/Y signatures typically have high Cr (>36 ppm)
606 and Ni (>24), features that are interpreted to reflect hybridization of H₂O-rich, low-temperature
607 melts with the high-temperature mantle wedge (Yogodzinski and Kelemen, 1998; Yogodzinski et
608 al. 2001; Kelemen et al. 2014). Slab melts are also characterized by enrichments in fluid-mobile
609 elements relative to REEs (e.g., high U/Yb, Ce/Yb, Ba/La, and Sr/Nd), signatures that are
610 commonly attributed to an aqueous fluid component with isotopic characteristics of
611 hydrothermally altered MORB (e.g., ⁸⁷Sr/⁸⁶Sr ~0.7035, ¹⁴³Nd/¹⁴⁴Nd ~0.5132, and ²⁰⁸Pb/²⁰⁴Pb
612 down to 38) (Rapp et al. 1999). However, melting of sedimentary rocks may also be an
613 important factor in controlling the geochemical budgets of fluid-immobile elements such as Nd,
614 Pb, Hf, and Th (Johnson and Plank, 2000; Plank, 2005), and lavas with potentially large
615 components of slab melt (ca, 10%) are reported from some arcs (e.g., Setouchi, Japan: Shimoda

616 et al. 1998; Hanyu et al., 2002; Tatsumi et al., 2003). Despite evidence in slab melts for
617 potentially significant contributions from high- $\delta^{18}\text{O}$ sources such as low-temperature
618 hydrothermally altered MOR crust and sedimentary rocks, olivine from slab melts typically
619 display only weak, $<1\text{\textperthousand}$ enrichment in $\delta^{18}\text{O}$ values over MORBs (see stippled region in Fig.
620 5A). Bindeman et al. (2005) proposed that the weak enrichment in slab melts may result from a)
621 partial oxygen isotope equilibration between slab melts and mantle peridotite, and/or b) efficient
622 mixing between partial melts from several different parts of the slab such that higher- and lower-
623 $\delta^{18}\text{O}$ components average out to have no net difference from average mantle.

624 Data from the Western Fiordland Orthogneiss display strong similarities to hybridized
625 slab melts described above. A distinctive feature of the Western Fiordland Orthogneiss is that
626 high Mg# (>50) rocks have high-Sr/Y signatures (Fig. 2F) and high Cr and Ni values that likely
627 reflect reaction of hydrous, eclogite-facies partial melts with peridotite during transport through
628 the mantle wedge. Deep emplacement of some, if not all, of the Western Fiordland Orthogneiss
629 at pressures ≥ 1.4 GPa (Allibone et al., 2009b) is high enough for igneous garnet to be stable on
630 the liquidus (Green, 1972; Green and Ringwood, 1967, 1968; Chapman et al., 2016); however,
631 primitive Western Fiordland Orthogneiss rocks (e.g., Mg# >50) also have high-Sr/Y signatures,
632 which precludes trace-element enrichment by fractional crystallization alone. Zircon trace-
633 element data support this conclusion as early crystallizing zircons with high Ti values show both
634 heavy rare earth element depletions and high Gd/Yb values relative to other continental arc
635 zircons (Fig. 4D-E). Thus, the high-Sr/Y (WR) signature, high Gd/Yb (Zrn), and distinctive
636 trace-element and isotopic features of high-Mg# rocks from the Western Fiordland Orthogneiss
637 reflect primitive melt compositions, and are not features produced exclusively by fractional

638 crystallization. Moreover, these features support the interpretation that garnet was not only a
639 fractionating phase but also a residual phase in the source region.

640 Figure 9 shows a series of bulk mixing curves for a variety of sources including adakitic
641 melts (A), mantle wedge melts (W), crustal melts (C) and sediment (S). In Fig. 9A-B, Western
642 Fiordland Orthogneiss samples consistently plot at lower Sr/Y and La/Yb values than expected
643 from pure slab melts ('A' in Fig. 9) consistent with major element chemistry (e.g., Fig. 2F).
644 Western Fiordland Orthogneiss rocks also lie near or between bulk mixing curves for
645 adakite/mantle wedge melts and adakite/sediment melts. In this regard, the Western Fiordland
646 Orthogneiss is similar to lavas from the Aleutians where previous workers have argued for
647 mixing and/or hybridization of slab melts with eclogite-facies metasedimentary rocks and mantle
648 wedge melts (Yogodzinski and Kelemen, 1998; Yogodzinski et al., 2001). A distinguishing
649 feature of our data is that at low $\delta^{18}\text{O}$ melt values, Western Fiordland Orthogneiss rocks have
650 higher average $^{87}\text{Sr}/^{86}\text{Sr}$ values compared to modern slab melts and they plot along the bulk
651 mixing trend between slab melts and metasedimentary rock melts together with lavas from
652 Setouchi, Japan (Fig. 9C). The bulk mixing curve with sediment end member in Fig. 9C yields a
653 sediment input value of ~4-5%, which is similar to values calculated for the modern Kermadec-
654 Hikurangi margin (Gamble et al., 1996), but is less than values observed in Setouchi lavas.

655 Kelemen et al. (2014) modeled the trace-element composition of melts and fluids in
656 equilibrium with eclogite, and observed that modern, high-Mg# andesites display trends that are
657 consistent with eclogite-facies sediment melt input in both 'typical' arcs and those where slab
658 melts have been observed (Fig. 10). Compared to modeled compositions, Western Fiordland
659 Orthogneiss rocks consistently plot between fluid and melt in equilibrium with eclogite,
660 implying contributions from both sources during melting and melt transport. The Worsley Pluton

661 has the highest Th concentrations of Western Fiordland Orthogneiss rocks and consistently
662 overlaps or plots near modeled eclogite-facies sediment melt compositions. Closer inspection of
663 immobile trace elements in Figure 11 shows that high Mg# rocks from Western Fiordland
664 Orthogneiss are characterized by two distinct groups that define: 1) a low Th/La (<0.1) trend
665 including most Western Fiordland Orthogneiss plutons (Breaksea and Resolution Orthogneisses,
666 Malaspina and some Worsley) and modern MORBs; and 2) a high Th/La (~0.3) trend that
667 characterizes high-Th Worsley rocks, and arc rocks from the Antilles and Aleutians (Plank,
668 2005). Both subducted Kermadec-Hikurangi sediments (Gamble et al., 1996) and lower crustal
669 sedimentary rocks in the Median Batholith (grey diamonds) are potential sources for the high-
670 Th/La signature; however the lack of observed assimilation or mixing trends in our isotopic data
671 (Fig. 8) argues for subducted metasedimentary melt in the source region rather than crustal
672 contamination at the level of emplacement.

673 Oxygen isotope signatures in zircons from the Western Fiordland Orthogneiss are also
674 remarkably similar to olivine from modern slab melts (Fig. 5A) with both datasets lying within
675 error of high-temperature mantle. Although not conclusive, $\delta^{18}\text{O}$ values in Western Fiordland
676 Orthogneiss zircons are consistent with mixing of slab melts with contributions from eclogite-
677 facies metasediment \pm fluids in the source region (Figs. 10C, 11). Coupled with the lack of
678 obvious mixing or AFC trends (Fig. 8), we speculate that efficient homogenization and
679 hybridization with mantle or mantle melts occurred in the source region and/or during transport,
680 and prior to emplacement at the base of the crust.

681

682 **A petrogenetic flare-up model for the Separation Point Suite**

683 Large abundances of high-Sr/Y rocks are atypical in modern arc environments, except in
684 unusually hot subduction zones characterized by either subduction of young oceanic crust, very
685 slow convergence rates allowing heating and melting of the slab, and/or discontinuous 'tears'
686 that enhance mantle convection in the subducting plate and allow conductive heating from the
687 side, top and bottom (e.g., de Boer et al., 1991, 1988; Defant and Drummond, 1990; Yogodzinski
688 et al., 1994; 1995, 2001; Kelemen et al., 2014). Enhanced mantle melting can also be achieved
689 by 'melt-fluxed melting' in which reaction between hydrous partial melts of subducting
690 metasedimentary rock and/or metabasalt and overlying mantle peridotite leads to increasing melt
691 mass, producing a hybrid 'primary melt' in which more than 90% of the compatible elements
692 (Mg, Fe, Ni, Cr) are derived from the mantle, while most of the alkalis and other incompatible
693 elements come from small degrees of partial melting of subducted crust (e.g., Kelemen, 1986,
694 1990, 1995; Kelemen et al., 1993, 2003b; Myers et al., 1985; Yogodzinski et al., 1995;
695 Yogodzinski and Kelemen, 1998). Melt-fluxed melting may also be facilitated beneath arcs as
696 melts decompress through the mantle column and dissolve solid mantle minerals, thereby
697 increasing the resulting melt mass (Kelemen, 1986, 1990, 1995; Kelemen et al., 1993, 2014). We
698 speculate that the hybrid 'Cordilleran' arc and high Sr/Y composition of the Western Fiordland
699 Orthogneiss reflects this process.

700 In addition to melt-fluxed melting, the development of discontinuous 'tears' (e.g., slab-
701 tears or ridge-trench collisions) beneath long-lived continental arcs hold the potential to release
702 large volumes of melts if hot, upwelling asthenosphere is exposed to metasomatized
703 subcontinental lithosphere as postulated to have existed in the Mesozoic beneath the Median
704 Batholith (Panter et al., 2006; McCoy-West et al., 2010; Timm et al., 2010; Scott et al., 2014;
705 Czertowicz et al., 2016; McCoy-West et al., 2015; 2016). Field and geochemical studies in

706 mantle rocks thought to have underlain the Median Batholith show that mantle enrichment
707 occurred during a two-stage, metasomatic processes involving reactive percolation of small
708 amounts of mafic silicate melt and subsequent fluxing of an OH-rich fluid during Mesozoic
709 magmatism beneath the arc (Czertowicz et al., 2016). We postulate that the surge of high-Sr/Y
710 melts in the Median Batholith resulted from partial melting of this enriched mantle source in an
711 usually hot subduction zone where a ‘tear’ or slab window produced from a ridge-trench
712 collision allowed for upwelling asthenosphere to interact with and melt the subducted plate and
713 the hydrous subcontinental lithospheric mantle.

714 The plate tectonic configuration of the Median Batholith prior to Zealandia break-up in
715 the Cretaceous is difficult to know as much of the Cretaceous oceanic crust has been subducted.
716 Existing palinspastic reconstructions vary greatly; however, all involve subduction of either the
717 Phoenix or Moa plates beneath eastern Gondwana in the Early Cretaceous (e.g., Bradshaw, 1989;
718 Luyendyk, 1995; Sutherland and Hollis, 2001; Mortimer et al., 2005). Bradshaw (1989)
719 proposed that extensional break-up of Zealandia resulted from collision of the Phoenix-Pacific
720 spreading center. Based on radiolarian faunal data, Sutherland and Hollis (2001) suggested that a
721 previously unrecognized plate, the Moa plate, subducted beneath the Median Batholith in the
722 Early Cretaceous and obliquely collided with the eastern Gondwana margin resulting in dextral
723 strike-slip motion. We speculate that collision of either the Phoenix-Pacific or Phoenix-Moa
724 ridges with the eastern Gondwana margin, or the development of a slab tear within the
725 subducting plate, may have been responsible for inducing hot asthenospheric upwelling beneath
726 the downgoing slab, resulting in partial melting of eclogite-facies metasedimentary rocks and
727 metabasalt along the plate edge (Fig. 12). Although speculative, a ridge-trench collision or slab
728 tear model provides a mechanism to explain several of the enigmatic tectonomagmatic features

729 of the Cretaceous Median Batholith including: a) the transition of 'normal', low-Sr/Y arc
730 magmatism to high-Sr/Y magmatism from 136-132 Ma (Fig. 12A-B); b) the rapid generation of
731 large volumes of low-silica, high-Sr/Y melts with mantle-like $\delta^{18}\text{O}$ (Zrc) signatures in the
732 Western Fiordland Orthogneiss from 128-114 Ma (Fig. 12B-C); c) the anomalous high-
733 temperature ($>900^\circ\text{C}$) eclogite- to granulite-facies metamorphic event in the lower crust of the
734 Western Fiordland Orthogneiss initiating in the host rocks at ca. 134 Ma and peaking between
735 116-112 Ma (Fig. 12D) (Hollis et al., 2003; Flowers et al., 2005; Tulloch et al., 2011; Stowell et
736 al., 2014; Schwartz et al., 2016); d) the linear nature of high-Sr/Y plutonism along the axis of the
737 Median Batholith (Tulloch and Kimbrough 2003); and e) the development of transpression and
738 dextral strike-slip motion in Fiordland and along the Gondwana margin after ca. 132 Ma
739 (Sutherland and Hollis, 2001; Daczko et al., 2001; 2002; Marcotte et al., 2005; Klepeis et al.,
740 2004; Allibone and Tulloch, 2008). Foundering of the subducted plate beneath Zealandia and
741 subsequent enhanced mantle upwelling may be related to rapid vertical motions in the crust and
742 collapse of the orogen beginning at 108-106 Ma (Fig. 12D) (Klepeis et al., 2007; 2016). An
743 implication of this model is that subduction-related, asthenospheric-wedge melting ceased to be
744 the primary mechanism for generating melts and transfer of thermal energy to the Median
745 Batholith by ca. 136 Ma (c.f., discussion Tulloch et al 2009b).

746

747 **Do High-MAR Events Contribute to the Addition of New Continental Crust?**

748 Our geochemical and isotopic results from the lower crust of the Median Batholith reveal
749 that the high-MAR event was primarily driven by mantle melting with important, but
750 volumetrically minor, additions of subducted arc sediment and oceanic crust. As such, we argue
751 that >95% of the exposed Western Fiordland Orthogneiss represents new continental crust added

752 to Gondwana from 128-114 Ma, most of which was emplaced between 118-114 Ma (Schwartz et
753 al. 2017). Given the exposed areal extent of the Western Fiordland Orthogneiss ($\sim 2350 \text{ km}^2$), a
754 minimum paleo-thickness of $\sim 30 \text{ km}$ derived from structural and metamorphic pressure data
755 (Klepeis et al., 2007; 2016), and an arc segment length of $\sim 80 \text{ km}$ during peak flare up (118-114
756 Ma) and 125 km during the entire duration of the flare up, we calculate a time-averaged lower
757 crustal magma addition rate of $\geq 38 \text{ km}^3/\text{Ma/arc-km}$ from 128-114 Ma, and a peak rate of ≥ 152
758 $\text{km}^3/\text{Ma/arc-km}$ from 118-114 Ma during the interval when $\sim 70\%$ of the arc root was emplaced
759 [see Supplementary file for summary of geochronology and flux rate calculations]. When
760 integrated for the entire crustal column, total crustal (0-65 km) magma addition rates are 70
761 $\text{km}^3/\text{Ma/arc-km}$ during the surge of magmatism from 128-114 Ma. As the Western Fiordland
762 Orthogneiss shows little if any evidence for crustal interaction, magma addition rates are
763 approximately equal to continental crustal production rates. These rates, however, are minima as
764 they do not include the effects of lateral arc migration during the flare-up interval, a feature that
765 is obscured by the truncation of Western Fiordland by the Alpine Fault. Following Ducea et al.
766 (2015 and 2017), we assume an average arc migration rate of $\sim 4 \text{ km/Ma}$, and calculate a
767 reconstructed time-averaged lower crustal magma addition rate of $\geq 54 \text{ km}^3/\text{Ma/arc-km}$ from
768 128-114 Ma, and a peak rate of $\geq 210 \text{ km}^3/\text{Ma/arc-km}$ from 118-114 Ma. Comparable magma
769 addition rates have been determined for thick Andean-type arcs where rates average between 10
770 and 150 $\text{km}^3/\text{Ma/arc-km}$ (Ducea et al. 2017). In those cases, half of the total magmatic products
771 are estimated to be mafic additions to the crust in contrast to the Western Fiordland Orthogneiss,
772 which is nearly entirely new mantle addition. Compared to other thickened Andean arcs, peak
773 magmatic production rates in the lower crust of the Median Batholith are equal to and/or exceed

774 the highest reported magma addition rates in other Cordilleran arcs, a feature that we attribute to
775 enhanced mantle melting during propagation of a slab tear/window beneath the arc.

776 Ducea et al. (2017) noted that modern and ancient island arcs (Jicha and Jagoutz, 2015)

777 and thin continental arcs (e.g., Famatinian arc in the Sierra Valle Fértil-Sierra de Famatina:

778 Ducea et al. 2017) are characterized by much faster magma addition rates that reach 300-400

779 $\text{km}^3/\text{Ma}/\text{arc-km}$. As such, they proposed that thin arcs are primary factories for the rapid

780 production of continental crust whereby fast to ultrafast magma addition rates are produced by

781 high arc migration rates across the trench. In the case of the Famatinian arc, ultrafast magmatic

782 buildup included ~50% mafic additions from the mantle, resulting in a continental crust

783 production rate of ~180 $\text{km}^3/\text{Ma}/\text{arc-km}$ (Ducea et al., 2017), which is similar to our calculated

784 crustal production rates in the lower crust of the Median Batholith. In addition, the dominantly

785 'andesitic' lower crust of the Median Batholith and its trace-element composition approximates

786 bulk lower continental crust (see white diamonds in Fig. 10). Thus, we suggest that high-MAR

787 events involving slab tears/widows may be efficient means of generating continental crust in

788 thickened Cordilleran arcs without requiring further modification (c.f., Kelemen and Behn,

789 2016). In addition, our isotopic data demonstrate that high-MAR events do not necessarily

790 represent isotopic excursions from dominantly mantle-addition trends (Collins et al., 2011);

791 instead, high-MAR events, particularly those involving lower plate triggering processes, may be

792 important in the rapid generation of new lower arc crust along destructive plate margins.

793

794 CONCLUSIONS

795 Geochemical and Hf- and O-isotopic results from the deep crustal root of the Median

796 Batholith, New Zealand, show that the Cretaceous surge in high-Sr/Y magmatism was primarily

797 sourced from the underlying mantle. We suggest that the high-MAR event was caused by a
798 discontinuous 'tear' or ridge collision event. Development of a slab window and asthenospheric
799 upwelling resulted in widespread partial melting of an isotopically enriched and metasomatized
800 subcontinental lithospheric mantle beneath the Median Batholith, with contributions from
801 subducted, eclogite-facies metasedimentary rocks and metabasalt. We propose that the slab
802 tear/window initiated between ca. 136-128 Ma, at the end of low-Sr/Y arc magmatism and prior
803 to the onset of voluminous high-Sr/Y magmatism. If correct, ridge subduction may be linked to
804 regional transpression and local contraction that commenced at ca. 130 and continued to 105 Ma.
805 Propagation of the putative slab window beneath Zealandia may also explain the apparent gap in
806 magmatism from 136-128 Ma, and the continentward migration of high Sr/Y-magmatism
807 throughout Zealandia. Our isotopic results reveal that the terminal Cretaceous flare-up resulted in
808 the rapid addition of $>2350 \text{ km}^2$ of new lower arc crust with time-averaged crustal production
809 rates of $\sim 40-50 \text{ km}^3/\text{Ma/arc-km}$ from 128-114 Ma, and peak rates of $150-210 \text{ km}^3/\text{Ma/arc-km}$
810 from 118-114 Ma when $\sim 70\%$ of the arc root was emplaced. Compared to bulk continental crust,
811 the lower crust of the Median batholith is remarkably similar in trace-element composition,
812 suggesting that high-MAR events involving slab tears or ridge-trench collisions may be an
813 efficient means of generating lower continental crust from hybridization of mantle and subducted
814 slab components, and may not require second stage processes such as relamination (Kelemen and
815 Behn, 2016).

816

817 **ACKNOWLEDGEMENTS**

818 We acknowledge stimulating discussions with Scott Paterson, Cal Barnes, David
819 Kimbrough, and Robinson Cecil. We thank George Bergantz and Calvin Miller for excellent

820 comments that improved the manuscript. We thank Richard and Mandy Abernethy and the Crew
821 of Fiordland Expeditions for assistance with rock sampling on the Fiordland coast. The New
822 Zealand Department of Conservation, Te Anau office is also thanked for allowing access and
823 sampling in Fiordland. Financial support for this work was provided by NSF grants EAR-
824 1352021 (JJS), EAR-1119039 (HHS & JJS), and EAR-1119248 (KAK). The WiscSIMS
825 laboratory is partly supported by the National Science Foundation EAR-1355590 and by the
826 University of Wisconsin-Madison.

827

828 **TABLES**

829 **Table 1.** Summary of zircon U-Pb, O and Lu-Hf isotope data for the Western Fiordland
830 Orthogneiss, Median Batholith, Zealandia Cordillera.

831

832 **SUPPLEMENTARY FILES**

833 Table 1: Sample locations.

834 Table 2: Whole-rock geochemistry of the Western Fiordland Orthogneiss.

835 Table 3: Zircon geochemistry.

836 Table 4: Oxygen-isotope data.

837 Table 5: Hf-isotope data.

838 Table 6: Magma addition rate (MAR) calculations

839

840 **REFERENCES**

841 Allibone, A. H., Jongens, R., Turnbull, I. M., Milan, L. A., Daczko, N. R., DePaoli, M. C. &
842 Tulloch, A. J. (2009a). Plutonic rocks of Western Fiordland, New Zealand: Field relations,

843 geochemistry, correlation, and nomenclature. *New Zealand Journal of Geology and*
844 *Geophysics* **52**, 379–415.

845 Allibone, A. H., Milan, L. A., Daczko, N. R. & Turnbull, I. M. (2009b). Granulite facies thermal
846 aureoles and metastable amphibolite facies assemblages adjacent to the Western Fiordland
847 Orthogneiss in southwest Fiordland, New Zealand. *Journal of Metamorphic Geology* **27**,
848 349–369.

849 Allibone, A. H. & Tulloch, A. J. (2004). Geology of the plutonic basement rocks of Stewart
850 Island, New Zealand. *New Zealand Journal of Geology and Geophysics*, 233–256.

851 Allibone, A. H. & Tulloch, A. J. (2008). Early Cretaceous dextral transpressional deformation
852 within the Median Batholith, Stewart Island, New Zealand. *New Zealand Journal of*
853 *Geology and Geophysics* **51**, 115–134.

854 Alt, J. C., Honnorez, J., Laverne, C. & Emmermann, R. (1986). Hydrothermal alteration of a 1
855 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B:
856 Mineralogy, chemistry and evolution of seawater-basalt interactions. *Journal of*
857 *Geophysical Research* **91**, 10309.

858 Appleby, S. K., Gillespie, M. R., Graham, C. M., Hinton, R. W., Oliver, G. J. H., Kelly, N. M. &
859 EIMF (2010). Do S-type granites commonly sample infracrustal sources? New results from
860 an integrated O, U-Pb and Hf isotope study of zircon. *Contributions to Mineralogy and*
861 *Petrology* **160**, 115–132.

862 Armstrong, R. L. (1988). Mesozoic and early Cenozoic magmatic evolution of the Canadian
863 Cordillera. *Geological Society of America Special Papers* **218**, 55–92.

864 Barth, A. P. & Wooden, J. L. (2010). Coupled elemental and isotopic analyses of polygenetic
865 zircons from granitic rocks by ion microprobe, with implications for melt evolution and
866 the sources of granitic magmas. *Chemical Geology* **277**, 149–159.

867 Beck, S. L., Zandt, G., Myers, S. C., Wallace, T. C., Silver, P. G. & Drake, L. (1996). Crustal-
868 thickness variations in the central Andes. *Geology* **24**, 407.

869 Bindeman, I. N., Eiler, J. M., Yogodzinski, G. M., Tatsumi, Y., Stern, C. R., Grove, T. L.,
870 Portnyagin, M., Hoernle, K. & Danyushevsky, L. V. (2005). Oxygen isotope evidence for
871 slab melting in modern and ancient subduction zones. *Earth and Planetary Science Letters*
872 **235**, 480–496.

873 Blattner, P. (1991). The North Fiordland transcurrent convergence. *New Zealand Journal of*
874 *Geology and Geophysics* **34**, 533–542.

875 Blattner, P., Grindley, G. W. & Adams, C. J. (1997). Low- ^{180}O terranes tracking Mesozoic polar
876 climates in the South Pacific. *Geochimica et Cosmochimica Acta* **61**, 569–576.

877 Bolhar, R., Weaver, S. D., Whitehouse, M. J., Palin, J. M., Woodhead, J. D. & Cole, J. W.
878 (2008). Sources and evolution of arc magmas inferred from coupled O and Hf isotope
879 systematics of plutonic zircons from the Cretaceous Separation Point Suite (New
880 Zealand). *Earth and Planetary Science Letters* **268**, 312–324.

881 Bradshaw, J. Y. (1990). Geology of crystalline rocks of northern Fiordland: Details of the
882 granulite facies Western Fiordland Orthogneiss and associated rock units. *New Zealand*
883 *Journal of Geology and Geophysics*, 465–484.

884 Bradshaw, J. Y. (1989). Origin and metamorphic history of an Early Cretaceous polybaric
885 granulite terrain, Fiordland, southwest New Zealand. *Contributions to Mineralogy and*
886 *Petrology* **103**, 346–360.

887 Brown, E. (1996). High-pressure metamorphism caused by magma loading in Fiordland, New
888 Zealand. *Journal of Metamorphic Geology* **14**, 441–452.

889 Cavosie, A. J., Kita, N. T. & Valley, J. W. (2009). Primitive oxygen-isotope ratio recorded in
890 magmatic zircon from the Mid-Atlantic Ridge. *American Mineralogist* **94**, 926–934.

891 Chapman, A. D., Saleeby, J. B. & Eiler, J. (2013). Slab flattening trigger for isotopic disturbance
892 and magmatic flareup in the southernmost Sierra Nevada batholith, California. *Geology* **41**,
893 1007–1010.

894 Chapman, T., Clarke, G. L., Daczko, N. R., Piazolo, S. & Rajkumar, A. (2015). Orthopyroxene–
895 omphacite- and garnet–omphacite-bearing magmatic assemblages, Breaksea Orthogneiss,
896 New Zealand: Oxidation state controlled by high-P oxide fractionation. *Lithos* **216–217**, 1–
897 16.

898 Chapman, T., Clarke, G. L. & Daczko, N. R. (2016). Crustal Differentiation in a Thickened Arc–
899 Evaluating Depth Dependences. *Journal of Petrology* **57**, 595–620.

900 Christensen, N. I. & Mooney, W. D. (1995). Seismic velocity structure and composition of the
901 continental crust: A global view. *Journal of Geophysical Research* **100**, 9761–9788.

902 Clarke, G. L., Klepeis, K. A. & Daczko, N. R. (2002). Cretaceous high-P granulites at Milford
903 Sound, New Zealand: metamorphic history and emplacement in a convergent margin
904 setting. *Journal of Metamorphic Geology* **18**, 359–374.

905 Clemens, J. D. & Vielzeuf, D. (1987). Constraints on melting and magma production in the crust.
906 *Earth and Planetary Science Letters* **86**, 287–306.

907 Collins, W. J., Belousova, E. A., Kemp, A. I. S. & Murphy, J. B. (2011). Two contrasting
908 Phanerozoic orogenic systems revealed by hafnium isotope data. *Nature Geoscience* **4**,
909 333–337.

910 Cui, Y. & Russell, J. K. (1995). Nd-Sr-Pb isotopic studies of the southern Coast Plutonic
911 Complex, southwestern British Columbia. *Geological Society of America Bulletin*.
912 Geological Society of America **107**, 127-138.

913 Czertowicz, T. A., Scott, J. M., Waight, T. E., Palin, J. M., Van der Meer, Q. H. A., Le Roux, P.,
914 Münker, C. & Piazolo, S. (2016). The Anita Peridotite, New Zealand: Ultra-depletion and
915 Subtle Enrichment in Sub-arc Mantle. *Journal of Petrology*. **57**, 717–750.

916 Daczko, N. R. & Halpin, J. a. (2009). Evidence for melt migration enhancing recrystallization of
917 metastable assemblages in mafic lower crust, Fiordland, New Zealand. *Journal of
918 Metamorphic Geology* **27**, 167–185.

919 Daczko, N. R., Klepeis, K. A. & Clarke, G. L. (2001). Evidence of early Cretaceous collisional-
920 style orogenesis in Northern Fiordland, New Zealand and its effects on the evolution of the
921 lower crust. *Journal of Structural Geology* **23**, 693–713.

922 Daczko, N. R., Klepeis, K. A. & Clarke, G. L. (2002). Thermomechanical evolution of the crust
923 during convergence and deep crustal pluton emplacement in the Western Province of
924 Fiordland, New Zealand. *Tectonics* **21**, 10.1029/2001TC001282.

925 Daczko, N. R., Stevenson, J. a., Clarke, G. L. & Klepeis, K. a. (2002). Successive hydration and
926 dehydration of high-P mafic granofels involving clinopyroxene–kyanite symplectites, Mt
927 Daniel, Fiordland, New Zealand. *Journal of Metamorphic Geology* **20**, 669–682.

928 Davy, B., Hoernle, K. & Werner, R. (2008). Hikurangi Plateau: Crustal structure, rifted
929 formation, and Gondwana subduction history. *Geochemistry, Geophysics, Geosystems* **9**,
930 de Boer, J.Z., Defant, M.J., Stewart, R.H, and Bellon, H. (1991). Evidence for active subduction
931 below western Panama. *Geology* **19**, 649–652.

932 de Boer, J.Z., Defant, M.J., Stewart, R.H., Restrepo, J.F., Clark, L.F., and Ramirez, A.H. (1988).

933 Quaternary calc-alkaline volcanism in western Panama: Regional variation and implication
934 for the plate tectonic framework. *Journal of South American Earth Sciences* **1**, 275–293.

935 DeCelles, P. G., Ducea, M. N., Kapp, P. & Zandt, G. (2009). Cyclicality in Cordilleran orogenic
936 systems. *Nature Geoscience* **2**, 251–257.

937 DeCelles, P. G. & Graham, S. A. (2015). Cyclical processes in the North American Cordilleran
938 orogenic system. *Geology* **43**, 499–502.

939 De Paoli, M. C., Clarke, G. L., Klepeis, K. A., Allibone, A. H. & Turnbull, I. M. (2009). The
940 eclogite-granulite transition: Mafic and intermediate assemblages at Breaksea sound, New
941 Zealand. *Journal of Petrology* **50**, 2307–2343.

942 Decker, M., 2016, Triggering Mechanisms For A Magmatic Flare-Up Of The Lower Crust In
943 Fiordland, New Zealand, From U-Pb Zircon Geochronology And O-Hf Zircon
944 Geochemistry: California State University Northridge, MS thesis, 122 p.

945 Dhuime, B., Hawkesworth, C. & Cawood, P. (2011). When Continents Formed. *Science* **331**,
946 154–155.

947 Defant, M. J. & Drummond, M. S. (1990). Derivation of some modern arc magmas by melting of
948 young subducted lithosphere. *Nature* **347**, 662–665.

949 Ducea, M. (2001). The California arc: Thick granitic batholiths, eclogitic residues, lithospheric-
950 scale thrusting, and magmatic flare-ups. *GSA Today* **11**, 4–10.

951 Ducea, M. N. & Barton, M. D. (2007). Igniting flare-up events in Cordilleran arcs. *Geology* **35**,
952 1047–1050.

953 Ducea, M. N., Paterson, S. R. & DeCelles, P. G. (2015a). High-volume magmatic events in
954 subduction systems. *Elements* **11**, 99–104.

955 Ducea, M. N., Saleeby, J. B. & Bergantz, G. (2015b). The Architecture, Chemistry, and
956 Evolution of Continental Magmatic Arcs. *Annual Review of Earth and Planetary Sciences*
957 **43**, 299–333.

958 Ducea, M. N., Bergantz, G., Crowley, J. L., Otamendi, J. (2017). Ultrafast magmatic buildup and
959 diversification to produce continental crust during subduction. *Geology* doi:
960 10.1130/G38726.1.

961 Eberhart-Phillips, D. & Reyners, M. (2001). A complex, young subduction zone imaged by
962 three-dimensional seismic velocity, Fiordland, New Zealand. *Geophysical Journal
963 International* **146**, 731–746.

964 Ferry, J.M., & Watson, E.B. (2007). New thermodynamic models and revised calibrations for the
965 Ti-in-zircon and Zr-in-rutile thermometers. *Contributions to Mineralogy and Petrology* **154**,
966 429–437, doi: 10.1007/s00410-007-0201-0

967 Flowers, R. M., Bowring, S. A., Tulloch, A. J. & Klepeis, K. A. (2005). Tempo of burial and
968 exhumation within the deep roots of a magmatic arc, Fiordland, New Zealand. *Geology* **33**,
969 17.

970 Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. & Frost, C. D. (2001). A
971 geochemical classification for granitic rocks. *Journal of Petrology* **42**, 2033–2048.

972 Frost, B. R. & Frost, C. D. (2008). A geochemical classification for feldspathic igneous rocks.
973 *Journal of Petrology* **49**, 1955–1969.

974 Gamble, J., Woodhead, J., Wright, I. & Smith, I. (1996). Basalt and Sediment Geochemistry and
975 Magma Petrogenesis in a Transect from Oceanic Island Arc to Rifted Continental Margin
976 Arc: the Kermadec—Hikurangi Margin, SW Pacific. *Journal of Petrology* **37**, 1523–1546.

977 Gibson, G. M. (1992). Medium-high-pressure metamorphic rocks of the Tuhua Orogen, western
978 New Zealand, as lower crustal analogues of the Lachlan Fold Belt, SE Australia.
979 *Tectonophysics* **214**, 145–157.

980 Gibson, G. M. & Ireland, T. R. (1995). Granulite formation during continental extension in
981 Fiordland, New Zealand. *Nature*, 479–482.

982 Green, T. H. & Ringwood, A. E. (1967). Crystallization of basalt and andesite under high
983 pressure hydrous conditions. *Earth and Planetary Science Letters* **3**, 481–489.

984 Green, T. H. & Ringwood, A. E. (1968). Genesis of the calc-alkaline igneous rock suite.
985 *Contributions to Mineralogy and Petrology* **18**, 105–162.

986 Green, T. H. (1972). Crystallization of calc-alkaline andesite under controlled high-pressure
987 hydrous conditions. *Contributions to Mineralogy and Petrology*. Springer-Verlag **34**, 150–
988 166.

989 Hanyu, T., Tatsumi, Y. & Nakai, S. (2002). A contribution of slab-melts to the formation of
990 high-Mg andesite magmas; Hf isotopic evidence from SW Japan. *Geophysical Research
991 Letters* **29**, 8-1-8-4.

992 Haschke, M., Gunther, A., Melnick, D., Echtler, H., Reutter, K. J., Scheuber, E. & Oncken, O.
993 (2006). Central and southern Andean tectonic evolution inferred from arc magmatism. In:
994 Oncken, O., Chong, G., Franz, G., Giese, P., Götze, H.-J., Ramos, H.-J., Strecker, M. R. &
995 Wigger, P. (eds) *The Andes—Active Subduction Orogeny: Frontiers in Earth Sciences*.
996 Berlin: Springer-Verlag, 337–353.

997 Haschke, M., Siebel, W., Günther, A. & Scheuber, E. (2002). Repeated crustal thickening and
998 recycling during the Andean orogeny in north Chile (21°–26°S). *Journal of Geophysical
999 Research: Solid Earth* **107**, ECV 6-1-ECV 6-18.

1000 Hawkesworth, C. J. & Kemp, A. I. S. (2006). Using hafnium and oxygen isotopes in zircons to
1001 unravel the record of crustal evolution. *Chemical Geology* **226**, 144–162.

1002 Hawkesworth, C. J., Dhuime, B., Pietranik, A. B., Cawood, P. A., Kemp, A. I. S. & Storey, C. D.
1003 (2010). The generation and evolution of the continental crust. *Journal of the Geological
1004 Society* **167**, 229–248.

1005 Hildreth, W. & Moorbath, S. (1988). Crustal contributions to arc magmatism in the Andes of
1006 Central Chile. *Contributions to Mineralogy and Petrology* **98**, 455–489.

1007 Hollis, J. A., Clarke, G. L., Klepeis, K. A., Daczko, N. R. & Ireland, T. R. (2003).
1008 Geochronology and geochemistry of high-pressure granulites of the Arthur River Complex,
1009 Fiordland, New Zealand: Cretaceous magmatism and metamorphism on the palaeo-Pacific
1010 Margin. *Journal of Metamorphic Geology* **21**, 299–313.

1011 Hout, C., Stowell, H.H., Schwartz, J.J., Klepeis, K.A. (2012). New $^{206}\text{Pb}/^{238}\text{U}$ Zircon Ages
1012 Record Magmatism and Metamorphism in the Crustal Root of a Magmatic Arc, Fiordland,
1013 New Zealand. *Geological Society of America Abstracts with Programs*, **44**, No. 7, 586.

1014 von Huene, R., Ranero, C. R. & Scholl, D. W. (2009). Convergent Margin Structure in High-
1015 Quality Geophysical Images and Current Kinematic and Dynamic Models. *Subduction Zone
1016 Geodynamics*, 137–157.

1017 Iizuka, T., and Hirata, T. (2005). Improvements of precision and accuracy in in situ Hf isotope
1018 microanalysis of zircon using the laser ablation-MC-ICPMS technique. *Chemical Geology*
1019 **220**, 121–137.

1020 Johnson, M. C. & Plank, T. (2000). Dehydration and melting experiments constrain the fate of
1021 subducted sediments. *Geochemistry, Geophysics, Geosystems* **1**.

1022 Kay, S. M., Godoy, E. & Kurtz, A. (2005). Episodic arc migration, crustal thickening,
1023 subduction erosion, and magmatism in the south-central Andes. *Bulletin of the Geological
1024 Society of America*. Geological Society of America **117**, 67–88.

1025 van Keken, P. E., B. Kiefer, and S. M. Peacock, (2002). High-resolution models of subduction
1026 zones: Implications for mineral dehydration reactions and the transport of water into the
1027 deep mantle, *Geochem. Geophys. Geosyst.*, **3**(10), 1056, doi:10.1029/2001GC000256.

1028 Kelemen, P. B. (1990). Reaction between ultramafic rock and fractionating basaltic magma I.
1029 phase relations, the origin of calc-alkaline magma series, and the formation of discordant
1030 dunite. *Journal of Petrology* **31**, 51–98.

1031 Kelemen, P. B. (1995). Genesis of high Mg# andesites and the continental crust. *Contributions to
1032 Mineralogy and Petrology* **120**, 1–19.

1033 Kelemen, P. B. & Ghiorso, M. S. (1986). Assimilation of peridotite in zoned calc-alkaline
1034 plutonic complexes: evidence from the Big Jim complex, Washington Cascades.
1035 *Contributions to Mineralogy and Petrology* **94**, 12–28.

1036 Kelemen, P. B. & Behn, M. D. (2016). Formation of lower continental crust by relamination of
1037 buoyant arc lavas and plutons. *Nature Geoscience* **9**, 197–205.

1038 Kelemen, P. B., Shimizu, N. & Dunn, T. (1993). Relative depletion of niobium in some arc
1039 magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock
1040 reaction in the upper mantle. *Earth and Planetary Science Letters* **120**, 111–134.

1041 Kelemen, P. B., Yogodzinski, G. M. & Scholl, D. W. (2003). Along-Strike Variation in the
1042 Aleutian Island Arc: Genesis of High Mg# Andesite and Implications for Continental Crust.
1043 *Geophysical Monograph*, 223–276.

1044 Kelemen, P. B., Hanghøj, K. & Greene, A. R. (2014). One View of the Geochemistry of
1045 Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower
1046 Crust. *Treatise on Geochemistry*. Elsevier, 749–806.

1047 Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., Paterson, B. A., Woodhead, J. D., Hergt, J.
1048 M., Gray, C. M. & Whitehouse, M. J. (2007). Magmatic and Crustal Differentiation History
1049 of Granitic Rocks from Hf-O Isotopes in Zircon. *Science* **315**, 980–983.

1050 Kemp, A. I. S., Hawkesworth, C. J., Collins, W. J., Gray, C. M. & Blevin, P. L. (2009). Isotopic
1051 evidence for rapid continental growth in an extensional accretionary orogen: The
1052 Tasmanides, eastern Australia. *Earth and Planetary Science Letters* **284**, 455–466.

1053 Kimbrough, D. L., Tulloch, A. J., Coombs, D. S., Landis, C. A., Johnston, M. R. & Mattinson, J.
1054 M. (1994). Uranium-lead zircon ages from the Median Tectonic Zone, New Zealand. *New
1055 Zealand Journal of Geology and Geophysics* **37**, 393–419.

1056 Kistler, R. W., Wooden, J. L., Premo, W. R. & Morton, D. M. (2014). Pb-Sr-Nd-O isotopic
1057 characterization of Mesozoic rocks throughout the northern end of the Peninsular Ranges
1058 batholith: Isotopic evidence for the magmatic evolution of oceanic arc–continental margin
1059 accretion during the Late Cretaceous of southern California. *Peninsular Ranges Batholith,
1060 Baja California and Southern California*. In: Morton, D. M. & Miller, F. (eds) *Geological
1061 Society of America Memoirs* **211**, 263–316.

1062 Klepeis, K. A. & Clarke, G. L. (2004). The evolution of an exposed mid-lower crustal
1063 attachment zone in Fiordland, New Zealand. *Geological Society, London, Special
1064 Publications* **227**, 197–229.

1065 Klepeis, K. A., Clarke, G. L., Gehrels, G. & Vervoort, J. (2004). Processes controlling vertical
1066 coupling and decoupling between the upper and lower crust of orogens: Results from
1067 Fiordland, New Zealand. *Journal of Structural Geology* **26**, 765–791.

1068 Klepeis, K. A., King, D., De Paoli, M., Clarke, G. L. & Gehrels, G. (2007). Interaction of strong
1069 lower and weak middle crust during lithospheric extension in western New Zealand.
1070 *Tectonics* **26**, doi: 10.1029/2006TC002003.

1071 Klepeis, K. A., Schwartz, J., Stowell, H. & Tulloch, A. (2016). Gneiss domes, vertical and
1072 horizontal mass transfer, and the initiation of extension in the hot lower-crustal root of a
1073 continental arc, Fiordland, New Zealand. *Lithosphere* **8**, 116–140.

1074 Kolodny, Y. & Epstein, S. (1976). Stable isotope geochemistry of deep sea cherts. *Geochimica et*
1075 *Cosmochimica Acta* **40**, 1195–1209.

1076 Lackey, J. S., Valley, J. W. & Saleeby, J. B. (2005). Supracrustal input to magmas in the deep
1077 crust of Sierra Nevada batholith: Evidence from high- $\delta^{18}\text{O}$ zircon. *Earth and Planetary*
1078 *Science Letters* **235**, 315–330.

1079 Lackey, J.S., Valley, J.W., and Hinke, H.J. (2006). Deciphering the source and contamination
1080 history of peraluminous magmas using $\delta^{18}\text{O}$ of accessory minerals: Examples from garnet-
1081 bearing plutons of the Sierra Nevada batholith. *Contributions to Mineralogy and Petrology*,
1082 **151**, 20–44.

1083 Lackey, J. S., Valley, J. W., Chen, J. H. & Stockli, D. F. (2008). Dynamic magma systems,
1084 crustal recycling, and alteration in the Central Sierra Nevada batholith: The oxygen isotope
1085 record. *Journal of Petrology* **49**, 1397–1426.

1086 Lackey, J. S., Cecil, M. R., Windham, C. J., Frazer, R. E., Bindeman, I. N. & Gehrels, G. E.

1087 (2012). The Fine Gold Intrusive Suite: The roles of basement terranes and magma source

1088 development in the Early Cretaceous Sierra Nevada batholith. *Geosphere* **8**, 292–313.

1089 Lee, C. T. A., Cheng, X. & Horodyskyj, U. (2006). The development and refinement of

1090 continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic

1091 recharge and delamination: Insights from the Sierra Nevada, California. *Contributions to*

1092 *Mineralogy and Petrology* **151**, 222–242.

1093 Luyendyk, B. P. (1995). Hypothesis for Cretaceous rifting of east Gondwana caused by

1094 subducted slab capture. *Geology* **23**, 373–376.

1095 Marcotte, S. B., Klepeis, K. A., Clarke, G. L., Gehrels, G. & Hollis, J. A. (2005). Intra-arc

1096 transpression in the lower crust and its relationship to magmatism in a Mesozoic magmatic

1097 arc. *Tectonophysics* **407**, 135–163.

1098 Mattinson, J. M., Kimbrough, D. L. & Bradshaw, J. Y. (1986). Western Fiordland orthogneiss:

1099 Early Cretaceous arc magmatism and granulite facies metamorphism, New Zealand.

1100 *Contributions to Mineralogy and Petrology* **92**, 383–392.

1101 Martin, H., Smithies, R. H., Rapp, R., Moyen, J. F. & Champion, D. (2005). An overview of

1102 adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some

1103 implications for crustal evolution. *Lithos*, 1–24.

1104 McCoy-West, A., Mortimer, N. & Ireland, T. R. (2014). U-Pb geochronology of Permian

1105 plutonic rocks, Longwood Range, New Zealand: Implications for Median Batholith-Brook

1106 Street Terrane relations. *New Zealand Journal of Geology and Geophysics* **57**, 65–85.

1107 McCoy-West, A. J., Baker, J. a., Faure, K. & Wysoczanski, R. (2010). Petrogenesis and origins

1108 of mid-cretaceous continental intraplate volcanism in Marlborough, New Zealand:

1109 Implications for the long-lived HIMU magmatic mega-province of the SW Pacific. *Journal*
1110 *of Petrology* **51**, 2003–2045.

1111 McCoy-West, A. J., Bennett, V. C., O'Neill, H. S. C., Hermann, J. & Puchtel, I. S. (2015). The
1112 Interplay between Melting, Refertilization and Carbonatite Metasomatism in Off-Cratonic
1113 Lithospheric Mantle under Zealandia: an Integrated Major, Trace and Platinum Group
1114 Element Study. *Journal of Petrology* **56**, 563–604.

1115 McCoy-West, A.J., Bennett, V.C., and Amelin, Y. (2016). Rapid Cenozoic ingrowth of isotopic
1116 signatures simulating “HIMU” in ancient lithospheric mantle: Distinguishing source from
1117 process. *Geochimica et Cosmochimica Acta* **187**, p. 79–101.

1118 McCulloch, M. T., Bradshaw, J. Y. & Taylor, S. R. (1987). Sm-Nd and Rb-Sr isotopic and
1119 geochemical systematics in Phanerozoic granulites from Fiordland, southwest New
1120 Zealand. *Contributions to Mineralogy and Petrology* **97**, 183–195.

1121 McDonough, W. F. & Sun, S. (1995). The composition of the Earth. *Chemical Geology* **120**,
1122 223–253.

1123 McLennan S. M. and Taylor S. R. (1985) *The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks*. Blackwell
1124 Scientific, Oxford

1125 Milan, L. A., Daczko, N. R., Clarke, G. L. & Allibone, A. H. (2016). Complexity of In-situ
1126 zircon U–Pb–Hf isotope systematics during arc magma genesis at the roots of a Cretaceous
1127 arc, Fiordland, New Zealand. *Lithos* **264**, 296–314.

1128 Mortimer, N. *et al.* (2014). High-level stratigraphic scheme for New Zealand rocks. *New Zealand*
1129 *Journal of Geology and Geophysics* **57**, 402–419.

1130

1131 Mortimer, N., Tulloch, a. J., Spark, R. N., Walker, N. W., Ladley, E., Allibone, A. &

1132 Kimbrough, D. L. (1999). Overview of the Median Batholith, New Zealand: A new

1133 interpretation of the geology of the Median Tectonic Zone and adjacent rocks. *Journal of*

1134 *African Earth Sciences* **29**, 257–268.

1135 Mortimer, N. et al. (2017). Zealandia: Earth's Hidden Continent. *GSA Today* 27–35.

1136 Moyen, J. F. (2009). High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature.”

1137 *Lithos* **112**, 556–574.

1138 Muir, R. J., Weaver, S. D., Bradshaw, J. D., Eby, G. N. & Evans, J. A. (1995). The Cretaceous

1139 Separation Point batholith, New Zealand: granitoid magmas formed by melting of mafic

1140 lithosphere. *Journal of the Geological Society* **152**, 689–701.

1141 Muir, R. J., Ireland, T. R., Weaver, S. D., Bradshaw, J. D., Evans, J. a., Eby, G. N. & Shelley, D.

1142 (1998). Geochronology and geochemistry of a Mesozoic magmatic arc system, Fiordland,

1143 New Zealand. *Journal of the Geological Society* **155**, 1037–1053.

1144 Oliver, G. J. H. (1977). Feldspathic hornblende and garnet granulites and associated anorthosite

1145 pegmatites from Doubtful Sound, Fiordland, New Zealand. *Contributions to Mineralogy*

1146 *and Petrology* **65**, 111–121.

1147 Oliver, G. J. H. (1980). Geology of the granulite and amphibolite facies gneisses of Doubtful

1148 Sound, Fiordland, New Zealand. *New Zealand Journal of Geology and Geophysics* **23**, 27–

1149 41.

1150 Oliver, G. J. H. (1976). High grade metamorphic rocks of Doubtful Sound, Fiordland, New

1151 Zealand—a study of the lower crust. PhD thesis: University of Otago.

1152 De Paoli, M. C., Clarke, G. L., Klepeis, K. A., Allibone, A. H. & Turnbull, I. M. (2009). The
1153 Eclogite-Granulite Transition: Mafic and Intermediate Assemblages at Breaksea Sound,
1154 New Zealand. *Journal of Petrology* **50**, 2307–2343.

1155 Page, F. Z., Ushikubo, T., Kita, N. T., Riciputi, L. R. & Valley, J. W. (2007). High-precision
1156 oxygen isotope analysis of picogram samples reveals 2 μm gradients and slow diffusion in
1157 zircon. *American Mineralogist* **92**, 1772–1775.

1158 Panter, K. S., Blusztajn, J., Hart, S. R., Kyle, P. R., Esser, R. & McIntosh, W. C. (2006). The
1159 origin of HIMU in the SW Pacific: Evidence from intraplate volcanism in Southern New
1160 Zealand and Subantarctic Islands. *Journal of Petrology* **47**, 1673–1704.

1161 Patchett, P. J. & Tatsumoto, M. (1980). Hafnium isotope variations in oceanic basalts.
1162 *Geophysical Research Letters* **7**, 1077–1080.

1163 Patchett, P. J. & Tatsumoto, M. (1981). A routine high-precision method for Lu-Hf isotope
1164 geochemistry and chronology. *Contributions to Mineralogy and Petrology* **75**, 263–267.

1165 Paterson, S. R., Okaya, D., Memeti, V., Economos, R. & Miller, R. B. (2011). Magma addition
1166 and flux calculations of incrementally constructed magma chambers in continental margin
1167 arcs: Combined field, geochronologic, and thermal modeling studies. *Geosphere* **7**, 1439–
1168 1468.

1169 Paterson, S. R. & Ducea, M. N. (2015). Arc magmatic tempos: Gathering the evidence. *Elements*
1170 **11**, 91–98.

1171 Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. (2011). Iolite: Freeware for the
1172 visualisation and processing of mass spectrometric data. *Journal of Analytical Atomic
1173 Spectrometry* **26**, 2508–2518.

1174 Peacock, S. M., Rushmer, T. & Thompson, A. B. (1994). Partial melting of subducting oceanic
1175 crust. *Earth and Planetary Science Letters* **121**, 227–244.

1176 Petford, N. & Gallagher, K. (2001). Partial melting of mafic (amphibolitic) lower crust by
1177 periodic influx of basaltic magma. *Earth and Planetary Science Letters* **193**, 483–499.

1178 Plank, T. (2005). Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction
1179 Zones and the Evolution of the Continents. *Journal of Petrology* **46**, 921–944.

1180 Ramezani, J. Tulloch, A.J. (2009). TIMS U-Pb geochronology of southern and eastern Fiordland:
1181 <http://data.gns.cri.nz/paperdata/index.jsp>.

1182 Ramos, V. A. (2009). Anatomy and global context of the Andes: Main geologic features and the
1183 Andean orogenic cycle. *Backbone of the Americas: Shallow Subduction, Plateau Uplift, and*
1184 *Ridge and Terrane Collision: Geological Society of America Memoirs*. Geological Society
1185 of America **1204**, 31–65.

1186 Ramos, V. A., Litvak, V. D., Folguera, A. & Spagnuolo, M. (2014). An Andean tectonic cycle:
1187 From crustal thickening to extension in a thin crust (34°–37°SL). *Geoscience Frontiers* **5**,
1188 351–367.

1189 Rapp, R. P. & Watson, E. B. (1995). Dehydration melting of metabasalt at 8–32 kbar:
1190 Implications for continental growth and crust–mantle recycling. *Journal of Petrology* **36**,
1191 891–931.

1192 Rapp, R. P., Shimizu, N., Norman, M. D. & Applegate, G. S. (1999). Reaction between slab-
1193 derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa.
1194 *Chemical Geology* **160**, 335–356.

1195 Rudnick, R. L. & Fountain, D. M. (1995). Nature and Composition of the Continental-Crust - a
1196 Lower Crustal Perspective. *Reviews of Geophysics* **33**, 267–309.

1197 Saleeby, J. (2003). Segmentation of the Laramide Slab—evidence from the southern Sierra
1198 Nevada region. *Geological Society of America Bulletin* **115**, 655–668.

1199 Scholl, D. W. & von Huene, R. (2007). Crustal recycling at modern subduction zones applied to
1200 the past—Issues of growth and preservation of continental basement crust, mantle
1201 geochemistry, and supercontinent reconstruction. *Geological Society of America Memoirs*,
1202 9–32.

1203 Schwartz, J. J., Stowell, H. H., Klepeis, K. A., Tulloch, A. J., Kylander-Clark, A. R. C., Hacker,
1204 B. R. & Coble, M. A. (2016). Thermochronology of extensional orogenic collapse in the
1205 deep crust of Zealandia. *Geosphere* **12**, 647–677.

1206 Schwartz, J.J., Klepeis, K.A., Sadorski, J.F., Stowell, H.H., Tulloch, A.J., and Coble, M. (2017).
1207 The Tempo of Continental Arc Construction in the Mesozoic Median Batholith, Fiordland,
1208 New Zealand. *Lithosphere* (doi:10.1130/L610.1)

1209 Scott, J. M. & Palin, J. M. (2008). LA-ICP-MS U-Pb zircon ages from Mesozoic plutonic rocks
1210 in eastern Fiordland, New Zealand. *New Zealand Journal of Geology and Geophysics* **51**,
1211 105–113.

1212 Scott, J. M., Cooper, A. F., Palin, J. M., Tulloch, A. J., Kula, J., Jongens, R., Spell, T. L. &
1213 Pearson, N. J. (2009). Tracking the influence of a continental margin on growth of a
1214 magmatic arc, Fiordland, New Zealand, using thermobarometry, thermochronology, and
1215 zircon U-Pb and Hf isotopes. *Tectonics* **28**.

1216 Scott, J. M., Cooper, A. F., Tulloch, A. J. & Spell, T. L. (2011). Crustal thickening of the Early
1217 Cretaceous paleo-Pacific Gondwana margin. *Gondwana Research* **20**, 380–394.

1218 Scott, J. M. (2013). A review of the location and significance of the boundary between the
1219 Western Province and Eastern Province, New Zealand. *New Zealand Journal of Geology*
1220 and *Geophysics* **56**, 276–293.

1221 Scott, J. M., Waight, T. E., van der Meer, Q. H. A., Palin, J. M., Cooper, A. F. & Münker, C.
1222 (2014). Metasomatized ancient lithospheric mantle beneath the young Zealandia
1223 microcontinent and its role in HIMU-like intraplate magmatism. *Geochemistry, Geophysics,*
1224 *Geosystems* **15**, 3477–3501.

1225 Shimoda, G., Tatsumi, Y., Nohda, S., Ishizaka, K. & Jahn, B. M. (1998). Setouchi high-Mg
1226 andesites revisited: Geochemical evidence for melting of subducting sediments. *Earth and*
1227 *Planetary Science Letters* **160**, 479–492.

1228 Shea, E. K., Miller, J. S., Miller, R. B., Bowring, S. A. & Sullivan, K. M. (2016). Growth and
1229 maturation of a mid- to shallow-crustal intrusive complex, North Cascades, Washington.
1230 *Geosphere* **12**, 1489–1516.

1231 de Silva, S. L., Riggs, N. R., Barth, A. P., Silva, S. L. De, Riggs, N. R. & Barth, A. P. (2015).
1232 Quicken the Pulse: Arc Magmatism. *Elements* **11**, 113–118.

1233 Silver, L. T., Taylor, H. P., & Chappell, B. W. (1979). Some petrological, geochemical and
1234 geochronological observations of the Peninsular Ranges batholith near the international
1235 border of the USA and Mexico. In *Mesozoic Crystalline Rocks: Geological Society of*
1236 *America, Annual Meeting, Guidebook* (pp. 83-110).

1237 Spicuzza, M.J., Valley, J.W., Kohn, M.J., Girard, J.P., Fouillac, A.M. (1998a). The rapid heating,
1238 defocused beam technique: a CO₂-laser based method for highly precise and accurate
1239 determination of δ¹⁸O values of quartz. *Chemical Geology* **144**, 195–203.

1240 Spicuzza, M.J., Valley, J.W., McConnell, V.S. (1998b). Oxygen isotope analysis of whole rock

1241 via laser fluorination: An air-lock approach. *Geological Society of America Abstracts* **30**,
1242 80.

1243 Staudigel, H., Davies, G. R., Hart, S. R., Marchant, K. M. & Smith, B. M. (1995). Large scale
1244 isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites 417/418.
1245 *Earth and Planetary Science Letters* **130**, 169–185.

1246 Stowell, H., Parker, K. O., Gatewood, M., Tulloch, a. & Koenig, a. (2014). Temporal links
1247 between pluton emplacement, garnet granulite metamorphism, partial melting and
1248 extensional collapse in the lower crust of a Cretaceous magmatic arc, Fiordland, New
1249 Zealand. *Journal of Metamorphic Geology* **32**, 151–175.

1250 Sutherland, R. & Hollis, C. (2001). Cretaceous demise of the Moa plate and strike-slip motion at
1251 the Gondwana margin. *Geology* **29**, 279–282.

1252 Tatsumi, Y., Shukuno, H., Sato, K., Shibata, T. & Yoshikawa, M. (2003). The Petrology and
1253 Geochemistry of High-Magnesium Andesites at the Western Tip of the Setouchi Volcanic
1254 Belt, SW Japan. *Journal of Petrology* **44**, 1561–1578.

1255 Tatsumi, Y. & Stern, R. (2006). Manufacturing Continental Crust in the Subduction Factory.
1256 *Oceanography* **19**, 104–112.

1257 Taylor, H. P., & Silver, L. T. (1978). Oxygen isotope relationships in plutonic igneous rocks of
1258 the Peninsular Ranges batholith, southern and Baja California. *US Geological Survey Open-
1259 File Report*, 78-701.

1260 Taylor, S. R. & McLennan, S. M. (1995). The geochemical evolution of the continental crust.
1261 *Reviews of Geophysics* **33**, 241.

1262 Thirlwall, M. F. & Anczkiewicz, R. (2004). Multidynamic isotope ratio analysis using MC-ICP-
1263 MS and the causes of secular drift in Hf, Nd and Pb isotope ratios. *International Journal of*
1264 *Mass Spectrometry* **235**, 59–81.

1265 Timm, C., Hoernle, K., Werner, R., Hauff, F., den Bogaard, P. Van, White, J., Mortimer, N. &
1266 Garbe-Schönberg, D. (2010). Temporal and geochemical evolution of the Cenozoic
1267 intraplate volcanism of Zealandia. *Earth-Science Reviews*, 38–64.

1268 Tollstrup, D. L. & Gill, J. B. (2005). Hafnium systematics of the Mariana arc: Evidence for
1269 sediment melt and residual phases. *Geology*. **33**, 737–740.

1270 Tulloch, A. J. & Challis, G. A. (2000). Emplacement depths of Paleozoic-Mesozoic plutons from
1271 western New Zealand estimated by hornblende-Al geobarometry. *New Zealand Journal of*
1272 *Geology and Geophysics* **43**, 555–567.

1273 Tulloch, A. J. & Kimbrough, D. L. (2003). Paired plutonic belts in convergent margins and the
1274 development of high Sr/Y magmatism: Peninsular Ranges batholith of Baja-California and
1275 Median batholith of New Zealand. *Geological Society of America, Special Paper* **374**, 275–
1276 295.

1277 Tulloch, A. J., Ramezani, J., Kimbrough, D. L., Faure, K. & Allibone, A. H. (2009a). U-Pb
1278 geochronology of mid-Paleozoic plutonism in western New Zealand: Implications for S-
1279 type granite generation and growth of the east Gondwana margin. *Geological Society of*
1280 *America Bulletin* **121**, 1236–1261.

1281 Tulloch, A. J., Ramezani, J., Mortimer, N., Mortensen, J., van den Bogaard, P. & Maas, R.
1282 (2009b). Cretaceous felsic volcanism in New Zealand and Lord Howe Rise (Zealandia) as a
1283 precursor to final Gondwana break-up. *Geological Society, London, Special Publications*
1284 **321**, 89–118.

1285 Tulloch, A. J., Ireland, T. R., Kimbrough, D. L., Griffin, W. L. & Ramezani, J. (2011).
1286 Autochthonous inheritance of zircon through Cretaceous partial melting of Carboniferous
1287 plutons: The Arthur River Complex, Fiordland, New Zealand. *Contributions to Mineralogy
1288 and Petrology* **161**, 401–421.

1289 Valley, J. W. (2003). Oxygen Isotopes in Zircon. *Reviews in Mineralogy and Geochemistry* **53**,
1290 343–385.

1291 Valley, J. W., Bindeman, I. N. & Peck, W. H. (2003). Empirical calibration of oxygen isotope
1292 fractionation in zircon. *Geochimica et Cosmochimica Acta* **67**, 3257–3266.

1293 Valley, J. W., Kitchen, N., Kohn, M. J., Niendorf, C. R. & Spicuzza, M. J. (1995). UWG-2, a
1294 garnet standard for oxygen isotope ratios: Strategies for high precision and accuracy with
1295 laser heating. *Geochimica et Cosmochimica Acta* **59**, 5223–5231.

1296 Valley, J. W., Lackey, J.S., Cavosie, A.J., Clechenko, C.C., Spicuzza, M.J., Basei, M.A.S.,
1297 Bindeman, I.N., Ferreira, V.P., Sial, A.N., King, E.M., Peck, W.H., Sinha, A.K., Wei, C.S.
1298 (2005). 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon.
1299 *Contributions to Mineralogy and Petrology* **150**, 561–580.

1300 Valley, J. W. & Kita, N. T. (2009). In situ oxygen isotope geochemistry by ion microprobe.
1301 *Secondary Ion Mass Spectrometry in the Earth Sciences. Mineralogical Association of
1302 Canada, Short Courses* **41**, 19–63.

1303 Vervoort, J. D., Patchett, P. J., Söderlund, U. & Baker, M. (2004). Isotopic composition of Yb
1304 and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-
1305 ICPMS. *Geochemistry, Geophysics, Geosystems* **5**, 10.1029/2004GC000721.

1306 Vervoort, J. D. & Blichert-Toft, J. (1999). Evolution of the depleted mantle: Hf isotope evidence
1307 from juvenile rocks through time. *Geochimica et Cosmochimica Acta* **63**, 533–556.

1308 Voice, P. J., Kowalewski, M. & Eriksson, K. A. (2011). Quantifying the Timing and Rate of
1309 Crustal Evolution: Global Compilation of Radiometrically Dated Detrital Zircon Grains.
1310 *The Journal of Geology* **119**, 109–126.

1311 Walker, B. A. Jr., Bergantz, G. W., Otamendi, J. E., Ducea, M. N., & Cristofolini, E. A. (2015).
1312 *Journal of Petrology* **56** 1863–1896.

1313 Wang X-L., Coble M.A., Valley J.W., Shu X-J., Kitajima K., Spicuzza M.J., Sun T., (2014).
1314 Influence of radiation damage on late Jurassic zircon from southern China: Evidence from
1315 in situ measurement of oxygen isotopes, laser Raman, U-Pb ages, and trace elements.
1316 *Chemical Geology* **389**, 122-136.

1317 Weaver B. L. & Tarney J. (1984) Empirical approach to estimating the composition of the
1318 continental crust. *Nature* **310**, 575–577.

1319 Yogodzinski, G. M. & Kelemen, P. B. (1998). Slab melting in the Aleutians: implications of an
1320 ion probe study of clinopyroxene in primitive adakite and basalt. *Earth and Planetary
1321 Science Letters* **158**, 53–65.

1322 Yogodzinski, G. M., Volynets, O. N., Koloskov, A. V., Seliverstov, N. I. & Matvenkov, V. V.
1323 (1994). Magnesian andesites and the subduction component in a strongly calc-alkaline
1324 series at Piip volcano, far western Aleutians. *Journal of Petrology* **35**, 163–204.

1325 Yogodzinski, G. M., Kay, R. W., Volynets, O. N., Koloskov, A. V. & Kay, S. M. (1995).
1326 Magnesian andesite in the western Aleutian Komandorsky region: implications for slab
1327 melting and processes in the mantle wedge. *Geological Society of America Bulletin*, 505–
1328 519.

1329 Yogodzinski, G. M., Lees, J. M., Churikova, T. G., Dorendorf, F., Wöerner, G. & Volynets, O.
1330 N. (2001). Geochemical evidence for the melting of subducting oceanic lithosphere at plate
1331 edges. *Nature* **409**, 500–504.

1332 FIGURES

1333 **Figure 1.** A simplified geologic map of the study area in Fiordland (adapted from Allibone et al.,
1334 2009a). Samples for zircon O- and Hf isotope analyses are shown with white stars.
1335 Inboard Median Batholith consists of Western Fiordland Orthogneiss, which was
1336 emplaced during an arc flare-up event from 124-114 Ma.

1337 **Figure 2.** Bivariate plots of whole-rock data showing geochemical features of the Western
1338 Fiordland Orthogneiss (this study and Wiesenfeld and Schwartz, unpublished data). a)
1339 Samples range from ~47-60 wt.% SiO₂ and are classified as basalt/trachy-basalt to trachy-
1340 andesite. Western Fiordland Orthogneiss samples are largely magnesian (b), calc-alkalic
1341 to alkali-calcic (c) and metaluminous (d). e) Molar Mg#s range from 42-60 consistent
1342 with fractionation of high-density assemblages including garnet + clinopyroxene from a
1343 primitive basalt or primitive andesite. f) Western Fiordland Orthogneiss samples have
1344 high-Sr/Y values (>40) indicating the presence of garnet and/or amphibole as residual or
1345 fractionating phase. The high Sr/Y character is present and highest in the most primitive
1346 samples (Mg# >50) indicating that the high-Sr/Y signature is a feature of the source and
1347 not related to crystal fractionation processes. Fields in b-c from Frost et al. (2001, 2008).
1348 Fields in e-f compiled from Rapp et al. (1999) and Moyen et al. (2009). BADR = basalt-
1349 andesite-dacite-rhyolite arc trend.

1350 **Figure 3.** Cathodoluminescence images of representative zircons from the Western Fiordland
1351 Orthogneiss. Locations of ion microprobe and laser ablation spots shown, U-Pb in white,
1352 oxygen in teal, and Hf in yellow along with data from each spot. Scale bars are 100 μm .
1353 **Figure 4.** Bivariate plots of Western Fiordland Orthogneiss zircon trace-element data compared
1354 to the global compilation of zircons from various tectonic environments from Grimes et
1355 al. (2015) and references therein. a) U/Yb vs. Hf (ppm) showing enrichment in U/Yb for
1356 Western Fiordland Orthogneiss zircons relative to continental arc zircons, suggesting
1357 either strong crustal input or an enriched mantle source. b) U/Yb vs. Gd/Yb illustrating
1358 the strong garnet signature relative to continental zircons, especially the Worsley and
1359 Malaspina Plutons and Breaksea Orthogneiss. Negative trends are consistent with
1360 fractional crystallization during cooling. c) Gd/Yb vs. Ce/Yb. Western Fiordland
1361 Orthogneiss zircon display enrichment in both Ce/Yb and Gd/Yb, indicating relatively
1362 oxidizing magmas relative to MOR, intraplate and other continental zircons. Only zircons
1363 from kimberlites have higher average Gd/Yb values. d) Ti vs. Yb showing relatively high
1364 Ti concentrations (and high crystallization temperatures) at low average Yb
1365 concentrations relative to other continental arc zircons. Weak trends towards decreasing
1366 Yb are consistent with either garnet and/or late-stage amphibole crystallization. e) Ti vs.
1367 Gd/Yb. Western Fiordland Orthogneiss zircons plot at the high-temperature (Ti) end of
1368 the continental arc spectrum, with high Gd/Yb values consistent with a garnet signature.
1369 Weak cooling trends are present with either garnet or apatite fractionation.
1370 **Figure 5.** a) Histogram showing $\delta^{18}\text{O}$ (Zrn) values for the Western Fiordland Orthogneiss. Grey
1371 bar reflects the $\delta^{18}\text{O}$ composition of high-temperature mantle (Valley et al., 2005). The
1372 weighted-average $\delta^{18}\text{O}$ value for all Western Fiordland Orthogneiss zircons is $5.76 \pm$

1373 0.04‰ (2 σ). Dashed area shows modern ‘adakites’ and high-Mg andesites from global
1374 compilation of Bindeman et al. (2005). b) Histogram showing initial ϵ Hf (Zrn) for the
1375 Western Fiordland Orthogneiss. The weighted-average value for all Western Fiordland
1376 Orthogneiss zircons is $+4.2 \pm 0.2$ (2 σ). Grey bar reflects the composition of depleted
1377 mantle at ca. 120 Ma (Vervoort and Blitchert-Toft, 1999).

1378 **Figure 6.** Bivariate plots of O-isotope and initial ϵ Hf values versus zircon Pb/U age and latitude.
1379 a) Bivariate plot of $^{206}\text{Pb}/^{238}\text{U}$ zircon age vs. $\delta^{18}\text{O}$ (Zrn). b) Bivariate plot of $\delta^{18}\text{O}$ (Zrn)
1380 vs. latitude. c) Bivariate plot of $^{206}\text{Pb}/^{238}\text{U}$ vs. initial ϵ Hf (Zrn). D) Bivariate plot of initial
1381 ϵ Hf (Zrn) vs. latitude. Grey field in a) and c) reflects the $\delta^{18}\text{O}$ composition of zircon in
1382 equilibrium with high-temperature mantle (Valley et al., 2005). All Western Fiordland
1383 Orthogneiss O-isotope data lie within SIMS analytical error of the mantle field. Grey
1384 circles are Western Fiordland Orthogneiss zircons reported in Milan et al. (2016) filtered
1385 for $^{206}\text{Pb}/^{238}\text{U}$ zircon dates between 110 to 130 Ma--the age range of the Western
1386 Fiordland Orthogneiss defined by high-precision zircon dates (see Schwartz et al. 2017
1387 and references therein).

1388 **Figure 7.** Comparison of calculated and measured $\delta^{18}\text{O}$ (WR). Calculated values were
1389 determined from zircon O-isotopes and SiO₂ concentrations following the equation in
1390 Lackey et al. (2008). The grey field bounding the equilibrium line is 3SD of analytical
1391 uncertainty wide. Samples that lie off that line are interpreted to have interacted with
1392 low- $\delta^{18}\text{O}$ (marine or meteoric) water.

1393 **Figure 8.** Results of bulk mixing (a-b) and assimilation-fractional crystallization (c-d) models
1394 for zircon $\delta^{18}\text{O}$ and initial ϵ Hf (Zrn) data (colored curves). Black, horizontal lines at the
1395 bottom of A-D show results of oxygen isotope bulk mass balance mixing models. All

models use a variety of mantle-derived melts. Models in a) and c) use average Deep Cove Gneiss, whereas models in b) and d) use average pelagic sediments (after Vervoort et al. 1999). Ticks and percentages indicate relative proportions of assimilant. In general, models involving Cretaceous depleted mantle ($\epsilon\text{Hf}=+15$) and average arc ($\epsilon\text{Hf}=+13$) fail to describe the variation in Western Fiordland Orthogneiss data. Best-fit models involve 'enriched' mantle sources (mixing curves with $\epsilon\text{Hf} =+7$ to $+3$ as end member compositions). Results permit bulk mixing and/or assimilation of up to 15% Deep Cove Gneiss and up to 10% pelagic sediment; however, the lack of apparent assimilation or mixing trends suggests that the isotopic composition of Western Fiordland Orthogneiss magmas was acquired in source region rather than by crustal assimilation at the level of emplacement. Mantle arrays after Patchett & Tatsumoto (1980) and Valley et al. (2005).

Figure 9. Bivariate plots of $\delta^{18}\text{O}$ melt calculated from zircon values versus whole-rock trace-element ratios and initial $^{87}\text{Sr}/^{86}\text{Sr}$. a) Sr/Y vs. $\delta^{18}\text{O}$ melt. b) La/Yb vs. $\delta^{18}\text{O}$ melt. c) initial $^{87}\text{Sr}/^{86}\text{Sr}$ vs. $\delta^{18}\text{O}$ melt (Wiesenfeld, unpublished data). Thick black bars in each graph show the accepted range of $\delta^{18}\text{O}$ for mantle-derived basaltic melts. Curves represent bulk mixing of end member compositions after Bindeman et al. (2005): A—adakitic (slab) melts, W—mantle wedge melts, C—crustal melts, S—sediment melts \pm fluids. Fields for global slab melts after Bindeman et al. (2005) and references therein. No La/Yb data are reported for Setouchi, Japan (Fig. 9b). Trace-element data from the Western Fiordland Orthogneiss overlap field defined by Aleutians and lie between bulk mixing curves for adakite-mantle wedge melts and adakite-sediment melts. Radiogenic isotope data plot along the bulk mixing curve for adakite-sediment melt, and indicate ~ 4

1418 5% sediment input. Low, Sr/Y lavas from Setouchi, Japan lie along the same bulk mixing
1419 curve with higher amounts of sediment input.

1420 **Figure 10.** Bivariate trace-element plots for Western Fiordland Orthogneiss samples filtered to
1421 show only high Mg# basalts and andesites (Mg# >50). In general, Western Fiordland
1422 Orthogneiss samples show strong enrichment in Th, Ba, La, Pb, Ce, Sr and Nd, and
1423 largely plot within fields defined by other high-Mg# andesites (fields after Kelemen et
1424 al., 2014). Large symbols show estimated compositions of fluid (rectangles) and melt
1425 (circles) in equilibrium with eclogite for Marianas (blue) and Aleutians (peach) at 2 wt.%
1426 fluid or melt extracted (Kelemen et al., 2014). Data from the Western Fiordland
1427 Orthogneiss plot between eclogite fluid and melt compositions, suggesting contributions
1428 from both sources during melting and melt transport. Relative to bulk continental crust
1429 (filled white diamonds), Western Fiordland Orthogneiss is more enriched in Ba, Sr, and
1430 somewhat lower in Th. Estimated bulk continental crust values from Christensen and
1431 Mooney (1995), McLennan and Taylor (1985), Rudnick and Fountain (1995), and
1432 Weaver and Tarney (1984), including Archean estimate of Taylor and McLennan (1995).

1433 **Figure 11.** Bivariate plots of a) Th/Nb versus La/Nb and b) Th/La versus Sm/La for high-Mg#
1434 basalts and andesites (Mg# >50). Fields show modern arc lavas and mid-ocean ridge
1435 basalts (MORBs), and sediments from the Kermadec-Hikurangi arc. a) Western
1436 Fiordland Orthogneiss data show two trends: 1) a low Th/La (<0.1) source that
1437 characterizes the Breaksea and Resolution Orthogneisses, the Malaspina Pluton, some of
1438 the Worsley Pluton, and MORBs; and 2) a high Th/La (~0.3) source that characterizes a
1439 subgroup of the high-Th, Worsley samples. The high Th/La source is consistent with
1440 subducted, Kermadec-Hikurangi sediments (Gamble et al., 1996); b) Western Fiordland

1441 Orthogneiss rocks are characterized by low Sm/La, a feature that also defines OIB, E-
1442 MORB and mantle xenoliths from greater Zealandia (Sun and McDonough, 1989;
1443 McCoy-West et al., 2015). Western Fiordland Orthogneiss rocks trend from low Th/La to
1444 higher values consistent with interaction with high-Th sediment. The black line shows
1445 bulk mixing trend between a high-Th sedimentary component and a low-Sm/La mantle
1446 component. Arc and MORB fields after Plank (2005). Average E-MORB and N-MORB
1447 compositions after Sun & McDonough (1989).

1448 **Figure 12.** Schematic model for the development of the Fiordland sector of the Gondwana
1449 margin from the Triassic to Early Cretaceous. a) Arc-related magmatism in the outboard
1450 arc (Darran Suite) from ca. 230 to 136 Ma. Magmatism is characterized by low-Sr/Y
1451 plutons with depleted mantle radiogenic isotope values. b) Development of a 'tear' or
1452 ridge-trench collision after ca. 136 Ma results in opening of a slab window and upwelling
1453 of asthenospheric mantle. High-Sr/Y melts are generated from ① partial melting of
1454 subducted, eclogite-facies sedimentary rocks and oceanic crust. Subsequent hybridization
1455 occurs by ② mixing of high-Sr/Y melts with a) metasomatized subcontinental mantle
1456 lithosphere, and/or b) basaltic melts derived from partial melting of the same mantle
1457 lithosphere. c) Peak high-MAR event occurs as upwelling asthenospheric mantle
1458 continues to melt subducted, eclogite-facies oceanic crust and impinges on hydrous
1459 subcontinental lithospheric mantle igniting the Cretaceous flare up. d) Waning high-Sr/Y
1460 magmatism, and granulite- to amphibolite-facies metamorphism in the lower to middle
1461 crust (Stowell et al. 2014). Decompression in the lower crust initiates at ca. 108-106 Ma
1462 during regional extension and A-type magmatism (Tulloch et al., 2009; Klepeis et al.,

1463 2016; Schwartz et al., 2016). Possible foundering of thick ultramafic root produced
1464 during high-Sr/Y flare-up event.

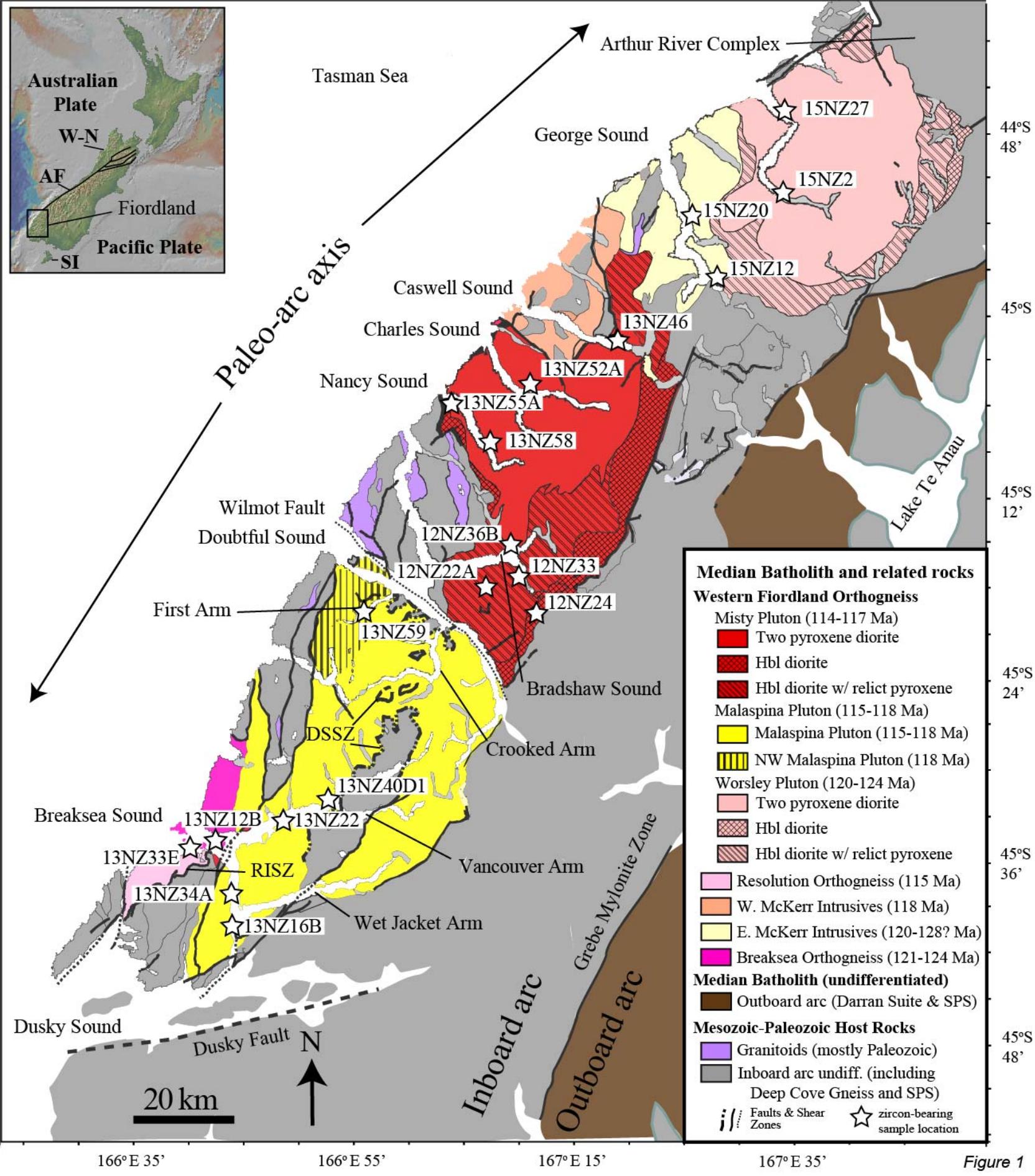
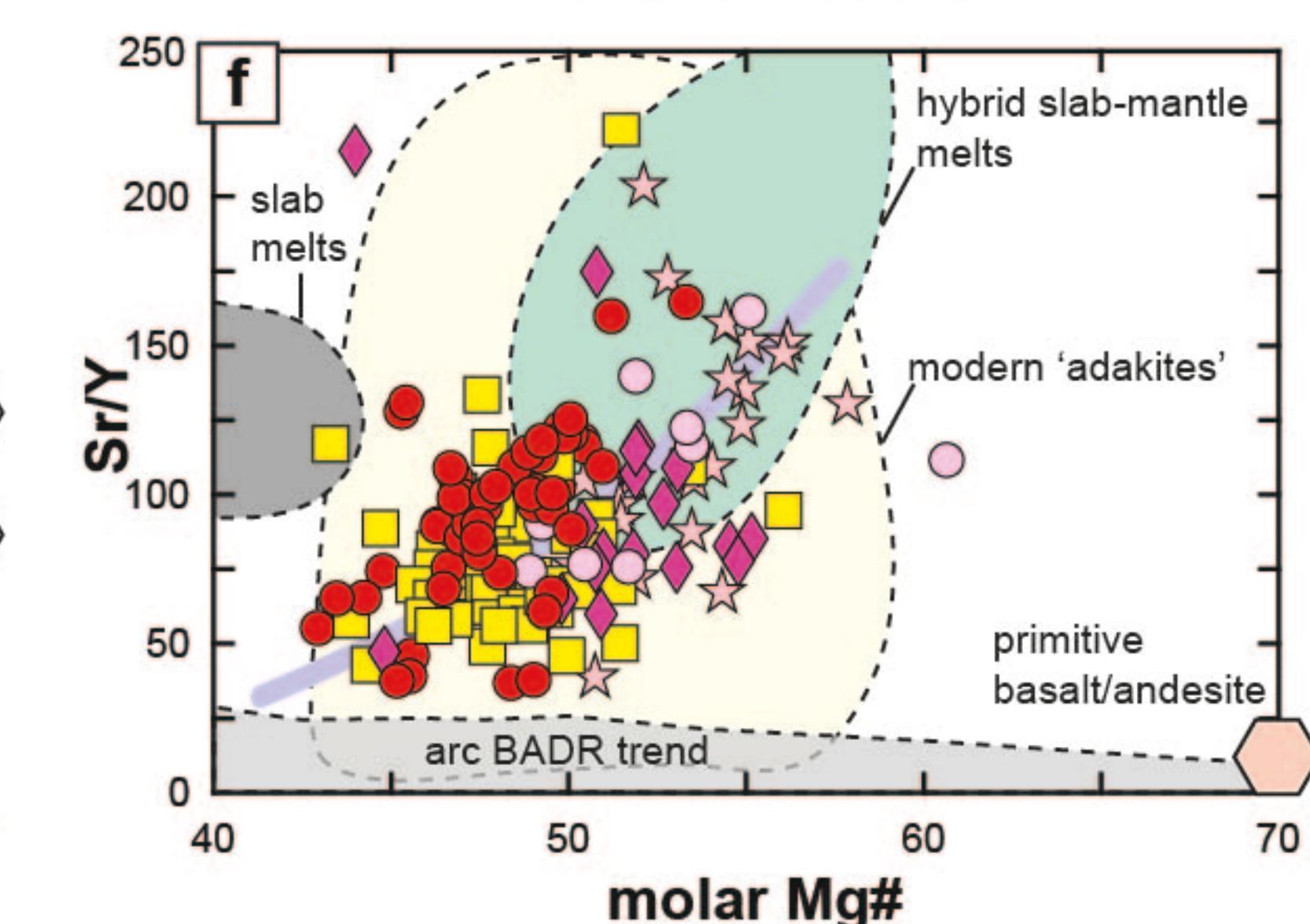
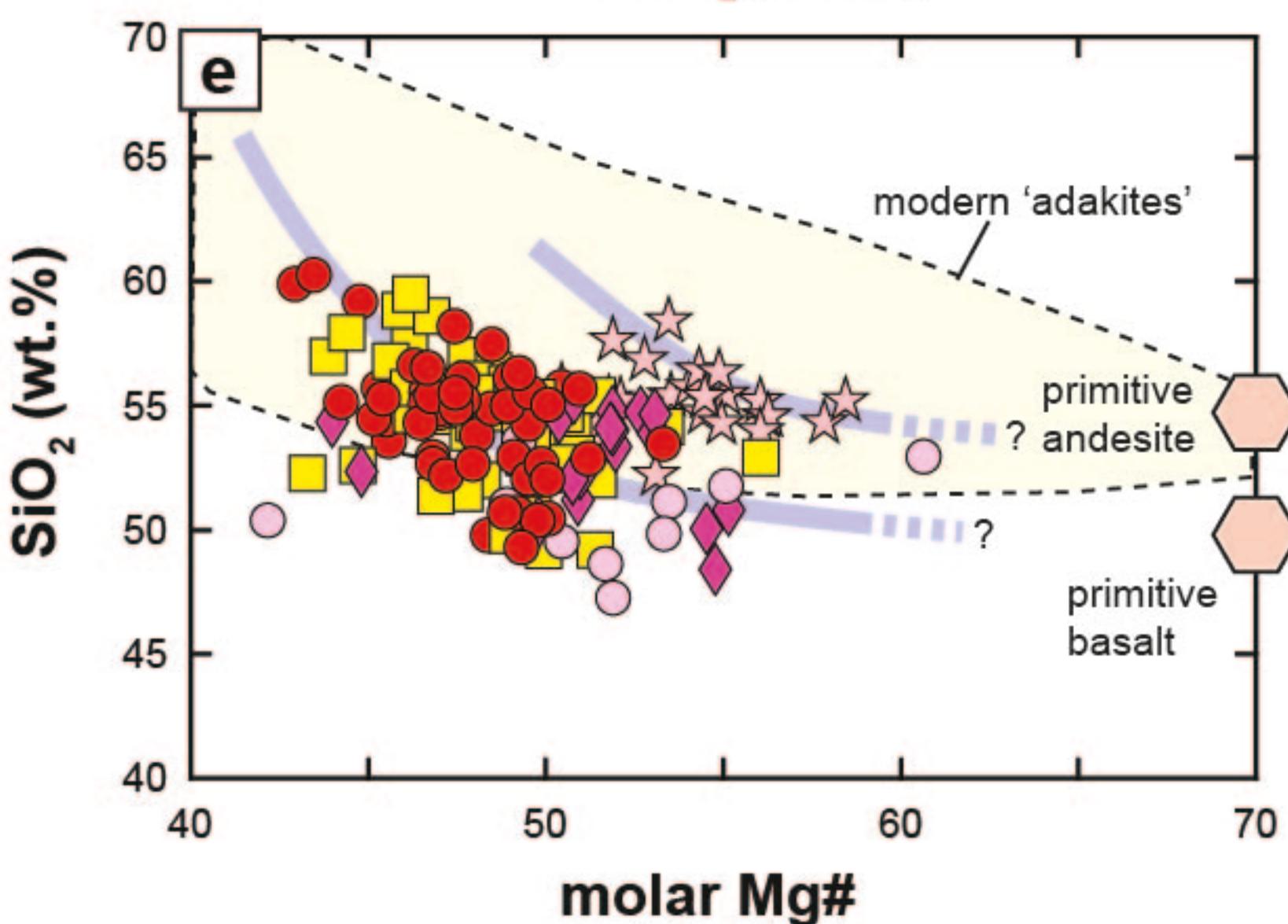
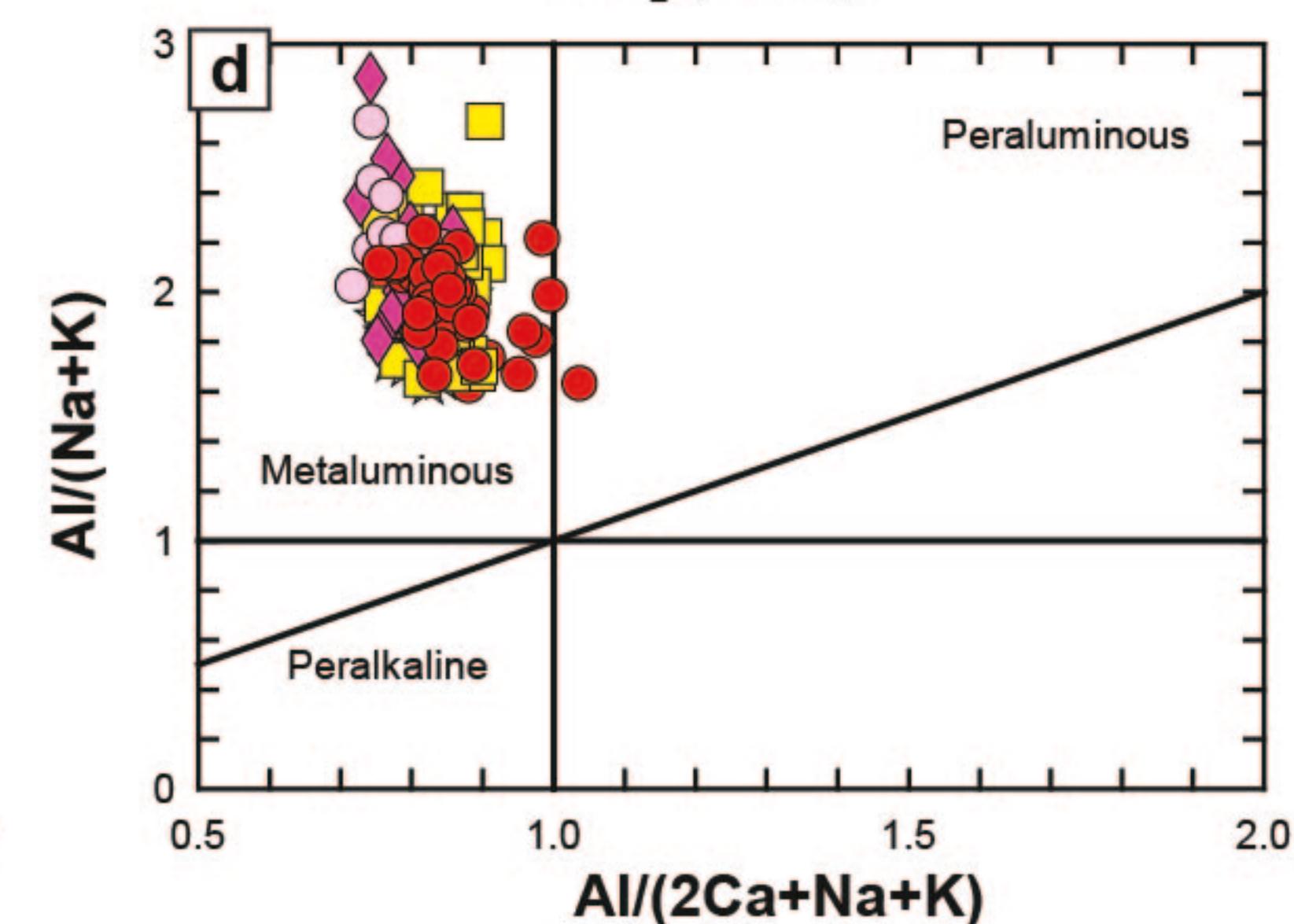
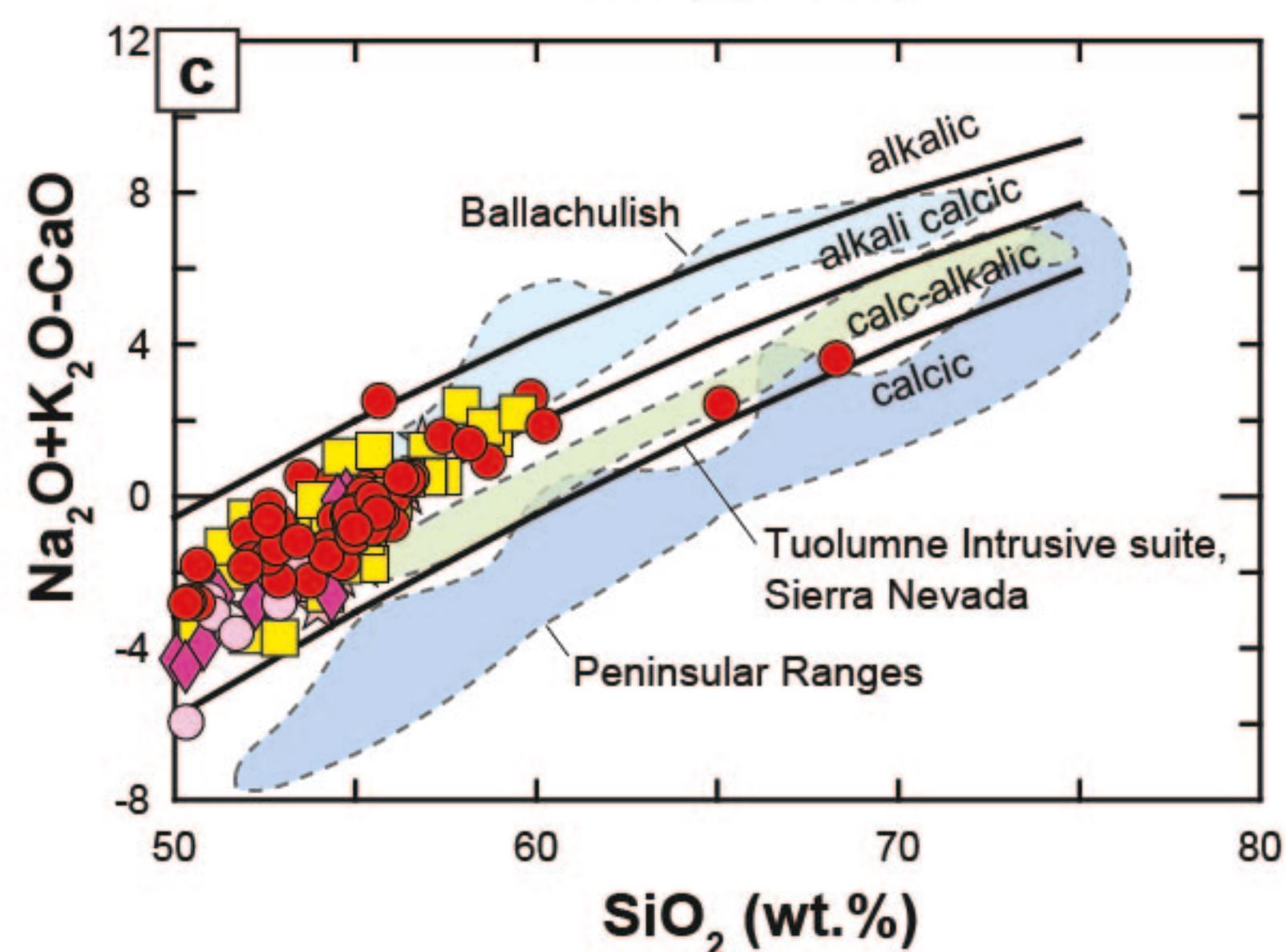
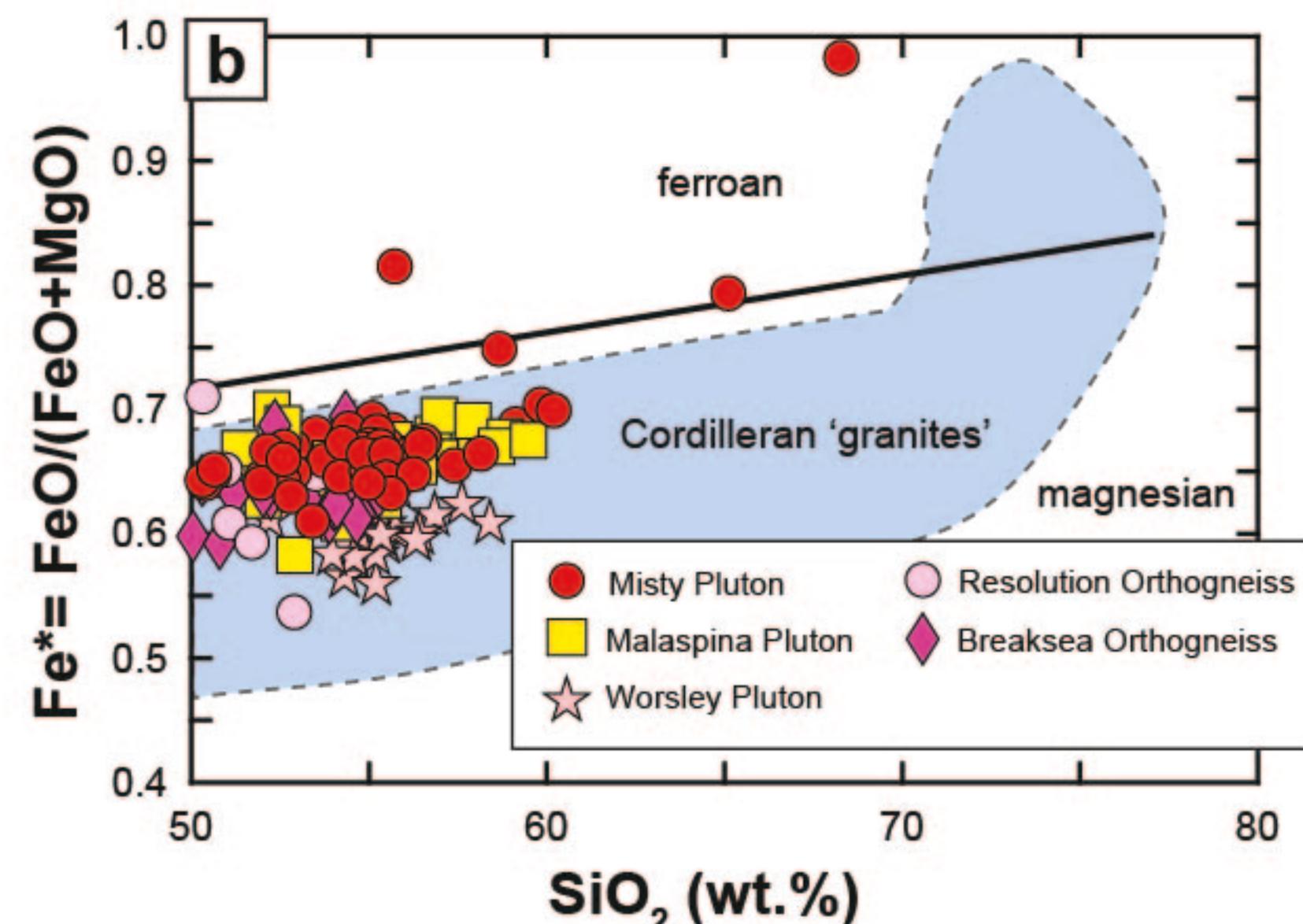
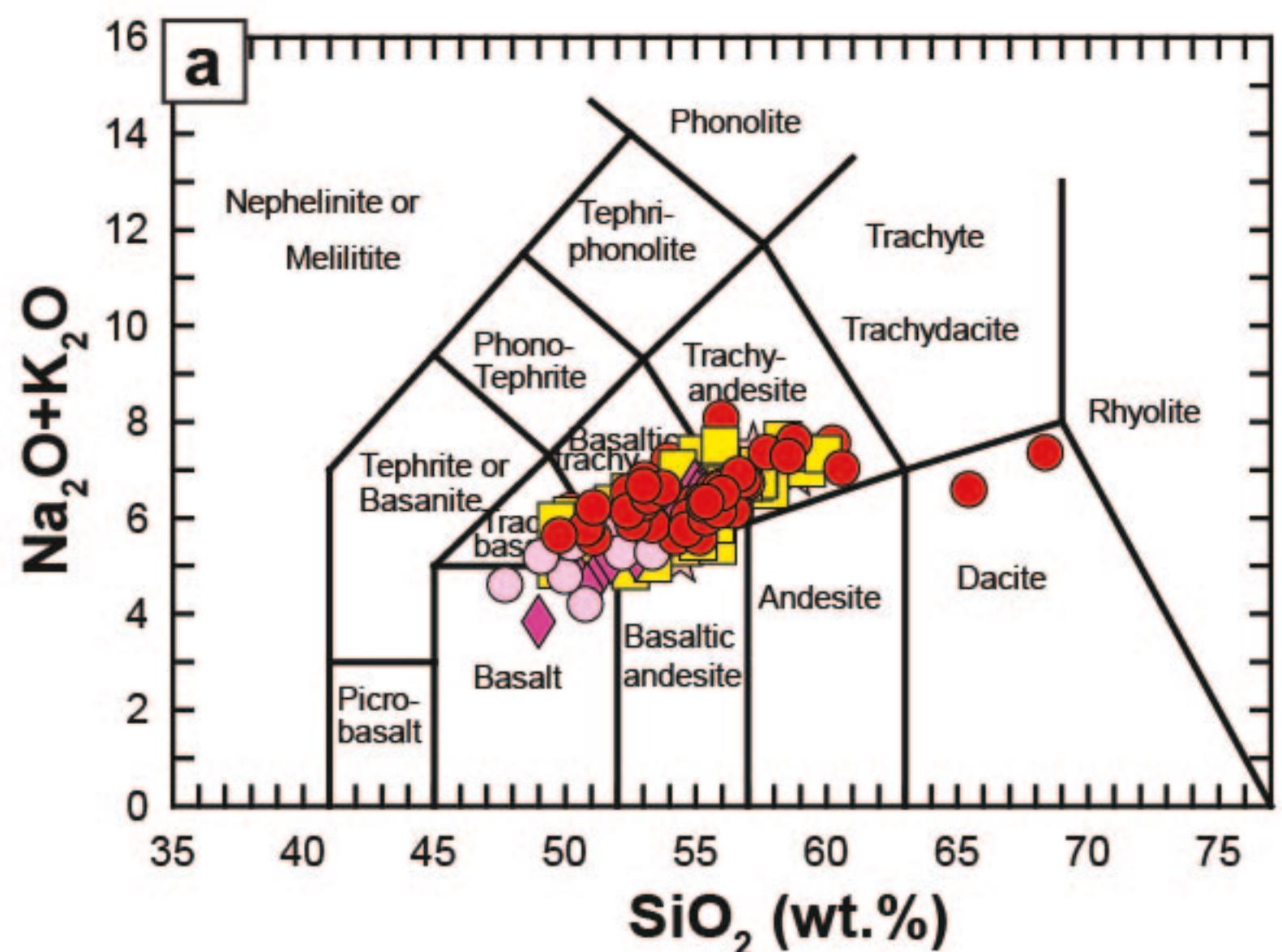








Figure 1

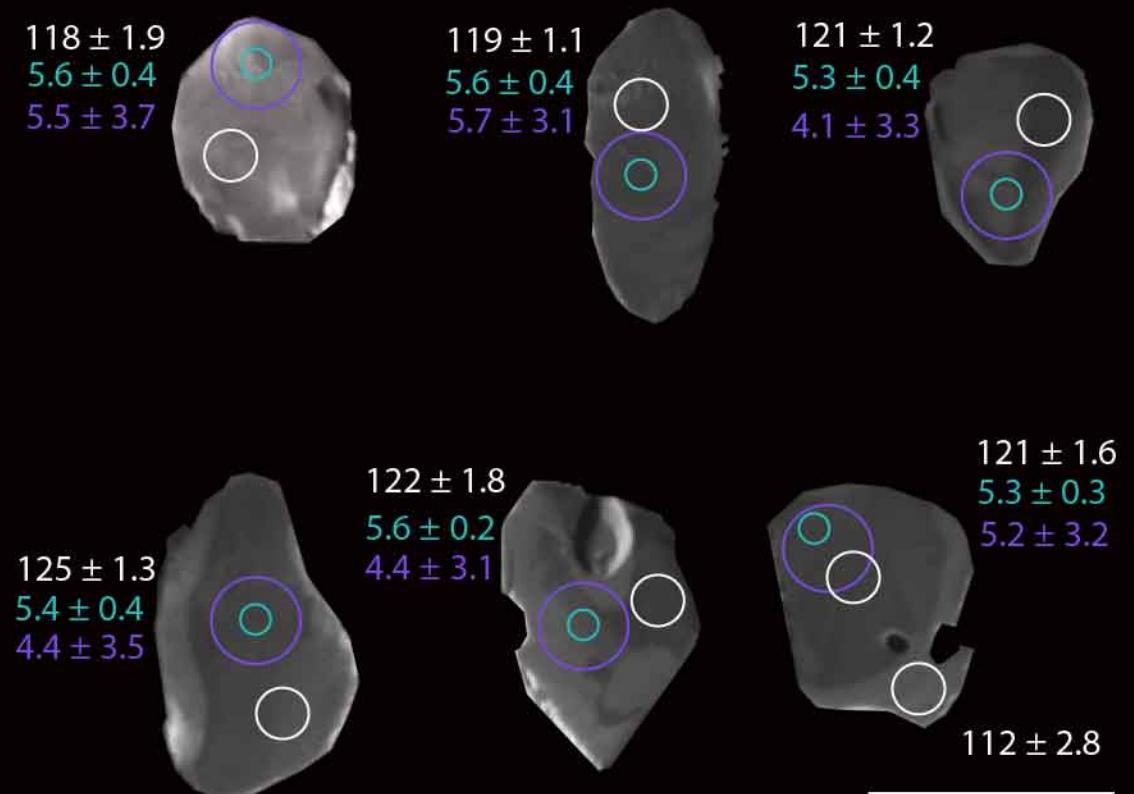


Figure 2

(15NZ2)

Worsley Pluton

(15NZ27)

121 ± 0.9

5.8 ± 0.4

4.7 ± 3.0

6.0 ± 0.4

3.7 ± 3.2

6.2 ± 0.4

123 ± 1.6

5.9 ± 0.4

6.2 ± 3.0

123 ± 1.2

124 ± 2.5

5.7 ± 0.4

5.4 ± 3.6

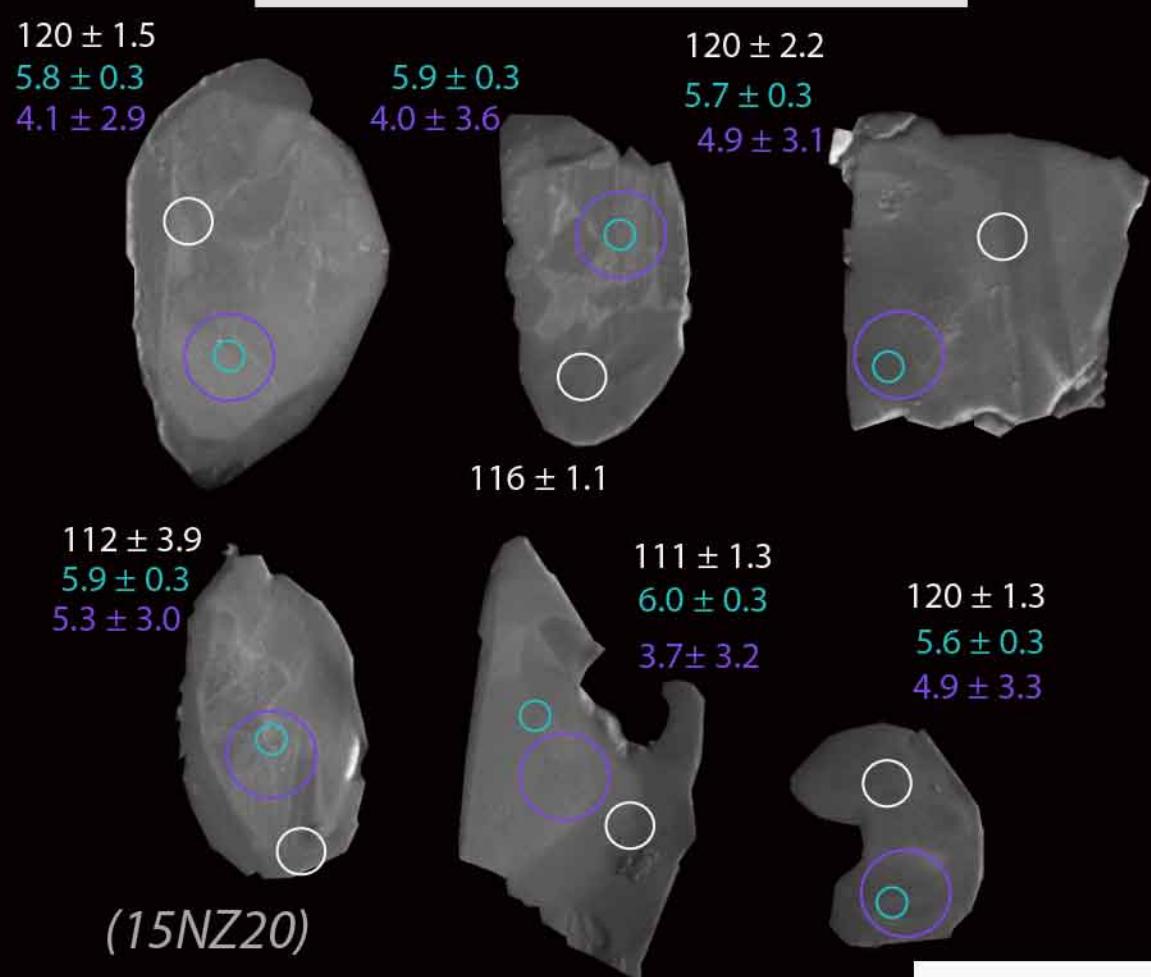
123 ± 2.8

5.7 ± 0.4

6.7 ± 3.5

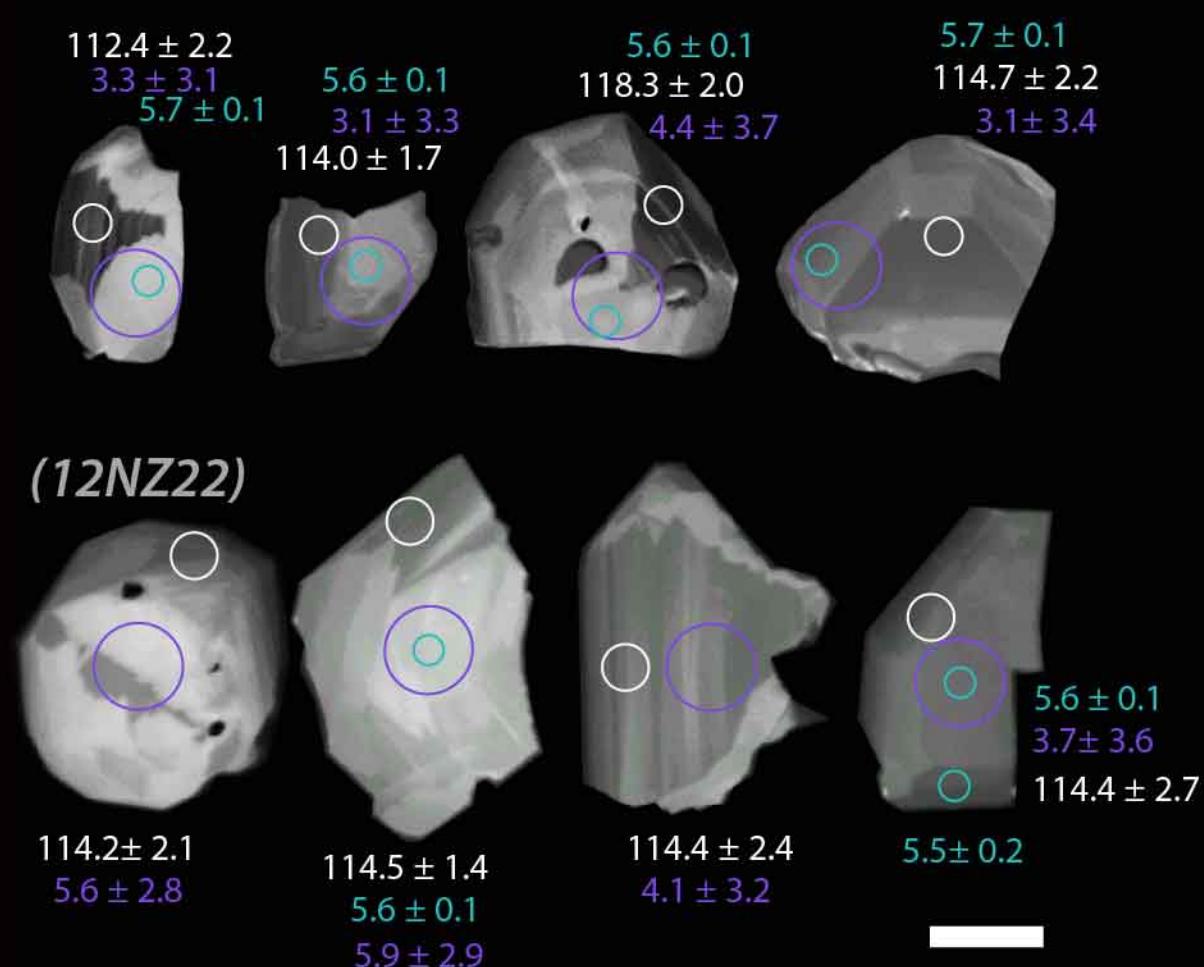
121 ± 1.6

121 ± 1.6


U-Pb spot age (1 σ) Ma

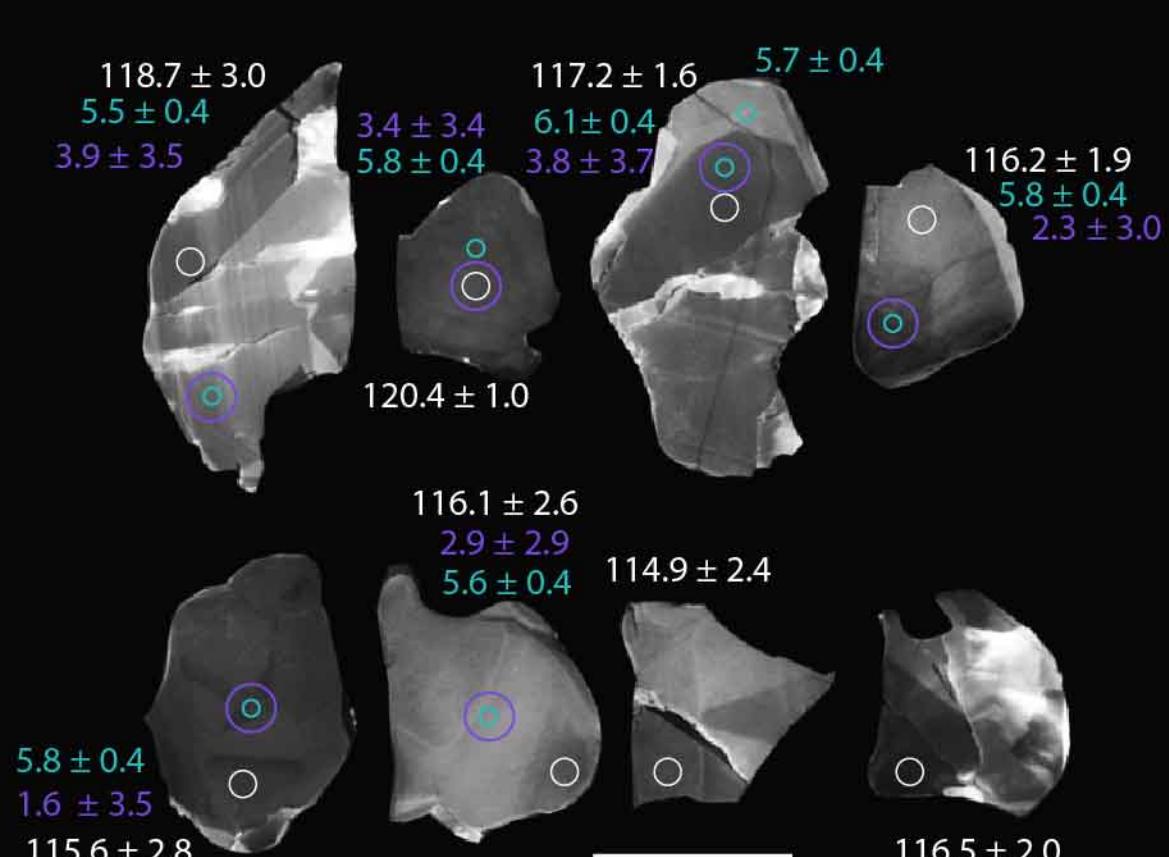
100 μm

Lu-Hf spot
εHf (2 σ)


O spot
 $\delta^{18}\text{O}$ (2 σ , ‰)

Eastern McKerr Intrusives

(12NZ24)


Misty Pluton

(13NZ34A)

Malaspina Pluton

(13NZ59)

117 ± 1.9

5.77 ± 0.3

3.5 ± 3.7

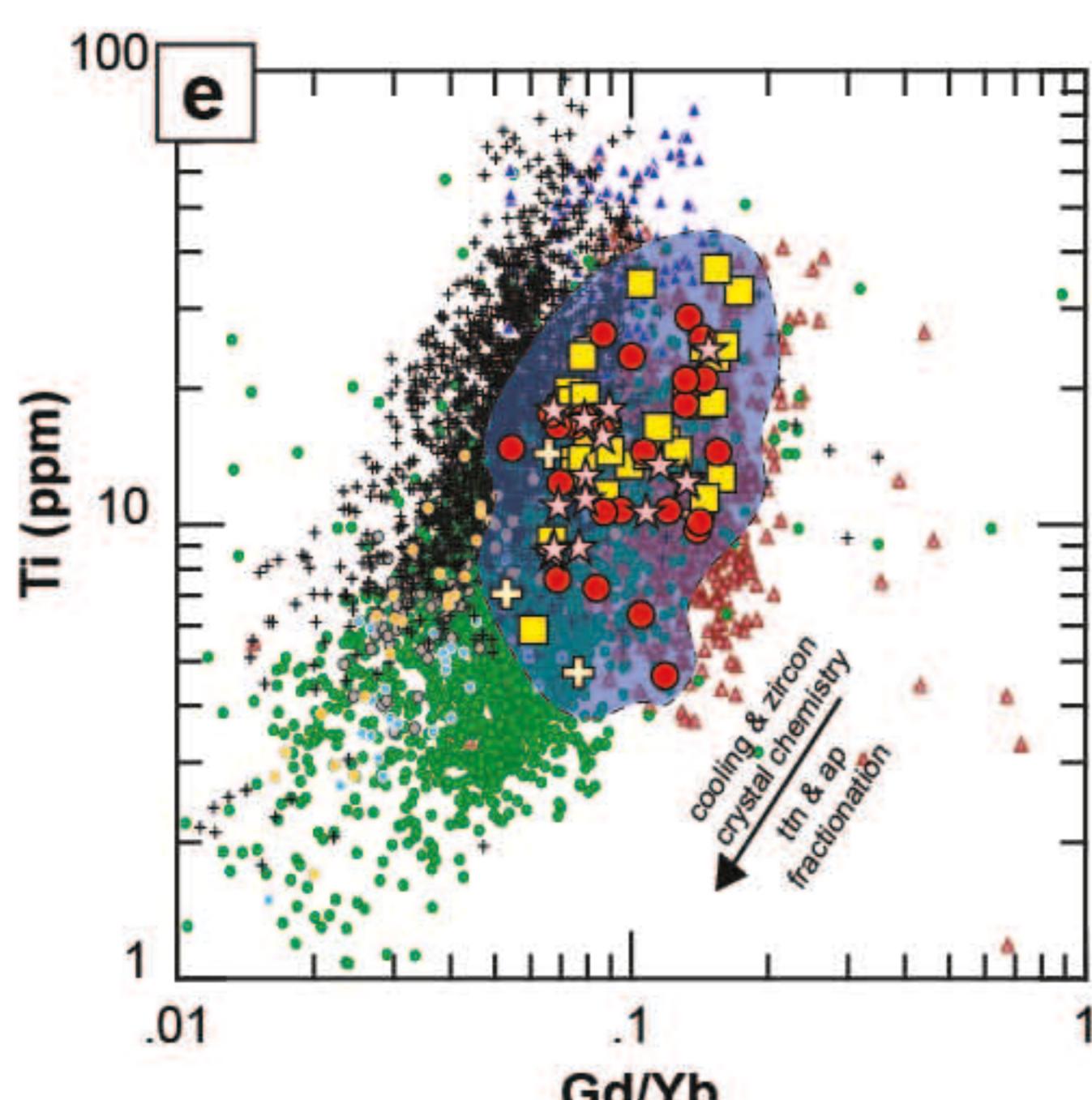
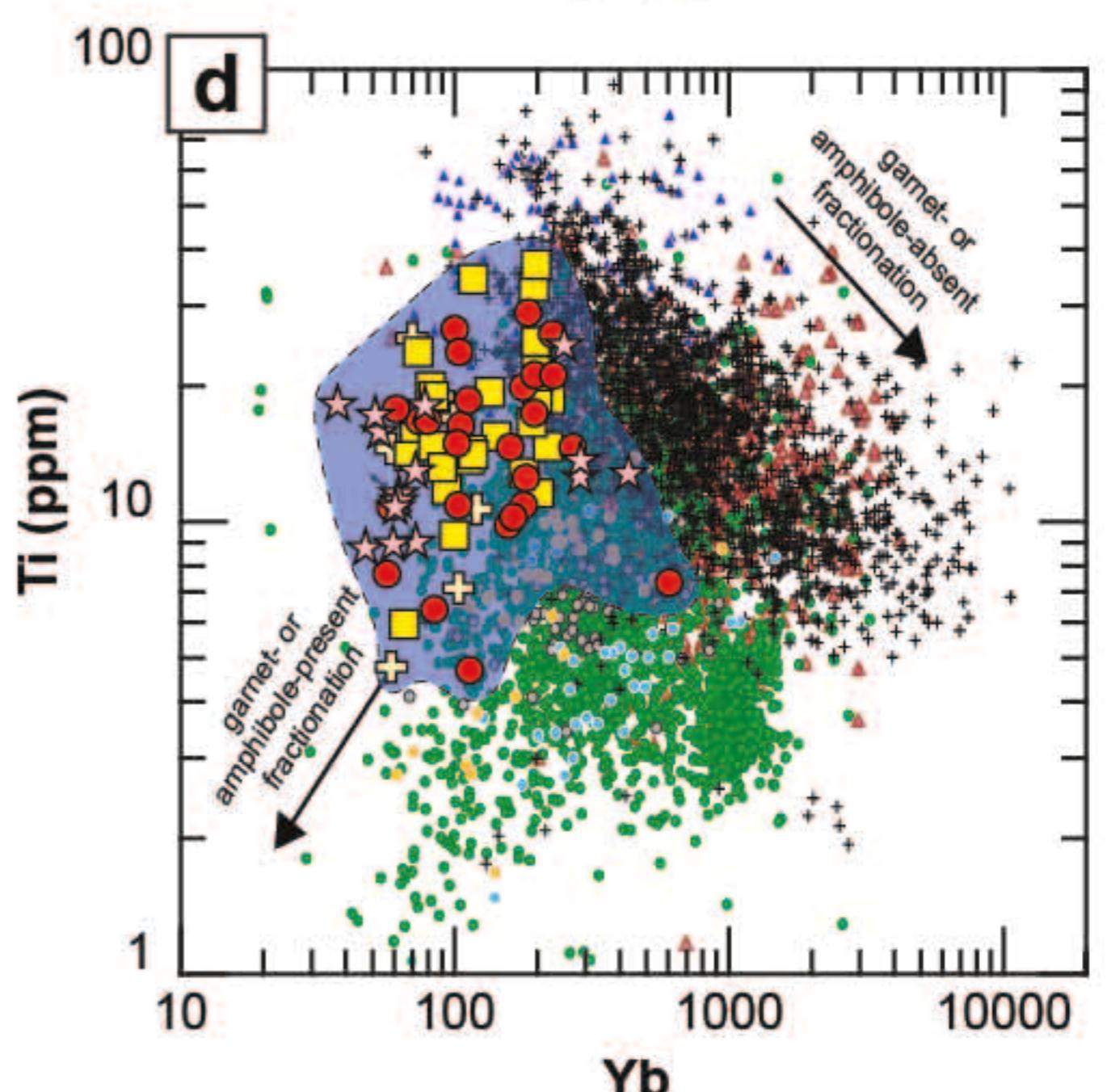
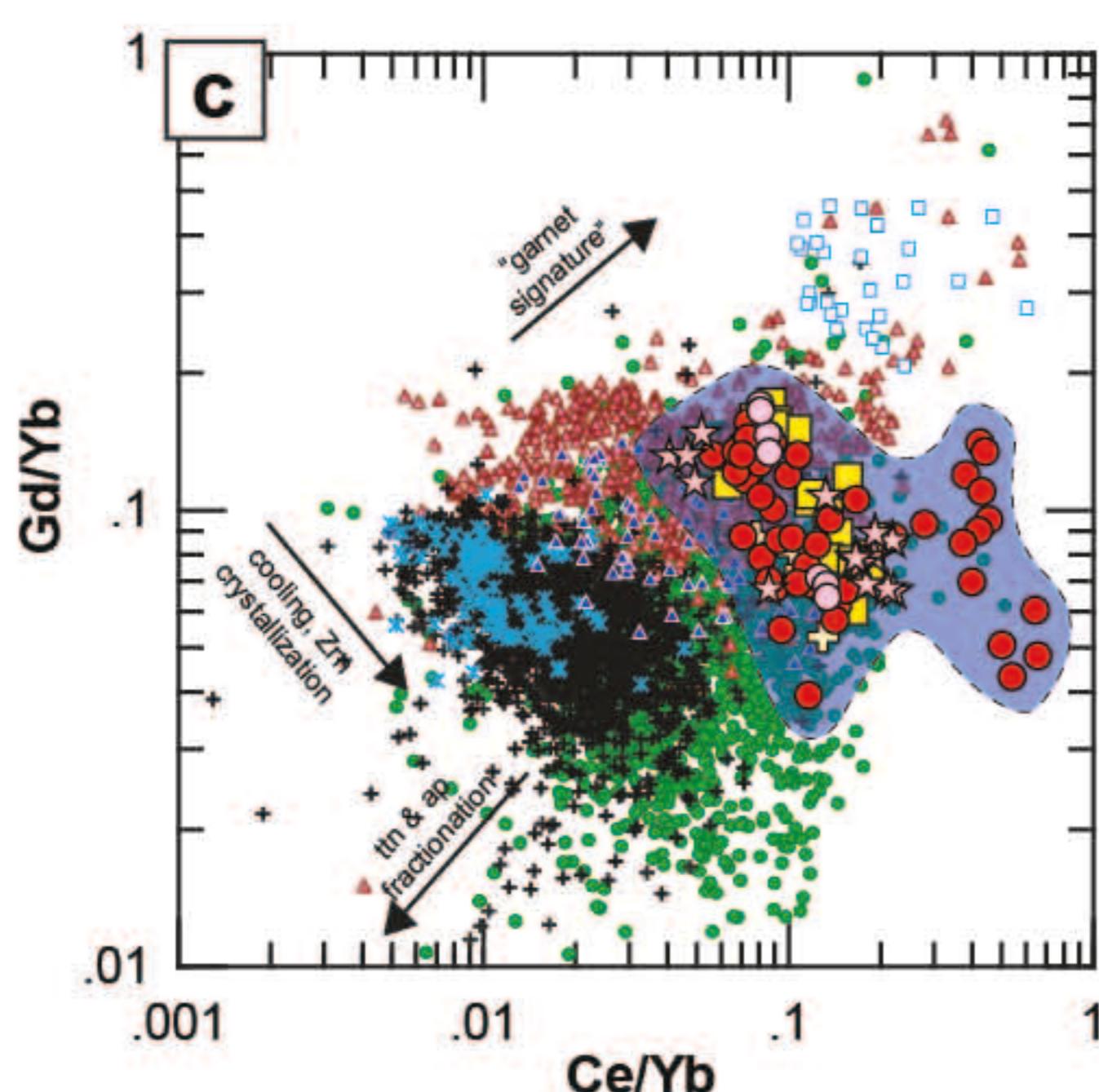
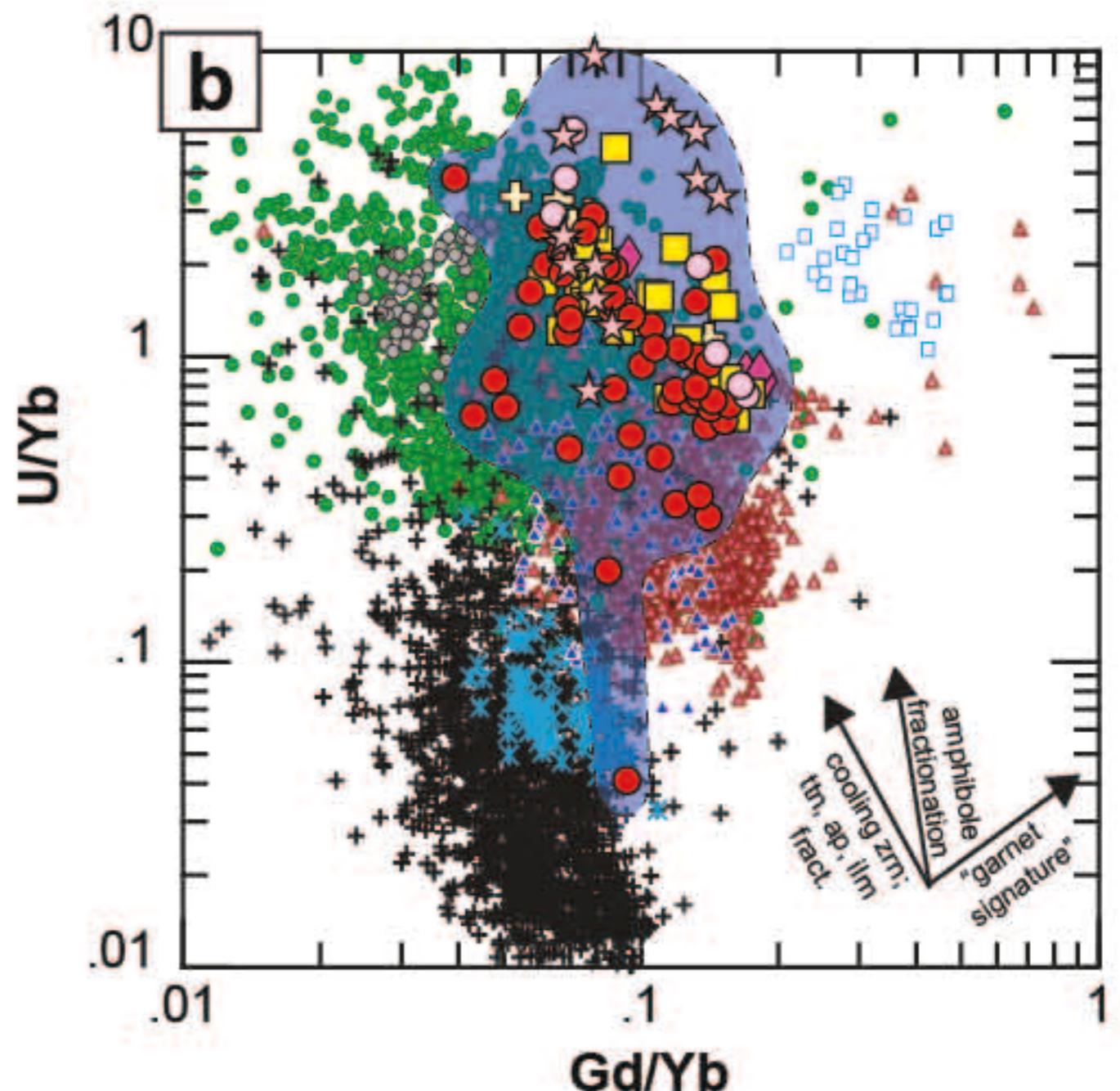
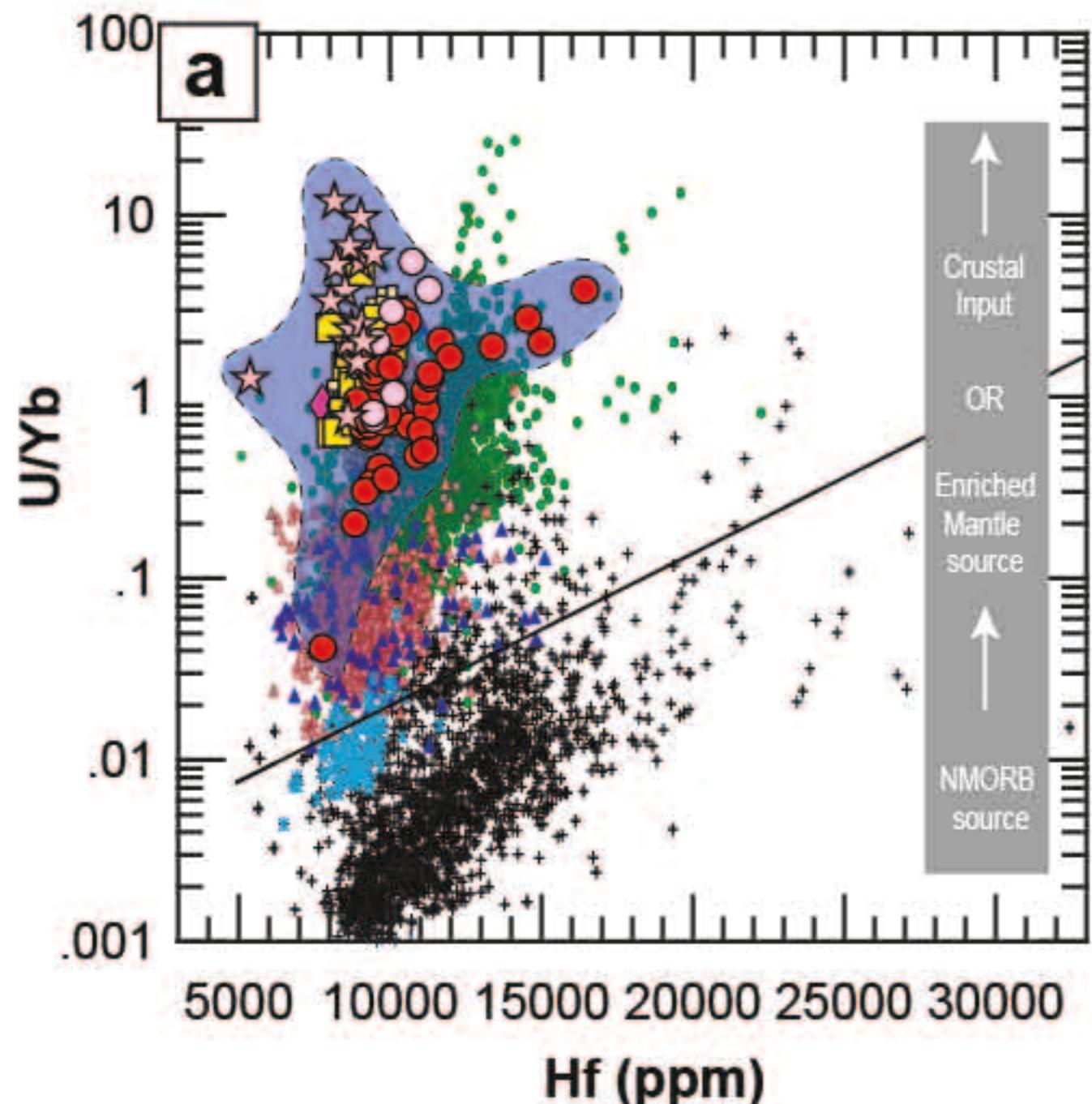
4.0 ± 3.2

5.7 ± 0.3

120 ± 1.6

121 ± 2.1

5.8 ± 0.3






3.9 ± 3.1

121 ± 1.0

5.8 ± 0.3

4.9 ± 3.2

Figure 3

- Continental arc compilation
 - Tonalite, PRB, CA, USA
 - Granodiorite, PRB, CA, USA
- Post-collisional granitoids
 - southern Adamello, Italy
- Mid-ocean ridge compilation
 - near 15°20' N, MAR
- Hualalai, Hawaii
- Iceland
- Kimberlite

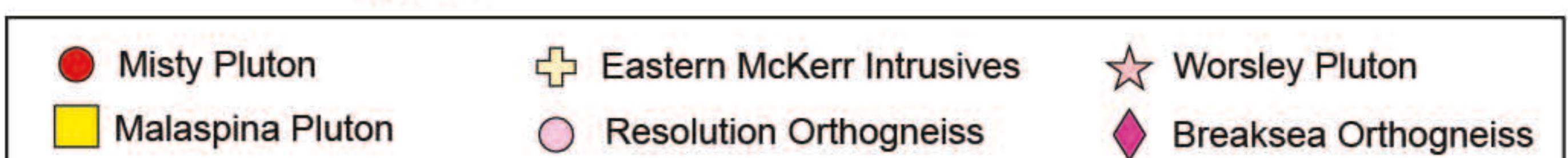


Figure 4

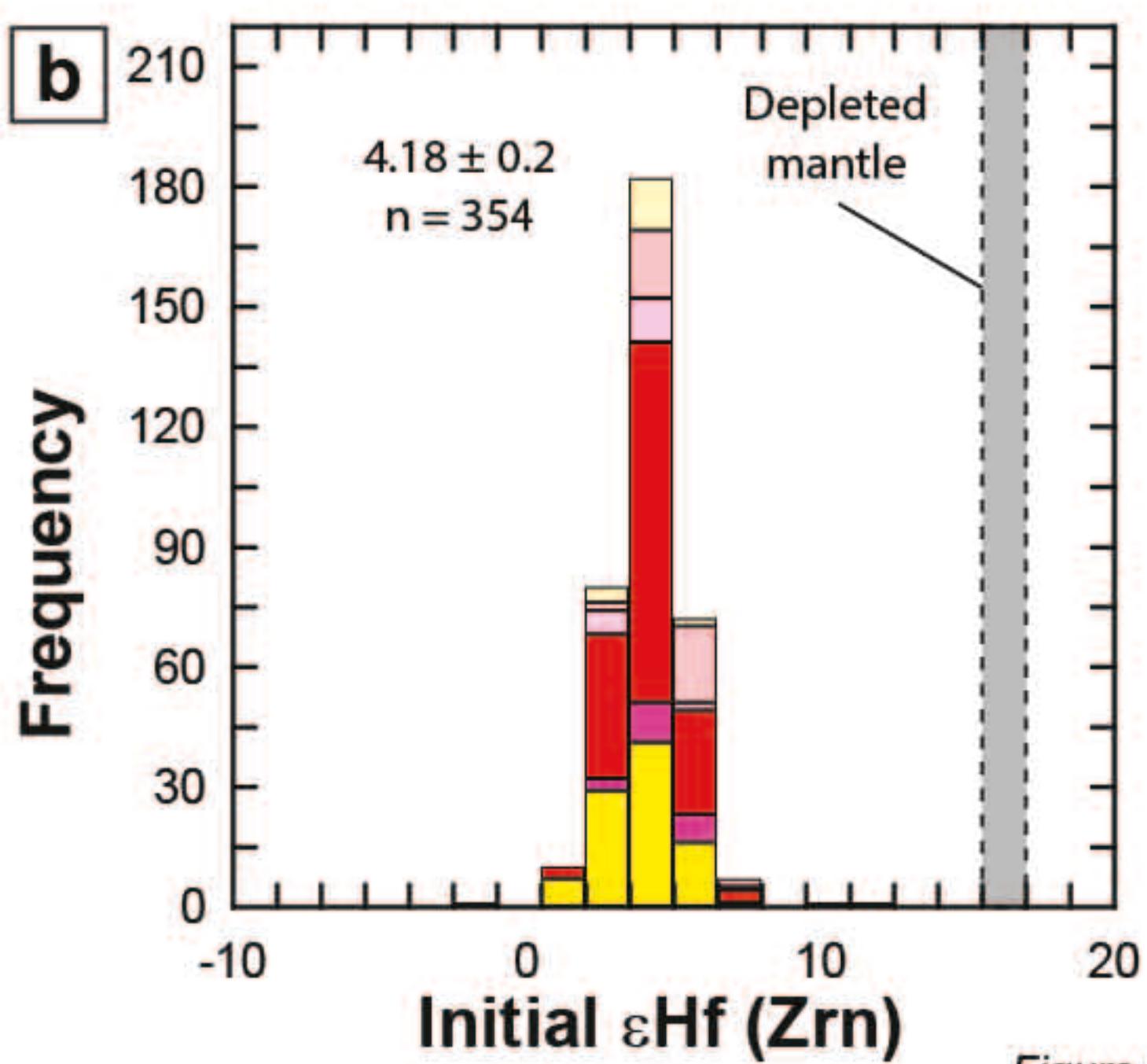
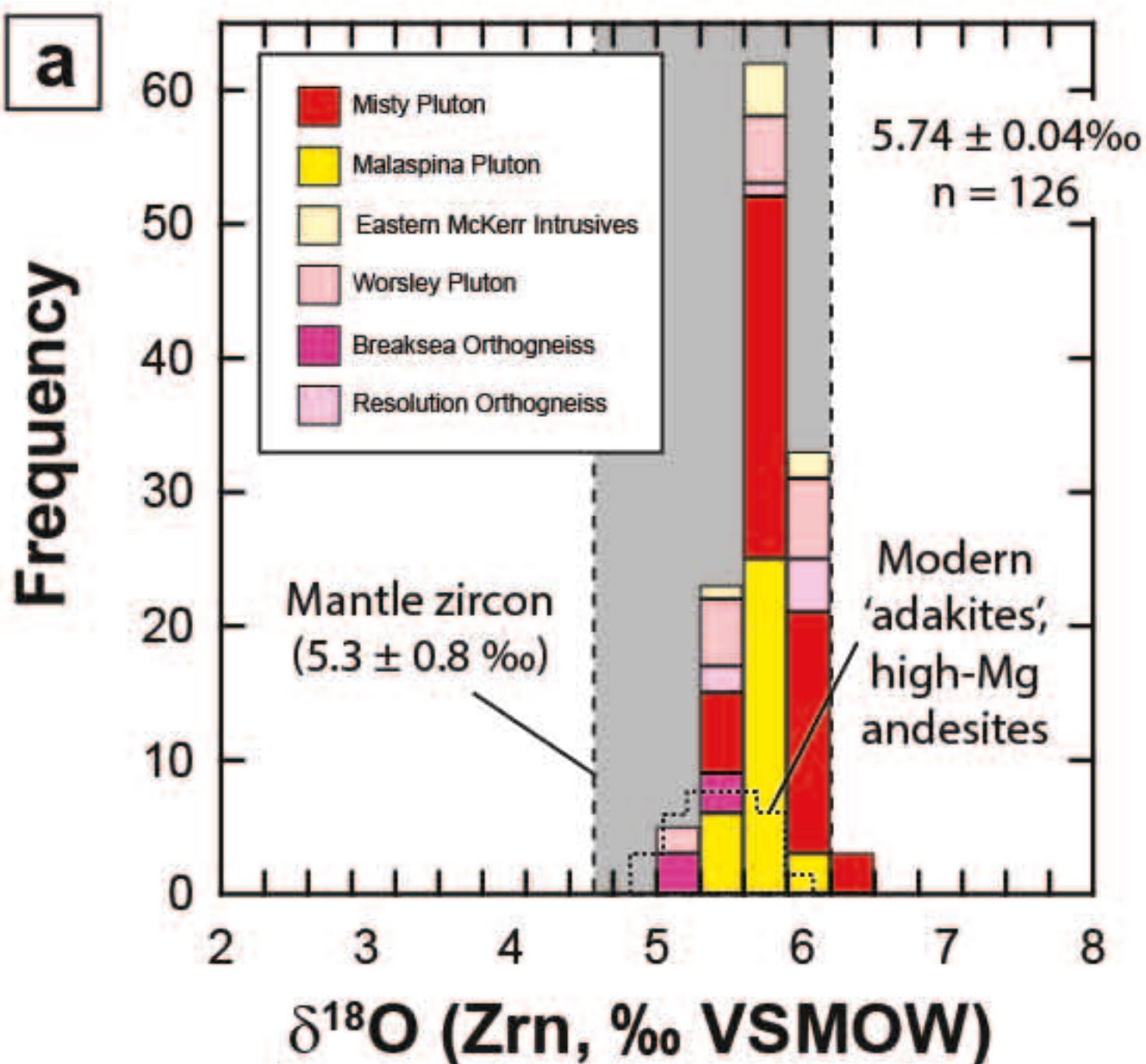



Figure 5

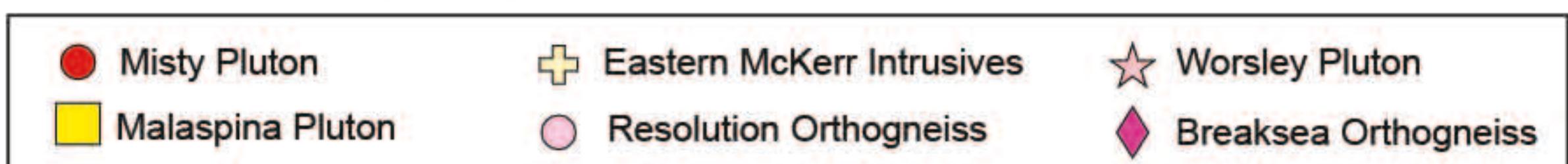
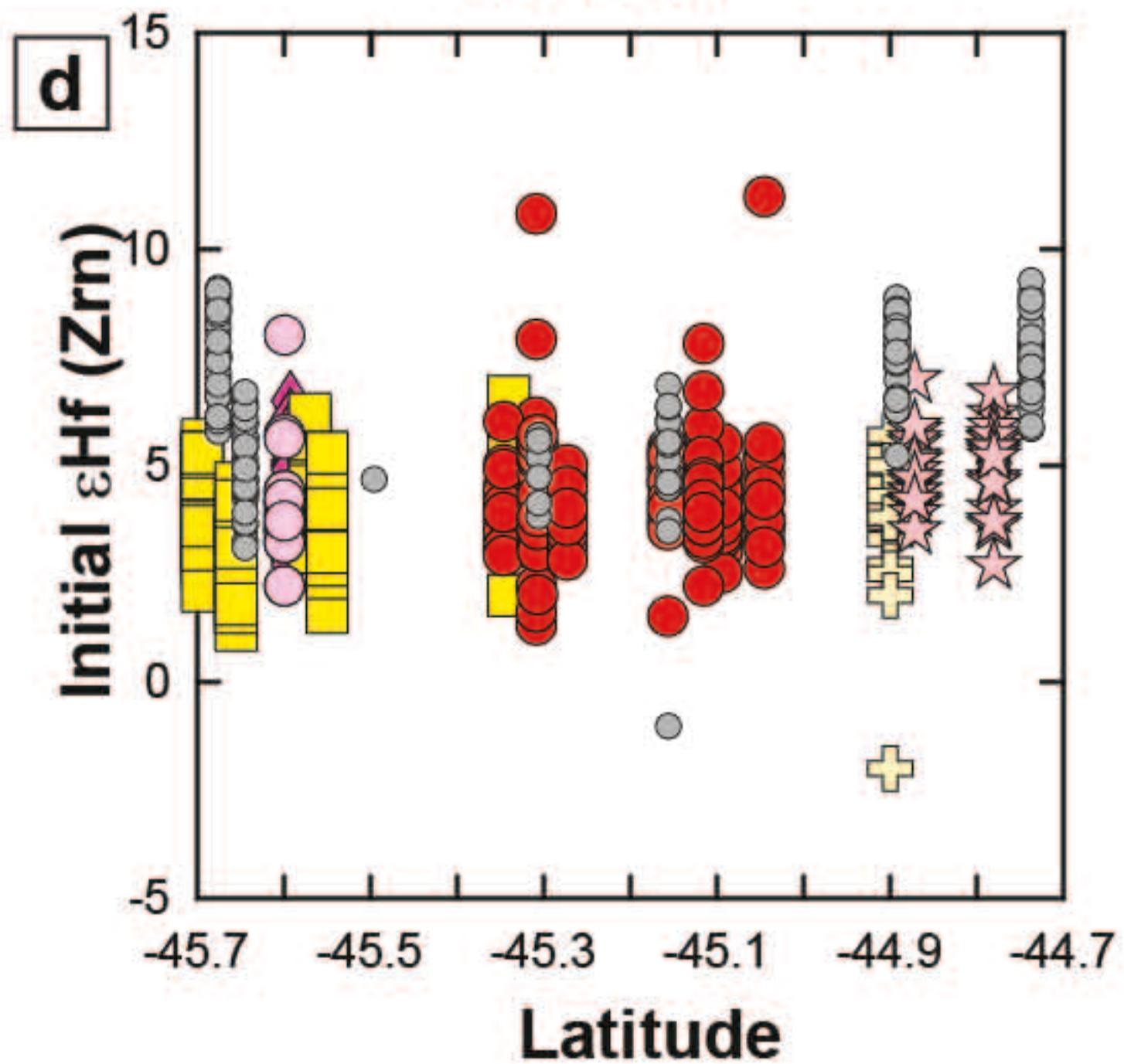
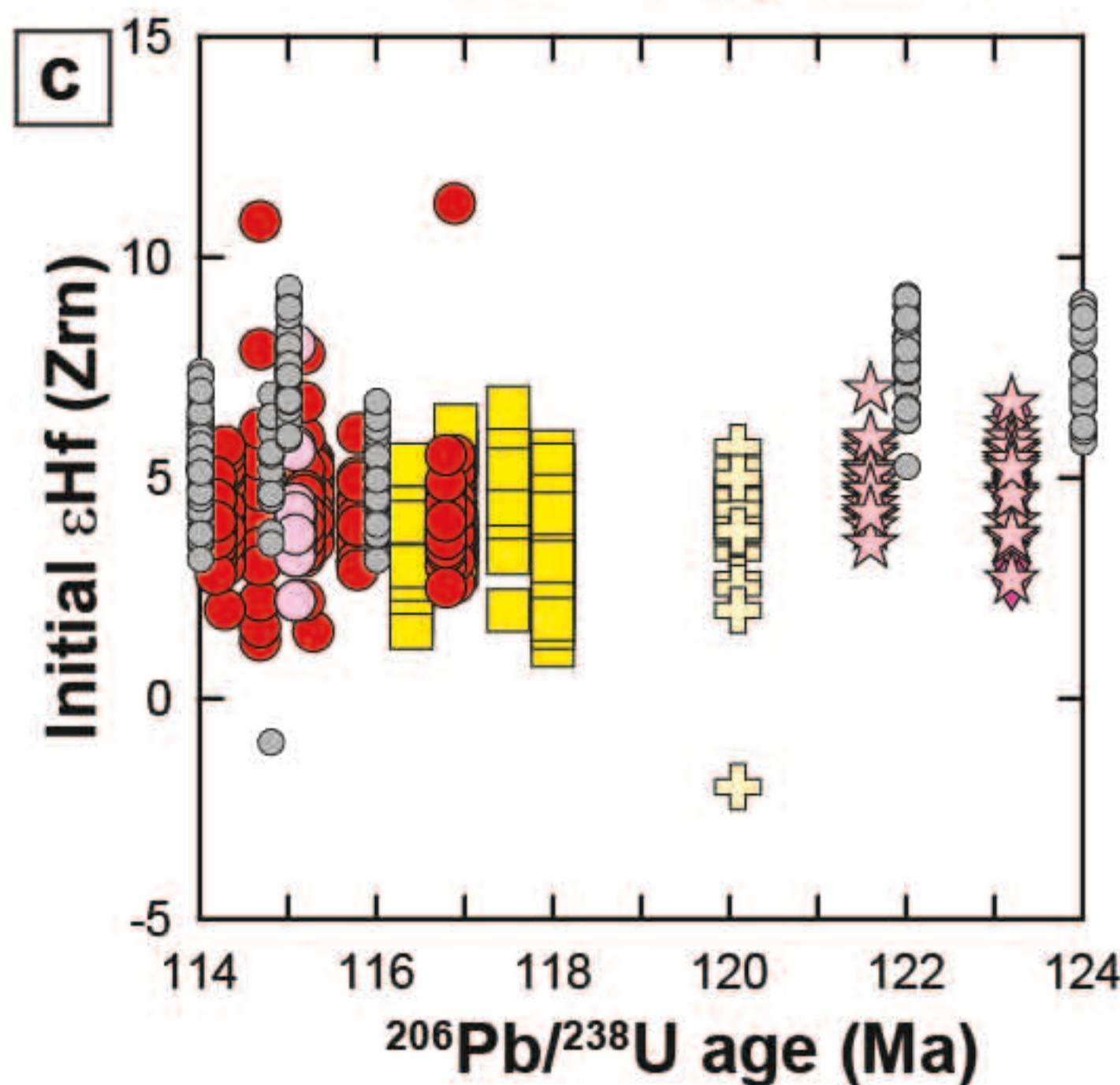
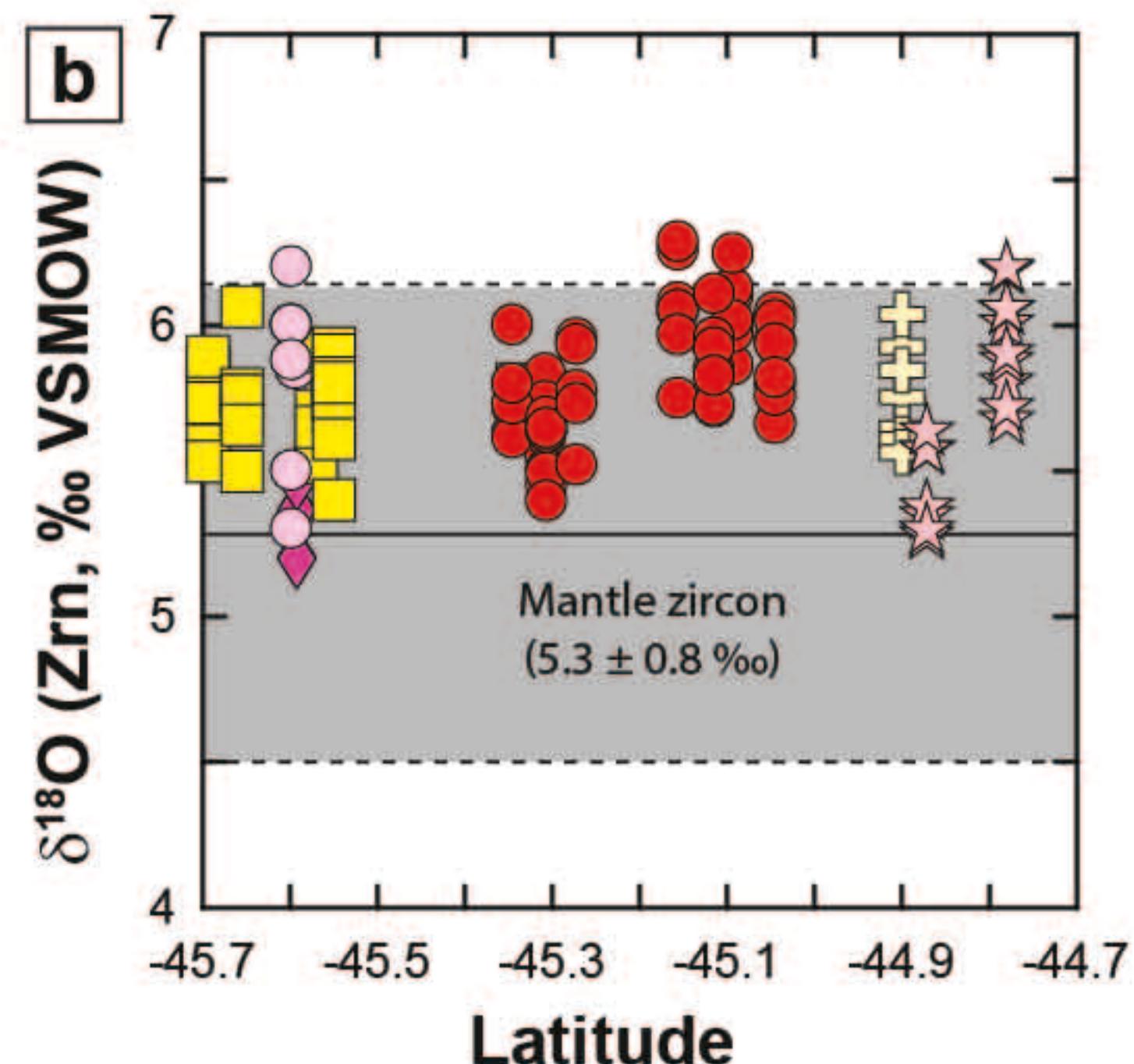
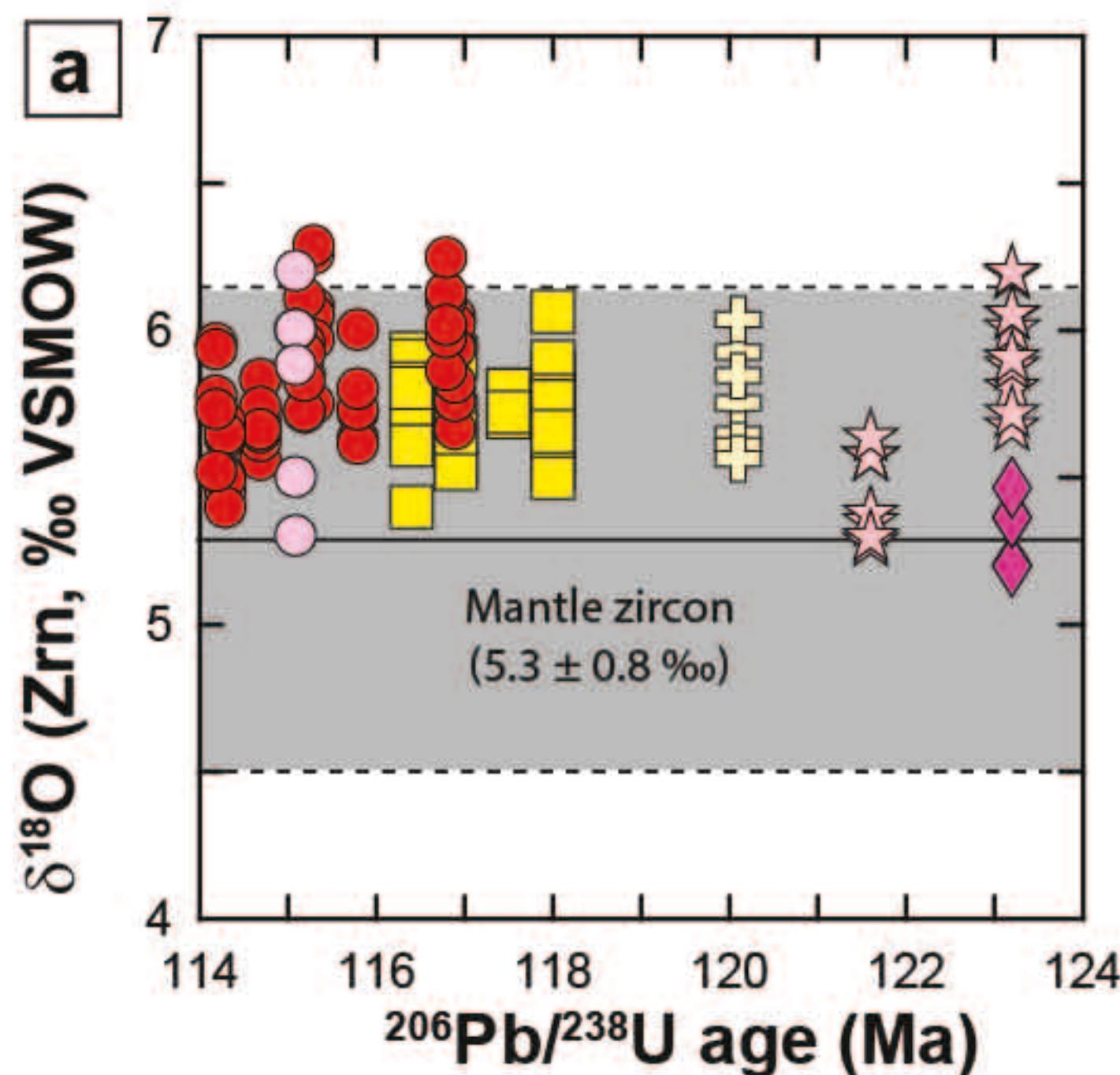






Figure 6

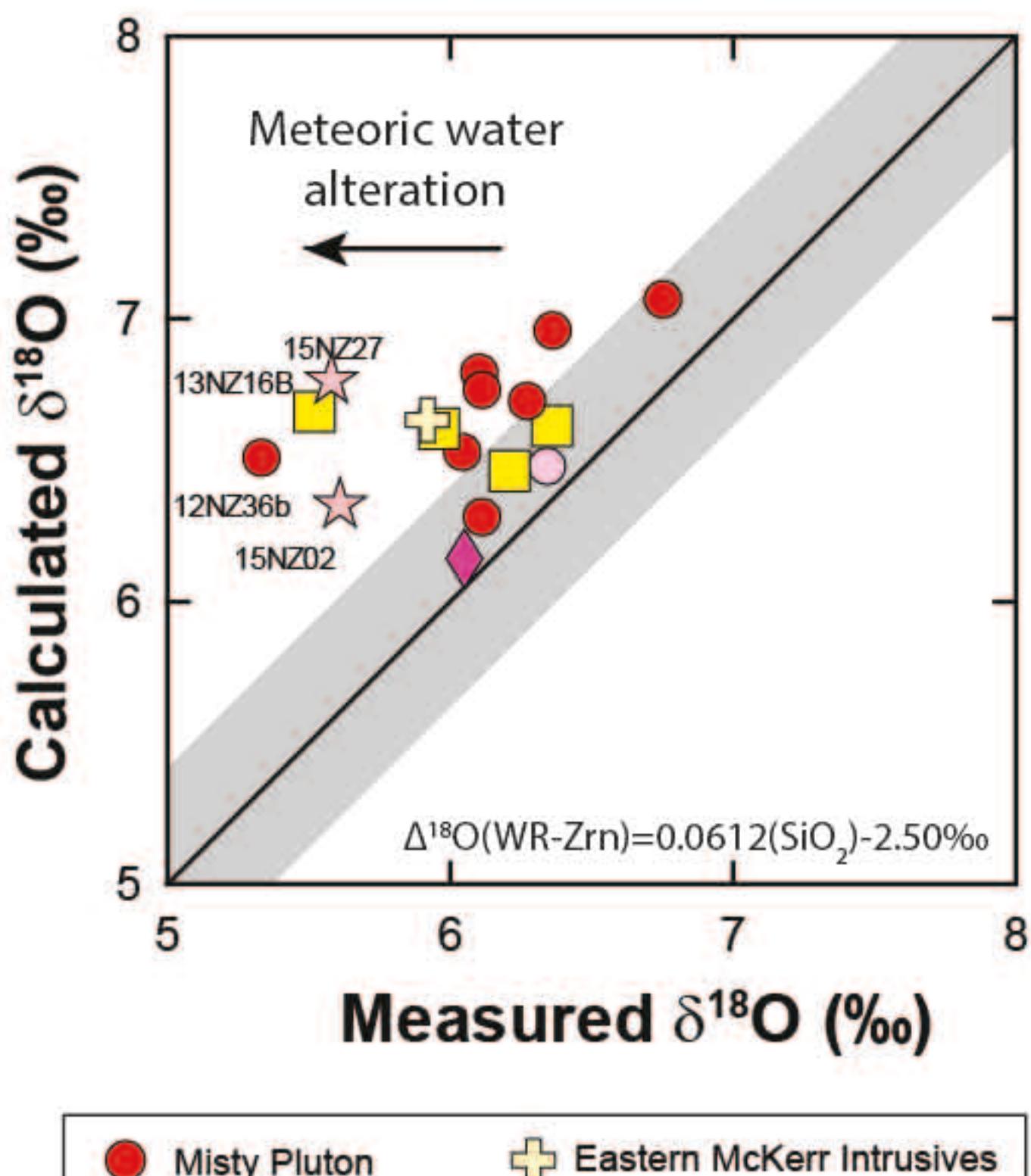


Figure 7

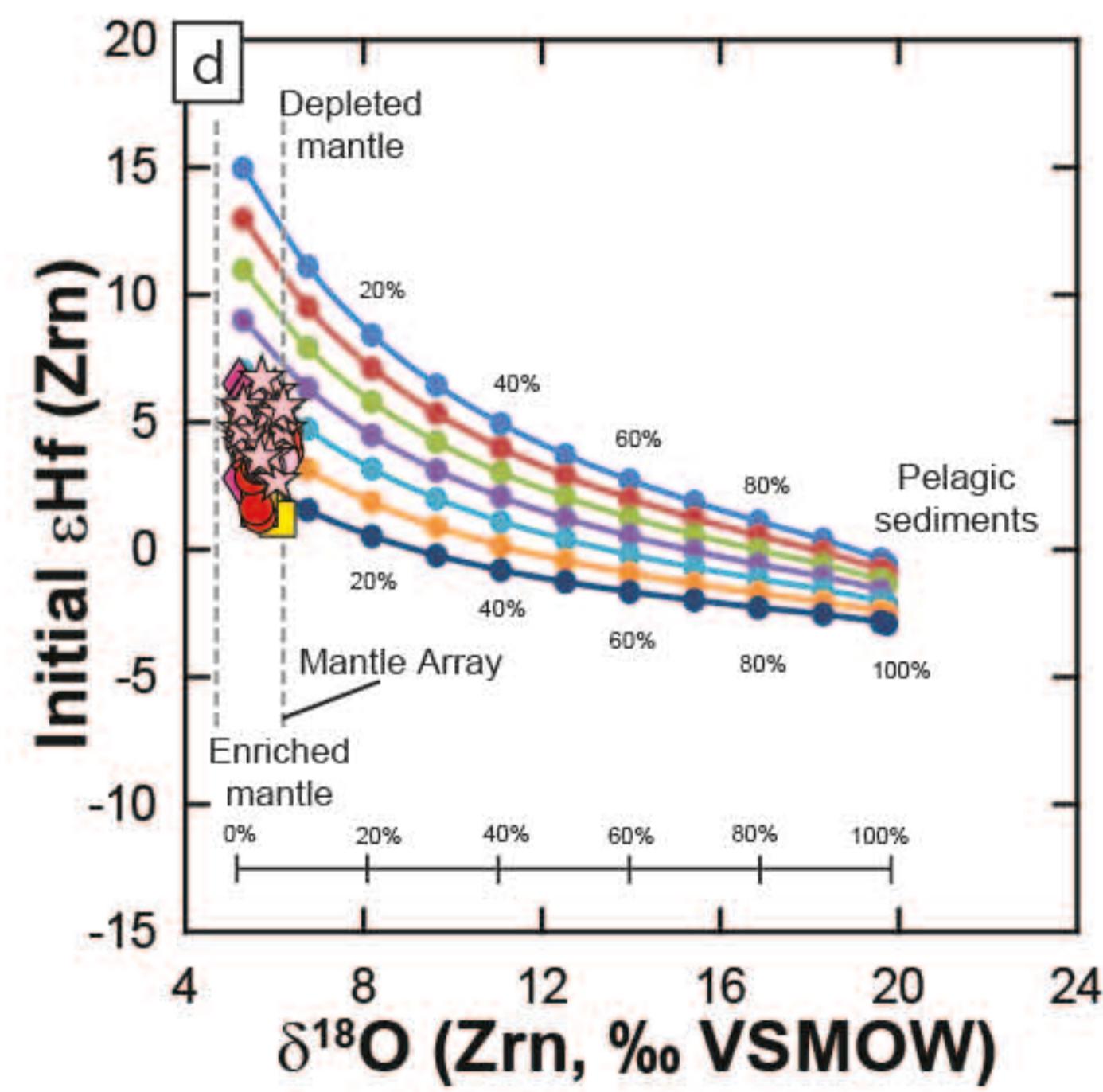
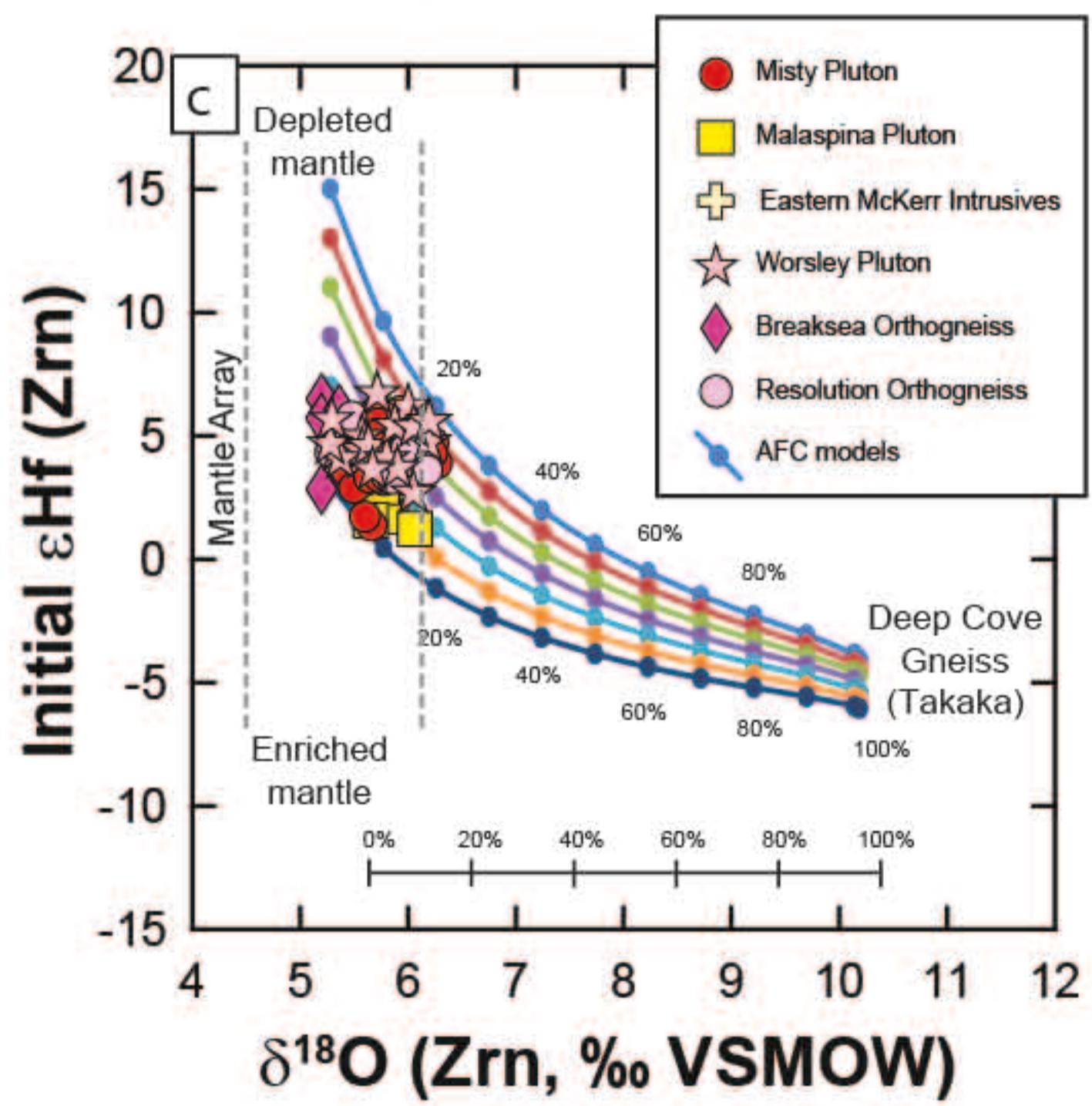
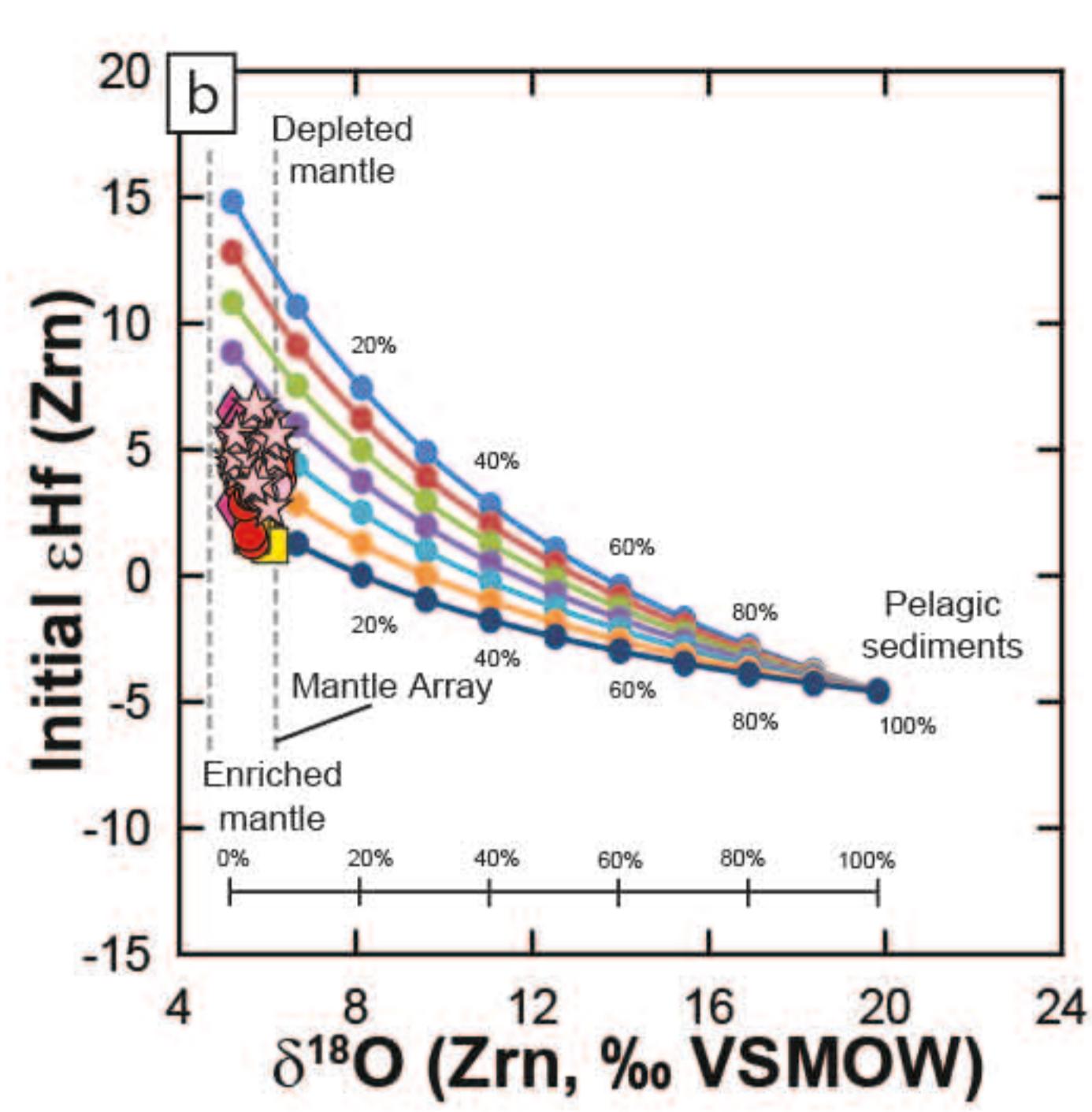
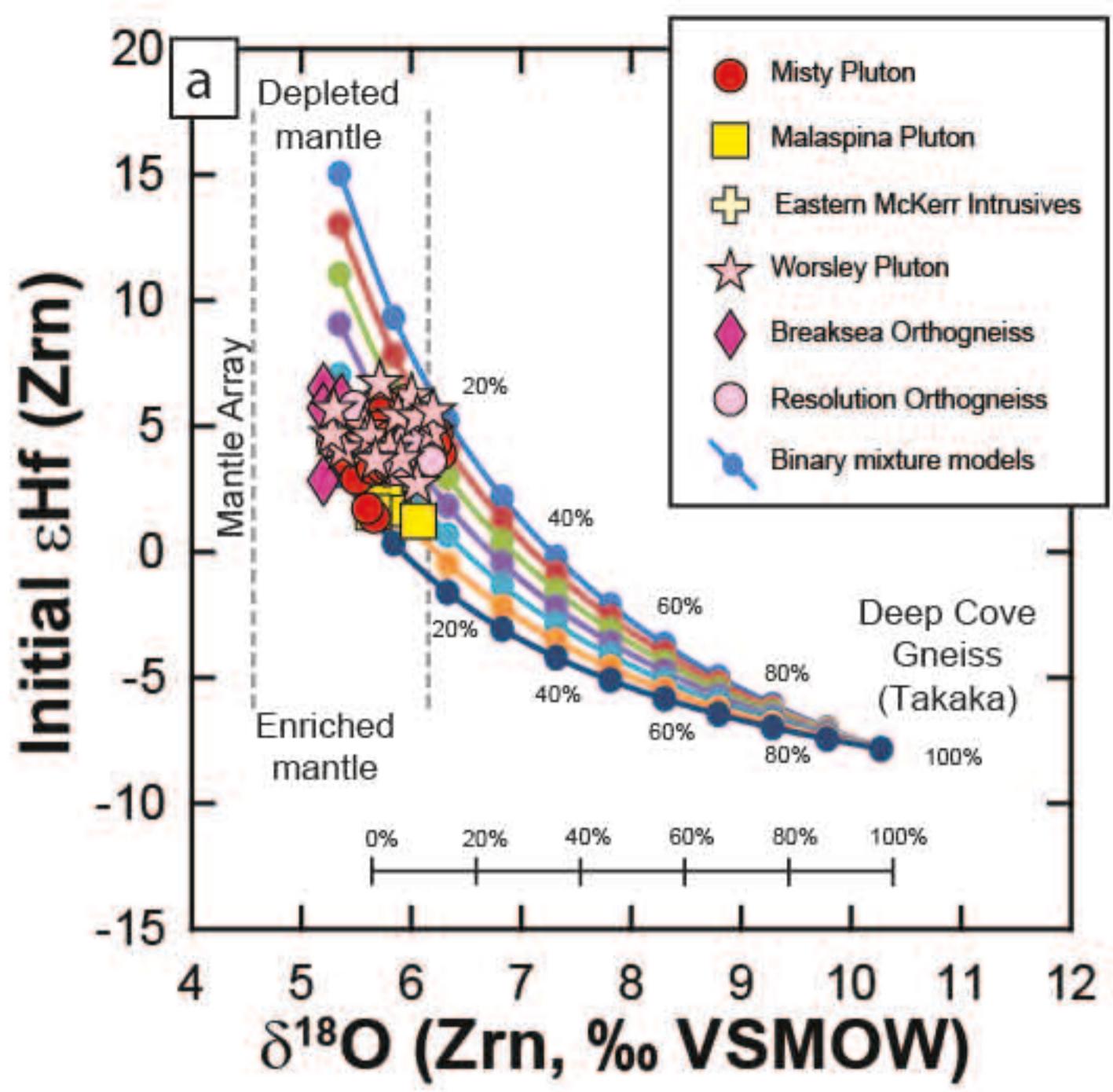





Figure 8

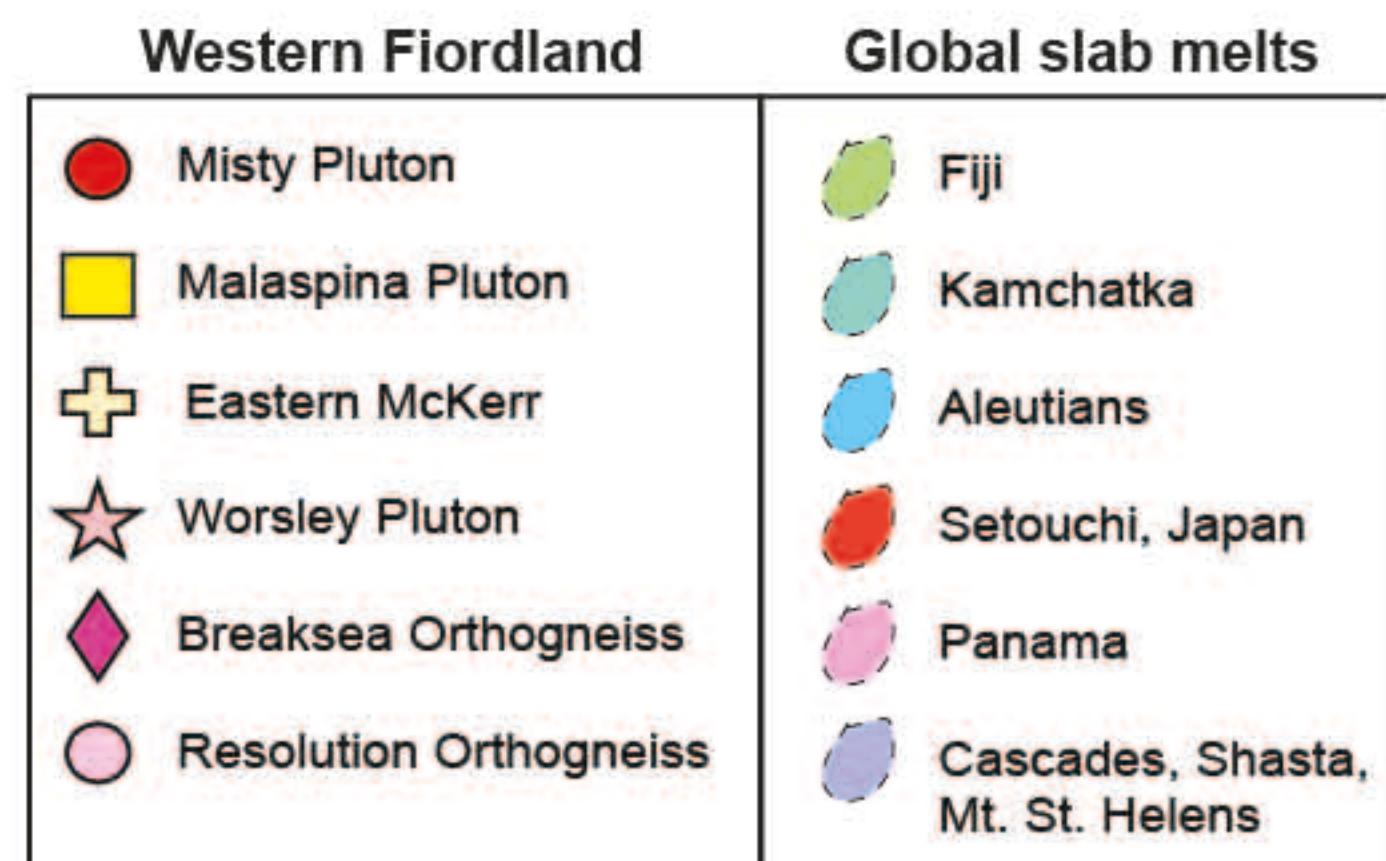
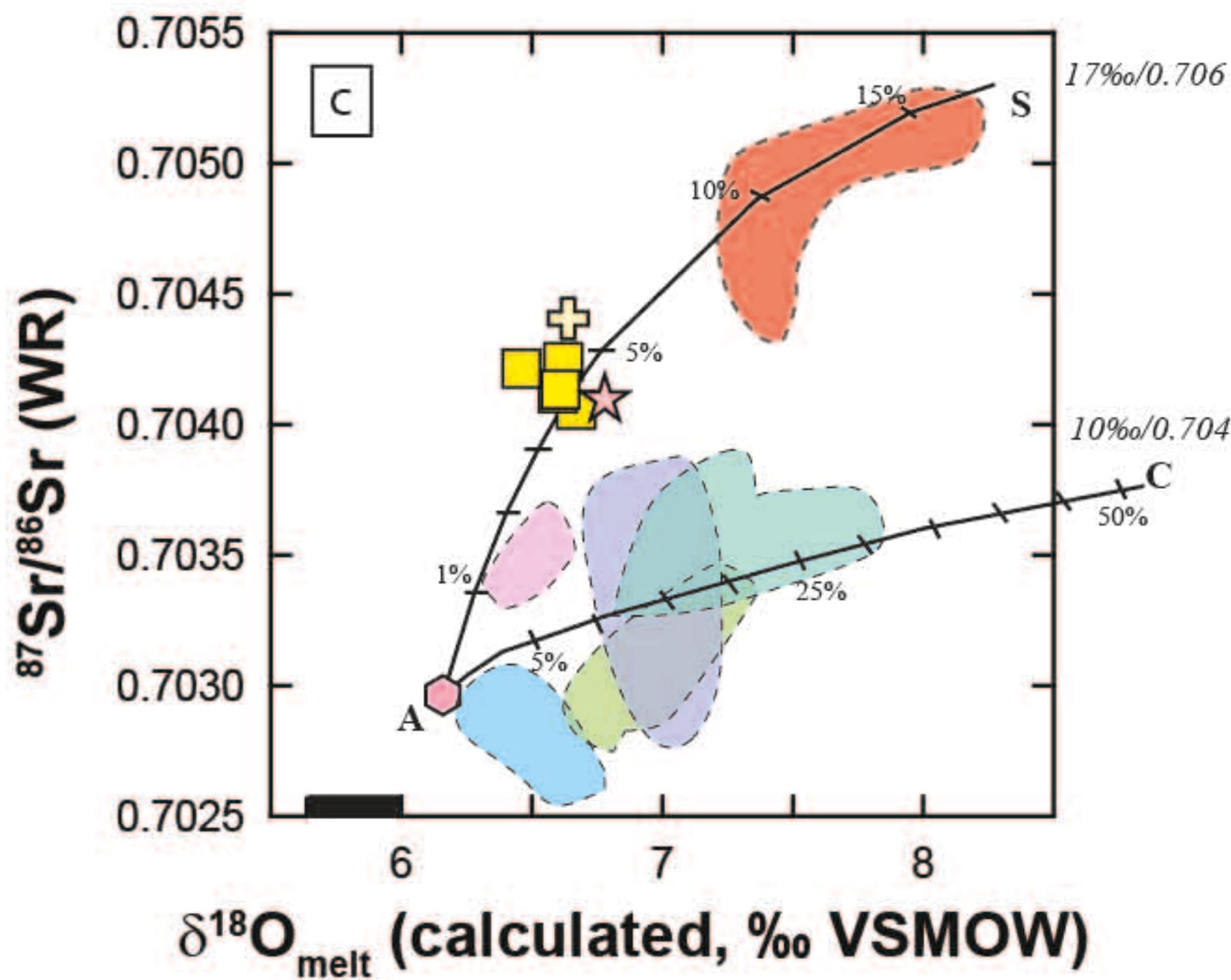
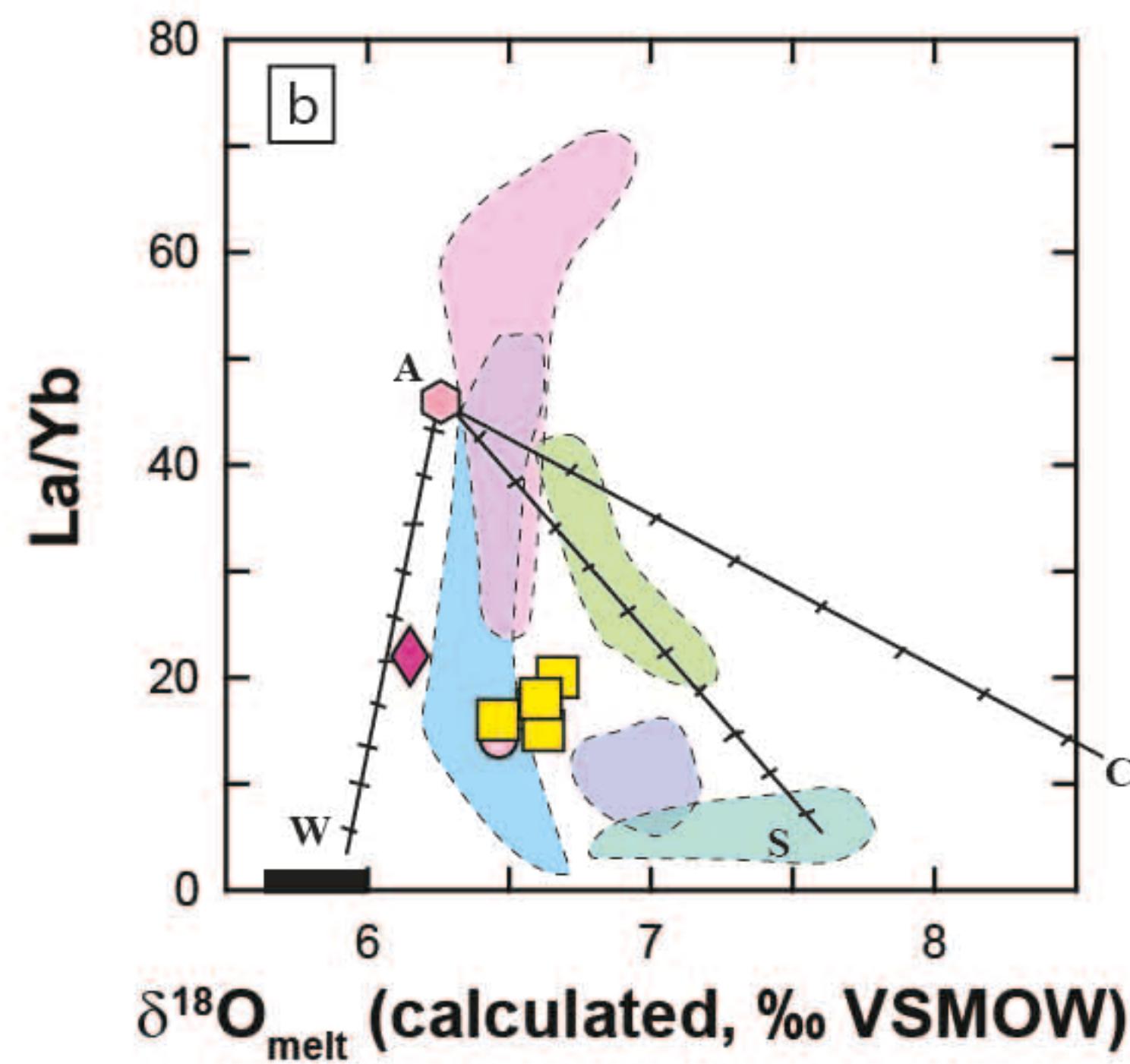
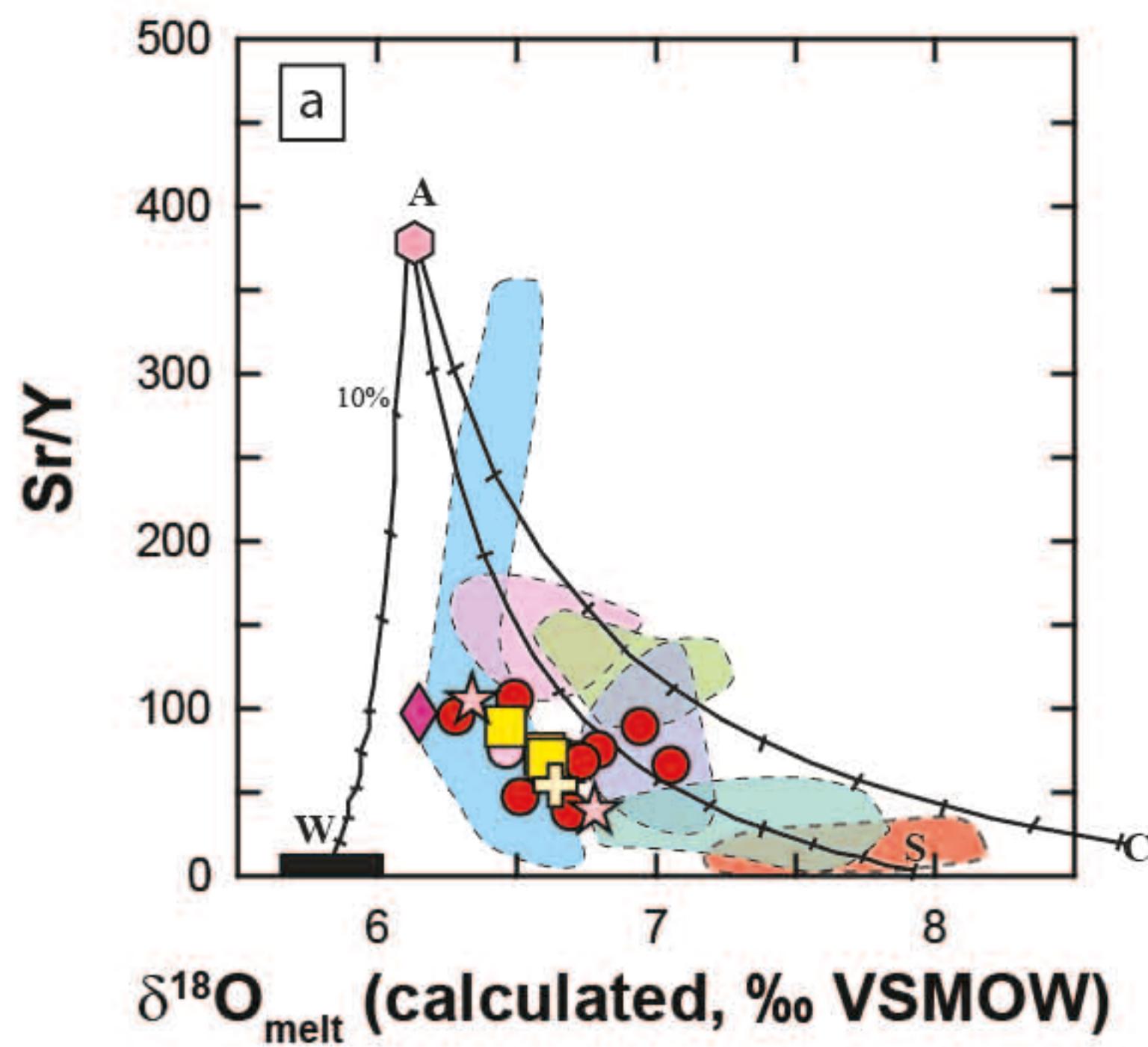





Figure 9

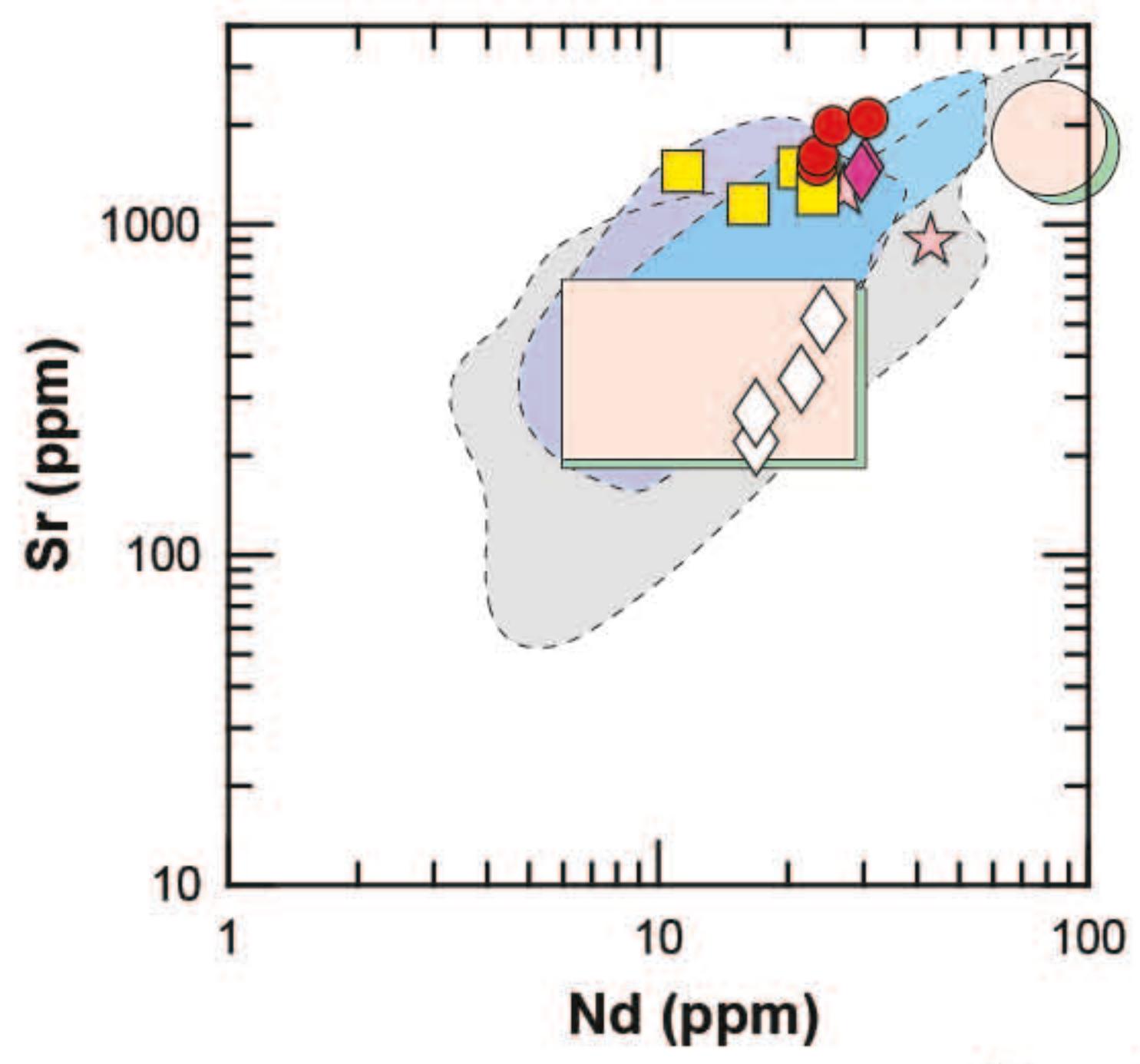
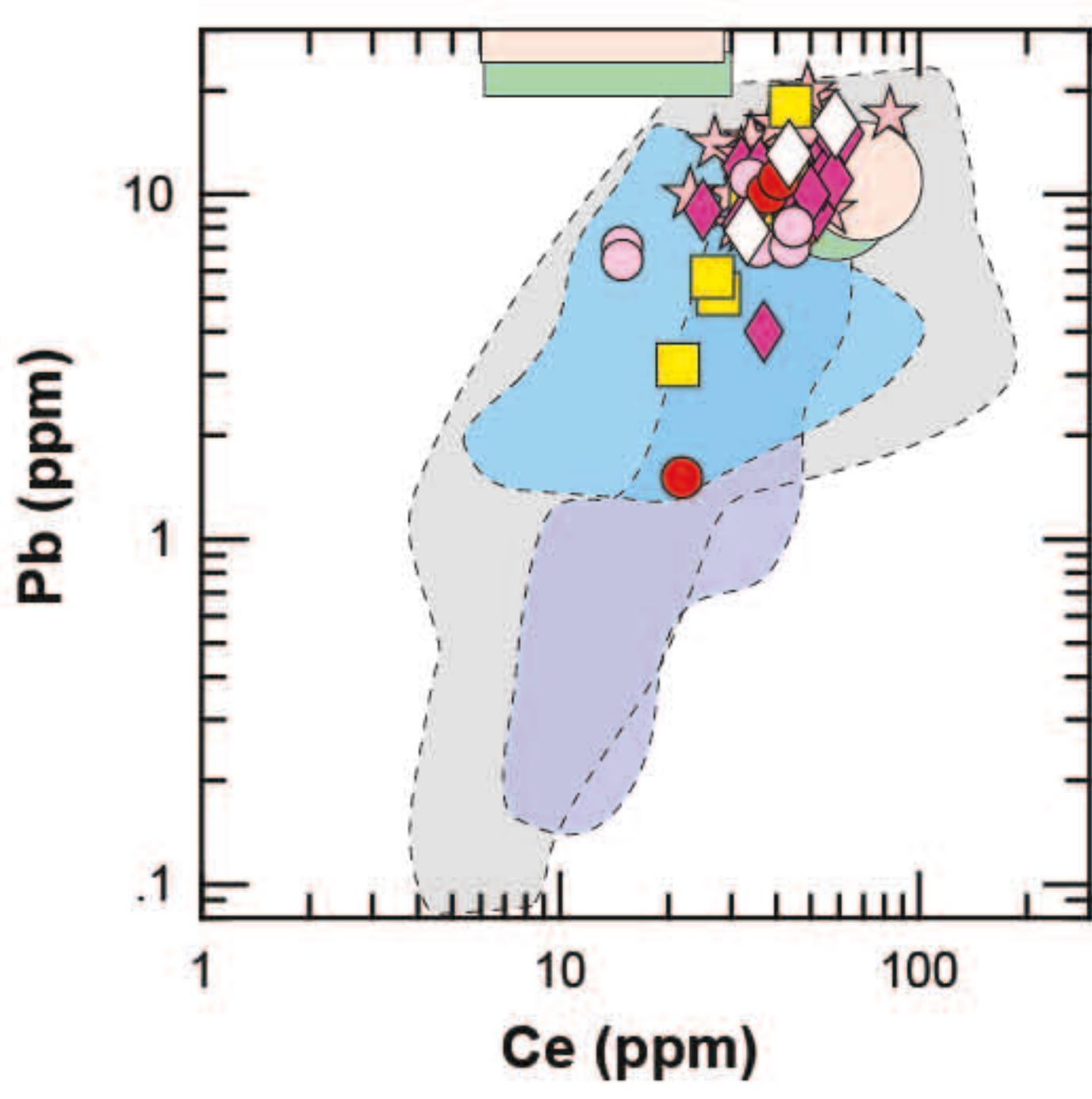
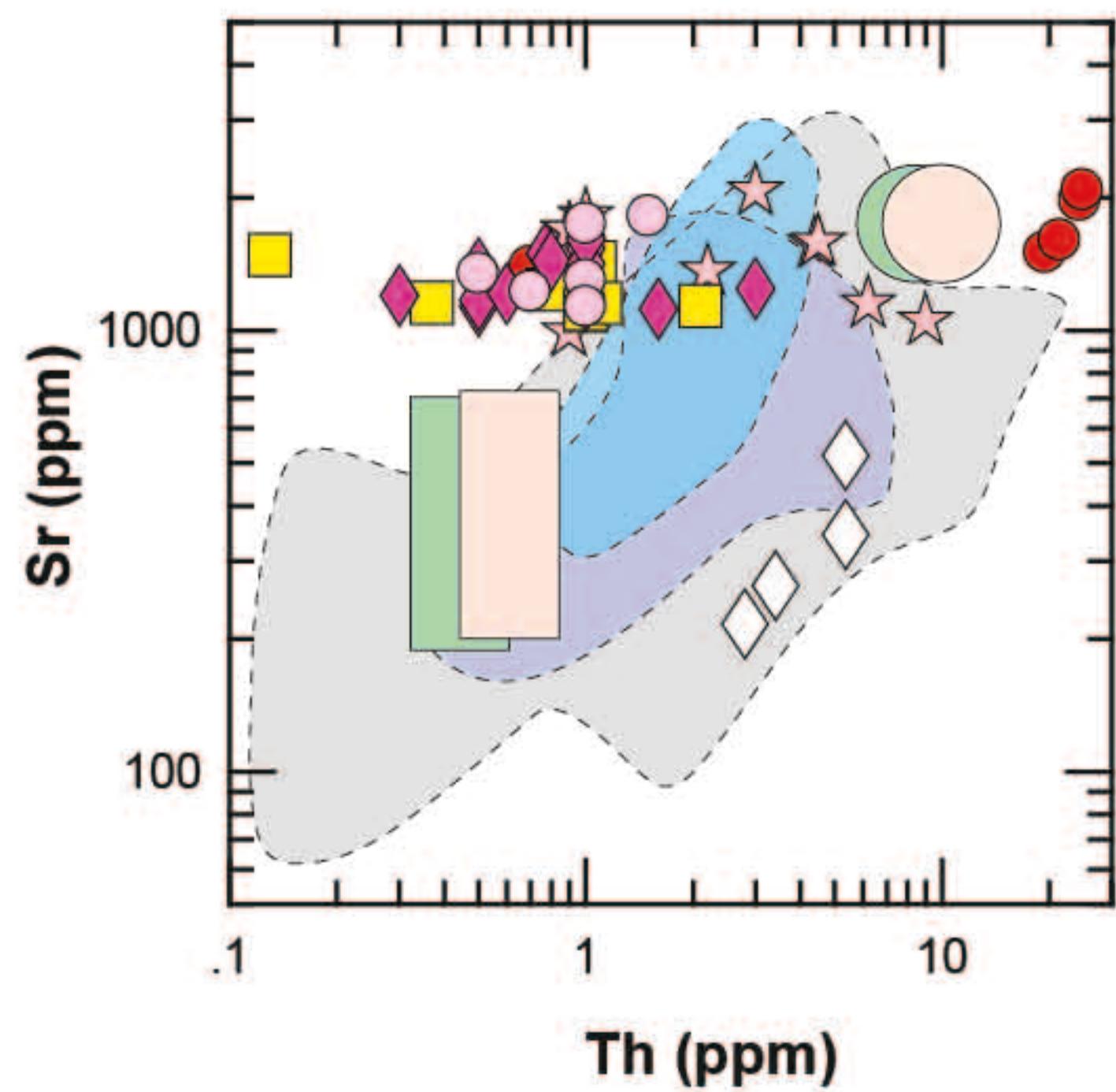
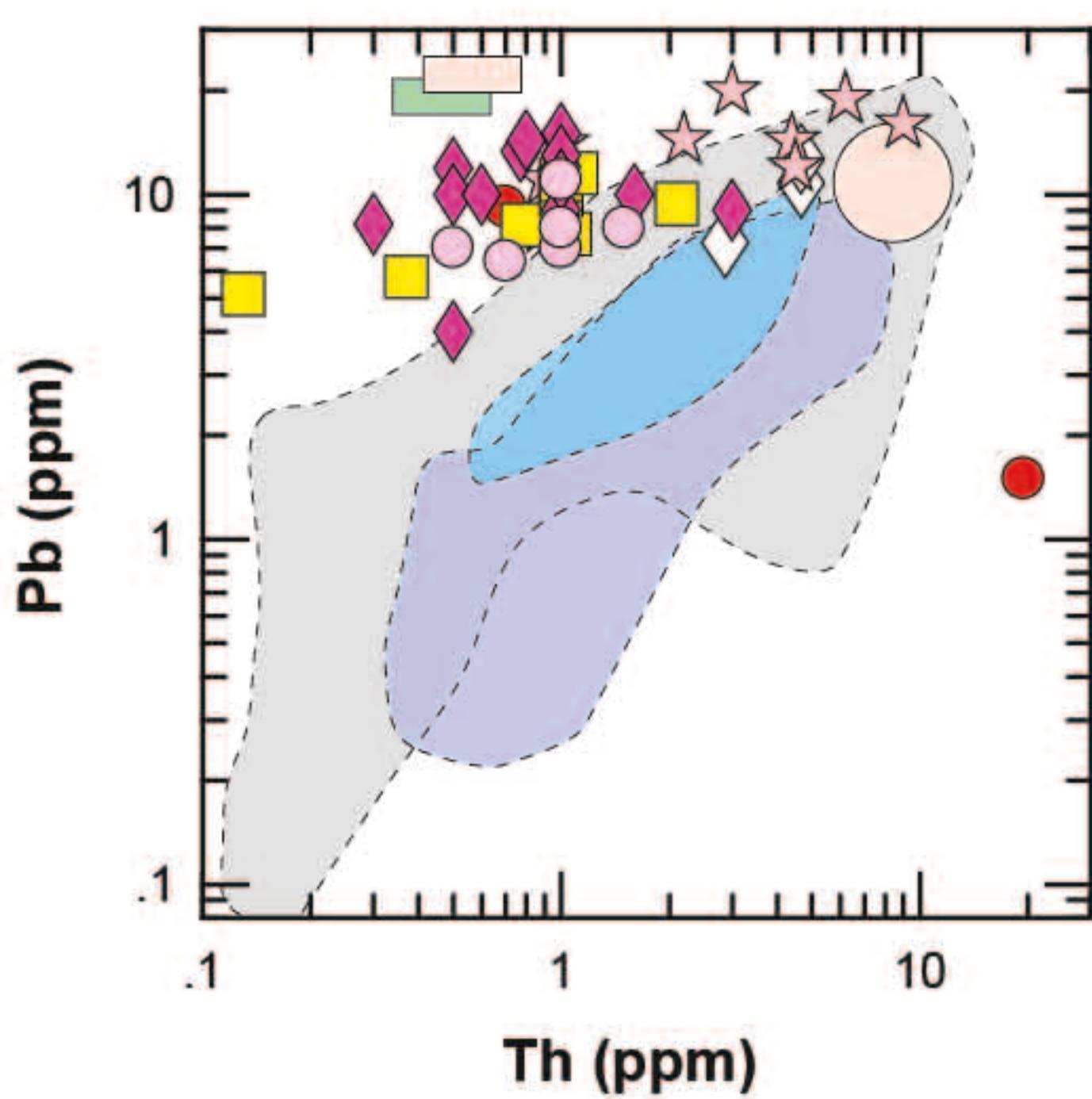
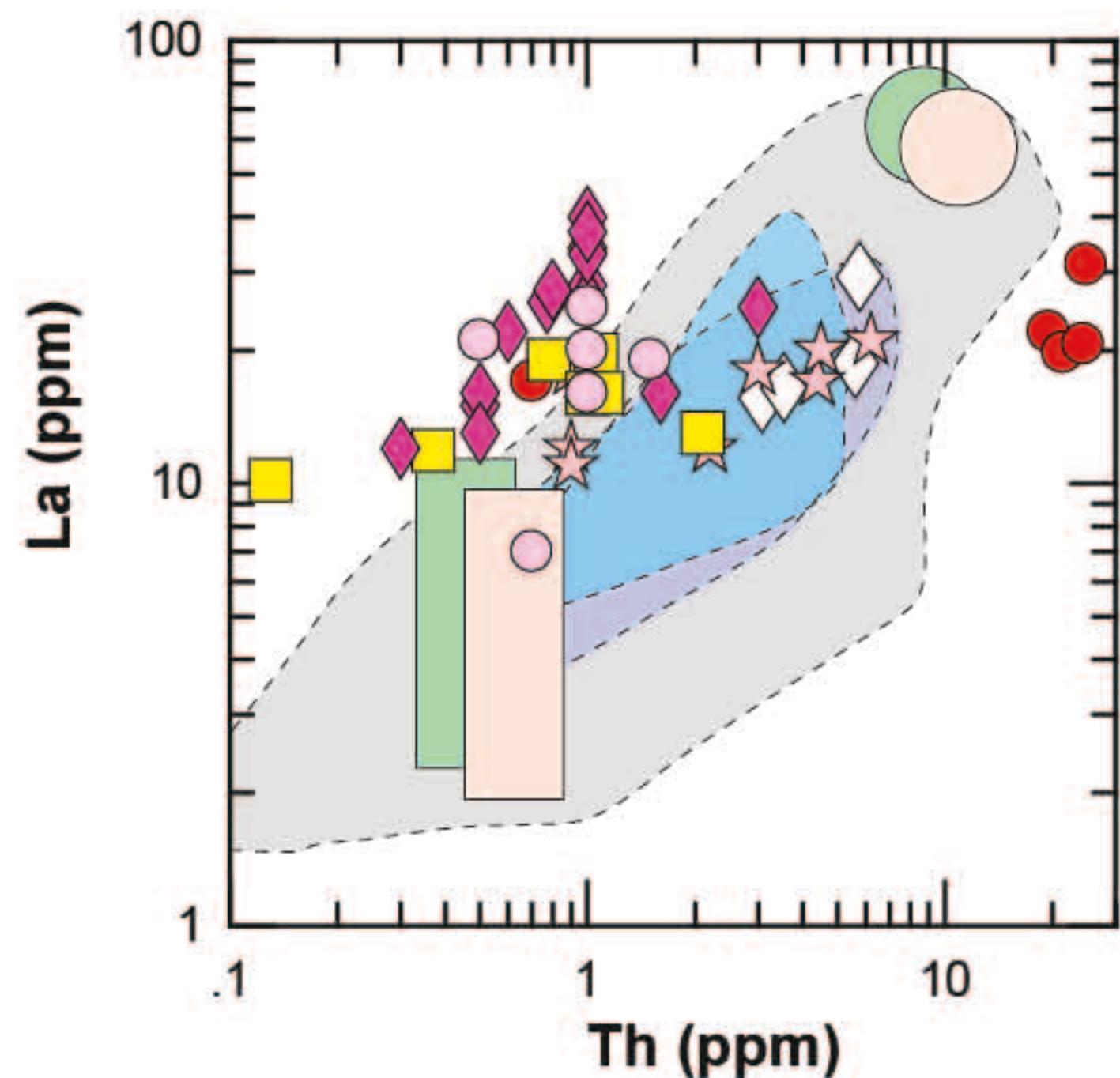
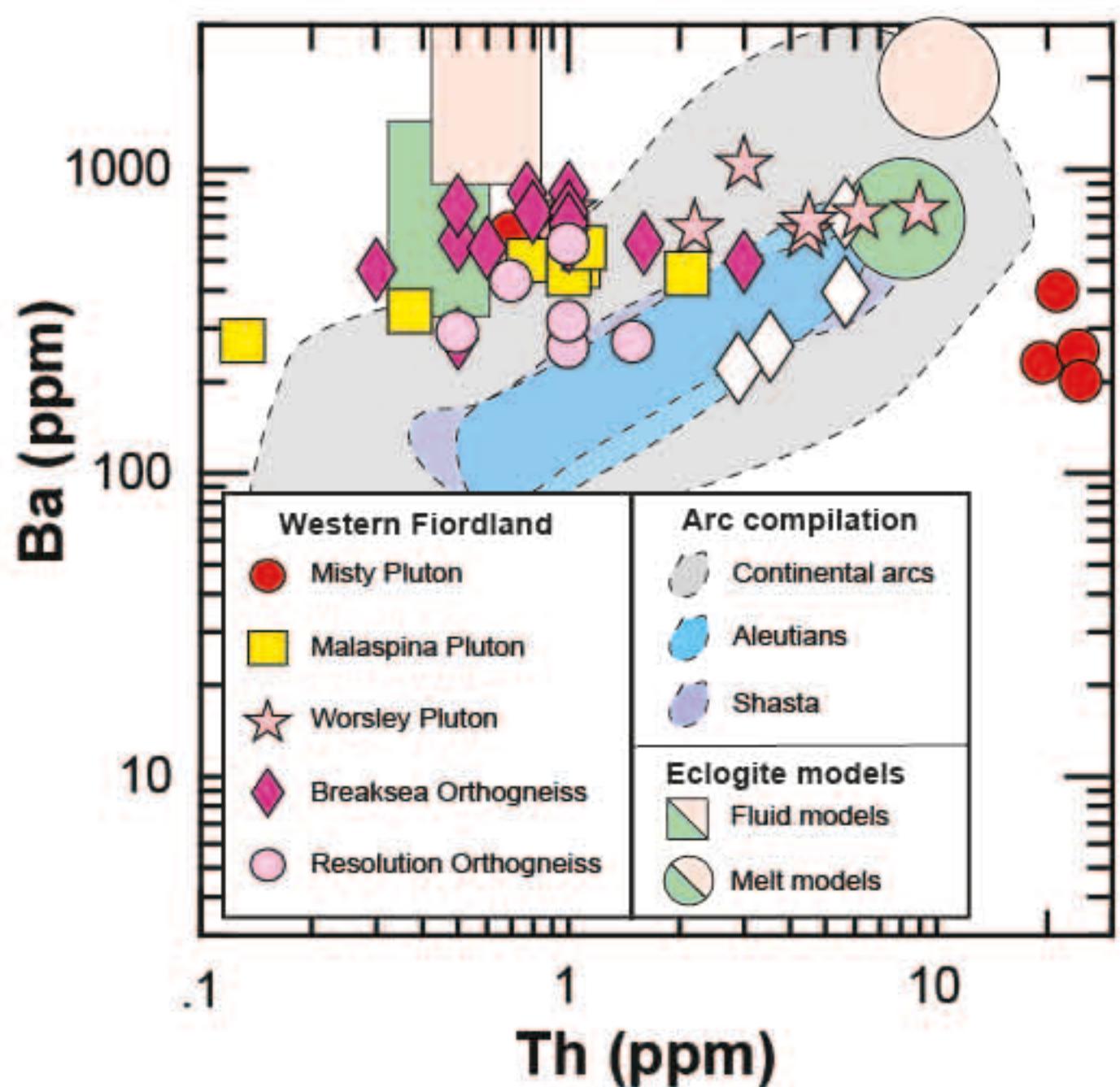







Figure 10

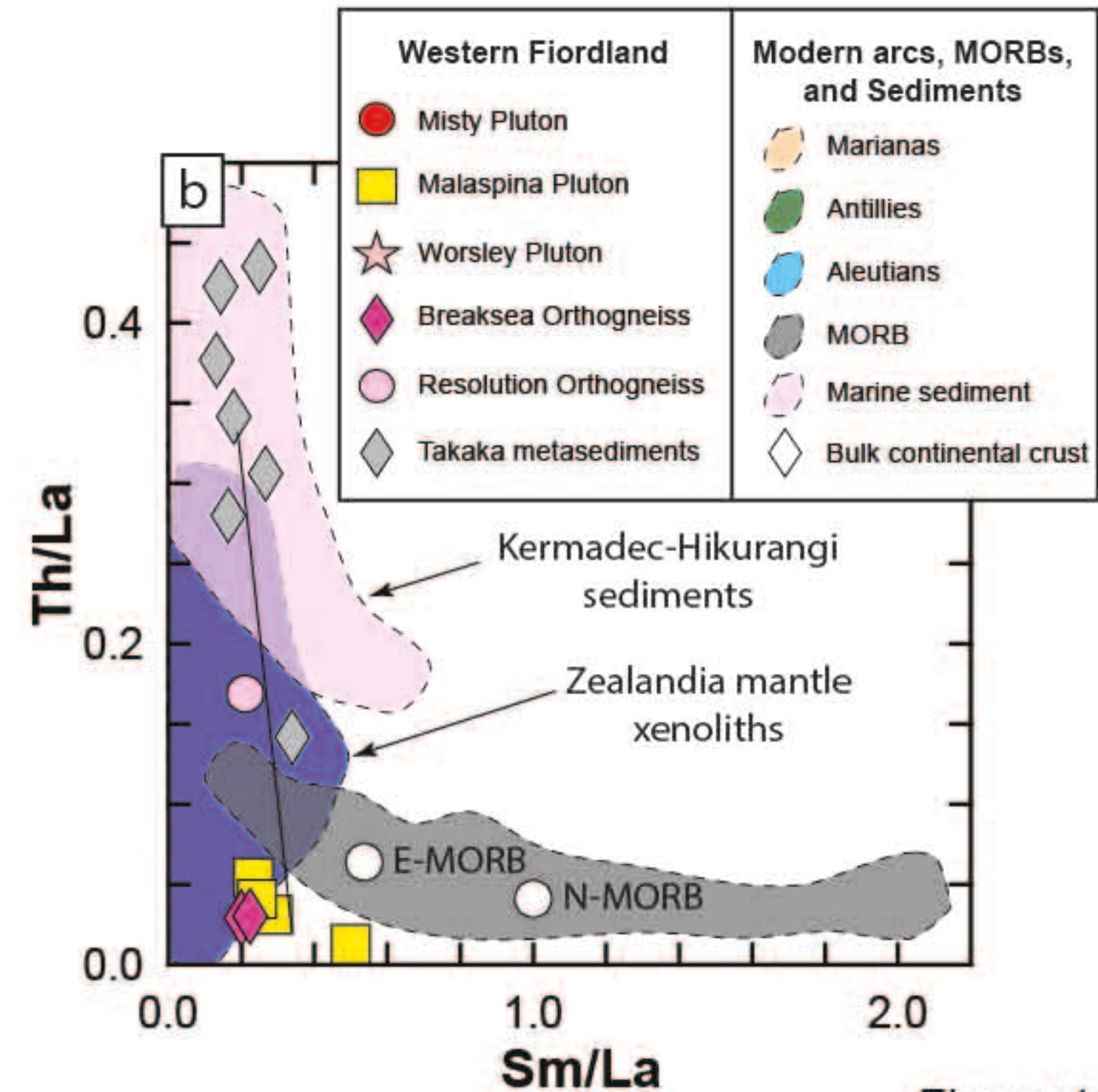
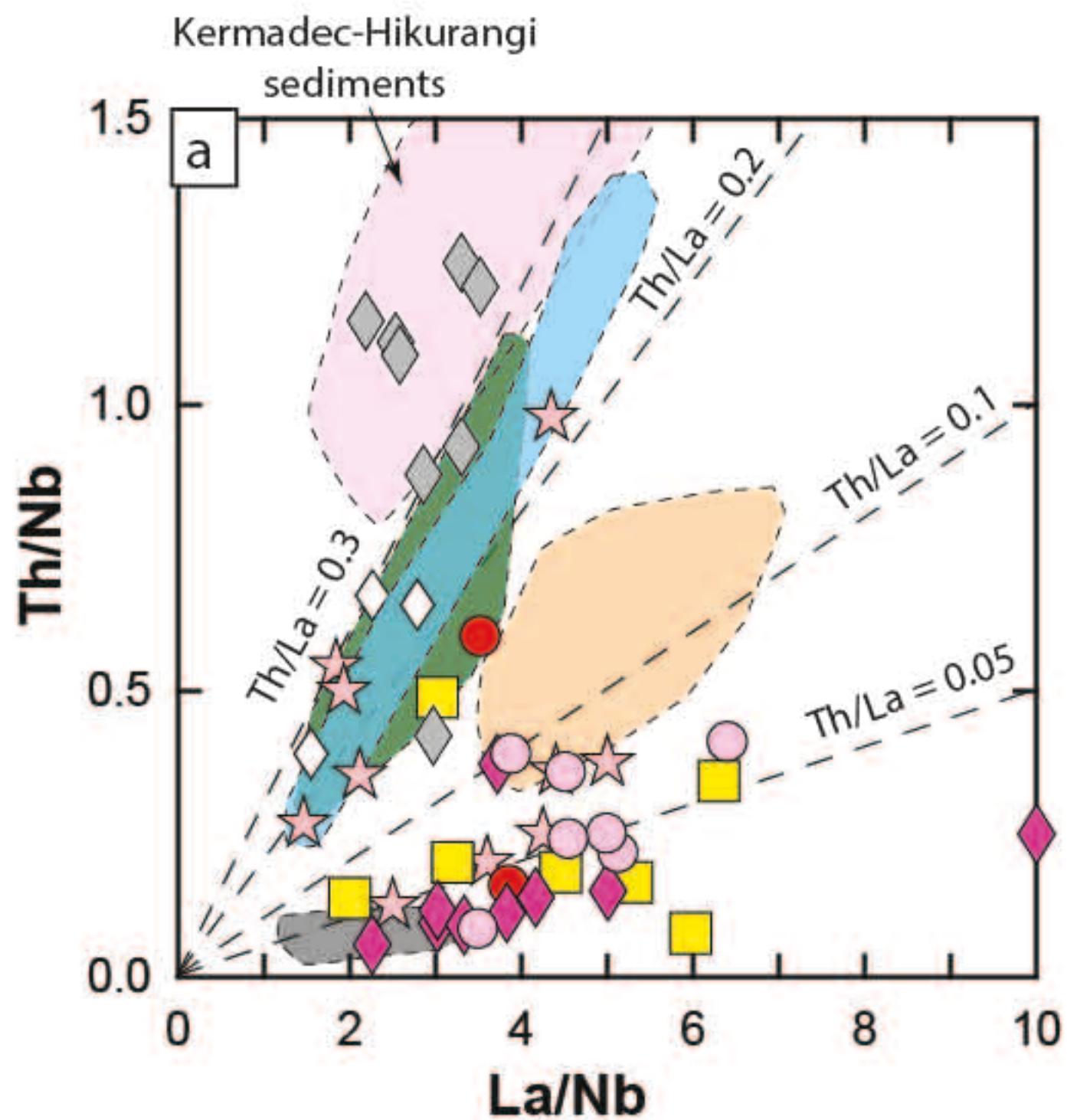
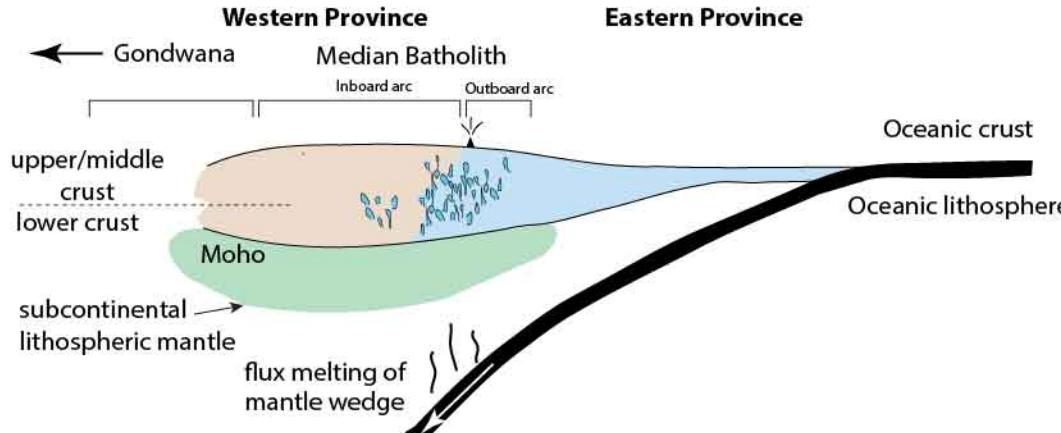
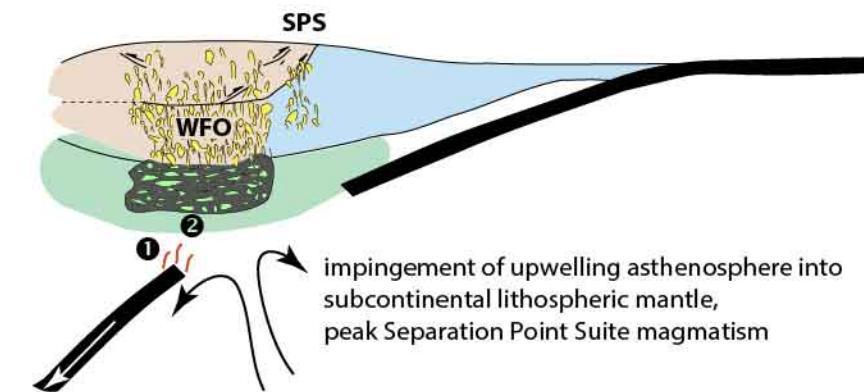





Figure 11


A. Darran Suite magmatism (low MAR: 230-136 Ma)

B. Separation Point Suite magmatism, transpression, arc thickening, slab 'tear' (128-120 Ma)

C. High MAR Separation Pointe Suite magmatism, arc thickening, generation of thick ultramafic root (118-114 Ma)

D. Granulite-facies metamorphism, lithospheric extension & decompression, foundering of ultramafic root (110-90 Ma)

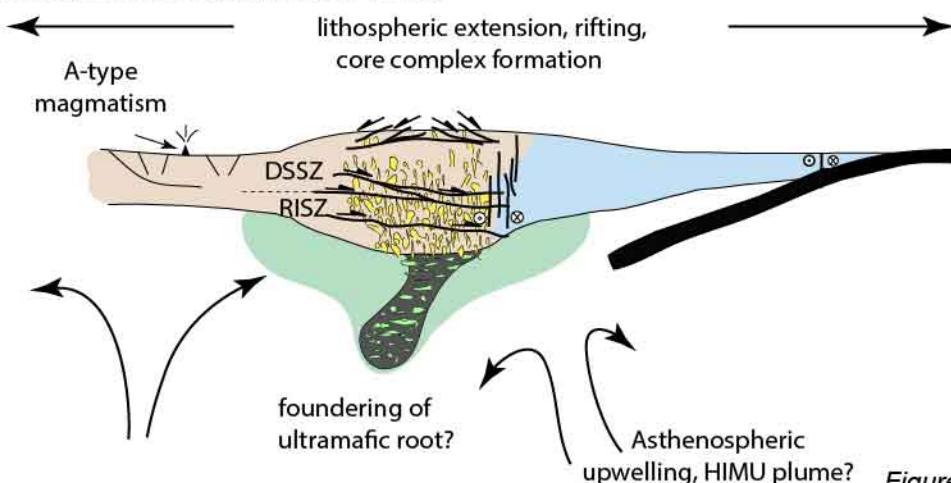


Table 1. Summary of Zircon U-Pb, O and Lu-Hf isotopic data for the WFO.

Pluton	Rock type	Field sample number	P-Number	Pb/U Zrn Age (Ma) (2E) ¹	SiO ₂ (WR)	δ ¹⁸ O (WR) (‰) ²	δ ¹⁸ O (WR) (‰) ²	Zrn δ ¹⁸ O range (‰)	δ ¹⁸ O (Zrn) mean (‰)	Error (2D)	#	Zrn εHf (initial) range	Zrn εHf (initial) mean	2 SD	#	Ti-in-Zircon temperature (°C)	SD
Breaksea	Gnt granulite	13NZ33E		123.2 ± 1.3	54.7	6.05	6.15	5.2-5.4	5.30	0.23	6	2.7-6.5	4.8	3.5	20	n.d.	n.d.
Eastern McKerr	Hbl diorite	15NZ20	P85715	120.1 ± 2.8	55.1	5.92	6.64	5.5-6.0	5.77	0.27	6	(-) 2.0 - 5.7	3.8	3.1	20	777	57
Malaspina	Hbl diorite	13NZ16B	P83712	118.0 ± 2.1	56.0	5.52	6.67	5.5-5.9	5.74	0.27	7	2.1-5.6	4.2	3.1	20	776	43
Malaspina	Hbl diorite	13NZ22	P83718	116.9 ± 1.6	56.1	4.53	6.60	5.5-5.9	5.67	0.37	5	3.0-6.2	4.3	3.4	17	812	31
Malaspina	Two pyroxene diorite	13NZ34A	P83730	118.0 ± 1.8	55.2	6.36	6.62	5.5-6.0	5.74	0.39	7	1.2-4.6	2.9	3.3	20	792	31
Malaspina	Bt-Hbl diorite with relict pyroxene	13NZ40D1	P83733	116.4 ± 1.3	52.6	6.21	6.46	5.4-5.9	5.74	0.37	9	1.9-5.3	3.6	3.3	17	780	31
Malaspina	Hbl-Bt qz diorite	13NZ59	P83750	117.5 ± 1.0	54.9	5.96	6.61	5.7-5.8	5.75	0.27	6	1.9-6.5	4.3	3.1	20	788	29
Misty	Hbl diorite	12NZ22a	P83650	114.7 ± 1.1	59.2	6.11	6.80	5.5-5.8	5.68	0.17	7	1.3-10.8	4.7	3.4	20	n.d.	n.d.
Misty	Hbl diorite	12NZ24	P83652	115.8 ± 2.1	53.5	6.05	6.52	5.6-6.0	5.75	0.12	6	2.9-6.0	3.9	3.3	20	n.d.	n.d.
Misty	Hbl monzodiorite	12NZ33	P83661	114.3 ± 2.1	52.9	6.12	6.29	5.4-5.6	5.56	0.23	8	2.0-5.7	4.0	3.6	20	n.d.	n.d.
Misty	Bt-Hbl qz diorite with relict pyroxene	12NZ36b	P83664	114.2 ± 1.3	52.6	5.34	6.50	5.5-5.9	5.78	0.20	5	2.8-4.9	3.9	3.4	20	n.d.	n.d.
Misty	Two pyroxene monzodiorite	13NZ46	P83738	116.9 ± 1.2	54.5	6.28	6.70	5.6-6.0	5.87	0.17	8	2.6-11.2	4.4	3.1	20	795	21
Misty	Two pyroxene diorite	13NZ52A	P83743	116.8 ± 1.6	55.5	6.37	6.95	5.8-6.2	6.05	0.38	5	2.5-5.4	3.9	2.9	20	776	26
Misty	Hbl-Bt qz diorite	13NZ55A	P83746	115.2 ± 1.9	60.2	6.76	7.06	5.7-6.1	5.87	0.40	7	2.1-7.7	4.4	2.9	20	773	48
Misty	Two pyroxene diorite	13NZ58	P83749	115.3 ± 1.5	52.0	6.12	6.74	5.7-6.2	6.06	0.27	7	1.4-5.4	4.3	2.9	20	735	32
Resolution	Hbl diorite	12NZ12b		115.1 ± 2.1	51.0	6.35	6.47	5.3-6.1	5.85	0.25	7	2.2-7.9	4.0	3.2	20	n.d.	n.d.
Worsley	Two pyroxene diorite	15NZ02	P85716	121.6 ± 1.9	55.3	5.61	6.34	5.2-5.6	5.46	0.38	8	3.5-6.9	4.9	3.3	20	745	17
Worsley	Two pyroxene diorite	15NZ27	P85717	123.2 ± 1.6	54.4	5.58	6.78	5.6-6.2	5.95	0.45	10	2.6-6.1	5.0	3.1	20	781	24

¹U-Pb zircon data reported in Schwartz et al. (in press), except 13NZ33E which is reported in Klepeis et al. (2016).²calculated using equation reported in Lackey et al. (2008).

SE = standard error; SD = Standard deviation; n.d. = not determined.