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Slab-Triggered Arc Flare-up in the Cretaceous Median Batholith and the Growth of Lower
Arc Crust, Fiordland, New Zealand
Decker, M.,! Schwartz, J.J.,!" Stowell, H.H.,? Klepeis, K.A.,* Tulloch, A.].,* Kitajima, K.,®

Valley, J W2 Kylander-Clark, AS

ABSTRACT

The Mesozoic continental arc in Fiordland, New Zealand, records a ca. 110 Ma history of
episodic, subduction-related magmatism that culminated in a terminal surge of mafic to
intermediate, high-Sr/Y, calc-alkalic to alkali-calcic magmas. During this brief, 10-15 Ma event,
more than 90% of the Cretaceous plutonic arc root was emplaced; however the source of these
rocks and the degree to which they represent lower crustal mafic and/or metasedimentary
recycling versus the addition of new lower arc crust remains uncertain. We report whole-rock
geochemistry and zircon trace-element, O-isotope and Hf-isotope analyses from 18 samples
emplaced into lower arc crust (30-60 km depth) of the Median Batholith with the goals of: a)
evaluating processes that triggered the Cretaceous arc flare-up event, and b) determining the
extent to which the Cretaceous arc flare up resulted in net addition of lower arc crust. We find
that 3'80 (Zrn) values from the Western Fiordland Orthogneiss ranges from 5.2 to 6.3%o and
yields an error-weighted average value of 5.74 + 0.04%o (2SE, 95% confidence limit). LA-MC-

ICPMS results yield initial eHf (Zrn) values ranging from -2.0 to +11.2 and an error-weighted
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average value of +4.2 + 0.2. We explore the apparent decoupling of O- and Hf-isotope systems
through a variety of mass-balance mixing and assimilation-fractional crystallization models
involving depleted- and enriched-mantle sources mixed with supra-crustal contributions. We find
that the best fit to our isotope data involves mixing between an enriched, mantle-like source and
up to 15% subducted, metasedimentary rocks. These results together with the homogeneity of
5180 (Zrn) values, the high-Sr/Y signature, and the mafic character of Western Fiordland
Orthogneiss magmas indicate that the Cretaceous flare-up was triggered by partial melting and
hybridization of subducted oceanic crust and enriched subcontinental lithospheric mantle. We
argue that the driving mechanism for the terminal magmatic surge was the propagation of a
discontinuous slab tear beneath the arc, or a ridge-trench collision event, at ca. 136-128 Ma. Our
results from the Early Cretaceous Zealandia arc contrast with the strong crustal signatures that
characterize high-flux magmatic events in most shallow to mid-crustal, circum-Pacific orogenic
belts in the North and South American Cordillera and the Australia Tasmanides; instead, our
results document the rapid addition of new lower arc crust in <<15 m.y. with lower crustal
growth rates averaging 40-50 km®/Ma/arc-km from 128-114 Ma, and peaking at 150-210
km?/Ma/arc-km from 118-114 Ma when ~70% of the arc root was emplaced. Our results
highlight the significant role of Cordilleran arc flare-up events in the rapid, net generation of

continental crust through time.

Keywords: arc flare up, lower arc crust, zircon, oxygen isotopes, Hf isotopes,

high Sr/Y melts

INTRODUCTION
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Continental arcs are often considered factories of crustal growth whereby partial melting
of mantle adds to the growth of the evolving continental crust (Tatsumi and Stern, 2006; Scholl
and von Huene, 2007; 2009; Hawkesworth et al., 2010; Voice et al., 2011). In circum-Pacific
orogens, the long-term (>100 m.y.) magmatic evolution of continental arcs is dominated by
mantle-derived magmatism (Collins et al., 2011); however, the pace of magmatism in arcs has
long been recognized to be non-steady state, characterized by episodic periods of high-volume
magmatic pulses, termed high magma addition rate (MAR) events, that occur within a
background of lower-volume activity (Armstrong, 1988). These high-MAR events represent
short-term (<20 m.y.) excursions from long-term magmatic trends, yet they overwhelmingly
dominate arc magma addition rates (Scholl and von Huene, 2007; Ducea and Barton, 2007;
Ducea et al., 2015a; Paterson et al., 2015; Ducea et al., 2017). Their cause(s) and the degree to
which they contribute to the net addition of new continental crust are fundamental and yet
unresolved problems in understanding geodynamic controls on continental crustal growth
through time.

In well-studied Phanerozoic continental arcs, geochemical and isotopic data suggest that
high-MAR events involve significant reworking of pre-existing crust, and evidence for
significant volumes of mantle-derived melts is often conspicuously absent (e.g., Ducea, 2001;
Saleeby et al., 2003; Lackey et al., 2005; Ducea and Barton, 2007; Paterson et al., 2011; Ducea et
al., 2015a; Paterson et al., 2015). This problem is underscored in various circum-Pacific arc
segments of the North and South American Cordilleran and the Australian Tasmanides where
high-MAR events are particularly well documented. For example, in the eastern Peninsular
Ranges batholith, voluminous tonalitic to granodioritic magmas of the La Posta Pluton (94-91

Ma) display elevated 3'80 values (9-12.8%o) and radiogenic isotope signatures that reflect
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significant contributions from ancient crustal sources (Taylor and Silver, 1978; Silver et al.,
1979; Kistler et al., 2014). In other shallow- to mid-crustal batholiths, such as the Cretaceous
Sierra Nevada batholith, geochemical and isotopic studies demonstrate that ~50% or more of the
magmatic budget was derived from pre-existing, upper-plate crustal material (Ducea, 2001; Lee
et al., 2006; Ducea and Barton, 2007; Lackey et al., 2008; Lackey et al., 2012; Ducea et al.,
2015b). On the opposite side of the Pacific basin in the Australian Tasmanides, repeated arc
retreat followed by closure of oceanic back-arc basins produced wide-spread melting of craton-
derived turbiditic metasedimentary rocks and the generation of ‘classic’ S-type granites (Kemp et
al., 2009). Taken as a whole, geochemical and isotopic patterns from large portions of circum-
Pacific magmatic belts reveal complex tectonic reorganizations through time and the reworking
of pre-batholithic basement and supra-crustal rocks in the generation and modification of arc
crust during voluminous magmatic surges (e.g., Ducea and Barton, 2007; Lackey et al., 2008;
DeCelles et al., 2009; Chapman et al., 2013).

A key problem in understanding crustal growth processes in circum-Pacific magmatic
belts is that much of our information is dominated by studies of shallow to mid-crustal plutons
that may have undergone significant assimilation of wall rocks during ascent through the crustal
column, and/or hybridization of original mantle-derived magmas at depth in lower crustal
melting, assimilation, storage and homogenization zones (Hildreth and Moorbath, 1988). This
problem is particularly acute in over-thickened continental arcs where the crustal column may
reach 70-75 km (Beck et al., 1996). The involvement of mantle-derived melts in high-MAR
events has long been noted in whole rock and mineral isotopic data (Cui and Russell, 1995;
Kemp et al., 2007; Kemp et al. 2009; Appleby et al., 2010; Shea et al., 2016); however, the

significance of mantle processes in triggering high-MAR events remains controversial in part
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due to a lack of exposure of deep portions of the crust generated during voluminous arc
magmatism (Ducea, 2001; de Silva et al., 2015; Paterson and Ducea, 2015; Ducea et al., 2017).

Here, we investigate a deep-crustal flare-up along the Mesozoic, paleo-Pacific margin of
southeast Gondwana, now isolated and preserved in the largely submerged continent ‘Zealandia’
(Mortimer et al. 2017) with the goals of: a) evaluating processes that triggered the voluminous
surge of mafic to intermediate magmatism, and b) determining the extent to which the
Cretaceous arc flare up resulted in the addition of new lower continental crust. We focus on the
western Fiordland sector of the Mesozoic Median Batholith (Fig. 1) because it exposes a section
of lower continental arc crust (1.0 to 1.8 GPa, or 35 to 65 km paleo-depth: Allibone et al.,
2009a,b; De Paoli et al., 2009) generated in a high-flux magmatic episode during which the
entire Mesozoic plutonic arc root was emplaced in ~14 m.y. from 128 to 114 Ma (Schwartz et
al., 2017). This unique lower crustal exposure allows us to investigate the geochemical and
isotopic composition of the lower arc rocks that have not been significantly modified by
transport through the crustal column during ascent.

Results from our study indicate that '80 (Zrn) values from the Cretaceous arc root give
uniformly mantle-like values ranging from 5.2 to 6.3%o and yield an error-weighted average
value of 5.74 + 0.04%o (2SE; n=126). These results indicate that the surge of lower crustal arc
magmas was primarily sourced from the underlying mantle with only limited contributions from
upper plate materials. We present a model whereby the arc flare-up was triggered by widespread
partial melting of a metasomatized, subcontinental lithospheric mantle with contributions from
partially melted, subducted eclogite-facies metasedimentary rocks and oceanic crust. Our
isotopic results reveal that the terminal Cretaceous flare-up resulted in the rapid addition of new

continental crust to the base of the Median Batholith in <<15 m.y. with crustal production rates



112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

averaging ~40-50 km*/Ma/arc-km from 128-114 Ma, and peaking at ~150-210 km®Ma/arc-km

from 118-114 Ma.

GEOLOGIC FRAMEWORK
The Median Batholith in Fiordland

The Median Batholith outcrops over 10,000 km? and is located within the Western
Province of New Zealand (Mortimer et al., 1999; Tulloch and Kimbrough, 2003; Mortimer et al.,
2014). It consists of two margin-parallel plutonic belts, which are compositionally distinct: an
older, low-St/Y (<40), outboard arc located primarily in eastern Fiordland, and an inboard
plutonic belt of high-St/Y character (>40) located primarily in central and western Fiordland.
Collectively, these belts preserve a record of episodic magmatism active over >150 Ma along the
southeastern Gondwana margin from 260-114 Ma. Arc magmatism resulted in at least two
recognized surges of low- and high-St/Y magmas at ca. 147-136 Ma and 128-114 Ma,
respectively, both of which occurred over ca. 10-15 Ma each (Schwartz et al., 2017). The latter
surge of magmatism resulted in emplacement of the Separation Point Suite (SPS) shortly before
termination of arc magmatism and the initiation of extensional orogenic collapse beginning at
108-106 Ma (Schwartz et al., 2016). The boundary between the inboard and outboard arcs is
marked by the Grebe Mylonite zone (Fig. 1) (Allibone et al., 2009a; Scott et al., 2009; Scott et
al., 2011; Scott, 2013) and other major subvertical contractional to transpressional shear zones

(Klepeis et al., 2004; Marcotte et al., 2005).

Qutboard arc
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The primary Mesozoic component of the outboard arc is the low-St/Y Darran Suite (Muir
et al., 1995; Tulloch and Kimbrough, 2003). Darran Suite magmatism occurred on or near the
paleo-Pacific margin of southern Gondwana from 230-136 Ma with peak magmatic activity
taking place between 147-136 Ma (Kimbrough et al., 1994; Muir et al., 1998; Schwartz et al.,
2017 and references therein). It is characterized by mafic and felsic (gabbroic to granitic) [-type
plutonic rocks likely derived from mantle wedge melting and/or mafic sources (Muir et al.,
1998). Whole rock §'®0 values in the Darran Suite range from 4.6 to 5.4%o with an average value
of 5.03%o (n=12; Blattner and Williams, 1991). Decker (2016) reported that some Darran Suite
rocks emplaced from 169-135 Ma have low 5'®0 (Zrn) values ranging from 3.8 to 4.9%o. The
Early Cretaceous Largs Group volcanic rocks located in NE Fiordland also display anomalously
low whole rock (WR) 880 values ranging from +3.3 to -12.3%0 (n=26) indicating hydrothermal
alteration by meteoric fluids at high latitudes or high paleo-elevations (Blattner and Williams,
1991; Blattner et al., 1997). Initial Hf isotope (Zrn) values from Darran Suite plutons give values
ranging from +8 to +11 (Scott et al., 2011; Decker, 2016). Whole rock initial eNd values range
from +3 to +4 (Muir et al., 1998), and initial 87Sr/86Sr ratios range from ca. 0.7037 to 0.7049.

Darran Suite magmatism terminated at ca. 136 Ma and was followed by the emplacement
of high-Sr/Y tonalites and granodiorites of the SPS from 128 to 105 Ma at depths of
approximately 0.2-0.7 GPa (Muir et al. 1995; 1998; Tulloch and Challis, 2000; Tulloch and
Kimbrough, 2003; Allibone and Tulloch, 2004: 2008; Bolhar et al., 2008). Although the SPS
plutonic belt mostly lies inboard of the Darran Suite plutonic belt, intrusions into the outboard
Darran Suite are also common and have been extensively studied (Muir et al., 1998; Tulloch and
Kimbrough, 2003; Bolhar et al., 2008). Both Darran and SPS plutonic suites are calc-alkalic to

alkali-calcic in composition (Tulloch and Kimbrough, 2003). Muir et al. (1998) report that SPS



157  plutons display a small range of positive, whole rock initial eNd values of ca. +3, and low

158  87Sr/*8Sr initial ratios of ca. 0.7038. Bolhar et al. (2008) report initial eHf (Zrn) values ranging
159  from +8.1 to +11.8 from the same plutonic rocks east of the Grebe Mylonite Zone. Zircon 380
160  values for the same rocks range from 1.0 to 5.2%o. They argue that SPS magmas east of the

161  Grebe Mylonite zone were primarily sourced from remelted mafic arc crust (e.g., Darran Suite
162 rocks) and assimilated small amounts of hydrothermally altered, low 5'30 crust at the level of
163  emplacement.

164

165  Inboard arc, including the Separation Point Suite

166 Mesozoic magmatism in the inboard belt is dominated by Cretaceous SPS and related
167  plutons (Muir et al. 1995; 1998; Tulloch et al., 2003). Tonalites and granodiorites west of the
168  Grebe Mylonite zone occur in central and southwestern Fiordland and give zircon crystallization
169  dates ranging from 120.8 to 116.3 Ma (Scott and Palin, 2008; Ramezani and Tulloch, 2009). No
170  isotopic data are reported from tonalitic to granodioritic rocks west of the Grebe Mylonite zone.
171 In western Fiordland, deep-crustal plutons of the SPS were emplaced at 1.0-1.8 GPa and
172 formed the Western Fiordland Orthogneiss (Allibone et al., 2009a,b; DePaoli et al., 2009). These
173 lower crustal rocks are the focus of this study and include seven major plutons: Worsley, McKerr
174  Intrusives (Western and Eastern), Misty, Malaspina, Breaksea Orthogneiss, and Resolution

175  Orthogneiss. Plutonic rocks are primarily diorites and monzodiorites and locally intruded the
176 ~ Deep Cove Gneiss at 128-114 Ma (Mattinson et al., 1986; Tulloch and Kimbrough 2003; Hollis
177  etal., 2003; Allibone et al., 2009a; Schwartz et al., 2017). The Deep Cove Gneiss is a

178  heterogeneous unit chiefly consisting of quartzofeldspathic paragneiss, marble, calc-silicate, and

179  hornblende-plagioclase gneiss (Oliver, 1980; Gibson, 1982). Emplacement of the Western
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Fiordland Orthogneiss was synchronous with regional transpression/contractional deformation in
northern Fiordland (Pembroke Valley and Mt. Daniel) and in the Caswell Sound fold-and-thrust
belt in western Fiordland (Daczko et al., 2001; 2002; Klepeis et al., 2004; Marcotte et al., 2005).
Subsequent granulite- to upper amphibolite-facies metamorphism occurred from 116 to 102 Ma
and overlapped with the initiation of extensional orogenic collapse in the deep crust at 108-106
Ma (Hollis et al., 2003; Flowers et al., 2005; Stowell et al., 2014; Klepeis et al., 2016; Schwartz
et al., 2016). For deformation and metamorphic descriptions of the Western Fiordland
Orthogneiss see: Oliver (1976, 1977), Gibson & Ireland (1995), Clarke et al. (2000), Daczko et
al. (2002), Hollis et al. (2004), and Klepeis et al. (2004, 2007), Allibone et al. (2009b), Stowell et
al. (2014), and Klepeis et al. (2016).

Plutonic rocks from the Western Fiordland Orthogneiss are characterized by low SiO;
(<50-60 wt.%), Y (<20 ppm) and HREE concentrations (Yb< 2.0 ppm); and high Al,O3 (>18
wt.%), Na20 (4.0 wt.%), Sr (>1000 ppm), and St/Y and La/Yb values (>50 and >15,
respectively) (McCulloch et al., 1987). They display steeply fractionated LREE/HREE ratios and
lack positive or negative europium anomalies. Relative to NMORB, they display LILE
enrichment with pronounced positive Pb and Sr anomalies, and negative Rb, Nb and sometimes
Zr anomalies (McCulloch et al., 1987). Isotopically, they display weak enrichment in 8Sr/®Sr
initial ratios of 0.70380 to 0.70430, and weakly negative to positive eNd values ranging from -
0.4 to +2.7 to (McCulloch et al., 1987; Muir et al., 1998). Geochemical modeling of Western
Fiordland Orthogneiss magmas from the Malaspina Pluton demonstrate that the variation in
major-element chemistry reflects fractional crystallization of low silica phases including garnet,
clinopyroxene and plagioclase (Chapman et al., 2016). Although Western Fiordland Orthogneiss

plutonic rocks bear strong similarities to high-Sr/Y granitic plutons in eastern and central
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Fiordland, their low SiOz concentrations and more evolved radiogenic isotope values distinguish
them from their shallower level counterparts. Similar composition lavas are commonly known as
adakites, and Archean analogues are referred to as tonalite-trondhjemite-granodiorites (TTGs)
(see comprehensive review in Moyen, 2009). However, we prefer the term ‘high-St/Y plutonic
rocks’ to describe the Western Fiordland Orthogneiss as the term avoids genetic connotations
(see discussion in Tulloch and Kimbrough, 2003). Western Fiordland Orthogneiss plutonic rocks
bear strong similarities to a subclass of high-Sr/Y rocks termed “low-silica adakites” (Martin et
al., 2005) that are commonly interpreted to have formed from interactions between slab melts
and peridotitic mantle (e.g., Rapp et al., 1999; Kelemen et al. 2003; Kelemen et al. 2014). We
return to this idea and the petrogenesis of the Western Fiordland Orthogneiss in the discussion

section.

METHODS
Whole-rock geochemistry

Whole-rock samples were powdered in an alumina ceramic shatter box and major and
trace-element analyses were conducted at Pomona College. Oxygen isotope analyses were
conducted at the University of Wisconsin-Madison by laser fluorination as described by Valley
et al. (1995) and Spicuzza et al. (1998a,b). All 5'80 values are reported relative to Vienna

Standard Mean Ocean Water (VSMOW).

Zircon trace-element geochemistry
Zircon trace-element geochemical data were collected simultaneously with U-Pb

isotopes, and age data for these zircons are reported in Schwartz et al. (2017). Detailed
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descriptions of methods are given in the Appendix, and sample locations are provided in
Appendix Table 1. Analyses for U-Pb and trace elements were performed on the SHRIMP-RG
ion microprobe at the USGS-Stanford laboratory utilizing an O primary ion beam, varying in
intensity from 4.3 to 6.4 nA, which produced secondary ions from the target that were
accelerated at 10 kV. The analytical spot diameter was between ~15-20 microns and a depth of
1-2 microns for each analysis performed in this study. Prior to every analysis, the sample surface
was cleaned by rastering the primary beam for 60-120 seconds, and the primary and secondary
beams were auto-tuned to maximize transmission. The duration of this procedure typically
required 2.5 minutes prior to data collection. The acquisition routine included 3°Y+, 9-REE
(*¥La+, *%Ce+, " Nd+, "'Sm+, *Eu+, °Gd+, '3Dy'®0+, %6Er'®0+, 1"2Yb'®0+), a high mass
normalizing species (**Zr2'%0+), followed by #°Hf'0+, 2%/Pb+, a background measured at 0.045
mass units above the 2“Pb+ peak, 2Pb+, 2"Pb+, 2%8Ph+, Z2Th+, 238U+, 232Th!®0+, and
238U60+. Measurements were made at mass resolutions of M/AM = 8100-8400 (10% peak
height), which eliminated interfering molecular species, particularly for the REE. For some
samples, the analysis routine was the same as above, but also included masses 3°Si'®0+, ¥Ti+,
¥Ti+, and *Fe+. Measurements for these samples were performed at a mass resolutions of
M/AM = 9000-9500, which was required to fully separate the **Ti+ peak from the nearby %Zr++
peak. Analyses consisted of 5 peak-hopping cycles stepped sequentially through the run table.
The duration of each measurement ranged between 15-25 minutes on average. Count times for
most elements were between 1-8 seconds, with increased count times ranging from 15-30
seconds for 2%Pb, 206Pb, 207Pb, and 2%®Pb to improve counting statistics and age precision. Similar
to previous studies, U concentrations were quite low (roughly <200 ppm) for zircons from mafic

to intermediate composition rocks. Zircon standard, R33, was analyzed after every 3-5 unknown
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zircons. Average count rates of each element were ratioed to the appropriate high mass
normalizing species to account for any primary current drift, and the derived ratios for the
unknowns were compared to an average of those for the standards to determine concentrations.
Spot-to-spot precisions (as measured on the standards) varied according to elemental ionization
efficiency and concentration.

For the zircon standards MAD-green (4196 ppm U, Barth and Wooden, 2010) and
MADDER (3435 ppm U), precision generally ranged from about +3% for Hf, +5-10% for the Y
and HREE, typically +10-15%, but up to +40% for La, which was present most often at the ppb
level (all values at 2¢). Trace elements (Y, Hf, REE) were measured briefly (typically 1 to 3
sec/mass) immediately before the geochronology peaks in mass order. All peaks were measured
on a single EPT® discrete-dynode electron multiplier operated in pulse counting mode. Analyses
were performed using 5 scans (peak-hopping cycles from mass 46 through 254), and counting
times on each peak were varied according to the sample age as well as the U and Th
concentrations in order to improve counting statistics and age precision. Chondrite normalized

plots were calculated using values from McDonough & Sun (1995).

Zircon Secondary Ion Mass Spectrometry O isotopes

Zircon oxygen isotope analyses were conducted at the University of Wisconsin-Madison
using the CAMECA IMS 1280 ion microprobe following the procedures outlined in Kita et al.
(2009) and Valley and Kita (2009). All mounts were polished using 6, 3, and 1um diamond
lapping film to expose the surface of the zircons just below the bottom of the existing pits from
U-Pb SHRIMP-RG analysis. Where U-Pb pits were visible after polishing, they were avoided so

that O-implantation from SHRIMP-RG analyses did not affect oxygen isotope ratios. Zircons
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were imaged by reflected light and by SEM-cathodoluminescence at CSUN to aid in the
selection of oxygen isotope analysis spot locations. Mounts were cleaned using a series of
ethanol and deionized water baths in an ultrasonic cleaner, then dried in a vacuum oven at ~40
°C for 1 hour, and gold-coated in preparation for SIMS analysis. Zircon mounts were mounted
with the KIM-5 oxygen isotope standard (Valley 2003, 680 = 5.09%0 VSMOW). Extra care was
taken to achieve a smooth, flat, low relief polish. A focused, 10kV 133Cg+ primary beam was used
for analysis at 1.9-2.2 nA and a corresponding spot size of 10-12 pm. A normal incident electron
gun was used for charge compensation. The secondary ion acceleration voltage was set at 10kV
and oxygen isotopes were collected in two Faraday cups simultaneously with %0O'H. Ratios of
OH/O provide a monitor of “water”, which can identify domains of metamict zircon or
inclusions (Wang et al. 2014). Four consecutive measurements of zircon standard KIM-5 were
analyzed at the beginning and end of each session, and every 8-10 unknowns throughout each
session. The average values of the standard analyses that bracket each set of unknowns were
used to correct for instrumental bias. The average precision (reproducibility) of the bracketing
standards for this study ranged from + 0.12 to + 0.44 and averaged + 0.28%o (2SD). After the
oxygen isotope analysis was complete, ion microprobe pits were re-imaged by the SEM at

CSUN to ensure that there were no irregular pits or inclusions.

Zircon LA-MC-ICPMS Lu-Hf Isotopes

Hafnium isotopes were analyzed via laser ablation at the University of California Santa
Barbara using a MC-ICP-MS (multicollector —inductively coupled plasma-mass spectrometer) in
an analytical session on August 6 and 7, 2015. Whenever possible, O-isotope spot locations were

resampled for Hf isotopes to target the same chemical domain. Mounts were polished between
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U-Pb, O, and Hf analysis such that the original U-Pb spot was no longer visible. Careful
documentation of the CL images allowed for accurate placement of spots during analysis. A
50pm beam diameter, 3.5 m]J energy (approximately 80 nm per pulse), and a 10 Hz repetition
rate were used for all ablations. Analyses were conducted over a 30 second ablation period with
a 45 second washout between measurements. Masses 171-180 (Yb, Hf, Lu) were measured
simultaneously on an array of 10 Faraday cups at 1-amu spacing. Data reduction was preformed
using lolite 2.3 (Paton et al., 2011).

The MC-ICP-MS is not able to differentiate between 78Yb, 1"8Lu, and 7®Hf, therefore,
the 17®Hf intensity must be corrected for isobaric interferences. Natural *Yb/!"'Yb=1.123575
was used to calculate the Yb mass bias factor and and Lu mass bias (Thirlwall and Anczkiewicz
2004), and "°Hf/"""Hf= 0.7325 was used to calculate the Hf mass bias (Patchett and Tatsumoto
1980; Vervoort et al., 2004). 1"5Yb/'"3Yb=0.786847 and "®Lu/'"*Lu=0.02656 were used to
subtract isobaric interferences on "Hf (Patchett and Tatsumoto 1980; Thirlwall and
Anczkiewicz 2004; Vervoort et al., 2004). A variety of zircon hafnium standards with known
hafnium compositions were analyzed before and after ~10 unknowns, and yield weighted

averages within uncertainty of their accepted values (see Appendix file).

RESULTS
Sample descriptions

Geochemical data consist of 56 new whole-rock samples collected from >2300 km? of
lower crust in Western Fiordland (Fig. 2). Our data span ~130 km parallel and ~30 km
perpendicular to the strike of the paleo-arc axis, which is roughly approximated by the present-

day western Fiordland coastline. Samples for isotopic analysis consist of a subset and include
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eight samples from the Misty Pluton, five samples from the Malaspina Pluton, two samples from
the Worsley Pluton, one sample from the Resolution Orthogneiss, one sample from the Breaksea
Orthogneiss, and one sample from the Eastern McKerr Intrusives (Fig. 1). Oxygen and Hf
isotope measurements were conducted on the same chemical domain as U-Pb isotope
determinations where possible (see Fig. 3). Zircon trace element, 380 and initial eHf isotope

values are shown in Figs. 4-9.

Whole-rock geochemical data

Rocks from the Western Fiordland Orthogneiss range in composition from trachy-basalts
to trachy-andesites (Fig. 2A). They are magnesian, calc-alkalic to alkali-calcic, and
metaluminous (Fig. 2B-D), similar to plutonic rocks in other Cordilleran plutons and batholiths
(Frost et al., 2001). Molar Mg#s range from 56 to 43, and display fractional crystallization trends
consistent with removal of high-pressure mineral assemblages including clinopyroxene + garnet
(Chapman et al., 2016). All plutonic rocks from the Western Fiordland Orthogneiss display high
average Al,03 (18.6 wt.%), NazO (4.9 wt.%), Ni (26 ppm), Cr (83 ppm), Sr (1300 ppm), St/Y
values (128), and low average Y (14 ppm) and heavy rare earth element concentrations (Yb=1.4
ppm) (n=175). Compared to NMORB, plutonic rocks have pronounced positive Ba, K, Pb, and
Sr anomalies, and negative Nb and Zr anomalies. Measured 580 (WR) ranges from 5.3 to 6.8%o,
with one sample as low as 4.5%o (13NZ22). The mean value of all 5'®0 (WR) values (excluding

the outlier) is 6.0 + 0.4%o (Table 1).

Zircon trace-element geochemistry



340 Zircons from the Western Fiordland Orthogneiss are distinguished from continental arc
341  and mid ocean ridge (MOR) zircons by strongly enriched U/Yb values at low Hf concentrations
342  (Fig. 4A). Misty Pluton zircons show the highest Hf concentrations of all zircons. Western

343  Fiordland Orthogneiss zircons are also characterized by high Gd/Yb and low Yb values

344  reflecting strongly fractionated middle/heavy rare earth element concentrations and depletions in
345  heavy rare earth element concentrations (Fig. 4B-E). Western Fiordland Orthogneiss zircons are
346  also characterized by high Ti concentrations, which reflect high average crystallization

347  temperatures using the Ferry and Watson (2007) calibration (typically >750°C assuming asioz =1
348  and atio2 =0.6; see Schwartz et al., 2017 for zircon-thermometry details) (Fig. 4D-E). Western
349  Fiordland Orthogneiss zircons also display enrichments in Ce/Yb (Fig. 4C). Using the calibration
350  in Trail et al. (2011), Ce/Ce* values from Western Fiordland Orthogneiss zircon data give an
351  average fO; of ~5.0 log units above the value defined by the fayalite-magnetite-quartz (FMQ)
352 buffer (+3.2 log units).

353

354  Zircon oxygen isotope ratios

355 Individual zircon 5'®0 values in the Western Fiordland Orthogneiss range from 5.2 to
356  6.3%o (Table 1; Supplementary file). The mean value of all zircons is 5.76 + 0.46%. (2SD), and
357  the error-weighted average is 5.74 + 0.04%o (2SE, 95% confidence limit) (Fig. 5A). In samples
358  where we measured internal and external domains, we see no measurable difference in §'80

359  values (e.g., 15NZ27: Fig. 3). Within individual samples, measured values tightly cluster and
360 yield standard deviations ranging from 0.08 to 0.59%o (2SD). Intra-pluton §'80 standard

361  deviations are also small, <0.6%o. From north to south, mean intra-pluton values and 2SD are:

362 5.73 + 0.59%o (Worsley Pluton), 5.77 + 0.35%o (Eastern McKerr Intrusives), 5.82 + 0.39%o
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(Misty Pluton), 5.73 + 0.29%o (Malaspina Pluton), 5.85 + 0.59%o (Resolution Orthogneiss), and
5.30 + 0.59%o (Breaksea Orthogneiss). All individual zircons and mean intra-pluton values for
the Western Fiordland Orthogneiss lie within analytical SIMS error of the high-temperature
mantle value for zircon (5.3 + 0.80%o: 2SD; Valley, 2003). There are no temporal or latitudinal
trends in §'80 (Zrn) values (Fig. 6A-B).

Calculated WR values from measured §'30 (Zrn) using the equation of Lackey et al.
(2008) generally agree with measured 5'80 whole rock; however, several samples display
deviations towards lower 580 (WR) values. (Fig. 7; Table 1). Samples with the largest
deviations include two samples from the Malaspina Pluton (13NZ22, which also has the lowest
530 (WR) value, and 13NZ16B), the two Worsley Pluton samples (15NZ02, and 15NZ27), and

one sample from the Misty Pluton (12NZ36b).

Zircon Lu-Hf isotopes

Initial epsilon hafnium values in the Western Fiordland Orthogneiss range from -2.0 to
+11.3, and the error-weighted average for all zircons is +4.2 + 0.2 (MSWD = 0.6; n = 354) (Fig.
5B). From north to south, weighted average initial eHf values for plutons are: +5.0 + 0.5 for the
Worsley Pluton (MSWD = 0.3; n = 40), +3.8 + 0.7 for the Eastern McKerr Intrusives (MSWD =
1.1; n = 20), +4.2 + 0.2 for the Misty Pluton (MSWD = 0.5; n = 160), +3.9 + 0.3 for the
Malaspina Pluton (MSWD = 0.6; n = 94), +3.9 + 0.7 for the Resolution Orthogneiss (MSWD =
0.5; n = 20), and +4.6 + 0.7 for the Breaksea Orthogneiss (MSWD = 0.4; n = 20). In general,
Western Fiordland Orthogneiss values are significantly more evolved than Cretaceous depleted
mantle (~+15), and our results overlap with existing results from the Western Fiordland

Orthogneiss (Bolhar et al., 2008; Milan et al., 2016).
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DISCUSSION
Zircon geochemical constraints on lower crustal magma sources

Zircons from the Western Fiordland Orthogneiss are distinguished from arc and N-
MORB zircons by enrichment in U/Yb values suggesting either significant crustal input or
derivation from an enriched mantle source (Fig; 4A). Mantle-like 5'®0 values for all zircons in
this study (see discussion below and Figs. 5-6) preclude significant, if any, crustal input, and
implies that the source of elevated trace element values is an enriched mantle source. Strongly
fractionated middle/heavy rare earth element concentrations and depletions in heavy rare earth
element concentrations (Fig. 4B-C) further indicate the presence of garnet as a fractionating
and/or residual phase in the source region. These features also characterize Hawaiian and
Icelandic zircons. Weak trends in Ti-Yb space can be indicative of either garnet and/or late-stage
amphibole crystallization (Fig 4D); however, even the most primitive zircons with the highest Ti
values show strong depletions in Yb concentrations indicating that Western Fiordland
Orthogneiss magmas were depleted in heavy rare earth elements, likely from residual garnet in
the source region, prior to zircon crystallization.

Western Fiordland Orthogneiss also display enrichments in Ce/Yb relative to MOR,
intraplate and other continental zircons (Fig. 4C), suggesting crystallization from relatively
oxidizing magmas. These features are consistent with high average calculated fO2 values (~5.0
log units above the value defined by the FMQ buffer), and petrologic observations of Bradshaw
(1989, 1990) who noted that Western Fiordland Orthogneiss oxide assemblages are characterized
by intergrowths of exsolved ilmenite and hematite, indicating relatively oxidizing conditions of

crystallization. Collectively, zircon trace element data indicate that zircons crystallized from
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trace element enriched, mafic magmas that were relatively oxidizing, and depleted in heavy rare

earth elements.

Zircon O and Hf isotope constraints on lower crustal magma sources

Zircons from the lower crust of the Median Batholith are characterized by uniformly low
5180 values with all analyses lying within analytical SIMS error of high-temperature mantle
values (Fig. 5A) indicating equilibration between Western Fiordland Orthogneiss zircons and
mantle-like melts. Whole rock §'®0 values from the same rocks are also characterized by mantle-
like values; however, several samples display evidence for modest open-system exchange after
magmatic crystallization (Fig. 7; Table 1). We therefore base our interpretations primarily on
8'80 (Zrn), which is highly retentive of magmatic §'80 even in rocks that have undergone
subsolidus exchange and hydrothermal alteration (Valley, 2003; Lackey et al., 2006; Page et al.,
2007; Lackey et al., 2008).

In addition to their mantle-like character, zircons display very little intra- and inter-
sample variation in 8180 values, consistent with the lack of measurable differences between
internal and external domains (Fig. 3). This observation is remarkable given the wide geographic
distribution of our samples that span >2300 km? of lower arc crust (Fig. 1). Together, the
homogeneity of 8180 (Zrn) values, the mantle-like 8180 character of both zircon and whole rock,
and the low SiO2 whole rock values for Western Fiordland Orthogneiss rocks in this study (54.7
+ 2.3: 1SD) support the interpretation that Western Fiordland Orthogneiss magmas were derived
from partial melting of a high-temperature mantle or mantle-like sources.

In contrast to the mantle-like 8'®0 zircon and whole rock values, initial eHf (Zrn) values

range from -2.0 to +11.2 with a mean of +4.2 (Table 1; Fig. 6B). These values are significantly
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lower than Cretaceous depleted MORB mantle (~15: Vervoort et al., 1999) and average modern
island-arc values (~13: Dhuime et al., 2011). Since the Hf budget of crustal rocks is largely
contained within zircon, contamination from pre-existing zircon-bearing sources is likely to
strongly affect the distribution of Hf-isotope values. A curious feature of the Western Fiordland
Orthogneiss zircons is that their strong mantle-like 8'0 values and lack of xenocrystic zircon
cargo appear inconsistent with significant crustal contamination.

We explore possible explanations for decoupling of O- and Hf-isotopes by considering a
variety of mixing and assimilation-fractional crystallization (AFC) scenarios involving wall rock,
subducted metasedimentary rocks, and various depleted- and ‘enriched’-mantle sources. Here we
use ‘enriched’ to describe eHf values significantly lower than Cretaceous depleted mantle (+15).
Epsilon Hf values for the assimilated wall rock were calculated from average eNd values of
Takaka metasedimentary rocks in Tulloch et al. (2009) using the Vervoort et al. (1999) ‘crustal’
Hf-Nd relationship. The average Takaka value (eNd=-7.9) is similar to that of a metasedimentary
rock reported from George Sound (eNd=-9: McCulloch et al. 1987) and either value is
considered viable. Epsilon Hf values and Hf concentrations for subducted sediment were
selected from average pelagic sediments reported in Vervoort et al. (1999). Hf concentrations
were selected from average values of metasedimentary rocks from western Fiordland (J.
Wiesenfeld and J. Schwartz, unpublished data) and average values of arc lavas from the Mariana
arc reported in Tollstrup and Gill (2005).

Results of binary mixture models are illustrated in Figs. 8A-B, and AFC models are
shown in Figs. 8C-D. In all scenarios, mixing and AFC scenarios involve <20% interaction with
Deep Cove Gneiss (Fig. 8A and C), and <10% interaction with pelagic sediments (Figs. 8B and

D). Figure 8 also illustrates two important features of our data: 1) in both mixing and AFC
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scenarios, no single model adequately describes the distribution of Western Fiordland
Orthogneiss zircon isotope data; and 2) Western Fiordland Orthogneiss zircons show no apparent
mixing trends, but instead they plot in a clustered field within the mantle array centered at eHf =
+4. We also observe that models with a depleted mantle source end member (eHf=+15) fail to
describe the distribution of tightly clustered Western Fiordland Orthogneiss data. Similarly, the
average modern island-arc source (eHf=+13) is a poor fit in both mixing and AFC models.
Models that involve an ‘enriched’ mantle end member (eHf +3 to +9) intersect the majority of
the data; however as mentioned above, our data lack obvious evidence for mixing trends. These
observations suggest that neither mixing nor AFC processes involving supra-crustal sources in
the lower crust are likely the primary explanation for O and Hf enrichment in the Western
Fiordland Orthogneiss; instead, Hf isotopic enrichment is a primary feature of Western Fiordland

Orthogneiss, reflecting derivation of an enriched source region.

Evaluating Triggering Mechanisms for the Zealandia High-MAR Event

Zircon trace element and isotopic results from the lower crust of the Median Batholith
underscore the role of an enriched mantle-like source region with limited supra-crustal
interaction in the petrogenesis of the Western Fiordland Orthogneiss from 128 to 114 Ma. The
mantle-like oxygen isotope signatures of the Western Fiordland Orthogneiss in particular
distinguish the terminal Zealandia flare-up from other Phanerozoic flare-ups, especially those in
the North and South American Cordillera where widespread partial melting and/or
devolatilization of fertile crustal material is commonly invoked to explain the isotopically
evolved character of magmatic rocks (e.g., Ducea, 2001; Haschke et al., 2002, 2006; Kay et al.,

2005; Ducea and Barton, 2007; DeCelles et al., 2009; Ramos, 2009; Chapman et al., 2013;
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Ramos et al., 2014; DeCelles and Graham, 2015). Existing whole rock Pb-isotope data also rule
out triggering of the flare-up by interaction with a HIMU plume (McCoy-West et al., 2016) as
Western Fiordland Orthogneiss magmas have low 2%6Pb/?%*Ph signatures that are distinct from
later Cretaceous intraplate lavas (Mattinson et al., 1986). Lithospheric foundering is also unlikely
as a triggering mechanism as there is no evidence for significant Jurassic or Early Cretaceous
magmatism or a geochemical signature of a thick lithospheric root (e.g., high St/Y, low heavy
rare earth element concentrations) in western Fiordland prior to the Cretaceous flare-up.

In considering other possible triggering mechanisms, we note that petrologic models must
address both the high-Sr/Y and calc-alkaline signature of the Western Fiordland Orthogneiss
(Fig. 2). High-St/Y values and low heavy rare earth element concentrations, particularly Yb and
Lu in Western Fiordland Orthogneiss whole rock and zircons are characteristic features and
signify the presence of garnet in the source or as a fractionating phase (McCulloch et al. 1987;
Muir et al. 1998; Chapman et al. 2016). In contrast, calc-alkaline signatures reflect melting of a
mantle source that was previously enriched in LILEs by a hydrous fluid phase or a melt in
equilibrium with garnet (Kelemen et al., 2003; 2014). In order to explain both of these features,
we consider two potential scenarios including: 1) partial melting of an amphibole-rich lower
crust (Muir et al. 1995; 1998; Tulloch and Kimbrough, 2003), and/or 2) partial melting and
hybridization of eclogite-facies metasedimentary rocks and basalt from a subducting slab with
mantle-derived melts from the subcontinental lithospheric mantle.

Before considering these petrologic scenarios, we note that the brief surge of magmatism
from 128-114 Ma was linked to distinctive tectonic and magmatic features that provide insights
into the geodynamic setting during the flare-up event. These features including: a) transpression

and regional thrusting from ca. 130-105 Ma (Daczko et al., 2001; 2002; Marcotte et al., 2005;
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Klepeis et al., 2004; Allibone and Tulloch, 2008), b) crustal thickening and possibly loading of
the Western Fiordland Orthogneiss in Northern Fiordland from 128-116 Ma (Brown, 1996; Scott
et al., 2009; 2011), ¢) a transition from dominantly low-Sr/Y magmatism from 230-136 Ma to
voluminous, high-St/Y magmatism at 128-114 Ma (Mattinson, 1986; Muir et al., 1998; Tulloch
and Kimbrough, 2003; Hollis et al., 2004; Bolhar et al., 2008; Scott and Palin, 2008; Schwartz et
al., 2016), d) an apparent gap in magmatism from 136-128 Ma (Tulloch and Kimbrough, 2003;
Tulloch et al. 2011), e) the initiation of early granulite facies metamorphism synchronous with
magmatism at ca. 134 Ma, peaking at ca. 120-112 Ma (Gibson and Ireland, 1995; Hollis et al.,
2004; Flowers et al., 2005; Stowell et al., 2010; Tulloch et al., 2011; Stowell et al., 2014; Klepeis
et al., 2016; Schwartz et al., 2016); f) migration of magmatism towards Gondwana (Tulloch and
Kimbrough, 2003), and g) northward drift of the Pacific Plate relative to Gondwana during the
Aptian (125-112 Ma) (Davy et al. 2008). These features collectively point to a major transition in
subduction zone dynamics along the southeast Gondwana margin during the interval from 136 to
128 Ma, which preceded extensional orogenic collapse of Zealandia starting at 108-106 Ma.
Below we explore possible petrologic and geodynamic scenarios that may explain these features

and our geochemical and isotopic data.

Partial melting of mafic lower crust

McCulloch et al. (1987) and Muir et al. (1995, 1998) proposed that the Cretaceous surge
of high-Sr/Y magmas in the Western Fiordland Orthogneiss and SPS resulted from partial
melting of basaltic lower crust leaving behind an eclogite to garnet amphibolite root. In the
McCulloch et al. (1987) model (later refined by Tulloch and Kimbrough, 2003), the Western

Fiordland Orthogneiss originated from partial melting of a LREE-enriched, low-Rb/Sr, mid- to
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late-Paleozoic crustal protolith equivalent to the Darran Leucogranite (SiOz = 51.0-53.6 wt.%).
Muir et al. (1995, 1998) presented a similar model in which trenchward-directed, retroarc
underthrusting of a putative backarc beneath the arc triggered widespread partial melting of
mafic crust resulting in the surge of Separation Point Suite magmatism. Geologic mapping of
western Fiordland has not identified either mid- to late-Paleozoic Darran Suite rocks or remnants
of a mafic back-arc basin beneath the Western Fiordland Orthogneiss. Instead, the deepest
portions of the arc root consist of complexly interlayered granulite facies metadiorite and
eclogite, the latter of which are interpreted to represent high-pressure magmatic cumulates
produced by fractional crystallization of the Western Fiordland Orthogneiss (DePaoli et al. 2009;
Chapman et al. 2016).

Existing petrologic models involving melting of mafic crust also have considerable
difficulty in reproducing the geochemical and isotopic features of the Western Fiordland
Orthogneiss. Data from this study and data compiled from the literature (Fig. 2A) show that SiO>
values extend to as low as 47.2 wt.%. These low values cannot be attributed to partial melting of
amphibole-rich source rocks at reasonable partial melting percentages, which would produce
high SiO2 (55 to >70 wt.%) and low Mg# (20-45) melts at reasonable partial melting values (e.g.,
10-30%: Rapp and Watson, 1995). Figure 2F illustrates this point by comparing melts derived
from partial melting of mafic crust (grey field labeled ‘slab melts’) with the distribution of
Western Fiordland Orthogneiss data. Note that Western Fiordland Orthogneiss data show
decreasing Sr/Y with decreasing Mg# (purple line) indicating likely fractionation of both a high
MgO and heavy rare earth element enriched phase. Mass balance numerical simulations of
elemental data show that the diversity in Western Fiordland Orthogneiss compositions can be

successfully modeled by fractionation of assemblages involving garnet + clinopyroxene from a
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basaltic to trachy-basaltic parental magma (Fig. 2A, E) (Chapman et al., 2016). Layered igneous
garnet pyroxenites at the base of the Western Fiordland Orthogneiss in the Breaksea Orthogneiss
are likely cumulates generated by this process and provide strong support for the existence of an
extensive ultramafic arc root beneath the Western Fiordland Orthogneiss consistent with
observed high seismic velocities (Vp >7.5 km s™!) (Eberhart-Phillips and Reyners, 2001). Isotopic
data from the Darran Leucogranite also preclude it as a source for the Western Fiordland
Orthogneiss as it is characterized by low §'®0 (Zrn) values of 3.97 + 0.32%o, and radiogenic
initial eHf (Zrn) values of 8.4 + 3.1 (2SD; Decker, 2016) that are unlike the Western Fiordland
Orthogneiss. Thus, geochemical and isotopic considerations appear to rule out melting of
underthrusted mafic rocks as the primary source for the Western Fiordland Orthogneiss.

Further, experimental studies also present difficulties in producing the large volumes of
mafic to intermediate magmas over the timescales that we observe in the Western Fiordland
Orthogneiss. Clemens and Vielzeuf (1987) demonstrated that fluid-undersaturated melting of
amphibolites yields relatively low-melt volumes compared to melting of pelites and
quartzofeldspathic rocks, and melt volumes decrease with increasing depth. Melt volumes are
also strongly dependent on the fertility of the source rock, which is controlled by the modal
abundance of hydrous phases (e.g., muscovite, biotite and amphibole). In lower arc crust,
voluminous andesitic melts are unlikely to be generated by melting of underplated basaltic
source rocks unless they experienced low-grade, fluid-present metamorphism resulting in a
significant modal increase in amphibole content (Clemens and Vielzeuf, 1987). As discussed
above, no backarc basin rocks have been identified beneath the Western Fiordland Orthogneiss,
and hydrous metasedimentary host rocks show little evidence for melting except within the

immediate contact aureole of the Western Fiordland Orthogneiss (Allibone et al. 2009b; Daczko
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et al. 2009). The mantle-like 3'30 (Zrn) values for the Western Fiordland Orthogneiss also
preclude significant involvement of high-3'80 sources like the Deep Cove Gneiss (~10.4%o) or
putative underthrusted, hydrothermally altered mafic crust (7-15%o: Gregory and Taylor, 1981;
Alt et al., 1986; Staudigel et al., 1995). Numerical simulations of amphibolite partial melting
based on repeated injection of basalt into the lower crust also conclude that voluminous magma
chambers are not likely to form from basaltic protoliths (Petford and Gallagher, 2001; Dufek and
Bergantz, 2005). Direct field and geochemical observations from the lower crust of the
Famatinian arc, Argentina, also show little evidence for dehydration melting of amphibole, and
instead emphasize the role of fractional crystallization of mantle-derived melts in the
diversification of lower and mid-crustal crustal arc rocks (Walker et al. 2015). In Fiordland, the
sustained production of Separation Point Suite magmas from 128 to 105 Ma, and especially the
production of voluminous mafic to intermediate melts in the Western Fiordland Orthogneiss

from 118-114 Ma, also point to a mantle heat source in triggering the terminal Zealandia flare-

up.

Partial melting of the subducted crust and hybridization with the mantle

Another possibility is that the distinctive chemistry of the Western Fiordland Orthogneiss
reflects interaction of partially melted, subducted eclogite-facies metabasalt and/or
metasedimentary rocks with the overlying mantle wedge. Slab-derived melts are thought to occur
from partial melting of young crust (~5-10 m.y.: Defant and Drummond, 1990; Peacock et al.,
1994), or where torn subducted plates are exposed to mantle flow (Yogodzinski et al. 2001).
Thermal models that incorporate temperature-dependent viscosity, and/or non-Newtonian

viscosity, predict temperatures in the wedge and the top of the slab higher than the fluid-
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saturated solidus for both basalt and sediment (e.g., Johnson and Plank, 2000) at normal
subduction rates and subducting plate ages (Kelemen et al., 2003; van Keken et al., 2002;
Kelemen et al. 2014). Thus, partial melts of eclogite-facies metasedimentary rocks and
metabasalts likely make up an important component of arc magmas, particularly in high Mg#
andesites (>50), and are abundant features in unusually hot subductions zones where ‘tears’
and/or young subducting plates yield a larger proportion of eclogitic partial melt relative to the
overlying mantle wedge (Kelemen et al., 2003; Moyen et al. 2009; Kelemen et al., 2014).

Magmas generated by partial melting and hybridization of subducted oceanic crust with
mantle peridotite have distinctive geochemical features that allow us to compare to Western
Fiordland Orthogneiss compositions. Slab melts are typically andesitic to dacitic in composition
with high St/Y (>100) and Al,O3 (>15 wt.%) values, and steeply fractionated REE patterns
suggestive of an eclogite residue (e.g., Rapp and Watson, 1995). Primitive andesites (Mg#>60)
and high-Mg# andesites (Mg#>50) with high-St/Y signatures typically have high Cr (>36 ppm)
and Ni (>24), features that are interpreted to reflect hybridization of H2O-rich, low-temperature
melts with the high-temperature mantle wedge (Yogodzinski and Kelemen, 1998; Yogodzinski et
al. 2001; Kelemen et al. 2014). Slab melts are also characterized by enrichments in fluid-mobile
elements relative to REEs (e.g., high U/Yb, Ce/Yb, Ba/La, and St/Nd), signatures that are
commonly attributed to an aqueous fluid component with isotopic characteristics of
hydrothermally altered MORB (e.g., Sr/®Sr ~0.7035, **Nd/***Nd ~0.5132, and 2%®Pb/?**Pb
down to 38) (Rapp et al. 1999). However, melting of sedimentary rocks may also be an
important factor in controlling the geochemical budgets of fluid-immobile elements such as Nd,
Pb, Hf, and Th (Johnson and Plank, 2000; Plank, 2005), and lavas with potentially large

components of slab melt (ca, 10%) are reported from some arcs (e.g., Setouchi, Japan: Shimoda
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et al. 1998; Hanyu et al., 2002; Tatsumi et al., 2003). Despite evidence in slab melts for
potentially significant contributions from high-5'®0 sources such as low-temperature
hydrothermally altered MOR crust and sedimentary rocks, olivine from slab melts typically
display only weak, <1%o enrichment in 380 values over MORB:s (see stippled region in Fig.
5A). Bindeman et al. (2005) proposed that the weak enrichment in slab melts may result from a)
partial oxygen isotope equilibration between slab melts and mantle peridotite, and/or b) efficient
mixing between partial melts from several different parts of the slab such that higher- and lower-
880 components average out to have no net difference from average mantle.

Data from the Western Fiordland Orthogneiss display strong similarities to hybridized
slab melts described above. A distinctive feature of the Western Fiordland Orthogneiss is that
high Mg# (>50) rocks have high-St/Y signatures (Fig. 2F) and high Cr and Ni values that likely
reflect reaction of hydrous, eclogite-facies partial melts with peridotite during transport through
the mantle wedge. Deep emplacement of some, if not all, of the Western Fiordland Orthogneiss
at pressures >1.4 GPa (Allibone et al., 2009b) is high enough for igneous garnet to be stable on
the liquidus (Green, 1972; Green and Ringwood, 1967, 1968; Chapman et al., 2016); however,
primitive Western Fiordland Orthogneiss rocks (e.g., Mg# >50) also have high-Sr/Y signatures,
which precludes trace-element enrichment by fractional crystallization alone. Zircon trace-
element data support this conclusion as early crystallizing zircons with high Ti values show both
heavy rare earth element depletions and high Gd/Yb values relative to other continental arc
zircons (Fig. 4D-E). Thus, the high-St/Y (WR) signature, high Gd/Yb (Zrn), and distinctive
trace-element and isotopic features of high-Mg# rocks from the Western Fiordland Orthogneiss

reflect primitive melt compositions, and are not features produced exclusively by fractional
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crystallization. Moreover, these features support the interpretation that garnet was not only a
fractionating phase but also a residual phase in the source region.

Figure 9 shows a series of bulk mixing curves for a variety of sources including adakitic
melts (A), mantle wedge melts (W), crustal melts (C) and sediment (S). In Fig. 9A-B, Western
Fiordland Orthogneiss samples consistently plot at lower St/Y and La/Yb values than expected
from pure slab melts (‘A’ in Fig. 9) consistent with major element chemistry (e.g., Fig. 2F).
Western Fiordland Orthogneiss rocks also lie near or between bulk mixing curves for
adakite/mantle wedge melts and adakite/sediment melts. In this regard, the Western Fiordland
Orthogneiss is similar to lavas from the Aleutians where previous workers have argued for
mixing and/or hybridization of slab melts with eclogite-facies metasedimentary rocks and mantle
wedge melts (Yogodzinski and Kelemen, 1998; Yogodzinski et al., 2001). A distinguishing
feature of our data is that at low 880 melt values, Western Fiordland Orthogneiss rocks have
higher average 3’Sr/*¢Sr values compared to modern slab melts and they plot along the bulk
mixing trend between slab melts and metasedimentary rock melts together with lavas from
Setouchi, Japan (Fig. 9C). The bulk mixing curve with sediment end member in Fig. 9C yields a
sediment input value of ~4-5%, which is similar to values calculated for the modern Kermadec-
Hikurangi margin (Gamble et al., 1996), but is less than values observed in Setouchi lavas.

Kelemen et al. (2014) modeled the trace-element composition of melts and fluids in
equilibrium with eclogite, and observed that modern, high-Mg# andesites display trends that are
consistent with eclogite-facies sediment melt input in both “typical’ arcs and those where slab
melts have been observed (Fig. 10). Compared to modeled compositions, Western Fiordland
Orthogneiss rocks consistently plot between fluid and melt in equilibrium with eclogite,

implying contributions from both sources during melting and melt transport. The Worsley Pluton
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has the highest Th concentrations of Western Fiordland Orthogneiss rocks and consistently
overlaps or plots near modeled eclogite-facies sediment melt compositions. Closer inspection of
immobile trace elements in Figure 11 shows that high Mg# rocks from Western Fiordland
Orthogneiss are characterized by two distinct groups that define: 1) a low Th/La (<0.1) trend
including most Western Fiordland Orthogneiss plutons (Breaksea and Resolution Orthogneisses,
Malaspina and some Worsley) and modern MORBs; and 2) a high Th/La (~0.3) trend that
characterizes high-Th Worsley rocks, and arc rocks from the Antilles and Aleutians (Plank,
2005). Both subducted Kermadec-Hikurangi sediments (Gamble et al., 1996) and lower crustal
sedimentary rocks in the Median Batholith (grey diamonds) are potential sources for the high-
Th/La signature; however the lack of observed assimilation or mixing trends in our isotopic data
(Fig. 8) argues for subducted metasedimentary melt in the source region rather than crustal
contamination at the level of emplacement.

Oxygen isotope signatures in zircons from the Western Fiordland Orthogneiss are also
remarkably similar to olivine from modern slab melts (Fig. 5A) with both datasets lying within
error of high-temperature mantle. Although not conclusive, 80 values in Western Fiordland
Orthogneiss zircons are consistent with mixing of slab melts with contributions from eclogite-
facies metasediment + fluids in the source region (Figs. 10C, 11). Coupled with the lack of
obvious mixing or AFC trends (Fig. 8), we speculate that efficient homogenization and
hybridization with mantle or mantle melts occurred in the source region and/or during transport,

and prior to emplacement at the base of the crust.

A petrogenetic flare-up model for the Separation Point Suite
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Large abundances of high-St/Y rocks are atypical in modern arc environments, except in
unusually hot subduction zones characterized by either subduction of young oceanic crust, very
slow convergence rates allowing heating and melting of the slab, and/or discontinuous ‘tears’
that enhance mantle convection in the subducting plate and allow conductive heating from the
side, top and bottom (e.g., de Boer et al., 1991, 1988; Defant and Drummond, 1990; Yogodzinski
etal., 1994; 1995, 2001; Kelemen et al., 2014). Enhanced mantle melting can also be achieved
by ‘melt-fluxed melting’ in which reaction between hydrous partial melts of subducting
metasedimentary rock and/or metabasalt and overlying mantle peridotite leads to increasing melt
mass, producing a hybrid ‘primary melt’ in which more than 90% of the compatible elements
(Mg, Fe, Ni, Cr) are derived from the mantle, while most of the alkalis and other incompatible
elements come from small degrees of partial melting of subducted crust (e.g., Kelemen, 1986,
1990, 1995; Kelemen et al., 1993, 2003b; Myers et al., 1985; Yogodzinski et al., 1995;
Yogodzinski and Kelemen, 1998). Melt-fluxed melting may also be facilitated beneath arcs as
melts decompress through the mantle column and dissolve solid mantle minerals, thereby
increasing the resulting melt mass (Kelemen, 1986, 1990, 1995; Kelemen et al., 1993, 2014). We
speculate that the hybrid ‘Cordilleran’ arc and high St/Y composition of the Western Fiordland
Orthogneiss reflects this process.

In addition to melt-fluxed melting, the development of discontinuous ‘tears’ (e.g., slab-
tears or ridge-trench collisions) beneath long-lived continental arcs hold the potential to release
large volumes of melts if hot, upwelling asthenosphere is exposed to metasomatized
subcontinental lithosphere as postulated to have existed in the Mesozoic beneath the Median
Batholith (Panter et al., 2006; McCoy-West et al., 2010; Timm et al., 2010; Scott et al., 2014;

Czertowicz et al., 2016; McCoy-West et al., 2015; 2016). Field and geochemical studies in
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mantle rocks thought to have underlain the Median Batholith show that mantle enrichment
occurred during a two-stage, metasomatic processes involving reactive percolation of small
amounts of mafic silicate melt and subsequent fluxing of an OH-rich fluid during Mesozoic
magmatism beneath the arc (Czertowicz et al., 2016). We postulate that the surge of high-St/Y
melts in the Median Batholith resulted from partial melting of this enriched mantle source in an
usually hot subduction zone where a ‘tear’ or slab window produced from a ridge-trench
collision allowed for upwelling asthenosphere to interact with and melt the subducted plate and
the hydrous subcontinental lithospheric mantle.

The plate tectonic configuration of the Median Batholith prior to Zealandia break-up in
the Cretaceous is difficult to know as much of the Cretaceous oceanic crust has been subducted.
Existing palinspastic reconstructions vary greatly; however, all involve subduction of either the
Phoenix or Moa plates beneath eastern Gondwana in the Early Cretaceous (e.g., Bradshaw, 1989;
Luyendyk, 1995; Sutherland and Hollis, 2001; Mortimer et al., 2005). Bradshaw (1989)
proposed that extensional break-up of Zealandia resulted from collision of the Phoenix-Pacific
spreading center. Based on radiolarian faunal data, Sutherland and Hollis (2001) suggested that a
previously unrecognized plate, the Moa plate, subducted beneath the Median Batholith in the
Early Cretaceous and obliquely collided with the eastern Gondwana margin resulting in dextral
strike-slip motion. We speculate that collision of either the Phoenix-Pacific or Phoenix-Moa
ridges with the eastern Gondwana margin, or the development of a slab tear within the
subducting plate, may have been responsible for inducing hot asthenospheric upwelling beneath
the downgoing slab, resulting in partial melting of eclogite-facies metasedimentary rocks and
metabasalt along the plate edge (Fig. 12). Although speculative, a ridge-trench collision or slab

tear model provides a mechanism to explain several of the enigmatic tectonomagmatic features
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of the Cretaceous Median Batholith including: a) the transition of ‘normal’, low-St/Y arc
magmatism to high-Sr/Y magmatism from 136-132 Ma (Fig. 12A-B); b) the rapid generation of
large volumes of low-silica, high-Sr/Y melts with mantle-like 3'0 (Zrc) signatures in the
Western Fiordland Orthogneiss from 128-114 Ma (Fig. 12B-C); c) the anomalous high-
temperature (>900°C) eclogite- to granulite-facies metamorphic event in the lower crust of the
Western Fiordland Orthogneiss initiating in the host rocks at ca. 134 Ma and peaking between
116-112 Ma (Fig. 12D) (Hollis et al., 2003; Flowers et al., 2005; Tulloch et al., 2011; Stowell et
al., 2014; Schwartz et al., 2016); d) the linear nature of high-Sr/Y plutonism along the axis of the
Median Batholith (Tulloch and Kimbrough 2003); and e) the development of transpression and
dextral strike-slip motion in Fiordland and along the Gondwana margin after ca. 132 Ma
(Sutherland and Hollis, 2001; Daczko et al., 2001; 2002; Marcotte et al., 2005; Klepeis et al.,
2004; Allibone and Tulloch, 2008). Foundering of the subducted plate beneath Zealandia and
subsequent enhanced mantle upwelling may be related to rapid vertical motions in the crust and
collapse of the orogen beginning at 108-106 Ma (Fig. 12D) (Klepeis et al., 2007; 2016). An
implication of this model is that subduction-related, asthenospheric-wedge melting ceased to be
the primary mechanism for generating melts and transfer of thermal energy to the Median

Batholith by ca. 136 Ma (c.f., discussion Tulloch et al 2009b).

Do High-MAR Events Contribute to the Addition of New Continental Crust?

Our geochemical and isotopic results from the lower crust of the Median Batholith reveal
that the high-MAR event was primarily driven by mantle melting with important, but
volumetrically minor, additions of subducted arc sediment and oceanic crust. As such, we argue

that >95% of the exposed Western Fiordland Orthogneiss represents new continental crust added



752

753

754

735

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

172

773

to Gondwana from 128-114 Ma, most of which was emplaced between 118-114 Ma (Schwartz et
al. 2017). Given the exposed areal extent of the Western Fiordland Orthogneiss (~2350 km?), a
minimum paleo-thickness of ~30 km derived from structural and metamorphic pressure data
(Klepeis et al., 2007; 2016), and an arc segment length of ~80 km during peak flare up (118-114
Ma) and 125 km during the entire duration of the flare up, we calculate a time-averaged lower
crustal magma addition rate of >38 km*/Ma/arc-km from 128-114 Ma, and a peak rate of >152
km®/Ma/arc-km from 118-114 Ma during the interval when ~70% of the arc root was emplaced
[see Supplementary file for summary of geochronology and flux rate calculations]. When
integrated for the entire crustal column, total crustal (0-65 km) magma addition rates are 70
km?*/Ma/arc-km during the surge of magmatism from 128-114 Ma. As the Western Fiordland
Orthogneiss shows little if any evidence for crustal interaction, magma addition rates are
approximately equal to continental crustal production rates. These rates, however, are minima as
they do not include the effects of lateral arc migration during the flare-up interval, a feature that
is obscured by the truncation of Western Fiordland by the Alpine Fault. Following Ducea et al.
(2015 and 2017), we assume an average arc migration rate of ~4 km/Ma, and calculate a
reconstructed time-averaged lower crustal magma addition rate of >54 km®Ma/arc-km from
128-114 Ma, and a peak rate of >210 km®/Ma/arc-km from 118-114 Ma. Comparable magma
addition rates have been determined for thick Andean-type arcs where rates average between 10
and 150 km3/Ma/arc-km (Ducea et al. 2017). In those cases, half of the total magmatic products
are estimated to be mafic additions to the crust in contrast to the Western Fiordland Orthogneiss,
which is nearly entirely new mantle addition. Compared to other thickened Andean arcs, peak

magmatic production rates in the lower crust of the Median Batholith are equal to and/or exceed
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the highest reported magma addition rates in other Cordilleran arcs, a feature that we attribute to
enhanced mantle melting during propagation of a slab tear/window beneath the arc.

Ducea et al. (2017) noted that modern and ancient island arcs (Jicha and Jagoutz, 2015)
and thin continental arcs (e.g., Famatinian arc in the Sierra Valle Fértil-Sierra de Famatina:
Ducea et al. 2017) are characterized by much faster magma addition rates that reach 300-400
km?/Ma/arc-km. As such, they proposed that thin arcs are primary factories for the rapid
production of continental crust whereby fast to ultrafast magma addition rates are produced by
high arc migration rates across the trench. In the case of the Famatinian arc, ultrafast magmatic
buildup included ~50% mafic additions from the mantle, resulting in a continental crust
production rate of ~180 km®/Ma/arc-km (Ducea et al., 2017), which is similar to our calculated
crustal production rates in the lower crust of the Median Batholith. In addition, the dominantly
‘andesitic’ lower crust of the Median Batholith and its trace-element composition approximates
bulk lower continental crust (see white diamonds in Fig. 10). Thus, we suggest that high-MAR
events involving slab tears/widows may be efficient means of generating continental crust in
thickened Cordilleran arcs without requiring further modification (c.f., Kelemen and Behn,
2016). In addition, our isotopic data demonstrate that high-MAR events do not necessarily
represent isotopic excursions from dominantly mantle-addition trends (Collins et al., 2011);
instead, high-MAR events, particularly those involving lower plate triggering processes, may be

important in the rapid generation of new lower arc crust along destructive plate margins.

CONCLUSIONS
Geochemical and Hf- and O-isotopic results from the deep crustal root of the Median

Batholith, New Zealand, show that the Cretaceous surge in high-Sr/Y magmatism was primarily
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sourced from the underlying mantle. We suggest that the high-MAR event was caused by a
discontinuous ‘tear’ or ridge collision event. Development of a slab window and asthenospheric
upwelling resulted in widespread partial melting of an isotopically enriched and metasomatized
subcontinental lithospheric mantle beneath the Median Batholith, with contributions from
subducted, eclogite-facies metasedimentary rocks and metabasalt. We propose that the slab
tear/window initiated between ca. 136-128 Ma, at the end of low-St/Y arc magmatism and prior
to the onset of voluminous high-Sr/Y magmatism. If correct, ridge subduction may be linked to
regional transpression and local contraction that commenced at ca. 130 and continued to 105 Ma.
Propagation of the putative slab window beneath Zealandia may also explain the apparent gap in
magmatism from 136-128 Ma, and the continentward migration of high Sr/Y-magmatism
throughout Zealandia. Our isotopic results reveal that the terminal Cretaceous flare-up resulted in
the rapid addition of >2350 km? of new lower arc crust with time-averaged crustal production
rates of ~40-50 km3/Ma/arc-km from 128-114 Ma, and peak rates of 150-210 km%Ma/arc-km
from 118-114 Ma when ~70% of the arc root was emplaced. Compared to bulk continental crust,
the lower crust of the Median batholith is remarkably similar in trace-element composition,
suggesting that high-MAR events involving slab tears or ridge-trench collisions may be an
efficient means of generating lower continental crust from hybridization of mantle and subducted

slab components, and may not require second stage processes such as relamination (Kelemen and

Behn, 2016).
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Table 1. Summary of zircon U-Pb, O and Lu-Hf isotope data for the Western Fiordland

Orthogneiss, Median Batholith, Zealandia Cordillera.
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FIGURES

Figure 1. A simplified geologic map of the study area in Fiordland (adapted from Allibone et al.,
2009a). Samples for zircon O- and Hf isotope analyses are shown with white stars.
Inboard Median Batholith consists of Western Fiordland Orthogneiss, which was
emplaced during an arc flare-up event from 124-114 Ma.

Figure 2. Bivariate plots of whole-rock data showing geochemical features of the Western
Fiordland Orthogneiss (this study and Wiesenfeld and Schwartz, unpublished data). a)
Samples range from ~47-60 wt.% SiOz and are classified as basalt/trachy-basalt to trachy-
andesite. Western Fiordland Orthogneiss samples are largely magnesian (b), calc-alkalic
to alkali-calcic (c) and metaluminous (d). €) Molar Mg#s range from 42-60 consistent
with fractionation of high-density assemblages including garnet + clinopyroxene from a
primitive basalt or primitive andesite. f) Western Fiordland Orthogneiss samples have
high-Sr/Y values (>40) indicating the presence of garnet and/or amphibole as residual or
fractionating phase. The high St/Y character is present and highest in the most primitive
samples (Mg# >50) indicating that the high-Sr/Y signature is a feature of the source and
not related to crystal fractionation processes. Fields in b-c from Frost et al. (2001, 2008).
Fields in e-f compiled from Rapp et al. (1999) and Moyen et al. (2009). BADR = basalt-

andesite-dacite-rhyolite arc trend.
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Figure 3. Cathodoluminescence images of representative zircons from the Western Fiordland

Orthogneiss. Locations of ion microprobe and laser ablation spots shown, U-Pb in white,

oxygen in teal, and Hf in yellow along with data from each spot. Scale bars are 100 pm.

Figure 4. Bivariate plots of Western Fiordland Orthogneiss zircon trace-element data compared

to the global compilation of zircons from various tectonic environments from Grimes et
al. (2015) and references therein. a) U/Yb vs. Hf (ppm) showing enrichment in U/Yb for
Western Fiordland Orthogneiss zircons relative to continental arc zircons, suggesting
either strong crustal input or an enriched mantle source. b) U/Yb vs. Gd/Yb illustrating
the strong garnet signature relative to continental zircons, especially the Worsley and
Malaspina Plutons and Breaksea Orthogneiss. Negative trends are consistent with
fractional crystallization during cooling. c) Gd/Yb vs. Ce/Yb. Western Fiordland
Orthogneiss zircon display enrichment in both Ce/Yb and Gd/Yb, indicating relatively
oxidizing magmas relative to MOR, intraplate and other continental zircons. Only zircons
from kimberlites have higher average Gd/Yb values. d) Ti vs. Yb showing relatively high
Ti concentrations (and high crystallization temperatures) at low average Yb
concentrations relative to other continental arc zircons. Weak trends towards decreasing
Yb are consistent with either garnet and/or late-stage amphibole crystallization. e) Ti vs.
Gd/Yb. Western Fiordland Orthogneiss zircons plot at the high-temperature (Ti) end of
the continental arc spectrum, with high Gd/Yb values consistent with a garnet signature.

Weak cooling trends are present with either garnet or apatite fractionation.

Figure 5. a) Histogram showing §'30 (Zrn) values for the Western Fiordland Orthogneiss. Grey

bar reflects the §'®0 composition of high-temperature mantle (Valley et al., 2005). The

weighted-average 5'%0 value for all Western Fiordland Orthogneiss zircons is 5.76 +
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0.04%o (25). Dashed area shows modern ‘adakites’ and high-Mg andesites from global
compilation of Bindeman et al. (2005). b) Histogram showing initial eHf (Zrn) for the
Western Fiordland Orthogneiss. The weighted-average value for all Western Fiordland
Orthogneiss zircons is +4.2 + 0.2 (26). Grey bar reflects the composition of depleted

mantle at ca. 120 Ma (Vervoort and Blitchert-Toft, 1999).

Figure 6. Bivariate plots of O-isotope and initial eHf values versus zircon Pb/U age and latitude.

a) Bivariate plot of 2%Pb/?8U zircon age vs. §'%0 (Zrn). b) Bivariate plot of !0 (Zrn)
vs. latitude. c) Bivariate plot of 2°°Pb/?38U vs. initial eHf (Zrn). D) Bivariate plot of initial
eHf (Zm) vs. latitude. Grey field in a) and c) reflects the '®0 composition of zircon in
equilibrium with high-temperature mantle (Valley et al., 2005). All Western Fiordland
Orthogneiss O-isotope data lie within SIMS analytical error of the mantle field. Grey
circles are Western Fiordland Orthogneiss zircons reported in Milan et al. (2016) filtered
for 2°6Pb/?38U zircon dates between 110 to 130 Ma--the age range of the Western
Fiordland Orthogneiss defined by high-precision zircon dates (see Schwartz et al. 2017

and references therein).

Figure 7. Comparison of calculated and measured 680 (WR). Calculated values were

determined from zircon O-isotopes and SiOz concentrations following the equation in
Lackey et al. (2008). The grey field bounding the equilibrium line is 3SD of analytical
uncertainty wide. Samples that lie off that line are interpreted to have interacted with

low-8'80 (marine or meteoric) water.

Figure 8. Results of bulk mixing (a-b) and assimilation-fractional crystallization (c-d) models

for zircon 5'®0 and initial eHf (Zrn) data (colored curves). Black, horizontal lines at the

bottom of A-D show results of oxygen isotope bulk mass balance mixing models. All
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models use a variety of mantle-derived melts. Models in a) and c) use average Deep Cove
Gneiss, whereas models in b) and d) use average pelagic sediments (after Vervoort et al.
1999). Ticks and percentages indicate relative proportions of assimilant. In general,
models involving Cretaceous depleted mantle (€Hf=+15) and average arc (eHf=+13) fail
to describe the variation in Western Fiordland Orthogneiss data. Best-fit models involve
‘enriched’ mantle sources (mixing curves with eHf =+7 to +3 as end member
compositions). Results permit bulk mixing and/or assimilation of up to 15% Deep Cove
Gneiss and up to 10% pelagic sediment; however, the lack of apparent assimilation or
mixing trends suggests that the isotopic composition of Western Fiordland Orthogneiss
magmas was acquired in source region rather than by crustal assimilation at the level of

emplacement. Mantle arrays after Patchett & Tatsumoto (1980) and Valley et al. (2005).

Figure 9. Bivariate plots of §'80 melt calculated from zircon values versus whole-rock trace-

element ratios and initial 8’Sr/*Sr. a) S1/Y vs. 5'%0 melt. b) La/Yb vs. 680 melt. c)
initial 8Sr/%Sr vs. 680 melt (Wiesenfeld, unpublished data). Thick black bars in each
graph show the accepted range of 5'0 for mantle-derived basaltic melts. Curves
represent bulk mixing of end member compositions after Bindeman et al. (2005): A—
adakitic (slab) melts, W—mantle wedge melts, C—crustal melts, S—sediment melts +
fluids. Fields for global slab melts after Bindeman et al. (2005) and references therein.
No La/Yb data are reported for Setouchi, Japan (Fig. 9b). Trace-element data from the
Western Fiordland Orthogneiss overlap field defined by Aleutians and lie between bulk
mixing curves for adakite-mantle wedge melts and adakite-sediment melts. Radiogenic

isotope data plot along the bulk mixing curve for adakite-sediment melt, and indicate ~4-
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5% sediment input. Low, Sr/Y lavas from Setouchi, Japan lie along the same bulk mixing

curve with higher amounts of sediment input.

Figure 10. Bivariate trace-element plots for Western Fiordland Orthogneiss samples filtered to

show only high Mg# basalts and andesites (Mg# >50). In general, Western Fiordland
Orthogneiss samples show strong enrichment in Th, Ba, La, Pb, Ce, Sr and Nd, and
largely plot within fields defined by other high-Mg# andesites (fields after Kelemen et
al., 2014). Large symbols show estimated compositions of fluid (rectangles) and melt
(circles) in equilibrium with eclogite for Marianas (blue) and Aleutians (peach) at 2 wt.%
fluid or melt extracted (Kelemen et al., 2014). Data from the Western Fiordland
Orthogneiss plot between eclogite fluid and melt compositions, suggesting contributions
from both sources during melting and melt transport. Relative to bulk continental crust
(filled white diamonds), Western Fiordland Orthogneiss is more enriched in Ba, Sr, and
somewhat lower in Th. Estimated bulk continental crust values from Christensen and
Mooney (1995), McLennan and Taylor (1985), Rudnick and Fountain (1995), and

Weaver and Tarney (1984), including Archean estimate of Taylor and McLennan (1995).

Figure 11. Bivariate plots of a) Th/Nb versus La/Nb and b) Th/La versus Sm/La for high-Mg#

basalts and andesites (Mg# >50). Fields show modern arc lavas and mid-ocean ridge
basalts (MORBs), and sediments from the Kermadec-Hikurangi arc. a) Western
Fiordland Orthogneiss data show two trends: 1) a low Th/La (<0.1) source that
characterizes the Breaksea and Resolution Orthogneisses, the Malaspina Pluton, some of
the Worsley Pluton, and MORBs; and 2) a high Th/La (~0.3) source that characterizes a
subgroup of the high-Th, Worsley samples. The high Th/La source is consistent with

subducted, Kermadec-Hikurangi sediments (Gamble et al., 1996); b) Western Fiordland
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Orthogneiss rocks are characterized by low Sm/La, a feature that also defines OIB, E-
MORB and mantle xenoliths from greater Zealandia (Sun and McDonough, 1989;
McCoy-West et al., 2015). Western Fiordland Orthogneiss rocks trend from low Th/La to
higher values consistent with interaction with high-Th sediment. The black line shows
bulk mixing trend between a high-Th sedimentary component and a low-Sm/La mantle
component. Arc and MORB fields after Plank (2005). Average E-MORB and N-MORB

compositions after Sun & McDonough (1989).

Figure 12. Schematic model for the development of the Fiordland sector of the Gondwana

margin from the Triassic to Early Cretaceous. a) Arc-related magmatism in the outboard
arc (Darran Suite) from ca. 230 to 136 Ma. Magmatism is characterized by low-Str/Y
plutons with depleted mantle radiogenic isotope values. b) Development of a ‘tear’ or
ridge-trench collision after ca. 136 Ma results in opening of a slab window and upwelling
of asthenospheric mantle. High-Sr/Y melts are generated from @ partial melting of
subducted, eclogite-facies sedimentary rocks and oceanic crust. Subsequent hybridization
occurs by @ mixing of high-St/Y melts with a) metasomatized subcontinental mantle
lithosphere, and/or b) basaltic melts derived from partial melting of the same mantle
lithosphere. c) Peak high-MAR event occurs as upwelling asthenospheric mantle
continues to melt subducted, eclogite-facies oceanic crust and impinges on hydrous
subcontinental lithospheric mantle igniting the Cretaceous flare up. d) Waning high-St/Y
magmatism, and granulite- to amphibolite-facies metamorphism in the lower to middle
crust (Stowell et al. 2014). Decompression in the lower crust initiates at ca. 108-106 Ma

during regional extension and A-type magmatism (Tulloch et al., 2009; Klepeis et al.,



1463 2016; Schwartz et al., 2016). Possible foundering of thick ultramafic root produced

1464 during high-Sr/Y flare-up event.
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Table 1. Summary of Zircon U-Pb, O and Lu-Hf isotopic data for the WFO.

Field p |EPUZm| o 3”0 | 80 [zms"0 f;:g) ZrneHf |Zrn eHf Ti-in-Zircon
Pluton Rock type sample Age (Ma) (WR) | (WR) range Error| # | (initial) | (initial) (2 SD| # |temperature | SD
number [N opy [ VR o) | @t | ) "(1:;' (2D) range | mean ©0)

Breaksea Gnt granulite 13NZ33E 1232+ 13| 547 | 6.05 6.15 5.2-54 530 023 6 | 2.76.5 48 |35]20 n.d. n.d.
Eastern McKerr [Hbl diorite 15NZ20 |P85715 |120.1 +2.8] 55.1 | 5.92 6.64 5.5-6.0 577 1027 6 |(20-57] 38 |31]20 71 57
Malaspina Hbl diorite 13NZ16B |P83712 |118.0+2.1] 56.0 | 5.52 6.67 5.5-5.9 574 1027 7 | 2.1-56 4.2 31120 776 43
Malaspina Hbl diorite 13NZ22 |P83718 |1169+1.6] 56.1 | 4.53 6.60 5.5-5.9 567 | 037] 5 3.0-6.2 4.3 34|17 812 31
Malaspina Two pyroxene diorite 13NZ34A |P83730 |118.0+1.8| 55.2 | 6.36 6.62 5.5-6.0 574 1039 7 1.2-4.6 2.9 33120 792 31
Malaspina Bt-Hbl diorite with relict pyroxene |13NZ40D1|P83733 |116.4+1.3] 52.6 | 6.21 6.46 5459 574 | 037] 9 | 1953 36 |[33]17 780 31
Malaspina Hbl-Bt qz diorite 13NZ59 |P83750 |117.5+1.0] 54.9 | 5.96 6.61 5.7-5.8 575 1027| 6 1.9-6.5 43 |31]20 788 29
Misty Hbl diorite 12NZ22a |P83650 |114.7+1.1| 59.2 | 6.11 6.80 5.5-5.8 568 1017 7 | 1.3-10.8 47 134120 n.d. n.d.
Misty Hbl diorite 12NZ24 |P83652 |115.8+2.1] 53.5 | 6.05 6.52 5.6-6.0 575 1012 6 | 2.9-6.0 3.9 3320 n.d. n.d.
Misty Hbl monzodiorite 12NZ33 |P83661 |114.3x2.1] 529 | 6.12 6.29 54-5.6 556 1023 8 | 2.0-57 4.0 36|20 n.d. n.d.
Misty Bt-Hbl gz diorite with relict pyroxenef12NZ36b |P83664 |114.2+1.3| 52.6 5.34 6.50 5.5-5.9 578 1020] 5 2.8-4.9 39 34|20 n.d. n.d.
Misty Two pyroxene monzodiorite 13NZ46 |P83738 |116.9+1.2| 545 6.28 6.70 5.6-6.0 587 | 017 | 8 | 2.6-11.2 44 3.1]20 795 21
Misty Two pyroxene diorite 13NZ52A |P83743 |116.8+1.6] 55.5 | 6.37 6.95 5.8-6.2 605 1038] 5 2.5-54 39 29120 776 26
Misty Hbl-Bt gz diorite 13NZ55A |P83746 |1152+1.9] 60.2 | 6.76 7.06 5.7-6.1 587 040 7 | 2.1-7.7 44 129]20 773 48
Misty Two pyroxene diorite 13NZ58 |P83749 |1153+1.5] 52.0 | 6.12 6.74 5.7-6.2 6.06 027 | 7 1454 43 129]20 735 32
Resolution Hbl diorite 12NZ12b 1151 £2.1|] 51.0 | 6.35 6.47 5.3-6.1 585 025 7 | 2.2-79 40 |32]20 n.d. n.d.
Worsley Two pyroxene diorite 15NZ02 |P85716 |121.6+19| 553 | 5.61 6.34 5.2-5.6 546 1038 8 3.5-6.9 49 33|20 745 17
Worsley Two pyroxene diorite 15NZ27 |P85717 |123.2+1.6| 54.4 | 5.58 6.78 5.6-6.2 595 | 045] 10| 2.6-6.1 50 | 3.1]20 781 24

"U-Pb zircon data reported in Schwartz et al. (in press), except 13NZ33E which is reported in Klepeis et al. (2016).
"calculated using equation reported in Lackey et al. (2008).

SE = standard error; SD = Standard deviation; n.d. = not determined.
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