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We introduce and study a Hamiltonian formalism of mutations in cluster algebras using canonical variables,
where the Hamiltonian is given by the Euler dilogarithm. The corresponding Lagrangian, restricted to a
certain subspace of the phase space, coincides with the Rogers dilogarithm. As an application, we show
how the dilogarithm identity associated with a period of mutations in a cluster algebra arises from the
Hamiltonian/Lagrangian point of view.
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1. Introduction
1.1 Background and motivation

The Euler dilogarithm

. Y *log(1 - y)
L = —_ = ——d 1.1
i (x) ;nz /0 S (1.1)

appears in several areas of mathematics [1]. One of the main features of this function is that it satisfies
a wide variety of functional relations (dilogarithm identities), many of which look miraculous and mys-
terious. Cluster algebras are a class of commutative algebras introduced by Fomin and Zelevinsky [2].
They originated in Lie theory but turned out to be related to several areas of mathematics.

Fock and Goncharov [3] recognized that the function Li, (x) is built into cluster algebra theory as a
Hamiltonian. To see this, consider the Poisson bracket introduced by [4],

(i yi} = byyiyjs (1.2)
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2 M. GEKHTMAN ET AL.

where yj,...,y, are commutative variables and B = (b;)},_, is a skew-symmetric matrix. Then, using
formula (3.4), we have

{Liz(=y1),yi} = —biilog(1 + yi) - yi. (1.3)

This is an infinitesimal form (of the automorphism part) of the mutation of y-variables (x-variables in [3])
in cluster algebras. Therefore, one may regard the function Li,(—y;) as a Hamiltonian with continuous
time variable, and the ordinary mutation is obtained as the time one flow of this Hamiltonian. This
viewpoint naturally guided the authors of [3, 5, 6] to quantize the cluster algebras using the quantum
dilogarithm.

Meanwhile, there is another story which developed independently, connecting the dilogarithm and
cluster algebras, where the Rogers dilogarithm

1 [ [log(l— lo
/ { g —y) 2y
2 0

L(x) = —~ }dy =Li,(x) + llogxlog(l —X) (1.4)
y -y 2

plays the central role. The function L(x) is a variant of Li,(x) and it is known that many dilogarithm
identities are simplified in terms of L(x). In the 90’s, several conjectures on dilogarithm identities for L(x)
were given through the study of so called Y-systems in integrable models of Yang—Baxter type. Later, the
connection between Y-systems and cluster algebras was recognized [7] and these dilogarithm conjectures
were solved using the cluster algebraic method [8—11] with the help of the constancy condition from [12].
Then, these results were further generalized to the following theorem [13]: for any period in a cluster
algebra, there is an associated dilogarithm identity of L(x).

It is interesting to understand how these seemingly independent appearances of the Euler and Rogers
dilogarithms are intrinsically related. In [14], it was clarified that the dilogarithm identities in [13] are
recovered through the semiclassical analysis of the corresponding quantum dilogarithm identities, where
the Rogers dilogarithm emerges through the relation

L (ﬁ) — —Liy(—x) — %logxlog(l + 2. (1.5)
Furthermore, the result therein yields the following curious observation: The relation (1.5) can be regarded
as the Legendre transformation in classical mechanics, where the Euler dilogarithm is the Hamiltonian,
while the Rogers dilogarithm is the Lagrangian. However, to formulate and establish the claim precisely,
we need canonical variables for the Poisson bracket (1.2).

Motivated by the above question, in this article we introduce canonical variables of the Poisson
bracket (1.2), and study the Hamiltonian and Lagrangian formalisms of mutations in cluster algebras.
As a consequence, the above observation is justified; furthermore, we can successfully explain how the
dilogarithm identities in [13] naturally arise in the Hamiltonian/Lagrangian picture.

1.2 Outline and main results

Let us briefly describe the outline and the main results of the article.
In Section 2, we recall basic definitions and properties of mutations in cluster algebras and of the
dilogarithm functions which we are going to use.
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HAMILTONIAN AND LAGRANGIAN FORMALISMS OF MUTATIONS 3

In Section 3, we introduce the Hamiltonian formalism of mutations in cluster algebras with canonical
variables. The x- and y-variables in a cluster algebra are constructed as exponentials of linear combinations
of the canonical variables, while the Hamiltonian is given by the Euler dilogarithm. The time one flow of
the Hamiltonian, together with the tropical transformation, yields the mutation of the x- and y-variables
(Theorem 3.12). This naturally extends the Hamiltonian formalism in [3]. An interesting feature here is
that the y-variables mutate properly on the total phase space M ~ R?", while the x-variables do so only
on a certain subspace M, of the phase space. This does not have an effect on the equations of motion; but
does affect the quantization of the Poisson bracket in the following way:

* The canonical quantization of the Poisson bracket leads to the quantization of the y-variables by [3, 5].

*  On the other hand, the Poisson bracket on the small phase space M, is redefined via the Dirac bracket
due to [15]. Then, the ‘canonical quantization’ of the Dirac bracket leads to the quantization of the
x-variables by [16].

Therefore, the formulation here provides a common platform for the quantization of both x- and
y-variables.

In Section 4, having the canonical variables at hand, we study the Lagrangian formalism of mutations.
A specific feature here is that the Hamiltonian in Section 3 is singular. This implies that we do not
have a Lagrangian whose Euler—Lagrange equations are fully equivalent to the equations of motion
of the Hamiltonian. Despite this deficiency, one can still define the Lagrangian through the Legendre
transformation. Then, the following fact holds:

Fact 1. (Proposition 4.4) The Lagrangian coincides with the Rogers dilogarithm on the above small phase
space M,.

This justifies the observation stated in the previous subsection.

In Section 5, we make a little detour to establish the periodicity property of the canonical variables.
In the Hamiltonian formalism, we naturally introduce a sign ¢ = = to decompose each seed mutation
into the tropical and non-tropical parts. The mutation of x- and y-variables is independent of the choice
of the sign &, while the mutation of the canonical variables depends on it. Thus, we call these mutations
signed mutations. We have the following result, which is crucial for obtaining the final result in the next
section.

Fact 2. (Proposition 5.11) A sequence of signed mutations enjoys the same periodicity as a sequence of
seed mutations, if we choose the sign sequence therein as the tropical sign sequence.

In Section 6, we show how the dilogarithm identities in [13] arise from the Hamiltonian/Lagrangian
point of view. This is done by considering the action integral of the singular Lagrangian from Section 4
along a Hamiltonian flow. There are two key facts:

Fact 3. (Proposition 6.2) The Lagrangian is piecewise constant along the flow.

Fact 4. (Theorem 6.3) The action integral does not depend on the flow, if all flows are periodic for the
time span of the integral. (This is regarded as the converse of a finite time analogue of Noether’s theorem,
see Remark 6.6.)

The dilogarithm identities in [13] are obtained as an immediate consequence of the above Facts 1-4.
This is the main result of the article (Theorems 6.8 and 6.9).

REMARK 1.1 Theorem 6.8 can be straightforwardly extended to generalized cluster algebras and diloga-
rithm functions of higher degree studied in [17]. Meanwhile, Theorem 6.9 can be also extended to them
if we admit the version of Theorem 6.11 for generalized cluster algebras, which is not yet available.
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4 M. GEKHTMAN ET AL.

2. Preliminaries
2.1 Mutations in cluster algebras

Let us recall two main notions in cluster algebras, namely, a seed and its mutation. See [2, 18] for more
information on cluster algebras.

Let us fix a positive integer n throughout the article. We say that an n X n integer matrix B = (by);;_,
is skew-symmetrizable if there is a diagonal matrix D = diag(d,, . . .,d,) with positive integer diagonal
entries d,, . . ., d, such that DB is skew-symmetric, i.e., d;b; = —d;bj;. We call such D a skew-symmetrizer
of B.

Let us fix a semifield P, that is, an abelian multiplicative group with a binary operation & called the
addition, which is commutative, associative, and distributive, i.e., a(b ® ¢) = ab @ ac. Let ZIP be the
group ring of IP. Since ZP is a domain [2], the field of fractions of ZP is well defined and we denoted it
by QP. Let F = Fp be a purely transcendental field extension of QPP of degree n, that is F is isomorphic
to a rational function field of n variables with coefficients in QPP. We call the semifield P and the field F
the coefficient semifield and the ambient field (of a cluster algebra under consideration), respectively.

A seed with coefficients in P is a triplet (B, x,y) consisting of an n x n skew-symmetrizable matrix
B, an n-tuple (x;)}_, of algebraically independent elements in F, and an n-tuple (y;)%_, of elements in P.
Foreachk = 1,...,n, the mutation of a seed (B, x,y) at k is another seed (B',x',y") = u;(B,x,y), which
is obtained from (B, x, y) by the following formulas:

b — —b; i=korj=k @.1)
v by 4+ [—ebulybij + bulebyly i, #k, .
1 - [—ebjl+ 1 +57i .
X = X (HX/- >1®ye i=k (22)
i j=1 k .
Xi i 7& ks
—1 .
, Vi i=k
yi:= &by e\—by: . (2'3)
ey i £k,
where
. n bi
Yi =i 1_[36,-/ > 24

and ¢ is a sign, 4 or —, which is naturally identified with 1 or —1, respectively. Then we have the following
properties:

(1). The right-hand sides of (2.1)—(2.3) are independent of the choice of sign ¢.
(2). If D is a skew-symmetrizer of B, then it is also a skew-symmetrizer of B'.

(3). The mutation g is involutive, namely,

tc © e = id. (2.5)
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HAMILTONIAN AND LAGRANGIAN FORMALISMS OF MUTATIONS 5
(4). The y-variables (2.4) also mutate in F as the y-variables; namely,

Al .
A7 yk 1= k

P =\~ aleby JUNT S (2.6)
S5 490 i £k

Let F{ be the set of all n-tuples of algebraically independent elements in F, and, as usual, let P" be
the set of all n-tuples of elements in IP. Let us extract the ‘variable part’ of the mutation y; in (2.2) and
(2.3) as

ug: FrxPr > Fix Pt @7)
ey = (LY,
and call it the mutation at k by B. The involution property (2.5) is equivalent to the inversion relation,
o uf =id, (2.8)
where By = B’ is the one in (2.1).
Following the idea of [5], we decompose the mutation x? into two parts. For each sign ¢ = +, we

introduce a map

P FyxP — Frx P

" 2.9
y) e @) 29)
1 86\ —Oki

% :x,( +yk> , (2.10)

1@ y;
Vi =1 @ y5) ", (2.1D

and also a map

B . n n n n

Tie FogxPr — FyxP 2.12)

xy) = &.y),

x71< x[._Sbij) i=k
x=1" H’ (2.13)

i Jj=1
Xi i #k,
—1 .
, Ve i=k
= ) 2.14
yi :Yiy/[jbklj+ i £ k. (2.14)

Then, for each sign & = =, the mutation p? is decomposed as
wy =1L 0 pg,. (2.15)

In [5], the transformations ,of:s and r,fs for ¢ = + were considered, and they were called the auto-
morphism part and the monomial part of the mutation u2, respectively. Here, we call :0155 and ‘c,fg the
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6 M. GEKHTMAN ET AL.

non-tropical part and the tropical part of the mutation 2, respectively. See [19] for the background of
the terminology.

When the coefficient semifield PP is taken to be the trivial semifield 1 = {1}, where 1 & 1 = 1, we
say that the x-variables are without coefficients. In that case, the transformations (2.2) and (2.10) are
simplified as

1 . [*gbjk1+> ~e .
By X; A+y) i=k
x={" (E / Ve (2.16)
Xi i #k,
% = x(1 +5,§)*5ki’ (2.17)
respectively, while (2.4) also reduces to
5=+ (2.18)

2.2 Euler and Rogers dilogarithm functions

Let us recall the definition of the Euler and Rogers dilogarithms. See [1, 20] for more information.
The Euler dilogarithm Li,(x) is originally defined as the following convergent series with radius of
convergence 1,

oo xn
Li = —. 2.19
i (x) ;nz (2.19)
It has the integral expression
*log(1 —
Liy(x) = — / e =y x< ), (2.20)
0

where throughout the text we concentrate on the real region x < 1 so that there is no ambiguity due to
multivaluedness of the integral. Note that (2.20) is also written as

Li,(—x) = — /X ww, (=1 <x). (2.21)
0

On the other hand, the Rogers dilogarithm L(x) is defined by the integral expression

L) = _l/X {log(l = logy }dy, O<x<1). (2.22)
0

2 y I—y

Again, since we concentrate on the real region 0 < x < 1, there is no ambiguity due to multivaluedness
of the integral.
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HAMILTONIAN AND LAGRANGIAN FORMALISMS OF MUTATIONS 7

These two dilogarithms are related by

L(x) = Li)(x) + %logxlog(l —x), O0O=<sx<1l, (2.23)

which can be used as an alternative definition of the Rogers dilogarithm. They are also related by the
following less well-known formula:

L (71 ix> = —Lix(=x) — %logxlog(l +x), (0<x) (2.24)
L[ flog(1+y) logy
= 2/0 { 3 1+y}dy, 0 =<x). (2.25)

Formulas (2.23)—(2.25) can be most easily verified by taking the derivative.
In view of the formulas (2.24) and (2.25), it is convenient to introduce a function

£ x \_ 1 ["]log(l+y) logy
L(x)_L(Hx)_z/O[ S 1+y}dy, (0 <x), (2.26)

so that it satisfies the equality

- 1

L(x) = —Liy(—x) — 3 logxlog(l +x), (0 <x). (2.27)
For simplicity, we still call the function I:(x) the Rogers dilogarithm.

3. Hamiltonian formalism of mutations
3.1 Canonical and log-canonical variables

Let M be a symplectic manifold with a global Darboux chart ¢ : M SR>, Let u,p), u= (uy,...,u,),
p = (p1,.-.,pn), be the canonical coordinates of the chart. Then, in the coordinates (u, p), the Poisson
bracket is given by

B n af‘ ag _ ag af
{f.g} = ; (3,7,, ou;  Ip; au,-) 3.1

for any (smooth) functions f and g on M. We call M the phase space.
We recall some basic properties of the Poisson bracket which we use below.

(1) We have
U’i,uj} =4, {Mi,uj} = U’npj} =0. (3.2)
(2) For any function f on M,
a a
{f,p,-}z—af, {f,u} = f- (3.3)
u; ap;
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8 M. GEKHTMAN ET AL.

(3) For any functions f and g on M, and any smooth functions F'(¢) and G(¢) of a single variable ¢,

{F(N).G@)} = {f.8}F (HG (3). G4

In particular, the following formula holds:

(e, et} = {f. g} . (3.5)
Let us fix any n x n skew-symmetrizable (integer) matrix B = (by);,_, with a skew-symmetrizer D.
We introduce variables (i.e., functions on M) w;, x;,y; (i = 1,...,n) as follows:
w; = Zb_/iu_/, (3.6)
j=1
x; = e, 3.7)
y; = ehPithi, (3.8)

LemMA 3.1 We have the following formulas:
{dipi +wi, dip; +w;} = 2d;ib;,  {dip; + wi, u;} = d;8;. (3.9

DEFINITION 3.2 Following [4], we say that a family of variables z1, ..., z,, is log-canonical if their pairwise
Poisson brackets are of the form

{zi» 7} = cyziz), (3.10)
where each ¢;; is a constant.
ProposSITION 3.3 The variables xy,...,x, and y,,...,y, are log-canonical with the following Poisson
brackets:
{xix} =0, {yi,y;} = 2dibyyiy;,  {vi-x;} = 2diS;yix;. (3.11)
Proof. Follows from (3.2), (3.5) and Lemma 3.1. O

3.2 Hamiltonian for infinitesimal non-tropical mutation

Forany k € {1,...,n} and a sign ¢ = 4, we introduce the Hamiltonian function H,fs on M by

e . e [*tlog(1+2)
HE = —Li,(—y)) = —— =~
7 S

, (3.12)
where Li, (x) is the Euler dilogarithm (2.20), and we used the expression (2.21).

Let ¢ be the time variable. We consider the Hamiltonian flow on the phase space M by the Hamiltonian
H,fg. Accordingly, we have functions of ¢, u;(), p;(t), w;(t), etc., which obey the following equations of
motion, where we use the standard notation f =df/drt.
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HAMILTONIAN AND LAGRANGIAN FORMALISMS OF MUTATIONS 9

PROPOSITION 3.4

(1) The equations of motion are given as follows:

1
in(0) = {Hie (0} = =S8 log (14 3:(0)"), (3.13)
1
pi(t) = {Hf,ypi(l)} = _gbki log(l +)’k(f)£)7 (3.14)
1
Wi0) = {Hie wi0} = = Sbislog (14 y(0)”), (3.15)
1
dipi(t) = {H, dipi(D} = = Sbilog (1 + ye(0)”), (3.16)
%i(0) = {HE . xi(0) = =8 log (1 + yi (1)) - x:(0), (3.17)
3it) = {HE.yi ()} = —bilog (1 4 y()°) - yi(0). (3.18)

(2) In particular, y,(t) = 0, so that y,(¢) in the right-hand sides of (3.13)—(3.18) does not depend on t.

Proof. For example,

{HB ’ui} — aHI?,s — dHlis dyl(: ayk
ke opi  dy; dy op;
_ (_ e log(1+y9)

1
— Y Sudiyr) = — =8k log(1 + y9), 3.19
24 Vi )(syk ) Bridiyx) 7% og(1 +yp) (3.19)

{H,f ,Pi} — _ange _ _dHlﬁsﬁa,Vk
€ ou; dy; dyy du;

_ <_iw
2dy )’Ji

1
) (eyi D buy) = —gbm log(1 +yp), (3.20)

where d;b;, = —d,by; is used for the last equality. O

From Proposition 3.4, one can also observe the following. (In fact, it is a direct consequence of the
fact that Hffg only depends on the variable y, = exp(dipx + Wi).)

PROPOSITION 3.5

(1) The variables uy, ..., u;_y, Uy, - - -, U, and p; are integrals of motion in involution. Therefore, the
Hamiltonian H, ,fg is completely integrable.

(2) The flows of the variables u; and p1,...,pi_1,Pks1,- - - » Pu are linear in z.

Let us consider a time one flow

pfs . RZn s R2n

wp) —  (@p), (3:2)
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10 M. GEKHTMAN ET AL.

which is defined by the Hamiltonian flow from time t = Oto¢ = 1. Letw;, X;, y; be the corresponding flows
of w;, x;, y;, respectively. Let R, be the semifield of all positive real numbers, where the multiplication
and the addition are given by the ordinary ones for real numbers.

PROPOSITION 3.6 We have the following formulas:

. 1
uj = u; — 551@ log(1 +y;), (3.22)
. 1 .
pi =pi— 2—dl_bki log(1 + yp), (3.23)
3 1
Wi =Ww; — 5bki log(1 +y3), (3.24)
. 1 .

dipi = dipi — Ebki log(1 + y;), (3.25)
%= x(1 4 y)) 7, (3.26)
Yo = yi(l 4+ y)~u. (3.27)

In particular, the transformation (3.27) coincides with the non-tropical part of the mutation of the y-
variables in (2.11) with P = R,..

Proof. This follows from Proposition 3.4. g

Therefore, the Hamiltonian H ,ffs provides the infinitesimal generator of the non-tropical mutation of
y-variables of seeds. This Hamiltonian viewpoint of mutations (without employing the canonical variables
u; and p;) was first stated in [3, Section 1.3] for e = 1.

3.3 Small phase space and x-variables

The transformation (3.26) of x-variables is comparable to the non-tropical part of the mutation of x-
variables without coefficients from (2.17). However, in contrast to the y-variable case, they do not exactly
match due to the discrepancy between y; and y; therein. To remedy this situation, we introduce a subspace
of the phase space M,

My={p ' ,p) eM |dp;—w; =0, (i=1,...,n))}, (3.28)
and we call it the small phase space.

ProposITION 3.7 The small phase space M is preserved under the Hamiltonian flow by H,fg.

Proof. This follows from (3.15) and (3.16). (|
Let us consider the variables y; (i = 1,...,n) in (2.4) without coefficients, namely,
j}i = i — ezz_/"’:l bjiuj _ ijbl' (3.29)
j=1
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HAMILTONIAN AND LAGRANGIAN FORMALISMS OF MUTATIONS 11

Since d;p; = w; on M, we have
yi=3 onM,. (3.30)
Thus, the transformation (3.26) assumes the desired form on M:

PROPOSITION 3.8
Y =x(1+3)"% onM,. (3.31)

In particular, the transformation (3.31) restricted to M, coincides with the non-tropical part of the mutation
of the x-variables without coefficients in (2.17) under the specialization of x-variables in R .

3.4 Tropical transformation

To complete the picture, we also give a realization of the tropical transformations (2.13) and (2.14)
through a change of coordinates of the phase space M. For any k € {1,...,n} and a sign ¢ = &, we
consider the following transformation:

f. R —» R»

‘ (u,p) +— (@,p) (3.32)

_ —u; + Z[—Sbjk]+uj i=k
i Jj=1

u; i 75 k,

(3.33)

) TPk i=k

D= . (3.34)
pi+[—ebulipe i F# k.

We call the transformation r,fe a tropical transformation. Note that it is an ordinary linear
transformation, not a piecewise linear transformation.

PROPOSITION 3.9 Let tf, (1, p) = (u', p').

(1) We have

n

D upi=> up:. (3.35)
i=1 i=1

(2) The transformation rfg is canonical; namely, we have

o) =85 () = (plpj) =O. (3.36)

Proof. We write the linear transformations (3.33) and (3.34) in the matrix form as #' = Mu and p’ = Np.
Then, NTM = I holds. Both properties (1) and (2) follow from it. O
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12 M. GEKHTMAN ET AL.

By Proposition 3.9 (2), one can introduce a new global Darboux chart ¢’ : M — R?" with canonical
coordinates (u', p") by the following commutative diagram:

M
l;i///// \\\\\zi\
B
ke

]RZn - - R2n

(3.37)

Let B' = B,. We employ a common skew-symmetrizer D for B and B’, and we define primed variables
wi, x;, y; for (', p') = T¢, (u, p),

n

wi = [ [ b, (3.38)
j=1

X, = e, (3.39)

y, = it (3.40)

ProposSITION 3.10 We have the following formulas:

— i —k
wo=] " ! (3.41)
wi + [ebyl w1 #Kk,
—d i =k
dp, = | TP ! (3.42)

dipi + lebilidipe 1 # K,

x_1< foSbij) i=k
x=1" 1._[’ (3.43)

i j=1
X i 7é k,
, v i=k

Vi = [ebyi] . (3.44)
iy i #k

In particular, the transformations (3.43) and (3.44) coincide with the tropical part of the mutation of the
x- and y-variables in (2.13) and (2.14), respectively.

Proof. To prove (3.41), we use (2.1) together with (3.33) and (3.34). O
PROPOSITION 3.11 In the new global Darboux chart ¢’ : M — R?", the small phase space M, is given by
My={p'(,p)eM |dp,—w,=0, (i=1,...,n))} (3.45)

Proof. This follows from (3.41) and (3.42). O
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HAMILTONIAN AND LAGRANGIAN FORMALISMS OF MUTATIONS

3.5 Signed mutations
Let us introduce a composition of maps
up.=tlopl.: R™ — R™
(u,p) —  @,p).

Summarizing Propositions 3.6, 3.8 and 3.10, we have the following conclusion.

THEOREM 3.12 Let ,u,’is(u, p) = (', p'). Then, we have the following formulas:

n 1 . )
vl + ;[—eb,—kw,- +3log(l+3) =k
u; i ;é k,
—Pk i=k
pi= 1 o
pi + [—ebilipr — Tdbki log(1+y,) i#k,
e i=k
wi= 1 o
w; + [ebilwi — Ebki log(1 +yp), i#k,
—dipi i=k
diP;- = 1 . .
dipi + bl dipi — Ebki log(1+y;) i#k,
1 - [—ebjl+ s .
) X l—[xj I+y) i=k
X = ,
i j=1
X; i 7é k,
y = y,:l i=k
C M ap e ik

13

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

In particular, the transformation (3.52) coincides with the mutation of the y-variablesin (2.3) withP = R,
while the transformation (3.51) restricted to M, coincides with the mutation of the x-variables without

coefficients in (2.16) under the specialization of x-variables in R .

As a corollary of Theorem 3.12, x’ on M, and y’ therein do not depend on the choice of the sign ¢.
However, «’ and p’ do depend on €. Thus, we call the map uf,s in (3.46) the signed mutation at k by B

with sign ¢.

The inversion relation (2.8) of the unsigned mutation 12 is replaced with the following one:

PROPOSITION 3.13 Define p/, and p,ﬁ’i . by a common skew-symmetrizer D of B and By. Then, the

following inversion relation holds:

By, B .
H’k,—s o N'k,s =id.
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14 M. GEKHTMAN ET AL.

Proof. One can directly verify it by (3.47) and (3.48). g

3.6 Canonical quantization

One can canonically quantize the Poisson brackets in (3.2) by replacing them with the canonical
commutation relations,

h
(P, Ujl = ﬁ&y, (U, Ul =[P;, Pj]1 = 0. (3.54)
Then, we have
2h

V=1
Let us set
g=e" (3.56)

We recall a special case of the Baker—Campbell-Hausdorff formula. For any non-commutative variables
A and B such that [A,B] = C and [C,A] = [C, B] = 0, we have

el = ¢C/2MB (3.57)
or
el = eCefet. (3.58)

Applying it for (3.55), we have the commutation relation for ¥; = e%%itWi,

VY, = ¢4y Y,. (3.59)
This coincides with the quantization of y-variables due to Fock and Goncharov [3, 5].

REMARK 3.14 The realization of quantum y-variables by the canonical variables presented here appeared
in [6, 14, 17]. In fact, the construction of x- and y-variables in (3.7) and (3.8) is deduced from the quantum
ones in [14, 17].

3.7 Quantization of x-variables through Dirac bracket

Since x-variables are in involution for the Poisson bracket (3.11), the canonical quantization in (3.54)
only provides the trivial quantization for them. However, by Proposition 3.8, they should be restricted
to the small phase space M, to be identified with the x-variables in a seed. Therefore, we should apply
Dirac’s method [15] to obtain the Poisson structure on M.

Recall that the space M, is given by a family of constraints y; =0 (i = 1,...,n), where

Xi = api — w;. (3.60)
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HAMILTONIAN AND LAGRANGIAN FORMALISMS OF MUTATIONS 15
Following [15], let us consider the n x n matrix A = (ay);;_, defined by
a,;,- = {X,‘, X/} = —2d,'b,'j. (361)

To proceed, we have to assume that the matrix A = —2DB is invertible, or equivalently, B is invertible.
Then, we have A~! = —(1/2)B~'D!.

LEMMA 3.15 The matrix B~! is skew-symmetrizable with D being its skew-symmetrizer.
Proof. By assumption, we have DBD~! = —B”. Taking its inverse, we have DB~'D~! = —(B~1)7. O
The Dirac bracket is defined by
. gho = {f.8) = Y 1> xdA Dyl 8h (3.62)
ij=1

where (A™"); is the (i, j)-component of A1,
Here are some basic properties of the Dirac bracket.

(1) It defines a new Poisson bracket on M.

(2) For any constraint function x; and any function f on M,

{f.xilp =0 (3.63)

holds. Thus, for any function g on M, {f,gx:}p = {f,g}px; vanishes on M,. As a consequence, it
defines a Poisson bracket on M.

(3) For any function f on M,
{H 1o = {H{ L), (3.64)
since {H,fg, xi} = 0 as stated in Proposition 3.7. Therefore, the equations of motion do not change.
It is convenient to set B™' = Q = (w;)/,_;-

ProOPOSITION 3.16 We have the following formulas:

1 1 1
{Pi,uj}n = 551',', {Mi,uj}[) = —5 iWij {Pi,Pj}D = Tdszy (3.65)
j
{xivxj}D = —Zdiwg,'xix_/, {5’1,5{/}0 = 2dib1/§’i5’_/, {5’i,)€/}0 = 2d[5ijj}ixj’ (3.66)

where y; is defined by (3.29).

Proof. The formulas in (3.65) are obtained by explicit calculations from the definition (3.62). Note that
$; = e*i on M. Then, we apply (3.5) to obtain (3.66). O
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16 M. GEKHTMAN ET AL.

In particular, the Dirac brackets in (3.66) for x- and y-variables coincide with the Poisson brackets
in [4].

Now we ‘canonically quantize’ the Dirac brackets in (3.65) by replacing them with the commutation
relations,

A1 5 -1 d (P.P] A1 b
v —F— 5 4iWy, i» jl = —F—=77"0ij.
/_l 2 /_1 2 iy J /_1 Zdj iy
Then, in the same manner as in the previous subsection, we obtain the following commutation relation
for X; = &*Yi,

[P, U] = i UL Ul= (3.67)

XX; = ¢*i“i X X,. (3.68)

This coincides with the quantization of x-variables (without coefficients) due to Berenstein and Zelevinsky
[16], where the skew-symmetric matrix A therein is related to 2 via A” = DS, and ¢ therein is identified
with g~ here.

4. Lagrangian formalism and Rogers dilogarithm
4.1 Legendre transformation

Let us recall some basic facts on the Legendre transformation of a Hamiltonian. See, for example, [21, 22]
for more information.

For simplicity, let us consider a Hamiltonian H on the space R*" with the canonical coordinates (i, p).
The space R?" is naturally identified with the cotangent bundle = : T*R" — R”, where 7 (u,p) = u
and p = (p;)’_, represents the 1-form ), p;du;. Then, the Hamiltonian H induces the following fibre
preserving map:

Fy: T"R* — TR

(M,])) = (lh ﬁ). (4'1)

DEFINITION 4.1 We say that a Hamiltonian H (i, p) is regular if the map Fy, is a diffeomorphism.

The Lagrangian . for the Hamiltonian H is formally defined by the Legendre transformation,
£ = i —H. (4.2)
i=1

Here we use the symbol £ so that it is not confused with the Rogers dilogarithm L(x) or L(x). From
the definition .Z is a function of (u,p) € T*R". Assume that the Hamiltonian H is regular. Then, by the
inverse map of Fy, one can convert it to a function of (u, it), which is the Lagrangian function £ (u, it).
The equations of motion of the Hamiltonian H are equivalent to the Euler—Lagrange equations

i (8$> = 02 4.3)
dt 314,- 814,-
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HAMILTONIAN AND LAGRANGIAN FORMALISMS OF MUTATIONS 17

together with the identification of variables p;,

0.7
pi= - (4.4)
aui
There is a parallel notion of regularity for a Lagrangian.
DEFINITION 4.2 We say that a Lagrangian £ (u, it) is regular if the map
Fe: TR — TR .5)

(u, i)+ (u,p)

is a diffeomorphism, where p; is defined by (4.4).

Itis known (e.g., [21, Section 3.6]) that from a regular Hamiltonian one obtains a regular Lagrangian
by the Legendre transformation; conversely, from a regular Lagrangian one obtains a regular Hamiltonian
by the Legendre transformation. In either case, the two systems are equivalent in the above sense.

4.2 Lagrangian and Rogers dilogarithm

Let us consider the Hamiltonian H = H,fg from (3.12) in the canonical coordinates (u, p). By (3.13), we
have

1
i = —ESki log(1 + y7). (4.6)

Thus, the map Fy in (4.1) is far from surjective. Therefore, the Hamiltonian H is singular (i.e., not
regular), unfortunately.
Nevertheless, let us write the Lagrangian in (4.2) explicitly, for now, as a function of (, p),

&

24, Lip (—yp). 4.7)

1
L p) = = log(1 +ype -

Inverting the relation (4.6) for i = k, we regard y, as a function of ;. Then, we also regard p; as a
function of &t; and uy, ..., uz_1, Uy1, . . ., u, by the relation

pe = d; ' (log yi — wy). (4.8)
Thus, the function .,ijg(u, p) is converted to a function of (u, it) by

&

. 1 .
LE ity = — = log(1 + y) (logy, — w) —
2d;

Liz (—yp), 4.9
2 2(=p) (4.9)
despite the fact that the Hamiltonian is singular.

Of course, we have to pay some price. The Lagrangian i,”,fg(u, i) is singular, since it is independent
of the variables i; for i # k. Moreover, it is not equivalent to the original Hamiltonian system.
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18 M. GEKHTMAN ET AL.

PROPOSITION 4.3
(1) Fori = k, the equation (4.3), together with (4.4), yields
yi(t) = WP OO py (1) = 0. (4.10)

(2) Fori # k, the equation (4.3), together with (4.4), yields

pi(t) =0, bylog(l + y(H)°) =0. 4.11)
Proof.
(1) Fori =k,
0.7 1
— = —(1 — s 4.12
2 dk(Og)’k wi) 4.12)
0.7
= 0. 4.13)
3uk
(2) Fori #k,
8.,.? =0, 4.14)
aui
8.,? bik bki
= log(1 °) = —— log(1 ). 4.1
ou 24, og(1+yp) 2, og(1+yp) 4.15)
O

Therefore, the Euler—Lagrange equation for i = k is a part of the equations of motion of the original
Hamiltonian system in Proposition 3.4. On the other hand, the ones for i # k set an unwanted restriction
(4.11), and we have to avoid using them.

Putting this defect aside, let us evaluate ,,iﬂ,fg on the small phase space M,. Recall that we have
yi = e*Pk on M. Thus, we have

1 e
=—1 = —logy® M,. 4.16
Dk 2, 0g Yk 24 ogy, onM, 4.16)

Thus, .Z%, depends only on y, or equivalently, on y;. So, let us write it is as a function of y; as .22, (v})
for our convenience. Then, putting it in (4.7), we obtain

£
4d,

&

LEop = log y§ log(1 + y5) — 5 Liy (—y%). 4.17)
k

Now the Rogers dilogarithm emerges in our picture.
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HAMILTONIAN AND LAGRANGIAN FORMALISMS OF MUTATIONS 19

PRrROPOSITION 4.4 The function ‘,ijg (yv¢) is given by the Rogers dilogarithm L(x) in (2.26) as

LE G5 = Zidki@i)- (4.18)

Proof. This follows from (2.27) and (4.17). O

Let us boldly phrase the above result as ‘the Rogers dilogarithm is a Legendre transformation of the
Euler dilogarithm.” This justifies the observation stated in Section 1.1.

5. Periodicity of canonical variables

5.1 Universal and tropical semifields

Let us recall two important classes of semifields, following [18].

DEerFINITION 5.1 Lety = (yy,...,y,) be an n-tuple of formal commutative variables.
(1) Define a semifield

Q () = {% € Q) | p(y) and g(y) are non-zero polynomials of y

with non-negative integer coefficients } s 5.1

where the multiplication and the addition @ are given by the ordinary ones for the rational function
field Q(y). We call it the universal semifield of y.

(2) Define a semifield

Trop(y) = {]_[y,’-"’ la; € Z] : (5.2)
i=1

where the multiplication is given by the ordinary one for monomials of y, while the addition & is
given by the tropical sum

(1) = (11) =TT 5
i=1 i=1 i=1

We call it the tropical semifield of y.
There is a semifield homomorphism

ntrop : Q+ (}’) g TrOP (}’) (5 4)
Vi — Vis '

which we call the tropicalization map.
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20 M. GEKHTMAN ET AL.

5.2 Periodicity of seeds and tropical periodicity

Lety = (y1,...,y,) be an n-tuple of formal commutative variables. We consider a sequence of seed
mutations with coefficients in the universal semifield Q. (y),

(B.x.y) = (BIO], x[01, y[0]) —3 (B[1],x[1],y[1]) - ---
S BIT)X(TLTY). (5.5)

Note that the initial y-variables y are set to be the generators y of Q. ().

We may view the sequence (5.5) as a discrete dynamical system with a discrete time s = 0, 1,...,7.
Let us introduce the notion of periodicity for this system.

Let F{ be the one defined in Section 2.1 with P = Q, (y). We define a (left) action of a permutation
oof {1,...,n} on F§ x Qi ()" by

or FxQ) - FxQ.0)

o e (WD) (56)
X] = Xy—1)s 5.7
7= Zg-1(p.- (5.8)

DEFINITION 5.2 Let o be a permutation of {1,...,n}. We say that a sequence of mutations (5.5) is
o -periodic if the following conditions hold for any 1 < i,j < n:

by-14yo—13[T]1 = byl0], 5.9)
X1 [T] = x;[0], (5.10)
Yo-1[T] = yi[0]. 5.11)

Note that the conditions (5.10) and (5.11) are also expressed as the following equality on F§ x Q4 (y)™:

oo Moo o =id. (5.12)
The following fact is known.
PROPOSITION 5.3 ([17, Proposition 4.3]) Let D = diag(d,, . ..,d,) be any common skew-symmetrizer of

Bls] (s =0,...,T — 1). Suppose that the condition (5.9) holds. Then, the following equality holds:
do'(i) == d,‘. (513)

Let us consider the ‘tropicalization’ of the sequence (5.5). By applying the tropicalization map 7y
in (5.4) to each y-variable y;[s], (s = 0,...,T) in the sequence (5.5), we obtain a monomial of initial
y-variables y,

: cjils]
TeopilsD) = [ [/ (5.14)

j=1

The integer vector ¢;[s] = (cj; [s])J'.':1 is called the c-vector of y;[s].
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HAMILTONIAN AND LAGRANGIAN FORMALISMS OF MUTATIONS 21
The following fact is of fundamental importance in the theory of cluster algebras.

THEOREM 5.4 (Sign-coherence of c-vectors, [23, Theorem 1.7] with [18, Proposition 5.6] and [24, Corol-
lary 5.5]) Each c-vector is a non-zero vector and its components are either all non-negative or all
non-positive.

Based on this theorem, we define the following notion.

DEFINITION 5.5 The tropical sign ¢ = €(y;[s]) of y;[s] is given by + (respectively, —) if the components
of the c-vector of y;[s] are all non-negative (respectively, non-positive).

We introduce a sequence of signs, &, . . ., &r_;, where
g =¢eWyls), (=0,....,T -1, (5.15)

and k, is the one in (5.5). We call it the tropical sign sequence of (5.5). Accordingly, we have the following
sequence of transformations associated with the sequence (5.5):

B[O] Bl BIT-11
kp.e1 kT 1671

i L&
Fox Q)" B Fx Qo) B TS A ) Quo)”, (5.16)
where 7, is the one in (2.12).

DEFINITION 5.6 Let o be a permutation of {1, ...,n}. We say that a sequence of transformations (5.16)
is o -periodic if the following equality holds on F{ x Q4 (y)":

BIT-1] BIIl _ _BIO] _ .
OO T er O Ty © Thgey = id. (5.17)

Note that we do not assume the condition (5.9) here.

Each mutation in (5.5) is a rational transformation, while each transformation in (5.16) is (the expo-
nential form of) a linear transformation, which is much simpler. Surprisingly, the two periodicities in
Definitions 5.2 and 5.6 are equivalent. The if-part of the following statement is very non-trivial, and our
proof is based on the recent result by [25].

ProposITION 5.7 The sequence of mutations (5.5) is o-periodic if and only if the sequence of
transformations (5.16) is o -periodic.

Proof. First, we note that, by [26, Proposition 1.3] and Theorem 5.4, the sequence of transformations
(5.16) is the exponential form of the transformations of the corresponding c-vectors c;[s] = (c;i[s] =
and g-vectors g;[s] = (g;i [s])}l: , along the sequence (5.5), where g-vectors are defined in [18, Section 6].
Thus, the o -periodicity of the sequence (5.16) is equivalent to the o -periodicity of c- and g-vectors, i.e.,

cijlT] = cioy[0] = 8is)» 84l T1 = 8io([0] = Bis()- (5.18)
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22 M. GEKHTMAN ET AL.

(Only-if-part.) Assume that the sequence (5.5) is o-periodic. The o -periodicity of c-vectors directly
follows from the o -periodicity of y-variables (5.11) by applying the tropicalization map in (5.4). Then,
the o -periodicity of g-vectors follows from the duality of c- and g-vectors in [26, Equation (3.11)].

(If-part.) Assume that the sequence (5.10) is o-periodic. The o -periodicity of c-vectors implies the
o -periodicity of exchange matrices B[s] thanks to [26, Equation (2.9)]. Furthermore, let F;[s] be the
F-polynomials along the sequence (5.5), which are defined in [18, Section 3]. Then, by [25, Theorem
2.5], the o-periodicity of c-vectors implies the o -periodicity of F-polynomials, i.e.,

F,13[T1 = F[0]. (5.19)

Then, the o-periodicity of x-variables (respectively, y-variables) follows form the formula in [18,
Corollary 6.3] (respectively, [18, Proposition 3.13]). (]

REMARK 5.8 Note that the above proof of the only-if-part uses only the assumption (5.11).

5.3 Periodicity of canonical variables and tropical periodicity

Let us consider the counterparts of the two periodicities in Definitions 5.2 and 5.6 for canonical variables.
Let us define a (left) action of a permutation o of {1,...,n} on R?",

o: R¥™ — R
;o 5.20
wp) — @,p), (5.20)
u; = Uy-1), (5.21)
P =DPo-14)- (5.22)

Since the map o is a canonical transformation, we may regard it as a change of canonical coordinates on
the phase space M.

Let &, ...,er_; continue to be the tropical sign sequence of (5.5). Let (u[0], p[0]) be an arbitrary
point in R?", In parallel to the sequence of mutations (5.5), we consider a sequence of signed mutations

on R*",
B[0] B[1] B[T—-1]
ko .e0 Hhy ey kr—1.7-1
@[0],plOD) =" (u[1Lp[lD) = --- "= @[T]plTD, (5.23)
where
et = o i (s=0,...,T—1) (5.24)

and ,o,f; [?S are defined by (3.46) under the following assumption:

Bls] »

ASSUMPTION 5.9 We employ a common skew-symmetrizer D of B[s]’s to define p; . ’s.
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DEFINITION 5.10 Let o be a permutation of {1, . .., n}. We say that a sequence of signed mutations (5.23)
is o -periodic if the following conditions hold for any initial point («[0], p[0]) € R and for anyl <i<m:

by—14yo—13[T1 = by[0], (5.25)
U1 [T1 = w[0], (5.26)
Po—1»[T] = pi[0]. (5.27)

The conditions (5.26) and (5.27) are also expressed as the following equality on R>":

BIT—1] BI[1] BlO] __
OO My op " O My ey © Mgy = id. (5.28)

ProposSITION 5.11 The sequence of mutations (5.5) is o-periodic if and only if the sequence of signed
mutations (5.23) is o -periodic.

The proof is a little lengthy, and it will be given in Section 5.4.

EXAMPLE 5.12 The inversion relation (2.5) is the simplest example of a o -periodic sequence of mutations
(5.5) with T = 2, ky = k, = k, 0 = id, and the tropical sign sequence is &, = +, &, = —. The
corresponding o -periodic sequence of signed mutations is the inversion relation (3.53) with ¢ = +.

Next, let us consider the counterpart of the sequence (5.16) for canonical variables. For the sequence
(5.23), we introduce the following sequence of transformations,

LBlo] -0 LBIT-1]
R 050 g gt LT o (5.29)
where 7, is the one in (3.32).
DEFINITION 5.13 Let o be a permutation of {1, ..., n}. We say that a sequence of transformations (5.29)
is o -periodic if the following equality holds on R>":
BIT—1 Bl BO] _
core b ol ol =id. (5.30)

PROPOSITION 5.14 The sequence of transformations (5.16) is o-periodic if and only if the sequence of
transformations (5.29) is o -periodic.

Proof. (Only-if-part.) Assume that the sequence (5.16) is o-periodic. Since (3.33) is a log-version of
(2.13), the o-periodicity of u-variables follows from the o -periodicity of g-vectors in Proposition 5.7.
Similarly, since (3.42) is a log-version of (2.14), the o -periodicity of variables (d;p;);_, follows from the
o -periodicity of c-vectors in Proposition 5.7. Then, the o-periodicity of p-variables follows from this
using Proposition 5.3.

(If-part.) One can easily convert the above argument. (|
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Combining Propositions 5.7, 5.11 and 5.14, we reach the following conclusion.
THEOREM 5.15 The following four conditions are equivalent to each other:

(a). The sequence of mutations (5.5) is o -periodic.
(b). The sequence of transformations (5.16) is o-periodic.
(c). The sequence of signed mutations (5.23) is o -periodic.

(d). The sequence of transformations (5.29) is o -periodic.

Proof. We have (a) <= (b) by Proposition 5.7, (a) <= (c) by Proposition 5.11, and (b) <= (d) by
Proposition 5.14. g

5.4 Proof of Proposition 5.11

5.4.1 If-part Let us prove the if-part of the proposition, which is easier. Suppose that the sequence of
signed mutations (5.23) is o -periodic. By the conditions (5.25)—(5.27) and Proposition 5.3, the y-variables
defined by (3.8) satisfy the desired o -periodicity (5.11) in R, . Furthermore, the initial y-variables yy, ...,
v, are algebraically independent in R, for a generic choice of the initial point («[0], p[0]). Therefore, the
o -periodicity (5.11) holds in Q. (y).

To prove the periodicity of x-variables, we make use of Proposition 5.7. As noted in Remark 5.8,
from the o-periodicity (5.11) of the y-variables for the sequence (5.5), the o -periodicity of the sequence
of transformations (5.16) holds. Then, by the if-part of Proposition 5.7, the o -periodicity of the sequence
of mutations (5.5) holds.

In the rest of this subsection, we prove the only-if-part of the proposition.

5.4.2 Hamiltonian point of view In our proof, keeping the Hamiltonian point of view in mind is very
useful. To make the presentation simple, we consider the case 7 = 2 in (5.5). Although this is a toy
example, it fully contains the idea of the proof for the general case. To lighten the notation, let us
abbreviate the flow in the left-hand side of the sequence (5.28) as

"

(w,p) ¥ @, p) &> @', p"), > W, p"). (5.31)
Using the decomposition (5.24) with a similar abbreviation, we write it in the following way:

’

@,p) —— W', p") —— W",p") . (5.32)

|

(it, p) —— (', p')

]

(u,p)
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From the Hamiltonian point of view, the vertical maps p and p’ are Hamiltonian flows from 7 = 0 to 1
and from 7 = 1 to 2 in the phase space M, respectively, while the horizontal maps t, v/, o are changes
of canonical coordinates of M so that points do not move in M. Let us gather the piecewise Hamiltonian
flow from ¢t = 0 to 2 in the initial chart. This can be done by the pullback along the horizontal arrows as
follows:

’

G p) — (@) — W',p") —— W",p") . (5.33)

A

I o’

J_ T
(ﬁyﬁ) S (Mg}f)
g
(u,p)

The o -periodicity (5.28), which we are going to show, states that the points (u,p) and (u”,p")
coincide, but this coincidence happens in different charts. On the other hand, the tropical periodicity of
(5.30) guaranteed by Proposition 5.14 means that

oot ot =id. (5.34)
Thus, we have
@,p) = W",p"). (5.35)
Therefore, the o-periodicity (5.28) is equivalent to the equality in the initial chart,
(i, p) = (u,p). (5.36)

In other words, the flow is periodic in the phase space M. We will show this separately for u- and
p-variables.

5.4.3 Periodicity of p-variables We start with p-variables. Consider

=G =)+ G- p). (5:37)
By (3.23), we have
- 1 .
pi—pi= _Td,-b“ log(1 + ¥5), (5.38)
- , 1 / e
P = —2—dibk,i log(1 4+ y,.°), (539
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where we keep the same system of abbreviation. Recall that y-variables here are defined by

y; = edip,-+wi’ y; — ed,-p;er;’ (5.40)
and they obey the mutation rule (3.52). In particular, it is uniquely determined by the initial y-variables y;.

Our goal is to show that Ap = 0. For this purpose, we compare the above flow of p-variables with
the (logarithm of) y-variables in the sequence of mutations (5.5). In the same spirit of (5.33), we write a
diagram for the sequence (5.5),

(*,3) = @.5) = @"y") = ",y") . (5.41)

A
| o
J— T
(3 —— (,y)
g
(x,y)
Letus setv; = logy;/d;, v; = logy;/d;, and so on. Here, logy; (y; € Q4 (y)) is a formal notation such that

the multiplication in Q, (y) is written additively. In this notation, the linear aspect of the transformation

¥, in (2.12) is more transparent. Note that we have v}’ = v o thanks to Proposition 5.3. Then, we have

Avi=v—v =G =)+ F—v)

=t'@ —V)+ G —v). (5.42)
By (2.11), we have
. 1
Vi — v = _Ebld log(1 + ), (5.43)
~/ ’ 1 / r e
Vi—v = _Ebk/i log(1 +y,%). (5.44)

Let us compare them with (5.38) and (5.39). Note that the y-variables here are elements in Q. (y), and
they are different from the ones for (5.38) and (5.39). However, they mutate by the rule (2.3), which is the
same rule as for the y-variables in (5.41). Moreover, the initial y-variables y; in (5.5) are the generators
of Q. (y), which are formal (algebraically independent) variables. Therefore, one can specialize them
arbitrarily in R, so that they exactly match the initial y-variables for (5.41). Under this specialization,
we have

1
Ap = EAV, (5.45)

where we also used the fact that 7 is a linear transformation. On the other hand, by the periodicity
assumption we have Av = 0. Therefore, Ap = 0 holds.
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5.4.4 Periodicity of u-variables Due to the relation (3.8), the periodicities of y- and p-variables imply
the same periodicity of w-variables. Therefore, when the matrix B[0] is invertible, the periodicity of
u-variables immediately follows. This reasoning, however, is not applicable when the matrix B[0] is not
invertible. Therefore, we prove the claim directly by comparing the mutations of u- and x-variables in a
similar way to the previous case. The proof is parallel, but it requires some extra argument.

Consider

Au::ft—u:(ft—ﬁ)—i—(ﬁ—u)

=7\ —u)+ (@t — w), (5.46)
where, by (3.22),
i 1
0 —u = —ESM log(1 + %), (5.47)
i, — u) = —%ak,i log(1 + ") (5.48)

for the same y; and y; in (5.40).

Let us compare the flow of u-variables with the (logarithm of) x-variables in the sequence of mutations
(5.41). Again, let us introduce formal logarithms, z; = log x;, z; = log x/, etc., to write the multiplication
in Fg, () in the additive way. Then, we have

Azi=7—z=GC—-D)+E—2)

=t'@-H+E—-2, (5.49)

where, by (2.10),
Zi =z = —8ulog(1 +3;) + 8u log(1 @ y}), (5.50)
Z;—z; = =8y log(l + )A’//(/S/) + Oy log(1 & YZ/E/)~ (5.5D)

It follows that we have the following expression of Az; := %,- — 2

Az = —logfi(3) + logf.»), (552)

where f;(y) € Q4 (v) is arational function of the initial y-variables y, and f;(3) € Fq, () is the one obtained
from f;(y) by replacing y with the initial y-variables y and also replacing the addition in @, (y) with the
one in Fg_ ). In the same way as (5.45), we have

= 1

under some specialization of y in the right-hand side.
Now we set Az; = 0 for all i by the assumption of the periodicity of x-variables. This is equivalent
to the equality f;(y) = fi()) as elements of Fq, ). We first claim that f;(y) is a Laurent monomial in y,
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possibly with some coefficients in Q.. In fact, if f;(y) is not a Laurent monomial, then it includes the
addition in Q. (v). It follows that f;(3) includes the addition in Fq, ). However, the addition in Fg_ ) is
an operation outside of Q. (). Thus, f;() is not an element in Q. (y) C Fq, (. In particular, the equality
fi(y) = f:(9) could never occur. We next claim that actually we have

i) =1 (5.54)

To see it, we consider the limit y; — O for all i. Then, thanks to the definition of the tropical sign, we
have y,ﬁ,yﬁ/ — 0. Thus, by (5.49)—(5.52), we have logf;(y) — 0. Therefore, f;(y)=1. Thus, we conclude
that Au; = 0 by (5.53).

This completes the proof of Proposition 5.11.

6. Dilogarithm identities and action integral
6.1 Dilogarithm identities
The following theorem was proved in [13] by a cluster algebraic method with the help of the constancy

condition from [12]. See also [17].

THEOREM 6.1 (Dilogarithm identity [13, Theorems 6.4 and 6.8]) Suppose that the sequence of mutations
(5.5) is o-periodic. Let &y, ...,er_; be the tropical sign sequence of (5.5). Let D = diag(d,,...,d,)
be any skew-symmetrizer of the initial matrix B in (5.5). Then, the following identity of the Rogers
dilogarithm L(x) in (2.26) holds:
=
> LoRlsh =0, ©6.1)
k

5=0 S

where y, [s] are evaluated by any semifield homomorphism
ev, : Qi (») = R, (6.2)

Below, we give an alternative proof of the theorem, based on the Hamiltonian/Lagrangian picture
presented in this article.

6.2 Action integral

We consider the sequence of signed mutations (5.23).
For each time span [s,s + 1] (s =0,...,T — 1), we have the Hamiltonian

H[s] = iLiz(—yks [s]) for[s,s + 1] (6.3)
2d,.

in the sth canonical coordinates (u[s], p[s]). A Hamiltonian flow from time O to 7 is a piecewise linear
movement. A schematic diagram of a Hamiltonian flow is depicted in Fig. 1 for T = 2. Let

Z[s] = iy [slpx,[s] — H[s] for[s,s+ 1] (6.4)

be the corresponding singular Lagrangian from (4.7).
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@7 W) W)
2 ° T
(i, p)
1 ° ¢
(u',p")
0 L4
~—“7 ~— 7 N~ 7
(u,p) ;
T T g

FIG. 1. Schematic diagram of a Hamiltonian flow for 7' = 2, where for simplicity we use the same abbreviation as in (5.32).

Let us consider the action integral S along a Hamiltonian flow,

T—1
S = Zsm, (6.5)
s=0
s+1
S[s] = f LIslu), i())dt, (6.6)

where u(¢) in (6.6) is (the u-part of) a Hamiltonian flow in the sth coordinates (u[s], p[s]).
Here is the first key observation.

ProprosITION 6.2 The value of the Lagrangian (6.4) along a Hamiltonian flow is constant in ¢ in each
time span [s, s + 1]. Thus, we have

T—1
S = Zz[s]. 6.7)
s=0

Proof. Since the Hamiltonian is constant along the flow, it is enough to show that the term i, [s]py, [s] is
constant. This is true since we have i [s] = pi, [s] = 0 by Proposition 3.4. O

6.3 Invariance of action integral

Our next key observation is as follows.

THEOREM 6.3 Suppose that the sequence of signed mutations (5.23) is o-periodic. Then, for any
Hamiltonian flow,

S=0. (6.8)

The rest of this subsection is devoted to a proof of this theorem.
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First we show that the value S = S(u) is independent of a Hamiltonian flow u(¢), using the standard
variational calculus for a Lagrangian. However, we have to be careful because the Lagrangian here is
singular as discussed in Section 4.2.

For a given Hamiltonian flow u(¢), we consider an infinitesimal variation u(t) + Su(t), which is also
assumed to be a Hamiltonian flow. Let

8S[s] := S[s](u + du) — S[s](u). (6.9)

be the variation of the action integral S[s] in the time span [s,s + 1]. We show that it is given by the
boundary values of the time span as follows.

LEMMA 6.4

8S[s] =Y pilsldiisls] — Y pilsduils], (6.10)

i=1 i=1

where (u[s], p[s]) and (u[s], p[s]) are the points of the flow at t = s and s + 1, respectively, in the sth
coordinates (u[s], p[s]).

Proof. We fix the discrete time s. For simplicity, we suppress the index s everywhere, in particular we
write k instead of k. Recall that, by Proposition 3.4, for i # k,

i; = 0. (6.11)
Thus, we have, for i # k,
Su; = 0. (6.12)

Therefore, it is natural to separate the variation 6S = §S[s] into two parts:

88 =488, +45,, (6.13)
H0L 0L
s 8Mk Buk
n s+1 8c2€
88, = Su; ) dt. 6.15
’ XI:/S- (Bu,- M) ©19
ik

Recall that, by Proposition 4.3 (1), the Euler-Lagrange equation for i = k follows from the equations of
motion. By using it and also (4.4), we have

Hrd (0. 3.7 RZ M ;
88, = / (— (7) Suy + 76uk> dt = [75ukj| = |:pk514k:|l-*—1 . (6.16)

K
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On the other hand, for i # k, by (4.15) we have an explicit expression for 9.2 /du; and (6.11) shows
Su; is independent of . Combining with (3.25) gives

n bi ‘ n )
88y =y (=1)5 - log(l +ypdu; = 3 (i — pi)bus 6.17)
iZk 7k

(Note that in (6.17) we did not use the Euler—Lagrange equations for i # k, which are not valid here as
noted after Proposition 4.3.) Recall from (3.21) that (u[s], p[s]) is obtained from (u[s], p[s]) by the time
one flow of the Hamiltonian H[s]. Thus gathering (6.16) with (6.17) and noting that du; = §u; for i # k,
we obtain (6.10). O

Let o be the one in (5.20), and let us introduce
[T + 11, p[T + 1D := o (u[T], p[TD. (6.13)

LEmMMA 6.5 We have the equalities

D opils+ 1uls + 11 =) " pilsoiulsl, (s =0.....T = 1), (6.19)

i=1 i=1

S plT + 118wlT + 11 = pilT1ui(T]. (6.20)
i=1 i=1

Proof. The first equality is due to Proposition 3.9 (1). The second equality is clear from the definition
of o. g

Consider the total variation
T—1
85 = 8Slsl. (6.21)
s=0
Combining Lemmas 6.4 and 6.5, we see that it is given by the boundary values,

55 =Y pilT + 118ulT + 11— Y pi[018u,[0]. (6.22)

i=1 i=1

On the other hand, by the assumption of the o -periodicity of the sequence of signed mutations (5.23),
we have

pilT + 1] =pil0],  8u(T + 1] = du;[0]. (6.23)
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Therefore, we conclude that
88 =0. (6.24)

Since this holds for any infinitesimal variation of any flow u(t), S is constant.

It remains to determine the constant value of S. We evaluate it in the limit p;[0] — —oo for all i. Then,
all initial y-variables y;[0] = exp(d;p;[0] 4+ w;[0]) go to 0. Accordingly, all y; [s]* (s = 0,...,T — 1)
also go to 0 due to the definition of the tropical sign &;. So, by (4.9), the Lagrangians -Z[s] go to 0 as
well. Thus, we have § — 0. Therefore, S = 0.

This completes the proof of Theorem 6.3.

REMARK 6.6 The meaning of Theorem 6.3 and its proof becomes more transparent if we compare them
with Noether’s theorem (e.g., [22, Theorem 1.3]).

For simplicity, let us consider the variation of a general regular Lagrangian . under an infinitesimal
transformation u; — u; + €a; for some i, where € is an infinitesimal and g; is a function of u. Then, by
the Euler-Lagrange equation for i, we have

d (0.2 .7 . d
8.7 = 7 ( o ) €a; + o €q; = edt (pia;) . (6.25)
Thus, §.Z = 0, i.e., the invariance of the Lagrangian in the order of €, implies that the generator X = p;a;
is an integral of motion; that is Noether’s theorem. Moreover, we see in (6.25) that the converse is also
true, namely, if X = p;a; is an integral of motion, then §.Z = 0.

Next we consider a finite time analogue of the above. Namely, we consider a variation of the action
integral S under an infinitesimal transformation of Hamiltonian flows u;(¢) — u;(t) + €a;(t) for some i,
where € is an infinitesimal and a;(#) depends on u(¢). Then, again by the Euler-Lagrange equation, we

have
“rd (0L .7 . 1
5= (G (G et G e )ar=<lpay. 020

Thus, S = 0, i.e., the invariance of the action integral in the order of €, implies that the generator X = p;a;
is periodic at #, and #,, and vice versa.

6.4 Main results

By combining Propositions 4.4 and 6.2 with Theorem 6.3, we have the following theorem.

THEOREM 6.7 Suppose that the sequence of signed mutations (5.23) is o-periodic. Then, for the
Hamiltonian flow of the Hamiltonian in (6.3) with any initial point in the phase space M, we have

T—1
Z Zls] = 0. (6.27)
s=0

In particular, if the initial point (x[0], p[0]) in (5.23) satisfies the condition

dipi[0] =w;[0], (i=1,...,n), (6.28)

Downloaded from https://academic.oup.com/integrablesystems/article-abstract/2/1/xyx005/4079834

by guest

on 14 March 2018



HAMILTONIAN AND LAGRANGIAN FORMALISMS OF MUTATIONS 33

we have the following identity of the Rogers dilogarithm L(x) in (2.26):

T-1

& = e
> LGLIsD =0, (6.29)
— d,
where
Pils] = it (6.30)

By combining Proposition 5.11 and Theorem 6.7, we obtain a slightly different version of Theorem 6.1.

THEOREM 6.8 Suppose that the sequence of mutations (5.5) is o-periodic. Let g, . . ., e7_; be the tropical
sign sequence of (5.5). Let D = diag(d,,...,d,) be any skew-symmetrizer of the initial matrix B in
(5.5). We set the y-variables in (5.5) to be trivial by the specialization Q, (y) — 1. Let Q,(x) C F
be a semifield generated by the initial x-variables in (5.5). Then, the following identity for the Rogers
dilogarithm Z(x) in (2.26) holds:

T-1
Es = ney
> LGEIsh =0, 6.31)
s=0 dh
where
$ils1 = [ [ols1 (6.32)
j=1

are evaluated by any semifield homomorphism
ev, : Q,(x) > R,. (6.33)

The only difference between Theorems 6.1 and 6.8 is the ranges of the initial y- and y-variables
therein under the evaluations (6.2) and (6.33). Namely, each of the initial y-variables in Theorem 6.1
independently takes any value in R, since they are independent variables. Meanwhile, each of the initial
y-variables in Theorem 6.8, defined by (6.32) with s = 0, does so if and only if the initial matrix B = B[0]
is invertible. Therefore, Theorem 6.8 is apparently weaker than Theorem 6.1.

Nevertheless, we can show the following fact, which completes our derivation of Theorem 6.1.

THEOREM 6.9 Theorem 6.8 implies Theorem 6.1. Therefore, Theorems 6.1 and 6.8 are equivalent.
To show Theorem 6.9, we use the following notion.

DEFINITION 6.10 Let B and B be skew-symmetrizable (integer) matrices of size n and m (n < m),
respectively. We call B an extension of B if B is a principal submatrix of B. If an extension of B is
invertible, then we call it an invertible extension of B
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For any skew-symmetrizable matrix B, there is an invertible extension B of B. For example, if D is a
skew-symmetrizer of B, then we have the following invertible extension of B:

= B | -1
B=(D 0 ) (6.34)

The following general fact on cluster algebras is key to proving Theorem 6.9.

THEOREM 6.11 (Extension Theorem (cf. [13, Theorem 4.3])) Let B and B be any skew-symmetrizable
matrices of size n and m, respectively, such that B is an extension of B. Assume, for simplicity, that B is
the principal submatrix of B for the first n indices 1,...,nof B. Then, if the sequence (5.5) with the initial
matrix B = B[0] is o-periodic, the sequence (5.5) with the initial matrix being replaced with B is also
o-periodic. Here, a permutation o of {1,...,n} is naturally identified with a permutation of {1,...,m}
suchthato (i) =iforn+1<i<m.

REMARK 6.12 The above theorem is shown in [13, Theorem 4.3] when B is skew-symmetric and o = id.

Proof. Since the proof is parallel to the one in [13, Theorem 4.3]), we only give a sketch of a proof. We
first show the o-periodicity of c-vectors. Let ¢;[s] = (cj; [sDiZ, be the c-vectors for the sth seed in the

sequence (5.5) with the initial matrix B. Then, repeating the argument in the proof of [13, Theorem 4.3]),
one can show the o -periodicity,

Cij[T] = Cia(j)[o] = (Sia(j), (6.35)

where we use the sign-coherence property in Theorem 5.4, the duality of c- and g-vectors in [26, Equation
(3.11)], and Proposition 5.3. Then, by the proof of the if-part of the proof of Proposition 5.7, the o-
periodicity of seeds is recovered from the o -periodicity of c-vectors. ]

Proof of Theorem 6.9. As already mentioned, when the initial matrix B = B[0] is invertible, Theorem
6.8 implies Theorem 6.1. Suppose that B is not invertible. Then, replace the initial matrix B with any
invertible extension B of B. Thanks to Theorem 6.11, the sequence (5.5) enjoys the same o -periodicity.
A crucial observation is that the functional identity (6.31) remains the same even if the initial matrix B
is replaced with B. This is because, for B and its extension B, the matrix mutation in (2.1), and also the
exchange relation of y-variables in (2.3), exactly coincide if all indices therein are restricted to the ones
for B. On the other hand, since B is invertible, each of the initial y-variables in the sequence (6.31) now
independently takes any value in R under the specialization (6.33). This is the desired result. g
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