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We introduce and study a Hamiltonian formalism of mutations in cluster algebras using canonical variables,

where the Hamiltonian is given by the Euler dilogarithm. The corresponding Lagrangian, restricted to a

certain subspace of the phase space, coincides with the Rogers dilogarithm. As an application, we show

how the dilogarithm identity associated with a period of mutations in a cluster algebra arises from the

Hamiltonian/Lagrangian point of view.
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1. Introduction

1.1 Background and motivation

The Euler dilogarithm

Li2(x) =

∞
∑

n=1

xn

n2
= −

∫ x

0

log(1 − y)

y
dy (1.1)

appears in several areas of mathematics [1]. One of the main features of this function is that it satisfies

a wide variety of functional relations (dilogarithm identities), many of which look miraculous and mys-

terious. Cluster algebras are a class of commutative algebras introduced by Fomin and Zelevinsky [2].

They originated in Lie theory but turned out to be related to several areas of mathematics.

Fock and Goncharov [3] recognized that the function Li2(x) is built into cluster algebra theory as a

Hamiltonian. To see this, consider the Poisson bracket introduced by [4],

{yi, yi} = bijyiyj, (1.2)
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2 M. GEKHTMAN ET AL.

where y1,…,yn are commutative variables and B = (bij)
n
i,j=1 is a skew-symmetric matrix. Then, using

formula (3.4), we have

{Li2(−yk), yi} = −bki log(1 + yk) · yi. (1.3)

This is an infinitesimal form (of the automorphism part) of the mutation of y-variables (x-variables in [3])

in cluster algebras. Therefore, one may regard the function Li2(−yk) as a Hamiltonian with continuous

time variable, and the ordinary mutation is obtained as the time one flow of this Hamiltonian. This

viewpoint naturally guided the authors of [3, 5, 6] to quantize the cluster algebras using the quantum

dilogarithm.

Meanwhile, there is another story which developed independently, connecting the dilogarithm and

cluster algebras, where the Rogers dilogarithm

L(x) = −
1

2

∫ x

0

{

log(1 − y)

y
+

log y

1 − y

}

dy = Li2(x) +
1

2
log x log(1 − x) (1.4)

plays the central role. The function L(x) is a variant of Li2(x) and it is known that many dilogarithm

identities are simplified in terms of L(x). In the 90’s, several conjectures on dilogarithm identities for L(x)

were given through the study of so called Y-systems in integrable models of Yang–Baxter type. Later, the

connection between Y -systems and cluster algebras was recognized [7] and these dilogarithm conjectures

were solved using the cluster algebraic method [8–11] with the help of the constancy condition from [12].

Then, these results were further generalized to the following theorem [13]: for any period in a cluster

algebra, there is an associated dilogarithm identity of L(x).

It is interesting to understand how these seemingly independent appearances of the Euler and Rogers

dilogarithms are intrinsically related. In [14], it was clarified that the dilogarithm identities in [13] are

recovered through the semiclassical analysis of the corresponding quantum dilogarithm identities, where

the Rogers dilogarithm emerges through the relation

L

(

x

1 + x

)

= −Li2(−x) −
1

2
log x log(1 + x). (1.5)

Furthermore, the result therein yields the following curious observation: The relation (1.5) can be regarded

as the Legendre transformation in classical mechanics, where the Euler dilogarithm is the Hamiltonian,

while the Rogers dilogarithm is the Lagrangian. However, to formulate and establish the claim precisely,

we need canonical variables for the Poisson bracket (1.2).

Motivated by the above question, in this article we introduce canonical variables of the Poisson

bracket (1.2), and study the Hamiltonian and Lagrangian formalisms of mutations in cluster algebras.

As a consequence, the above observation is justified; furthermore, we can successfully explain how the

dilogarithm identities in [13] naturally arise in the Hamiltonian/Lagrangian picture.

1.2 Outline and main results

Let us briefly describe the outline and the main results of the article.

In Section 2, we recall basic definitions and properties of mutations in cluster algebras and of the

dilogarithm functions which we are going to use.
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HAMILTONIAN AND LAGRANGIAN FORMALISMS OF MUTATIONS 3

In Section 3, we introduce the Hamiltonian formalism of mutations in cluster algebras with canonical

variables. The x- and y-variables in a cluster algebra are constructed as exponentials of linear combinations

of the canonical variables, while the Hamiltonian is given by the Euler dilogarithm. The time one flow of

the Hamiltonian, together with the tropical transformation, yields the mutation of the x- and y-variables

(Theorem 3.12). This naturally extends the Hamiltonian formalism in [3]. An interesting feature here is

that the y-variables mutate properly on the total phase space M ≃ R2n, while the x-variables do so only

on a certain subspace M0 of the phase space. This does not have an effect on the equations of motion; but

does affect the quantization of the Poisson bracket in the following way:

• The canonical quantization of the Poisson bracket leads to the quantization of the y-variables by [3, 5].

• On the other hand, the Poisson bracket on the small phase space M0 is redefined via the Dirac bracket

due to [15]. Then, the ‘canonical quantization’ of the Dirac bracket leads to the quantization of the

x-variables by [16].

Therefore, the formulation here provides a common platform for the quantization of both x- and

y-variables.

In Section 4, having the canonical variables at hand, we study the Lagrangian formalism of mutations.

A specific feature here is that the Hamiltonian in Section 3 is singular. This implies that we do not

have a Lagrangian whose Euler–Lagrange equations are fully equivalent to the equations of motion

of the Hamiltonian. Despite this deficiency, one can still define the Lagrangian through the Legendre

transformation. Then, the following fact holds:

Fact 1. (Proposition 4.4) The Lagrangian coincides with the Rogers dilogarithm on the above small phase

space M0.

This justifies the observation stated in the previous subsection.

In Section 5, we make a little detour to establish the periodicity property of the canonical variables.

In the Hamiltonian formalism, we naturally introduce a sign ε = ± to decompose each seed mutation

into the tropical and non-tropical parts. The mutation of x- and y-variables is independent of the choice

of the sign ε, while the mutation of the canonical variables depends on it. Thus, we call these mutations

signed mutations. We have the following result, which is crucial for obtaining the final result in the next

section.

Fact 2. (Proposition 5.11) A sequence of signed mutations enjoys the same periodicity as a sequence of

seed mutations, if we choose the sign sequence therein as the tropical sign sequence.

In Section 6, we show how the dilogarithm identities in [13] arise from the Hamiltonian/Lagrangian

point of view. This is done by considering the action integral of the singular Lagrangian from Section 4

along a Hamiltonian flow. There are two key facts:

Fact 3. (Proposition 6.2) The Lagrangian is piecewise constant along the flow.

Fact 4. (Theorem 6.3) The action integral does not depend on the flow, if all flows are periodic for the

time span of the integral. (This is regarded as the converse of a finite time analogue of Noether’s theorem,

see Remark 6.6.)

The dilogarithm identities in [13] are obtained as an immediate consequence of the above Facts 1–4.

This is the main result of the article (Theorems 6.8 and 6.9).

Remark 1.1 Theorem 6.8 can be straightforwardly extended to generalized cluster algebras and diloga-

rithm functions of higher degree studied in [17]. Meanwhile, Theorem 6.9 can be also extended to them

if we admit the version of Theorem 6.11 for generalized cluster algebras, which is not yet available.
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2. Preliminaries

2.1 Mutations in cluster algebras

Let us recall two main notions in cluster algebras, namely, a seed and its mutation. See [2, 18] for more

information on cluster algebras.

Let us fix a positive integer n throughout the article. We say that an n × n integer matrix B = (bij)
n
i,j=1

is skew-symmetrizable if there is a diagonal matrix D = diag(d1, . . . , dn) with positive integer diagonal

entries d1, . . . , dn such that DB is skew-symmetric, i.e., dibij = −djbji. We call such D a skew-symmetrizer

of B.

Let us fix a semifield P, that is, an abelian multiplicative group with a binary operation ⊕ called the

addition, which is commutative, associative, and distributive, i.e., a(b ⊕ c) = ab ⊕ ac. Let ZP be the

group ring of P. Since ZP is a domain [2], the field of fractions of ZP is well defined and we denoted it

by QP. Let F = FP be a purely transcendental field extension of QP of degree n, that is F is isomorphic

to a rational function field of n variables with coefficients in QP. We call the semifield P and the field F

the coefficient semifield and the ambient field (of a cluster algebra under consideration), respectively.

A seed with coefficients in P is a triplet (B, x, y) consisting of an n × n skew-symmetrizable matrix

B, an n-tuple (xi)
n
i=1 of algebraically independent elements in F , and an n-tuple (yi)

n
i=1 of elements in P.

For each k = 1, . . . , n, the mutation of a seed (B, x, y) at k is another seed (B′, x′, y′) = µk(B, x, y), which

is obtained from (B, x, y) by the following formulas:

b′
ij =

{

−bij i = k or j = k

bij + [−εbik]+bkj + bik[εbkj]+ i, j ̸= k,
(2.1)

x′
i =

⎧

⎪

⎨

⎪

⎩

x−1
k

( n
∏

j=1

x
[−εbjk ]+

j

)

1 + ŷε
k

1 ⊕ yε
k

i = k

xi i ̸= k,

(2.2)

y′
i =

{

y−1
k i = k

yiy
[εbki]+
k (1 ⊕ yε

k)
−bki i ̸= k,

(2.3)

where

ŷi := yi

n
∏

j=1

x
bji

j , (2.4)

and ε is a sign, + or −, which is naturally identified with 1 or −1, respectively. Then we have the following

properties:

(1). The right-hand sides of (2.1)–(2.3) are independent of the choice of sign ε.

(2). If D is a skew-symmetrizer of B, then it is also a skew-symmetrizer of B′.

(3). The mutation µk is involutive, namely,

µk ◦ µk = id. (2.5)
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(4). The ŷ-variables (2.4) also mutate in F as the y-variables; namely,

ŷ′
i =

{

ŷ−1
k i = k

ŷiŷ
[εbki]+
k (1 + ŷε

k)
−bki i ̸= k.

(2.6)

Let F
n
0 be the set of all n-tuples of algebraically independent elements in F , and, as usual, let Pn be

the set of all n-tuples of elements in P. Let us extract the ‘variable part’ of the mutation µk in (2.2) and

(2.3) as

µB
k : F

n
0 × Pn → F

n
0 × Pn

(x, y) *→ (x′, y′),
(2.7)

and call it the mutation at k by B. The involution property (2.5) is equivalent to the inversion relation,

µ
Bk
k ◦ µB

k = id, (2.8)

where Bk = B′ is the one in (2.1).

Following the idea of [5], we decompose the mutation µB
k into two parts. For each sign ε = ±, we

introduce a map

ρB
k,ε : F

n
0 × Pn → F

n
0 × Pn

(x, y) *→ (x̃, ỹ),
(2.9)

x̃i = xi

(

1 + ŷε
k

1 ⊕ yε
k

)−δki

, (2.10)

ỹi = yi(1 ⊕ yε
k)

−bki , (2.11)

and also a map

τ B
k,ε : F

n
0 × Pn → F

n
0 × Pn

(x, y) *→ (x′, y′),
(2.12)

x′
i =

⎧

⎪

⎨

⎪

⎩

x−1
k

( n
∏

j=1

x
[−εbjk ]+

j

)

i = k

xi i ̸= k,

(2.13)

y′
i =

{

y−1
k i = k

yiy
[εbki]+
k i ̸= k.

(2.14)

Then, for each sign ε = ±, the mutation µB
k is decomposed as

µB
k = τ B

k,ε ◦ ρB
k,ε. (2.15)

In [5], the transformations ρB
k,ε and τ B

k,ε for ε = + were considered, and they were called the auto-

morphism part and the monomial part of the mutation µB
k , respectively. Here, we call ρB

k,ε and τ B
k,ε the
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6 M. GEKHTMAN ET AL.

non-tropical part and the tropical part of the mutation µB
k , respectively. See [19] for the background of

the terminology.

When the coefficient semifield P is taken to be the trivial semifield 1 = {1}, where 1 ⊕ 1 = 1, we

say that the x-variables are without coefficients. In that case, the transformations (2.2) and (2.10) are

simplified as

x′
i =

⎧

⎪

⎨

⎪

⎩

x−1
k

( n
∏

j=1

x
[−εbjk ]+

j

)

(1 + ŷε
k) i = k

xi i ̸= k,

(2.16)

x̃i = xi(1 + ŷε
k)

−δki , (2.17)

respectively, while (2.4) also reduces to

ŷi =

n
∏

j=1

x
bji

j . (2.18)

2.2 Euler and Rogers dilogarithm functions

Let us recall the definition of the Euler and Rogers dilogarithms. See [1, 20] for more information.

The Euler dilogarithm Li2(x) is originally defined as the following convergent series with radius of

convergence 1,

Li2(x) =

∞
∑

n=1

xn

n2
. (2.19)

It has the integral expression

Li2(x) = −
∫ x

0

log(1 − y)

y
dy, (x ≤ 1), (2.20)

where throughout the text we concentrate on the real region x ≤ 1 so that there is no ambiguity due to

multivaluedness of the integral. Note that (2.20) is also written as

Li2(−x) = −
∫ x

0

log(1 + y)

y
dy, (−1 ≤ x). (2.21)

On the other hand, the Rogers dilogarithm L(x) is defined by the integral expression

L(x) = −
1

2

∫ x

0

{

log(1 − y)

y
+

log y

1 − y

}

dy, (0 ≤ x ≤ 1). (2.22)

Again, since we concentrate on the real region 0 ≤ x ≤ 1, there is no ambiguity due to multivaluedness

of the integral.
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These two dilogarithms are related by

L(x) = Li2(x) +
1

2
log x log(1 − x), (0 ≤ x ≤ 1), (2.23)

which can be used as an alternative definition of the Rogers dilogarithm. They are also related by the

following less well-known formula:

L

(

x

1 + x

)

= −Li2(−x) −
1

2
log x log(1 + x), (0 ≤ x) (2.24)

=
1

2

∫ x

0

{

log(1 + y)

y
−

log y

1 + y

}

dy, (0 ≤ x). (2.25)

Formulas (2.23)–(2.25) can be most easily verified by taking the derivative.

In view of the formulas (2.24) and (2.25), it is convenient to introduce a function

L̃(x) = L

(

x

1 + x

)

=
1

2

∫ x

0

{

log(1 + y)

y
−

log y

1 + y

}

dy, (0 ≤ x), (2.26)

so that it satisfies the equality

L̃(x) = −Li2(−x) −
1

2
log x log(1 + x), (0 ≤ x). (2.27)

For simplicity, we still call the function L̃(x) the Rogers dilogarithm.

3. Hamiltonian formalism of mutations

3.1 Canonical and log-canonical variables

Let M be a symplectic manifold with a global Darboux chart ϕ : M
∼→ R2n. Let (u, p), u = (u1, . . . , un),

p = (p1, . . . , pn), be the canonical coordinates of the chart. Then, in the coordinates (u, p), the Poisson

bracket is given by

{f , g} =

n
∑

i=1

(

∂f

∂pi

∂g

∂ui

−
∂g

∂pi

∂f

∂ui

)

(3.1)

for any (smooth) functions f and g on M. We call M the phase space.

We recall some basic properties of the Poisson bracket which we use below.

(1) We have

{pi, uj} = δij, {ui, uj} = {pi, pj} = 0. (3.2)

(2) For any function f on M,

{f , pi} = −
∂f

∂ui

, {f , ui} =
∂f

∂pi

. (3.3)
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8 M. GEKHTMAN ET AL.

(3) For any functions f and g on M, and any smooth functions F(ζ ) and G(ζ ) of a single variable ζ ,

{F(f ), G(g)} = {f , g}F ′(f )G′(g). (3.4)

In particular, the following formula holds:

{ef , eg} = {f , g}ef eg. (3.5)

Let us fix any n × n skew-symmetrizable (integer) matrix B = (bij)
n
i,j=1 with a skew-symmetrizer D.

We introduce variables (i.e., functions on M) wi, xi, yi (i = 1, . . . , n) as follows:

wi =

n
∑

j=1

bjiuj, (3.6)

xi = e2ui , (3.7)

yi = edipi+wi . (3.8)

Lemma 3.1 We have the following formulas:

{dipi + wi, djpj + wj} = 2dibij, {dipi + wi, uj} = diδij. (3.9)

Definition 3.2 Following [4], we say that a family of variables z1, …, zm is log-canonical if their pairwise

Poisson brackets are of the form

{zi, zj} = cijzizj, (3.10)

where each cij is a constant.

Proposition 3.3 The variables x1, . . . , xn and y1, . . . , yn are log-canonical with the following Poisson

brackets:

{xi, xj} = 0, {yi, yj} = 2dibijyiyj, {yi, xj} = 2diδijyixj. (3.11)

Proof. Follows from (3.2), (3.5) and Lemma 3.1. !

3.2 Hamiltonian for infinitesimal non-tropical mutation

For any k ∈ {1, . . . , n} and a sign ε = ±, we introduce the Hamiltonian function HB
k,ε on M by

HB
k,ε =

ε

2dk

Li2(−yε
k) = −

ε

2dk

∫ yε
k

0

log(1 + z)

z
dz, (3.12)

where Li2(x) is the Euler dilogarithm (2.20), and we used the expression (2.21).

Let t be the time variable. We consider the Hamiltonian flow on the phase space M by the Hamiltonian

HB
k,ε. Accordingly, we have functions of t, ui(t), pi(t), wi(t), etc., which obey the following equations of

motion, where we use the standard notation ḟ = df /dt.
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Proposition 3.4

(1) The equations of motion are given as follows:

u̇i(t) =
{

HB
k,ε, ui(t)

}

= −
1

2
δki log

(

1 + yk(t)
ε
)

, (3.13)

ṗi(t) =
{

HB
k,ε, pi(t)

}

= −
1

2di

bki log
(

1 + yk(t)
ε
)

, (3.14)

ẇi(t) =
{

HB
k,ε, wi(t)

}

= −
1

2
bki log

(

1 + yk(t)
ε
)

, (3.15)

diṗi(t) =
{

HB
k,ε, dipi(t)

}

= −
1

2
bki log

(

1 + yk(t)
ε
)

, (3.16)

ẋi(t) =
{

HB
k,ε, xi(t)

}

= −δki log
(

1 + yk(t)
ε
)

· xi(t), (3.17)

ẏi(t) =
{

HB
k,ε, yi(t)

}

= −bki log
(

1 + yk(t)
ε
)

· yi(t). (3.18)

(2) In particular, ẏk(t) = 0, so that yk(t) in the right-hand sides of (3.13)–(3.18) does not depend on t.

Proof. For example,

{

HB
k,ε, ui

}

=
∂HB

k,ε

∂pi

=
dHB

k,ε

dyε
k

dyε
k

dyk

∂yk

∂pi

=

(

−
ε

2dk

log(1 + yε
k)

yε
k

)

(εyε−1
k )(δkidkyk) = −

1

2
δki log(1 + yε

k), (3.19)

{

HB
k,ε, pi

}

= −
∂HB

k,ε

∂ui

= −
dHB

k,ε

dyε
k

dyε
k

dyk

∂yk

∂ui

= −
(

−
ε

2dk

log(1 + yε
k)

yε
k

)

(εyε−1
k )(bikyk) = −

1

2di

bki log(1 + yε
k), (3.20)

where dibik = −dkbki is used for the last equality. !

From Proposition 3.4, one can also observe the following. (In fact, it is a direct consequence of the

fact that HB
k,ε only depends on the variable yk = exp(dkpk + wk).)

Proposition 3.5

(1) The variables u1, . . . , uk−1, uk+1, . . . , un and pk are integrals of motion in involution. Therefore, the

Hamiltonian HB
k,ε is completely integrable.

(2) The flows of the variables uk and p1, . . . , pk−1, pk+1, . . . , pn are linear in t.

Let us consider a time one flow

ρB
k,ε : R2n → R2n

(u, p) *→ (ũ, p̃),
(3.21)
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10 M. GEKHTMAN ET AL.

which is defined by the Hamiltonian flow from time t = 0 to t = 1. Let w̃i, x̃i, ỹi be the corresponding flows

of wi, xi, yi, respectively. Let R+ be the semifield of all positive real numbers, where the multiplication

and the addition are given by the ordinary ones for real numbers.

Proposition 3.6 We have the following formulas:

ũi = ui −
1

2
δki log(1 + yε

k), (3.22)

p̃i = pi −
1

2di

bki log(1 + yε
k), (3.23)

w̃i = wi −
1

2
bki log(1 + yε

k), (3.24)

dip̃i = dipi −
1

2
bki log(1 + yε

k), (3.25)

x̃i = xi(1 + yε
k)

−δki , (3.26)

ỹi = yi(1 + yε
k)

−bki . (3.27)

In particular, the transformation (3.27) coincides with the non-tropical part of the mutation of the y-

variables in (2.11) with P = R+.

Proof. This follows from Proposition 3.4. !

Therefore, the Hamiltonian HB
k,ε provides the infinitesimal generator of the non-tropical mutation of

y-variables of seeds. This Hamiltonian viewpoint of mutations (without employing the canonical variables

ui and pi) was first stated in [3, Section 1.3] for ε = 1.

3.3 Small phase space and x-variables

The transformation (3.26) of x-variables is comparable to the non-tropical part of the mutation of x-

variables without coefficients from (2.17). However, in contrast to the y-variable case, they do not exactly

match due to the discrepancy between yk and ŷk therein. To remedy this situation, we introduce a subspace

of the phase space M,

M0 = {ϕ−1(u, p) ∈ M | dipi − wi = 0, (i = 1, . . . , n)}, (3.28)

and we call it the small phase space.

Proposition 3.7 The small phase space M0 is preserved under the Hamiltonian flow by HB
k,ε.

Proof. This follows from (3.15) and (3.16). !

Let us consider the variables ŷi (i = 1, . . . , n) in (2.4) without coefficients, namely,

ŷi := e2wi = e
2

∑n
j=1

bjiuj =

n
∏

j=1

x
bji

j . (3.29)
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Since dipi = wi on M0, we have

yi = ŷi on M0. (3.30)

Thus, the transformation (3.26) assumes the desired form on M0:

Proposition 3.8

x̃i = xi(1 + ŷε
k)

−δki on M0. (3.31)

In particular, the transformation (3.31) restricted to M0 coincides with the non-tropical part of the mutation

of the x-variables without coefficients in (2.17) under the specialization of x-variables in R+.

3.4 Tropical transformation

To complete the picture, we also give a realization of the tropical transformations (2.13) and (2.14)

through a change of coordinates of the phase space M. For any k ∈ {1, . . . , n} and a sign ε = ±, we

consider the following transformation:

τ B
k,ε : R2n → R2n

(u, p) *→ (u′, p′)
(3.32)

u′
i =

⎧

⎪

⎨

⎪

⎩

−uk +

n
∑

j=1

[−εbjk]+uj i = k

ui i ̸= k,

(3.33)

p′
i =

{

−pk i = k

pi + [−εbik]+pk i ̸= k.
(3.34)

We call the transformation τ B
k,ε a tropical transformation. Note that it is an ordinary linear

transformation, not a piecewise linear transformation.

Proposition 3.9 Let τ B
k,ε(u, p) = (u′, p′).

(1) We have

n
∑

i=1

u′
ip

′
i =

n
∑

i=1

uipi. (3.35)

(2) The transformation τ B
k,ε is canonical; namely, we have

{p′
i, u′

j} = δij, {u′
i, u′

j} = {p′
i, p′

j} = 0. (3.36)

Proof. We write the linear transformations (3.33) and (3.34) in the matrix form as u′ = Mu and p′ = Np.

Then, NT M = I holds. Both properties (1) and (2) follow from it. !
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12 M. GEKHTMAN ET AL.

By Proposition 3.9 (2), one can introduce a new global Darboux chart ϕ′ : M
∼→ R2n with canonical

coordinates (u′, p′) by the following commutative diagram:

M
ϕ

!!!!
!!

!!
!! ϕ′

"""
""

""
""

"

R2n

τB
k,ε

## R2n

(3.37)

Let B′ = Bk . We employ a common skew-symmetrizer D for B and B′, and we define primed variables

w′
i, x′

i , y′
i for (u′, p′) = τ B

k,ε(u, p),

w′
i =

n
∏

j=1

b′
jiu

′
j, (3.38)

x′
i = e2u′

i , (3.39)

y′
i = edip

′
i
+w′

i . (3.40)

Proposition 3.10 We have the following formulas:

w′
i =

{

−wk i = k

wi + [εbki]+wk i ̸= k,
(3.41)

dip
′
i =

{

−dkpk i = k

dipi + [εbki]+dkpk i ̸= k,
(3.42)

x′
i =

⎧

⎪

⎨

⎪

⎩

x−1
k

( n
∏

j=1

x
[−εbjk ]+

j

)

i = k

xi i ̸= k,

(3.43)

y′
i =

{

y−1
k i = k

yiy
[εbki]+
k i ̸= k.

(3.44)

In particular, the transformations (3.43) and (3.44) coincide with the tropical part of the mutation of the

x- and y-variables in (2.13) and (2.14), respectively.

Proof. To prove (3.41), we use (2.1) together with (3.33) and (3.34). !

Proposition 3.11 In the new global Darboux chart ϕ′ : M
∼→ R2n, the small phase space M0 is given by

M0 = {ϕ′−1(u′, p′) ∈ M | dip
′
i − w′

i = 0, (i = 1, . . . , n)}. (3.45)

Proof. This follows from (3.41) and (3.42). !
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3.5 Signed mutations

Let us introduce a composition of maps

µB
k,ε = τ B

k,ε ◦ ρB
k,ε : R2n → R2n

(u, p) *→ (u′, p′).
(3.46)

Summarizing Propositions 3.6, 3.8 and 3.10, we have the following conclusion.

Theorem 3.12 Let µB
k,ε(u, p) = (u′, p′). Then, we have the following formulas:

u′
i =

⎧

⎪

⎨

⎪

⎩

−uk +

n
∑

j=1

[−εbjk]+uj +
1

2
log(1 + yε

k) i = k

ui i ̸= k,

(3.47)

p′
i =

⎧

⎨

⎩

−pk i = k

pi + [−εbik]+pk −
1

2di

bki log(1 + yε
k) i ̸= k,

(3.48)

w′
i =

⎧

⎨

⎩

−wk i = k

wi + [εbki]+wk −
1

2
bki log(1 + yε

k), i ̸= k,
(3.49)

dip
′
i =

⎧

⎨

⎩

−dkpk i = k

dipi + [εbki]+dkpk −
1

2
bki log(1 + yε

k) i ̸= k,
(3.50)

x′
i =

⎧

⎪

⎨

⎪

⎩

x−1
k

( n
∏

j=1

x
[−εbjk ]+

j

)

(1 + yε
k) i = k

xi i ̸= k,

(3.51)

y′
i =

{

y−1
k i = k

yiy
[εbki]+
k (1 + yε

k)
−bki i ̸= k.

(3.52)

In particular, the transformation (3.52) coincides with the mutation of the y-variables in (2.3) with P = R+,

while the transformation (3.51) restricted to M0 coincides with the mutation of the x-variables without

coefficients in (2.16) under the specialization of x-variables in R+.

As a corollary of Theorem 3.12, x′ on M0 and y′ therein do not depend on the choice of the sign ε.

However, u′ and p′ do depend on ε. Thus, we call the map µB
k,ε in (3.46) the signed mutation at k by B

with sign ε.

The inversion relation (2.8) of the unsigned mutation µB
k is replaced with the following one:

Proposition 3.13 Define ρB
k,ε and ρ

Bk
k,−ε by a common skew-symmetrizer D of B and Bk . Then, the

following inversion relation holds:

µ
Bk
k,−ε ◦ µB

k,ε = id. (3.53)
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14 M. GEKHTMAN ET AL.

Proof. One can directly verify it by (3.47) and (3.48). !

3.6 Canonical quantization

One can canonically quantize the Poisson brackets in (3.2) by replacing them with the canonical

commutation relations,

[Pi, Uj] =
!

√
−1

δij, [Ui, Uj] = [Pi, Pj] = 0. (3.54)

Then, we have

[diPi + Wi, djPj + Wj] =
2!

√
−1

dibij = 2!
√

−1djbji. (3.55)

Let us set

q = e!
√

−1. (3.56)

We recall a special case of the Baker–Campbell–Hausdorff formula. For any non-commutative variables

A and B such that [A, B] = C and [C, A] = [C, B] = 0, we have

eAeB = eC/2eA+B (3.57)

or

eAeB = eCeBeA. (3.58)

Applying it for (3.55), we have the commutation relation for Yi = ediPi+Wi ,

YiYj = q2djbji YjYi. (3.59)

This coincides with the quantization of y-variables due to Fock and Goncharov [3, 5].

Remark 3.14 The realization of quantum y-variables by the canonical variables presented here appeared

in [6, 14, 17]. In fact, the construction of x- and y-variables in (3.7) and (3.8) is deduced from the quantum

ones in [14, 17].

3.7 Quantization of x-variables through Dirac bracket

Since x-variables are in involution for the Poisson bracket (3.11), the canonical quantization in (3.54)

only provides the trivial quantization for them. However, by Proposition 3.8, they should be restricted

to the small phase space M0 to be identified with the x-variables in a seed. Therefore, we should apply

Dirac’s method [15] to obtain the Poisson structure on M0.

Recall that the space M0 is given by a family of constraints χi = 0 (i = 1, . . . , n), where

χi = dipi − wi. (3.60)
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HAMILTONIAN AND LAGRANGIAN FORMALISMS OF MUTATIONS 15

Following [15], let us consider the n × n matrix A = (aij)
n
i,j=1 defined by

aij := {χi, χj} = −2dibij. (3.61)

To proceed, we have to assume that the matrix A = −2DB is invertible, or equivalently, B is invertible.

Then, we have A−1 = −(1/2)B−1D−1.

Lemma 3.15 The matrix B−1 is skew-symmetrizable with D being its skew-symmetrizer.

Proof. By assumption, we have DBD−1 = −BT . Taking its inverse, we have DB−1D−1 = −(B−1)T . !

The Dirac bracket is defined by

{f , g}D := {f , g} −
n

∑

i,j=1

{f , χi}(A
−1)ij{χj, g}, (3.62)

where (A−1)ij is the (i, j)-component of A−1.

Here are some basic properties of the Dirac bracket.

(1) It defines a new Poisson bracket on M.

(2) For any constraint function χi and any function f on M,

{f , χi}D = 0 (3.63)

holds. Thus, for any function g on M, {f , gχi}D = {f , g}Dχi vanishes on M0. As a consequence, it

defines a Poisson bracket on M0.

(3) For any function f on M,

{HB
k,ε, f }D = {HB

k,ε, f }, (3.64)

since {HB
k,ε, χi} = 0 as stated in Proposition 3.7. Therefore, the equations of motion do not change.

It is convenient to set B−1 = ) = (ωij)
n
i,j=1.

Proposition 3.16 We have the following formulas:

{pi, uj}D =
1

2
δij, {ui, uj}D = −

1

2
diωij, {pi, pj}D =

1

2dj

bij, (3.65)

{xi, xj}D = −2diωijxixj, {ŷi, ŷj}D = 2dibij ŷiŷj, {ŷi, xj}D = 2diδij ŷixj, (3.66)

where ŷi is defined by (3.29).

Proof. The formulas in (3.65) are obtained by explicit calculations from the definition (3.62). Note that

ŷi = e2dipi on M0. Then, we apply (3.5) to obtain (3.66). !

Downloaded from https://academic.oup.com/integrablesystems/article-abstract/2/1/xyx005/4079834
by guest
on 14 March 2018



16 M. GEKHTMAN ET AL.

In particular, the Dirac brackets in (3.66) for x- and ŷ-variables coincide with the Poisson brackets

in [4].

Now we ‘canonically quantize’ the Dirac brackets in (3.65) by replacing them with the commutation

relations,

[Pi, Uj] =
!

√
−1

1

2
δij, [Ui, Uj] =

!
√

−1

−1

2
diωij, [Pi, Pj] =

!
√

−1

1

2dj

bij. (3.67)

Then, in the same manner as in the previous subsection, we obtain the following commutation relation

for Xi = e2Ui ,

XiXj = q2diωij XjXi. (3.68)

This coincides with the quantization of x-variables (without coefficients) due to Berenstein and Zelevinsky

[16], where the skew-symmetric matrix + therein is related to ) via +T = D), and q therein is identified

with q−2 here.

4. Lagrangian formalism and Rogers dilogarithm

4.1 Legendre transformation

Let us recall some basic facts on the Legendre transformation of a Hamiltonian. See, for example, [21, 22]

for more information.

For simplicity, let us consider a Hamiltonian H on the space R2n with the canonical coordinates (u, p).

The space R2n is naturally identified with the cotangent bundle π : T ∗Rn → Rn, where π(u, p) = u

and p = (pi)
n
i=1 represents the 1-form

∑n

i=1 pidui. Then, the Hamiltonian H induces the following fibre

preserving map:

FH : T ∗Rn → TRn

(u, p) *→ (u, u̇).
(4.1)

Definition 4.1 We say that a Hamiltonian H(u, p) is regular if the map FH is a diffeomorphism.

The Lagrangian L for the Hamiltonian H is formally defined by the Legendre transformation,

L =

n
∑

i=1

u̇ipi − H. (4.2)

Here we use the symbol L so that it is not confused with the Rogers dilogarithm L(x) or L̃(x). From

the definition L is a function of (u, p) ∈ T ∗Rn. Assume that the Hamiltonian H is regular. Then, by the

inverse map of FH , one can convert it to a function of (u, u̇), which is the Lagrangian function L (u, u̇).

The equations of motion of the Hamiltonian H are equivalent to the Euler–Lagrange equations

d

dt

(

∂L

∂ u̇i

)

=
∂L

∂ui

(4.3)
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together with the identification of variables pi,

pi =
∂L

∂ u̇i

. (4.4)

There is a parallel notion of regularity for a Lagrangian.

Definition 4.2 We say that a Lagrangian L (u, u̇) is regular if the map

FL : TRn → T ∗Rn

(u, u̇) *→ (u, p)
(4.5)

is a diffeomorphism, where pi is defined by (4.4).

It is known (e.g., [21, Section 3.6]) that from a regular Hamiltonian one obtains a regular Lagrangian

by the Legendre transformation; conversely, from a regular Lagrangian one obtains a regular Hamiltonian

by the Legendre transformation. In either case, the two systems are equivalent in the above sense.

4.2 Lagrangian and Rogers dilogarithm

Let us consider the Hamiltonian H = HB
k,ε from (3.12) in the canonical coordinates (u, p). By (3.13), we

have

u̇i = −
1

2
δki log(1 + yε

k). (4.6)

Thus, the map FH in (4.1) is far from surjective. Therefore, the Hamiltonian H is singular (i.e., not

regular), unfortunately.

Nevertheless, let us write the Lagrangian in (4.2) explicitly, for now, as a function of (u, p),

L
B

k,ε(u, p) = −
1

2
log(1 + yε

k)pk −
ε

2dk

Li2(−yε
k). (4.7)

Inverting the relation (4.6) for i = k, we regard yk as a function of u̇k . Then, we also regard pk as a

function of u̇k and u1, . . . , uk−1, uk+1, . . . , un by the relation

pk = d−1
k (log yk − wk). (4.8)

Thus, the function L
B

k,ε(u, p) is converted to a function of (u, u̇) by

L
B

k,ε(u, u̇) = −
1

2dk

log(1 + yε
k)(log yk − wk) −

ε

2dk

Li2(−yε
k), (4.9)

despite the fact that the Hamiltonian is singular.

Of course, we have to pay some price. The Lagrangian L
B

k,ε(u, u̇) is singular, since it is independent

of the variables u̇i for i ̸= k. Moreover, it is not equivalent to the original Hamiltonian system.
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Proposition 4.3

(1) For i = k, the equation (4.3), together with (4.4), yields

yk(t) = edk pk (t)+wk (t), ṗk(t) = 0. (4.10)

(2) For i ̸= k, the equation (4.3), together with (4.4), yields

pi(t) = 0, bki log(1 + yk(t)
ε) = 0. (4.11)

Proof.

(1) For i = k,

∂L

∂ u̇k

=
1

dk

(log yk − wk), (4.12)

∂L

∂uk

= 0. (4.13)

(2) For i ̸= k,

∂L

∂ u̇i

= 0, (4.14)

∂L

∂ui

=
bik

2dk

log(1 + yε
k) = −

bki

2di

log(1 + yε
k). (4.15)

!

Therefore, the Euler–Lagrange equation for i = k is a part of the equations of motion of the original

Hamiltonian system in Proposition 3.4. On the other hand, the ones for i ̸= k set an unwanted restriction

(4.11), and we have to avoid using them.

Putting this defect aside, let us evaluate L
B

k,ε on the small phase space M0. Recall that we have

yk = e2dk pk on M0. Thus, we have

pk =
1

2dk

log yk =
ε

2dk

log yε
k on M0. (4.16)

Thus, L
B

k,ε depends only on yk , or equivalently, on yε
k . So, let us write it is as a function of yε

k as L
B

k,ε(y
ε
k)

for our convenience. Then, putting it in (4.7), we obtain

L
B

k,ε(y
ε
k) = −

ε

4dk

log yε
k log(1 + yε

k) −
ε

2dk

Li2(−yε
k). (4.17)

Now the Rogers dilogarithm emerges in our picture.
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Proposition 4.4 The function L
B

k,ε(y
ε
k) is given by the Rogers dilogarithm L̃(x) in (2.26) as

L
B

k,ε(y
ε
k) =

ε

2dk

L̃(yε
k). (4.18)

Proof. This follows from (2.27) and (4.17). !

Let us boldly phrase the above result as ‘the Rogers dilogarithm is a Legendre transformation of the

Euler dilogarithm.’ This justifies the observation stated in Section 1.1.

5. Periodicity of canonical variables

5.1 Universal and tropical semifields

Let us recall two important classes of semifields, following [18].

Definition 5.1 Let y = (y1, . . . , yn) be an n-tuple of formal commutative variables.

(1) Define a semifield

Q+(y) =

{

p(y)

q(y)
∈ Q(y) | p(y) and q(y) are non-zero polynomials of y

with non-negative integer coefficients

}

, (5.1)

where the multiplication and the addition ⊕ are given by the ordinary ones for the rational function

field Q(y). We call it the universal semifield of y.

(2) Define a semifield

Trop(y) =

{

n
∏

i=1

y
ai
i | ai ∈ Z

}

, (5.2)

where the multiplication is given by the ordinary one for monomials of y, while the addition ⊕ is

given by the tropical sum

(

n
∏

i=1

y
ai
i

)

⊕

(

n
∏

i=1

y
bi
i

)

=

n
∏

i=1

y
min(ai ,bi)

i . (5.3)

We call it the tropical semifield of y.

There is a semifield homomorphism

πtrop : Q+(y) → Trop(y)

yi *→ yi,
(5.4)

which we call the tropicalization map.
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5.2 Periodicity of seeds and tropical periodicity

Let y = (y1, . . . , yn) be an n-tuple of formal commutative variables. We consider a sequence of seed

mutations with coefficients in the universal semifield Q+(y),

(B, x, y) = (B[0], x[0], y[0])
µk0*→ (B[1], x[1], y[1])

µk1*→ · · ·

· · ·
µkT−1*→ (B[T ], x[T ], y[T ]). (5.5)

Note that the initial y-variables y are set to be the generators y of Q+(y).

We may view the sequence (5.5) as a discrete dynamical system with a discrete time s = 0, 1, . . . , T .

Let us introduce the notion of periodicity for this system.

Let F
n
0 be the one defined in Section 2.1 with P = Q+(y). We define a (left) action of a permutation

σ of {1, . . . , n} on F
n
0 × Q+(y)n by

σ : F
n
0 × Q+(y)n → F

n
0 × Q+(y)n

(x, z) *→ (x′, z′),
(5.6)

x′
i = xσ−1(i), (5.7)

z′
i = zσ−1(i). (5.8)

Definition 5.2 Let σ be a permutation of {1, . . . , n}. We say that a sequence of mutations (5.5) is

σ -periodic if the following conditions hold for any 1 ≤ i, j ≤ n:

bσ−1(i)σ−1(j)[T ] = bij[0], (5.9)

xσ−1(i)[T ] = xi[0], (5.10)

yσ−1(i)[T ] = yi[0]. (5.11)

Note that the conditions (5.10) and (5.11) are also expressed as the following equality on F
n
0 ×Q+(y)n:

σ ◦ µ
B[T−1]
kT−1

· · · ◦ µ
B[1]
k1

◦ µ
B[0]
k0

= id. (5.12)

The following fact is known.

Proposition 5.3 ([17, Proposition 4.3]) Let D = diag(d1, . . . , dn) be any common skew-symmetrizer of

B[s] (s = 0, . . . , T − 1). Suppose that the condition (5.9) holds. Then, the following equality holds:

dσ (i) = di. (5.13)

Let us consider the ‘tropicalization’ of the sequence (5.5). By applying the tropicalization map πtrop

in (5.4) to each y-variable yi[s], (s = 0, . . . , T ) in the sequence (5.5), we obtain a monomial of initial

y-variables y,

πtrop(yi[s]) =

n
∏

j=1

y
cji[s]

j . (5.14)

The integer vector ci[s] = (cji[s])
n
j=1 is called the c-vector of yi[s].
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The following fact is of fundamental importance in the theory of cluster algebras.

Theorem 5.4 (Sign-coherence of c-vectors, [23, Theorem 1.7] with [18, Proposition 5.6] and [24, Corol-

lary 5.5]) Each c-vector is a non-zero vector and its components are either all non-negative or all

non-positive.

Based on this theorem, we define the following notion.

Definition 5.5 The tropical sign ε = ε(yi[s]) of yi[s] is given by + (respectively, −) if the components

of the c-vector of yi[s] are all non-negative (respectively, non-positive).

We introduce a sequence of signs, ε0, . . . , εT−1, where

εs = ε(yks [s]), (s = 0, . . . , T − 1), (5.15)

and ks is the one in (5.5). We call it the tropical sign sequence of (5.5). Accordingly, we have the following

sequence of transformations associated with the sequence (5.5):

F
n
0 × Q+(y)n

τ
B[0]
k0,ε0→ F

n
0 × Q+(y)n

τ
B[1]
k1,ε1→ · · ·

τ
B[T−1]
kT−1,εT−1→ F

n
0 × Q+(y)n, (5.16)

where τ B
k,ε is the one in (2.12).

Definition 5.6 Let σ be a permutation of {1, . . . , n}. We say that a sequence of transformations (5.16)

is σ -periodic if the following equality holds on F
n
0 × Q+(y)n:

σ ◦ τ
B[T−1]
kT−1 ,εT−1

· · · ◦ τ
B[1]
k1 ,ε1

◦ τ
B[0]
k0 ,ε0

= id. (5.17)

Note that we do not assume the condition (5.9) here.

Each mutation in (5.5) is a rational transformation, while each transformation in (5.16) is (the expo-

nential form of) a linear transformation, which is much simpler. Surprisingly, the two periodicities in

Definitions 5.2 and 5.6 are equivalent. The if-part of the following statement is very non-trivial, and our

proof is based on the recent result by [25].

Proposition 5.7 The sequence of mutations (5.5) is σ -periodic if and only if the sequence of

transformations (5.16) is σ -periodic.

Proof. First, we note that, by [26, Proposition 1.3] and Theorem 5.4, the sequence of transformations

(5.16) is the exponential form of the transformations of the corresponding c-vectors ci[s] = (cji[s])
n
j=1

and g-vectors gi[s] = (gji[s])
n
j=1 along the sequence (5.5), where g-vectors are defined in [18, Section 6].

Thus, the σ -periodicity of the sequence (5.16) is equivalent to the σ -periodicity of c- and g-vectors, i.e.,

cij[T ] = ciσ (j)[0] = δiσ (j), gij[T ] = giσ (j)[0] = δiσ (j). (5.18)
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(Only-if-part.) Assume that the sequence (5.5) is σ -periodic. The σ -periodicity of c-vectors directly

follows from the σ -periodicity of y-variables (5.11) by applying the tropicalization map in (5.4). Then,

the σ -periodicity of g-vectors follows from the duality of c- and g-vectors in [26, Equation (3.11)].

(If-part.) Assume that the sequence (5.16) is σ -periodic. The σ -periodicity of c-vectors implies the

σ -periodicity of exchange matrices B[s] thanks to [26, Equation (2.9)]. Furthermore, let Fi[s] be the

F-polynomials along the sequence (5.5), which are defined in [18, Section 3]. Then, by [25, Theorem

2.5], the σ -periodicity of c-vectors implies the σ -periodicity of F-polynomials, i.e.,

Fσ−1(i)[T ] = Fi[0]. (5.19)

Then, the σ -periodicity of x-variables (respectively, y-variables) follows form the formula in [18,

Corollary 6.3] (respectively, [18, Proposition 3.13]). !

Remark 5.8 Note that the above proof of the only-if-part uses only the assumption (5.11).

5.3 Periodicity of canonical variables and tropical periodicity

Let us consider the counterparts of the two periodicities in Definitions 5.2 and 5.6 for canonical variables.

Let us define a (left) action of a permutation σ of {1, . . . , n} on R2n,

σ : R2n → R2n

(u, p) *→ (u′, p′),
(5.20)

u′
i = uσ−1(i), (5.21)

p′
i = pσ−1(i). (5.22)

Since the map σ is a canonical transformation, we may regard it as a change of canonical coordinates on

the phase space M.

Let ε0, . . . , εT−1 continue to be the tropical sign sequence of (5.5). Let (u[0], p[0]) be an arbitrary

point in R2n. In parallel to the sequence of mutations (5.5), we consider a sequence of signed mutations

on R2n,

(u[0], p[0])
µ

B[0]
k0,ε0*→ (u[1], p[1])

µ
B[1]
k1,ε1*→ · · ·

µ
B[T−1]
kT−1,εT−1*→ (u[T ], p[T ]), (5.23)

where

µ
B[s]
ks ,εs

= τ
B[s]
ks ,εs

◦ ρ
B[s]
ks ,εs

, (s = 0, . . . , T − 1) (5.24)

and ρ
B[s]
ks ,εs

are defined by (3.46) under the following assumption:

Assumption 5.9 We employ a common skew-symmetrizer D of B[s]’s to define ρ
B[s]
ks ,εs

’s.
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Definition 5.10 Let σ be a permutation of {1, . . . , n}. We say that a sequence of signed mutations (5.23)

is σ -periodic if the following conditions hold for any initial point (u[0], p[0]) ∈ R2n and for any 1 ≤ i ≤ n:

bσ−1(i)σ−1(j)[T ] = bij[0], (5.25)

uσ−1(i)[T ] = ui[0], (5.26)

pσ−1(i)[T ] = pi[0]. (5.27)

The conditions (5.26) and (5.27) are also expressed as the following equality on R2n:

σ ◦ µ
B[T−1]
kT−1 ,εT−1

· · · ◦ µ
B[1]
k1 ,ε1

◦ µ
B[0]
k0 ,ε0

= id. (5.28)

Proposition 5.11 The sequence of mutations (5.5) is σ -periodic if and only if the sequence of signed

mutations (5.23) is σ -periodic.

The proof is a little lengthy, and it will be given in Section 5.4.

Example 5.12 The inversion relation (2.5) is the simplest example of a σ -periodic sequence of mutations

(5.5) with T = 2, k1 = k2 = k, σ = id, and the tropical sign sequence is ε1 = +, ε2 = −. The

corresponding σ -periodic sequence of signed mutations is the inversion relation (3.53) with ε = +.

Next, let us consider the counterpart of the sequence (5.16) for canonical variables. For the sequence

(5.23), we introduce the following sequence of transformations,

R2n
τ

B[0]
k0,ε0→ R2n

τ
B[1]
k1,ε1→ · · ·

τ
B[T−1]
kT−1,εT−1→ R2n, (5.29)

where τ B
k,ε is the one in (3.32).

Definition 5.13 Let σ be a permutation of {1, . . . , n}. We say that a sequence of transformations (5.29)

is σ -periodic if the following equality holds on R2n:

σ ◦ τ
B[T−1]
kT−1 ,εT−1

· · · ◦ τ
B[1]
k1 ,ε1

◦ τ
B[0]
k0 ,ε0

= id. (5.30)

Proposition 5.14 The sequence of transformations (5.16) is σ -periodic if and only if the sequence of

transformations (5.29) is σ -periodic.

Proof. (Only-if-part.) Assume that the sequence (5.16) is σ -periodic. Since (3.33) is a log-version of

(2.13), the σ -periodicity of u-variables follows from the σ -periodicity of g-vectors in Proposition 5.7.

Similarly, since (3.42) is a log-version of (2.14), the σ -periodicity of variables (dipi)
n
i=1 follows from the

σ -periodicity of c-vectors in Proposition 5.7. Then, the σ -periodicity of p-variables follows from this

using Proposition 5.3.

(If-part.) One can easily convert the above argument. !
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Combining Propositions 5.7, 5.11 and 5.14, we reach the following conclusion.

Theorem 5.15 The following four conditions are equivalent to each other:

(a). The sequence of mutations (5.5) is σ -periodic.

(b). The sequence of transformations (5.16) is σ -periodic.

(c). The sequence of signed mutations (5.23) is σ -periodic.

(d). The sequence of transformations (5.29) is σ -periodic.

Proof. We have (a) ⇐⇒ (b) by Proposition 5.7, (a) ⇐⇒ (c) by Proposition 5.11, and (b) ⇐⇒ (d) by

Proposition 5.14. !

5.4 Proof of Proposition 5.11

5.4.1 If-part Let us prove the if-part of the proposition, which is easier. Suppose that the sequence of

signed mutations (5.23) is σ -periodic. By the conditions (5.25)–(5.27) and Proposition 5.3, the y-variables

defined by (3.8) satisfy the desired σ -periodicity (5.11) in R+. Furthermore, the initial y-variables y1, …,

yn are algebraically independent in R+ for a generic choice of the initial point (u[0], p[0]). Therefore, the

σ -periodicity (5.11) holds in Q+(y).

To prove the periodicity of x-variables, we make use of Proposition 5.7. As noted in Remark 5.8,

from the σ -periodicity (5.11) of the y-variables for the sequence (5.5), the σ -periodicity of the sequence

of transformations (5.16) holds. Then, by the if-part of Proposition 5.7, the σ -periodicity of the sequence

of mutations (5.5) holds.

In the rest of this subsection, we prove the only-if-part of the proposition.

5.4.2 Hamiltonian point of view In our proof, keeping the Hamiltonian point of view in mind is very

useful. To make the presentation simple, we consider the case T = 2 in (5.5). Although this is a toy

example, it fully contains the idea of the proof for the general case. To lighten the notation, let us

abbreviate the flow in the left-hand side of the sequence (5.28) as

(u, p)
µ*→ (u′, p′)

µ′
*→ (u′′, p′′),

σ*→ (u′′′, p′′′). (5.31)

Using the decomposition (5.24) with a similar abbreviation, we write it in the following way:

(ũ′, p̃′)
# τ ′

## (u′′, p′′)
# σ

## (u′′′, p′′′)

(ũ, p̃)
# τ

## (u′, p′)

$

ρ′

$$

(u, p)

$

ρ

$$

. (5.32)
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From the Hamiltonian point of view, the vertical maps ρ and ρ ′ are Hamiltonian flows from t = 0 to 1

and from t = 1 to 2 in the phase space M, respectively, while the horizontal maps τ , τ ′, σ are changes

of canonical coordinates of M so that points do not move in M. Let us gather the piecewise Hamiltonian

flow from t = 0 to 2 in the initial chart. This can be done by the pullback along the horizontal arrows as

follows:

( ˜̃u, ˜̃p)
# τ

## (ũ′, p̃′)
# τ ′

## (u′′, p′′)
# σ

## (u′′′, p′′′)

(ũ, p̃)
# τ

##
$

$$#
#

#

(u′, p′)

$

ρ′

$$

(u, p)

$

ρ

$$

. (5.33)

The σ -periodicity (5.28), which we are going to show, states that the points (u, p) and (u′′′, p′′′)

coincide, but this coincidence happens in different charts. On the other hand, the tropical periodicity of

(5.30) guaranteed by Proposition 5.14 means that

σ ◦ τ ′ ◦ τ = id. (5.34)

Thus, we have

( ˜̃u, ˜̃p) = (u′′′, p′′′). (5.35)

Therefore, the σ -periodicity (5.28) is equivalent to the equality in the initial chart,

( ˜̃u, ˜̃p) = (u, p). (5.36)

In other words, the flow is periodic in the phase space M. We will show this separately for u- and

p-variables.

5.4.3 Periodicity of p-variables We start with p-variables. Consider

.p := ˜̃p − p = ( ˜̃p − p̃) + (p̃ − p)

= τ−1(p̃′ − p′) + (p̃ − p). (5.37)

By (3.23), we have

p̃i − pi = −
1

2di

bki log(1 + yε
k), (5.38)

p̃′
i − p′

i = −
1

2di

b′
k′i log(1 + y′

k′
ε′
), (5.39)
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where we keep the same system of abbreviation. Recall that y-variables here are defined by

yi = edipi+wi , y′
i = edip

′
i
+w′

i , (5.40)

and they obey the mutation rule (3.52). In particular, it is uniquely determined by the initial y-variables yi.

Our goal is to show that .p = 0. For this purpose, we compare the above flow of p-variables with

the (logarithm of) y-variables in the sequence of mutations (5.5). In the same spirit of (5.33), we write a

diagram for the sequence (5.5),

( ˜̃x, ˜̃y)
# τ

## (x̃′, ỹ′)
# τ ′

## (x′′, y′′)
# σ

## (x′′′, y′′′)

(x̃, ỹ)
# τ

##
$

$$#
#

#

(x′, y′)

$

ρ′

$$

(x, y)

$

ρ

$$

. (5.41)

Let us set vi = log yi/di, v′
i = log y′

i/di, and so on. Here, log yi (yi ∈ Q+(y)) is a formal notation such that

the multiplication in Q+(y) is written additively. In this notation, the linear aspect of the transformation

τ B
k,ε in (2.12) is more transparent. Note that we have v′′′

i = v′′
σ−1(i)

thanks to Proposition 5.3. Then, we have

.v := ˜̃v − v = ( ˜̃v − ṽ) + (ṽ − v)

= τ−1(ṽ′ − v′) + (ṽ − v). (5.42)

By (2.11), we have

ṽi − vi = −
1

di

bki log(1 + yε
k), (5.43)

ṽ′
i − v′

i = −
1

di

b′
k′i log(1 + y′

k′
ε′
). (5.44)

Let us compare them with (5.38) and (5.39). Note that the y-variables here are elements in Q+(y), and

they are different from the ones for (5.38) and (5.39). However, they mutate by the rule (2.3), which is the

same rule as for the y-variables in (5.41). Moreover, the initial y-variables yi in (5.5) are the generators

of Q+(y), which are formal (algebraically independent) variables. Therefore, one can specialize them

arbitrarily in R+, so that they exactly match the initial y-variables for (5.41). Under this specialization,

we have

.p =
1

2
.v, (5.45)

where we also used the fact that τ is a linear transformation. On the other hand, by the periodicity

assumption we have .v = 0. Therefore, .p = 0 holds.
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5.4.4 Periodicity of u-variables Due to the relation (3.8), the periodicities of y- and p-variables imply

the same periodicity of w-variables. Therefore, when the matrix B[0] is invertible, the periodicity of

u-variables immediately follows. This reasoning, however, is not applicable when the matrix B[0] is not

invertible. Therefore, we prove the claim directly by comparing the mutations of u- and x-variables in a

similar way to the previous case. The proof is parallel, but it requires some extra argument.

Consider

.u := ˜̃u − u = ( ˜̃u − ũ) + (ũ − u)

= τ−1(ũ′ − u′) + (ũ − u), (5.46)

where, by (3.22),

ũi − ui = −
1

2
δki log(1 + yε

k), (5.47)

ũ′
i − u′

i = −
1

2
δk′i log(1 + y′

k′
ε′
) (5.48)

for the same yi and y′
i in (5.40).

Let us compare the flow of u-variables with the (logarithm of) x-variables in the sequence of mutations

(5.41). Again, let us introduce formal logarithms, zi = log xi, z′
i = log x′

i , etc., to write the multiplication

in FQ+(y) in the additive way. Then, we have

.z := ˜̃z − z = (˜̃z − z̃) + (z̃ − z)

= τ−1(z̃′ − z′) + (z̃ − z), (5.49)

where, by (2.10),

z̃i − zi = −δki log(1 + ŷε
k) + δki log(1 ⊕ yε

k), (5.50)

z̃′
i − z′

i = −δk′i log(1 + ŷ′
k′

ε′
) + δk′i log(1 ⊕ y′

k′
ε′
). (5.51)

It follows that we have the following expression of .zi := ˜̃zi − zi,

.zi = − log fi(ŷ) + log fi(y), (5.52)

where fi(y) ∈ Q+(y) is a rational function of the initial y-variables y, and fi(ŷ) ∈ FQ+(y) is the one obtained

from fi(y) by replacing y with the initial ŷ-variables ŷ and also replacing the addition in Q+(y) with the

one in FQ+(y). In the same way as (5.45), we have

.ui := ˜̃ui − ui = −
1

2
log fi(y) (5.53)

under some specialization of y in the right-hand side.

Now we set .zi = 0 for all i by the assumption of the periodicity of x-variables. This is equivalent

to the equality fi(y) = fi(ŷ) as elements of FQ+(y). We first claim that fi(y) is a Laurent monomial in y,
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possibly with some coefficients in Q+. In fact, if fi(y) is not a Laurent monomial, then it includes the

addition in Q+(y). It follows that fi(ŷ) includes the addition in FQ+(y). However, the addition in FQ+(y) is

an operation outside of Q+(y). Thus, fi(ŷ) is not an element in Q+(y) ⊂ FQ+(y). In particular, the equality

fi(y) = fi(ŷ) could never occur. We next claim that actually we have

fi(y) = 1. (5.54)

To see it, we consider the limit yi → 0 for all i. Then, thanks to the definition of the tropical sign, we

have yε
k , y′

k′
ε′ → 0. Thus, by (5.49)–(5.52), we have log fi(y) → 0. Therefore, fi(y)=1. Thus, we conclude

that .ui = 0 by (5.53).

This completes the proof of Proposition 5.11.

6. Dilogarithm identities and action integral

6.1 Dilogarithm identities

The following theorem was proved in [13] by a cluster algebraic method with the help of the constancy

condition from [12]. See also [17].

Theorem 6.1 (Dilogarithm identity [13, Theorems 6.4 and 6.8]) Suppose that the sequence of mutations

(5.5) is σ -periodic. Let ε0, . . . , εT−1 be the tropical sign sequence of (5.5). Let D = diag(d1, . . . , dn)

be any skew-symmetrizer of the initial matrix B in (5.5). Then, the following identity of the Rogers

dilogarithm L̃(x) in (2.26) holds:

T−1
∑

s=0

εs

dks

L̃(y
εs
ks
[s]) = 0, (6.1)

where yks [s] are evaluated by any semifield homomorphism

evy : Q+(y) → R+. (6.2)

Below, we give an alternative proof of the theorem, based on the Hamiltonian/Lagrangian picture

presented in this article.

6.2 Action integral

We consider the sequence of signed mutations (5.23).

For each time span [s, s + 1] (s = 0, . . . , T − 1), we have the Hamiltonian

H[s] =
εs

2dk

Li2(−yks [s]
εs) for [s, s + 1] (6.3)

in the sth canonical coordinates (u[s], p[s]). A Hamiltonian flow from time 0 to T is a piecewise linear

movement. A schematic diagram of a Hamiltonian flow is depicted in Fig. 1 for T = 2. Let

L [s] = u̇ks [s]pks [s] − H[s] for [s, s + 1] (6.4)

be the corresponding singular Lagrangian from (4.7).
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Fig. 1. Schematic diagram of a Hamiltonian flow for T = 2, where for simplicity we use the same abbreviation as in (5.32).

Let us consider the action integral S along a Hamiltonian flow,

S =

T−1
∑

s=0

S[s], (6.5)

S[s] =

∫ s+1

s

L [s](u(t), u̇(t))dt, (6.6)

where u(t) in (6.6) is (the u-part of) a Hamiltonian flow in the sth coordinates (u[s], p[s]).

Here is the first key observation.

Proposition 6.2 The value of the Lagrangian (6.4) along a Hamiltonian flow is constant in t in each

time span [s, s + 1]. Thus, we have

S =

T−1
∑

s=0

L [s]. (6.7)

Proof. Since the Hamiltonian is constant along the flow, it is enough to show that the term u̇ks [s]pks [s] is

constant. This is true since we have üks [s] = ṗks [s] = 0 by Proposition 3.4. !

6.3 Invariance of action integral

Our next key observation is as follows.

Theorem 6.3 Suppose that the sequence of signed mutations (5.23) is σ -periodic. Then, for any

Hamiltonian flow,

S = 0. (6.8)

The rest of this subsection is devoted to a proof of this theorem.
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First we show that the value S = S(u) is independent of a Hamiltonian flow u(t), using the standard

variational calculus for a Lagrangian. However, we have to be careful because the Lagrangian here is

singular as discussed in Section 4.2.

For a given Hamiltonian flow u(t), we consider an infinitesimal variation u(t) + δu(t), which is also

assumed to be a Hamiltonian flow. Let

δS[s] := S[s](u + δu) − S[s](u). (6.9)

be the variation of the action integral S[s] in the time span [s, s + 1]. We show that it is given by the

boundary values of the time span as follows.

Lemma 6.4

δS[s] =

n
∑

i=1

p̃i[s]δũi[s] −
n

∑

i=1

pi[s]δui[s], (6.10)

where (u[s], p[s]) and (ũ[s], p̃[s]) are the points of the flow at t = s and s + 1, respectively, in the sth

coordinates (u[s], p[s]).

Proof. We fix the discrete time s. For simplicity, we suppress the index s everywhere, in particular we

write k instead of ks. Recall that, by Proposition 3.4, for i ̸= k,

u̇i = 0. (6.11)

Thus, we have, for i ̸= k,

δu̇i = 0. (6.12)

Therefore, it is natural to separate the variation δS = δS[s] into two parts:

δS = δS1 + δS2, (6.13)

δS1 =

∫ s+1

s

(

∂L

∂uk

δuk +
∂L

∂ u̇k

δu̇k

)

dt, (6.14)

δS2 =

n
∑

i=1
i ̸=k

∫ s+1

s

(

∂L

∂ui

δui

)

dt. (6.15)

Recall that, by Proposition 4.3 (1), the Euler–Lagrange equation for i = k follows from the equations of

motion. By using it and also (4.4), we have

δS1 =

∫ s+1

s

(

d

dt

(

∂L

∂ u̇k

)

δuk +
∂L

∂ u̇k

δu̇k

)

dt =

[

∂L

∂ u̇k

δuk

]s+1

s

=
[

pkδuk

]s+1

s
. (6.16)
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On the other hand, for i ̸= k, by (4.15) we have an explicit expression for ∂L /∂ui and (6.11) shows

δui is independent of t. Combining with (3.25) gives

δS2 =

n
∑

i=1
i ̸=k

(−1)
bki

2di

log(1 + yε
k)δui =

n
∑

i=1
i ̸=k

(p̃i − pi)δui. (6.17)

(Note that in (6.17) we did not use the Euler–Lagrange equations for i ̸= k, which are not valid here as

noted after Proposition 4.3.) Recall from (3.21) that (ũ[s], p̃[s]) is obtained from (u[s], p[s]) by the time

one flow of the Hamiltonian H[s]. Thus gathering (6.16) with (6.17) and noting that δui = δũi for i ̸= k,

we obtain (6.10). !

Let σ be the one in (5.20), and let us introduce

(u[T + 1], p[T + 1]) := σ (u[T ], p[T ]). (6.18)

Lemma 6.5 We have the equalities

n
∑

i=1

pi[s + 1]δui[s + 1] =

n
∑

i=1

p̃i[s]δũi[s], (s = 0, . . . , T − 1), (6.19)

n
∑

i=1

pi[T + 1]δui[T + 1] =

n
∑

i=1

pi[T ]δui[T ]. (6.20)

Proof. The first equality is due to Proposition 3.9 (1). The second equality is clear from the definition

of σ . !

Consider the total variation

δS =

T−1
∑

s=0

δS[s]. (6.21)

Combining Lemmas 6.4 and 6.5, we see that it is given by the boundary values,

δS =

n
∑

i=1

pi[T + 1]δui[T + 1] −
n

∑

i=1

pi[0]δui[0]. (6.22)

On the other hand, by the assumption of the σ -periodicity of the sequence of signed mutations (5.23),

we have

pi[T + 1] = pi[0], δui[T + 1] = δui[0]. (6.23)
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Therefore, we conclude that

δS = 0. (6.24)

Since this holds for any infinitesimal variation of any flow u(t), S is constant.

It remains to determine the constant value of S. We evaluate it in the limit pi[0] → −∞ for all i. Then,

all initial y-variables yi[0] = exp(dipi[0] + wi[0]) go to 0. Accordingly, all yks [s]
εs (s = 0, . . . , T − 1)

also go to 0 due to the definition of the tropical sign εs. So, by (4.9), the Lagrangians L [s] go to 0 as

well. Thus, we have S → 0. Therefore, S = 0.

This completes the proof of Theorem 6.3.

Remark 6.6 The meaning of Theorem 6.3 and its proof becomes more transparent if we compare them

with Noether’s theorem (e.g., [22, Theorem 1.3]).

For simplicity, let us consider the variation of a general regular Lagrangian L under an infinitesimal

transformation ui *→ ui + εai for some i, where ε is an infinitesimal and ai is a function of u. Then, by

the Euler–Lagrange equation for i, we have

δL =
d

dt

(

∂L

∂ u̇i

)

εai +
∂L

∂ u̇i

εȧi = ε
d

dt
(piai) . (6.25)

Thus, δL = 0, i.e., the invariance of the Lagrangian in the order of ε, implies that the generator X = piai

is an integral of motion; that is Noether’s theorem. Moreover, we see in (6.25) that the converse is also

true, namely, if X = piai is an integral of motion, then δL = 0.

Next we consider a finite time analogue of the above. Namely, we consider a variation of the action

integral S under an infinitesimal transformation of Hamiltonian flows ui(t) *→ ui(t) + εai(t) for some i,

where ε is an infinitesimal and ai(t) depends on u(t). Then, again by the Euler–Lagrange equation, we

have

δS =

∫ t1

t0

(

d

dt

(

∂L

∂ u̇i

)

εai +
∂L

∂ u̇i

εȧi

)

dt = ε
[

piai

]t1

t0
. (6.26)

Thus, δS = 0, i.e., the invariance of the action integral in the order of ε, implies that the generator X = piai

is periodic at t0 and t1, and vice versa.

6.4 Main results

By combining Propositions 4.4 and 6.2 with Theorem 6.3, we have the following theorem.

Theorem 6.7 Suppose that the sequence of signed mutations (5.23) is σ -periodic. Then, for the

Hamiltonian flow of the Hamiltonian in (6.3) with any initial point in the phase space M, we have

T−1
∑

s=0

L [s] = 0. (6.27)

In particular, if the initial point (u[0], p[0]) in (5.23) satisfies the condition

dipi[0] = wi[0], (i = 1, . . . , n), (6.28)
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we have the following identity of the Rogers dilogarithm L̃(x) in (2.26):

T−1
∑

s=0

εs

dks

L̃(ŷ
εs
ks
[s]) = 0, (6.29)

where

ŷi[s] = e2wi[s]. (6.30)

By combining Proposition 5.11 and Theorem 6.7, we obtain a slightly different version of Theorem 6.1.

Theorem 6.8 Suppose that the sequence of mutations (5.5) is σ -periodic. Let ε0, . . . , εT−1 be the tropical

sign sequence of (5.5). Let D = diag(d1, . . . , dn) be any skew-symmetrizer of the initial matrix B in

(5.5). We set the y-variables in (5.5) to be trivial by the specialization Q+(y) → 1. Let Q+(x) ⊂ F

be a semifield generated by the initial x-variables in (5.5). Then, the following identity for the Rogers

dilogarithm L̃(x) in (2.26) holds:

T−1
∑

s=0

εs

dks

L̃(ŷ
εs
ks
[s]) = 0, (6.31)

where

ŷi[s] =

n
∏

j=1

xj[s]
bji[s] (6.32)

are evaluated by any semifield homomorphism

evx : Q+(x) → R+. (6.33)

The only difference between Theorems 6.1 and 6.8 is the ranges of the initial y- and ŷ-variables

therein under the evaluations (6.2) and (6.33). Namely, each of the initial y-variables in Theorem 6.1

independently takes any value in R+, since they are independent variables. Meanwhile, each of the initial

ŷ-variables in Theorem 6.8, defined by (6.32) with s = 0, does so if and only if the initial matrix B = B[0]

is invertible. Therefore, Theorem 6.8 is apparently weaker than Theorem 6.1.

Nevertheless, we can show the following fact, which completes our derivation of Theorem 6.1.

Theorem 6.9 Theorem 6.8 implies Theorem 6.1. Therefore, Theorems 6.1 and 6.8 are equivalent.

To show Theorem 6.9, we use the following notion.

Definition 6.10 Let B and B̃ be skew-symmetrizable (integer) matrices of size n and m (n < m),

respectively. We call B̃ an extension of B if B is a principal submatrix of B̃. If an extension of B is

invertible, then we call it an invertible extension of B
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For any skew-symmetrizable matrix B, there is an invertible extension B̃ of B. For example, if D is a

skew-symmetrizer of B, then we have the following invertible extension of B:

B̃ =

(

B −I

D 0

)

. (6.34)

The following general fact on cluster algebras is key to proving Theorem 6.9.

Theorem 6.11 (Extension Theorem (cf. [13, Theorem 4.3])) Let B and B̃ be any skew-symmetrizable

matrices of size n and m, respectively, such that B̃ is an extension of B. Assume, for simplicity, that B is

the principal submatrix of B̃ for the first n indices 1, . . . , n of B̃. Then, if the sequence (5.5) with the initial

matrix B = B[0] is σ -periodic, the sequence (5.5) with the initial matrix being replaced with B̃ is also

σ -periodic. Here, a permutation σ of {1, . . . , n} is naturally identified with a permutation of {1, . . . , m}

such that σ (i) = i for n + 1 ≤ i ≤ m.

Remark 6.12 The above theorem is shown in [13, Theorem 4.3] when B is skew-symmetric and σ = id.

Proof. Since the proof is parallel to the one in [13, Theorem 4.3]), we only give a sketch of a proof. We

first show the σ -periodicity of c-vectors. Let ci[s] = (cji[s])
m
j=1 be the c-vectors for the sth seed in the

sequence (5.5) with the initial matrix B̃. Then, repeating the argument in the proof of [13, Theorem 4.3]),

one can show the σ -periodicity,

cij[T ] = ciσ (j)[0] = δiσ (j), (6.35)

where we use the sign-coherence property in Theorem 5.4, the duality of c- and g-vectors in [26, Equation

(3.11)], and Proposition 5.3. Then, by the proof of the if-part of the proof of Proposition 5.7, the σ -

periodicity of seeds is recovered from the σ -periodicity of c-vectors. !

Proof of Theorem 6.9. As already mentioned, when the initial matrix B = B[0] is invertible, Theorem

6.8 implies Theorem 6.1. Suppose that B is not invertible. Then, replace the initial matrix B with any

invertible extension B̃ of B. Thanks to Theorem 6.11, the sequence (5.5) enjoys the same σ -periodicity.

A crucial observation is that the functional identity (6.31) remains the same even if the initial matrix B

is replaced with B̃. This is because, for B and its extension B̃, the matrix mutation in (2.1), and also the

exchange relation of y-variables in (2.3), exactly coincide if all indices therein are restricted to the ones

for B. On the other hand, since B̃ is invertible, each of the initial y-variables in the sequence (6.31) now

independently takes any value in R+ under the specialization (6.33). This is the desired result. !
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