

Formation of chondrules in a moderately high dust enriched disk: evidence from oxygen isotopes of chondrules from the Kaba CV3 chondrite

Andreas T. Hertwig*, Céline Defouilloy, and Noriko T. Kita

WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706,
USA.

November 17, 2017

Revision, submitted to *Geochimica et Cosmochimica Acta*

11

12 *Corresponding author: hertwig@wisc.edu

ABSTRACT

Oxygen three-isotope analysis by secondary ion mass spectrometry of chondrule olivine and pyroxene in combination with electron microprobe analysis were carried out to investigate FeO-poor (type I) and 2 FeO-rich (type II) chondrules from the Kaba (CV) chondrite. The Mg#’s of olivine and pyroxene in individual chondrules are uniform, which confirms that Kaba is one of the least thermally metamorphosed CV3 chondrites. The majority of chondrules in Kaba contain olivine and pyroxene that show indistinguishable $\Delta^{17}\text{O}$ values ($= \delta^{17}\text{O} - 0.52 \times \delta^{18}\text{O}$) within analytical uncertainties, as revealed by multiple spot analyses of individual chondrules. One third of chondrules contain olivine relict grains that are either ^{16}O -rich or ^{16}O -poor relative to other indistinguishable olivine and/or pyroxene analyses in the same chondrules. Excluding those isotopically recognized relicts, the mean oxygen isotope ratios ($\delta^{18}\text{O}$, $\delta^{17}\text{O}$, and $\Delta^{17}\text{O}$) of individual chondrules are calculated, which are interpreted to represent those of the final chondrule melt. Most of these isotope ratios plot on or slightly below the primitive chondrule mineral (PCM) line on the oxygen three-isotope diagram, except for the pyroxene-rich type II chondrule that plots above the PCM and on the terrestrial fractionation line. The $\Delta^{17}\text{O}$ values of type I chondrules range from $\sim -8\text{\textperthousand}$ to $\sim -4\text{\textperthousand}$; the pyroxene-rich type II chondrule yields $\sim 0\text{\textperthousand}$, the olivine-rich type II chondrule $\sim -2\text{\textperthousand}$. In contrast to the ungrouped carbonaceous chondrite Acfer 094, the Yamato 81020 CO3, and the Allende CV3 chondrite, type I chondrules in Kaba only possess $\Delta^{17}\text{O}$ values below $-3\text{\textperthousand}$ and a pronounced bimodal distribution of $\Delta^{17}\text{O}$ values, as evident for those other chondrites, was not observed for Kaba.

Investigation of the Mg#- $\Delta^{17}\text{O}$ relationship revealed that $\Delta^{17}\text{O}$ values tend to increase with decreasing Mg#’s, similar to those observed for CR chondrites though data from Kaba cluster at the high Mg# (>98) and the low $\Delta^{17}\text{O}$ end ($-6\text{\textperthousand}$ and $-4\text{\textperthousand}$). A mass balance model

36 involving ^{16}O -rich anhydrous dust ($\Delta^{17}\text{O} = -8\text{\textperthousand}$) and ^{16}O -poor water ice ($\Delta^{17}\text{O} = +2\text{\textperthousand}$) in the
37 chondrule precursors suggests that type I chondrules in Kaba would have formed in a moderately
38 high dust enriched protoplanetary disk at relatively dry conditions ($\sim 50\text{-}100\times$ dust enrichment
39 compared to Solar abundance gas and less than $0.6\times$ ice enhancement relative to CI chondritic
40 dust). The olivine-rich type II chondrule probably formed in a disk with higher dust enrichment
41 ($\sim 2000\times$ Solar).

1. INTRODUCTION

43 Chondrules - a main constituent of most chondritic meteorites - are spherical, melted
44 objects that formed by transient high-temperature events in the proto-planetary disk (e.g.,
45 Hewins, 1996; Rubin, 2000; Connolly and Desch, 2004; Ciesla, 2005; Morris et al., 2012). Since
46 the recognition of isotopic anomalies in the Allende CV chondrite in the early 1970s (Clayton et
47 al., 1973, 1977), numerous oxygen isotope studies on primitive carbonaceous chondrites have
48 targeted the variabilities among bulk meteorites, as well as those of CAIs and chondrules (e.g.,
49 Clayton, 1993; Clayton and Mayeda, 1999; Jones et al., 2004; Krot et al., 2006; Yurimoto et al.,
50 2008, and references therein). In general, oxygen isotope ratios of chondrules in carbonaceous
51 chondrites plot in the oxygen three-isotope diagram below the terrestrial fractionation (TF) line
52 and along a slope ~ 1 line, for instance parallel to the CCAM (carbonaceous chondrite anhydrous
53 minerals) line, while those in ordinary chondrites cluster slightly above the TF line (e.g., Clayton
54 1993).

55 By using secondary ion mass spectrometers (SIMS), high precision (sub-‰) mineral-
56 scale isotope data of chondrule minerals have become increasingly available in recent years (e.g.,
57 Chaussidon et al., 2008; Kita et al., 2010; Connolly and Huss, 2010; Rudraswami et al., 2011;
58 Ushikubo et al., 2012; Schrader et al., 2013, 2014, 2017; Tenner et al., 2013, 2015; Nagashima et
59 al., 2015). In contrast to bulk analyses, in-situ measurements of primary chondrule minerals,
60 such as olivine, low-Ca pyroxene and mesostasis phases allow for an evaluation of the isotopic
61 homogeneity of single chondrules. A growing number of studies have established that most
62 chondrules are internally homogeneous in terms of their $\Delta^{17}\text{O}$ ($= \delta^{17}\text{O} - 0.52 \times \delta^{18}\text{O}$) values
63 except for minor occurrence of relict olivine grains (e.g., Kita et al., 2010; Rudraswami et al.,
64 2011; Tenner et al., 2013, 2015, 2017; Schrader et al., 2017). In particular, according to the

65 analyses of ungrouped carbonaceous chondrite Acfer 094, in which both thermal metamorphism
66 and aqueous alteration in the parent body was minimal, Ushikubo et al. (2012) clearly
67 demonstrated that oxygen isotope ratios of olivine and pyroxene phenocrysts are
68 indistinguishable from those of glassy mesostasis. Presuming that this is the general case, i.e.,
69 chondrule phenocrysts and mesostasis have indistinguishable $\Delta^{17}\text{O}$ values at the time of
70 chondrule formation, it is now possible to deduce the composition of the isotopically
71 homogenized melt by measuring chondrule phenocrysts in other chondrites even if oxygen
72 isotope ratios of glassy mesostasis were altered due to parent body processes (e.g., in Semarkona
73 LL3 by Kita et al., 2010).

74 It has been suggested that chondrules formed in an open system with respect to major
75 oxides, such as MgO and SiO₂, which evaporated and re-condensed during melting (e.g.,
76 Tissandier et al., 2002; Alexander, 2004; Nagahara et al., 2008). Under a dust-enriched
77 environment (e.g., Ebel and Grossman, 2000), the ambient gas present during chondrule
78 formation would have oxygen isotope ratios similar to those of average solid precursors, since
79 oxygen in the ambient gas would predominately originate from these precursors (e.g., Ushikubo
80 et al., 2012). Further, Ushikubo et al. (2012) suggested that the internally homogeneous oxygen
81 isotope ratios within a single chondrule were the result of isotope exchange between ambient gas
82 and chondrule melt that occurred rapidly due to evaporation and re-condensation of major oxides
83 from the chondrule melt.

84 The Mg#’s of chondrules, defined as the molar MgO/(MgO+FeO) % of mafic chondrule
85 minerals, mainly depend on the redox conditions during chondrule-formation (Ebel and
86 Grossman, 2000). Oxygen fugacities required to form FeO-poor (type I) or FeO-rich (type II)
87 chondrules in carbonaceous chondrites (log fO₂: up to iron-wüstite buffer for type II; IW – 6 to –

88 2 for type I chondrules; e.g., Ebel and Grossmann, 2000; Tenner et al., 2015) are higher than
89 estimates for the Solar nebula ($\log fO_2: \sim IW - 6$ at 1600K; e.g., Krot et al., 2000). The more
90 oxidizing redox conditions were likely imposed by enhancement (relative to Solar abundances)
91 of dust particles and H_2O ice (e.g., Ebel and Grossman, 2000; Fedkin and Grossman, 2006, 2016;
92 Schrader et al., 2013; Tenner et al., 2015). In carbonaceous chondrites, many studies have found
93 type I chondrules to be generally ^{16}O -rich compared to type II chondrules (e.g., Kunihiro et al.,
94 2004, 2005; Connolly and Huss, 2010; Schrader et al., 2013). Further, Ushikubo et al. (2012) and
95 Tenner et al. (2013) observed a bimodal distribution of $\Delta^{17}O$ values that is related to Mg#’s of
96 chondrules in Acfer 094 and Y-81020 (CO3), respectively. The majority of chondrules possess
97 $\Delta^{17}O$ values of $\sim -5\text{\textperthousand}$ and Mg#>97; other chondrules show $\Delta^{17}O$ values of $\sim -2\text{\textperthousand}$ and a wide
98 range of Mg# (100-40). In CB and CH chondrites, the majority of chondrules are type I with
99 $\Delta^{17}O$ values of $\sim -2\text{\textperthousand}$ (Krot et al., 2010), while type II chondrules have $\Delta^{17}O$ values of $\sim +1.5\text{\textperthousand}$
100 (Nakashima et al., 2010). In the case of CR chondrites, the majority of chondrules are type I
101 showing a larger range of $\Delta^{17}O$ values from $-6\text{\textperthousand}$ to $-1\text{\textperthousand}$, while minor type II chondrules span
102 from $-2\text{\textperthousand}$ to 0\textperthousand (e.g., Connolly and Huss, 2010; Schrader et al., 2013, 2014, 2017; Tenner et
103 al., 2015).

104 The overall tendency of higher chondrule $\Delta^{17}O$ values in combination with lower Mg#’s
105 across carbonaceous chondrites suggests the existence of ^{16}O -poor water ice among chondrule
106 precursors in carbonaceous chondrite forming regions (e.g., Connolly and Huss, 2010; Ushikubo
107 et al., 2012; Schrader et al., 2013). By detailed examination of Mg#’s and corresponding $\Delta^{17}O$
108 values among type I chondrules in CR chondrites, Tenner et al. (2015) observed a monotonic
109 increase in $\Delta^{17}O$ values with decreasing Mg#, which was never observed in other chondrite
110 groups before. Tenner et al. (2015) uses an oxygen isotope mass balance model in combination

111 with expressions that link dust enrichment and abundance of water ice to the $f\text{O}_2$ of the
112 chondrule melt in order to explain $\Delta^{17}\text{O}$ values and Mg#'s of chondrules. By applying $\Delta^{17}\text{O}$
113 values of $-6\text{\textperthousand}$ and $+5\text{\textperthousand}$ for anhydrous dust and water ice, respectively, the model estimated that
114 type I chondrules in CR formed under $100\text{--}200\times$ dust-enrichments relative to solar composition
115 gas with variable amounts of water ice from 0 to $0.8\times$ the nominal water ice content of CI
116 chondritic dust. Tenner et al. (2015) stated that CR chondrites, Acfer 094, CO, and perhaps CV
117 chondrites all contain chondrules with high Mg#'s (>98) and $\Delta^{17}\text{O}$ values ranging from $-6\text{\textperthousand}$ to $-$
118 4\textperthousand . This range of compositions was also found to be the dominant chondrule type in the Y-
119 82094 ungrouped carbonaceous chondrite (Tenner et al., 2017).

120 The literature data about the Mg#- $\Delta^{17}\text{O}$ relationship for chondrules from CV chondrites,
121 as summarized in Tenner et al. (2015), requires re-examination because of the following reasons.
122 Earlier SIMS studies are mostly not at sub-% precision level and mainly include olivine analyses
123 and only a limited amount of low-Ca pyroxene analyses (e.g., Choi et al., 2000; Jones et al.,
124 2004; Libourel and Chaussidon, 2011), hence, rendering it difficult to evaluate the mineral-scale
125 isotopic homogeneity of these chondrules. Chaussidon et al. (2008) measured oxygen isotope
126 ratios of several chondrule constituents in Vigarano CV3 and, for a somewhat limited number of
127 chondrules, in the Mokoia and Efremovka CV3 chondrites; however, corresponding information
128 about the mineral chemistry, especially the Mg#'s for each individual chondrule, were not
129 provided. Conversely, a complete data set of oxygen isotope ratios of chondrule phases,
130 including olivine, low-Ca pyroxene, and, where applicable, spinel and plagioclase was published
131 by Rudraswami et al. (2011) for Allende, but the evaluation of the Mg#- $\Delta^{17}\text{O}$ relationship is
132 made difficult by significant thermal metamorphism experienced by this chondrite (e.g., Krot et
133 al., 1995; Bonal et al., 2006). Since diffusion of Mg and Fe in olivine and pyroxene is

134 considerably faster than diffusion of oxygen (Dohmen and Chakraborty, 2007; Farver, 2010),
135 chondrules more likely preserve primary oxygen isotopic compositions than Mg#'s when
136 subjected to thermal metamorphism. For example, even though many olivine grains show higher
137 FeO contents (lower Mg#'s) than coexisting low-Ca pyroxenes in chondrules of the Allende
138 CV3, most chondrules are still homogeneous in oxygen isotope ratios at analytical precisions
139 (Rudraswami et al., 2011).

140 Here we present SIMS oxygen three-isotope analysis of chondrules from Kaba in order to
141 understand the chondrule formation environment and oxygen isotope reservoirs for the CV
142 chondrite-forming region. Kaba is one of the least thermally metamorphosed CV3 chondrites
143 (Kimura and Ikeda, 1998; Krot et al., 1998; Grossman and Brearley, 2005; Bonal et al., 2006,
144 Busemann et al., 2007) and a member of the Bali-like oxidized subgroup (McSween, 1977). In
145 particular, representative dust-enrichment and ice-enhancement factors of the local disk region
146 are evaluated using the oxygen isotope mass balance model of Tenner et al. (2015) by applying
147 model parameters suitable for the CV chondrule-forming region. Unlike Allende, chondrules in
148 Kaba likely preserve primary Mg#'s in addition to $\Delta^{17}\text{O}$ values that are representative for
149 conditions during chondrule formation, an assumption tested by comparing Mg# of olivine and
150 pyroxene within each chondrule.

151 **2. ANALYTICAL TECHNIQUES**

152 **2.1. Electron microscopy**

153 One thin section of Kaba (USNM 1052-1) was imaged (BSE, SE) and the petrography of
154 chondrules investigated with a Hitachi S-3400N scanning electron microscope (SEM). The
155 chemical composition of olivine and pyroxene grains were determined by a Cameca SX-51

156 electron microprobe (20nA, 15keV, fully focused beam); plagioclase and high-Ca pyroxene of
157 the mesostasis were analyzed by a Cameca SXFive (10nA, 15keV, 10 μ m beam). The SEM and
158 both electron microprobes are hosted at the Department of Geoscience at UW-Madison. On both
159 electron microprobes, concentrations of the oxides SiO₂, TiO₂, Al₂O₃, Cr₂O₃, MgO, FeO, MnO,
160 CaO, K₂O, and Na₂O were acquired and counting times on the peak and background were set to
161 10s and 5s, respectively. The 3 σ detection limits (wt%) for these oxides (in the order mentioned
162 above) were at most: 0.05, 0.06, 0.04, 0.07, 0.05, 0.07, 0.07, 0.04, 0.03, and 0.06, respectively.
163 Data reduction, including ZAF/ ϕ (pz) corrections, was done with the “Probe for EPMA” software
164 suite (Donovan, 2015). The following standards were used for olivine and pyroxene analyses (on
165 Cameca SX-51): Ti: rutile, Al: jadeite, Cr: synthetic Cr₂O₃, Fe: synthetic hematite, Mn:
166 manganese olivine, Ca: wollastonite, K: microcline, Na: jadeite, and depending on mineral type
167 and composition: Si: synthetic enstatite, synthetic forsterite, Fo₈₃, manganese olivine; Mg:
168 synthetic enstatite, synthetic forsterite, Fo₈₃, amphibole. Analyses of plagioclase and high-Ca
169 pyroxene in the chondrule mesostasis were performed on a Cameca SXFive, using the same suite
170 of standards except for the following elements: Si: synthetic enstatite, An₇₈, An₆₇, Al: jadeite,
171 An₉₅; Fe: fayalite; Ca: An₇₈, An₉₅; Na: jadeite, albite, An₇₈.

172 **2.2. SIMS oxygen isotope analyses**

173 The in-situ oxygen three-isotope analysis of olivine and pyroxene was carried out during
174 two separate sessions with the Cameca IMS 1280 SIMS at the UW-Madison using multi-
175 collector Faraday cups and following analytical protocols similar to those of Kita et al. (2010)
176 and Tenner et al. (2013). In both sessions, Cs⁺ primary ion intensity was set to ~3 nA in order to
177 generate a secondary ¹⁶O⁻ intensity of ~3 \times 10⁹ cps (counts per second). During the first session,
178 the primary beam was tuned to form an ellipsoid-shaped spot of 14 \times 10 μ m, similar to the

179 condition used in previous studies (e.g, Tenner et al., 2015, 2017). In the second session, the
180 primary beam aperture was enlarged ($>200\text{ }\mu\text{m}$, normally 100-150 μm) and resulted in a diffused
181 beam shape (Gaussian beam in both sessions). Consequently, we reduced the beam size to ~ 10
182 μm but rastered $5 \times 5\text{ }\mu\text{m}$ over the sample surface to produce a roundish spot of 12 μm diameter.
183 The intensity of $^{16}\text{O}^{1}\text{H}^{-}$ was monitored automatically at the end of each analysis by using a X-
184 deflector between sector magnet and detectors in order to correct the contribution from tailing of
185 the $^{16}\text{O}^{1}\text{H}^{-}$ peak to the $^{17}\text{O}^{-}$ signal. The correction was always insignificant ($\leq 0.1\text{\textperthousand}$).

186 Typically, 12-18 analyses of unknowns were bracketed by 8 analyses (4 before and 4
187 after unknowns) of the San Carlos olivine standard ($\delta^{18}\text{O} = 5.32\text{\textperthousand}$ VSMOW, Kita et al., 2010) to
188 monitor the drift of instrumental bias and the external (spot-to-spot) reproducibility. External
189 reproducibility, which represents the uncertainty of individual analyses of unknowns (Kita et al.,
190 2009), was typically ~ 0.4 , ~ 0.3 , and $\sim 0.4\text{\textperthousand}$ (2SD) for $\delta^{17}\text{O}$, $\delta^{18}\text{O}$, and $\Delta^{17}\text{O}$, respectively.
191 Olivine and pyroxene form solid solutions series that show systematic difference in instrumental
192 biases in $\delta^{18}\text{O}$ (e.g., Tenner et al., 2013), which are calibrated using three olivine ($\text{Fo}_{100, 89, 60}$) and
193 three low-Ca pyroxenes ($\text{En}_{97, 85, 70}$) and one diopside ($\text{En}_{50}\text{Wo}_{50}$) standard (Kita et al., 2010;
194 Nakashima et al., 2013) that cover the range of chemical compositions observed in olivine and
195 pyroxene in Kaba chondrules.

196 **2.3. Selection of chondrules and positions of SIMS analysis**

197 To minimize the sampling bias that is potentially introduced by preferential selection of
198 chondrules by e.g., shape, texture, or degree of alteration, every chondrule larger or equal ~ 750
199 μm in diameter (or longest direction) was selected from a single polished thin section of Kaba
200 (USNM 1052-1) for oxygen isotope analysis based on the evaluation of high-resolution BSE and
201 SE images of the entire thin section. Due to scarcity of type II chondrules in Kaba, one small

202 (~150 μm) chondrule comprising FeO-rich olivine was included for SIMS analysis as well as one
203 smaller chondrule (~600 μm) comprising FeO-rich pyroxene. All selected chondrules are labeled
204 (K1 to K26) in the BSE mosaic image of the Kaba USNM 1052-1 thin section shown in
205 Appendix EA1. At this point, exploratory SEM-EDS measurements were carried out to examine
206 chemical zoning of minerals and to identify opaque phases. Per chondrule, at least 8 locations
207 that are larger than 15 μm and free of cracks and inclusions were selected for SIMS analyses,
208 preferably 4 for olivine and 4 for pyroxene, to be able to evaluate the isotopic homogeneity of
209 individual chondrules. High-Ca pyroxene or plagioclase in the mesostasis of chondrules were not
210 analyzed for oxygen three-isotopes, because they are usually smaller than 15 μm . The chemical
211 compositions of minerals at each position were determined by EPMA and utilized later for
212 instrumental bias correction of SIMS analyses. Finally, after SIMS analysis, each individual
213 SIMS pit was imaged by SEM (see Appendix EA2) to evaluate whether cracks or inclusions
214 were hit and whether the desired position was accurately sampled by the ion beam. Individual
215 SIMS analyses were rejected from results if the primary beam overlapped two different mineral
216 grains or an elevated OH signal in combination with visible cracks or cavities within pits indicate
217 a compromised analysis.

218 **2.4. Data reduction for host $\Delta^{17}\text{O}$ values of individual chondrules**

219 In order to estimate representative oxygen isotope ratios of the last chondrule melt,
220 Ushikubo et al. (2012) and Tenner et al. (2013) established a data reduction scheme to calculate
221 the host $\Delta^{17}\text{O}$ value of a single chondrule as the mean value of multiple olivine and pyroxene
222 analyses that are within a critical value from the mean. The same data reduction scheme was
223 applied for chondrules in Kaba by using 0.6‰ ($\Delta^{17}\text{O}$) as the critical value, which is the mean
224 3SD of the bracketing San Carlos olivine standard during the 2 SIMS sessions. In a first step, the

225 mean $\Delta^{17}\text{O}$ value from multiple analyses of an individual chondrule was calculated. If all data
226 are within $\pm 0.6\text{\textperthousand}$ from the mean, this mean $\Delta^{17}\text{O}$ value is considered to represents that of the
227 host chondrule. The host $\Delta^{17}\text{O}$ value should be determined by at least 2 data points. In a second
228 step, for chondrules that contain data exceeding $\pm 0.6\text{\textperthousand}$ from the mean, a subset of data is
229 selected, which preferably includes all pyroxene analyses and a new mean is calculated, only
230 including this new subset. Subsequently, the subset is tested again for the variability criterion.
231 The excluded olivine analyses, deviating more than $0.6\text{\textperthousand}$ from the mean, are potential relict
232 grains that may not reflect $\Delta^{17}\text{O}$ values of the final chondrule melt.

233 The host $\delta^{17}\text{O}$ and $\delta^{18}\text{O}$ values are calculated with the same subset of analyses that were
234 used for calculating the host $\Delta^{17}\text{O}$ values. Uncertainties (at 95% confidence level) reported for
235 host $\delta^{17}\text{O}$ and $\delta^{18}\text{O}$ values comprise the propagation of three types of uncertainties related to the
236 analysis of unknowns, the instrumental bias correction based on the bracket standard, and the
237 ultimate uncertainty of SIMS oxygen isotope analyses: Uncertainties (unc.) are calculated as the
238 sum of those three components that are (i) twice the standard error $\left(2\frac{SD}{\sqrt{n}}\right)$ of those analyses that
239 constitute the mean, where SD is standard deviation of the unknown analyses or that of the
240 standard bracket whichever larger, (ii) twice the standard error of the analyses of the
241 corresponding San Carlos olivine bracket, and (iii) a fixed value to account for possible mass-
242 dependent fractionation in mean isotope ratios because of sample geometry and topography, as
243 well as the reproducibility of calibration standards ($\pm 0.3\text{\textperthousand}$ for $\delta^{18}\text{O}$, $\pm 0.15\text{\textperthousand}$ for $\delta^{17}\text{O}$, Kita et
244 al., 2009, 2010). Uncertainties of host $\Delta^{17}\text{O}$ values only consider components (i) and (ii).

3. RESULTS

246 **3.1. Petrography of chondrules**

247 In the Kaba thin section, 7 type IA (<10% modal abundance of low-Ca pyroxenes), 3
248 type IB (<10% olivine), 14 type IAB, 1 type IIA, and 1 type IIB were analyzed for oxygen
249 isotope compositions. The two individual chondrules K8 and K9 are part of one compound
250 object and discussed together as chondrule K8+9 (Fig. 1a). Petrographic descriptions of each
251 chondrule analyzed in this study is presented in the Appendix EA3. Chondrule sizes range from
252 0.6 – 3mm (diameter or longest direction); the type IIA chondrule is considerably smaller
253 (0.15mm). Throughout this paper no distinction is made between complete chondrules and
254 chondrule fragments. General textures of most investigated chondrules are best described as
255 porphyritic.

256 Some type IAB chondrules show a predominately concentric layering. In particular,
257 concentric layering within individual chondrules is well developed in the compound chondrule
258 K8+9 (Fig. 1a), as well as in chondrules K1 (Fig. 1b) and K20 (Appendix EA1 , Page 20). In
259 these examples, inner portions of chondrules comprise olivine, mesostasis, and in the case of the
260 individual chondrule K8 also abundant opaque phases. Inner portions are mantled by pyroxenes,
261 often containing olivine inclusions, and are enclosed with fine-grained rims dominated by
262 pyroxene and dispersed opaque phases. The texture and mineralogy of the irregular-shaped
263 chondrule K12 (see Appendix EA1, Page 12) resembles those of these fine-grained rims.
264 Textures of the type IAB chondrules K3 and K19 (see Appendix EA1) indicate a similar
265 concentric layering but fine-grained rims are absent.

266 In general, olivine occurs in type I chondrules (i) as anhedral grains (e.g., K3, K5, K8+9)
267 or, rarely, as euhedral phenocrysts (K1) and small euhedral crystals in mesostasis (K4), (ii) in the

268 form of irregular-shaped olivine masses (e.g., K19; K22, Fig. 1c), and (iii) as small euhedral
269 grains poikilically enclosed in low-Ca pyroxene (e.g., K1, K24; K11, Fig. 1d). In type IA
270 chondrules, olivine grains can be coarse-grained and embedded in varying amounts of interstitial
271 mesostasis (K7, K10; K16, Fig. 1e). Chondrule K6 (IA) comprises olivine that contains metal
272 grains, typical for “dusty olivine” relicts. Except for its occurrence in fine-grained rims, low-Ca
273 pyroxene is usually subhedral (or even euhedral) and often exhibits a poikilitic texture caused by
274 small individual inclusions (e.g., K11, K15, K24) or clusters of olivine grains (K13). The type
275 IIB chondrule K25 comprises subhedral pyroxene that exhibits thin (<20 μ m) overgrows of
276 olivine (K25, Fig. 1f).

277 Chondrules contain varying amounts of opaque phases (e.g., high abundance: K11, K12,
278 K14, K23; low: K3, K7, K16, K22) that are evenly distributed within chondrules (e.g., K11,
279 K12) or localized at their margins (e.g., K8+9, Fig 1a; K16, Fig. 1e). In chondrule K8+9, larger
280 blobs of opaque phases are abundant at the interface of chondrule interior and rim (Fig. 1a). As
281 confirmed by SEM-EDS analyses, opaque phases are mainly magnetite, Fe-Ni sulfides, and,
282 rarely, Fe-Ni alloys (only in K1). The mesostasis is altered in most of the chondrules and
283 comprises abundant phyllosilicates that probably replaced glassy mesostasis and plagioclase
284 (Fig. 1c). High-Ca pyroxene often forms euhedral overgrows on low-Ca pyroxenes (Fig. 1c),
285 sometimes also worm-like intergrow textures with plagioclase (see Appendix EA1, Page 14).

286 **3.2. Mineral chemistry of olivine, pyroxene, and mesostasis phases**

287 Mg#’s of olivine in type I chondrules are restricted to a narrow range between 98.5 and
288 99.8 (99.3 \pm 0.58, 2SD) and zoning caused by thermal metamorphism is insignificant (complete
289 set of EPMA analyses in Appendix EA4). Thin FeO-rich halos around opaques or small holes in
290 olivine, once filled by opaque minerals, are evidence for small-scale diffusion and excluded from

291 analyses. Some olivine in chondrule K1 shows higher than typical Cr_2O_3 (up to 0.69wt%) and
292 MnO (up to 0.49wt%) values compared to the mean of all olivine analyses (Cr_2O_3 : 0.36
293 $\pm 0.27\text{wt\%}$; MnO : $0.18 \pm 0.25\text{wt\%}$; 2SD). Chondrules K3, K7, and K22 contain olivine grains that
294 yield CaO contents slightly higher than 0.5wt% (up to 0.59wt%). Olivine in the type IIA
295 chondrule (K26) is zoned in Fe content and yields Mg#'s of 66.2 and 57.7 in the center and close
296 to margins, respectively. The thin olivine overgrowths on pyroxene in the type IIB chondrule
297 (K25) possess Mg#'s of about 83.

298 Low-Ca pyroxene ($\text{Wo}_{<3}$) is Fe-poor (mean Mg# type I: 99.1 ± 0.51 , 2SD) and shows the
299 characteristic twinning of clinoenstatite when observed under crossed polarizers. In addition to
300 low-Ca pyroxene, some type I chondrules (K5, K6, K8+9, K10, K13, K16) contain “intermediate
301 pyroxene” (IntPx) often associated with mesostasis and distinguished from low-Ca pyroxene by
302 higher Wo contents (Wo_{3-5}); lamellar twins are often absent in intermediate pyroxene. The fine-
303 grained rim enclosing chondrules K8 and K9 comprises low-Ca and intermediate pyroxene. In
304 chondrule K10, intermediate and high-Ca pyroxenes in the mesostasis are the only pyroxenes; in
305 chondrule K16, low-Ca pyroxene is only present in insignificant amounts at chondrule margins
306 whereas intermediate pyroxene fills interstitials of coarse olivine grains (Fig. 1e). Pyroxene in
307 the type IIB chondrule (K25, Fig. 1f) is $\text{En}_{85}\text{Fs}_{14}\text{Wo}_1$ (Mg#: 85.7). In general, high-Ca pyroxenes
308 ($\text{En}_{55-65}\text{Fs}_{<2}\text{Wo}_{34-44}$) that coexist with plagioclase (An_{91-98}) in the mesostasis of several
309 chondrules can be considered as aluminian augites ($\text{Al} > 0.1$ apfu, atoms per formula unit). In
310 these aluminian augites, the $\text{Ca}(\text{R}^{3+})\text{AlSiO}_6$ component, where R^{3+} is predominately Al, can
311 exceed 15 mol% in a few cases. Ti contents of high-Ca pyroxenes are low (<0.05 apfu).

312 **3.3. Oxygen three-isotope ratios**

313 A total of 235 SIMS oxygen isotope analyses of olivine (133) and pyroxene (102) were
314 performed. Thereof 16 had to be rejected from final results, mostly because (i) the spot area
315 covered two different phases (e.g., K1: 98.Ol, 104.Lpx; see Appendix EA2, Page 1), (ii)
316 abundant cracks (e.g., K4: 234.Lpx), (iii) the beam hit cavities in grains (e.g., K23: 309.Ol) or
317 (iv) due to other surface imperfections. SIMS analyses are referred to in this paper by citing the
318 chondrule identifier, followed by the analysis number and an abbreviation of the mineral
319 analyzed. The complete oxygen three-isotope dataset of this study, including rejected analyses, is
320 provided in Appendix EA5. Individual oxygen three-isotope diagrams of all analyzed chondrules
321 are given in Appendix EA6.

322 Most oxygen isotope ratios of olivine and pyroxene plot either on the PCM or in between
323 the PCM and CCAM lines (Fig. 2). The $\delta^{18}\text{O}$ and $\delta^{17}\text{O}$ values of all individual analyses range
324 from $\approx -36\text{\textperthousand}$ to $+4\text{\textperthousand}$ and $-38\text{\textperthousand}$ to $+2\text{\textperthousand}$, respectively ($\Delta^{17}\text{O} \approx -19\text{\textperthousand} - 0\text{\textperthousand}$). Some of the most
325 ^{16}O -rich analyses (e.g., $\Delta^{17}\text{O} \approx -15\text{\textperthousand}$, K4: 235.Ol, 236.Ol) show internal errors (derived from
326 cycle-by-cycle variations within a single spot analysis) that are larger than typical ($< 0.5\text{\textperthousand}$),
327 indicating heterogeneous oxygen three isotope ratios within an analyzed volume. Typical olivine
328 and pyroxene in type I chondrules yield $\delta^{18}\text{O}$ and $\delta^{17}\text{O}$ values in between $-12\text{\textperthousand}$ and $-1\text{\textperthousand}$ and
329 from $-15\text{\textperthousand}$ to $-5\text{\textperthousand}$, respectively ($\Delta^{17}\text{O} \approx -8\text{\textperthousand} - -3\text{\textperthousand}$). Pyroxene in the type IIB ($\delta^{18}\text{O}: +3.7\text{\textperthousand}$
330 - $+4.0\text{\textperthousand}$, $\delta^{17}\text{O}: +2.0\text{\textperthousand} - +2.1\text{\textperthousand}$, $\Delta^{17}\text{O}: 0.0\text{\textperthousand} - +0.2\text{\textperthousand}$) and olivine in the FeO-rich type IIA
331 chondrule ($\delta^{18}\text{O}: +2.6\text{\textperthousand} - +2.9\text{\textperthousand}$, $\delta^{17}\text{O}: -1.1 - -0.4\text{\textperthousand}$, $\Delta^{17}\text{O}: -2.5\text{\textperthousand} - -1.9\text{\textperthousand}$) are ^{16}O -poor
332 compared to those in type I chondrules. Analyses of olivine overgrowths on pyroxene of the type
333 IIB chondrule (K25: 327.Ol, 328.Ol) have been rejected because of irregular SIMS pits, yet their

334 $\Delta^{17}\text{O}$ values ($\Delta^{17}\text{O}$: $0.09 \pm 0.01\text{\textperthousand}$, $n=2$, 2SD) are indistinguishable within analytical uncertainty
335 from those of the pyroxene ($0.06 \pm 0.19\text{\textperthousand}$, $n=3$, 2SD) in the same chondrule.

336 **3.4. The presence of isotopic relict grains and host chondrule $\Delta^{17}\text{O}$ values**

337 Figure 3 provides oxygen three-isotope diagrams for selected chondrules and Fig. 4
338 shows $\Delta^{17}\text{O}$ values of olivine and pyroxene as well as mean chondrule $\Delta^{17}\text{O}$ values. For all
339 chondrules examined, at least 3, but usually more than 7 analyses are indistinguishable within
340 analytical uncertainties (Fig. 3a-g). 11 out of 25 chondrules comprise olivine analyses that are
341 variable in $\Delta^{17}\text{O}$ values beyond the threshold, and some of them are considered to represent
342 analyses of relict grains. Most relict olivine grains are ^{16}O -rich relative to their host, but in some
343 chondrules (see Fig. 4; K18, K16) relict olivine grains are ^{16}O -poor relative to the corresponding
344 host. Olivine analyses in chondrules K5, K13, and K16 form clusters with mean $\Delta^{17}\text{O}$ values that
345 are distinguishable from those of the corresponding pyroxene clusters. Therefore, in these cases,
346 the host $\Delta^{17}\text{O}$ values are determined by using only pyroxene analyses although a part of the
347 olivine analyses in chondrules K5 and K13 are within the variability threshold. In chondrules K6,
348 K8+9, and K24, the internal variability of $\Delta^{17}\text{O}$ is marginal compared to the threshold of $0.6\text{\textperthousand}$.

349 Most chondrules in the Kaba 1052-1 thin section (21 out of 25) yield almost continuous
350 host $\Delta^{17}\text{O}$ values in between -6.1 and $-3.9\text{\textperthousand}$ ($\delta^{18}\text{O}$: -6.9 - $-2.1\text{\textperthousand}$, $\delta^{17}\text{O}$: -9.7 - $-5.0\text{\textperthousand}$, see Fig. 4
351 and Table 1). Chondrules K18 (IA) and K23 (IAB) possess the lowest host $\Delta^{17}\text{O}$ values of $-$
352 $8.3\text{\textperthousand}$ ($\delta^{18}\text{O}$: $-12.0\text{\textperthousand}$, $\delta^{17}\text{O}$: $-14.5\text{\textperthousand}$) and $-7.8\text{\textperthousand}$ ($\delta^{18}\text{O}$: $-7.0\text{\textperthousand}$, $\delta^{17}\text{O}$: $-11.4\text{\textperthousand}$), respectively.
353 The type IIB chondrule (K25) and the type IIA chondrule (K26) show the most ^{16}O -poor
354 compositions with host $\Delta^{17}\text{O}$ values of $0.1\text{\textperthousand}$ ($\delta^{18}\text{O}$: $3.8\text{\textperthousand}$, $\delta^{17}\text{O}$: $2.0\text{\textperthousand}$) and $-2.2\text{\textperthousand}$ ($\delta^{18}\text{O}$: $2.7\text{\textperthousand}$,
355 $\delta^{17}\text{O}$: $-0.8\text{\textperthousand}$), respectively.

4. DISCUSSION

357 **4.1. Evaluation of host chondrule oxygen isotope ratios**

358 The primary aim of this SIMS oxygen isotope study of olivine and low-Ca pyroxene
359 phenocrysts is to determine the oxygen isotope ratios of the last chondrule-forming melt that
360 would record the average oxygen isotope ratios of the local dust-enriched disk. For clarity, the
361 term “last chondrule-forming melt” is used here to refer to the product of the last major melting
362 event that is recorded in most chondrules of one chondrite. These melts interacted with the
363 ambient gas before or during crystallization of chondrule minerals (e.g., Tissandier et al., 2002;
364 Hewins and Zanda, 2012; Nagahara and Ozawa, 2012; Di Rocco and Pack, 2015; Marrocchi and
365 Chaussidon, 2015) and there is evidence that chondrule phenocrysts and evolved melts were not
366 in chemical equilibrium (e.g., Libourel et al., 2006). This disequilibrium, in turn, raises some
367 doubts whether $\Delta^{17}\text{O}$ values of olivine and low-Ca are actual representative for those of the last
368 chondrule-forming melt. However, Ushikubo et al. (2011) showed for Acfer 094 (ungr. CC), the
369 most pristine carbonaceous chondrite known to date, that chondrule phenocrysts (excluding
370 relicts) and mesostasis phases such as high-Ca pyroxenes, plagioclase, and glass are
371 indistinguishable in respect to $\Delta^{17}\text{O}$ values. Also, high-Ca pyroxenes, plagioclase, and olivine
372 show indistinguishable $\Delta^{17}\text{O}$ values in chondrules from two CR chondrites (Tenner et al., 2015)
373 and Yamato-82094 (ungr. CC, Tenner et al., 2017). Moreover, it is likely that systematically
374 higher $\Delta^{17}\text{O}$ values of chondrule glass in Semarkona (LL, Kita et al., 2010) or plagioclase in
375 Kaba (CV, Krot and Nagashima, 2016) are due to parent body processes and not caused by gas-
376 melt exchange during plagioclase crystallization or glass formation.

377 Porphyritic chondrules can contain mineral grains that didn't completely melt during the
378 chondrule-forming event and are identified as relict grains either by chemical compositions

379 and/or isotope ratios (e.g., Jones et al., 2004; Kunihiro et al., 2004; Krot et al., 2006; Berlin et al.,
380 2011; Rudraswami et al., 2011; Ushikubo et al., 2012; Schrader et al., 2013; Tenner et al., 2013).
381 Relict olivine grains predate “host” minerals that crystallized from the final chondrule melt
382 (Nagahara, 1981; Jones, 1996; Wasson and Rubin, 2003). Classical examples of those relict
383 olivine are ^{16}O -rich forsteritic cores in type II chondrules of carbonaceous chondrites (e.g.,
384 Yurimoto and Wasson, 2002; Kunihiro et al., 2004, 2005; Rudraswami et al., 2011; Ushikubo et
385 al., 2012; Schrader et al., 2013; Tenner et al., 2013). However, in most of the cases, isotopically
386 distinct olivine relict grains are chemically and petrographically indistinguishable from other
387 olivine of the same chondrule and only identified by SIMS analyses at sub-‰ precisions (e.g.,
388 Rudraswami et al., 2011; Ushikubo et al., 2012; Tenner et al., 2013, 2015, 2017). In order to
389 deduce representative oxygen isotope ratios of the chondrule-forming environment, it has proven
390 useful to define mean “host” oxygen isotope ratios. These host values have analyses of those
391 isotopic relict grains excluded from chondrule means (e.g., Kunihiro et al., 2004; Ushikubo et al.,
392 2012; Tenner et al., 2017).

393 In 11 of 22 chondrules, analyzed olivine grains are indistinguishable from pyroxene in
394 the same chondrule, i.e., chondrules are relict grain-free and contain both minerals. The total
395 number of chondrules cited here excludes chondrules K23 and K25 where no valid olivine or
396 pyroxene analyses, respectively, are available as well as K26 that doesn't contain pyroxene.
397 Moreover, 19 out of 22 chondrules, shown in Fig. 5a, are either relict grain-free or contain at
398 least one olivine with $\Delta^{17}\text{O}$ values indistinguishable from pyroxene of the same chondrule; the
399 remainder comprises three chondrules, K5, K13, and K16, where all olivine are considered to
400 represent relict grains. Since olivine is the liquidus phase succeeded by low-Ca pyroxene during
401 crystallization of type I chondrule melts, there is a possibility that a changing melt $\Delta^{17}\text{O}$ value

402 during crystallization would be reflected in differing $\Delta^{17}\text{O}$ values of both minerals, e.g., higher
403 $\Delta^{17}\text{O}$ values of pyroxenes relative to those of olivine (e.g., Chaussidon et al., 2008); such
404 systematic relationship was clearly not observed in this study. It is therefore suggested that
405 olivine and pyroxene crystallized from a homogenized melt in respect to $\Delta^{17}\text{O}$ and that the mean
406 chondrule $\Delta^{17}\text{O}$ values of chondrule olivine and pyroxene can be used as a proxy for those of the
407 last chondrule-forming melt.

408 There could be, however, a tendency of olivine to show slightly higher $\delta^{18}\text{O}$ values than
409 pyroxene of the same chondrule, but caution is advised because variations are within analytical
410 uncertainties (see Fig. 5b). Similar observations were made earlier for different chondrites
411 (Tenner et al., 2013, 2015) and attributed to evaporative loss of light isotopes before olivine
412 crystallization followed by re-condensation of light isotopes before or during pyroxene
413 crystallization (Tenner et al., 2015). Since such processes result only in mass-dependent
414 fractionation, chondrule $\Delta^{17}\text{O}$ values and conclusions based thereof are not affected by this type
415 of gas-melt interaction.

416 Mean chondrule $\Delta^{17}\text{O}$ values determined for Kaba are independent of the modal
417 abundance of olivine and pyroxene as shown in Fig. 6 which is in line with previous SIMS
418 oxygen isotope studies on unequilibrated carbonaceous chondrites (Rudraswami et al., 2011;
419 Ushikubo et al., 2012; Tenner et al., 2013, 2015). Apart from the Mg#’s, this study found no
420 connection between oxygen isotope ratios and chemical compositions of olivine or pyroxene. For
421 example, there exists no systematic difference of pyroxene $\delta^{17}\text{O}$, $\delta^{18}\text{O}$, or $\Delta^{17}\text{O}$ depending on the
422 Wo content (i.e., low-Ca pyroxene vs. Intermediate pyroxene). In agreement with previous SIMS
423 oxygen isotope studies on chondrule in carbonaceous chondrites (e.g., Rudraswami et al., 2011;
424 Ushikubo et al., 2012; Tenner et al., 2015), most host chondrule $\Delta^{17}\text{O}$ values plot on the PCM

425 line or between the PCM and CCAM lines (see Fig. 6); notable exceptions are chondrules K25
426 (type IIB) and K23 (IAB). In the latter case (K23), isotopic compositions of olivine are
427 potentially fractionated.

428 **4.2. Consistent Mg#’s of chondrule olivine and pyroxene**

429 Pristine oxygen isotope ratios and Mg#’s are a precondition for reliable conclusions about
430 the chondrule-forming environment and consistent Mg#’s of olivine and pyroxenes are an
431 important indicator whether thermal metamorphism could have disturbed primary values.
432 According to the equilibrium condensation model of Ebel and Grossmann (2000), olivine and
433 orthopyroxene initially show similar Mg#’s of about 98 at the time the last melt disappears (Ebel
434 and Grossmann, 2000, therein Fig. 8, dust enrichment factor: 100). Due to diffusive exchange
435 with Fe-rich minerals, olivine and pyroxene could become more FeO-rich during parent body
436 metamorphism. Importantly, the interdiffusion coefficient of Fe and Mg in olivine is about 2 log
437 units larger than in orthopyroxene (e.g., Dohmen and Chakraborty, 2007; Dohmen et al., 2016,
438 and references therein), i.e., diffusion rates are higher in olivine than in orthopyroxene.
439 Therefore, low degrees of thermal metamorphism manifests itself first in elevated olivine Mg#’s
440 whereas pyroxene Mg#’s remain unchanged. Further, because diffusion of Fe and Mg is fast
441 relative to that of oxygen (Dohmen and Chakraborty, 2007), matching Mg# indicate that both
442 minerals probably record primary oxygen isotope ratios. However, it should be noted that fluids
443 could have enhanced oxygen diffusion in those silicates (Farver, 2010, and references therein). In
444 this study we found consistent Mg#’s of most olivine pyroxenes within individual chondrules
445 from Kaba, providing evidence for unaltered Mg-Fe ratios and $\Delta^{17}\text{O}$ values. Those values can
446 now be used to infer possible dust enrichment and ice enhancement factors of the CV chondrule-
447 forming region.

448 **4.3. Relating oxygen isotope compositions of chondrules to levels of dust enrichment in the**
449 **chondrule forming region**

450 Tenner et al. (2015) proposed a simple yet powerful model to relate the $\Delta^{17}\text{O}$ values and
451 Mg#’s of host chondrules to the extent of dust enrichment and the contribution of distinct
452 precursor oxygen reservoirs. The oxygen isotope characteristics of host chondrules are described
453 by an oxygen isotope mass balance that involves Solar gas ($\Delta^{17}\text{O} = -28.4\text{ ‰}$), anhydrous silicate
454 dust (-5.9 ‰) as well as organics ($+11.8\text{ ‰}$) and H_2O ice ($+5.1\text{ ‰}$) in the dust as precursor oxygen
455 reservoirs. At a given amount of water ice, chondrule $\Delta^{17}\text{O}$ values strongly increase with rising
456 dust enrichment but continue to increase only marginally at dust enrichment factors higher than
457 100 because at these conditions, mass balance is dominated by nearly constant amounts of
458 oxygen from the anhydrous silicate precursor dust and the water ice.

459 For instance, if a chondrule formed in a region with 100 times (CI) dust enrichment (H/O
460 ~ 37) relative to Solar nebula values, 43% and 53% of the oxygen in the chondrule would come
461 from precursor anhydrous silicates and water ice in the dust, respectively; only a minor fraction
462 of 4% would be inherited from the Solar gas and organics in the dust (Tenner et al., 2015, see
463 their Table 3). Hence, when applying the model originally calibrated for CR chondrules to
464 chondrules in CV chondrites, new $\Delta^{17}\text{O}$ values for the precursor silicates and water ice need to
465 be defined whereas a difference in $\Delta^{17}\text{O}$ values for the organics in both regions can be ignored.
466 Following Tenner et al. 2015, oxygen isotope ratios for both reservoirs are defined based on the
467 assumption that the lowest measured chondrule $\Delta^{17}\text{O}$ values (mean of K18 and K23: -8.0 ‰) are
468 representative for the effective $\Delta^{17}\text{O}$ value of the anhydrous precursor silicates and that
469 chondrules with higher $\Delta^{17}\text{O}$ values are formed by addition of ^{16}O -poor water ice. Since type II
470 chondrules likely formed at highly dust-enriched conditions, the $\Delta^{17}\text{O}$ value of the water ice is

471 calculated using the measured $\Delta^{17}\text{O}$ value of chondrule K26 (−2.2‰, type II) in the following
472 way: at a dust enrichment factor of 1000, the mass balance involves oxygen from the sources
473 water ice, anhydrous silicate dust, and organics in the following proportions 54:44:2 (Tenner et
474 al., 2015); solving the mass balance for the $\Delta^{17}\text{O}$ value of water ice, results in a value of +2‰.

475 Host chondrule $\Delta^{17}\text{O}$ and Mg#’s from Kaba are shown in Fig. 7 in combination with
476 modeled dust and ice enrichment factors. Error bars for Mg#’s denote maximum-minimum
477 ranges including olivine and pyroxene analyses in individual chondrules of Kaba. Data suggests
478 that higher chondrule Mg#’s correlate with lower $\Delta^{17}\text{O}$ values which is in line with results for
479 chondrules from CR chondrites (Schrader et al., 2013, 2014, 2017; Tenner et al., 2015).
480 According to the model of Tenner et al. (2015), values of type I host chondrules in Kaba
481 correspond to low dust enrichment factors between 50× and 100× and low amounts of water ice
482 (anhydrous CI dust to 0.6× the nominal amount of ice in dust of CI composition) in the dust. The
483 type IIB chondrule could have formed at 300× dust enrichment and ~3× water ice. However,
484 formation of this chondrule might be unrelated to that of other chondrules because $\delta^{18}\text{O}$ values
485 are fractionated in such a way that analyses plot off the PCM and on the TF line. This
486 distinguishes them from analyses of all other chondrules and suggests that at least one different
487 precursor reservoir contributed to their formation (e.g., Clayton et al., 1983; Tenner et al., 2015).
488 The type II chondrule K26 possibly formed at dust enrichments of 2000×. Results from this
489 study support the idea that Mg#’s and $\Delta^{17}\text{O}$ values may be correlated even for very Mg-rich
490 chondrules with Mg#’s above 99. For these reducing conditions ($\log_{10}\text{FO}_2$: IW – 3.5), increasing
491 $\Delta^{17}\text{O}$ values in combination with decreasing Mg#’s may be due to a small increase in the dust
492 enrichment factor or water ice contents or a combination of both parameters (see Fig. 7), as noted
493 by, e.g., Tenner et al. (2015).

494 Ice enhancement and, to a lower degree, dust enrichment factors inferred from chondrule
495 $\Delta^{17}\text{O}$ values vary with the assumed isotope ratios of the contributing reservoirs. For example,
496 overestimating the $\Delta^{17}\text{O}$ value of anhydrous silicate dust in the precursor by 5‰ ($\Delta^{17}\text{O} = -12\text{\textperthousand}$
497 instead of $-8\text{\textperthousand}$) has only a limited effect on inferred maximum dust enrichments (slight
498 decrease) but increases the maximum estimated ice enhancement factor to 1× the nominal
499 amount of ice in CI dust (type I chondrules), when keeping other parameters constant. As
500 discussed by Tenner et al. (2015), alternative $\Delta^{17}\text{O}$ values of water ice (e.g., $+80\text{\textperthousand}$) can
501 significantly decrease the inferred ice enhancement factor while only moderately affecting dust
502 enrichment factors, e.g., shifting maximum enrichment factors obtained for Kaba type I
503 chondrules from 100× to 200× CI dust relative to Solar abundance. In conclusions, dust
504 enrichment factors inferred from chondrules in Kaba are likely reasonable estimates for the
505 chondrule forming environment, while ice enhancement factors are less accurately known and
506 sensitive to the applied $\Delta^{17}\text{O}$ values of reservoirs.

507 In the scope of the model by Marrocchi and Chaussidon (2015), relict olivine grains
508 represent the direct silicate precursor material for the individual chondrule they are included in.
509 Differences between isotope ratios of individual chondrules are, consequently, due to
510 isotopically distinct precursor olivine rather than due to influence of ^{16}O -poor water ice. Further,
511 Marrocchi and Chaussidon (2015) suggest that, if present, isotopic disequilibrium between
512 chondrule olivine and pyroxene ($\Delta^{18}\text{O}_{\text{px-ol}}$) represents a possible proxy for dust enrichment in the
513 chondrule-forming region. Accordingly, isotopically homogeneous chondrules would indicate
514 high (>100 times) dust enrichments. A $\Delta^{18}\text{O}_{\text{px-ol}}$ of approximately $+1.5$ like observed in
515 chondrules K5 and K13 would amount to dust enrichments smaller than 5×, considering
516 precursor olivine of $-5\text{\textperthousand}$ (Marrocchi and Chaussidon, 2015, see their Table S1). Within the

517 framework of that model, ^{16}O -poor relict olivine as a source for ^{16}O -rich pyroxene as found in
518 chondrule K16 is only conceivable with ^{16}O -rich gas and extremely low dust enrichment factors
519 (< 0.001). The model predictions such as the low dust enrichment factors for the three
520 chondrules are based on the explicit assumption that most olivine are relict grains. Although it
521 can't be ruled out that some olivine grains with $\Delta^{17}\text{O}$ values similar to pyroxenes are actually
522 relict grains, there is recent chemical and isotopic evidence from chondrules in CR chondrites
523 (Schrader et al., 2014) that argue against such a scenario where most olivine in type I chondrules
524 are relict (e.g., Libourel and Krot, 2007; Libourel and Chaussidon, 2011).

525 **4.4. Comparison to data from the Allende CV3 and other carbonaceous chondrites**

526 It can be seen from the previous discussion that host chondrule $\Delta^{17}\text{O}$ values in
527 combination with mean Mg#’s provide important information about the contribution of different
528 oxygen reservoirs to chondrule formation. With histograms presented in Fig. 8, host chondrule
529 $\Delta^{17}\text{O}$ values of Kaba are compared to those of various groups of carbonaceous chondrites in
530 order to identify common chondrule populations. Literature data in Fig. 8 are selected based on
531 the following criterions: (1) The precision of individual chondrule means are small compared to
532 bin size ($<0.5\text{\textperthousand}$), (2) the chondrule means were obtained from multiple analyses ($n>4$) of single
533 chondrule at sub‰ precision in order to exclude obvious relict olivine analysis, and (3) the total
534 number of chondrules in the dataset are statistically meaningful ($n\geq 20$) and generally cover a
535 representative set of chondrule types. It is important to note that frequencies of host $\Delta^{17}\text{O}$ values
536 can be prone to misinterpretations because available chondrule data may not be completely
537 representative for the meteorite. In many studies, chondrules are primarily selected based on the
538 size of mineral grains due to spatial resolution of the SIMS method. For example, grain size
539 limitations might have biased Allende data towards type IA chondrules (Rudraswami et al.,

540 2011). Also, minor chondrule types, such as type II chondrules in carbonaceous chondrites and
541 Al-rich chondrules are often over-selected compared to their actual representative abundances
542 (e.g., Connolly and Huss, 2010; Ushikubo et al., 2012; Schrader et al., 2013; Tenner et al., 2017).

543 Histograms of host chondrule $\Delta^{17}\text{O}$ values of Kaba, Allende, Yamato 81020, two CRs,
544 Yamato 82094, and Acfer 094 (for references see Fig. 8) show at least one common mode of
545 $\Delta^{17}\text{O}$ values in between $-6\text{\textperthousand}$ and $-4\text{\textperthousand}$. Yamato 81020, the CR chondrites, and Acfer 094 also
546 contain a significant fraction of chondrules with $\Delta^{17}\text{O}$ values of $\sim -2\text{\textperthousand}$, which are observed in
547 Kaba, Allende, and Yamato 82094 as minor components. Except for Yamato 81020, all
548 carbonaceous chondrites mentioned in Fig. 8 contain chondrules with $\Delta^{17}\text{O}$ values of about 0\textperthousand .
549 Only the Kaba, Acfer 094, and Yamato 82094 chondrites contain chondrules with $\Delta^{17}\text{O}$ values
550 lower than $-7\text{\textperthousand}$. In general, type I chondrules are ^{16}O -rich in comparison to type II chondrules
551 and show a negative correlation between chondrule Mg# and $\Delta^{17}\text{O}$ values, as indicated by
552 different grey tones in Fig. 8. More precisely, excluding the two CR chondrites, most type I
553 chondrules possess host $\Delta^{17}\text{O}$ values in the range between $-6\text{\textperthousand}$ and $-4\text{\textperthousand}$ with a minor mode at
554 about $-2\text{\textperthousand}$ that mainly comprises chondrules with Mg#’s below 98. In contrast to the strong
555 bimodal host $\Delta^{17}\text{O}$ values from the Acfer 094 and Yamato 81020 chondrites, data on type I
556 chondrules from the CR chondrites suggest a continuum of $\Delta^{17}\text{O}$ values ranging from -6 to $-1\text{\textperthousand}$.
557 At large, it appears that type II chondrules only possess $\Delta^{17}\text{O}$ values higher than $-4\text{\textperthousand}$ whereas
558 type I chondrules can show host $\Delta^{17}\text{O}$ values from $-10\text{\textperthousand}$ up to 0\textperthousand .

559 Analyzed chondrules from the Kaba CV3 chondrite differ from those in the
560 aforementioned chondrites, especially Allende, in two major aspects: First, host chondrule Mg#’s
561 are consistently above 98 and, second, there exist no type I chondrules in Kaba that show $\Delta^{17}\text{O}$
562 values higher than $\sim -3\text{\textperthousand}$. In Allende chondrules, the difference in Mg#’s is due to secondary

563 processes, so that high Mg#'s among many Kaba chondrules represent the primary characters of
564 chondrules in CV. However, the lack of type I chondrules with $\Delta^{17}\text{O} > -3\text{\textperthousand}$ among chondrules
565 in Kaba studied here could be due to sampling bias because only chondrules from a single thin
566 section of Kaba were analyzed. Precursors of type I chondrules with ^{16}O -poor signature ($\Delta^{17}\text{O} >$
567 $-3\text{\textperthousand}$) are indicated from the analysis of chondrule K16 (IA, Fig. 1e), in which relatively ^{16}O -rich
568 pyroxene analyses define the host value ($\Delta^{17}\text{O} = -5.03 \pm 0.27\text{\textperthousand}$, unc.) by excluding ^{16}O -poor
569 ($\Delta^{17}\text{O} = -1.57 \pm 0.22\text{\textperthousand}$, unc.) relict olivine analysis. Such ^{16}O -poor relict olivine was also found
570 in Allende chondrules (Rudraswami et al., 2011).

571 **5. CONCLUSIONS**

572 Olivine and pyroxene in chondrules from the Kaba USNM 1052-1 thin section were
573 analyzed for oxygen three-isotopes (SIMS) and mineral chemistry (EPMA) in order to evaluate
574 the degree of isotopic homogeneity in chondrules and the relationship of chondrule $\Delta^{17}\text{O}$ values
575 and Mg#'s. More than one third of the analyzed chondrules in the Kaba CV3 contain isotopic
576 olivine relict grains that are generally ^{16}O -rich relative to chondrule means; however, three
577 chondrule also comprise ^{16}O -poor relict grains. Excluding those isotopic relicts, mean chondrule
578 $\Delta^{17}\text{O}$ values were calculated and it was demonstrated for most of the chondrules that olivine and
579 pyroxene are isotopically indistinguishable and, consequently, that both minerals likely
580 crystallized from the last chondrule-forming melt.

581 Except for two type II chondrules, the analyzed thin section only contains Mg-rich
582 chondrules with high and uniform Mg#'s (host: 99.6 – 98.8). Consistent Mg#'s of olivine and
583 pyroxene in individual chondrules support the interpretation that Kaba was only marginally
584 affected by thermal metamorphism. The majority of type I chondrules possesses host $\Delta^{17}\text{O}$
585 values in the range between $-6\text{\textperthousand}$ and $-4\text{\textperthousand}$ and only two type I chondrules show more ^{16}O -rich

586 compositions ($\sim -8\text{\textperthousand}$). The type IIB and IIA chondrules are relatively ^{16}O -poor and yield $\Delta^{17}\text{O}$
587 values of 0\textperthousand and $-2\text{\textperthousand}$, respectively. The $\Delta^{17}\text{O}$ values of type I chondrules in Kaba tend to
588 increase continuously with decreasing Mg#'s.

589 In conclusion, type I chondrules in the Kaba CV3 chondrite are witnesses of an oxygen
590 reservoir with an effective $\Delta^{17}\text{O}$ value of approximately $-5\text{\textperthousand}$ which is also commonly found in
591 other groups of carbonaceous chondrites (e.g., Jones et al., 2004; Krot et al., 2006; Libourel and
592 Chaussidon, 2011; Rudraswami et al., 2011; Ushikubo et al., 2013; Tenner et al., 2013, 2015;
593 Schrader et al., 2014). Interestingly, host $\Delta^{17}\text{O}$ values of type I chondrules in Kaba don't show a
594 pronounced bimodal distribution as it is evident for other carbonaceous chondrites such as Acfer
595 094 and Yamato 81020. At this point it is not clear whether the predominance of $\Delta^{17}\text{O}$ values in
596 between $-6\text{\textperthousand}$ and $-4\text{\textperthousand}$ is an exclusive property of the investigated thin section or representative
597 for Kaba in general.

598 If the analyzed chondrules in Kaba are representative of CV chondrites, the correlation of
599 $\Delta^{17}\text{O}$ and Mg#'s points to similar principals that governed formation of type I chondrules in CV
600 and CR chondrites. This includes a possible involvement of water ice as an oxidizing ^{16}O -poor
601 agent. Inferred dust enrichment factors for the local disk environment are only moderately high
602 ($50\text{-}100\times$) and dust was almost anhydrous (anhydrous to $0.6\times$ the nominal ice in dust of CI
603 composition), based on investigations of type I chondrules in the Kaba CV3.

604

605 **ACKNOWLEDGEMENTS**

606 We thank Glenn MacPherson (National Museum of Natural History, Smithsonian Institution) for
607 the allocation of Kaba thin section for this study. We are grateful to John Fournelle for help with
608 EPMA measurements, Jim Kern for SIMS support, and Nöel Chaumard for discussion. Reviews

609 of Devin Schrader and two anonymous reviewers significantly improved the manuscript. This
610 work is supported by NASA Cosmochemistry Program (NNX14AG29G). WiscSIMS is partly
611 supported by NSF (EAR13-55590).

612

613

REFERENCES

614 Alexander C. M. O'D. (2004) Chemical equilibrium and kinetic constraints for chondrule and
615 CAI formation conditions. *Geochim. Cosmochim. Acta* **68**, 3943–3969.

616 Berlin J., Jones R. H. and Brearley A. J. (2011) Fe-Mn systematics of type IIA chondrules in
617 unequilibrated CO, CR, and ordinary chondrites. *Meteorit. Planet. Sci.* **46**, 513–533.

618 Bonal L., Quirico E., Bourot-Denise M. and Montagnac G. (2006) Determination of the
619 petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter.
620 *Geochim. Cosmochim. Acta* **70**, 1849–1863.

621 Busemann H., Alexander C. M. O'D. and Nittler L. R. (2007) Characterization of insoluble
622 organic matter in primitive meteorites by microRaman spectroscopy. *Meteorit. Planet. Sci.*
623 **42**, 1387–1416.

624 Chaussidon M., Libourel G. and Krot A. N. (2008) Oxygen isotopic constraints on the origin of
625 magnesian chondrules and on the gaseous reservoirs in the early Solar System. *Geochim.*
626 *Cosmochim. Acta* **72**, 1924–1938.

627 Choi B.-G., Krot A. N. and Wasson J. T. (2000) Oxygen-isotopes in magnetite and fayalite in
628 CV chondrites Kaba and Mokoia. *Meteorit. Planet. Sci.* **35**, 1239–1248.

629 Ciesla F. J. (2005) Chondrule-forming Processes – An Overview. In *Chondrites and the*
630 *protoplanetary disk* (eds. A. N. Krot, E. R. D. Scott and B. Reipurth). Astronomical Society
631 of the Pacific, San Francisco, CA. pp. 811–820.

632 Clayton R. N. (1993) Oxygen Isotopes in Meteorites. *Annu. Rev. Earth Planet. Sci.* **21**, 115–149.

633 Clayton R. N. and Mayeda T. K. (1999) Oxygen isotope studies of carbonaceous chondrites.

634 *Geochim. Cosmochim. Acta* **63**, 2089–2104.

635 Clayton R. N., Grossman L. and Mayeda T. K. (1973) A Component of Primitive Nuclear

636 Composition in Carbonaceous Meteorites. *Science* **182**, 485–488.

637 Clayton R. N., Onuma N., Grossman L. and Mayeda T. K. (1977) Distribution of the pre-Solar

638 component in Allende and other carbonaceous chondrites. *Earth Planet. Sc. Lett.* **34**, 209–

639 224.

640 Clayton R. N., Onuma N., Ikeda Y., Mayeda T. K., Hutcheon I. D., Olsen E. J. and Molini-

641 Velsko C. (1983) Oxygen isotopic compositions of chondrules in Allende and ordinary

642 chondrites. In *Chondrules and their origins* (ed. E. A. King). Lunar and Planetary Institute,

643 Huston, TX. pp. 37–43.

644 Connolly H. C., Jr. and Desch S. J. (2004) On the origin of the “kleine Kūgelchen” called

645 Chondrules. *Chem. Erde - Geochem.* **64**, 95–125.

646 Connolly H. C., Jr. and Huss G. R. (2010) Compositional evolution of the protoplanetary disk.

647 *Geochim. Cosmochim. Acta* **74**, 2473–2483.

648 Di Rocco T. and Pack A. (2015) Triple oxygen isotope exchange between chondrule melt and

649 water vapor. *Geochim. Cosmochim. Acta* **164**, 17–34.

650 Dohmen R. and Chakraborty S. (2007) Fe–Mg diffusion in olivine II. *Phys. Chem. Minerals* **34**,

651 409–430.

652 Dohmen R., Ter Heege J. H., Becker H.-W. and Chakraborty S. (2016) Fe-Mg interdiffusion in

653 orthopyroxene. *Am. Mineral.* **101**, 2210–2221.

654 Donovan J. J. (2015) *Probe for EPMA v. 11.1.5*. Probe Software, Inc, Eugene, OR.

655 Ebel D. S. and Grossman L. (2000) Condensation in dust-enriched systems. *Geochim.*
656 *Cosmochim. Acta* **64**, 339–366.

657 Farver J. R. (2010) Oxygen and Hydrogen Diffusion in Minerals. *Rev. Mineral. Geochem.* **72**,
658 447–507.

659 Fedkin A. V. and Grossman L. (2006) The Fayalite Content of Chondritic Olivine: Obstacle to
660 Understanding the Condensation of Rocky Material. In *Meteorites and the Early Solar System*
661 *II* (eds. D. S. Lauretta and H. McSween). University of Arizona Press, Tucson. pp. 279–294.

662 Fedkin A. V. and Grossman L. (2016) Effects of dust enrichment on oxygen fugacity of cosmic
663 gases. *Meteorit. Planet. Sci.* **51**, 843–850.

664 Grossman J. N. and Brearley A. J. (2005) The onset of metamorphism in ordinary and
665 carbonaceous chondrites. *Meteorit. Planet. Sci.* **40**, 87–122.

666 Hewins R. H. (1996) Chondrules and the protoplanetary disk: an overview. In *Chondrules and*
667 *the protoplanetary disk* (eds. R. H. Hewins, R. H. Jones and E. R. D. Scott). Cambridge Univ.
668 Press, Cambridge. pp. 3–9.

669 Hewins R. H. and Zanda B. (2012) Chondrules. *Meteorit. Planet. Sci.* **47**, 1120–1138.

670 Hua X., Huss G. R., Tachibana S. and Sharp T. G. (2005) Oxygen, silicon, and Mn-Cr isotopes
671 of fayalite in the Kaba oxidized CV3 chondrite. *Geochim. Cosmochim. Acta* **69**, 1333–1348.

672 Jones R. H. (1996) FeO-rich, porphyritic pyroxene chondrules in unequilibrated ordinary
673 chondrites. *Geochim. Cosmochim. Acta* **60**, 3115–3138.

674 Jones R. H., Leshin L. A., Guan Y., Sharp Z. D., Durakiewicz T. and Schilk A. J. (2004) Oxygen
675 isotope heterogeneity in chondrules from the Mokoia CV3 carbonaceous chondrite. *Geochim.*
676 *Cosmochim. Acta* **68**, 3423–3438.

677 Kimura M. and Ikeda Y. (1998) Hydrous and anhydrous alterations of chondrules in Kaba and
678 Mokoia CV chondrites. *Meteorit. Planet. Sci.* **33**, 1139–1146.

679 Kita N. T., Ushikubo T., Fu B. and Valley J. W. (2009) High precision SIMS oxygen isotope
680 analysis and the effect of sample topography. *Chem. Geol.* **264**, 43–57.

681 Kita N. T., Nagahara H., Tachibana S., Tomomura S., Spicuzza M. J., Fournelle J. H. and Valley
682 J. W. (2010) High precision SIMS oxygen three isotope study of chondrules in LL3
683 chondrites. *Geochim. Cosmochim. Acta* **74**, 6610–6635.

684 Krot A. N. and Nagashima K. (2016) Evidence for Oxygen-Isotope Exchange in Chondrules and
685 Refractory Inclusions During Fluid-Rock Interaction on the CV Chondrite Parent Body.
686 *Meteorit. Planet. Sci. Suppl.* **51**, A249.

687 Krot A. N., Scott E. R. D. and Zolensky M. E. (1995) Mineralogical and chemical modification
688 of components in CV3 chondrites. *Meteorit. Planet. Sci.* **30**, 748–775.

689 Krot A. N., Petaev M. I., Scott E. R. D., Choi B.-G., Zolensky M. E. and Keil K. (1998)
690 Progressive alteration in CV3 chondrites. *Meteorit. Planet. Sci.* **33**, 1065–1085.

691 Krot A. N., Fegley B., Lodders K. and Palme H. (2000) Meteoritical and astrophysical
692 constraints on the oxidation state of the Solar nebula. In *Protostars and Planets IV* (eds. V.
693 Mannings, A. P. Boss and S. S. Russell). University of Arizona Press, Tucson. pp. 1019–
694 1054.

695 Krot A. N., Yurimoto H., McKeegan K. D., Leshin L. A., Chaussidon M., Libourel G.,
696 Yoshitake M., Huss G. R., Guan Y. and Zanda B. (2006) Oxygen isotopic compositions of
697 chondrules. *Chem. Erde - Geochem.* **66**, 249–276.

698 Krot A. N., Nagashima K., Ciesla F. J., Meyer B. S., Hutcheon I. D., Davis A. M., Huss G. R.
699 and Scott E. R. D. (2010) Oxygen Isotopic Composition of the Sun and Mean Oxygen
700 Isotopic Composition of the Protosolar Silicate Dust. *Astrophys. J.* **713**, 1159–1166.

701 Kunihiro T., Rubin A. E., McKeegan K. D. and Wasson J. T. (2004) Oxygen-isotopic
702 compositions of relict and host grains in chondrules in the Yamato 81020 CO3.0 chondrite.
703 *Geochim. Cosmochim. Acta* **68**, 3599–3606.

704 Kunihiro T., Rubin A. E. and Wasson J. T. (2005) Oxygen-isotopic compositions of low-FeO
705 relicts in high-FeO host chondrules in Acfer 094, a type 3.0 carbonaceous chondrite closely
706 related to CM. *Geochim. Cosmochim. Acta* **69**, 3831–3840.

707 Libourel G. and Krot A. N. (2007) Evidence for the presence of planetesimal material among the
708 precursors of magnesian chondrules of nebular origin. *Earth Planet. Sc. Lett.* **254**, 1–8.

709 Libourel G. and Chaussidon M. (2011) Oxygen isotopic constraints on the origin of Mg-rich
710 olivines from chondritic meteorites. *Earth Planet. Sc. Lett.* **301**, 9–21.

711 Libourel G., Krot A. N. and Tissandier L. (2006) Role of gas-melt interaction during chondrule
712 formation. *Earth Planet. Sc. Lett.* **251**, 232–240.

713 Marrocchi Y. and Chaussidon M. (2015) A systematic for oxygen isotopic variation in meteoritic
714 chondrules. *Earth Planet. Sc. Lett.* **430**, 308–315.

715 Morris M. A., Boley A. C., Desch S. J. and Athanassiadou T. (2012) Chondrule formation in
716 bow shocks around eccentric planetary embryos. *Astrophys. J.* **752**, 27.

717 Nagahara H. (1981) Evidence for secondary origin of chondrules. *Nature* **292**, 135–136.

718 Nagahara H. and Ozawa K. (2012) The role of exchange reactions in oxygen isotope
719 fractionation during CAI and chondrule formation. *Meteorit. Planet. Sci.* **47**, 1209–1228.

720 Nagahara H., Kita N. T., Ozawa K. and Morishita Y. (2008) Condensation of major elements
721 during chondrule formation and its implication to the origin of chondrules. *Geochim.*
722 *Cosmochim. Acta* **72**, 1442–1465.

723 Nagashima K., Krot A. N. and Huss G. R. (2015) Oxygen-isotope compositions of chondrule
724 phenocrysts and matrix grains in Kakangari K-group chondrite. *Geochim. Cosmochim. Acta*
725 **151**, 49–67.

726 Nakashima D., Kimura M., Yamada K., Noguchi T., Ushikubo T. and Kita N. T. (2010) Study of
727 chondrules in CH chondrites - I: oxygen isotope ratios of chondrules. *Meteorit. Planet. Sci.*
728 *Suppl.* **45**, A148.

729 Nakashima D., Kita N. T., Ushikubo T., Noguchi T., Nakamura T. and Valley J. W. (2013)
730 Oxygen three-isotope ratios of silicate particles returned from asteroid Itokawa by the
731 Hayabusa spacecraft. *Earth Planet. Sc. Lett.* **379**, 127–136.

732 Rubin A. E. (2000) Petrologic, geochemical and experimental constraints on models of
733 chondrule formation. *Earth Sci. Rev.* **50**, 3–27.

734 Rudraswami N. G., Ushikubo T., Nakashima D. and Kita N. T. (2011) Oxygen isotope
735 systematics of chondrules in the Allende CV3 chondrite. *Geochim. Cosmochim. Acta* **75**,
736 7596–7611.

737 Schrader D. L., Connolly H. C., Jr., Lauretta D. S., Nagashima K., Huss G. R., Davidson J. and
738 Domanik K. J. (2013) The formation and alteration of the Renazzo-like carbonaceous
739 chondrites II. *Geochim. Cosmochim. Acta* **101**, 302–327.

740 Schrader D. L., Nagashima K., Krot A. N., Ogliore R. C. and Hellebrand E. (2014) Variations in
741 the O-isotope composition of gas during the formation of chondrules from the CR chondrites.
742 *Geochim. Cosmochim. Acta* **132**, 50–74.

743 Schrader D. L., Nagashima K., Krot A. N., Ogliore R. C., Yin Q.-Z., Amelin Y., Stirling C. H.
744 and Kaltenbach A. (2017) Distribution of ^{26}Al in the CR chondrite chondrule-forming region
745 of the protoplanetary disk. *Geochim. Cosmochim. Acta* **201**, 275–302.

746 Tenner T. J., Ushikubo T., Kurahashi E., Kita N. T. and Nagahara H. (2013) Oxygen isotope
747 systematics of chondrule phenocrysts from the CO3.0 chondrite Yamato 81020. *Geochim.*
748 *Cosmochim. Acta* **102**, 226–245.

749 Tenner T. J., Nakashima D., Ushikubo T., Kita N. T. and Weisberg M. K. (2015) Oxygen isotope
750 ratios of FeO-poor chondrules in CR3 chondrites. *Geochim. Cosmochim. Acta* **148**, 228–250.

751 Tenner T. J., Kimura M. and Kita N. T. (2017) Oxygen isotope characteristics of chondrules
752 from the Yamato-82094 ungrouped carbonaceous chondrite: Further evidence for common O-
753 isotope environments sampled among carbonaceous chondrites. *Meteorit. Planet. Sci.* **52**,
754 268–294.

755 Tissandier L., Libourel G. and Robert F. (2002) Gas-melt interactions and their bearing on
756 chondrule formation. *Meteorit. Planet. Sci.* **37**, 1377–1389.

757 Ushikubo T., Nakashima D., Kimura M., Tenner T. J. and Kita N. T. (2013) Contemporaneous
758 formation of chondrules in distinct oxygen isotope reservoirs. *Geochim. Cosmochim. Acta*
759 **109**, 280–295.

760 Wasson J. T. and Rubin A. E. (2003) Ubiquitous low-FeO relict grains in type II chondrules and
761 limited overgrowths on phenocrysts following the final melting event. *Geochim. Cosmochim.*
762 *Acta* **67**, 2239–2250.

763 Young E. D. and Russell S. S. (1998) Oxygen Reservoirs in the Early Solar Nebula Inferred from
764 an Allende CAI. *Science* **282**, 452–455.

765 Yurimoto H. and Wasson J. T. (2002) Extremely rapid cooling of a carbonaceous-chondrite
766 chondrule containing very ^{16}O -rich olivine and a ^{26}Mg -excess. *Geochim. Cosmochim. Acta*
767 **66**, 4355–4363.

768 Yurimoto H., Krot A. N., Choi B.-G., Aleon J., Kunihiro T. and Brearley A. J. (2008) Oxygen
769 Isotopes of Chondritic Components. *Rev. Mineral. Geochem.* **68**, 141–186.

770

TABLE 1

772 Table 1: Average mineral chemistry and host oxygen isotope ratios (‰, VSMOW) of individual chondrules in the
 773 polished thin section of Kaba CV3 (USNM 1052-1).

774

Chondrule	Type	Ol-r ^a	Ol-h ^a	Px ^a	Mg# ^b	Wo ^c	$\delta^{18}\text{O}^{\text{d}}$	$\delta^{17}\text{O}^{\text{d}}$	$\Delta^{17}\text{O}^{\text{d}}$
K1 (core)	IAB	-	12	9	99.0	1	-1.79 \pm 0.33	-5.15 \pm 0.24	-4.22 \pm 0.17
K1 (rim)	-	-	-	2	98.4	1	-1.79 \pm 1.36	-4.91 \pm 0.72	-3.98 \pm 0.29
K1 (all)	IAB	-	12	11	98.8	1	-1.79 \pm 0.34	-5.13 \pm 0.24	-4.20 \pm 0.17
K2	IA	2	6	2	99.2	2 (1-2)	-3.07 \pm 0.50	-6.05 \pm 0.32	-4.45 \pm 0.29
K3	IAB	-	4	4	99.3	1	-2.12 \pm 0.42	-5.00 \pm 0.24	-3.89 \pm 0.26
K4	IA	6	1	2	99.5	1	-6.91 \pm 0.49	-9.66 \pm 0.44	-6.07 \pm 0.28
K5	IAB	3	-	5	99.3	3 (1-5)	-4.46 \pm 0.47	-7.87 \pm 0.45	-5.56 \pm 0.28
K6	IA	-	6	4	99.3	3 (1-3)	-2.45 \pm 0.44	-5.66 \pm 0.37	-4.39 \pm 0.21
K7	IA	-	5	3	99.4	1	-5.45 \pm 0.40	-8.11 \pm 0.22	-5.28 \pm 0.16
K8	IAB	-	6	4	99.3	1	-5.75 \pm 0.40	-8.78 \pm 0.31	-5.79 \pm 0.19
K9	IAB	-	2	3	99.4	2 (1-5)	-5.34 \pm 0.86	-8.30 \pm 0.65	-5.53 \pm 0.27
K8+9 (rim)	-	-	-	4	99.1	4 (1-5)	-4.47 \pm 0.36	-7.61 \pm 0.30	-5.28 \pm 0.23
K8+9 (all)	IAB	-	8	11	99.3	2 (1-5)	-5.37 \pm 0.46	-8.41 \pm 0.36	-5.62 \pm 0.19
K10	IA	1	4	5	99.0	4 (4-5)	-2.67 \pm 0.37	-5.77 \pm 0.29	-4.38 \pm 0.19
K11	IB	-	3	4	99.2	1 (1-3)	-3.16 \pm 0.39	-6.33 \pm 0.26	-4.68 \pm 0.19
K12	IAB	1	3	5	99.1	1 (1-2)	-4.73 \pm 0.37	-7.85 \pm 0.26	-5.39 \pm 0.18
K13	IB	3	-	5	99.0	2 (1-4)	-3.08 \pm 0.49	-6.09 \pm 0.29	-4.48 \pm 0.23
K14	IAB	1	3	4	99.1	1	-4.31 \pm 0.39	-7.64 \pm 0.29	-5.40 \pm 0.24
K15	IB	-	4	4	99.4	1	-5.85 \pm 0.41	-8.87 \pm 0.25	-5.83 \pm 0.18
K16	IA	6	-	4	99.2	5	-4.62 \pm 0.42	-7.43 \pm 0.29	-5.03 \pm 0.27
K17	IAB	-	5	3	99.4	1	-4.90 \pm 0.36	-7.94 \pm 0.26	-5.40 \pm 0.21
K18	IA	3	3	1	99.6	1	-11.96 \pm 0.41	-14.48 \pm 0.28	-8.26 \pm 0.14
K19	IAB	-	5	2	99.3	1	-4.37 \pm 0.65	-7.56 \pm 0.42	-5.29 \pm 0.18
K20	IAB	2	3	2	99.2	1	-4.10 \pm 0.75	-7.41 \pm 0.61	-5.28 \pm 0.26
K21	IAB	-	5	3	99.2	1	-3.41 \pm 0.34	-6.97 \pm 0.30	-5.20 \pm 0.26
K22	IAB	-	4	4	98.8	1	-2.74 \pm 0.53	-5.79 \pm 0.38	-4.37 \pm 0.26
K23	IAB	-	4	-	99.5	-	-7.02 \pm 0.31	-11.44 \pm 0.40	-7.79 \pm 0.37
K24	IAB	1	3	4	99.4	1	-5.29 \pm 0.69	-8.48 \pm 0.63	-5.73 \pm 0.36
K25	IIB	-	-	3	85.7	1	3.82 \pm 0.35	2.04 \pm 0.30	0.06 \pm 0.24
K26	IIA	-	4	-	62.9°	-	2.74 \pm 0.34	-0.80 \pm 0.38	-2.22 \pm 0.28

775

776 ^aOl-r, Ol-h, and Px represent the number of SIMS analyses from relict olivine, host olivine, and low-Ca pyroxene,
 777 respectively. ^bMean Mg# (MgO/(MgO+FeO) mol%) of olivine and pyroxene excluding relict olivine. ^cMean Wo
 778 component of low-Ca pyroxenes in mol%; ranges shown in parenthesis, if significantly variable. ^dQuoted

779 uncertainties are at 95% confidence level. Analyses of relict olivine are not included in the mean values.^e Olivine
780 zoned in Mg# (core ~58, rim ~66).
781

782

783

FIGURE CAPTIONS

784 Figure 1: Representative BSE images of chondrules from the Kaba USNM 1052-1 thin section
785 showing SIMS pits for oxygen three-isotope analyses (except for K1). (a) compound chondrule
786 K8+9 (IAB) enclosed in igneous rim comprising pyroxene, olivine and opaque phases. (b) K1
787 (IAB) composed of coarse-grained olivine and pyroxene phenocrysts, as well as anorthite and
788 high-Ca pyroxene in mesostasis at the chondrule center; enclosed in relatively fine-grained and
789 opaque phases-rich rim. (c) K22 (IAB) contains coarse-grained olivine and low-Ca pyroxene.
790 Altered mesostasis comprises phyllosilicates and high-Ca pyroxenes, latter forming euhedral
791 overgrowths on low-Ca pyroxenes. (d) low-Ca pyroxene poikilically encloses olivine in K11
792 (IB). (e) K16 (IA) comprises small amount of mesostasis and intermediate pyroxene alongside
793 olivine. (f) FeO-rich low-Ca pyroxenes (En85) in K25 (IIB) possess overgrowth of FeO-rich
794 olivine (Fo83). Ol: olivine, Lpx: low-Ca pyroxene, HPx: high-Ca pyroxene, IntPx: intermediate
795 pyroxene, An: anorthite, Phy: phyllosilicates; scale in all images: 500 μ m.

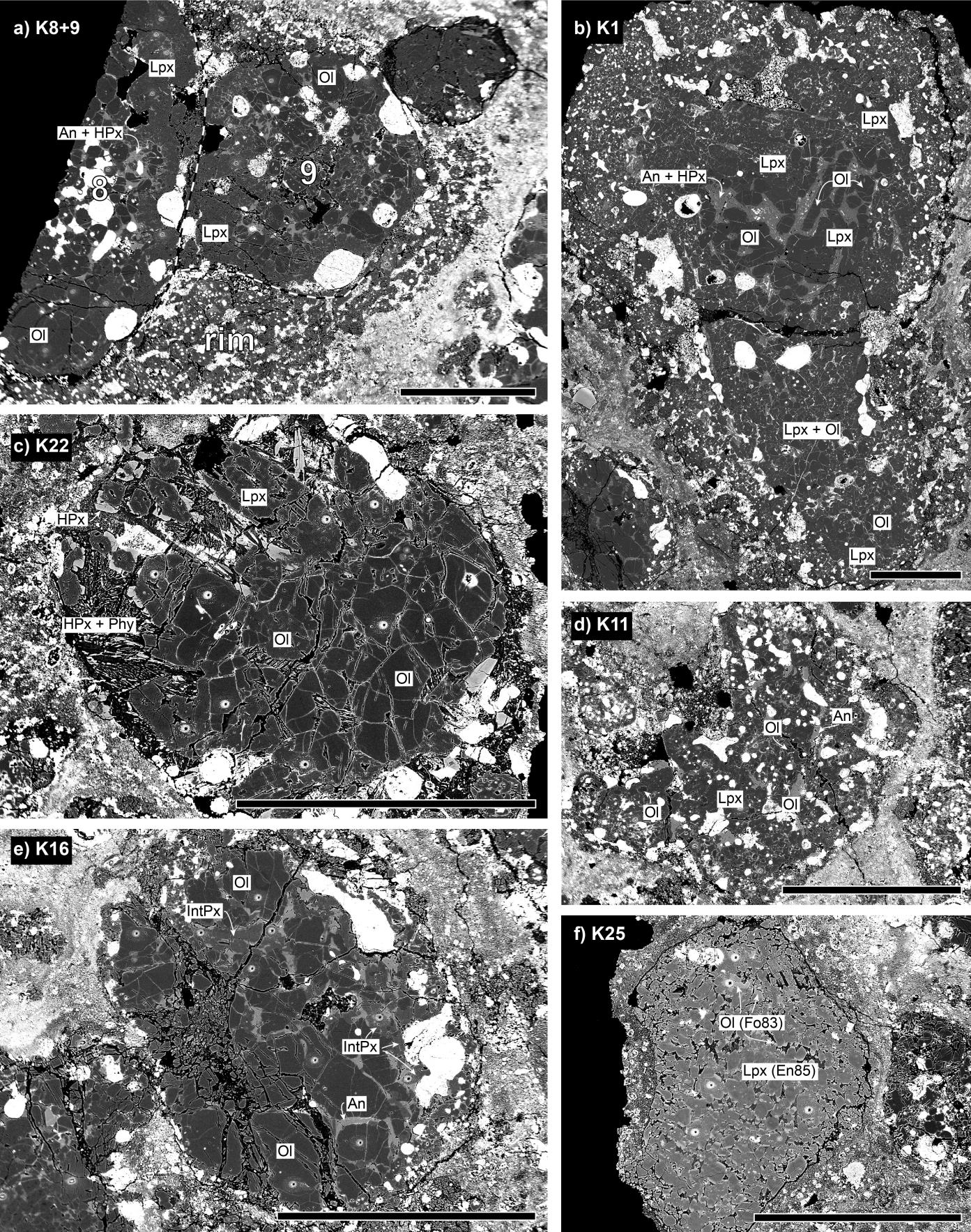
796 Figure 2: Oxygen three-isotope diagram showing olivine (n=124) and pyroxene (n=95) analyses
797 from chondrules in Kaba. Most analyses plot on the primitive chondrule mineral (PCM;
798 Ushikubo et al., 2012) line or in between the PCM and CCAM (Clayton et al., 1977) lines;
799 analyses of chondrule K25 plot above PCM and on terrestrial fractionation (TF) line. YR: Young
800 & Russel line (Young and Russell, 1998).

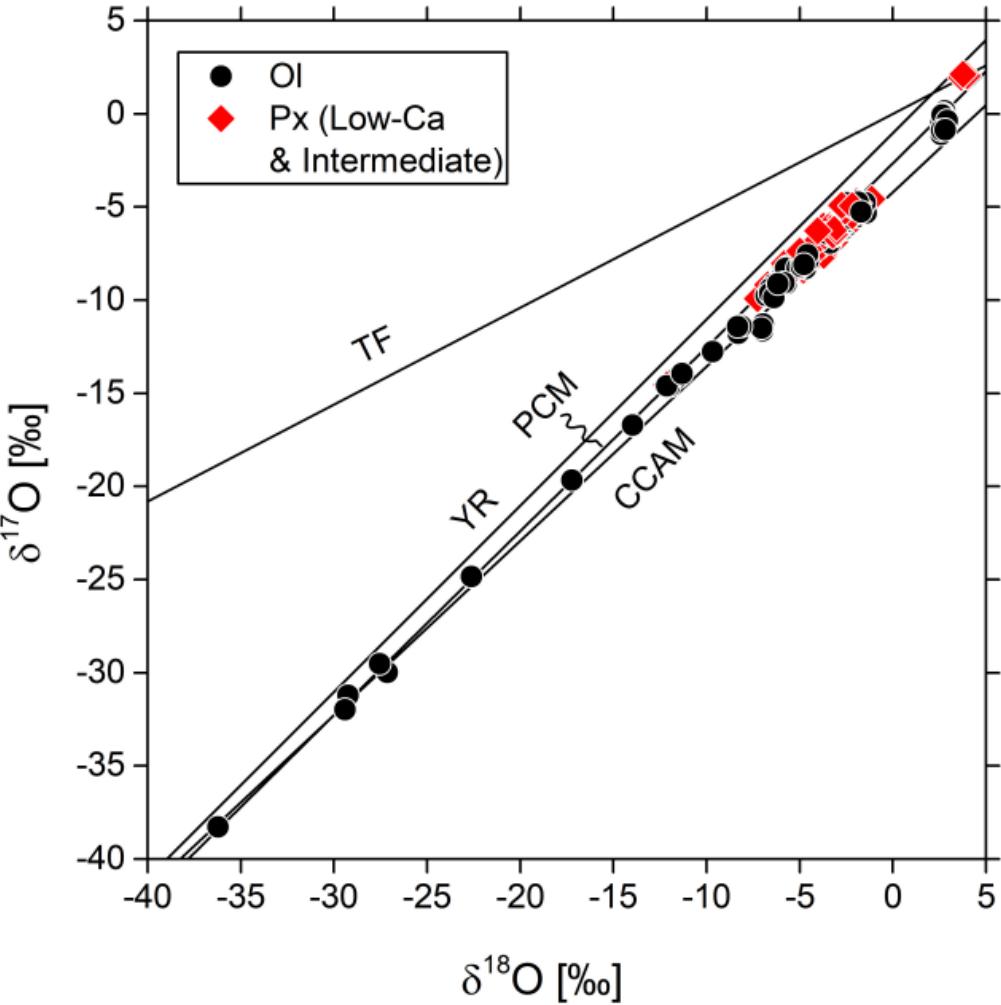
801 Figure 3: Oxygen three-isotope diagrams of individual olivine and pyroxene analyses of
802 representative chondrules in Kaba. Error bars show external reproducibility (2SD) obtained by
803 analyses of the bracketing olivine standard. (a-g) Individual analyses are indistinguishable in

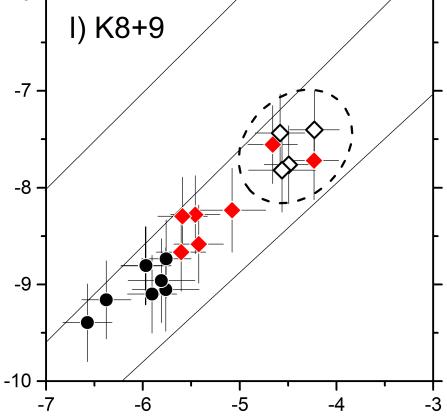
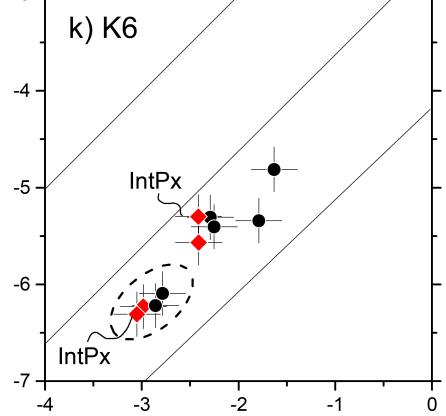
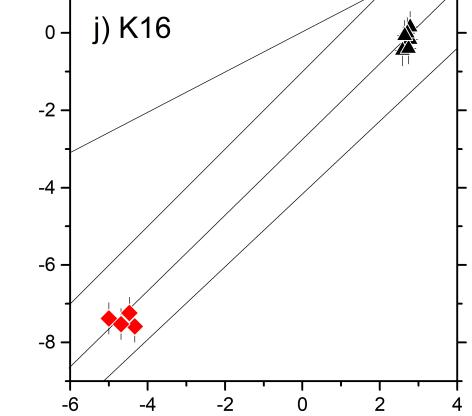
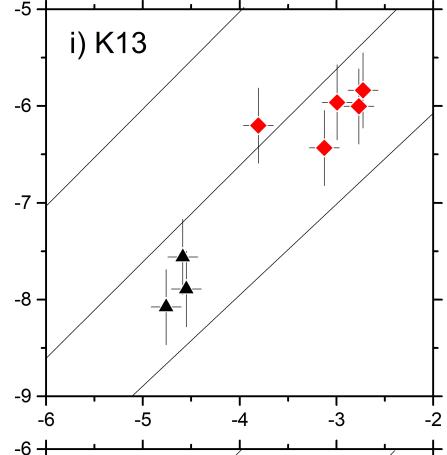
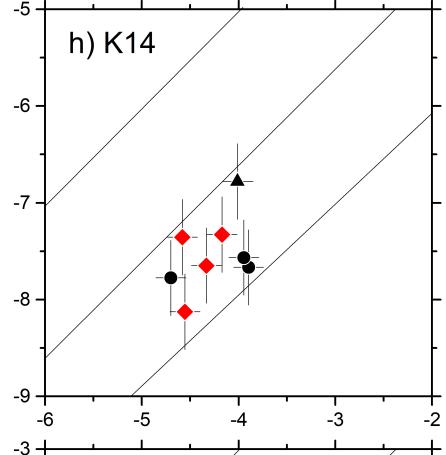
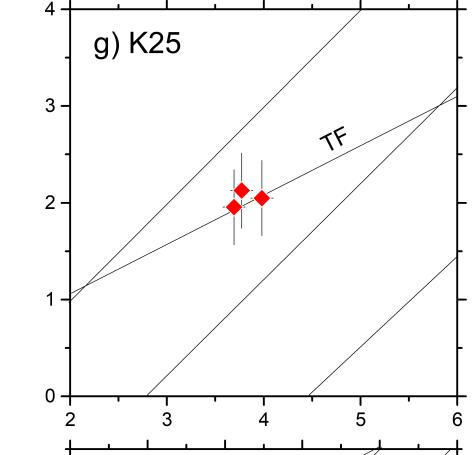
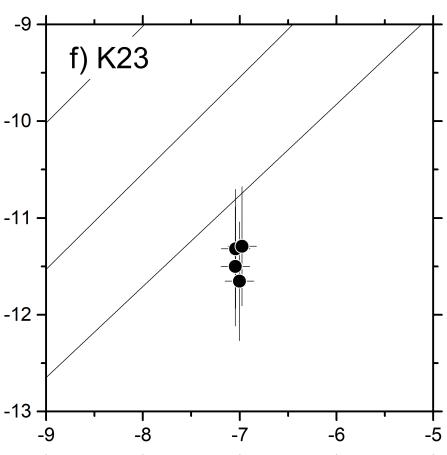
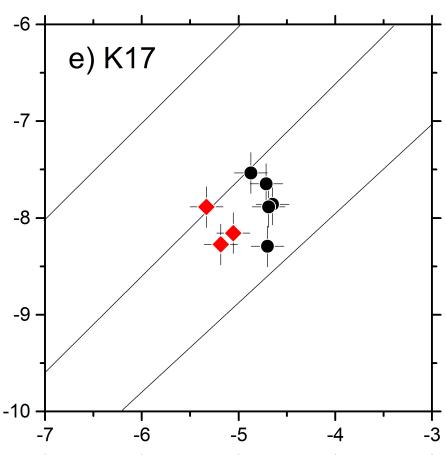
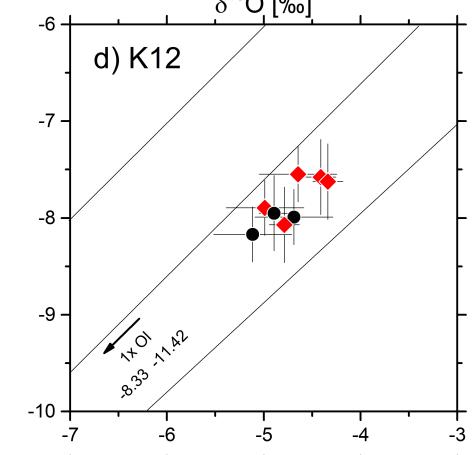
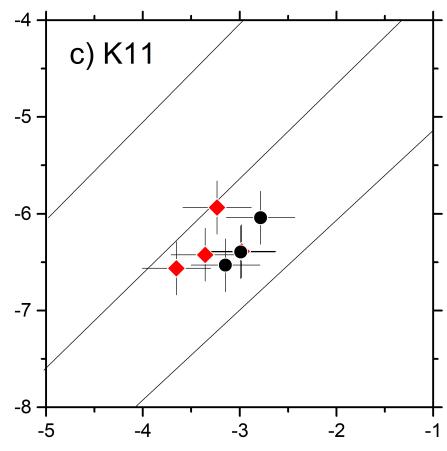
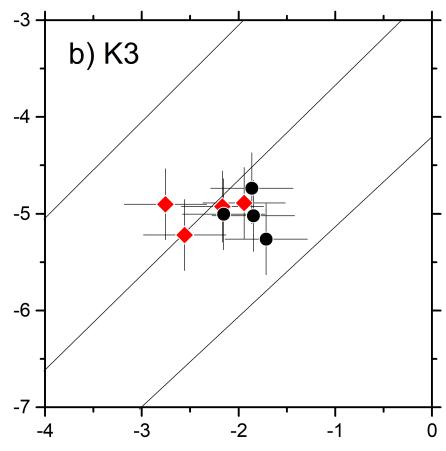
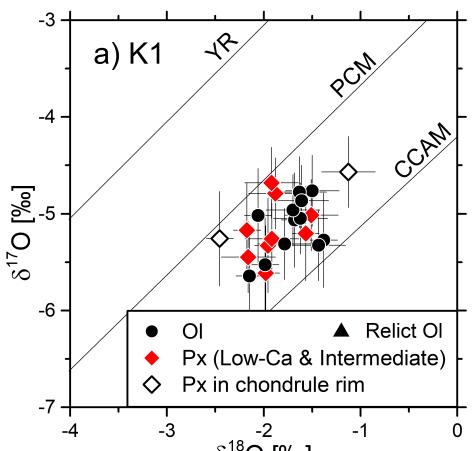
804 terms of their $\Delta^{17}\text{O}$ values within the variability threshold of $\pm 0.6\text{\textperthousand}$. (h) One olivine analysis in
805 chondrule K14 slightly exceeds variability threshold. (i-j) Olivine and pyroxene analyses form
806 distinct clusters, while (relict) olivine are either ^{16}O -rich (K13) or ^{16}O -poor (K16) relative to
807 pyroxene. (k-l) analyses of K6 and K8+9 show clearly resolvable variability in $\delta^{18}\text{O}$ and $\delta^{17}\text{O}$
808 values (2SD: $1.0\text{\textperthousand} - 1.4\text{\textperthousand}$) but $\Delta^{17}\text{O}$ values are within variability threshold ($\pm 0.6\text{\textperthousand}$). Both
809 chondrules are marginally heterogeneous. In K6 (k), analyses located in right hand part of
810 chondrule are relatively more ^{16}O -rich (circled data points). In K8+9 (l) pyroxene analyses in the
811 rim and a few locations of the chondrule interior (circled data points) are ^{16}O -poor relative to the
812 rest of the analyses.

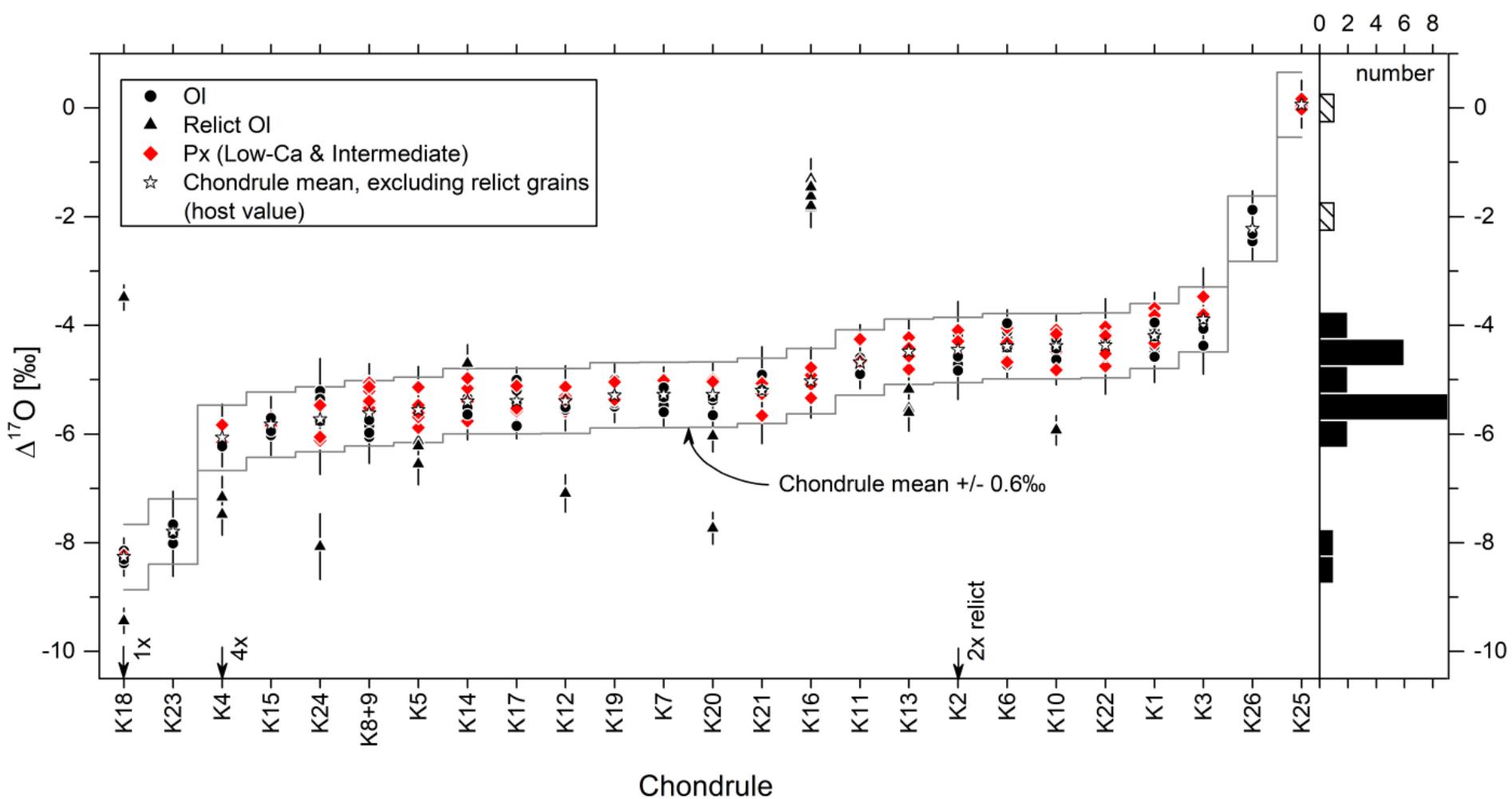
813 Figure 4: $\Delta^{17}\text{O}$ values of olivine and pyroxene analyses per individual chondrule. Error bars
814 show external reproducibility (2SD) obtained by analyses of the bracketing standard. Chondrules
815 sorted according to increasing host chondrule $\Delta^{17}\text{O}$ values (stars) which are obtained by
816 averaging $\Delta^{17}\text{O}$ values of isotopically homogeneous olivine and/or pyroxene analyses after
817 excluding isotopic relicts (triangles). $\Delta^{17}\text{O}$ values of relict olivine exceed the variability threshold
818 (grey line; $\pm 0.6\text{\textperthousand}$, mean external precision on bracketing standard, 3SD). Most type I chondrules
819 show host chondrule $\Delta^{17}\text{O}$ values in between $-6\text{\textperthousand}$ and $-4\text{\textperthousand}$ as illustrated by the histogram on
820 the right-hand side of the graph.

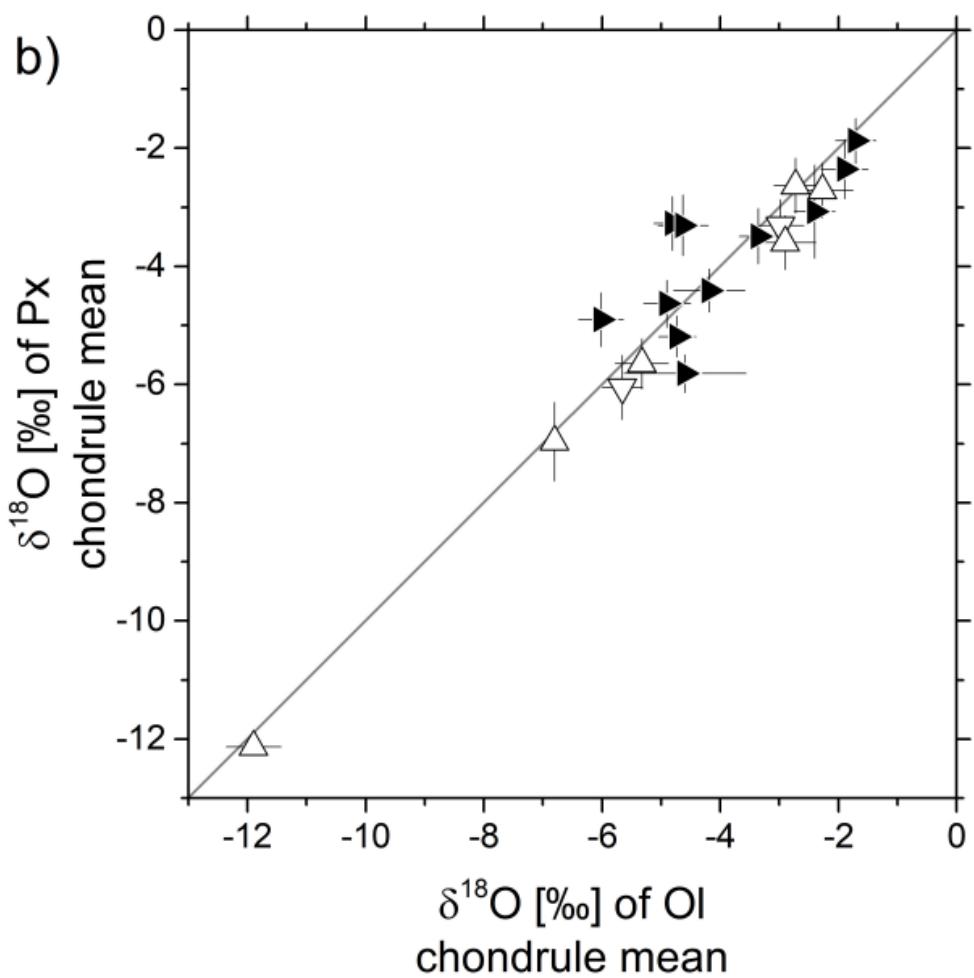
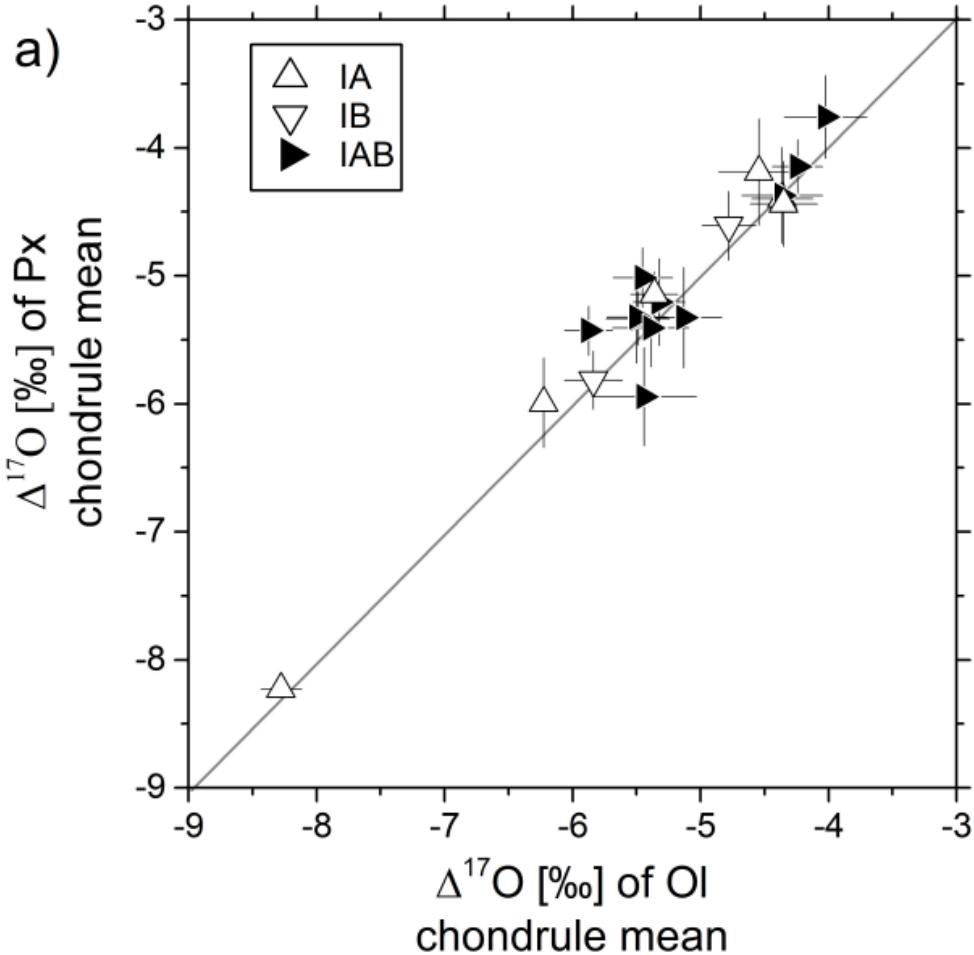
821 Figure 5: Mean olivine and pyroxene (a) $\Delta^{17}\text{O}$ and (b) $\delta^{18}\text{O}$ values of individual chondrules. (a)
822 Chondrule means ($\Delta^{17}\text{O}$) of olivine and pyroxene (excluding relict olivine) are shown for
823 chondrules that have indistinguishable olivine and pyroxene analyses. Error bars show the
824 propagated uncertainties of the mean values (see Section 2.4. and Tab. 1). (b) Mean olivine $\delta^{18}\text{O}$
825 values are slightly higher than those of pyroxene but variations are within propagated
826 uncertainties.


827 Figure 6: Host chondrule isotope ratios ($\delta^{18}\text{O}$, $\delta^{17}\text{O}$, and $\Delta^{17}\text{O}$) and textures of chondrules. Error
828 bars represent propagated uncertainty of the mean values. (a) Oxygen 3-isotope diagram showing
829 chondrule means. Reference lines are the same as those in Fig. 2. Host values of chondrules plot
830 on the PCM line or slightly below. Exceptions are chondrules K23 (IAB) and K25 (IIB). (b) Host
831 $\Delta^{17}\text{O}$ values are independent of chondrule texture among type I chondrules. Type II chondrules
832 are ^{16}O -poor compared to type I chondrules.


833 Figure 7: Plot showing host $\Delta^{17}\text{O}$ values and Mg#’s of chondrules superimposed by oxygen
834 isotope mixing curves of constant dust enrichment and ice enhancement from the model of
835 Tenner et al. (2015). The model adopts the following $\Delta^{17}\text{O}$ values for the various oxygen
836 reservoirs: anhydrous silicate dust, $-8.0\text{\textperthousand}$; Solar gas, $-28.4\text{\textperthousand}$; water ice, $+2.0\text{\textperthousand}$; organics in the
837 dust, $+11.3\text{\textperthousand}$. Inferred anhydrous dust enrichment and ice enhancement factors for type I
838 chondrules are $50\text{-}100\times$ relative to Solar abundance and from anhydrous to $\sim 0.6\times$ the water ice
839 content of dust of CI composition, respectively. Mg#’s and $\Delta^{17}\text{O}$ values of the type II chondrules
840 suggest higher : (IIB: $\sim 300\times$, IIA: $\sim 2000\times$) dust enrichment factors and water ice contents ($1\text{-}4\times$
841 the amount of water ice of dust of CI composition). The error bars for Mg#’s represent the range
842 (min-max); for host (mean) $\Delta^{17}\text{O}$ values, error bars are propagated uncertainties (see Tab. 1).













843 Figure 8: Histograms of host $\Delta^{17}\text{O}$ values from chondrules in Kaba and further carbonaceous
844 chondrites. Like Kaba, all listed carbonaceous chondrites contain abundant type I chondrules
845 with $\Delta^{17}\text{O}$ values in the range of $\sim -6\text{\textperthousand}$ and $-4\text{\textperthousand}$, though no type I chondrules in Kaba show
846 $\Delta^{17}\text{O}$ values $> -3\text{\textperthousand}$ that are common in the other carbonaceous chondrites except Yamato
847 82094. Because Allende experienced significant thermal metamorphism, Mg#’s of chondrules
848 are disturbed and no distinction is being made between type I chondrules with Mg# <98 or >98 .


849 Literature data are from [1] Rudraswami et al. (2011), [2] Tenner et al. (2013), [3] Tenner et al.
850 (2015), [4] Tenner et al. (2017), [5] Ushikubo et al. (2012).



851

