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Abstract 26 
Oxygen isotope ratios and corresponding 26Al-26Mg isotope systematics of 27 

refractory inclusions from the least metamorphosed  carbonaceous chondrites, Acfer 094 28 
(C-ungrouped 3.00) and Yamato 81020 (CO3.05), were measured  with an ion microprobe. 29 
Most of the samples are fine -grained refractory inclusions which are considered as 30 
condensates from high temperature Solar Nebular gas. The refractory inclusions 31 
consistently exhibit 16O-enriched signatures among their  interior phases (spinel, melilite, 32 
and high -Ca pyroxene) , as well as  phases within their  rim stru ctures (spinel, high- Ca 33 
pyroxene, and adjacent anorthite) . This observation indicates that aggregated refractory 34 
condensates and the  formation of rim structure s occurred in the same  16O-rich 35 
environment. Evidence for mass-dependent isotopic fractionation in oxygen and 36 
magnesium, which would indicate  a later flash heating process, was not observed in rim s. 37 
All oxygen isotope data from fine-grained CAIs are distributed between the 38 
Carbonaceous Chondrite Anhydrous Minera l (CCAM) line and the Primitive Chondrule 39 
Mineral (PCM) regression line based on  oxygen isotope data from Acfer 094  chondrules. 40 
The inferred initial 26Al/27Al ratios, ( 26Al/27Al)0, of spinel -melilite-rich CAIs are 41 
(4.08±0.75)×10−5 to (5.05±0.18)×10−5 (errors are 2 σ), which are slightly lower than the 42 
canonical value of 5.25× 10−5. As there is no petrologic evidence for re- melting after 43 
condensation, t he lower ( 26Al/27Al)0 values of these CAIs indicate either they formed up 44 
to ~0.3  Ma after canonical  CAIs or they formed before 26Al was homogeneously 45 
distributed in the Solar nebula . A pyroxene-anorthite-rich CAI, G92, has an 16O-rich 46 
signature like other CAIs but also has an order -of-magnitude less 26Mg-excess in 47 
anorthite, corresponding to a ( 26Al/27Al)0 of (5.21±0.54)×10−6. As there is no evidence for 48 
a later Mg isotopic disturbance, G92 anorthite is interpreted to have  formed by 49 
interaction with 16O-rich nebular gas at 2 to 3 Ma after CAI formation.  With the 50 
observation that 16O-rich refractory inclusio ns, relatively 16O-poor chondrules, and 51 
extremely 16O-poor cosmic symplectites within Acfer 094 all plot on the PCM line, it 52 
suggests that 16O-rich nebular gas and extremely 16O-poor primordial volatiles represent 53 
mass-independent fractionated endmembers in the early Solar system and that the PCM 54 
line represents  a mixing line  of these two endmembers .  55 



1. Introduction  56 
 In the early Solar System, evidence for a n 16O-rich isotopic signature  that 57 
fractionated independent of mass  ( ∆17O ≡ δ17O − 0.52 × δ18O ~ −24‰) has been found in 58 
Ca-, Al -rich inclusions (CAIs) and amoeboid olivine aggregates (AOAs) (Clayton et al., 59 
1977; Hiyagon and Hashimoto, 1999; Krot et al., 2002; 2010 a). As refractory inclusions 60 
(CAIs and AOAs)  are commonly interpreted to be the fir st solar system condensates 61 
(Grossman, 1972; G rossman et al., 2008) , their oxygen isotope ratios  are inferred to 62 
reflect the primordial  characteristics of the earliest refractory dust forming environment 63 
in the solar nebula . In contrast, oxygen isotope ratios of chondrules that formed ~2 64 
million years (Ma) after CAIs (Kita and Ushikubo, 2012; Kita et al., 2013 ; Ushikubo et 65 
al., 2013) have a  smaller mass-independent oxygen isotopic anomaly relative to CAIs , 66 
indicating a later oxygen isotope  environment that was relatively 16O-poor ( e.g., Clayton 67 
et al., 1983; Clayton 2003; Connolly and Huss, 2010; Kita et al., 2010; Krot et al., 2010b; 68 
Rudraswami et al., 2011; Weisberg et al., 2011; Nakashima et al., 2012; Ushikubo et al., 69 
2012; Sch rader et al., 2013, 2014; Tenner et al., 2013, 2015). 70 

Since some CAIs exhibit  evidence for later re -heating processes after their 71 
initial formation, including  significant difference s in ∆17O values between primary 72 
phases and secondary phases (Yurimoto et al., 1998; Hsu et al., 2000; Fagan et al., 2007; 73 
Ushikubo et al., 2007; Krot et al., 2008; MacPherson et al., 2012; Kawasaki et al., 2015), 74 
they are expected to record temporal change s of oxygen isotope environments within the 75 
solar nebula.  I n addition, detailed petrologic and isotopic studies o f fine-textured Wark-76 
Lovering rims surrounding  coarse-grained CAIs , which consists of (1) a  spinel layer with 77 
minor perovskite and hibonite (inner part) ; (2) a  melilite/anorthite/secondary altered 78 
phase layer (middle part);  and (3) a  Ti-Al-bearing diopside layer (outer part)  (Wark and 79 
Lovering, 1977) , suggest that variability in oxygen isotope ratios existed when the W ark 80 
and Lovering rims formed (e.g., Yoshitake et al., 2005; Simon et al., 2011 , 2016) . 81 
Impartantly, however, Bodénan et al.  ( 2014) observed that such an oxygen isotopic 82 
variability is not recognized among Wark -Lovering rims from pristine carbonaceous 83 
chondrite CAIs. This suggests that the oxygen isotopic variability found in the 84 
aforementioned studies, from which refractory inclusions from higher petrologic type 85 
chondrites were investigated, could be due to  later isotopic disturbance s in chondritic 86 
parent bodies.  If oxygen isotopic variability ( 16O-rich and 16O-poor environments) existed 87 
in the early solar system when coarse -grained CAIs and Wark-Lovering rim formed, it is 88 
expected that evidence for oxygen isotopic variability would also be recorded within fine-89 
grained CAIs and AOAs  ( Grossman and Ganapathy, 1976; Grossman and Steele, 1976). 90 
 Although c oarse-grained CAIs are advantageous for in-situ high-precision 91 



isotope analyses, they experienced re -melting after aggregation of precursor dust 92 
condensates and they com monly have positively fractionated Mg and Si isotope ratios. 93 
As positive isotopic fractionation in Mg and Si provides evidence for significant 94 
evaporative loss by re -melting, primary oxygen isotope ratios of such coarse -grained 95 
CAIs are probably modified ( e.g., Wang et al., 2001; Alexander, 2004). In contrast, the 96 
texture of fine -grained CAIs and AOAs (e.g., small grain sizes of major phases and 97 
complex nodules) indicates that they formed by aggregation of primary condensates from 98 
early solar nebular gas. As such, fine -grained CAIs and AOAs are perhaps the best 99 
candidates for recording pristine oxygen isotope ratios of early solar system condensates.  100 
However, the petrology and isotopic compositions of such fine-scale materials are 101 
particularly susceptible t o metamorphism while on  chondritic parent bodies. Thus, in 102 
order to establish that  isotope signatures of fine -grained refractory inclusions are indeed 103 
primordial nebular signatures, selection of pristine CAIs and AOAs that properly rul e 104 
out evidence for parent body  metamorphism is critically important . 105 

In this study, we measured oxygen isotope ratios and 26Al-26Mg systematics of 106 
fine-grained CAIs and AOAs from Acfer 094 (C- ungrouped 3.00) and Yamato -81020 ( Y-107 
81020, CO3.05) . These refractory inclusions shoul d record pristine isotope 108 
characteristics because Acfer 094 and Y -81020 are two of the least metamorphosed 109 
carbonaceous chondrites (Grossman and Brearley, 2005; Kimura et al., 2008). For 110 
example, Acfer 094 chondrules preserve intrinsic oxygen isotope ratio s without any 111 
indication of  a later oxygen isotopic disturbance , even in mesostasis glass that is highly 112 
sensitive to fluid assisted parent body metamorphism  (Ushikubo et al., 2012) . In addition, 113 
chondrules from both Acfer 094 and Y -81020 have 26Al-26Mg isotope systematics that  are 114 
primary, with no  sign of a later disturbance  ( Kunihiro et al., 2004; Kurahashi et al., 2008 ; 115 
Hutcheon et al., 2009; Ushikubo et al., 2013). Thus,  oxygen isotope ratios and 26Al-26Mg 116 
isotope systematics of fin e-grained refractory inclusions from the same meteorites should 117 
dependably elucidate the evolution of oxygen isotope ratios in the solar nebula , recording 118 
their formation and interaction with ambient  gas before accreti ng to the chondritic 119 
parent body. 120 
 121 
2. Samples  122 

Ten refractory inclusions, including five  spinel-melilite-rich CAIs (G5, G16, G49, 123 
G104, and Y81020-E-8) , one pyroxene-anorthite-rich CAI  ( G92), and four  AOAs (G17, 124 
G28, G44, and G58)  were selected for investigation by secondary ion mass spectrometry 125 
(SIMS) (Figs.1-3). Y81020-E-8 is from Y -81020 (CO3.05) and the others are from Acfer 126 
094 (C -ungrouped 3.00) . The classification of Acfer 094 refractory inclusions by Krot et 127 



al. (2004a) is appli ed in this study.  128 
Three of the five spinel -melilite-rich CAIs (G5, G16, and G49) have a fine-129 

grained, complex nodular texture. CAI G5 is an irregular -shaped aggregate of multiple 130 
nodules (Fig.1a). It consists of gehlenitic melilite ( Åk6) and spinel, along with anorthite 131 
and diopside rim s. Some nodules do not contain melilite.  CAI G16 is a large CAI (ca. 132 
300µm×500µm in size , Fig .1b) consisting of multiple nodules. The l arger nodules consist 133 
of melilite  ( Åk8-10) and sub-micron spinel grains  surrounded by  a diopside rim (Fig. 1f). 134 
Regarding the smaller nodules, spinel is rare, a thin  anorthite layer commonly occurs 135 
between the interior melilite and the diopside rim , and olivine grains are found in the 136 
accretionary rim  (Fig.1g). CAI G49 is a n irregular-shaped aggregate of small nodules , 137 
consisting of melilite ( Åk20), tiny s pinel and Al- Ti-rich diopside grains, and a diopside 138 
rim (Fig. 1c). A t hin anorthite layer between the interior melilite and the diopside rim is 139 
also present in nodules near the edge of th is CAI.  140 

The remaining t wo spinel -melilite-rich CAIs have relatively simple  textures and 141 
larger grain size s. CAI G104 is a fragment of an irregular-shaped spinel -melilite-rich 142 
CAI (Fig.1d). It consists of melilite ( Åk8), spinel, Al -Ti-rich diopside, and perovskite. Thin 143 
spinel (discontinuous and <2 µm) and diopside  (<5µm) layers are observed along the rim. 144 
There are several voids  in melilite and interstitial space of spinel grains. Al-Ti-rich 145 
diopside and perovskite commonly occur around these voids (Fig.1 h). 146 

CAI Y81020-E-8 is round and ~500µm in diameter ( Fig.1e). It consists mostly of 147 
melilite ( Åk14-21), spinel, and perovskite. The c entral portion of this CAI has likely been 148 
lost during sample preparation. Y81020-E-8 is surrounded a double -layered rim of spinel 149 
(10 to 30 µ m in width) and melilite (~5 µ m in width); a diopside rim appears to be absent  150 
(Fig.1i). 151 

CAI G92 is an irregular-shaped pyroxene-anorthite-rich CAI that is 300 µm × 152 
150 µm in size . It consists of anorthite and Al -Ti-rich diopside , with small amounts of 153 
melilite ( Åk19-25) and spinel  (Fig.2a). Al-Ti-rich diopside  is often associated with voids  154 
(Fig.2b). A thin diopside rim (~3 µm) is also observed. Anhedral melilite and Al- Ti-rich 155 
diopside (typically <10 µ m in size) are enclosed by anorthite. Spinel (typically <3 µm in 156 
size) occurs either in melilite or near the diopside rim. No ferromagnesian phase s, such 157 
as olivine or low -Ca pyroxene , are observed outside of the diopside rim.  158 

All AOAs studied consist of multiple Ca -, Al -rich domains enclosed by olivine. 159 
Among them, Ca-, Al -rich domains of G17 ( ~200 µm × 100 µm in size, Fig.3a ) and G28 160 
(~400 µm × 300 µm in size, Fig. 3b) consist of spinel and Al- Ti-rich diopside but almost 161 
no anorthite  (Fig.3e). In contrast, Ca -, Al -rich domains of fragment G44 ( ~200 µm × 150 162 
µm in size, Fig. 3c) and G58 ( ~400 µm ×  300 µm in size, Fig. 3d) consist of spinel, anorthite, 163 
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± 0. 6 1 ‰, a n d ± 0. 5 9 ‰ , r es p e cti v el y, wi t h t h e l a r g e b e a m a n al yti c al s etti n g.  2 2 7  

 2 2 8  

3. 2. 2 3. 2. 2 2 62 6 AlAl --2 62 6 M g i s ot o p e s y s t e m ati c sM g i s ot o p e s y s t e m ati c s   2 2 9  

 F o r a n al y s is of Al  a n d M g i s ot o p e s , a n 1 6 O −  p ri m a r y b e a m wi t h a 2 3 k V t ot al 2 3 0  

a c c el e r ati n g v ol t a g e w a s u s e d. A ~ 2 5 n m t hi c k  c a r b o n c o at  w a s a p pli e d o n t h e s a m pl e 2 3 1  

s u rf a c e. T h e a c c el e r ati n g v ol t a g e of s e c o n d a r y i o n s w a s 1 0 k V.  2 3 2  

A s m all 1 6 O −  p ri m a r y b e a m ( 5 t o 7 µ m, 4 0 t o 1 5 0 p A) w a s u s e d f o r a n al y s e s of 2 3 3  

a n o rt hi t e a n d m elili t e. S e c o n d a r y i o n s  of 2 4 M g + , 2 5 M g + , a n d 2 6 M g +  w e r e d et e ct e d b y a n 2 3 4  

a xi al E M d et e ct o r t h at o p e r at e d b y m a g n eti c p e a k s wi t c hi n g. S e c o n d a r y 2 7 Al +  i o ns w e r e  2 3 5  



d et e ct e d b y a F a r a d a y c u p  l o c at e d at t h e hi g h m a s s si d e of t h e a xi al E M d et e ct o r d u ri n g 2 3 6  

t h e  m e a s u r e m e n t  of  2 5 M g + . T h e  m a s s  r e s ol vi n g  p o w e r  w a s  s et  at  ~ 4 0 0 0,  w hi c h  i s  2 3 7  

s uffi ci e n t  f o r  t h e  s e p a r atin g  4 8 C a 2 +  a n d 2 4 M g H +  i n t e rf e r e n c e s. D e a d  ti m e  of  t h e  E M  2 3 8  

d et e ct o r w a s 2 4. 9 n s, a s d et e r mi n e d b y M g i s ot o p e a n al y s e s of m elili t e a n d a n o rt hit e 2 3 9  

s t a n d a r d s. T hi s  a n al yti c al p r ot o c ol i s si mil a r t o t hat  d e s c ri b e d i n U s hi k u b o et al. ( 2 0 1 3).  2 4 0  

F o r s m all b e a m a n al y s e s, s y n t h eti c gl a s s s t a n d a r d s ( Å k 1 5 a n d a n o rt hi ti c gl a s s 2 4 1  

wi t h  1 wt %  M g O)  w e r e  u s e d  t o  d et e r mi n e  r e s p e cti v e  i n s t r u m e n t al  m a s s  bi a s e s  ( T a bl e 2 4 2  

E A 4 ). T h e p r o c e d u r e s t o c al c ul at e t h e m a s s-d e p e n d e n t f r a cti o n ati o n ( δ 2 5 M g D S M 3 ) a n d t h e 2 4 3  

2 6 M g -e x c e s s ( δ 2 6 M g * ) a r e  p r o vi d e d i n El e ct r o ni c A n n e x ( E A -1) . T h e δ 2 5 M g D S M 3  u n c e rt ai n t y 2 4 4  

of m elili t e u n k n o w n s i s a s si g n e d a s {( 2 S E i nt e r n al)2 +( 2 S E st d )2 }1/ 2 . T h e u n c e rt ai n ti e s of t h e 2 4 5  

δ 2 5 M g D S M 3  v al u e of a n o rt hi t e  a n d t h e δ 2 6 M g *  v al u e s of m elili t e a n d a n o rt hi t e a r e a s si g n e d 2 4 6  

a s t h e i n t e r n al 2 S E ( 2 S E i nt e r n al) of e a c h a n al y si s b e c a u s e s t ati s ti c al u n c e rt ai n ti e s b a s e d 2 4 7  

o n t ot al c o u n t s of si g n al s a r e si g nifi c a n tl y l a r g e r t h a n r e p r o d u ci bili ti e s of s p ot -t o-s p ot 2 4 8  

a n al y s e s  ( T a bl e 2 a n d T a bl e E A 4 f o r δ 2 6 M g *  v al u e s of m elili t e , T a bl e 2, a n d T a bl e S 2 i n 2 4 9  

U s hi k u b o et al., 2 0 1 3 f o r δ 2 5 M g D S M 3  a n d  δ 2 6 M g *  v al u e s  of a n o rt hi t e, r e s p e cti v el y) . 2 5 0  

F o r l a r g e r p h e n o c r y s t s c o n si s ti n g of f o r s t e ri t e, s pi n el, a n d Al -Ti -ri c h di o p si d e, a 2 5 1  

hi g h e r -i n t e n si t y 1 6 O −  p ri m a r y b e a m ( ~ 1 0 µ m, 2. 2 n A) w a s e m pl o y e d . S e c o n d a r y i o n s of 2 5 2  

2 4 M g + , 2 5 M g + , 2 6 M g + , a n d 2 7 Al +  w e r e si m ul t a n e o u sl y d et e ct e d b y f o u r F a r a d a y c u p s . T h e 2 5 3  

m a s s  r e s ol vi n g  p o w e r  w a s  s et  at  ~ 2 2 0 0  a n d  t h e  t aili n g  of  i n t e rf e r e n c e  p e a k s  w a s  2 5 4  

n e gli gi bl y s m all.  O v e r all, t hi s  c o n di ti o n i s si mil a r t o t h at  d e s c ri b e d i n Ki t a et al. ( 2 0 1 2) 2 5 5  

a n d U s hi k u b o et al. ( 2 0 1 3).  2 5 6  

F o r  l a r g e  b e a m  a n al y s e s,  a S a n  C a rl o s  oli vi n e  s t a n d a r d  ( δ 2 5 M g D S M 3 = − 0. 0 2 ‰ ) 2 5 7  

w a s u s e d a s t h e r u n ni n g s t a n d a r d . T h e δ 2 5 M g D S M 3  m a t ri x eff e ct  w a s c ali b r at e d  b a s e d o n 2 5 8  

a n al y s e s of m ul ti pl e s t a n d a r d s ( F o 1 0 0  a n d  S a n C a rl o s oli vi n e ( F o 8 9 ) f o r oli vi n e, di o p si d e 2 5 9  

a n d  s y n t h eti c Al -Ti -ri c h  di o p si di c gl a s s  f o r  p y r o x e n e,  a n d  s pi n el,  T a bl e  E A 4 ). T h e 2 6 0  

p r o c e d u r e  t o  c al c ul at e  t h e  m a s s -d e p e n d e n t  f r a cti o n ati o n  ( δ 2 5 M g D S M 3 )  a n d  2 6 M g -e x c e s s 2 6 1  

(δ 2 6 M g * )  i s  p r o vi d e d  i n  El e ct r o ni c  A n n e x  ( E A -1) . T h e  e xt e r n al  r e p r o d u ci bili t y  of  2 6 2  

b r a c k eti n g s t a n d a r d a n al y s e s  ( 2 S D) i s a s si g n e d a s t h e u n c e rt ai n t y of u n k n o w n s a m pl e s. 2 6 3  

T y pi c al u n c e rt ai n ti e s of δ 2 5 M g D S M 3  a n d δ 2 6 M g *  w e r e ± 0. 1 9 ‰  a n d ± 0. 1 1 ‰, r es p e cti v el y.  2 6 4  

T h e r el ati v e s e n si ti vi t y f a ct o r s ( R S F, ( 2 7 Al/ 2 4 M g)/( 2 7 Al + /2 4 M g + )) of s pi n el, Al-Ti -2 6 5  

ri c h di o p si d e, m elili t e, a n d a n o rt hi t e w e r e d et e r mi n e d b a s e d o n E P M A d at a a n d r e s ult s 2 6 6  

of s t a n d a r d a n al y s e s b y S I M S ( T a bl e E A 4).  2 6 7  

 2 6 8  

44 . R e s ul t s. R e s ul t s  2 6 9  

  Re p r e s e n t ati v e m aj o r el e m e n t c o m p o si ti o n s of i n di vi d u al p h a s e s a n d a n al y si s 2 7 0  

p o si ti o n s f r o m s a m pl e s b y E P M A a r e s u m m a ri z e d i n T a bl e E A 2 a n d Fi g u r e E A 1 . O x y g e n 2 7 1  



t h r e e -i s ot o p e  d at a  a n d  M g  i s ot o p e  d at a  a r e  s u m m a ri z e d  i n  T a bl e  1 a n d  T a bl e  2 , 2 7 2  

r e s p e cti v el y. L o c ati o n s of i n di vi d u al a n al y s e s wi t hi n  r ef r a ct o r y i n cl u si o n s a r e s h o w n i n 2 7 3  

Fi g u r e E A 2. All i n di vi d u al  d at a , i n cl u di n g a n al y s e s of r u n ni n g s t a n d a r d s, a r e s h o w n i n 2 7 4  

T a bl e E A 5- 8 .  2 7 5  

 2 7 6  

4. 1. 4. 1. O x y g e n i s ot o p e O x y g e n i s ot o p e r ati o sr ati o s   2 7 7  

O x y g e n  i s ot o p e  r ati o s  of  all  m e a s u r e d  s a m pl e s  a r e  si g nifi c a n tl y  1 6 O- ri c h  2 7 8  

(∆ 1 7 O < − 2 0 ‰ )  a n d  a r e  di s t ri b u t ed  n e a r  t h e  C C A M  li n e  (T a bl e 1 ,  Fi g.  4). F o r  a  gi v e n  2 7 9  

r ef r a ct o r y  i n cl u si o n,  t h e ∆ 1 7 O  v al u e s  of  all  m e a s u r e d  p h a s e s  a r e  c o n si s t e n t  wi t hi n  2 8 0  

a n al yti c al  u n c e rt ai n t y ;  t h e o nl y e x c e p ti o n  i s  a  r el ati v el y  1 6 O- p o o r  d at u m  f r o m  a  t hi n  2 8 1  

m elili t e  l a y e r  at  t h e  ri m  of  Y 8 1 0 2 0 - E- 8  (∆ 1 7 O = − 1 4. 3 ± 0. 5 ‰ ,  Fi g.  4 a). N o  d et e ct a bl e  2 8 2  

s y s t e m ati c diff e r e n c e s i n b ot h δ 1 8 O a n d ∆ 1 7 O a r e  o b s e r v e d b et w e e n o x y g e n i s ot o p e r ati o s 2 8 3  

of mi n e r al s i n t h e i n t e ri o r a n d t h o s e of mi n e r al s i n t h e ri m ( i. e. Ti, Al -b e a ri n g di o p si d e  2 8 4  

a n d  s pi n el  i n C A I s a n d  oli vi n e  at  t h e  e d g e  of  A O A s ) ( T a bl e  1,  Fi gs. 4  a n d  5) . S u btl e 2 8 5  

v a ri ati o n of o x y g e n i s ot o p e r ati o s al o n g a sl o p e 1 li n e wi t hi n e a c h i n cl u si o n ( e. g., A O A 2 8 6  

G 5 8, Fi g. 4 k) a r e  r e c o g ni z e d. H o w e v e r, t h e s e  diff e r e n c e s a r e  s m al l w h e n c o n si d e ri n g t h e 2 8 7  

a n al yti c al u n c e rt ai n t y . A v e r a g e d  ∆ 1 7 O of t h e C A I s  a n d A O A s s t u di e d h a v e v al u e s of − 2 2. 0  2 8 8  

t o − 2 4 . 3‰ , a n d h a v e u n c e rt ai n t y r a n gi n g f r o m 0. 3 ‰  t o 0. 9 ‰  ( T a bl e 1). 2 8 9  

 2 9 0  

4.4. 22 ..  M a g n e si u m i s ot o p e M a g n e si u m i s ot o p e r ati o s a n d r ati o s a n d t h e t h e 2 62 6 AlAl --2 62 6 M g i s ot o p e s y s t e m ati c sM g i s ot o p e s y s t e m ati c s   2 9 1  

 M a g n e si u m  i s ot o p e  r ati o s  ( δ 2 5 M g D S M 3  a n d δ 2 6 M g * ), 2 7 Al/ 2 4 M g  r ati o s,  a n d  t h e  2 9 2  

r e g r e s si o n li n e s of t h e Al -M g i s ot o p e s y s t e m ati c s a r e s u m m a ri z e d i n T a bl e 2. T h e 2 6 Al -2 9 3  

2 6 M g i s ot o p e s y s t e m ati c s of all m elili t e -ri c h C A I s ( Y 8 1 0 2 0- E- 8, G 5, G 1 6, G 4 9, a n d G 1 0 4) 2 9 4  

e x hi bi t si n gl e li n e a r c o r r el ati o n s i n δ 2 6 M g *  v s.  2 7 Al/ 2 4 M g  (Fi g s.  6 a-f). T h e 2 7 Al/ 2 4 M g r ati o s 2 9 5  

of m elili t e -ri c h C A I s a r e hi g hl y v a ri a bl e (f r o m 1 0 t o 7 2). M elili t e i n C A I G 5 i s hi g hl y 2 9 6  

g e hl e ni ti c   (Al -ri c h, 2 7 Al/ 2 4 M g = 4 6  t o  7 2)  a n d  i n  C A I G 4 9 i t i s å k e r m a ni ti c  ( M g -ri c h, 2 9 7  

2 7 Al/ 2 4 M g = 1 0 t o 1 8) r el ati v e t o ot h e r m elili t e -ri c h  C A I s ( 2 7 Al/ 2 4 M g = 1 5 t o 3 7). A n o rt hi t e 2 9 8  

i n C A I G 1 6 h a s a v e r y hi g h 2 7 Al/ 2 4 M g r ati o a n d a l a r g e 2 6 M g -e x c e s s ( ~ 1 5 6 0 a n d ~ 5 3 0 ‰ , 2 9 9  

r e s p e cti v el y,  T a bl e  2 ). T h e  i nf e r r e d  i ni ti al  2 6 Al/ 2 7 Al  r ati o s,  ( 2 6 Al/ 2 7 Al) 0 ,  of  m elili t e-ri c h 3 0 0  

C A I s a r e (4. 0 8 ± 0. 7 5) × 1 0 − 5  t o (5. 0 5 ± 0. 1 8) × 1 0 − 5 . T h e s e v al u e s a r e wi t hi n t h e  (2 6 Al/ 2 7 Al) 0  3 0 1  

r a n g e of C A I s f r o m C V c h o n d ri t e s  b u t a r e sli g h tl y l o w e r t h a n t h e c a n o ni c al S ol a r S y s t e m 3 0 2  

v al u e of ( 5. 2 5 ± 0. 0 2) × 1 0 − 5  ( e. g., J a c o b s e n et al., 2 0 0 8; L a r s e n et al., 2 0 1 1; M a c P h e r s o n et 3 0 3  

al., 2 0 1 2 ; Ki t a et al., 2 0 1 3) . O n e A O A, G 1 7, h a s a n  i nf e r r e d (2 6 Al/ 2 7 Al) 0  of (5. 3 2 ± 0. 8 1) × 1 0 − 5 , 3 0 4  

w hi c h  i s b a s e d o n d at a f r o m oli vi n e, Al -Ti -ri c h di o p si d e, a n d s pi n el ( Fi g. 6i ). T h e o t h e r 3 0 5  

th r e e A O A s , G 2 8, G 4 4, a n d G 5 8 , d o n ot c o n t ai n hi g h -Al/ M g p h a s e s t h at a r e l a r g e e n o u g h 3 0 6  

f o r M g i s ot o p e a n al y s e s b y S I M S . 3 0 7  



 R e g a r di n g  t h e 2 6 Al -2 6 M g  i s ot o p e  s y s t e m ati c s  of  a n o rt hi t e -ri c h  C A I  G 9 2,  t w o 3 0 8  

di s ti n ct t r e n d li n e s a r e p r o d u c e d w h e n pl otti n g  2 7 Al/ 2 4 M g v s.  2 6 M g -e x c e s s ( δ 2 6 M g * ) ( Fi gs . 3 0 9  

6 g, 6 h ). I n p a rti c ul a r, m elili t e a n d Al -Ti -ri c h di o p si d e d at a of C A I G 9 2 a r e di s t ri b u t e d 3 1 0  

al o n g a si n gl e t r e n d li n e . T h e sl o p e of t h e t r e n d li n e u si n g o nl y Al -Ti -ri c h di o p si d e d at a 3 1 1  

i s 0. 3 3 ± 0. 1 9 wi t h i n t e r c e p t of 0. 1 8 ± 0. 1 7, w hi c h o v e rl a p s wi t h t h e m elili t e d at a. T h e sl o p e 3 1 2  

of  t h e  t r e n d  li n e  u si n g  b ot h  Al -Ti -ri c h  di o p si d e  a n d  m elili t e  d at a  i s  0. 3 7 5 ± 0. 1 4,  3 1 3  

c o r r e s p o n di n g t o a n  i nf e r r e d (2 6 Al/ 2 7 Al) 0  of ( 5. 2± 2. 0) × 1 0 − 5  (Fi g. 6 g). Al t h o u g h w e c a n n ot 3 1 4  

d et e r mi n e  t h e o ri gi n of Al -Ti -ri c h di o p si d e  wi t h c e rt ai n t y , a c o n si s t e n t di s t ri b u ti o n of Al -3 1 5  

Ti -ri c h  di o p si d e  a n d  m elili t e  d at a  s u g g e s t s  t h e s e  a r e  p ri m a r y  p h a s e s . I n  c o n t r a s t, 3 1 6  

a n o rt hi t e d at a f r o m G 9 2  e x hi bi t  hi g h  2 7 Al/ 2 4 M g  ( > 7 0 0)  a n d  2 6 M g -e x c e s s e s t h at a r e 3 1 7  

si g nifi c a n tl y  s m all e r  t h a n  t h o s e  f r o m  t h e  r e g r e s si o n  li n e  of  m elili t e  a n d  Al -Ti -ri c h 3 1 8  

di o p si d e d at a ( Fi g. 6 h ). A s s u mi n g t h at a n o rt hi t e f o r m e d b y r e pl a c i n g m elili t e a n d t h at 3 1 9  

M g wi t hi n  a n o rt hi t e  h a d  o ri gi n all y  d e ri v e d  f r o m  t h e m elili t e  t h at  i t  r e pl a c e d   (s e e  3 2 0  

di s c u s si o n i n  s e cti o n 5. 2),  th e r e g r e s si o n li n e u si n g d at a f r o m m elili t e a n d a n o rt hi t e i n 3 2 1  

G 9 2 h a s  a  sl o p e  of  0. 0 3 7 4 ± 0. 0 0 3 9  wi t h  a n  i n t e r c e p t  of  2. 6 ± 1. 1 ‰  a n d a n   i nf e r r e d 3 2 2  

(2 6 Al/ 2 7 Al) 0  of ( 5. 2 1± 0. 5 4 ) × 1 0− 6  (Fi g. 6 h ,  T a bl e  2 ). W e n ot e  t h at t h e i nf e r r e d (2 6 Al/ 2 7 Al) 0  3 2 3  

b e c o m e s  sli g h tl y  r e d u c e d   [(4. 6 ± 2. 1 ) × 1 0− 6 ]  u si n g  o nl y  a n o rt hi t e  d at a  a n d  i t  i s sli g h tl y 3 2 4  

hi g h e r [( 5. 5 9 ± 0. 5 3 ) × 1 0− 6 ] if a s s u mi n g n o 2 6 M g -e x c e s s w h e n a n o rt hi t e f o r m e d.  3 2 5  

I n  a d di ti o n  t o  C A I G 9 2 , a n o rt hi t e  i s  al s o  o b s e r v e d  i n  m elili t e -ri c h  C A I, G 1 6 , 3 2 6  

o c c u r ri n g  a s  a  t hi n  l a y e r  ( ~ 5  µ m)  b et w e e n  m elili t e  a n d  t h e di o p si d e  ri m  ( Fi g.  1 g ). 3 2 7  

H o w e v e r, a n o rt hi t e  i n  C A I G 1 6  h a s  a  l a r g e  2 6 M g -e x c e s s  w hi c h  i s  c o n si st e n t  wi t h  t h e  3 2 8  

r e g r e s si o n  li n e  of  c o e xi s ti n g Al -Ti -ri c h  di o p si d e  a n d  m elili t e  t h at  c o r r e s p o n d s  t o  a 3 2 9  

(2 6 Al/ 2 7 Al) 0  of ( 4. 7 1 ± 0. 1 5) × 1 0− 5  (Fi g. 6 d , e) . T h u s, a n o rt hi t e g r ai n s f r o m t w o diff e r e n t C A I s, 3 3 0  

G 9 2 a n d G 1 6, r e c o r d  di s ti n ct 2 6 Al -2 6 M g i s ot o p e si g n at u r e s wi t hi n  t h e s a m e t hi n s e cti o n . 3 3 1  

Hi g h p r e ci si o n M g i s ot o p e d at a of M g -ri c h p h a s e s ( oli vi n e, Al -Ti -ri c h di o p si d e, 3 3 2  

a n d s pi n el) o bt ai n e d b y l a r g e b e a m a n a l y s e s i n di c at e t h at ma s s -d e p e n d e nt M g i s ot o p e 3 3 3  

f r a cti o n ati o n (δ 2 5 M g D S M 3 ) i s s m all  ( 0. 0 ± 1. 5‰ / a m u, T a bl e 2 ). T hi s r e s ul t i s c o n si s t e n t wi t h 3 3 4  

t h e  fi n e-g r ai n e d t e xt u r e s a n d/ o r i r r e g ul a r s h a p e s of t h e s a m pl e s , w hi c h s u g g e s t s t h e y 3 3 5  

a v oi d e d r e -m el ti n g a n d  a s s o ci at e d e v a p o r ati v e l o s s t o t h e s u r r o u n di n g e n vi r o n m e n t. A 3 3 6  

f e w δ 2 5 M g D S M 3  v al u e s  of  hi g h -2 7 Al/ 2 4 M g  p h a s e s  ( m elili t e  a n d  a n o rt hi t e)  t h at  w e r e  3 3 7  

o bt ai n e d b y s m all b e a m a n al y s e s a r e si g nifi c a n tl y hi g h e r t h a n ot h e r d at a i n t h e s a m e 3 3 8  

i n cl u si o n, b e y o n d t h e a n al yti c a l u n c e rt ai n t y (e. g., # 5 3 of G 5 , # 5 0 of G 4 9, a n d # 3 7 of G 9 2  3 3 9  

i n  T a bl e  2 ). T h e s e a r e p r e s u m a bl y  o u tli e r s of  s m all  b e a m  a n al y s e s,  b u t  w e  c a n n ot  3 4 0  

c o m pl et el y r ul e o u t t h e  e xi s t e n c e of δ 2 5 M g D S M 3  h et e r o g e n ei t y wi t hi n e a c h i n cl u si o n. 3 4 1  

 3 4 2  

55 . Di s c u s si o n. Di s c u s si o n  3 4 3  



5. 1. 5. 1. 1 61 6 OO --e ne n ri c hri c h e d e n vi r o n m e n t of r ef r a ct o r y i n cl u si o n f o r m ati o ne d e n vi r o n m e n t of r ef r a ct o r y i n cl u si o n f o r m ati o n   3 4 4  

 Wi t hi n a gi v e n i n cl u si o n,  o x y g e n i s ot o p e r ati o s  of i t s ri m s t r u ct u r e s, i n cl ud i n g 3 4 5  

di o p si d e a n d s pi n el i n C A I s, a s w ell a s oli vi n e at t h e e d g e of A O A s, c a n b e  c o m p a r e d t o 3 4 6  

t h o s e  of  i n t e ri o r  p h a s e s,  i n  o r d e r  t o  d et e r mi n e  w hi c h  o x y g e n  i s ot o p e  r e s e r v oi r s  w e r e  3 4 7  

s a m pl e d . Wi t h t h e e x c e pti o n of o n e d at u m ( di s c u s s e d  b el o w), o u r r e s ul t s i n di c at e t h at 3 4 8  

o x y g e n i s ot o p e r ati o s of mi n e r al s b ot h i n t h e ri m a n d i n t h e i n t e ri o r of t h e s a m e  i n cl u si o n 3 4 9  

a r e i n di s ti n g ui s h a bl e, a n d s h o w n o s y s t e m ati c diff e r e n c e s ( Fi gs . 4 a n d 5 ). T hi s r e s ul t i s 3 5 0  

di s ti n ct  f r o m  v a ri a bl e  o x y g e n  i s ot o p e  r ati o s  of  W a r k -L o v e ri n g  ri m s a s s o ci at e d  wi t h  3 5 1  

c o a r s e -g r ai n e d C A I s f r o m C V c h o n d ri t e s ( e. g., Yo s hi t a k e et al., 2 0 0 5; Si m o n et al., 2 0 1 1, 3 5 2  

2 0 1 6) , b u t i n a g r e e m e n t wi t h o x y g e n i s ot o p e r ati o s of C A I s f r o m p ri s ti n e  C R, C O, a n d 3 5 3  

C H c h o n d ri t e s  ( B o dé n a n et al., 2 0 1 4; J a c o b s e n et al., 2 0 1 4 ; K r ot et al., 2 0 1 6). 3 5 4  

T h e si n gl e, r el ati v el y  1 6 O- p o o r si g n at u r e ( ∆ 1 7 O ~ − 1 4 ‰ ) of m elili t e o u t si d e of t h e 3 5 5  

ri m s pi n el l a y e r of C A I Y 8 1 0 2 0 - E- 8 ( Fi g. 1e a n d 4 b) c a n b e i n t e r p r et e d i n a c o u pl e w a y s.  3 5 6  

F o r  e x a m pl e,  it c o ul d  b e  a n  i n t ri n si c  si g n at u r e  ( c o n d e n s ati o n  f r o m  a  r el ati v el y  1 6 O-3 5 7  

d e pl et e d n e b ul a r  g a s)  o r  i t  c o ul d  b e  t h e r e s ul t  of  l at e r  m et a m o r p hi s m. T h e  a n al y z e d  3 5 8  

r e gi o n  of t hi s m elili t e i s s u r r o u n d e d b y fi n e -s c al e c r a c k s a n d v oi d s a n d di r e ctl y c o n t a ct s 3 5 9  

wi t h t h e m at ri x , a s t h e di o p si d e l a y e r i n t hi s C A I i s di s c o n ti n u o u s ( Fi g. E A 2, Y 8 1 0 2 0- E-3 6 0  

8 _ 2) . C o n si d e ri n g t h e s u s c e p ti bili t y of o x y g e n i s ot o p e di s t u r b a n c e wi t hi n  m elili t e ( e. g., 3 6 1  

F a g a n et al., 2 0 0 4;  B o d é n a n et al., 2 0 1 4) , w hil e al s o t a ki n g i n t o a c c o u n t t h e  c o n si s t e n t 3 6 2  

1 6 O- ri c h si g n at u r e of ot h e r C A I ri m p h a s e s f r o m t h e l e a s t m et a m o r p h o s e d c a r b o n a c e o u s 3 6 3  

c h o n d ri t e s ( e. g., B o d é n a n et al., 2 0 1 4; J a c o b s e n et al., 2 0 1 4 ; K r ot et al., 2 0 1 6; t hi s s t u d y), 3 6 4  

t h e r el ati v el y  1 6 O- p o o r si g n at u r e of m elili t e o u t si d e of t h e ri m s pi n el l a y e r of Y 8 1 0 2 0 - E-3 6 5  

8 i s p r o b a bl y t h e  r e s ul t of l at e r i s ot o pi c e x c h a n g e , ei t h e r i n t h e s ol a r n e b ul a  o r i n  t h e 3 6 6  

p a r e n t b o d y.  3 6 7  

 C A I s f r o m  t hi s  s t u d y  h a v e  a  s m all  b u t  a p p r e ci a bl e  r a n g e  i n  a v e r a g e d  ∆ 1 7 O 3 6 8  

v al u e s,  o n t h e o r d e r of a f e w p e r -mil  w h e n c o n si d e ri n g u n c e rt ai n ti e s  ( T a bl e 1 , Fi g. 4, 5, 3 6 9  

a n d  8 a). Wi t h t h e  e x c e p ti o n of t h e o u t e r m o s t m elili t e l a y e r of Y 8 1 0 2 0 - E- 8, a s di s c u s s e d 3 7 0  

i n t h e p r e vi o u s p a r a g r a p h, o x y g e n  i s ot o p e  r ati o s  of C A I  ri m s a r e wi t hi n  t h e r a n g e  of 3 7 1  

t h o s e f r o m  t h ei r  c o r r e s p o n di n g  i n t e ri o r  p h a s e s  ( e. g., T a bl e  1 a n d  Fi g s . 4  a n d  5) . T hi s  3 7 2  

i n di c at e s  t h at  b ot h  of  t h e s e  C A I c o m p o n e n t s  f o r m e d  i n  t h e  s a m e  o x y g e n  i s ot o p e 3 7 3  

e n vi r o n m e n t  a n d t h at t h ei r i n t ri n si c o x y g e n i s ot o p e r ati o s h a v e n ot b e e n di s t u r b e d aft e r 3 7 4  

t h ei r f o r m ati o n . C o n si d e ri n g t h e p ri s ti n e n at u r e of A cf e r 0 9 4 a n d Y -8 1 0 2 0 c h o n d ri t e s, 3 7 5  

t h e sli g h t ∆ 1 7 O v a ri ati o n i n t h ei r C A I s  m o s t li k el y r efl e ct s  t h at of t h e o x y g e n  i s ot o p e 3 7 6  

e n vi r o n m e n t w h e r e C A I s  f o r m e d. Si mil a r, a s w ell a s sli g h tl y l a r g e r  ∆ 1 7 O v a ri ati o n s al o n g 3 7 7  

t h e  P C M  li n e  a r e  al s o  f o u n d  i n  hi b o ni t e  a n d  s pi n el -hi b o ni t e  i n cl u si o n s  f r o m  C M  3 7 8  

c h o n d ri t e s  ( K ö ö p  et  al.,  2 0 1 6 ). Al t h o u g h  e xt r e m el y  1 6 O- ri c h  i n cl u si o n s  ( ∆ 1 7 O d o w n  t o  3 7 9  



~ − 3 7 ‰, K o b a y a s hi et al., 2 0 0 3; G o u n ell e et al., 2 0 0 9, s e e al s o Fi g. E A 1 -2 i n  U s hi k u b o et 3 8 0  

al., 2 0 1 2 f o r c o m p a ri s o n) h a v e b e e n f o u n d, w e d o n ot r e c o g ni z e s u c h a n e xt r e m el y 1 6 O-3 8 1  

ri c h  si g n at u r e  i n  t h e  s a m pl e s,  s u g g e s ti n g ei t h e r  t h e  o c c u r r e n c e  of  e xt r e m el y  1 6 O- ri c h 3 8 2  

e n vi r o n m e n t o r f o r m ati o n of i n cl u si o n s i n a n e xt r e m el y 1 6 O- ri c h e n vi r o n m e n t w a s r a r e.  3 8 3  

R e g a r di n g t h e o ri gi n  of C A I ri m s, it ha s b e e n p r o p o s e d t h at W a r k -L o v e ri n g ri m s 3 8 4  

f o r m e d b y a l at e r fl a s h h e ati n g e v e n t, l e a di n g t o i n t e n s e e v a p o r ati v e l o s s  ( e. g., W a r k a n d 3 8 5  

B o y n t o n,  2 0 0 1) . S u c h  a  p r o c e s s  i s  c o n si d e r e d  t o  b e  r e s p o n si bl e  f o r  p o si ti v e  m a s s -3 8 6  

d e p e n d e n t  i s ot o p e  f r a cti o n ati o n  t h at  i s  c o m m o nl y  o b s e r v e d  i n  F( U N)  i n cl u si o n s  a n d  3 8 7  

n o r m al C A I s ( e. g., Cl a yt o n a n d M a y e d a, 1 9 7 7; W a s s e r b u r g et al., 1 9 7 7; G r o s s m a n et al., 3 8 8  

2 0 0 8; K r ot et al., 2 0 1 4 a). Al t h o u g h t h e s a m pl e s  f r o m t hi s s t u d y a r e m ai nl y fi n e -g r ai n e d 3 8 9  

C A I s , t h e y  h a v e  si mil a r t e xt u r e s  (i. e.  t hi n s pi n el  a n d  di o p si d e  l a y e r e d  st r u ct u r e s )  as 3 9 0  

t h o s e o b s e r v e d  i n W o r k-L o v e ri n g ri m s . H o w e v e r, t h e ri m  δ 1 8 O v al u e s  (T a bl e 1 , Fi g. 5 b) 3 9 1  

a n d δ 2 5 M g D S M 3  v al u e s  (T a bl e 2 ) f r o m A cf e r 0 9 4 a n d Y-8 1 0 2 0 r ef r a ct o r y i n cl u si o n s  e x hi bit  3 9 2  

n ei t h e r m a s s -d e p e n d e n t i s ot o p e f r a cti o n ati o n  n o r v a ri a bili t y i n ∆ 1 7 O . T h e s e d at a i n di c at e 3 9 3  

t h at  l at e r  p r o c e s s e s , s u c h  a s  a n  i n t e n s e  fl a s h  r e -h e ati n g   e v e n t, a r e  n ot  n e c e s s a r y  t o  3 9 4  

p r o d u c e  t h e  ri m  s t r u ct u r e  of  C A I s.  I n  a d di ti o n,  si mil a r  1 6 O- ri c h  o x y g e n  i s ot o pi c  3 9 5  

si g n at u r e s, a s w ell a s g e n e r al a g r e e m e n t of o x y g e n i s ot o p e r ati o s b et w e e n C A I  i n t e ri o r 3 9 6  

p h a s e s a n d t h ei r ri m s ( i n cl u di n g fi n e-g r ai n e d C A I s a n d c o a r s e -g r ai n e d W a r k - L o v e ri n g 3 9 7  

ri m -b e a ri n g  C A I s)  a r e  c o n si s t e n tl y  o b s e r v e d  i n  C A I s  f r o m  p ri s ti n e  c a r b o n a c e o u s  3 9 8  

c h o n d ri t e s  ( B o d é n a n  et  al.,  2 0 1 4;  J a c o b s e n  et al.,  2 0 1 4 ;  K r ot  et  al.,  2 0 1 6; t hi s  s t u d y). 3 9 9  

C o m bi n e d  t h e s e  r e s ul t s  i n di c at e  t h at  all  c o m p o n e n t s  a n d  t e xt u r e s  of  C A I s,  i n cl u di n g 4 0 0  

c o n d e n s ati o n of r ef r a ct o r y p h a s e s f r o m n e b ul a r g a s, a g g r e g ati o n, a n d f o r m ati o n of ri m  4 0 1  

l a y e r s,  o c c u r r e d  i n  t h e  s a m e  1 6 O- ri c h  e n vi r o n m e n t .  T h e  o b s e r v e d  o x y g e n  i s ot o p e  4 0 2  

v a ri a bi li t y a m o n g W a r k -L o v e ri n g ri m s of c o a r s e -g r ai n e d C V c h o n d ri t e C A I s i s p r o b a bl y  4 0 3  

e x pl ai n e d  b y  o x y g e n  i s ot o p e  e x c h a n g e  wi t h 1 6 O- p o o r  m at e ri al s  d u ri n g  p a r e n t  b o d y  4 0 4  

m et a m o r p hi s m . 4 0 5  

 4 0 6  

5. 2. 5. 2. ∆∆ 1 71 7 O O v s.v s.   ((2 62 6 Al/Al/ 2 72 7 Al)Al) 00   of C A I s: of C A I s: A n e ni g m ati c aA n e ni g m ati c a n o rt hi t en o rt hi t e --ri c h C A I h a vi n g l o w (ri c h C A I h a vi n g l o w ( 2 62 6 Al/Al/ 2 72 7 Al)Al) 00   4 0 7  

a n da n d   aa nn   1 61 6 OO --ri c h siri c h si g n at u r e.g n at u r e.   4 0 8  

Fi g u r e 7 s u m m a ri z e s t h e  r el ati o n s hi p   b et w e e n ∆ 1 7 O  a n d  ( 2 6 Al/ 2 7 Al) 0  of t h e 4 0 9  

r ef r a ct o r y  i n cl u si o n s  i n  t hi s  s t u d y;  dat a  f r o m A cf e r  0 9 4  c h o n d r ul e s ( U s hi k u b o  et  al.,  4 1 0  

2 0 1 3) a r e  al s o s h o w n f o r c o m p a ri s o n.  I nf e r r e d ( 2 6 Al/ 2 7 Al) 0  v al u e s of C A I s Y 8 1 0 2 0 - E- 8, G 5, 4 1 1  

G 1 6, G 4 9, a n d G 1 0 4  r a n g e  f r o m ( 4. 0 8 ± 0. 7 5)× 1 0 − 5  t o ( 5. 0 5 ± 0. 1 8)× 1 0 − 5 , w hi c h a r e sli g h tl y 4 1 2  

l o w e r t h a n t h e c a n o ni c al v al u e o f ( 5. 2 5± 0. 0 2) × 1 0 − 5  ( Fi g. 7). T h e s e v al u e s a r e si mil a r t o 4 1 3  

t h o s e of m el t e d C A I s f r o m  C V a n d C R c h o n d ri t e s ( M a ki d e et al. , 2 0 0 9; M a c P h e r s o n et 4 1 4  

al., 2 0 1 2) . A s  C A I s Y 8 1 0 2 0 - E-8, G 5, G 1 6, G 4 9, a n d G 1 0 4  h a v e w ell -d efi n e d i s o c h r o n s,  4 1 5  



and because they have primitive textures , such a s small grain size s and multi- nodule 416 
structures, they likely did  not experience a  later re -melting process. Assuming this is 417 
true, and also assuming homogeneously distributed 26Al after “canonical” CAIs formed 418 
(e.g., Kita et al., 2013), t heir slightly lower ( 26Al/27Al)0 values indicate formation up to 419 
~0.3Ma after canonical  CAIs (Fig. 7). However, it cannot be ruled out that these fine -420 
grained CAIs formed prior to homogeneous distribution of 26Al and that the range of 421 
(26Al/27Al)0 values among Acfer 094 and Y -81020 refractory inclusions represents 422 
variability of 26Al abundance in the early solar system  when they formed . For AOA G17, 423 
the inferred ( 26Al/27Al)0 value of  (5.32±0.81)×10−5 is consistent with the canonical value 424 
of CAIs . As such,  this AOA could be  as old as other CAIs although the present data are 425 
not of sufficient precision to discuss fine -scale differences of formation age s. Regarding 426 
oxygen isotope ratios, all of the aforementioned CAIs, as well as AOA G17, are 16O-rich, 427 
likely reflecting  the value of  the nebular gas over this time period.  428 

CAI G92 is also 16O-rich, but its constituent  anorthite has a n order -of-429 
magnitude low er inferred (26Al/27Al)0, ( 5.21±0.54)×10−6, when compared to the CAIs and 430 
the AOA mentioned above (Fig. 7). However, there is also  an other trend line  431 
corresponding to a (26Al/27Al)0 of (5.2±2.0)×10 −5 that is observed among  Al-Ti-rich 432 
diopside and melilite  in CAI G92 (Fig. 6g, Table 2), making it evident that this CAI  433 
initially had a near -canonical ( 26Al/27Al)0, like the other refractory inclusions . A l ater 434 
isotopic disturbance in the Acfer 094 parent body is unlikely to explain the lower δ26Mg* 435 
values in G92 anorthite be cause (1) as mentioned in the Introduction,  Acfer 094 is one of 436 
the least metamorphosed carbonaceous chondrites (Gresh ake, 1997; Kimura et al., 2008) 437 
and (2) the 26Al-26Mg systematics of both the  anorthite rim layer in CAI G16 (Fig. 6e) 438 
and small anorthite grains in chondrules from the same thin section do not exhibit 439 
evidence for isotopic disturbance  (t his study, Kita et al., 2013; Ushikubo et al., 2013).  As 440 
such, we i nterpret that the lower  ( 26Al/27Al)0 of G92 anorthite (Fig. 6h) recorded the 441 
timing of a later thermal process in the solar nebula.  442 

Like anorthite in CAI G92, Krot et al. (2014b ) reported tha t anorthite in some 443 
AOAs from CH chondrites ha ve similar 16O-rich oxygen isotope ratios but low δ26Mg* 444 
values. They proposed that such an isotopic signature in anorthite could be explained by 445 
Mg isotopic exchange with surrounding Mg -rich phases during  a days -to-weeks long 446 
thermal annealing event at high temperatur e (~1100 °C ) coupled with a slow cooling rate 447 
(~0.01 K/h) . Such conditions would be necessary because the diffusivity of Mg in 448 
anorthite is significantly higher than that of oxygen at >1000 °C . However, such a 449 
scenario is unlikely for G92 because a linear correlation between 27Al/24Mg ratios and 450 
δ26Mg* values in anorthite is not consistent with a later isotopic disturbance of the 27Al-451 



2 4 M g  s y s t e m ati c s  i n  a n o rt hi t e  ( e. g.,  P o d o s e k  et  al ,  1 9 91 ; M a c P h e r s o n  et  al.,  2 0 1 2) . 4 5 2  

F u rt h e r , t h e n e a r-c a n o ni c al i s o c h r o n p r o d u c e d b y Al -Ti -ri c h di o p si d e a n d m elili t e i n G 9 2 4 5 3  

( Fi g. 6 g) i s n ot c o n si s t e n t wi t h M g i s ot o pi c e x c h a n g e wi t h a dj a c e n t a n o rt hi t e. If a n o rt hi t e 4 5 4  

i n G 9 2 f o r m e d a s e a rl y a s ot h e r p h a s e s, t h e a c c u m ul at e d 2 6 M g -e x c e s s w o ul d h a v e b e e n 4 5 5  

l a r g e r t h a n 3 0 0‰  i n δ 2 6 M g *  (e. g. , a n o rt hi t e i n C A I G 1 6, Fi g. 6 e) at t h e ti m e of t h e t h e r m al 4 5 6  

a n n e ali n g  e v e n t.  T h u s,  e v e n  t h o u g h  M g  i s  a  mi n o r  el e m e n t  i n  a n o rt hit e  ( < 0. 1 wt %),  4 5 7  

a n o m al o u sl y hi g h δ 2 6 M g *  v al u e s  ( u p t o a f e w p e r mil) i n M g-ri c h p h a s e s a r e e x p e ct e d t o 4 5 8  

b e o b s e r v e d if M g i s ot o pi c e x c h a n g e o c c u r r e d ( e. g., P o d o s e k et al., 1 9 9 1; M a c P h e r s o n et 4 5 9  

al.,  2 0 1 2) .  M o r e o v e r, c o n t r a r y  t o  t y pi c al  A O A s,  a n o rt hi t e  i n  G 9 2  i s  t h e p r e d o mi n a nt 4 6 0  

p h a s e  a n d i s n ot al w a y s a s s o ci at e d wi t h s pi n el , m e a ni n g t h at c o m pl et e r e s et ti n g of t h e 4 6 1  

a n o rt hi t e 2 6 Al -2 6 M g  s y st e m ati c s  b y  i s ot o pi c  e x c h a n g e  wi t h  M g -ri c h  p h a s e s w o ul d 4 6 2  

p r o b a bl y t a k e  m u c h l o n g e r. I n c o n t r a s t,  e x c h a n g e wi t h a n 1 6 O- p o o r a m bi e n t g a s w o ul d 4 6 3  

h a v e eff e cti v el y o c c u r r e d  b e c a u s e of t h e fi n e -g r ai n e d t e xt u r e i n t hi s C A I. 4 6 4  

A s a n al t e r n ati v e t o t h e l o w e x c e s s- 2 6 M g i n G 9 2 a n o rt hi t e b ei n g d u e t o s oli d -4 6 5  

s t at e e x c h a n g e -i n d u c e d r e s etti n g, a m o r e li k el y p o s si bili t y i s t h at G 9 2 o ri gi n all y f o r m e d 4 6 6  

a s  a fi n e-g r ai n e d m elili t e -ri c h C A I , a n d  t h at  t h e a n o rt hi t e r e pl a c e d t h e  m elili t e  aft e r 4 6 7  

m o s t  of  t h e  2 6 Al  d e c a y e d.  T hi s  i d e a  p r e s u p p o s e s t h at  t h e o c c u r r e n c e  of  l o w  δ 2 6 M g *  i n 4 6 8  

a n o rt hi t e -ri c h  C A I  G 9 2  i s  n ot  a  c oi n ci d e n c e, b u t i s  i n s t e a d  t h e  r e s ul t  of  l at e r hi g h 4 6 9  

t e m p e r at u r e p r o c e s s  i n t h e s ol a r n e b ul a. R e pl a c e m e n t  of m elili t e b y  a n o rt hi t e c o ul d h a v e 4 7 0  

o c c u r r e d b y i n t e r a cti o n wi t h t h e a m bi e n t  g a s : C a 2 Al 2 Si O 7  ( G e hl e ni t e) + 3 Si O( g) + M g( g) 4 7 1  

+ 4 H 2 O( g) → C a Al 2 Si 2 O 8  ( a n o rt hi t e) + C a M g Si2 O 6  ( di o p si d e) + 4 H2 ( g) ( K r ot et al., 2 0 0 4 b), 4 7 2  

o r u n d e r a n o xi di zi n g  e n vi r o n m e n t,  a s t h e  f oll o wi n g  r e a cti o n:  C a 2 Al 2 Si O 7  +  Si O( g)  +  4 7 3  

H 2 O( g) + C O 2 ( g) → C aAl 2 Si 2 O 8  + C a( O H) 2 ( g) + C O( g) i s al s o p r o p o s e d ( H a s hi m ot o, 1 9 9 2). 4 7 4  

E v e n  t h o u g h  s pi n el  ( M g Al 2 O 4 )  a n d  å k e r m a ni t e  ( C a2 M g Si 2 O 7 ) c o ul d  h a v e p a rtl y 4 7 5  

c o n t ri b u t e d M g a n d Si  t o p r o d u c e di o p si d e i n t h e s e r e a cti o n s, r e pl a c e m e n t of m elili t e 4 7 6  

r e q ui r e s i n c o r p o r ati o n of Si O  f r o m o u t si d e of t h e C A I. A s s u c h, t h e  o x y g e n i s ot o p e r ati o 4 7 7  

of a n o rt hi t e p r o d u c e d b y r e a cti o n m u s t h a v e b e e n aff e ct e d b y t h e o x y g e n i s ot o p e r ati o of 4 7 8  

a n  a m bi e n t g a s . A s s u mi n g t h e c o m p o si ti o n of t h e i ni ti al  m elili t e of C A I G 9 2  w a s t h e 4 7 9  

s a m e a s t h at of r e m ai ni n g m elili t e  ( Å k2 0 ), a n d t h at M g w a s c o m pl et el y c o n s u m e d t o f o r m 4 8 0  

di o p si d e  b y  r e pl a c e m e nt  of  m elili t e , a b u n d a n t  di o p si d e  ( ~ 2 0  m ol a r %  of  a n o rt hi t e , 4 8 1  

a s s u mi n g g e hl e ni t e : å k e r m a ni t e = a n o rt hi t e : di o p si d e  = 4 : 1 ) w o ul d h a v e f o r m e d wi t h 4 8 2  

a n o rt hi t e .  Si n c e  s u b -µ m hi g h -C a  p y r o x e n e  i n cl u si o n s  i n  a n o rt hi t e  a n d  s m all  a n d  4 8 3  

i r r e g ul a r-s h a p e d Al -Ti -ri c h di o p si d e g r ai n s  a r e a b u n d a n t i n t h e i n t e ri o r of  C A I  G 9 2 ( Fi g. 4 8 4  

2 b), t h e y m a y h a v e f o r m e d b y r e pl a c e m e n t of m elili t e . H o w e v e r, d u e t o t h e li mi t ati o n of 4 8 5  

a n al y si s s p ot si z e b y S I M S  ( ~ 3µ m i n si z e f o r O i s ot o p e a n al y s e s a n d ~ 1 0 µ m f o r M g i s ot o p e 4 8 6  

a n al y s e s of M g -ri c h p h a s e s) , w e c o ul d n ot p e rf o r m i s ot o p e a n al y s e s of s u b -µ m di o p si d e 4 8 7  



i n cl u si o n s, n o r c o ul d w e a n al y z e t h e o u t e r m o s t m a r gi n of di o p si d e, i n o r d e r t o i n v e s ti g at e 4 8 8  

if t h ei r c h a ra ct e ri s ti c s w e r e e s t a bli s h e d d u ri n g t h e r e pl a c e m e n t of m elili t e.  Wi t h  r e g a r d 4 8 9  

t o a n o rt hi t e, v e r y lo w M g c o n c e n t r ati o n s of a n o rt hi t e i n G 9 2, a s w ell a s t h o s e of t h e  t hi n 4 9 0  

a n o rt hi t e l a y e r i n G 1 6  (2 7 Al/ 2 4 M g = 7 0 0 t o 1 5 6 0, 0. 0 3 t o 0. 0 1 5 wt. %  M g O ), s u g g e s t  th at t h e 4 9 1  

f o r m ati o n p r o c e s s of a n o rt hi t e i n t h e s e C A I s w a s diff e r e n t t h a n t h at of  i g n e o u s a n o rt hi t e 4 9 2  

i n t y p e B C A I s (t y pi c all y 2 7 Al/ 2 4 M g = 1 0 0 t o 6 0 0, 0. 2 3 t o 0. 0 4 wt. % , e. g., P o d o s e k et al., 4 9 3  

1 9 9 1;  G o s w a mi  et  al.,  1 9 9 4;  M a ki d e  et  al.,  2 0 0 9;  Ki t a  et  al.,  2 0 1 2).  I n  a d di ti o n, t h e 4 9 4  

a b s e n c e of a n o m al o u sl y hi g h δ 2 6 M g *  a m o n g  G 9 2 M g -ri c h p h a s e s i s c o n si st e n t wi t h t h e 4 9 5  

r e pl a c e m e n t  of  m elili t e  b y  a n o rt hi t e , aft e r  m o s t  2 6 Al  h a d  d e c a y e d . If G 9 2 a n o rt hit e 4 9 6  

i ni ti all y f o r m e d wi t h t h e c a n o ni c al a b u n d a n c e of t h e s h o rt -li v e d n u cli d e 2 6 Al, f oll o w e d b y 4 9 7  

l at e r M g  i s ot o pi c  e x c h a n g e,  a n o c c u r r e n c e of a n o m al o u sl y  hi g h δ 2 6 M g *  (i. e. a b o v e  t h e  4 9 8  

c a n o ni c al  i s o c h r o n ) w o ul d  b e  e x p e ct e d i n M g -ri c h  p h a s e s  s u c h  a s  s pi n el,  Al -Ti -ri c h 4 9 9  

di o p si d e, a n d m elili t e  ( e. g., P o d o s e k et al., 1 9 9 1; M a c P h e r s o n et al., 20 1 2 ). I n s t e a d, if 5 0 0  

a n o rt hi t e f o r m e d b y r e pl a c i n g p ri m a r y  m elili t e aft e r t h e d e c a y of m o s t 2 6 Al, i t mi g h t h a v e 5 0 1  

i n h e ri t e d t h e 2 6 M g -e x c ess  of pr e c urs or m elilit e ( e. g., δ 2 6 M g * : ~ 3‰, Fi g s. 6 g a n d 6 h) . I n t hi s 5 0 2  

c a s e,  t h e sl o p e of t h e r e g r e s si o n li n e u si n g a n o rt hi t e a n d m elili t e d at a r e p r e s e n t s t h e  5 0 3  

(2 6 Al/ 2 7 Al) 0  w h e n  a n o rt hi t e  f o r m e d . A n ot h e r  p o s si bili t y  i s  t h at  G 9 2   an o rt hi t e h a d  n o 5 0 4  

2 6 M g - e x c e s s w h e n i t i ni ti all y f o r m e d, b e c a u s e i t i n c o r p o r at e d  M g f r o m t h e a m bi e n t  g a s . 5 0 5  

I f t hi s i s t h e c a s e , t h e r e g r e s si o n li n e t h r o u g h t h e o ri gi n u si n g a n o rt hi t e  d at a w o ul d b e 5 0 6  

a p p r o p ri at e , a s w ell a s i t s  c o r r e s p o n di n g  i nf e r r e d (2 6 Al/ 2 7 Al) 0 , ~ 5. 5 × 1 0 − 6 , w hi c h is sli g htl y 5 0 7  

hi g h er t h a n t h e i nf e r r e d (2 6 Al/ 2 7 Al) 0  of 5. 2 1 × 1 0 − 6  w h e n u si n g a n o r thi t e a n d m elili t e d at a . 5 0 8  

H e r e w e a s s u m e  t h at Al w a s  a b s e n t f r o m t h e a m bi e n t  n e b ul a r g a s b e c a u s e of i t s hi g hl y 5 0 9  

r ef r a ct o r y  n at u r e  ( e. g.,  L o d d e r s,  2 0 0 3). R e g a r dl e s s  of  w h et h e r  o r  n ot  G 9 2  a n o rt hi t e  5 1 0  

i ni ti all y  i n h e ri t e d  2 6 M g -e x c ess  fr o m  m elilit e, 2 6 Al w o ul d  h a v e  b e e n  s u p pli e d  f r o m  t h e 5 1 1  

r e a ct e d p ri m a r y m elil i t e. A s s u mi n g t hi s f o r m ati o n m e c h a ni s m i s c o r r e ct, t h e  2 6 Al -2 6 M g 5 1 2  

s y s t e m ati c s of G 9 2 a n o rt hi t e  a n d  m elili t e , w h o s e  d at a  a r e  di s t ri b u t e d  al o n g  a  si n gl e  5 1 3  

r e g r e s si o n li n e ( M S W D = 0. 9 5, Fi g. 6 h) , c a n b e u s e d t o d e d u c e t h e ti m e i n t e r v al b et w e e n 5 1 4  

t h e C A I f o r m ati o n a n d t h e l at e r f o r m ati o n of a n o rt hi t e.  5 1 5  

T h e i nf e r r e d ( 2 6 Al/ 2 7 Al) 0 , ( 5. 2 1 ± 0. 5 4) × 1 0− 6 , of G 9 2 a n o rt hi t e i n di c at e s f o r m ati o n 5 1 6  

2 . 3 M a aft e r C A I s ( Fi g. 7 ). T hi s r e s ul t  c oi n ci d e s wi t h t h e ti mi n g of c h o n d r ul e f o r m ati o n  5 1 7  

a m o n g  o r di n a r y a n d c a r b o n a c e o u s c h o n d ri t e s ( e. g., Ki t a a n d U s hi k u b o, 2 0 1 2; U s hi k u b o 5 1 8  

et al., 2 0 1 3).  A s  si mil a r a g e s a r e  al s o o b s e r v e d i n C A I -c h o n d r ul e c o m p o u n d o bj e ct s i n C R 5 1 9  

c h o n d ri t e s (( 2 6 Al/ 2 7 Al) 0  of < 2 × 1 0 − 6  t o ( 3. 8 ± 1. 3) × 1 0 − 6 , M a ki d e et al., 2 0 0 9), e n e r g eti c e v e n t s 5 2 0  

i n t h e s ol a r n e b ul a t h at i m p o s e d  i g n e o u s a n d m et a m o r p hi c p r o c e s s e s a m o n g  C A I s a n d 5 2 1  

c h o n d r ul e s  a r e  i nf e r r e d  t o  h a v e  o c c u r r e d  a t  2  – 3  M a  aft e r  c a n o ni c al C A I  f o r m ati o n . 5 2 2  

R e g a r di n g  c h o n d r ul e f o r m ati o n, i t i s i nf e r r e d t h at t h e e n vi r o n m e n t w a s  1 6 O- p o o r r el ati v e 5 2 3  



t o  t h e  e n vi r o n m e n t  w h e r e  r ef r a ct o r y  i n cl u si o n s  f o r m e d,  a s o x y g e n  i s ot o p e  r ati o s  of  5 2 4  

c h o n d r ul e s a r e t y pi c all y ∆ 1 7 O = − 6 t o 2 ‰ ( C o n n oll y a n d H u s s, 2 0 1 0; Ki t a et al., 2 0 1 0; K r ot 5 2 5  

et al., 2 0 1 0 b; R u d r a s w a mi et al., 2 0 1 1; W ei s b e r g et al., 2 0 1 1; N a k a s hi m a et al., 2 0 1 2; 5 2 6  

U s hi k u b o  et  al.,  2 0 1 2;  S c h r a d e r  et  al.,  2 0 1 3,  2 0 1 4;  T e n n e r  et  al.,  2 0 1 3,  2 0 1 5) . T hi s 5 2 7  

i nf e r e n c e i s  al s o  s u p p o rt e d  b y  c h a r a ct e ri s ti c s  of  C A I -c h o n d r ul e  c o m p o u n d  o bj e ct s,  a s  5 2 8  

t h ei r  1 6 O- ri c h  C A I -li k e  d o m ai n s  a r e  e n cl o s e d  b y  1 6 O- p o o r  f e r r o m a g n e si a n  mi n e r al s  5 2 9  

( M a ki d e et al., 2 0 0 9). I n c o n t r a s t, C A I G 9 2  d o e s n ot c o n t ai n  1 6 O- p o o r f e r r o m a g n e si a n 5 3 0  

p h a s e s ( oli vi n e a n d l o w -C a p y r o x e n e) o r F e -Ni m et al ( Fi g. 2 b) . T h u s, e v e n t h o u g h G 9 2 5 3 1  

a n o rt hi t e h a s a si mil a r i nf e r r e d (2 6 Al/ 2 7 Al) 0  a s c h o n d r ul e s, i t diff e r s f r o m c h o n d r ul e s  a n d 5 3 2  

C A I -c h o n d r ul e c o m p o u n d o bj e ct s. C o m bi n e d, t h e s e c h a r a ct e ri s ti c s of  C A I G 9 2 i n di c at e 5 3 3  

t h e e xi s t e n c e of a n  1 6 O- ri c h e n vi r o n m e n t ( ∆ 1 7 O ~ − 2 3 ‰, Fi g s. 4 g a n d 7)  t h at w a s d e v oi d of 5 3 4  

1 6 O- p o o r f e r r o m a g n e si a n d u s t , a p p r o xi m at el y 2 – 3 M a aft e r C A I f o r m ati o n.  5 3 5  

A c o n c ei v a bl e  s c e n a ri o  i s t h at G 9 2 a n o rt hi t e f o r m e d at t h e  i n n e r  e d g e  of  t h e  5 3 6  

s ol a r  n e b ul a ,  w h e r e  a m bi e n t  g a s  m a y s till  h a v e  b e e n  1 6 O- ri c h  2  – 3  M a  aft e r  C A I  5 3 7  

f o r m ati o n s ( p o s si bl y b e c a u s e t hi s r e gi o n i s c l o s e t o t h e S u n, t h e p r e d o mi n a n t r e s e r v oi r 5 3 8  

of 1 6 O- ri c h  s ol a r g a s). T h e n, f oll o wi n g t h e f o r m ati o n of a n o rt hi t e, C A I G 9 2 c o ul d h a v e 5 3 9  

b e e n t r a n sf e r r e d  t o  t h e  o u t e r  a s t e r oi d  b el t.  H o w e v e r,  t hi s  s c e n a ri o  s e e m s  u nli k el y  5 4 0  

b e c a u s e ( 1) i t w o ul d h a v e b e e n diffi c ul t t o a v oi d a n y r e p r o c e s si n g u n til ~ 2 M a aft e r C A I s 5 4 1  

if G 9 2 r e m ai n e d cl o s e t o t h e S u n o v e r t h at ti m e i n t e r v al; a n d ( 2) o u t w a r d m a s s tr a n s p o rt 5 4 2  

w a s li k el y i n s uffi ci e n t ~ 2 M a aft e r C A I s  ( Ci e sl a, 2 0 1 0; J a c q u et, 2 0 1 3). 5 4 3  

Al t e r n ati v el y, a m o r e pl a u si bl e s c e n a ri o i s t h at G 9 2 a n o rt hi t e f o r m e d at a l a r g e 5 4 4  

v e rti c al di s t a n c e r el ati v e t o t h e c h o n d r ul e -f o r mi n g mi d -pl a n e of t h e p r ot o pl a n et a r y di s k.  5 4 5  

H e r e,  i t  i s  a s s u m e d  ( 1)  a n  1 6 O- ri c h  g a s  w o ul d  h a v e b e e n  a  m aj o r  o x y g e n  i s ot o pi c  5 4 6  

c o m p o n e n t , b e c a u s e i t h a s b e e n u bi q ui t o u sl y p r e s e n t  t h r o u g h o u t t h e hi s t o r y of t h e S ol a r 5 4 7  

S y s t e m ;  a n d  ( 2) t h e  mi d-pl a n e  of t h e  p r ot o pl a n et a r y  di s k  w a s  d o mi n at e d  b y  1 6 O- p o o r 5 4 8  

sili c at e d u s t ( e. g., T e n n e r et al., 2 0 1 5) a n d e a rl y S ol a r S y s t e m H 2 O i c e ( e. g., S a k a m ot o et 5 4 9  

al., 2 0 0 7), p a r ti c ul a rl y aft e r c o oli n g of t h e s ol a r n e b ul a a n d wi t h r e d u c e d t u r b ul e n t fl o w. 5 5 0  

T h e f o r m e r a s s u m p ti o n i s p o s si bl e w h e n c o n si d e ri n g t h at t h e p r e s e n t s ol a r wi n d i s 1 6 O-5 5 1  

ri c h ( ∆ 1 7 O = − 2 8. 4 ± 1. 8 ‰, M c K e e g a n et al., 2 0 1 1). T h e l att e r i s v ali d b e c a u s e hi g h d u s t t o 5 5 2  

g a s r ati o s ( e. g. E b el a n d G r o s s m a n, 2 0 0 0; Al e x a n d e r 2 0 0 4 ), a s w ell a s e n h a n c e m e n t of 5 5 3  

H 2 O  i c e  ( e. g., F e d ki n a n d  G r o s s m a n,  2 0 0 6; 2 0 1 6) ,  w e r e  li k el y  n e c e s s a r y  t o  c r e at e  a n  5 5 4  

e n vi r o n m e n t o xi di z e d e n o u g h t o f o r m t h e c h o n d r ul e a s s e m bl a g e. T h e s ettli n g of 1 6 O- p o o r 5 5 5  

H 2 O i c e a n d d u s t t o w a r d t h e mi d -pl a n e of t h e p r ot o pl a n et a r y di s k w o ul d h a v e c a u s e d a  5 5 6  

v e rti c al o x y g e n i s ot o pi c g r a di e n t i n t h e p r ot o pl a n et a r y di s k ( e. g., Y u ri m ot o et al., 2 0 0 7)  5 5 7  

at  t h e  ti m e  of  c h o n d r ul e  f o r m ati o n s . U n d e r s u c h  a n  e n vi r o n m e n t,  p r o d u ct s  of  hi g h -5 5 8  

t e m p e r at u r e p r o c e s s e s w o ul d h a v e diff e r e n t o x y g e n i s ot o p e r ati o s a s a f u n cti o n of t h ei r 5 5 9  



v e rti c al di s t a n c e f r o m t h e mi d -pl a n e. F o r e x a m pl e, T e n n e r et al. ( 2 0 1 5) d e m o n s t r at e d 5 6 0  

t h at v a ri a bl e a d di ti o n s of  1 6 O- p o o r d u s t a n d H 2 O i c e (∆ 1 7 O ~ − 6 ‰  a n d + 5 ‰, r e s p e cti v el y)  5 6 1  

t o 1 6 O- ri c h  g a s  ( ∆ 1 7 O ~ − 2 8. 4 ‰)  c a n  e x pl ai n  t h e  o b s e r v e d ∆ 1 7 O – M g #  t r e n d  a m o n g  5 6 2  

f e r r o m a g n e si a n sili c at e s i n c a r b o n a c e o u s c h o n d ri t e c h o n d r ul e s. A s s u c h, m at e ri al s t h at 5 6 3  

f o r m e d v e rti c all y f a r f r o m t h e mi d-pl a n e c o ul d h a v e b e e n e n ri c h e d i n 1 6 O, b e c a u s e s u c h 5 6 4  

a r e gi o n w o ul d h a v e b e e n d e pl et e d i n 1 6 O- p o o r d u s t a n d H 2 O i c e, a n d t h e r ef o r e w o ul d 5 6 5  

h a v e b e e n d o mi n at e d b y 1 6 O- ri c h g a s.  W e n ot e t h at l a r g e sili c at e p a rti cl e s li k e C A I G 9 2 5 6 6  

( a f e w h u n d r e d µ m i n si z e ) m u s t h a v e b e e n r a r e  at a v e rti c all y di s t a n t pl a c e f r o m  t h e 5 6 7  

mi d -pl a n e aft e r t h e s ettli n g of d u s t s t o t h e mi d -pl a n e  ( e. g., Ci e sl a, 2 0 0 9; J a c q u et, 2 0 1 3). 5 6 8  

It  i s  m o r e  f a v o r a bl e  t h at  m u c h  s m all e r  r ef r a ct o r y  i n cl u si o n s  w o ul d  p r e v ail  at  l a r g e  5 6 9  

v e rti c al  di s t a n c e  f r o m  t h e  mi d -pl a n e. A s  s u c h, s m all  r ef r a ct o r y  i n cl u si o n  m a y  h a v e  a 5 7 0  

hi g h e r li k eli h o o d of s h o wi n g e vi d e n c e f o r r e -h e ati n g e v e n t s  i n a n 1 6 O- ri c h e n vi r o n m e n t . 5 7 1  

C o n si d e ri n g t h e p r e v al e n c e of c h o n d r ul e s i n u n e q uili b r at e d c h o n d ri t e s ( 2 0-8 0 5 7 2  

v ol u m e p e r c e n t; S c ott et al., 1 9 9 6) , i t i s e vi d e n t t h at o n e o r m o r e p e r v a si v e p r o c e s s e s 5 7 3  

p r o d u c e d  sili c at e  m el t s  ~ 2  M a  aft e r  C A I s,  a n d  s e v e r al  m e c h a ni s m s  t h at  h a v e  b e e n  5 7 4  

p r o p o s e d f o r t h ei r f o r m ati o n  ( s e e Ci e sl a, 2 0 0 5; D e s c h et al., 2 0 1 2 f o r r e vi e w) . As s u mi n g 5 7 5  

t h e  e n e r g y  s o u r c e  of  G 9 2 a n o rt hi t e  f o r m ati o n  w a s si mil a r  t o  t h at  w hi c h  f o r m e d  5 7 6  

c h o n d r ul e s, a v e rti c all y di s t a n t l o c ati o n f r o m t h e mi d -pl a n e of t h e p r ot o pl a n et a r y di s k 5 7 7  

s e e m s a m o r e a p p r o p ri at e si t e t h a n t h e i n n e r e d g e of t h e s ol a r n e b ul a t o e x pl ai n b ot h a 5 7 8  

y o u n g e r  a n o rt hi t e  f o r m ati o n  a g e  ( ~2 M a  aft e r  C A I s)  a n d  t h e l a ck  of  a c c u m ul at e d  5 7 9  

f e r r o m a g n e si a n p h a s e s. 5 8 0  

 5 8 1  

5. 3. 5. 3. 1 61 6 OO --ri c h ri c h d u s t d u s t c o m p o n e n t a n d c o r r el ati o n li n e sc o m p o n e n t a n d c o r r el ati o n li n e s   5 8 2  

 Fi n e -g r ai n e d C A I s a n d  A O A s  f o r m e d  b y  a g g r e g ati o n  of  p ri m a r y  c o n d e n s at e s  5 8 3  

f r o m e a rl y s ol a r n e b ul a r g a s, a n d t h e y a v oi d e d r e -m el ti n g b y a l at e r h e ati n g e v e n t  i n t h e 5 8 4  

s ol a r n e b ul a.  Th e li mi t e d r a n g e of δ 2 5 M g D S M 3  v al u e s a m o n g t h e fi n e -g r ai n e d r ef r a ct o r y 5 8 5  

i n cl u si o n s s t u di e d ( − 0. 4 t o 1. 3‰ ) s u p p o rt s t hi s i d e a. T h u s, w e s u g g e s t t h at fi n e -g r ai n e d 5 8 6  

C A I s  a n d  A O A s  f r o m  t y p e  3. 0 0-3. 0 5  c h o n d ri t e s  a r e  t h e  b e s t  c a n di d at e s  f o r  r e c o r di n g  5 8 7  

p ri s ti n e o x y g e n i s ot o p e r ati o s of e a rl y s ol a r s y s t e m c o n d e n s at e s.  5 8 8  

 Fi g u r e 8 s h o w s a v e r a g e d o x y g e n  i s ot o p e  r ati o s  of  i n di vi d u al  r ef r a ct o r y 5 8 9  

i n cl u si o n s ( Fi g.8 a) , a s w ell a s t h o s e f r o m A O A f o r st e ri t e a n d Al-Ti -ri c h di o p si d e ( Fi g. 8 b, 5 9 0  

s e e al s o T a bl e 2)  o bt ai n e d  u si n g  a hi g h i n t e n si t y p ri m a r y b e a m ( s m all b e a m d at a a r e 5 9 1  

o nl y u s e d t o  c al c ul at e  a v e r a g e d  v al u e s  of  i n di vi d u al  s a m pl e s,  d u e  t o  t h ei r l a r g e 5 9 2  

u n c e rt ai n t i e s). T h e  o x y g e n  i s ot o p e  r ati o s  of  fi n e -g r ai n e d  A cf e r  0 9 4  a n d  Y -8 1 0 2 0 5 9 3  

r ef r a ct o r y i n cl u si o n s  a r e ti g h tl y di s t ri b u t e d b et w e e n t h e C C A M li n e ( Cl a yt o n et al., 1 9 7 7) 5 9 4  

a n d t h e P C M r e g r e s si o n li n e d efi n e d  b a s e d o n  oli vi n e a n d l o w -C a p y r o x e n e d at a f r o m  5 9 5  



A cf e r 0 9 4 c h o n d r ul e s ( U s hi k u b o et al., 2 0 1 2). D e vi ati o n s i n a v e r a g e d  δ 1 8 O v al u e s f r o m 5 9 6  

t h e  C C A M  li n e,  r el ati v e  t o t h e  m a s s - d e p e n d e n t  i s ot o p e f r a cti o n ati o n t r e n d 5 9 7  

(δ 1 7 O = 0. 5 2 × δ 1 8 O) , r a n g e f r o m − 0. 6‰  (C A I G 1 6) t o + 1. 9 ‰  (C A I G 5) , wi t h a n a v e r a g e v al u e 5 9 8  

of  + 0. 6 ‰ . T h e s e  r e s ul t s  i n di c at e t h at o x y g e n  i s ot o p e  r ati o s  of  p ri s ti n e C A I  p r e c u r s o r  5 9 9  

d u s t s w e r e  di s t ri b u t e d al o n g t h e C C A M li n e , o r, at m o s t, w e r e  ~ 1 ‰  t o t h e ri g h t of t h e 6 0 0  

C C A M  li n e.  N ot e  t h at  w e  c a n n ot  p r e ci s el y  d et e r mi n e  t h e  o x y g e n  i s ot o p e  r ati o  of  t h e  6 0 1  

p ri m o r di al n e b ul a r g a s f r o m fi n e -g r ai n e d r ef r a ct o r y i n cl u si o n d at a  b e c a u s e  t h e d e g r e e of 6 0 2  

e q uili b r i u m o x y g e n i s ot o p e f r a cti o n ati o n b et w e e n g a s a n d d u s t c a n v a r y a s a f u n cti o n of 6 0 3  

t e m p e r at u r e a n d g a s c o m p o si ti o n ( e. g., δ 1 8 O v al u e of oli vi n e c o ul d b e 2 t o 3 ‰ li g h t e r t h a n 6 0 4  

t h at  of  a m bi e n t  g a s,  Cl a yt o n  et  al.,  1 9 9 1;  Ki t a  et  al.,  2 0 1 0) .  R e g a r di n g  t h e  P C M  li n e 6 0 5  

( U s hi k u b o  et  al., 2 0 1 2) a n d  i t s  u n c e rt ai n t y ( ~ ± 0. 7 ‰), i t  i s  i n di s ti n g ui s h a bl e  f r o m  t h e 6 0 6  

A cf e r 0 9 4 a n d Y -8 1 0 2 0 r ef r a ct o r y i n cl u si o n d at a. T hi s i s a n i m p o rt a n t c o n si d e r ati o n f o r 6 0 7  

t w o  r e a s o n s.  Fi r s t,  i t  i n di c at e s  t h at  A cf e r  0 9 4  c h o n d r ul e s  a n d  r ef r a ct o r y  i n cl u s i o n s 6 0 8  

r e p r e s e n t a c o n si s t e n t mi xi n g li n e of e a rl y S ol a r S y s t e m m at e ri al s. S e c o n d, a n d wi t h 6 0 9  

r e s p e ct t o r eli ct oli vi n e g r ai n s i n A cf e r 0 9 4 c h o n d r ul e s, t h e m o s t 1 6 O- ri c h e x a m pl e s h a v e 6 1 0  

o x y g e n i s ot o p e r ati o t h at a r e i n di s ti n g ui s h a bl e f r o m A cf e r 0 9 4 r ef r a ct o r y i n cl u si o n d at a 6 1 1  

( Fi g. 9). T hi s o v e rl a p i s c o n si s t e n t wi t h t h e i d e a t h at 1 6 O- ri c h r eli ct oli vi n e d e ri v e d f r o m 6 1 2  

r ef r a ct o r y i n cl u si o n r el at e d m at e ri al ( e. g., A O A, oli vi n e i n t h e a c c r eti o n a r y ri m of C A I s).  6 1 3  

B e y o n d  li n ki n g  A cf e r  0 9 4  c h o n d r ul e s  a n d  r ef r a ct o r y  i n cl u si o n s  t o g et h e r , t h e 6 1 4  

P C M li n e c a r ri e s wi t h i t ot h e r i m p o rt a n t c h a r a ct e ri s ti c s. F o r e x a m pl e, o x y g e n i s ot o p e 6 1 5  

d at a f r o m e xt r e m el y 1 6 O- p o o r A cf e r 0 9 4 c o s mi c s y m pl e cti t e s ( S a k a m ot o et al., 2 0 0 7; S et o 6 1 6  

et  al.,  2 0 0 8)  pl ot  o n  t h e  P C M  li n e  ( Fi g.  9).  Th e  P C M  li n e  al s o i n t e r s e ct s  wi t h  t h e  6 1 7  

t e r r e s t ri al f r a cti o n ati o n ( T F) li n e at δ 1 8 O = 5. 8 ± 0. 4 ‰  ( U s hi k u b o et al., 2 0 1 2), w hi c h i s i n 6 1 8  

a g r e e m e n t  wi t h t h e t e r r e s t ri al m a n tl e v al u e  (δ 1 8 O = 5. 5 ± 0. 2 ‰; Eil er, 2 0 0 1 ). T a ki n g all of 6 1 9  

t h e s e  t hi n g s  i n t o  c o n si d e r ati o n,  i t  i s  a p p a r e n t  t h at  m o s t  p ri m a r y  m at e ri al s  f r o m  6 2 0  

c a r b o n a c e o u s  c h o n d ri t e s  e x p e ri e n c e d  v e r y  li ttl e  m a s s -d e p e n d e n t  o x y g e n  i s ot o p e  6 2 1  

f r a cti o n ati o n. F u rt h e r, if all of t h e  af o r e m e n ti o n e d  m at e ri al s wi t hi n A cf e r 0 9 4 a r e i n d e e d 6 2 2  

r el at e d,  i t  s u g g e s t s  t h at  1 6 O- ri c h n e b ul a r  g a s  a n d  1 6 O- p o o r  ( o r 1 7, 1 8 O- ri c h)  p ri m o r di al 6 2 3  

v ol atil e s  r e p r e s e n t  e n d m e m b e r s  of  a  li n e a r  t r e n d  (i. e.,  t h e  P C M li n e) wi t h  a  m a s s -6 2 4  

i n d e p e n d e n t f r a cti o n at e d sl o p e of ~ 1. 0.  6 2 5  

 6 2 6  

6. C o n cl u si o n s6. C o n cl u si o n s   6 2 7  

O x y g e n i s ot o p e r ati o s a n d 2 6 Al -2 6 M g i s ot o p e s y s t e m ati c s of m ul ti pl e p h a s e s i n  6 2 8  

r ef r a ct o r y i n cl u si o n s ( 5 s pi n el -m elili t e -ri c h C A I s , 1 p y r o x e n e-a n o rt hi t e -ri c h C A I,  a n d 4 6 2 9  

A O A s ) f r o m t h e l e a s t m et a m o r p h o s e d c a r b o n a c e o u s c h o n d ri t e s, A cf e r 0 9 4 ( C-u n g r o u p e d 6 3 0  

3. 0 0) a n d Y -8 1 0 2 0 ( C O 3. 0 5) , w e r e i n v e s ti g at e d. 6 3 1  



All  s a m pl e s  h a v e  1 6 O- ri c h  si g n at u r e s b u t e x hi bi t s u btl e  a n d  d et e ct a bl e  6 3 2  

v a ri a bili t i e s i n  o x y g e n  i s ot o p e  r ati o s  a m o n g  i n di vi d u al  r ef r a ct o r y  i n cl u si o n s  6 3 3  

(∆ 1 7 O = − 2 2. 0 ± 0. 5 ‰  t o  − 2 4. 3 ± 0. 3 ‰ ). T hi s  i n di c at e s  sli g h t  o x y g e n  i s ot o p e  v a ri ati o n s  of 6 3 4  

e a rl y s ol a r  n e b ul a r g a s w h e r e r ef r a ct o r y i n cl u si o n s f o r m e d.  6 3 5  

Wi t hi n a n al yti c al u n c e rt ai n ti e s, o x y g e n i s ot o p e r ati o s of ri m s pi n el a n d di o p si d e  6 3 6  

m at c h  t h o s e of i n t e ri o r p h a s e s i n e a c h C A I. I n a d di ti o n, n o a p p a r e n t m a s s -d e p e n d e nt 6 3 7  

i s ot o pi c  f r a cti o n ati o n  i s  o b s e r v e d  i n  O  a n d  M g  i sot o p e  r ati o s  of  ri m  p h a s e s .  T h e s e 6 3 8  

o b s e r v ati o n s d o n ot  a g r e e  wi t h fl a s h h e ati n g a n d e v a p o r ati v e l o s s of r el ati v el y v ol atil e 6 3 9  

el e m e n t s  d u ri n g  ri m  f o r m ati o n.  I n s t e a d, o u r r e s ul t s  s u g g e s t  t h at  c o n d e n s ati o n  a n d  6 4 0  

a g g r e g ati o n of i n t e ri o r p h a s e s , a s w ell a s t h e f o r m ati o n of C A I  ri m s t r u ct u r e s,  o c c u r r e d 6 4 1  

i n t h e s a m e e n vi r o n m e n t. 6 4 2  

I nf e r r e d i ni ti al 2 6 Al/ 2 7 Al r ati o s of s pi n el -m elili t e -ri c h C A I s (( 4. 0 8 ± 0. 7 5) × 1 0 − 5  t o 6 4 3  

( 5. 0 5 ± 0. 1 8) × 1 0− 5 )  a r e  sli g h tl y  l o w e r  t h a n  t h e  c a n o ni c al  v al u e  of  5. 2 5 × 1 0 − 5 . A s m o st 6 4 4  

s pi n el -m elili t e -ri c h C A I s h a v e  n o p et r ol o gi c e vi d e n c e  f o r r e-m el ti n g aft e r c o n d e n s ati o n, 6 4 5  

t h e  o b s e r v e d  l o w e r  i ni ti al  2 6 Al/ 2 7 Al  r ati o s  i n di c at e  ei t h e r  c o n d e n s ati o n  of  r ef r a ct o r y  6 4 6  

p h a s e s  o c c u r r e d  u p  t o  ~ 0. 3  M a  aft e r  c a n o ni c al  C A I s  o r  t h e y  f o r m e d  b ef o r e  2 6 Al  w a s  6 4 7  

h o m o g e n e o u sl y di s t ri b u t e d i n t h e S ol a r n e b ul a . 6 4 8  

A p y r o x e n e -a n o rt hi t e -ri c h  C A I,  G 9 2,  h a s  a n 1 6 O- ri c h  si g n at u r e  6 4 9  

(∆ 1 7 O = − 2 3. 3 ± 0. 3 ‰ ), li k e  ot h e r  C A I s.  H o w e v e r,  t h e r el ati v el y  l o w  ( 2 6 Al/ 2 7 Al) 0  of G 9 2  6 5 0  

a n o rt hi t e  (( 5. 2 1 ± 0. 5 4) × 1 0− 6 ), i n di c at e s i t f o r m e d b y a r e a cti o n b et w e e n p ri m a r y m elili t e 6 5 1  

a n d 1 6 O- ri c h n e b ul a r g a s a p p r o xi m at el y  2. 3 M a aft e r C A I f o r m ati o n.  T h e o x y g e n  a n d 6 5 2  

m a g n e si u m i s ot o p e si g n at u r e s s u g g e s t t h e e xi s t e n c e of 1 6 O- ri c h g a s i n a n e n vi r o n m e n t 6 5 3  

d e v oi d  of  f e r r o m a g n e si a n  d u s t.  T hi s e n vi r o n m e n t w a s  p r e s e n t  d u ri n g  t h e  ti mi n g  of  6 5 4  

c h o n d r ul e f o r m ati o n.  6 5 5  

Fi n all y, a v e r a g e d o x y g e n i s ot o p e r ati o s of r ef r a ct o r y i n cl u si o n s a r e  di s t ri b u t e d 6 5 6  

al o n g t h e C C A M li n e a n d t h e P C M li n e , w hi c h i s t h e r e g r e s si o n li n e b a s e d o n  o x y g e n 6 5 7  

i s ot o p e d at a f r o m A cf e r 0 9 4 c h o n d r ul e s . Si n c e t h e P C M li n e al s o o v e rl a p s wi t h o x y g e n 6 5 8  

i s ot o p e d at a  of  e xt r e m el y 1 6 O- p o o r  c o s mi c  s y m pl e cti t e s  ( ∆ 1 7 O ~ 8 3 ‰ ), t h e li n e a r 6 5 9  

r el ati o n s hi p  a m o n g t h e s e m at e ri al s i s i n t e r p r et e d t o  r e p r e s e n t mi xi n g of t w o e n d m e m b e r 6 6 0  

c o m p o n e n t s  i n t h e s ol a r n e b ul a: t h at of 1 6 O- ri c h s ol a r n e b ul a r g a s,  a n d t h at of e xt r e m el y  6 6 1  

1 6 O- p o o r ( o r 1 7, 1 8 O- ri c h)  p ri m o r di al v ol atil e s . 6 6 2  

 6 6 3  

A c k n o wl e d g e m e n tA c k n o wl e d g e m e n t ss   6 6 4  

W e  t h a n k  J o h n  W.  V all e y  a n d  Mi c h a el  J.  S pi c u z z a  f o r  o x y g e n  i s ot o p e  a n al y s e s  of 6 6 5  

s t a n d a r d s  b y a l a s e r fl u o ri n ati o n a n d g a s -s o u r c e m a s s s p e ct r o m et r y, J o h n F o u r n ell e f o r 6 6 6  

a s si s t a n c e  wi t h  E P M A  a n al y si s , a n d  Ji m  K e r n  f o r  t e c h ni c al  a s si s t a n c e  wi t h  S I M S  6 6 7  



operation. We are grateful to Dr. K. Nagashima, an anonymous reviewer, and the 668 
associate editor Dr. A. N. Krot  for constructive review comments and suggestions. This 669 
work is supported by the NASA Cosmochemis try program (NNX07AI46G, NNX11AG62G , 670 
NTK). WiscSIMS is partly supported by NSF (EAR03 -19230, EAR07- 44079, EAR10-671 
53466).  672 



Figure caption s 673 
Figure 1 : Backscattered electron images of spinel- melilite-rich CAI s (a) G5, (b) G16, (c) 674 
G49, (d) G104, (e) Y81020 -E-8, and enlarged views of (f) a large nodule in G16, (g) a small 675 
nodule in G16, (h)  the melilite-rich interior of G104, and (i)  the spinel layer in Y81020 -676 
E-8. Scale bars indicate 100 µ m for (a) to (e), 50 µm for (f) to  (h ), and 20  µm for ( i), 677 
respectively. Abbreviations: mel=melilite, sp=spinel, an=anorthite, di=(Al -Ti-rich) 678 
diopside, ol=olivine, and pv=perovskite  679 
 680 
Figure 2 : Backscattered electron images of (a) diopside-anorthite-rich CAI  G92, and (b) 681 
enlarged view of G92 . Scale bars indicate 100 µm for (a) and 50  µm for (b), respectively . 682 
Abbreviations are same as Fig.1.  683 
 684 
Figure 3 : Backscattered electron images of AOAs (a) G17, ( b) G28, ( c) G44, (d ) G58 , and 685 
enlarged views of (e) anorthite -free Ca -, Al -rich domain in G17, (f) anorthite -bearing Ca- , 686 
Al-rich d omains in G44 . Scale bars indicate 100 µm for (a) to (d) and 50 µm for (e) and 687 
(f), respectively . Abbreviations are the same as in Fig.1 688 
 689 
Figure 4: Oxygen three -isotope diagrams . A ll the measured data in this study  are shown 690 
in (a). A dotted rectangle at the lower left in (a) indicates the upper limit of the ranges of 691 
the enlarged views, (b) to (k). Diagrams from individual spinel- melilite-rich CAIs  (sp-mel 692 
CAIs) include Y81020-E-8 (b), G5  (c), G16  (d), G49  (e), G104  (f). G92 (g) is a  pyroxene-693 
anorthite-rich CAI  (px-an CAI) . AOAs include G17 (h), G28  (i), G44  (j), G58  (k). Reference 694 
lines are Terrestrial F ractionation (TF, continuous line in (a) ), Carbonaceous Chondrite 695 
Anhydrous Mineral (CCAM , dashed line), Primitive Chondrule Mineral (PCM, solid line), 696 
and Young and Russell (Y&R , gray solid  line). Errors are 95% confidence . 697 
 698 
Figure 5 : Comparison of (a) ∆17O and (b) δ 18OVSMOW values between averaged values of 699 
individual CAIs and their rim s. CAIs data are shown in ascending order of average ∆ 17O 700 
values. Errors are 95% confidence.  701 
 702 
Figure 6: 26Al-26Mg isotope systematics of (a) Y81020-E-8 , (b) G5, (c) G49, (d) and (e) G16, 703 
(f) G104, (g) and (h) G92, (i) G17. Inferred ( 26Al/27Al)0 values are shown. Formulae of 704 
individual regression lines are provided in Table 2. Similar scale s of X and Y axes are  705 
applied to each plot  for proper comparisons of slope s from individual regression lines . 706 
Errors are 95% confidence.  707 
 708 



Figure 7: (26Al/27Al)0 vs. ∆17O of the samples (CAIs and AOA)  studied. Filled gray circles 709 
are data from five spinel- melilite-rich CAIs G5, G16, G49, G104, and Y -81020-E-8. Open 710 
squares are data from  AOAs G17, G28, G44, and G58. Two filled black circles represent 711 
(26Al/27Al)0 values of the diopside -melilite (5.2 ×10−5) and the melilite -anorthite (5.2 ×10−6) 712 
systems in CAI G92 . Chondrule data from Acfer 094 reported by [1] Ushikubo et al. 713 
(2012) and [2] Ushikubo et al. ( 2013) are also shown  for comparison . Vertical dotted line 714 
indicates the canonical value of ( 26Al/27Al)0 (5.25×10−5). Errors are 95% confidence.  715 
 716 
Figure 8: Oxygen three -isotope plots of (a) average values of individual CAIs and AOAs 717 
and (b) individual AOA analyses with a large primary beam and multiple -FC detectors.  718 
Errors are 95% confidence.  719 
 720 
Figure 9:  Oxygen three -isotope plots of refractory inclusions (averaged values of CAIs 721 
and AOAs, this study), chondrules (averaged values and individual relict olivine data, 722 
Ushikubo et al., 2012), and cosmic symplectites (spot analysis data of COS, Sakamoto et 723 
al., 2007) from Acfer 094.  Four reference lines are same as Fig . 4.  724 
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Figure 6
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T a bl e  1: O x y g e n  i s o t o p e  r a ti o s o f  R e f r a c t o r y I n cl u si o n s f r o m A c f e r 0 9 4.T a bl e  1: O x y g e n  i s o t o p e  r a ti o s o f  R e f r a c t o r y I n cl u si o n s f r o m A c f e r 0 9 4.

S a m pl e/ A n al y si s # a P h a s e b δδ 1 8 O V S M O W ( 2 S E) δδ 1 7 O V S M O W ( 2 S E) ∆∆ 1 7 O ( 2 S E) N ot e

(‰‰ ) (‰‰ ) (‰‰ )

C AI s

Y 8 1 0 2 0 - E - 8Y 8 1 0 2 0 - E - 8
# 6 2 S p - 4 5. 7 ± 1. 3 - 4 8. 2 ± 0. 9 - 2 4. 5 ± 0. 5

# 6 3 S p (ri m) - 4 7. 1 ± 1. 3 - 4 8. 2 ± 0. 9 - 2 3. 7 ± 0. 5

# 6 1 M el - 4 5. 9 ± 1. 3 - 4 8. 2 ± 0. 9 - 2 4. 3 ± 0. 5

# 6 6 M el - 4 7. 5 ± 1. 3 - 4 9. 4 ± 0. 9 - 2 4. 7 ± 0. 5

# 6 7 M el (ri m) - 2 5. 3 ± 1. 3 - 2 7. 4 ± 0. 9 - 1 4. 3 ± 0. 5

A v e r a g eA v e r a g e cc - 4 6. 6 ± 0. 7 - 4 8. 5 ± 0. 5 - 2 4. 3 ± 0. 3 e x cl u di n g # 6 7

G 5G 5
# 7 5 F a s (ri m) - 4 4. 5 ± 3. 1 - 4 7. 6 ± 1. 0 - 2 4. 4 ± 2. 2

# 7 7 F a s (ri m) - 4 4. 8 ± 3. 1 - 4 7. 2 ± 1. 0 - 2 3. 9 ± 2. 2

# 7 2 S p - 4 5. 0 ± 3. 1 - 4 7. 7 ± 1. 0 - 2 4. 3 ± 2. 2

# 7 4 S p - 4 5. 3 ± 3. 1 - 4 7. 8 ± 1. 0 - 2 4. 3 ± 2. 2

# 7 3 M el - 4 3. 7 ± 3. 1 - 4 6. 4 ± 1. 0 - 2 3. 7 ± 2. 2

# 7 6 M el - 4 4. 9 ± 3. 1 - 4 6. 6 ± 1. 0 - 2 3. 3 ± 2. 2

A v e r a g eA v e r a g e cc - 4 4. 7 ± 1. 3 - 4 7. 2 ± 0. 4 - 2 4. 0 ± 0. 9

G 1 6G 1 6
# 8 4 F a s (ri m) - 4 4. 3 ± 0. 7 - 4 6. 0 ± 1. 1 - 2 2. 9 ± 1. 3

# 8 3 M el - 4 5. 7 ± 0. 7 - 4 6. 5 ± 1. 1 - 2 2. 7 ± 1. 3

# 8 6 M el - 4 5. 3 ± 0. 7 - 4 6. 6 ± 1. 1 - 2 3. 0 ± 1. 3

# 8 7 M el - 4 5. 5 ± 0. 7 - 4 6. 8 ± 1. 1 - 2 3. 2 ± 1. 3

# 8 2 A n - 4 4. 2 ± 0. 7 - 4 6. 4 ± 1. 1 - 2 3. 4 ± 1. 3

A v e r a g eA v e r a g e cc - 4 5. 0 ± 0. 4 - 4 6. 5 ± 0. 5 - 2 3. 0 ± 0. 6

G 4 9G 4 9
# 9 4 F a s - 3 9. 4 ± 0. 7 - 4 2. 5 ± 1. 0 - 2 1. 9 ± 1. 1

# 9 7 F a s (ri m) - 4 0. 6 ± 0. 7 - 4 3. 5 ± 1. 0 - 2 2. 3 ± 1. 1

# 9 3 M el - 4 1. 5 ± 0. 7 - 4 4. 1 ± 1. 0 - 2 2. 5 ± 1. 1

# 9 5 M el - 4 1. 8 ± 0. 7 - 4 3. 9 ± 1. 0 - 2 2. 2 ± 1. 1

# 9 8 M el - 4 1. 0 ± 0. 7 - 4 2. 5 ± 1. 0 - 2 1. 2 ± 1. 1

A v e r a g eA v e r a g e cc - 4 0. 9 ± 0. 4 - 4 3. 3 ± 0. 5 - 2 2. 0 ± 0. 5

G 9 2G 9 2
# 1 0 5 F a s (ri m) - 4 3. 7 ± 0. 6 - 4 6. 3 ± 0. 7 - 2 3. 5 ± 0. 9

# 1 0 8 F a s (ri m) - 4 4. 6 ± 0. 6 - 4 6. 1 ± 0. 7 - 2 2. 9 ± 0. 9

# 1 1 0 F a s - 4 4. 3 ± 0. 6 - 4 6. 2 ± 0. 7 - 2 3. 1 ± 0. 9

# 1 0 6 M el - 4 5. 7 ± 0. 6 - 4 7. 7 ± 0. 7 - 2 4. 0 ± 0. 9

# 1 0 7 M el - 4 6. 3 ± 0. 6 - 4 7. 4 ± 0. 7 - 2 3. 4 ± 0. 9

# 1 0 3 A n - 4 5. 3 ± 0. 6 - 4 6. 3 ± 0. 7 - 2 2. 7 ± 0. 9

# 1 0 4 A n - 4 5. 2 ± 0. 6 - 4 7. 0 ± 0. 7 - 2 3. 5 ± 0. 9

# 1 0 9 A n - 4 5. 1 ± 0. 6 - 4 7. 1 ± 0. 7 - 2 3. 7 ± 0. 9

A v e r a g eA v e r a g e cc - 4 5. 0 ± 0. 4 - 4 6. 8 ± 0. 3 - 2 3. 3 ± 0. 3

G 1 0 4G 1 0 4
# 1 1 9 F a s (ri m) - 4 4. 9 ± 1. 0 - 4 7. 1 ± 0. 8 - 2 3. 8 ± 0. 7

# 1 1 5 M el - 4 4. 7 ± 1. 0 - 4 7. 5 ± 0. 8 - 2 4. 3 ± 0. 7

# 1 1 8 M el - 4 5. 2 ± 1. 0 - 4 7. 6 ± 0. 8 - 2 4. 1 ± 0. 7

# 1 2 0 M el - 4 4. 7 ± 1. 0 - 4 5. 6 ± 0. 8 - 2 2. 3 ± 0. 7

A v e r a g eA v e r a g e cc - 4 4. 8 ± 0. 6 - 4 7. 0 ± 0. 4 - 2 3. 6 ± 0. 4

A O A s
G 1 7

A O A s
G 1 7
# 1 2 9 F o - 4 6. 1 ± 1. 1 - 4 8. 2 ± 1. 7 - 2 4. 3 ± 1. 4

# 1 3 0 F o ( e d g e) - 4 6. 7 ± 1. 1 - 4 7. 5 ± 1. 7 - 2 3. 3 ± 1. 4

# 3 1 6 ( 2 n d s e s si o n) d F o ( e d g e) - 4 5. 5 ± 0. 3 - 4 7. 4 ± 0. 6 - 2 3. 7 ± 0. 6

# 1 2 8 F a s - 4 5. 0 ± 1. 1 - 4 7. 4 ± 1. 7 - 2 4. 0 ± 1. 4

# 1 3 1 F a s - 4 5. 4 ± 1. 1 - 4 7. 0 ± 1. 7 - 2 3. 4 ± 1. 4

# 3 1 5 ( 2 n d s e s si o n) d F a s - 4 5. 5 ± 0. 3 - 4 7. 1 ± 0. 6 - 2 3. 5 ± 0. 6

# 1 2 7 S p - 4 5. 7 ± 1. 1 - 4 7. 4 ± 1. 7 - 2 3. 7 ± 1. 4

A v e r a g eA v e r a g e cc - 4 5. 5 ± 0. 3 - 4 7. 3 ± 0. 4 - 2 3. 6 ± 0. 4

G 2 8G 2 8
# 1 3 7 F o ( e d g e) - 4 6. 6 ± 0. 9 - 4 8. 3 ± 1. 6 - 2 4. 0 ± 1. 5

# 1 4 0 F o - 4 7. 4 ± 0. 9 - 4 7. 7 ± 1. 6 - 2 3. 0 ± 1. 5

# 3 1 7 ( 2 n d s e s si o n) d F o ( e d g e) - 4 6. 3 ± 0. 3 - 4 7. 8 ± 0. 6 - 2 3. 7 ± 0. 6

# 3 1 8 ( 2 n d s e s si o n) d F o ( e d g e) - 4 6. 4 ± 0. 3 - 4 8. 0 ± 0. 6 - 2 3. 9 ± 0. 6

# 1 3 8 F a s - 4 6. 6 ± 0. 9 - 4 7. 5 ± 1. 6 - 2 3. 3 ± 1. 5

# 1 4 2 F a s - 4 7. 3 ± 0. 9 - 4 8. 5 ± 1. 6 - 2 3. 9 ± 1. 5

# 1 6 3 A n - 4 5. 1 ± 0. 6 - 4 7. 9 ± 0. 9 - 2 4. 5 ± 0. 9

A v e r a g eA v e r a g e cc - 4 6. 3 ± 0. 3 - 4 7. 9 ± 0. 4 - 2 3. 9 ± 0. 3

G 4 4G 4 4
# 1 4 8 F o ( e d g e) - 4 6. 5 ± 0. 5 - 4 9. 1 ± 0. 7 - 2 5. 0 ± 0. 8

# 3 1 9 ( 2 n d s e s si o n) e F o ( e d g e) - 4 5. 2 ± 0. 3 - 4 7. 4 ± 0. 6 - 2 3. 9 ± 0. 6

# 1 5 0 F a s - 4 6. 2 ± 0. 5 - 4 8. 4 ± 0. 7 - 2 4. 4 ± 0. 8

# 1 5 1 A n - 4 5. 7 ± 0. 5 - 4 7. 2 ± 0. 7 - 2 3. 5 ± 0. 8

A v e r a g eA v e r a g e cc - 4 5. 6 ± 0. 4 - 4 8. 0 ± 0. 4 - 2 4. 2 ± 0. 4

G 5 8G 5 8
# 1 5 7 F o - 4 7. 1 ± 0. 6 - 4 8. 0 ± 0. 9 - 2 3. 5 ± 0. 9

# 1 5 9 F o - 4 6. 6 ± 0. 6 - 4 8. 2 ± 0. 9 - 2 3. 9 ± 0. 9

# 1 6 0 F o - 4 7. 0 ± 0. 6 - 4 8. 8 ± 0. 9 - 2 4. 4 ± 0. 9

# 3 2 0 ( 2 n d s e s si o n) d F o ( e d g e) - 4 5. 5 ± 0. 3 - 4 6. 8 ± 0. 6 - 2 3. 2 ± 0. 6

# 1 6 2 F a s - 4 5. 9 ± 0. 6 - 4 7. 3 ± 0. 9 - 2 3. 5 ± 0. 9

# 1 5 8 F a s - 4 4. 5 ± 0. 6 - 4 6. 1 ± 0. 9 - 2 3. 0 ± 0. 9

A v e r a g eA v e r a g e cc - 4 5. 9 ± 0. 4 - 4 7. 5 ± 0. 4 - 2 3. 5 ± 0. 3

a: A n al y si s p oi nt s ar e s h o w n i n  Fi g. E A 2 .
b: A b br e vi ati o n s; S p = s pi n el, M el = m elilit e, F a s = Al - Ti -ri c h di o s pi d e, A n = a n ort hit e, F o =f or st eriti c oli vi n e.

c: U n c ert ai nt y of ∆ 1 7 O i s t h e err or of t h e w ei g ht e d m e a n v al u e. A d diti o n al u n c ert ai nti e s of t h e i n str u m e n                                      

d: M ulti pl e - F C s a n al y si s wit h a hi g h i nt e n sit y b e a m.  

 



T a bl e  2: Al - M g i s o t o p e  s y s t e m a ti c s o f  R e f r a c t o r y I n cl u si o n s f r o m A c f e r 0 9 4T a bl e  2: Al - M g i s o t o p e  s y s t e m a ti c s o f  R e f r a c t o r y I n cl u si o n s f r o m A c f e r 0 9 4

S a m pl e/ A n al y si s # a P h a s e b δδ 2 5 M g D  S M 3 ( 2 S E)
2 7 Al/ 2 4 M g ( 2 S E) δδ 2 6 M g *

( 2 S E) N ot e

C AI s

Y 8 1 0 2 0 - E - 8Y 8 1 0 2 0 - E - 8

# 1 0 0  ( 2 n d s e s si o n)c S p (ri m) 1. 1 7 ± 0. 1 4 2. 5 8 3 ± 0. 0 2 7 0. 9 9 ± 0. 1 4

# 1 0 1  ( 2 n d s e s si o n)c S p (ri m) 1. 3 1 ± 0. 1 4 2. 6 3 7 ± 0. 0 2 7 0. 9 3 ± 0. 1 1

# 9, 1 0 d M el 1. 2 1 ± 0. 4 7 2 9. 6 2 ± 0. 2 9 1 0. 9 9 ± 0. 7 9 a v er a g e

# 1 1 M el 0. 9 5 ± 0. 6 2 3 4. 1 7 ± 0. 9 5 1 2. 2 5 ± 1. 0 9

# 1 2, 1 3 d M el - 1. 3 8 ± 0. 4 3 2 0. 7 0 ± 0. 2 4 7. 8 2 ± 0. 7 1 a v er a g e

# 1 4 M el - 0. 9 3 ± 0. 3 9 1 5. 6 5 ± 0. 1 5 5. 4 2 ± 0. 6 2

# 1 5 M el - 0. 0 9 ± 0. 5 0 2 8. 7 4 ± 0. 7 0 1 0. 4 2 ± 0. 8 3

# 1 6 M el 0. 3 6 ± 0. 4 3 1 5. 4 7 ± 0. 2 1 6. 4 0 ± 0. 6 8

# 1 7 M el 0. 8 2 ± 0. 5 9 3 3. 5 9 ± 0. 4 7 1 1. 6 6 ± 1. 0 6

# 1 8 M el - 1. 3 6 ± 0. 5 0 2 8. 7 9 ± 0. 6 0 1 0. 0 2 ± 0. 8 6

a v e r a g e  & i s o c h r o na v e r a g e  & i s o c h r o n ee 0. 2 1 ± 2. 1 6 δδ 2 6 M g * =( 0. 3 6 3 ±± 0. 0 1 3) ×× (2 7 Al/ 2 4 M g) +( 0. 0 1 ±± 0. 1 0)

(2 6 Al/ 2 7 Al) 0 =( 5. 0 5 ± 0. 1 8) × 1 0 − 5− 5

G 5G 5

# 7 8  ( 2 n d s e s si o n)c F a s (ri m) - 0. 9 4 ± 0. 2 8 0. 3 3 7 ± 0. 0 0 6 0. 1 8 ± 0. 2 0

# 7 7  ( 2 n d s e s si o n)c S p - 0. 7 8 ± 0. 2 8 2. 6 2 4 ± 0. 0 2 7 0. 8 0 ± 0. 1 6

# 5 2 M el - 1. 2 2 ± 1. 6 0 7 2. 0 1 ± 1. 8 6 2 5. 4 8 ± 3. 2 1 1 0 0 c y cl e s
# 5 3 M el 2. 8 7 ± 0. 8 8 5 0. 5 5 ± 0. 5 5 1 6. 3 8 ± 1. 6 0

# 5 6 M el - 1. 1 3 ± 1. 0 1 4 5. 9 8 ± 1. 0 1 1 6. 4 5 ± 1. 8 7 1 0 0 - 3 0 0 c y

a v e r a g e  & i s o c h r o na v e r a g e  & i s o c h r o n ee - 0. 2 4 ± 3. 5 0 δδ 2 6 M g * =( 0. 3 3 9 ±± 0. 0 2 2) ×× (2 7 Al/ 2 4 M g) −− ( 0. 0 3±± 0. 1 3)

(2 6 Al/ 2 7 Al) 0 =( 4. 7 2 ± 0. 3 1) × 1 0 − 5− 5

G 1 6

# 8 0  ( 2 n d s e s si o n)c F a s - 1. 1 8 ± 0. 2 8 0. 7 1 7 ± 0. 0 0 8 0. 3 3 ± 0. 1 9

# 2 0 M el 0. 4 7 ± 0. 6 7 2 8. 0 6 ± 0. 5 0 9. 0 8 ± 1. 3 0

# 2 1 M el 0. 0 8 ± 0. 6 5 3 1. 9 0 ± 0. 4 8 1 1. 0 4 ± 1. 2 0

# 2 2 M el - 0. 7 1 ± 1. 0 3 2 7. 7 9 ± 0. 2 1 1 1. 1 9 ± 2. 1 1 4 1 - 1 5 0 c y c
# 2 3 M el - 0. 6 3 ± 0. 6 1 2 0. 7 7 ± 0. 5 2 7. 4 5 ± 1. 1 2

# 2 4 M el - 0. 3 6 ± 0. 6 0 2 3. 0 7 ± 0. 7 2 7. 6 5 ± 1. 0 9

# 2 5 M el 0. 1 4 ± 0. 6 8 2 5. 6 9 ± 0. 4 5 8. 8 6 ± 1. 2 5

# 2 6 M el 0. 4 1 ± 0. 8 6 2 1. 8 7 ± 1. 3 8 7. 2 9 ± 1. 4 5

# 2 8 M el - 1. 4 6 ± 0. 6 2 3 0. 4 8 ± 0. 2 6 1 0. 7 6 ± 1. 2 3

# 2 9 A n 0. 3 0 ± 8. 9 0 1 5 6 1 ± 1 6 5 3 2 ± 2 5 1 - 1 9 c y cl e

a v e r a g e  & i s o c h r o na v e r a g e  & i s o c h r o n e, fe, f - 0. 3 6 ± 1. 3 8 δδ 2 6 M g * =( 0. 3 4 2 ±± 0. 0 1 2) ×× (2 7 Al/ 2 4 M g) +( 0. 0 9 ±± 0. 1 8)

(2 6 Al/ 2 7 Al) 0 =( 4. 7 6 ± 0. 1 7) × 1 0 − 5− 5

G 4 9

# 8 2  ( 2 n d s e s si o n)c F a s - 0. 1 3 ± 0. 2 8 0. 8 5 9 ± 0. 0 2 8 0. 1 9 ± 0. 2 1

# 4 8 M el 1. 0 9 ± 0. 5 6 1 7. 8 2 ± 0. 1 7 5. 4 8 ± 1. 0 1

# 5 0 M el 2. 2 4 ± 0. 5 6 1 0. 2 1 ± 1. 4 3 2. 2 5 ± 0. 9 2

a v e r a g e  & i s o c h r o na v e r a g e  & i s o c h r o n ee 1. 0 7 ± 2. 3 7 δδ 2 6 M g * =( 0. 2 9 3 ±± 0. 0 5 4) ×× (2 7 Al/ 2 4 M g) −− ( 0. 0 8±± 0. 2 2)

(2 6 Al/ 2 7 Al) 0 =( 4. 0 8 ± 0. 7 5) × 1 0 − 5− 5

G 9 2

# 6 9  ( 2 n d s e s si o n)c F a s (ri m) - 0. 4 4 ± 0. 2 4 0. 2 7 1 ± 0. 0 1 2 0. 3 3 ± 0. 2 1

# 7 0  ( 2 n d s e s si o n)c F a s - 0. 5 5 ± 0. 2 4 1. 4 7 2 ± 0. 0 4 8 0. 6 5 ± 0. 1 9

# 7 1  ( 2 n d s e s si o n)c F a s - 0. 6 3 ± 0. 2 4 0. 8 0 7 ± 0. 0 2 1 0. 5 0 ± 0. 1 9

# 7 2  ( 2 n d s e s si o n)c F a s (ri m) - 0. 3 9 ± 0. 2 4 0. 3 3 5 ± 0. 0 1 1 0. 2 3 ± 0. 1 6

# 3 8 M el 1. 0 3 ± 0. 7 1 6. 4 3 ± 1. 1 7 2. 8 2 ± 1. 1 0

# 3 3 A n 2. 6 9 ± 5. 8 2 1 3 2 4 ± 1 4 5 8 ± 1 2 1 - 8 5 c y cl e
# 3 4 A n 1. 8 3 ± 4. 0 9 1 3 1 0 ± 1 4 4 6. 0 ± 8. 7

# 3 6 A n 3. 1 5 ± 2. 9 0 8 2 2. 5 ± 8. 7 3 4. 8 ± 5. 2

# 3 7 A n 9. 7 4 ± 4. 2 6 7 0 5. 9 ± 7. 7 2 9. 4 ± 8. 0 1 - 1 0 0 c y cl

a v e r a g e  & i s o c h r o na v e r a g e  & i s o c h r o n e, fe, f - 0. 1 9 ± 1. 3 8 δδ 2 6 M g * =( 0. 3 8 ±± 0. 1 4) ×× (2 7 Al/ 2 4 M g) +( 0. 1 5 ±± 0. 1 4) F a s & M el

(2 6 Al/ 2 7 Al) 0 =( 5. 2 ± 2. 0) × 1 0 − 5− 5 F a s & M el

δδ 2 6 M g * =( 0. 0 3 7 4 ±± 0. 0 0 3 9) ×× (2 7 Al/ 2 4 M g) +( 2. 6 ±± 1. 1) M el & A n

(2 6 Al/ 2 7 Al) 0 =( 5. 2 1 ± 0. 5 4) × 1 0 − 6− 6 M el & A n

G 1 0 4

# 4 0 M el 1. 0 9 ± 0. 6 8 3 7. 4 3 ± 0. 4 2 1 1. 9 4 ± 1. 1 9

# 4 1 M el 0. 9 1 ± 0. 5 6 2 4. 2 3 ± 1. 4 1 8. 8 1 ± 0. 9 9

# 4 4 M el 1. 3 7 ± 0. 6 8 3 5. 9 4 ± 0. 6 2 1 1. 3 3 ± 1. 2 9 1 - 2 1 1 c y cl
# 4 6 M el 1. 5 3 ± 0. 4 8 2 4. 3 1 ± 0. 3 3 7. 4 6 ± 0. 8 0

# 4 7 M el 1. 5 6 ± 0. 4 0 2 1. 4 2 ± 0. 1 6 7. 1 3 ± 0. 7 0

a v e r a g e  & i s o c h r o na v e r a g e  & i s o c h r o n ee
1. 2 9 ± 0. 5 6 δδ 2 6 M g * =( 0. 3 2 5 ±± 0. 0 1 5) ×× (2 7 Al/ 2 4 M g) −− ( 0. 0 3±± 0. 0 1) A s s u mi n g t h    

(2 6 Al/ 2 7 Al) 0 =( 4. 5 3 ± 0. 2 1) × 1 0 − 5− 5

A O A sA O A s
G 1 7

# 6 4  ( 2 n d s e s si o n)c F o (ri m) 0. 3 6 ± 0. 2 4 0. 0 1 ± 0. 1 2

# 6 5  ( 2 n d s e s si o n)c F o (ri m) 0. 5 9 ± 0. 2 4 0. 0 4 ± 0. 1 2

# 6 6  ( 2 n d s e s si o n)c F a s - 0. 3 7 ± 0. 2 4 0. 3 3 2 ± 0. 0 0 5 0. 0 8 ± 0. 1 6

# 6 8  ( 2 n d s e s si o n)c F a s - 0. 3 6 ± 0. 2 4 0. 3 8 5 ± 0. 0 0 6 0. 0 4 ± 0. 1 6

# 6 7  ( 2 n d s e s si o n)c S p 0. 9 8 ± 0. 2 4 2. 4 8 0 ± 0. 0 2 7 0. 9 5 ± 0. 1 2

a v e r a g e  & i s o c h r o na v e r a g e  & i s o c h r o n ee 0. 2 4 ± 1. 1 9 δδ 2 6 M g * =( 0. 3 8 1 ±± 0. 0 5 8) ×× (2 7 Al/ 2 4 M g) −− ( 0. 0 0 6±± 0. 0 6 9)

(2 6 Al/ 2 7 Al) 0 =( 5. 3 2 ± 0. 8 1) × 1 0 − 5− 5

G 2 8

# 8 3  ( 2 n d s e s si o n)c F o (ri m) 0. 6 8 ± 0. 2 8 0. 0 4 ± 0. 1 6

# 8 4  ( 2 n d s e s si o n)c F o (ri m) 0. 3 4 ± 0. 2 8 0. 0 7 ± 0. 1 6

a v e r a g ea v e r a g e ee 0. 5 1 ± 0. 4 8 0. 0 6 ± 0. 1 2

G 4 4

# 8 9  ( 2 n d s e s si o n)c F o (ri m) 1. 1 2 ± 0. 1 3 0. 0 0 ± 0. 0 8

# 9 2  ( 2 n d s e s si o n)c F o (ri m) 0. 9 2 ± 0. 1 3 0. 0 3 ± 0. 0 8

a v e r a g e  & i s o c h r o na v e r a g e  & i s o c h r o n ee 1. 0 2 ± 0. 2 8 0. 0 2 ± 0. 0 6

G 5 8

# 9 3  ( 2 n d s e s si o n)c F o (ri m) 0. 6 5 ± 0. 1 3 0. 0 8 ± 0. 0 7

# 9 4  ( 2 n d s e s si o n)c F o 0. 5 5 ± 0. 1 3 0. 0 8 ± 0. 0 9

a v e r a g e  & i s o c h r o na v e r a g e  & i s o c h r o n ee 0. 6 0 ± 0. 1 3 0. 0 8 ± 0. 0 6

a: A n al y si s p oi nt s ar e s h o w n i n  Fi g. E A 2 .
b: A b br e vi ati o n s; S p = s pi n el, M el = m elilit e, F a s = Al - Ti -ri c h di o s pi d e, A n = a n ort hit e, F o =f or st eriti c oli vi n e.
c: M ulti pl e - F C s a n al y si s wit h a hi g h i nt e n sit y b e a m.
d: A v er a g e v al u e of t w o a n al y s e s at t h e s a m e a n al y si s s p ot.

e: Err or s ar e 2 S D f or δ 2 5 M g v al u e s a n d 9 5 % c o nfi d e n c e f or i s o c hr o n s

f: A n ort hit e d at a i s n ot u s e d t o c al c ul at e t h e δ 2 5 M g v al u e.

g: Err or i s 9 5 % c o nfi d e n c e of t h e w ei g ht e d m e a n v al u e.

(( ‰‰ / a m u )/ a m u ) (( ‰‰ ))
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