

1 Title:
2 A long duration of the ^{16}O -rich reservoir in the solar nebula , as recorded in fine -grained
3 refractory inclusions from the least metamorphosed carbonaceous chondrites.
4
5 Authors:
6 Takayuki Ushikubo ^{1,2*}, Travis J. Tenner ^{1,3}, Hajime Hiyagon ⁴, and Noriko T. Kita ¹
7
8 Affiliations:
9 1: WiscSIMS, Department of Geoscience, University of Wisconsin- Madison, 1215 W.
10 Dayton St., Madison, WI 53706 USA
11 2: Kochi Institute for Core Sample Research, Japan Agency for Marine -Earth Science
12 and Technology (JAMSTEC), 200 Monobe -otsu, Nankoku, Kochi 783 -8502 Japan
13 3: Chemistry Division, Nuclear and Radiochemistry, Los Alamos National Laboratory,
14 MSJ514, Los Alamos, NM 87545 USA
15 4: Department of Earth and Planetary Science, Graduate School of Science, University
16 of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113 -0033 Japan
17
18 *: Corresponding author:
19 Takayuki Ushikubo (ushikubot@jamstec.go.jp)
20 Kochi Institute for Core Sample Research, Japan Agency for Marine -Earth Science and
21 Technology (JAMSTEC), 200 Monobe -otsu, Nankoku, Kochi 783 -8502 Japan
22 Phone: +81-088-878-2187
23
24
25 Submitted to GCA , revised manuscript

26 **Abstract**

27 Oxygen isotope ratios and corresponding ^{26}Al - ^{26}Mg isotope systematics of
28 refractory inclusions from the least metamorphosed carbonaceous chondrites, Acfer094
29 (C-ungrouped 3.00) and Yamato 81020 (CO3.05), were measured with an ion microprobe.
30 Most of the samples are fine-grained refractory inclusions which are considered as
31 condensates from high temperature Solar Nebular gas. The refractory inclusions
32 consistently exhibit ^{16}O -enriched signatures among their interior phases (spinel, melilite,
33 and high-Ca pyroxene), as well as phases within their rim structures (spinel, high-Ca
34 pyroxene, and adjacent anorthite). This observation indicates that aggregated refractory
35 condensates and the formation of rim structures occurred in the same ^{16}O -rich
36 environment. Evidence for mass-dependent isotopic fractionation in oxygen and
37 magnesium, which would indicate a later flash heating process, was not observed in rims.
38 All oxygen isotope data from fine-grained CAIs are distributed between the
39 Carbonaceous Chondrite Anhydrous Mineral 1 (CCAM) line and the Primitive Chondrule
40 Mineral (PCM) regression line based on oxygen isotope data from Acfer094 chondrules.
41 The inferred initial $^{26}\text{Al}/^{27}\text{Al}$ ratios, $(^{26}\text{Al}/^{27}\text{Al})_0$, of spinel-melilite-rich CAIs are
42 $(4.08 \pm 0.75) \times 10^{-5}$ to $(5.05 \pm 0.18) \times 10^{-5}$ (errors are 2σ), which are slightly lower than the
43 canonical value of 5.25×10^{-5} . As there is no petrologic evidence for re-melting after
44 condensation, the lower $(^{26}\text{Al}/^{27}\text{Al})_0$ values of these CAIs indicate either they formed up
45 to ~ 0.3 Ma after canonical CAIs or they formed before ^{26}Al was homogeneously
46 distributed in the Solar nebula. A pyroxene-anorthite-rich CAI, G92, has an ^{16}O -rich
47 signature like other CAIs but also has an order-of-magnitude less ^{26}Mg -excess in
48 anorthite, corresponding to a $(^{26}\text{Al}/^{27}\text{Al})_0$ of $(5.21 \pm 0.54) \times 10^{-6}$. As there is no evidence for
49 a later Mg isotopic disturbance, G92 anorthite is interpreted to have formed by
50 interaction with ^{16}O -rich nebular gas at 2 to 3 Ma after CAI formation. With the
51 observation that ^{16}O -rich refractory inclusions, relatively ^{16}O -poor chondrules, and
52 extremely ^{16}O -poor cosmic symplectites within Acfer 094 all plot on the PCM line, it
53 suggests that ^{16}O -rich nebular gas and extremely ^{16}O -poor primordial volatiles represent
54 mass-independent fractionated endmembers in the early Solar system and that the PCM
55 line represents a mixing line of these two endmembers.

56 **1. Introduction**

57 In the early Solar System, evidence for a n ^{16}O -rich isotopic signature that
58 fractionated independent of mass ($\Delta^{17}\text{O} \equiv \delta^{17}\text{O} - 0.52 \times \delta^{18}\text{O} \sim -24\text{\textperthousand}$) has been found in
59 Ca-, Al-rich inclusions (CAIs) and amoeboid olivine aggregates (AOAs) (Clayton et al.,
60 1977; Hiyagon and Hashimoto, 1999; Krot et al., 2002; 2010 a). As refractory inclusions
61 (CAIs and AOAs) are commonly interpreted to be the first solar system condensates
62 (Grossman, 1972; Grossman et al., 2008), their oxygen isotope ratios are inferred to
63 reflect the primordial characteristics of the earliest refractory dust forming environment
64 in the solar nebula. In contrast, oxygen isotope ratios of chondrules that formed ~ 2
65 million years (Ma) after CAIs (Kita and Ushikubo, 2012; Kita et al., 2013 ; Ushikubo et
66 al., 2013) have a smaller mass-independent oxygen isotope anomaly relative to CAIs ,
67 indicating a later oxygen isotope environment that was relatively ^{16}O -poor (e.g., Clayton
68 et al., 1983; Clayton 2003; Connolly and Huss, 2010; Kita et al., 2010; Krot et al., 2010b;
69 Rudraswami et al., 2011; Weisberg et al., 2011; Nakashima et al., 2012; Ushikubo et al.,
70 2012; Schrader et al., 2013, 2014; Tenner et al., 2013, 2015).

71 Since some CAIs exhibit evidence for later re-heating processes after their
72 initial formation, including significant differences in $\Delta^{17}\text{O}$ values between primary
73 phases and secondary phases (Yurimoto et al., 1998; Hsu et al., 2000; Fagan et al., 2007;
74 Ushikubo et al., 2007; Krot et al., 2008; MacPherson et al., 2012; Kawasaki et al., 2015),
75 they are expected to record temporal changes of oxygen isotope environments within the
76 solar nebula. In addition, detailed petrologic and isotopic studies of fine-textured Wark-
77 Lovering rims surrounding coarse-grained CAIs, which consists of (1) a spinel layer with
78 minor perovskite and hibonite (inner part) ; (2) a melilite/anorthite/secondary altered
79 phase layer (middle part); and (3) a Ti-Al-bearing diopsidic layer (outer part) (Wark and
80 Lovering, 1977) , suggest that variability in oxygen isotope ratios existed when the Wark
81 and Lovering rims formed (e.g., Yoshitake et al., 2005; Simon et al., 2011 , 2016) .
82 Importantly, however, Bodénan et al. (2014) observed that such an oxygen isotopic
83 variability is not recognized among Wark-Lovering rims from pristine carbonaceous
84 chondrite CAIs. This suggests that the oxygen isotopic variability found in the
85 aforementioned studies, from which refractory inclusions from higher petrologic type
86 chondrites were investigated, could be due to later isotopic disturbance s in chondritic
87 parent bodies. If oxygen isotopic variability(^{16}O -rich and ^{16}O -poor environments) existed
88 in the early solar system when coarse -grained CAIs and Wark-Lovering rim formed, it is
89 expected that evidence for oxygen isotopic variability would also be recorded within fine-
90 grained CAIs and AOAs (Grossman and Ganapathy, 1976; Grossman and Steele, 1976).

91 Although coarse-grained CAIs are advantageous for in-situ high-precision

92 isotope analyses, they experienced re-melting after aggregation of precursor dust
93 condensates and they commonly have positively fractionated Mg and Si isotope ratios.
94 As positive isotopic fractionation in Mg and Si provides evidence for significant
95 evaporative loss by re-melting, primary oxygen isotope ratios of such coarse-grained
96 CAIs are probably modified (e.g., Wangetal., 2001; Alexander, 2004). In contrast, the
97 texture of fine-grained CAIs and AOAs (e.g., small grain sizes of major phases and
98 complex nodules) indicates that they formed by aggregation of primary condensates from
99 early solar nebular gas. As such, fine-grained CAIs and AOAs are perhaps the best
100 candidates for recording pristine oxygen isotope ratios of early solar system condensates.
101 However, the petrology and isotopic compositions of such fine-scale materials are
102 particularly susceptible to metamorphism while on chondritic parent bodies. Thus, in
103 order to establish that isotope signatures of fine-grained refractory inclusions are indeed
104 primordial nebular signatures, selection of pristine CAIs and AOAs that properly rule
105 out evidence for parent body metamorphism is critically important.

106 In this study, we measured oxygen isotope ratios and ^{26}Al - ^{26}Mg systematics of
107 fine-grained CAIs and AOAs from Acfer 094 (C-ungrouped 3.00) and Yamato -81020 (Y-
108 81020, CO3.05). These refractory inclusions should record pristine isotope
109 characteristics because Acfer 094 and Y-81020 are two of the least metamorphosed
110 carbonaceous chondrites (Grossman and Brearley, 2005; Kimura et al., 2008). For
111 example, Acfer 094 chondrules preserve intrinsic oxygen isotope ratios without any
112 indication of a later oxygen isotope disturbance, even in mesostasis glass that is highly
113 sensitive to fluid-assisted parent body metamorphism (Ushikubo et al., 2012). In addition,
114 chondrules from both Acfer 094 and Y-81020 have ^{26}Al - ^{26}Mg isotope systematics that are
115 primary, with no sign of a later disturbance (Kunihiro et al., 2004; Kurahashi et al., 2008
116 ; Hutton et al., 2009; Ushikubo et al., 2013). Thus, oxygen isotope ratios and ^{26}Al - ^{26}Mg
117 isotope systematics of fine-grained refractory inclusions from the same meteorites should
118 dependably elucidate the evolution of oxygen isotope ratios in the solar nebula, recording
119 their formation and interaction with ambient gas before accreting to the chondritic
120 parent body.

121

122 2. Samples

123 Ten refractory inclusions, including five spinel-melilite-rich CAIs (G5, G16, G49,
124 G104, and Y81020-E-8), one pyroxene-anorthite-rich CAI (G92), and four AOAs (G17,
125 G28, G44, and G58) were selected for investigation by secondary ion mass spectrometry
126 (SIMS) (Figs. 1-3). Y81020-E-8 is from Y-81020 (CO3.05) and the others are from Acfer
127 094 (C-ungrouped 3.00). The classification of Acfer 094 refractory inclusions by Krot et

128 al. (2004a) is applied in this study.

129 Three of the five spinel-melilite-rich CAIs (G5, G16, and G49) have a fine-
130 grained, complex nodular texture. CAI G5 is an irregular L-shaped aggregate of multiple
131 nodules (Fig. 1a). It consists of gehlenitic melilite (Åk_6) and spinel, along with anorthite
132 and diopsiderite. Some nodules do not contain melilite. CAI G16 is a large CAI (ca.
133 $300\text{ }\mu\text{m} \times 500\text{ }\mu\text{m}$ in size, Fig. 1b) consisting of multiple nodules. The larger nodules consist
134 of melilite (Åk_{8-10}) and sub-micron spinel grains surrounded by a diopsiderite rim (Fig. 1f).
135 Regarding the smaller nodules, spinel is rare, a thin anorthite layer commonly occurs
136 between the interior melilite and the diopsiderite, and olivine grains are found in the
137 accretionary rim (Fig. 1g). CAI G49 is an irregular-shaped aggregate of small nodules,
138 consisting of melilite (Åk_{20}), tiny spinel and Al-Ti-rich diopside grains, and a diopside
139 rim (Fig. 1c). At the anorthite layer between the interior melilite and the diopsiderite is
140 also present in nodules near the edge of the CAI.

141 The remaining two spinel-melilite-rich CAIs have relatively simple textures and
142 larger grain size. CAI G104 is a fragment of an irregular-shaped spinel-melilite-rich
143 CAI (Fig. 1d). It consists of melilite (Åk_8), spinel, Al-Ti-rich diopside, and perovskite. Thin
144 spinel (discontinuous and $<2\text{ }\mu\text{m}$) and diopside ($<5\text{ }\mu\text{m}$) layers are observed along the rim.
145 There are several voids in melilite and interstitial space of spinel grains. Al-Ti-rich
146 diopside and perovskite commonly occur around these voids (Fig. 1h).

147 CAI Y81020-E-8 is round and $\sim 500\text{ }\mu\text{m}$ in diameter (Fig. 1e). It consists mostly of
148 melilite (Åk_{14-21}), spinel, and perovskite. The central portion of this CAI has likely been
149 lost during sample preparation. Y81020-E-8 is surrounded by a double-layered rim of spinel
150 (10 to $30\text{ }\mu\text{m}$ in width) and melilite ($\sim 5\text{ }\mu\text{m}$ in width); a diopsiderite rim appears to be absent
151 (Fig. 1i).

152 CAI G92 is an irregular-shaped pyroxene-anorthite-rich CAI that is $300\text{ }\mu\text{m} \times$
153 $150\text{ }\mu\text{m}$ in size. It consists of anorthite and Al-Ti-rich diopside, with small amounts of
154 melilite (Åk_{19-25}) and spinel (Fig. 2a). Al-Ti-rich diopside is often associated with voids
155 (Fig. 2b). A thin diopsiderite ($\sim 3\text{ }\mu\text{m}$) is also observed. Anhedral melilite and Al-Ti-rich
156 diopside (typically $<10\text{ }\mu\text{m}$ in size) are enclosed by anorthite. Spinel (typically $<3\text{ }\mu\text{m}$ in
157 size) occurs either in melilite or near the diopsiderite. No ferromagnesian phases, such
158 as olivine or low-Ca pyroxene, are observed outside of the diopsiderite.

159 All AOAAs studied consist of multiple Ca-, Al-rich domains enclosed by olivine.
160 Among them, Ca-, Al-rich domains of G17 ($\sim 200\text{ }\mu\text{m} \times 100\text{ }\mu\text{m}$ in size, Fig. 3a) and G28
161 ($\sim 400\text{ }\mu\text{m} \times 300\text{ }\mu\text{m}$ in size, Fig. 3b) consist of spinel and Al-Ti-rich diopside but almost
162 no anorthite (Fig. 3e). In contrast, Ca-, Al-rich domains of fragment G44 ($\sim 200\text{ }\mu\text{m} \times 150\text{ }\mu\text{m}$ in size, Fig. 3c) and G58 ($\sim 400\text{ }\mu\text{m} \times 300\text{ }\mu\text{m}$ in size, Fig. 3d) consist of spinel, anorthite,

164 and Al-Ti-rich diopside (Fig.3f).

165

166 3. Analytical procedures

167 3.1. SEM observation and major element analysis by EPMA

168 Backscattered electron (BSE) and secondary electron images were obtained by
169 the Hitachi S-3400 scanning electron microscope (SEM) at University of Wisconsin-
170 Madison (UW-Madison). Major element oxide (SiO₂, TiO₂, Al₂O₃, Cr₂O₃, FeO, MnO, MgO,
171 CaO, Na₂O, and V₂O₅) concentrations of minerals were obtained with the CAMECA SX51
172 electron-probe microanalyzer (EPMA) at UW-Madison using a 15 kV accelerating voltage,
173 a 10 nA beam current, a fully focused beam, and respective peak and background
174 counting times of 10 and 5 s. Standards consisted of olivine (Fo₀, 88, 89, 100), pyroxene
175 (enstatite, wollastonite, augite, jadeite), plagioclase (An₀, 18, 78, 95), gehlenite, åkermanite,
176 spinel (Mg-endmember, intermediate Mg-Fe endmember, and chromium-spinel), rutile,
177 hornblende, chromite, hematite, magnetite, tephroite, and V-metal. Calculated detection
178 limits (at 99% confidence) were 0.02, 0.03, 0.02, 0.07, 0.05, 0.05, 0.03, 0.03, 0.04, and 0.07
179 wt%, respectively for the oxides listed above.

180

181 3.2 Isotope analysis by SIMS

182 Oxygen three-isotopes and ²⁶Al-²⁶Mg isotope systematics were measured using
183 the WiscSIMS CAMECA IMS-1280 Secondary Ion Mass Spectrometer (SIMS) at the
184 University of Wisconsin-Madison. Four separate sessions (i.e., O and Mg isotope analyses
185 with different beam diameters) were conducted, in order to obtain isotopic signatures of
186 multiple phases that have a range of grain sizes among individual refractory inclusions.

187 After each analytical session, SIMS pits were assessed by SEM and data from
188 pits with irregularities (e.g., overlapping multiple phases, cracks, or inclusions) were
189 rejected.

190

191 3.2.1 Oxygen three-isotope analysis

192 For oxygen three-isotope analysis, a ¹³³Cs⁺ primary ion beam with a 20 kV total
193 accelerating voltage was used. A carbon coat of ~25 nm thickness was applied on the
194 sample surface and a normal incidence electron gun was used for charge compensation
195 of the sample surface. The accelerating voltage of secondary ions was 10 kV.

196 As a result of the small grain size (typically <10 μ m in size) of minerals in
197 samples, a small ¹³³Cs⁺ primary beam (~3 μ m, ~25 pA) was mainly used for oxygen three-
198 isotope analyses of forsterite, melilite, spinel, anorthite, and Al-Ti-rich diopside within
199 the interior of refractory inclusions and their rims. Secondary ions of oxygen isotopes

were simultaneously detected, using one Faraday cup (FC) for $^{16}\text{O}^-$ and two electron multipliers (EM) for $^{17}\text{O}^-$ and $^{18}\text{O}^-$, respectively. The mass resolving power (MRP at 10% peak height) was set to ~ 2200 for $^{16}\text{O}^-$ and $^{18}\text{O}^-$, and ~ 6000 for $^{17}\text{O}^-$, respectively. The typical count rate of $^{16}\text{O}^-$ was 2.3×10^7 cps. These analytical conditions are similar to those described in Nakamura et al. (2008) and Ushikubo et al. (2012).

For larger grains, a higher-intensity $^{133}\text{Cs}^+$ primary beam ($\sim 15 \mu\text{m}$, $\sim 3 \text{nA}$) was used for oxygen three-isotope analyses of several forsterites and Al-Ti-rich diopsides in AOAs. In this configuration, secondary ions of oxygen isotopes were simultaneously measured with three FC detectors, using a 10^{10} ohm resistor for $^{16}\text{O}^-$ and 10^{11} ohm resistors for $^{17}\text{O}^-$ and $^{18}\text{O}^-$, respectively. The mass resolving power (MRP at 10% peak height) was set to ~ 2200 for $^{16}\text{O}^-$ and $^{18}\text{O}^-$, and ~ 5000 for $^{17}\text{O}^-$, respectively. The typical count rate of $^{16}\text{O}^-$ was 2.7×10^9 cps. These analytical conditions are similar to those described in Kita et al. (2010) and Ushikubo et al. (2012).

For small and large spot analyses, the count rate of $^{16}\text{OH}^-$ was measured immediately after each oxygen isotope analysis. The contribution of $^{16}\text{OH}^-$ to $^{17}\text{O}^-$ was estimated following methods developed by Heck et al., (2010), and was typically found to be $<0.1\text{\textperthousand}$.

A San Carlos olivine standard ($\delta^{18}\text{O}_{\text{VSMOW}}=5.32\text{\textperthousand}$, Kita et al., 2010) was used as the running standard. The instrumental bias effect on $\delta^{18}\text{O}$ (i.e. the matrix effect) was calibrated based on analyses of multiple standards (Fo₁₀₀ and Fo₈₉ for olivine, synthetic gehlenite and åkermanite for melilite, diopside and synthetic Al-Ti-rich diopsidic glass for pyroxene, spinel, and anorthite, Tables EA1 and EA3). No apparent matrix effect on $\Delta^{17}\text{O}$ was observed (Table EA3). Procedures for the instrumental bias correction and for data reduction are described in Kita et al. (2009) and Tenner et al. (2013). The external reproducibilities of bracketing standard analyses were assigned as the uncertainty of unknown samples. Typical uncertainties (2 SD) of $\delta^{18}\text{O}$, $\delta^{17}\text{O}$, and $\Delta^{17}\text{O}$ were $\pm 1.1\text{\textperthousand}$, $\pm 1.1\text{\textperthousand}$, and $\pm 1.1\text{\textperthousand}$, respectively, with the small beam analytical setting, and $\pm 0.26\text{\textperthousand}$, $\pm 0.61\text{\textperthousand}$, and $\pm 0.59\text{\textperthousand}$, respectively, with the large beam analytical setting.

3.2.2 ^{26}Al - ^{26}Mg isotope systematics

For analysis of Al and Mg isotopes, an $^{16}\text{O}^-$ primary beam with a 23 kV total accelerating voltage was used. A $\sim 25 \text{ nm}$ thick carbon coat was applied on the sample surface. The accelerating voltage of secondary ions was 10 kV.

A small $^{16}\text{O}^-$ primary beam (5 to 7 μm , 40 to 150 pA) was used for analyses of anorthite and melilite. Secondary ions of $^{24}\text{Mg}^+$, $^{25}\text{Mg}^+$, and $^{26}\text{Mg}^+$ were detected by an axial EM detector that operated by magnetic peak switching. Secondary $^{27}\text{Al}^+$ ions were

detected by a Faraday cup located at the high mass side of the axial EM detector during the measurement of $^{25}\text{Mg}^+$. The mass resolving power was set at ~ 4000 , which is sufficient for the separating $^{48}\text{Ca}^{2+}$ and $^{24}\text{MgH}^+$ interferences. Dead time of the EM detector was 24.9 ns, as determined by Mg isotope analyses of melilite and anorthite standards. This analytical protocol is similar to that described in Ushikubo et al. (2013).

For small beam analyses, synthetic glass standards (Ak15 and anorthitic glass with 1wt% MgO) were used to determine respective instrumental mass biases (Table EA4). The procedures to calculate the mass-dependent fractionation ($\delta^{25}\text{Mg}_{\text{DSM3}}$) and the ^{26}Mg -excess ($\delta^{26}\text{Mg}^*$) are provided in Electronic Annex (EA-1). The $\delta^{25}\text{Mg}_{\text{DSM3}}$ uncertainty of melilite unknowns is assigned as $\{(2\text{SE}_{\text{internal}})^2 + (2\text{SE}_{\text{std}})^2\}^{1/2}$. The uncertainties of the $\delta^{25}\text{Mg}_{\text{DSM3}}$ value of anorthite and the $\delta^{26}\text{Mg}^*$ values of melilite and anorthite are assigned as the internal 2SE ($2\text{SE}_{\text{internal}}$) of each analysis because statistical uncertainties based on total counts of signals are significantly larger than reproducibilities of spot-to-spot analyses (Table 2 and Table EA4 for $\delta^{26}\text{Mg}^*$ values of melilite, Table 2, and Table S2 in Ushikubo et al., 2013 for $\delta^{25}\text{Mg}_{\text{DSM3}}$ and $\delta^{26}\text{Mg}^*$ values of anorthite, respectively).

For larger phenocrysts consisting of forsterite, spinel, and Al-Ti-rich diopside, a higher-intensity $^{16}\text{O}^-$ primary beam ($\sim 10 \mu\text{m}$, 2.2 nA) was employed. Secondary ions of $^{24}\text{Mg}^+$, $^{25}\text{Mg}^+$, $^{26}\text{Mg}^+$, and $^{27}\text{Al}^+$ were simultaneously detected by four Faraday cups. The mass resolving power was set at ~ 2200 and the tailing of interference peaks was negligibly small. Overall, this condition is similar to that described in Kita et al. (2012) and Ushikubo et al. (2013).

For large beam analyses, a San Carlos olivine standard ($\delta^{25}\text{Mg}_{\text{DSM3}} = -0.02\text{\textperthousand}$) was used as the running standard. The $\delta^{25}\text{Mg}_{\text{DSM3}}$ matrix effect was calibrated based on analyses of multiple standards (Fo₁₀₀ and San Carlos olivine (Fo₈₉) for olivine, diopside and synthetic Al-Ti-rich diopsidic glass for pyroxene, and spinel, Table EA4). The procedure to calculate the mass-dependent fractionation ($\delta^{25}\text{Mg}_{\text{DSM3}}$) and ^{26}Mg -excess ($\delta^{26}\text{Mg}^*$) is provided in Electronic Annex (EA-1). The external reproducibility of bracketing standard analyses (2SD) is assigned as the uncertainty of unknown samples. Typical uncertainties of $\delta^{25}\text{Mg}_{\text{DSM3}}$ and $\delta^{26}\text{Mg}^*$ were $\pm 0.19\text{\textperthousand}$ and $\pm 0.11\text{\textperthousand}$, respectively.

The relative sensitivity factors (RSF, $(^{27}\text{Al}/^{24}\text{Mg})/(^{27}\text{Al}^+/^{24}\text{Mg}^+)$) of spinel, Al-Ti-rich diopside, melilite, and anorthite were determined based on EPMA data and results of standard analyses by SIMS (Table EA4).

4. Results

Representative major element compositions of individual phases and analysis positions from samples by EPMA are summarized in Table EA2 and Figure EA1. Oxygen

272 three-isotope data and Mg isotope data are summarized in Table 1 and Table 2,
273 respectively. Locations of individual analyses within refractory inclusions are shown in
274 Figure EA2. All individual data, including analyses of running standards, are shown in
275 Table EA5-8.

276

277 **4.1. Oxygen isotope ratios**

278 Oxygen isotope ratios of all measured samples are significantly ^{16}O -rich
279 ($\Delta^{17}\text{O} < -20\text{\textperthousand}$) and are distributed near the CCAM line (Table 1, Fig. 4). For a given
280 refractory inclusion, the $\Delta^{17}\text{O}$ values of all measured phases are consistent within
281 analytical uncertainty; the only exception is a relatively ^{16}O -poor datum from a thin
282 melilite layer at the rim of Y81020-E-8 ($\Delta^{17}\text{O} = -14.3 \pm 0.5\text{\textperthousand}$, Fig. 4a). No detectable
283 systematic differences in both $\delta^{18}\text{O}$ and $\Delta^{17}\text{O}$ are observed between oxygen isotope ratios
284 of minerals in the interior and those of minerals in the rim (i.e. Ti, Al-bearing diopside
285 and spinel in CAIs and olivine at the edge of AOAs) (Table 1, Figs. 4 and 5). Subtle
286 variation of oxygen isotope ratios along a slope 1 line within each inclusion (e.g., AOA
287 G58, Fig. 4k) are recognized. However, these differences are small when considering the
288 analytical uncertainty. Averaged $\Delta^{17}\text{O}$ of the CAIs and AOAs studied have values of -22.0
289 to $-24.3\text{\textperthousand}$, and have uncertainty ranging from $0.3\text{\textperthousand}$ to $0.9\text{\textperthousand}$ (Table 1).

290

291 **4.2. Magnesium isotope ratios and the ^{26}Al - ^{26}Mg isotope systematics**

292 Magnesium isotope ratios ($\delta^{25}\text{Mg}_{\text{DSM3}}$ and $\delta^{26}\text{Mg}^*$), $^{27}\text{Al}/^{24}\text{Mg}$ ratios, and the
293 regression lines of the Al-Mg isotope systematics are summarized in Table 2. The ^{26}Al -
294 ^{26}Mg isotope systematics of all melilite-rich CAIs (Y81020-E-8, G5, G16, G49, and G104)
295 exhibit single linear correlations in $\delta^{26}\text{Mg}^*$ vs. $^{27}\text{Al}/^{24}\text{Mg}$ (Figs. 6a-f). The $^{27}\text{Al}/^{24}\text{Mg}$ ratios
296 of melilite-rich CAIs are highly variable (from 10 to 72). Melilite in CAI G5 is highly
297 gehlenitic (Al-rich, $^{27}\text{Al}/^{24}\text{Mg} = 46$ to 72) and in CAI G49 it is åkermanitic (Mg-rich,
298 $^{27}\text{Al}/^{24}\text{Mg} = 10$ to 18) relative to other melilite-rich CAIs ($^{27}\text{Al}/^{24}\text{Mg} = 15$ to 37). Anorthite
299 in CAI G16 has a very high $^{27}\text{Al}/^{24}\text{Mg}$ ratio and a large ^{26}Mg -excess (~ 1560 and $\sim 530\text{\textperthousand}$,
300 respectively, Table 2). The inferred initial $^{26}\text{Al}/^{27}\text{Al}$ ratios, $(^{26}\text{Al}/^{27}\text{Al})_0$, of melilite-rich
301 CAIs are $(4.08 \pm 0.75) \times 10^{-5}$ to $(5.05 \pm 0.18) \times 10^{-5}$. These values are within the $(^{26}\text{Al}/^{27}\text{Al})_0$
302 range of CAIs from CV chondrites but are slightly lower than the canonical Solar System
303 value of $(5.25 \pm 0.02) \times 10^{-5}$ (e.g., Jacobsen et al., 2008; Larsen et al., 2011; MacPherson et
304 al., 2012; Kita et al., 2013). One AOA, G17, has an inferred $(^{26}\text{Al}/^{27}\text{Al})_0$ of $(5.32 \pm 0.81) \times 10^{-5}$,
305 which is based on data from olivine, Al-Ti-rich diopside, and spinel (Fig. 6i). The other
306 three AOAs, G28, G44, and G58, do not contain high-Al/Mg phases that are large enough
307 for Mg isotope analyses by SIMS.

Regarding the ^{26}Al - ^{26}Mg isotope systematics of anorthite-rich CAI G92, two distinct trend lines are produced when plotting $^{27}\text{Al}/^{24}\text{Mg}$ vs. ^{26}Mg -excess ($\delta^{26}\text{Mg}^*$) (Figs. 6g, 6h). In particular, melilite and Al-Ti-rich diopside data of CAI G92 are distributed along a single trend line. The slope of the trend line using only Al-Ti-rich diopside data is 0.33 ± 0.19 with intercept of 0.18 ± 0.17 , which overlaps with the melilite data. The slope of the trend line using both Al-Ti-rich diopside and melilite data is 0.375 ± 0.14 , corresponding to an inferred $(^{26}\text{Al}/^{27}\text{Al})_0$ of $(5.2\pm2.0)\times10^{-6}$ (Fig. 6g). Although we cannot determine the origin of Al-Ti-rich diopside with certainty, a consistent distribution of Al-Ti-rich diopside and melilite data suggests these are primary phases. In contrast, anorthite data from G92 exhibit high $^{27}\text{Al}/^{24}\text{Mg}$ (>700) and ^{26}Mg -excesses that are significantly smaller than those from the regression line of melilite and Al-Ti-rich diopside data (Fig. 6h). Assuming that anorthite formed by replacing melilite and that Mg within anorthite had originally derived from the melilite that it replaced (see discussion in section 5.2), the regression line using data from melilite and anorthite in G92 has a slope of 0.0374 ± 0.0039 with an intercept of $2.6\pm1.1\text{‰}$ and an inferred $(^{26}\text{Al}/^{27}\text{Al})_0$ of $(5.21\pm0.54)\times10^{-6}$ (Fig. 6h, Table 2). We note that the inferred $(^{26}\text{Al}/^{27}\text{Al})_0$ becomes slightly reduced [$(4.6\pm2.1)\times10^{-6}$] using only anorthite data and it is slightly higher [$(5.59\pm0.53)\times10^{-6}$] if assuming no ^{26}Mg -excess when anorthite formed.

In addition to CAI G92, anorthite is also observed in melilite-rich CAI, G16, occurring as a thin layer ($\sim5\text{ }\mu\text{m}$) between melilite and the diopside rim (Fig. 1g). However, anorthite in CAI G16 has a large ^{26}Mg -excess which is consistent with the regression line of coexisting Al-Ti-rich diopside and melilite that corresponds to a $(^{26}\text{Al}/^{27}\text{Al})_0$ of $(4.71\pm0.15)\times10^{-6}$ (Fig. 6d, e). Thus, anorthite grains from two different CAIs, G92 and G16, record distinct ^{26}Al - ^{26}Mg isotope signatures within the same thin section.

High precision Mg isotope data of Mg-rich phases (olivine, Al-Ti-rich diopside, and spinel) obtained by large beam analyses indicate that mass-dependent Mg isotope fractionation ($\delta^{25}\text{Mg}_{\text{DSM3}}$) is small ($0.0\pm1.5\text{‰/amu}$, Table 2). This result is consistent with the fine-grained textures and/or irregular shapes of the samples, which suggests they avoided re-melting and associated evaporative loss to the surrounding environment. A few $\delta^{25}\text{Mg}_{\text{DSM3}}$ values of high- $^{27}\text{Al}/^{24}\text{Mg}$ phases (melilite and anorthite) that were obtained by small beam analyses are significantly higher than other data in the same inclusion, beyond the analytical uncertainty (e.g., #53 of G5, #50 of G49, and #37 of G92 in Table 2). These are presumably outliers of small beam analyses, but we cannot completely rule out the existence of $\delta^{25}\text{Mg}_{\text{DSM3}}$ heterogeneity within each inclusion.

5. Discussion

344 **5.1. ^{16}O -enriched environment of refractory inclusion formation**

345 Within a given inclusion, oxygen isotope ratios of its rim structures, including
346 diopside and spinel in CAIs, as well as olivine at the edge of AOAs, can be compared to
347 those of interior phases, in order to determine which oxygen isotope reservoirs were
348 sampled. With the exception of one datum (discussed below), our results indicate that
349 oxygen isotope ratios of minerals both in the rim and in the interior of the same inclusion
350 are indistinguishable, and show no systematic differences (Figs. 4 and 5). This result is
351 distinct from variable oxygen isotope ratios of Wark-Lovering rims associated with
352 coarse-grained CAIs from CV chondrites (e.g., Yoshitake et al., 2005; Simon et al., 2011,
353 2016), but in agreement with oxygen isotope ratios of CAIs from pristine CR, CO, and
354 CH chondrites (Bodénan et al., 2014; Jacobsen et al., 2014; Krot et al., 2016).

355 The single, relatively ^{16}O -poor signature ($\Delta^{17}\text{O} \sim -14\text{\textperthousand}$) of melilite outside of the
356 rim spinel layer of CAI Y81020-E-8 (Fig. 1e and 4b) can be interpreted in a couple ways.
357 For example, it could be an intrinsic signature (condensation from a relatively ^{16}O -
358 depleted nebular gas) or it could be the result of later metamorphism. The analyzed
359 region of this melilite is surrounded by fine-scale cracks and voids and directly contacts
360 with the matrix, as the diopside layer in this CAI is discontinuous (Fig. EA2, Y81020-E-
361 8_2). Considering the susceptibility of oxygen isotope disturbance within melilite (e.g.,
362 Fagan et al., 2004; Bodénan et al., 2014), while also taking into account the consistent
363 ^{16}O -rich signature of other CAI rim phases from the least metamorphosed carbonaceous
364 chondrites (e.g., Bodénan et al., 2014; Jacobsen et al., 2014; Krot et al., 2016; this study),
365 the relatively ^{16}O -poor signature of melilite outside of the rim spinel layer of Y81020-E-
366 8 is probably the result of later isotopic exchange, either in the solar nebula or in the
367 parent body.

368 CAIs from this study have a small but appreciable range in averaged $\Delta^{17}\text{O}$
369 values, on the order of a few per-mil when considering uncertainties (Table 1, Fig. 4, 5,
370 and 8a). With the exception of the outermost melilite layer of Y81020-E-8, as discussed
371 in the previous paragraph, oxygen isotope ratios of CAI rims are within the range of
372 those from their corresponding interior phases (e.g., Table 1 and Figs. 4 and 5). This
373 indicates that both of these CAI components formed in the same oxygen isotope
374 environment and that their intrinsic oxygen isotope ratios have not been disturbed after
375 their formation. Considering the pristine nature of Acfer 094 and Y-81020 chondrites,
376 the slight $\Delta^{17}\text{O}$ variation in their CAIs most likely reflects that of the oxygen isotope
377 environment where CAIs formed. Similar, as well as slightly larger $\Delta^{17}\text{O}$ variations along
378 the PCM line are also found in hibonite and spinel-hibonite inclusions from CM
379 chondrites (Kööp et al., 2016). Although extremely ^{16}O -rich inclusions ($\Delta^{17}\text{O}$ down to

380 $\sim -37\text{\textperthousand}$, Kobayashi et al., 2003; Gounelle et al., 2009, see also Fig. EA1-2 in Ushikubo et
381 al., 2012 for comparison) have been found, we do not recognize such an extremely ^{16}O -
382 rich signature in the samples, suggesting either the occurrence of extremely ^{16}O -rich
383 environment or formation of inclusions in an extremely ^{16}O -rich environment was rare.

384 Regarding the origin of CAI rims, it has been proposed that Wark-Lovering rims
385 formed by a later flash heating event, leading to intense evaporative loss (e.g., Wark and
386 Boynton, 2001). Such a process is considered to be responsible for positive mass-
387 dependent isotope fractionation that is commonly observed in F(UN) inclusions and
388 normal CAIs (e.g., Clayton and Mayeda, 1977; Wasserburg et al., 1977; Grossman et al.,
389 2008; Krot et al., 2014a). Although the samples from this study are mainly fine-grained
390 CAIs, they have similar textures (i.e. thin spinel and diopside layered structures) as
391 those observed in Work-Lovering rims. However, the rim $\delta^{18}\text{O}$ values (Table 1, Fig. 5b)
392 and $\delta^{25}\text{Mg}_{\text{DSM3}}$ values (Table 2) from Acfer 094 and Y-81020 refractory inclusions exhibit
393 neither mass-dependent isotope fractionation nor variability in $\Delta^{17}\text{O}$. These data indicate
394 that later processes, such as an intense flash re-heating event, are not necessary to
395 produce the rim structure of CAIs. In addition, similar ^{16}O -rich oxygen isotopic
396 signatures, as well as general agreement of oxygen isotope ratios between CAI interior
397 phases and their rims (including fine-grained CAIs and coarse-grained Wark-Lovering
398 rim-bearing CAIs) are consistently observed in CAIs from pristine carbonaceous
399 chondrites (Bodénan et al., 2014; Jacobsen et al., 2014; Krot et al., 2016; this study).
400 Combined these results indicate that all components and textures of CAIs, including
401 condensation of refractory phases from nebular gas, aggregation, and formation of rim
402 layers, occurred in the same ^{16}O -rich environment. The observed oxygen isotope
403 variability among Wark-Lovering rims of coarse-grained CV chondrite CAIs is probably
404 explained by oxygen isotope exchange with ^{16}O -poor materials during parent body
405 metamorphism.

406

407 **5.2. $\Delta^{17}\text{O}$ vs. $(^{26}\text{Al}/^{27}\text{Al})_0$ of CAIs: An enigmatic anorthite-rich CAI having low $(^{26}\text{Al}/^{27}\text{Al})_0$ 408 and an ^{16}O -rich signature.**

409 Figure 7 summarizes the relationship between $\Delta^{17}\text{O}$ and $(^{26}\text{Al}/^{27}\text{Al})_0$ of the
410 refractory inclusions in this study; data from Acfer 094 chondrules (Ushikubo et al.,
411 2013) are also shown for comparison. Inferred $(^{26}\text{Al}/^{27}\text{Al})_0$ values of CAIs Y81020-E-8, G5,
412 G16, G49, and G104 range from $(4.08\pm0.75)\times10^{-5}$ to $(5.05\pm0.18)\times10^{-5}$, which are slightly
413 lower than the canonical value of $(5.25\pm0.02)\times10^{-5}$ (Fig. 7). These values are similar to
414 those of melted CAIs from CV and CR chondrites (Makide et al., 2009; MacPherson et
415 al., 2012). As CAIs Y81020-E-8, G5, G16, G49, and G104 have well-defined isochrons,

416 and because they have primitive textures, such as small grain size and multi-
417 nodule structures, they likely did not experience a later re-melting process. Assuming this is
418 true, and also assuming homogeneously distributed ^{26}Al after “canonical” CAIs formed
419 (e.g., Kita et al., 2013), their slightly lower $(^{26}\text{Al}/^{27}\text{Al})_0$ values indicate formation up to
420 $\sim 0.3\text{ Ma}$ after canonical CAIs (Fig. 7). However, it cannot be ruled out that these fine
421 grained CAIs formed prior to homogeneous distribution of ^{26}Al and that the range of
422 $(^{26}\text{Al}/^{27}\text{Al})_0$ values among Acfer 094 and Y-81020 refractory inclusions represents
423 variability of ^{26}Al abundance in the early solar system when they formed. For AOAG17,
424 the inferred $(^{26}\text{Al}/^{27}\text{Al})_0$ value of $(5.32 \pm 0.81) \times 10^{-5}$ is inconsistent with the canonical value
425 of CAIs. As such, this AOA could be as old as other CAIs although the present data are
426 not of sufficient precision to discuss fine-scale differences of formation age. Regarding
427 oxygen isotope ratios, all of the aforementioned CAIs, as well as AOAG17, are ^{16}O -rich,
428 likely reflecting the value of the nebular gas over this time period.

429 CAI G92 is also ^{16}O -rich, but its constituent anorthite has a n order of
430 magnitude lower inferred $(^{26}\text{Al}/^{27}\text{Al})_0$, $(5.21 \pm 0.54) \times 10^{-6}$, when compared to the CAIs and
431 the AOA mentioned above (Fig. 7). However, there is also an other trend line
432 corresponding to a $(^{26}\text{Al}/^{27}\text{Al})_0$ of $(5.2 \pm 2.0) \times 10^{-5}$ that is observed among Al-Ti-rich
433 diopside and melilite in CAI G92 (Fig. 6g, Table 2), making it evident that this CAI
434 initially had a near-canonical $(^{26}\text{Al}/^{27}\text{Al})_0$, like the other refractory inclusions. After
435 isotopic disturbance in the Acfer 094 parent body is unlikely to explain the lower $\delta^{26}\text{Mg}^*$
436 values in G92 anorthite because (1) as mentioned in the Introduction, Acfer 094 is one of
437 the least metamorphosed carbonaceous chondrites (Greshake, 1997; Kimura et al., 2008)
438 and (2) the ^{26}Al - ^{26}Mg systematics of both the anorthite rim layer in CAI G16 (Fig. 6e)
439 and small anorthite grains in chondrules from the same thin section do not exhibit
440 evidence for isotopic disturbance (this study, Kita et al., 2013; Ushikubo et al., 2013). As
441 such, we interpret that the lower $(^{26}\text{Al}/^{27}\text{Al})_0$ of G92 anorthite (Fig. 6h) recorded the
442 timing of a later thermal process in the solar nebula.

443 Like anorthite in CAI G92, Krot et al. (2014b) reported that anorthite in some
444 AOA s from CH chondrites have similar ^{16}O -rich oxygen isotope ratios but low $\delta^{26}\text{Mg}^*$
445 values. They proposed that such an isotopic signature in anorthite could be explained by
446 Mg isotopic exchange with surrounding Mg-rich phases during a days-to-weeks long
447 thermal annealing event at high temperature (~1100°C) coupled with a slow cooling rate
448 (~0.01 K/h). Such conditions would be necessary because the diffusivity of Mg in
449 anorthite is significantly higher than that of oxygen at $> 1000^\circ\text{C}$. However, such a
450 scenario is unlikely for G92 because a linear correlation between $^{27}\text{Al}/^{24}\text{Mg}$ ratios and
451 $\delta^{26}\text{Mg}^*$ values in anorthite is not consistent with a later isotopic disturbance of the ^{27}Al -

24Mg systematics in anorthite (e.g., Podosek et al., 1991; MacPherson et al., 2012). Further, the near-canonical isochron produced by Al-Ti-rich diopside and melilite in G92 (Fig. 6g) is not consistent with Mg isotopic exchange with adjacent anorthite. If anorthite in G92 formed as early as other phases, the accumulated ^{26}Mg -excess would have been larger than 300‰ in $\delta^{26}\text{Mg}^*$ (e.g., anorthite in CAI G16, Fig. 6e) at the time of the thermal annealing event. Thus, even though Mg is a minor element in anorthite (<0.1wt%), anomalously high $\delta^{26}\text{Mg}^*$ values (up to a few permil) in Mg-rich phases are expected to be observed if Mg isotopic exchange occurred (e.g., Podosek et al., 1991; MacPherson et al., 2012). Moreover, contrary to typical AOAs, anorthite in G92 is the predominant phase and is not always associated with spinel, meaning that complete resetting of the anorthite ^{26}Al - ^{26}Mg systematics by isotopic exchange with Mg-rich phases would probably take much longer. In contrast, exchange with an ^{16}O -poor ambient gas would have effectively occurred because of the fine-grained texture in this CAI.

As an alternative to the low excess- ^{26}Mg in G92 anorthite being due to solid-state exchange-induced resetting, a more likely possibility is that G92 originally formed as a fine-grained melilite-rich CAI, and that the anorthite replaced the melilite after most of the ^{26}Al decayed. This idea presupposes that the occurrence of low $\delta^{26}\text{Mg}^*$ in anorthite-rich CAI G92 is not a coincidence, but is instead the result of later high temperature process in the solar nebula. Replacement of melilite by anorthite could have occurred by interaction with the ambient gas: $\text{Ca}_2\text{Al}_2\text{SiO}_7$ (Gehlenite) + 3SiO(g) + Mg(g) + $4\text{H}_2\text{O(g)}$ \rightarrow $\text{CaAl}_2\text{Si}_2\text{O}_8$ (anorthite) + $\text{CaMgSi}_2\text{O}_6$ (diopside) + $4\text{H}_2\text{g}$ (Krot et al., 2004b), or under an oxidizing environment, as the following reaction: $\text{Ca}_2\text{Al}_2\text{SiO}_7$ + SiO(g) + $\text{H}_2\text{O(g)}$ + CO_2g \rightarrow $\text{CaAl}_2\text{Si}_2\text{O}_8$ + $\text{Ca(OH)}_2\text{g}$ + CO(g) is also proposed (Hashimoto, 1992). Even though spinel (MgAl_2O_4) and åkermanite ($\text{Ca}_2\text{MgSi}_2\text{O}_7$) could have partly contributed Mg and Si to produce diopside in these reactions, replacement of melilite requires incorporation of SiO from outside of the CAI. As such, the oxygen isotope ratio of anorthite produced by reaction must have been affected by the oxygen isotope ratio of an ambient gas. Assuming the composition of the initial melilite of CAI G92 was the same as that of remaining melilite (Ak_{20}), and that Mg was completely consumed to form diopside by replacement of melilite, abundant diopside (~20 molar% of anorthite, assuming gehlenite : åkermanite = anorthite : diopside = 4 : 1) would have formed with anorthite. Since sub- μm high-Ca pyroxene inclusions in anorthite and small and irregular-shaped Al-Ti-rich diopside grains are abundant in the interior of CAI G92 (Fig. 2b), they may have formed by replacement of melilite. However, due to the limitation of analysis spot size by SIMS (~3 μm in size for O isotope analyses and ~10 μm for Mg isotope analyses of Mg-rich phases), we could not perform isotope analyses of sub- μm diopside

488 inclusions, nor could we analyze the outermost margin of diopside, in order to investigate
489 if their characteristics were established during the replacement of melilite. With regard
490 to anorthite, very low Mg concentrations of anorthite in G92, as well as those of the thin
491 anorthite layer in G16 ($^{27}\text{Al}/^{24}\text{Mg}$ =700 to 1560, 0.03 to 0.015wt.% MgO), suggest that the
492 formation process of anorthite in these CAIs was different than that of igneous anorthite
493 in type B CAIs (typically $^{27}\text{Al}/^{24}\text{Mg}$ =100 to 600, 0.23 to 0.04wt.%, e.g., Podosek et al.,
494 1991; Goswami et al., 1994; Makide et al., 2009; Kita et al., 2012). In addition, the
495 absence of anomalously high $\delta^{26}\text{Mg}^*$ among G92 Mg-rich phases is consistent with the
496 replacement of melilite by anorthite, after most ^{26}Al had decayed. If G92 anorthite
497 initially formed with the canonical abundance of the short-lived nuclide ^{26}Al , followed by
498 later Mg isotopic exchange, an occurrence of anomalously high $\delta^{26}\text{Mg}^*$ (i.e. above the
499 canonical isochron) would be expected in Mg-rich phases such as spinel, Al-Ti-rich
500 diopside, and melilite (e.g., Podosek et al., 1991; MacPherson et al., 2012). Instead, if
501 anorthite formed by replacing primary melilite after the decay of most ^{26}Al , it might have
502 inherited the ^{26}Mg -excess of precursor melilite (e.g., $\delta^{26}\text{Mg}^*$: ~3‰, Figs. 6g and 6h). In this
503 case, the slope of the regression line using anorthite and melilite data represents the
504 $(^{26}\text{Al}/^{27}\text{Al})_0$ when anorthite formed. Another possibility is that G92 anorthite had no
505 ^{26}Mg -excess when it initially formed, because it incorporated Mg from the ambient gas.
506 If this is the case, the regression line through the origin using anorthite data would be
507 appropriate, as well as its corresponding inferred $(^{26}\text{Al}/^{27}\text{Al})_0$, $\sim 5.5 \times 10^{-6}$, which is slightly
508 higher than the inferred $(^{26}\text{Al}/^{27}\text{Al})_0$ of 5.21×10^{-6} when using anorthite and melilite data.
509 Here we assume that Al was absent from the ambient nebular gas because of its highly
510 refractory nature (e.g., Lodders, 2003). Regardless of whether or not G92 anorthite
511 initially inherited ^{26}Mg -excess from melilite, ^{26}Al would have been supplied from the
512 reacted primary melilite. Assuming this formation mechanism is correct, the ^{26}Al - ^{26}Mg
513 systematics of G92 anorthite and melilite, whose data are distributed along a single
514 regression line (MSWD=0.95, Fig. 6h), can be used to deduce the time interval between
515 the CAI formation and the later formation of anorthite.

516 The inferred $(^{26}\text{Al}/^{27}\text{Al})_0$, $(5.21 \pm 0.54) \times 10^{-6}$, of G92 anorthite indicates formation
517 2.3 Ma after CAIs (Fig. 7). This result coincides with the timing of chondrule formation
518 among ordinary and carbonaceous chondrites (e.g., Kita and Ushikubo, 2012; Ushikubo
519 et al., 2013). As similar ages are also observed in CAI-chondrule compound objects in CR
520 chondrites ($(^{26}\text{Al}/^{27}\text{Al})_0$ of $< 2 \times 10^{-6}$ to $(3.8 \pm 1.3) \times 10^{-6}$, Makide et al., 2009), energetic events
521 in the solar nebula that imposed igneous and metamorphic processes among CAIs and
522 chondrules are inferred to have occurred at 2 – 3 Ma after canonical CAI formation.
523 Regarding chondrule formation, it is inferred that the environment was ^{16}O -poor relative

to the environment where refractory inclusions formed, as oxygen isotope ratios of chondrules are typically $\Delta^{17}\text{O}=-6$ to 2\textperthousand (Connolly and Huss, 2010; Kita et al., 2010; Krot et al., 2010b; Rudraswami et al., 2011; Weisberg et al., 2011; Nakashima et al., 2012; Ushikubo et al., 2012; Schrader et al., 2013, 2014; Tenner et al., 2013, 2015). This inference is also supported by characteristics of CAI-chondrule compound objects, as their ^{16}O -rich CAI-like domains are enclosed by ^{16}O -poor ferromagnesian minerals (Makide et al., 2009). In contrast, CAI G92 does not contain ^{16}O -poor ferromagnesian phases (olivine and low-Ca pyroxene) or Fe-Ni metal (Fig. 2b). Thus, even though G92 anorthite has a similar inferred $(^{26}\text{Al}/^{27}\text{Al})_0$ as chondrules, it differs from chondrules and CAI-chondrule compound objects. Combined, these characteristics of CAI G92 indicate the existence of an ^{16}O -rich environment ($\Delta^{17}\text{O}\sim-23\text{\textperthousand}$, Figs. 4g and 7) that was devoid of ^{16}O -poor ferromagnesian dust, approximately 2 – 3 Ma after CAI formation.

A conceivable scenario is that G92 anorthite formed at the inner edge of the solar nebula, where ambient gas may still have been ^{16}O -rich 2 – 3 Ma after CAI formations (possibly because this region is close to the Sun, the predominant reservoir of ^{16}O -rich solar gas). Then, following the formation of anorthite, CAI G92 could have been transferred to the outer asteroid belt. However, this scenario seems unlikely because (1) it would have been difficult to avoid any reprocessing until ~ 2 Ma after CAIs if G92 remained close to the Sun over that time interval; and (2) outward mass transport was likely insufficient ~ 2 Ma after CAIs (Ciesla, 2010; Jacquet, 2013).

Alternatively, a more plausible scenario is that G92 anorthite formed at a large vertical distance relative to the chondrule-forming mid-plane of the protoplanetary disk. Here, it is assumed (1) an ^{16}O -rich gas would have been a major oxygen isotopic component, because it has been ubiquitously present throughout the history of the Solar System; and (2) the mid-plane of the protoplanetary disk was dominated by ^{16}O -poor silicate dust (e.g., Tenner et al., 2015) and early Solar System H_2O ice (e.g., Sakamoto et al., 2007), particularly after cooling of the solar nebula and with reduced turbulent flow. The former assumption is possible when considering that the present solar wind is ^{16}O -rich ($\Delta^{17}\text{O}=-28.4\pm1.8\text{\textperthousand}$, McKeegan et al., 2011). The latter is valid because high dust to gas ratios (e.g. Ebel and Grossman, 2000; Alexander 2004), as well as enhancement of H_2O ice (e.g., Fedkin and Grossman, 2006; 2016), were likely necessary to create an environment oxidized enough to form the chondrule assemblage. The settling of ^{16}O -poor H_2O ice and dust toward the mid-plane of the protoplanetary disk would have caused a vertical oxygen isotopic gradient in the protoplanetary disk (e.g., Yurimoto et al., 2007) at the time of chondrule formations. Under such an environment, products of high-temperature processes would have different oxygen isotope ratios as a function of their

560 vertical distance from the mid-plane. For example, Tenner et al. (2015) demonstrated
561 that variable additions of ^{16}O -poor dust and H_2O ice ($\Delta^{17}\text{O} \sim -6\text{\textperthousand}$ and $+5\text{\textperthousand}$, respectively)
562 to ^{16}O -rich gas ($\Delta^{17}\text{O} \sim -28.4\text{\textperthousand}$) can explain the observed $\Delta^{17}\text{O} - \text{Mg\#}$ trend among
563 ferromagnesian silicates in carbonaceous chondrite chondrules. As such, materials that
564 formed vertically far from the mid-plane could have been enriched in ^{16}O , because such
565 a region would have been depleted in ^{16}O -poor dust and H_2O ice, and therefore would
566 have been dominated by ^{16}O -rich gas. We note that large silicate particles like CAI G92
567 (a few hundred μm in size) must have been rare at a vertically distant place from the
568 mid-plane after the settling of dusts to the mid-plane (e.g., Ciesla, 2009; Jacquet, 2013).
569 It is more favorable that much smaller refractory inclusions would prevail at large
570 vertical distance from the mid-plane. As such, small refractory inclusion may have a
571 higher likelihood of showing evidence for re-heating events in an ^{16}O -rich environment.

572 Considering the prevalence of chondrules in unequilibrated chondrites (20-80
573 volume percent; Scott et al., 1996), it is evident that one or more pervasive processes
574 produced silicate melts ~ 2 Ma after CAIs, and several mechanisms that have been
575 proposed for their formation (see Ciesla, 2005; Desch et al., 2012 for review). Assuming
576 the energy source of G92 anorthite formation was similar to that which formed
577 chondrules, a vertically distant location from the mid-plane of the protoplanetary disk
578 seems a more appropriate site than the inner edge of the solar nebula to explain both a
579 younger anorthite formation age (~ 2 Ma after CAIs) and the lack of accumulated
580 ferromagnesian phases.

582 **5.3. ^{16}O -rich dust component and correlation lines**

583 Fine-grained CAIs and AOAs formed by aggregation of primary condensates
584 from early solar nebular gas, and they avoided re-melting by a later heating event in the
585 solar nebula. The limited range of $\delta^{25}\text{Mg}_{\text{PSM3}}$ values among the fine-grained refractory
586 inclusions studied (-0.4 to $1.3\text{\textperthousand}$) supports this idea. Thus, we suggest that fine-grained
587 CAIs and AOAs from type 3.00-3.05 chondrites are the best candidates for recording
588 pristine oxygen isotope ratios of early solar system condensates.

589 Figure 8 shows averaged oxygen isotope ratios of individual refractory
590 inclusions (Fig.8a), as well as those from AOA forsterite and Al-Ti-rich diopside (Fig.8b,
591 see also Table 2) obtained using a high intensity primary beam (small beam data are
592 only used to calculate averaged values of individual samples, due to their large
593 uncertainties). The oxygen isotope ratios of fine-grained Acfer 094 and Y-81020
594 refractory inclusions are tightly distributed between the CCAM line (Clayton et al., 1977)
595 and the PCM regression line defined based on olivine and low-Ca pyroxene data from

596 Acfer 094 chondrules (Ushikubo et al., 2012). Deviations in averaged $\delta^{18}\text{O}$ values from
597 the CCAM line, relative to the mass-dependent isotope fractionation trend
598 ($\delta^{17}\text{O}=0.52\times\delta^{18}\text{O}$), range from $-0.6\text{\textperthousand}$ (CAI G16) to $+1.9\text{\textperthousand}$ (CAI G5), with an average value
599 of $+0.6\text{\textperthousand}$. These results indicate that oxygen isotope ratios of pristine CAI precursor
600 dusts were distributed along the CCAM line, or, at most, were $\sim 1\text{\textperthousand}$ to the right of the
601 CCAM line. Note that we cannot precisely determine the oxygen isotope ratio of the
602 primordial nebular gas from fine-grained refractory inclusion data because the degree of
603 equilibrium oxygen isotope fractionation between gas and dust can vary as a function of
604 temperature and gas composition (e.g., $\delta^{18}\text{O}$ value of olivine could be 2 to 3‰ lighter than
605 that of ambient gas, Clayton et al., 1991; Kita et al., 2010). Regarding the PCM line
606 (Ushikubo et al., 2012) and its uncertainty ($\sim\pm 0.7\text{\textperthousand}$), it is indistinguishable from the
607 Acfer 094 and Y-81020 refractory inclusion data. This is an important consideration for
608 two reasons. First, it indicates that Acfer 094 chondrules and refractory inclusions
609 represent a consistent mixing line of early Solar System materials. Second, and with
610 respect to relict olivine grains in Acfer 094 chondrules, the most ^{16}O -rich examples have
611 oxygen isotope ratio that are indistinguishable from Acfer 094 refractory inclusion data
612 (Fig. 9). This overlap is consistent with the idea that ^{16}O -rich relict olivine derived from
613 refractory inclusion related material (e.g., AOA, olivine in the accretionary rim of CAIs).

614 Beyond linking Acfer 094 chondrules and refractory inclusions together, the
615 PCM line carries with it other important characteristics. For example, oxygen isotope
616 data from extremely ^{16}O -poor Acfer 094 cosmic symplectites (Sakamoto et al., 2007; Seto
617 et al., 2008) plot on the PCM line (Fig. 9). The PCM line also intersects with the
618 terrestrial fractionation (TF) line at $\delta^{18}\text{O}=5.8\pm 0.4\text{\textperthousand}$ (Ushikubo et al., 2012), which is in
619 agreement with the terrestrial mantle value ($\delta^{18}\text{O}=5.5\pm 0.2\text{\textperthousand}$; Eiler, 2001). Taking all of
620 these things into consideration, it is apparent that most primary materials from
621 carbonaceous chondrites experienced very little mass-dependent oxygen isotope
622 fractionation. Further, if all of the aforementioned materials within Acfer 094 are indeed
623 related, it suggests that ^{16}O -rich nebular gas and ^{16}O -poor (or $^{17,18}\text{O}$ -rich) primordial
624 volatiles represent endmembers of a linear trend (i.e., the PCM line) with a mass-
625 independent fractionated slope of ~ 1.0 .

627 **6. Conclusions**

628 Oxygen isotope ratios and ^{26}Al - ^{26}Mg isotope systematics of multiple phases in
629 refractory inclusions (5 spinel-melilite-rich CAIs, 1 pyroxene-anorthite-rich CAI, and 4
630 AOAs) from the least metamorphosed carbonaceous chondrites, Acfer 094 (C-ungrouped
631 3.00) and Y-81020 (CO3.05), were investigated.

632 All samples have ^{16}O -rich signatures but exhibit subtle and detectable
633 variabilities in oxygen isotope ratios among individual refractory inclusions
634 ($\Delta^{17}\text{O} = -22.0 \pm 0.5\text{\textperthousand}$ to $-24.3 \pm 0.3\text{\textperthousand}$). This indicates slight oxygen isotope variations of
635 early solar nebular gas where refractory inclusions formed.

636 Within analytical uncertainties, oxygen isotope ratios of rim spinel and diopside
637 match those of interior phases in each CAI. In addition, no apparent mass-dependent
638 isotopic fractionation is observed in O and Mg isotope ratios of rim phases. These
639 observations do not agree with flash heating and evaporative loss of relatively volatile
640 elements during rim formation. Instead, our results suggest that condensation and
641 aggregation of interior phases, as well as the formation of CAI rim structures, occurred
642 in the same environment.

643 Inferred initial $^{26}\text{Al}/^{27}\text{Al}$ ratios of spinel-melilite-rich CAIs ($(4.08 \pm 0.75) \times 10^{-5}$ to
644 $(5.05 \pm 0.18) \times 10^{-5}$) are slightly lower than the canonical value of 5.25×10^{-5} . As most
645 spinel-melilite-rich CAIs have no petrologic evidence for re-melting after condensation,
646 the observed lower initial $^{26}\text{Al}/^{27}\text{Al}$ ratios indicate either condensation of refractory
647 phases occurred up to ~ 0.3 Ma after canonical CAIs or they formed before ^{26}Al was
648 homogeneously distributed in the Solar nebula.

649 A pyroxene-anorthite-rich CAI, G92, has an ^{16}O -rich signature
650 ($\Delta^{17}\text{O} = -23.3 \pm 0.3\text{\textperthousand}$), like other CAIs. However, the relatively low $(^{26}\text{Al}/^{27}\text{Al})_0$ of G92
651 anorthite ($(5.21 \pm 0.54) \times 10^{-6}$), indicates it formed by a reaction between primary melilite
652 and ^{16}O -rich nebular gas approximately 2.3 Ma after CAI formation. The oxygen and
653 magnesium isotope signatures suggest the existence of ^{16}O -rich gas in an environment
654 devoid of ferromagnesian dust. This environment was present during the timing of
655 chondrule formation.

656 Finally, averaged oxygen isotope ratios of refractory inclusions are distributed
657 along the CCAM line and the PCM line, which is the regression line based on oxygen
658 isotope data from Acfer 094 chondrules. Since the PCM line also overlaps with oxygen
659 isotope data of extremely ^{16}O -poor cosmic symplectites ($\Delta^{17}\text{O} \sim 83\text{\textperthousand}$), the linear
660 relationship among these materials is interpreted to represent mixing of two endmember
661 components in the solar nebula: that of ^{16}O -rich solar nebular gas, and that of extremely
662 ^{16}O -poor (or $^{17,18}\text{O}$ -rich) primordial volatiles.

663

664 **Acknowledgements**

665 We thank John W. Valley and Michael J. Spicuzza for oxygen isotope analyses of
666 standards by a laser fluorination and gas-source mass spectrometry, John Fournelle for
667 assistance with EPMA analysis, and Jim Kern for technical assistance with SIMS

668 operation. We are grateful to Dr. K. Nagashima, an anonymous reviewer, and the
669 associate editor Dr. A. N. Krot for constructive review comments and suggestions. This
670 work is supported by the NASA Cosmochemistry program (NNX07AI46G, NNX11AG62G ,
671 NTK). WiscSIMS is partly supported by NSF (EAR03 -19230, EAR07- 44079, EAR10-
672 53466).

673 **Figurecaption s**

674 **Figure1** : Backscatteredelectronimagesofspinel- melilite-richCAI s (a) G5, (b) G16, (c)
675 G49,(d)G104,(e)Y81020 -E-8, andenlargedviewsoff)alargenoduleinG16,(g)asmall
676 noduleinG16,(h) the melilite-richinteriorofG104, and(i) thespinelayerinY81020 -
677 E-8. Scale bars indicate 100 μ m for (a) to (e), 50 μ m for (f) to (h), and 20 μ m for (i),
678 respectively. Abbreviations: mel=melilite, sp=spinel, an=anorthite, di=(Al -Ti-rich)
679 diopside,ol=olivine, andpv=perovskite

680
681 **Figure2** :Backscatteredelectronimagesof(a) diopside-anorthite-richCAI G92, and (b)
682 enlargedviewofG92 . Scalebarsindicate100 μ mfor(a) and50 μ mfor(b),respectively .
683 AbbreviationsaresameasFig.1.

684
685 **Figure3** :BackscatteredelectronimagesofAOAs(a) G17,(b)G28,(c) G44,(d)G58 ,and
686 enlargedviewsof(e)anorthite -freeCa -Al -richdomaininG17,(f)anorthite -bearingCa- ,
687 Al-richd omainsinG44 . Scalebarsindicate100 μ m for(a)to(d)and50 μ mfor(e)and
688 (f),respectively . Abbreviationsarethe sameas in Fig.1

689
690 **Figure 4:** Oxygenthree -isotopediagrams .Allthemasureddatainthisstudy areshown
691 in(a). Adottedrectangleatthelowerleftin(a)indicatestheupperlimitoftherangesof
692 theenlargedviews,(b)to(k).Diagramsfrom individualspinel- melilite-richCAIs (sp-mel
693 CAIs) include Y81020-E-8 (b),G5 (c),G16 (d),G49 (e),G104 (f). G92(g)isa pyroxene-
694 anorthite-richCAI (px-anCAI) . AOAs include G17 (h),G28 (i),G44 (j),G58 (k). Reference
695 linesare TerrestrialF ractionation (TF,continuouslinein(a)), CarbonaceousChondrite
696 AnhydrousMineral(CCAM , dashed line), PrimitiveChondruleMineral (PCM, solid line),
697 andYoungandRussell(Y&R , graysolid line). Errorsare95%confidence .

698
699 **Figure5** : Comparisonof (a) $\Delta^{17}\text{O}$ and(b) $\delta^{18}\text{O}$ vsMOW values betweenaveraged valuesof
700 individualCAIsandtheirrim s. CAIs data areshowninascendingorderofaverage $\Delta^{17}\text{O}$
701 values. Errorsare95%confidence.

702
703 **Figure 6:** ^{26}Al - ^{26}Mg isotopesystematicsof (a)Y81020-E-8 ,(b)G5,(c)G49,(d)and(e)G16,
704 (f)G104,(g) and (h)G92,(i)G17. Inferred($^{26}\text{Al}/^{27}\text{Al}$)₀ valuesare shown. Formulae of
705 individualregressionlinesareprovided inTable2. Similarscale s ofXandYaxesare
706 applied to eachplot for proper comparisons ofslope s from individualregressionlines .
707 Errorsare95%confidence.

708

709 **Figure 7:** $(^{26}\text{Al}/^{27}\text{Al})_0$ vs. $\Delta^{17}\text{O}$ of the samples (CAIs and AOA) studied. Filled gray circles
710 are data from five spinel- melilite-rich CAIs G5, G16, G49, G104, and Y -81020-E-8. Open
711 squares are data from AOA As G17, G28, G44, and G58. Two filled black circles represent
712 $(^{26}\text{Al}/^{27}\text{Al})_0$ values of the diopside -melilite (5.2×10^{-5}) and the melilite -anorthite (5.2×10^{-6})
713 systems in CAI G92 . Chondrule data from Acfer 094 reported by [1] Ushikubo et al.
714 (2012) and [2] Ushikubo et al. (2013) are also shown for comparison . Vertical dotted line
715 indicates the canonical value of $(^{26}\text{Al}/^{27}\text{Al})_0$ (5.25×10^{-5}). Errors are 95% confidence.
716

717 **Figure 8:** Oxygen three -isotope plots of (a) average values of individual CAIs and AOAs
718 and (b) individual AOA analyses with a large primary beam and multiple -FC detectors.
719 Errors are 95% confidence.

720
721 **Figure 9:** Oxygen three -isotope plots of refractory inclusions (averaged values of CAIs
722 and AOAs, this study), chondrules (averaged values and individual relict olivine data,
723 Ushikubo et al., 2012), and cosmic symplectites (spot analysis data of COS, Sakamoto et
724 al., 2007) from Acfer 094. Four reference lines are same as Fig . 4.

725 **References:**

726 Alexander C. M. O'D. (2004) Chemical equilibrium and kinetic constraints for chondrule
727 and CAI formation conditions. *Geochim. Cosmochim. Acta* **68**, 3943-3969.

728

729 Bodénan J.-D., Starkey N. A., Russell S. S., Wright I. P., and Franchi I. A. (2014) An
730 oxygen isotope study of Wark-Lovering rims on type A CAIs in primitive carbonaceous
731 chondrites. *Earth Planet. Sci. Lett.* **401**, 327-336.

732

733 Ciesla F. J. (2005) Chondrule-forming processes – An overview. In Chondrites and the
734 protoplanetary disk. ASP Conference Series, Vol. 341 (eds. A. N. Krot, E. R. D. Scott, and
735 B. Reipurth). Astronomical Society of the Pacific, San Francisco, pp. 811-820.

736

737 Ciesla F. J. (2009) Two-dimensional transport of solids in viscous protoplanetary disks.
738 *Icarus*, **200**, 655-671.

739

740 Ciesla F. J. (2010) The distributions and ages of refractory objects in the solar nebula.
741 *Icarus* **208**, 455-467.

742

743 Clayton R. N. (2003) Oxygen isotopes in meteorites. In *Treatise on Geochemistry 1*,
744 Meteorites, Comets, and Planets (ed. A. M. Davis). Elsevier-Pergamon, Oxford, pp. 129-
745 142.

746

747 Clayton R. N. and Mayeda T. K. (1977) Correlated oxygen and magnesium isotope
748 anomalies in Allende inclusions, I: Oxygen. *Geophys. Res. Lett.* **4**, 295-298.

749

750 Clayton R. N., Mayeda T. K., Goswami J. N., and Olsen E. J. (1991) Oxygen isotope
751 studies of ordinary chondrites. *Geochim. Cosmochim. Acta* **55**, 2317-2337.

752

753 Clayton R. N., Mayeda T. K., Hutcheon I. D., Molini-Velsko C., Onuma N., Ikeda Y., and
754 Olsen E. J. (1983) Oxygen isotopic compositions of chondrules in Allende and ordinary
755 chondrites. In *Chondrules and their origins* (ed. E. A. King). Lunar Planet. Inst., Houston,
756 TX, pp. 37-43.

757

758 Clayton R. N., Onuma N., Grossman L., and Mayeda T. K. (1977) Distribution of the pre-
759 solar component in Allende and other carbonaceous chondrites. *Earth Planet. Sci. Lett.*
760 **34**, 209-224.

761
762 ConnollyJr.H.C.andHussG. R.(2010)Compositionalevolutionofthe protoplanetary
763 disk:Oxygenisotopesoftype -IIchondrulerulesfromCR2chondrites. *Geochim.Cosmochim.*
764 *Acta* **74**,2473- 2483.
765
766 DeschS.J.,M orris M.A.,ConnollyJr.H.C.,and BossA.P.(2012)Theimportanceof
767 experiments:Constraintsonchondruleformationmodels. *Meteorit.Planet.Sci.* **47**,1139-
768 1156.
769
770 Ebeld.S. and GrossmanL.(2000)Condensationindust -enrichedsystems. *Geochim.*
771 *Cosmochim.Acta* **64**,339 -366.
772
773 EilerJ.M.(2001)Oxygenisotopevariationsofbasaltic lavasanduppermantlerocks. In
774 Reviews in mineralogy and geochemistry 43, Stable isotope geochemistry (Eds. J. W.
775 Valley,D.R.Cole).The mineralogical society of America, WashingtonDC,pp.319 -364.
776
777 FedkinA.V.andGrossmanL. (2006)Thefayalitecon tentofchondriticolivine:Obstacle
778 tounderstandingthecondensationoffrockymaterial.In *MeteoritesandtheEarlySolar*
779 *SystemII* (eds.D.S.LaurettaandH.Y.McSween).Univ.ofArizonaPress,Tucson,pp.
780 279-294.
781
782 FedkinA.V.andGrossmanL.(2016)Effectsofdustenrichmentonoxygenfugacityof
783 cosmicgases. *Meteorit.Planet.Sci.* **51**, 843-850.
784
785 FaganT.J.,GuanY.,andMacPhersonG.J.(2007)Al -Mgisotopic evidenceforepisodic
786 alterationofCa -Al-richinclusionsfromAllende. *Meteorit.Planet.Sci.* **42**,1221- 1240.
787
788 Fagan T. J., Krot A. N., Keil K., and Yurimoto H. (2004) Oxygenisotopic evolution of
789 amoeboidolivine aggregates in the reduced CV3chondrites Efremovka, Vigarano, and
790 Leoville. *Geochim.Cosmochim.Acta* **68**,2591- 2611.
791
792 Goswami J. N., Srinivasan G., and Ulyanov A. A. (1994) Ion microprobe studies of
793 EfremovkaCAIs:I.Magnesiumisotopecomposition. *Geochim.Cosmochim.Acta* **58**,431-
794 447.
795
796 GounelleM.,KrotA.N., HagashimaK.,andKearsleyA.(2009)Extreme ^{16}O enrichment

797 in calcium-aluminum-rich inclusions from the Isheyev (CH/CB) chondrite. *Astrophys.*
798 *J.* **698**, L18-L22.

799

800 Greshake A. (1997) The primitive matrix components of the unique carbonaceous
801 chondrite Acfer 094: A TEM study. *Geochim. Cosmochim. Acta* **61**, 437-452.

802

803 Grossman L. (1972) Condensation in the primitive solar nebula. *Geochim. Cosmochim.*
804 *Acta* **36**, 597-619.

805

806 Grossman J. N. and Brearley A. J. (2005) The onset of metamorphism in ordinary and
807 carbonaceous chondrites. *Meteorit. Planet. Sci.* **40**, 87-122.

808

809 Grossman L. and Ganapathy R. (1976) Trace elements in the Allende meteorite-II. Fine-
810 grained, Ca-rich inclusions. *Geochim. Cosmochim. Acta* **40**, 967-977.

811

812 Grossman L., Simon S. B., Rai V. K., Thiemens M. H., Hutcheon I. D., Williams R. W.,
813 Galy A., Ding T., Fedkin A. V., Clayton R. N., Mayeda T. K. (2008) Primordial
814 compositions of refractory inclusions. *Geochim. Cosmochim. Acta* **72**, 3001-3021.

815

816 Grossman L. and Steele I. M. (1976) Amoeboid olivine aggregates in the Allende
817 meteorite. *Geochim. Cosmochim. Acta* **40**, 149-155.

818

819 Hashimoto A. (1992) The effect of H₂O gas on volatilities of planet-forming major
820 elements: I. Experimental determination of thermodynamic properties of Ca-, Al-, and
821 Si-hydroxide gas molecules and its application to the solar nebula. *Geochim. Cosmochim.*
822 *Acta* **56**, 511-532.

823

824 Heck P. R., Ushikubo T., Schmitz B., Kita N. T., Spicuzza M. J., and Valley J. W. (2010)
825 A single asteroidal source for extraterrestrial Ordovician chromite grains from Sweden
826 and China: High-precision oxygen three-isotope SIMS analysis. *Geochim. Cosmochim.*
827 *Acta* **74**, 497-509.

828

829 Hiyagon H., and Hashimoto A. (1999) ¹⁶O Excesses in Olivine Inclusions in Yamato-
830 86009 and Murchison Chondrites and Their Relation to CAIs. *Science* **283**, 828-831.

831

832 Hsu W., Wasserburg G. J., Huss G. R. (2000) High time resolution by use of the ²⁶Al

833 chronometer in the multi-stage formation of a CA I. *Earth Planet Sci. Lett.* **182**, 15-29.

834

835 Hutcheon I. D., Marhas K. K., Krot A. N., Goswami J. N., and Jones R. H. (2009) ²⁶Al in
836 plagioclase-rich chondrules in carbonaceous chondrites: Evidence for an extended
837 duration of chondrule formation. *Geochim. Cosmochim. Acta* **73**, 5080-5099.

838

839 Jacobsen B., Han J. M., Matzel J. E., Brearley A. J., Hutcheon I. D. (2014) Oxygen
840 isotopes in fine-grained spinel-pyroxene and melilite-rich CAIs in the ALHA 77307
841 CO3.0 carbonaceous chondrite. *Lunar Planet. Sci. XLV* #2789 (abs. tr.).

842

843 Jacobsen B., Yin Q.-Z., Moyner F., Amelin Y., Krot A. N., Nagashima K., Hutcheon I. D.,
844 Palme H. (2008) ²⁶Al-²⁶Mg and ²⁰⁷Pb-²⁰⁶Pb systematics of Allende CAIs: Canonical solar
845 initial ²⁶Al/²⁷Al ratio reinstated. *Earth Planet. Sci. Lett.* **272**, 353-364.

846

847 Jacquet E. (2013) On vertical variations of gas flow in protoplanetary disks and their
848 impact on the transport of solids. *Astron. Astrophys.* **551**, A75.

849

850 Kawasaki N., Kato C., Itoh S., Wakaki S., Ito M., and Yurimoto H. (2015) ²⁶Al-²⁶Mg
851 chronology and oxygen isotope disturbance of multiple melting for a type C CAI from
852 Allende. *Geochim. Cosmochim. Acta* **169**, 99-114.

853

854 Kimura M., Grossman J. N., and Weisberg M. K. (2008) Fe-Ni metal in primitive
855 chondrites: Indicators of classification and metamorphic conditions for ordinary and CO
856 chondrites. *Meteorit. Planet. Sci.* **43**, 1161-1177.

857

858 Kita N. T., Nagahara H., Tachibana S., Tomomura S., Spicuzza M. J., Fournelle J. H.,
859 Valley J. W. (2010) High precision SIMS oxygen isotope study of chondrules in LL3
860 chondrites: Role of ambient gas during chondrule formation. *Geochim. Cosmochim. Acta*
861 **74**, 6610-6635.

862

863 Kita N. T., and Ushikubo T. (2012) Evolution of protoplanetary disk inferred from
864 chronology of individual chondrules. *Meteorit. Planet. Sci.* **47**, 1108-1119.

865

866 Kita N. T., Ushikubo T., Fu B., and Valley J. W. (2009) High precision SIMS oxygen
867 isotope analysis and the effect of sample topography. *Chem. Geol.* **264**, 43-57.

868

869 Kita N. T., Ushikubo T., Knight K. B., Mendybaev R. A., Davis A. M., Richter F. M., and
870 Fournelle J. H. (2012) Internal ^{26}Al - ^{26}Mg isotope systematics of a Type B CAI: Remelting
871 of refractory precursor solids. *Geochim. Cosmochim. Acta* **86**, 37-51.

872

873 Kita N. T., Yin Q.-Z., MacPherson G. J., Ushikubo T., Jacobsen B., Nagashima K.,
874 Kurahashi E., Krot A. N., Jacobsen S. B. (2013) ^{26}Al - ^{26}Mg isotope systematics of the first
875 solids in the early solar system. *Meteorit. Planet. Sci.* **48**, 1383-1400.

876

877 Kobayashi S., Imai H., and Yurimoto H. (2003) New extreme ^{16}O -rich reservoir in the
878 early solar system. *Geochim. J.* **37**, 663-669.

879

880 Kööp L., Nakashima D., Heck P. R., Kita N. T., Tenner T. J., Krot A. N., Nagashima K.,
881 Park C., and Davis A. M. (2016) New constraints on the relationship between ^{26}Al and
882 oxygen, calcium, and titanium isotopic variation in the early Solar System from a
883 multielement isotopic study of spinel-hibonite inclusions. *Geochim. Cosmochim. Acta*
884 **184**, 151-172.

885

886 Krot A. N., Chaussidon M., Yurimoto H., Sakamoto N., Nagashima K., Hutcheon I. D.,
887 and MacPherson G. J. (2008) Oxygen isotopic compositions of Allende type C CAIs:
888 Evidence for isotopic exchange during nebular melting and asteroidal metamorphism.
889 *Geochim. Cosmochim. Acta* **72**, 2534-2555.

890

891 Krot A. N., Fagan T. J., Keil K., McKeegan K. D., Sahijpal S., Hutcheon I. D., Petaev M.
892 I., and Yurimoto H. (2004a) Ca, Al-rich inclusions, amoeboid olivine aggregates, and Al-
893 rich chondrules from the unique carbonaceous chondrite Acfer 094: I. Mineralogy and
894 petrology. *Geochim. Cosmochim. Acta* **68**, 2167-2184.

895

896 Krot A. N., MacPherson G. J., Ulyanov A. A., and Petaev M. I. (2004b) Fine-grained,
897 spinel-rich inclusions from the reduced CV chondrites Efremovka and Leoville: I.
898 Mineralogy, petrology, and bulk chemistry. *Meteorit. Planet. Sci.* **39**, 1517-1553.

899

900 Krot A. N., McKeegan K. D., Leshin L. A., MacPherson G. J., Scott E. R. D. (2002)
901 Existence of an ^{16}O -rich gaseous reservoir in the solar nebula. *Science*, **295**, 1051-1054.

902

903 Krot A. N., Nagashima K., Ciesla F. J., Meyer B. S., Hutcheon I. D., Davis A. M., Huss
904 G. R., and Scott E. R. D. (2010a) Oxygen isotopic composition of the Sun and mean oxygen

905 isotopic composition of the protosolar silicate dust: Evidence from refractory inclusions.
906 *Astrophys.J.* **713**, 1159-1166.
907

908 Krot A. N., Nagashima K., van Kooten E. M. M. E., and Bizzarro M. (2016) High
909 temperature rims around calcium-aluminum-rich inclusions from the CR, CB, and CH
910 carbonaceous chondrites. *Lunar Planet. Sci. XLV* II# 1203 (abstr.).
911

912 Krot A. N., Nagashima K., Yoshitake M., and Yurimoto H. (2010b) Oxygen isotopic
913 compositions of chondrules from the metal-rich chondrites isheyev (CH/CB_b), MAC
914 02675(CB_b) and QUE94627(CB_b). *Geochim. Cosmochim. Acta* **74**, 2190-2211.
915

916 Krot A. N., Nagashima K., Wasserburg G. J., Huss G. R., Papanastassiou D., Davis A.
917 M., Hutcheon I. D., Bizzarro M. (2014a) Calcium-aluminum-rich inclusions with
918 fractionation and unknown nuclear effects (FUN CAIs): I. Mineralogy, petrology, and
919 oxygen isotopic compositions. *Geochim. Cosmochim. Acta* **145**, 206-247.
920

921 Krot A. N., Park C., and Nagashima K. (2014b) Amoeboïd olivine aggregates from CH
922 carbonaceous chondrites. *Geochim. Cosmochim. Acta* **139**, 131-153.
923

924 Kunihiro T., Rubin A. E., McKeegan K. D., Wasson J. T. (2004) Initial $^{26}\text{Al}/^{27}\text{Al}$ in
925 carbonaceous chondrite chondrules: Too little ^{26}Al to melt asteroids. *Geochim.
926 Cosmochim. Acta* **68**, 2947-2957.
927

928 Kurahashi E., Kita N. T., Nagahara H., and Morishita Y. (2008) ^{26}Al - ^{26}Mg systematics of
929 chondrules in a primitive CO chondrite. *Geochim. Cosmochim. Acta* **72**, 3865-3882.
930

931 Larsen K. K., Trinquier A., Paton C., Schiller M., Wielandt D., Ivanova M. A., Connally
932 J. N., Nordlund Å., Krot A. N., Bizzarro M. (2011) Evidence for magnesium isotope
933 heterogeneity in the solar protoplanetary disk. *Astrophys. J. Lett.* **735**, L37(7pp).
934

935 Lodders K. (2003) Solar system abundances and condensation temperatures of the
936 elements. *Astrophys. J.* **591**, 1220-1247.
937

938 MacPherson G. J., Kita N. T., Ushikubo T., Bullock E. S., and Davis A. M. (2012) Well
939 resolved variations in the formation ages for Ca-Al-rich inclusions in the early Solar
940 System. *Earth Planet. Sci. Lett.* **331-332**, 43-54.

941

942 MakideK.,NagashimaK.,KrotA.N.,HussG.R.,HutcheonI.D.,andBischoffA.(2009)

943 Oxygen- andmagnesium -isotopecompositionsofcalcium -aluminum-richinclusionsfro m

944 CR2carbonaceouschondrites. *Geochim.Cosmochim.Acta* **73**,5018- 5050.

945

946 McKeeganK.D.,KallioA.P.A.,HeberV.S.,JarzebinskiG.,MaoP.H.,CoathC.D.,

947 KunihiroT.,WiensR.C.,NordholtJ.E.,MosesJr.R.W.,ResenfeldD.B.,JurewiczA.J.

948 G.,and BurnettD.S.(2011)TheOxygenIsotopicCompositionoftheSunInferredfrom

949 CapturedSolarWind. *Science* **332**,1528- 1532.

950

951 NakamuraT.,NoguchiT.,TsuchiyamaA.,UshikuboT., KitaN.T.,ValleyJ.W.,Zolensky

952 M. E., Kakazu Y., Sakamoto K., Mashio E., U esugi K., and Nakano T. (2008)

953 ChondrulelikeObjectsinShort -PeriodComet81P/Wild2. *Science* **321**,1664 -1667.

954

955 NakashimaD.,UshikuboT.,JoswiakD.J.,BrownleeD.E.,MatrajtG.,WeisbergM.K.,

956 ZolenskyM.E.,andKitaN.T.(2012)Oxygenisotopesincrystallinesilicatesofcomet

957 Wild 2: A comparison of oxygen isotope systematics between Wild 2 particles and

958 chondriticmaterials. *EarthPlanet.Sci. Lett.* **357-358**,355- 365.

959

960 PodosekF.A.,ZinnerE.K.,MacPhersonG.J.,LundbergL.L.,BrannonJ.C.,FaheyA.

961 J. (1991) Correlated study of initial $^{87}\text{Sr}/^{86}\text{Sr}$ and Al -Mg isotopic systematics and

962 petrologic properties in a suite of refractory inclusions fr om the Allende meteorite.

963 *Geochim.Cosmochim.Acta* **55**,1083- 1110.

964

965 RudraswamiN.G.,UshikuboT., NakashimaD.,andKitaN.T.(2011)Oxygenisotope

966 systematics ofchondrulesintheAllende CV3chondrite:Highprecisionionmicroprobe

967 studies. *Geochim. Cosmochim. Acta* **75**,7596- 7611.

968

969 Sakamoto N., Set o Y., Itoh S., Kuramoto K., Fujino K., Nagashima K., Krot A. N.,

970 YurimotoH.(2007)Remnantsoftheearlysolarsystemwaterenrichedinhea vyoxygen

971 isotopes. *Science*, **317**,231 -233.

972

973 SchraderD.L.,Connolly Jr. H.C.,LaurettaD.S.,NagashimaK.,HussG.R.,Davidson

974 J.,DomanikK.J.(2013)TheformationandalterationoftheRenazzo -likecarbonaceous

975 chondrites II: Linking O -isotope composition and oxidation state ofchondrule olivine.

976 *Geochim. Cosmochim. Acta* **101**,302- 327.

977

978 Schrader D. L., Nagashima K., Krot A. N., Ogliore R. C., and Hellebrand E. (2014)

979 Variations in the O₂ isotope composition of gas during the formation of chondrules from

980 the CR chondrites. *Geochim. Cosmochim. Acta* **132**, 50-74.

981

982 Scott E. R. D., Love S. G., and Krot A. N. (1996) Formation of chondrules and chondrites

983 in the protoplanetary nebula. In *Chondrules and the Protoplanetary Disk* (eds. R. H.

984 Hewins, R. Jones, and E. R. D. Scott). Cambridge Univ. Press, Cambridge, pp. 87-96.

985

986 Seto Y., Sakamoto N., Fujino K., Kaito T., Oikawa T., and Yurimoto H. (2008)

987 Mineralogical characterization of a unique material having heavy oxygen isotope

988 anomaly in matrix of the primitive carbonaceous chondrite Acfer 094. *Geochim.*

989 *Cosmochim. Acta* **72**, 2723-2734.

990

991 Simon J. I., Matzel J. E. P., Simon S. B., Hutcheon I. D., Ross D. K., Weber P. K., and

992 Grossman L. (2016) Oxygen isotope variations in the outer margins and Wark Lovering

993 rims of refractory inclusions. *Geochim. Cosmochim. Acta* **186**, 242-276.

994

995 Simon J. I., Hutcheon I. D., Simon S. B., Matzel J. E. P., Ramon E. C., Weber P. K.,

996 Grossman L., and DePaolo D. J. (2011) Oxygen isotope variations at the margin of a CAI

997 record: circulation within the solar nebula. *Science* **331**, 1175-1178.

998

999 Tenner T. J., Nakashima D., Ushikubo T., Kita N. T., and Weisberg M. K. (2015) Oxygen

1000 isotope ratios of FeO₂ poor chondrules in CR3 chondrites: Influence of dust enrichment

1001 and H₂O during chondrule formation. *Geochim. Cosmochim. Acta* **148**, 228-250.

1002

1003 Tenner T. J., Ushikubo T., Kurohashi E., Kita N. T., and Nagahara H. (2013) Oxygen

1004 isotope systematics of chondrule phenocrysts from the CO3.0 chondrite Yamato 81020:

1005 Evidence for two distinct oxygen isotope reservoirs. *Geochim. Cosmochim. Acta* **102**, 226-245.

1007

1008 Ushikubo T., Guan Y., Hiyagon H., Sugiura N., and Leslie L. A. (2007) ³⁶Cl, ²⁶Al, and O

1009 isotope in an Allende type B2 CAI: Implications for multiple secondary alteration events

1010 in the early solar system. *Meteorit. Planet. Sci.* **42**, 1267-1279.

1011

1012 Ushikubo T., Kimura M., Kita N. T., and Valley J. W. (2012) Primordial oxygen isotope

1013 reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite.
1014 *Geochim. Cosmochim. Acta* **90**, 242-264.

1015

1016 Ushikubo T., Nakashima D., Kimura M., Tenner T. J., and Kita N. T. (2013)
1017 Contemporaneous formation of chondrules in distinct oxygen isotope reservoirs.
1018 *Geochim. Cosmochim. Acta* **109**, 280-295.

1019

1020 Wang J., Davis A. M., Clayton R. N., Mayeda T. K., Hashimoto A. (2001) Chemical and
1021 isotopic fractionation during the evaporation of the $\text{FeO}\text{-MgO}\text{-SiO}_2\text{-CaO}\text{-Al}_2\text{O}_3\text{-TiO}_2$ rare
1022 earth element melt system. *Geochim. Cosmochim. Acta* **65**, 479-494.

1023

1024 Wark D., and Boynton W. V. (2001) The formation of rims on calcium-aluminum-rich
1025 inclusions: Step I – Flash heating. *Meteorit. Planet. Sci.* **36**, 1135-1166.

1026

1027 Wark D. A. and Lovering J. F. (1977) Marker events in the early evolution of the solar
1028 system: Evidence from rims on Ca-Al-rich inclusions in carbonaceous chondrites. *Proc.*
1029 *Lunar Sci. Conf.* **8**, 95-112.

1030

1031 Wasserburg G. J., Lee T., and Papanastassiou D. A. (1977) Correlated O and Mg isotopic
1032 anomalies in Allende inclusions: II. Magnesium. *Geophys. Res. Lett.* **4**, 299-302.

1033

1034 Weisberg M. K., Ebel D. S., Connolly Jr. H. C., Kita N. T., Ushikubo T. (2011) Petrology
1035 and oxygen isotope compositions of chondrules in E3 chondrites. *Geochim. Cosmochim.*
1036 *Acta* **75**, 6556-6569.

1037

1038 Yoshitake M., Koide Y., and Yurimoto H. (2005) Correlations between oxygen-isotopic
1039 composition and petrologic setting in a coarse-grained Ca, Al-rich inclusion. *Geochim.*
1040 *Cosmochim. Acta* **69**, 2663-2674.

1041

1042 Yurimoto H., Ito M., and Nagasawa H. (1998) Oxygen isotope exchange between
1043 refractory inclusion in Allende and Solar Nebula gas. *Science* **282**, 1874-1877.

1044

1045 Yurimoto H., Kuramoto K., Krot A. N., Scott E. R. D., Cuzzi J. N., Thiemens M. H., Lyons
1046 J. R. (2007) Origin and evolution of oxygen isotopic compositions of the Solar System. In
1047 *Protostars and planets V* (eds. B. Reipurth, D. Jewitt, K. Keil). The University of Arizona
1048 press, Tuscon, AZ, pp.849-862.

Figure 1

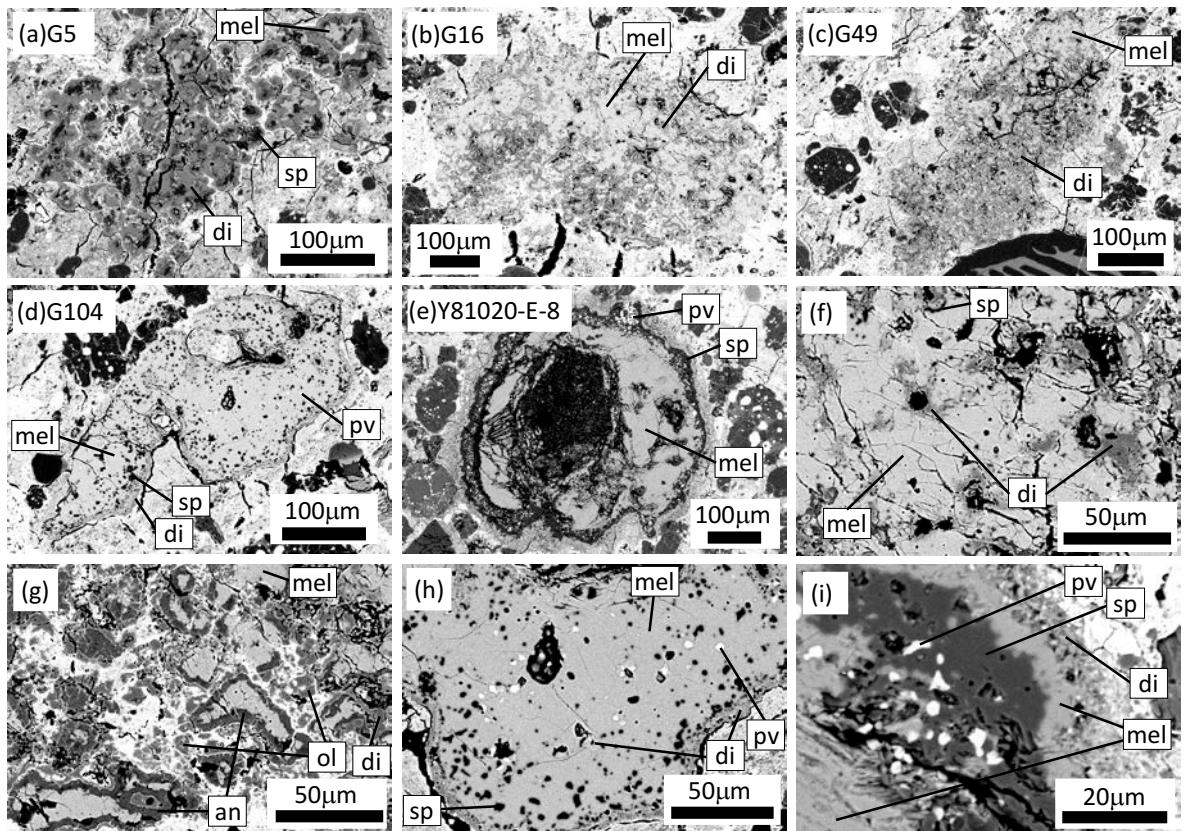


Figure 2

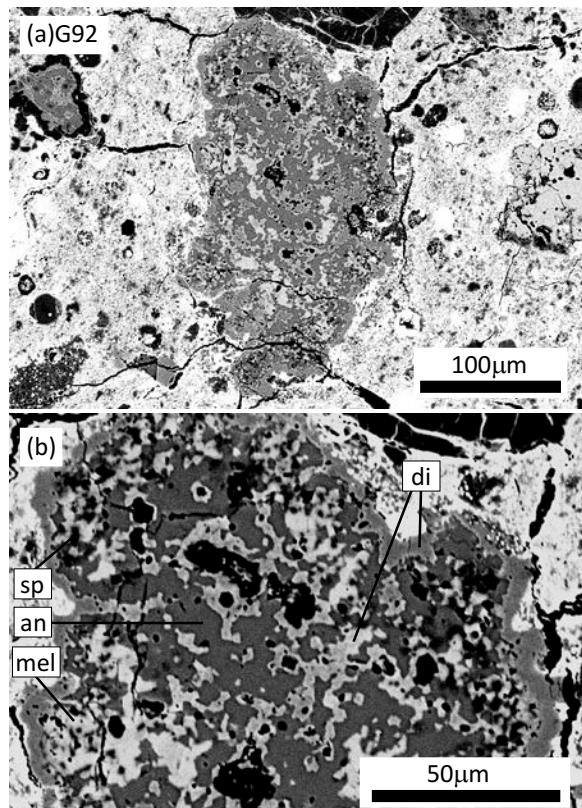


Figure 3

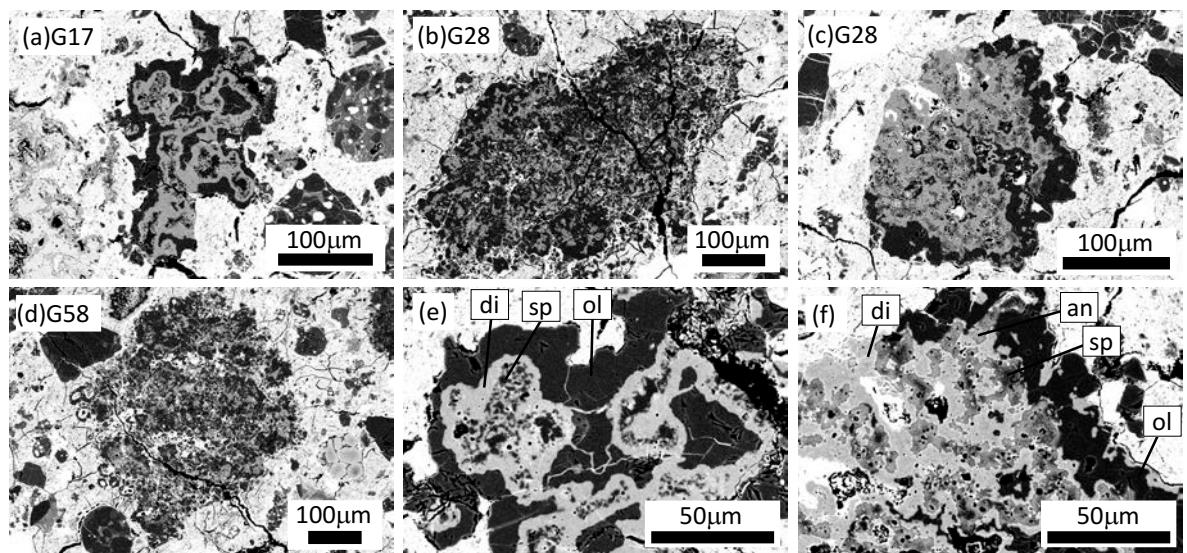


Figure 4

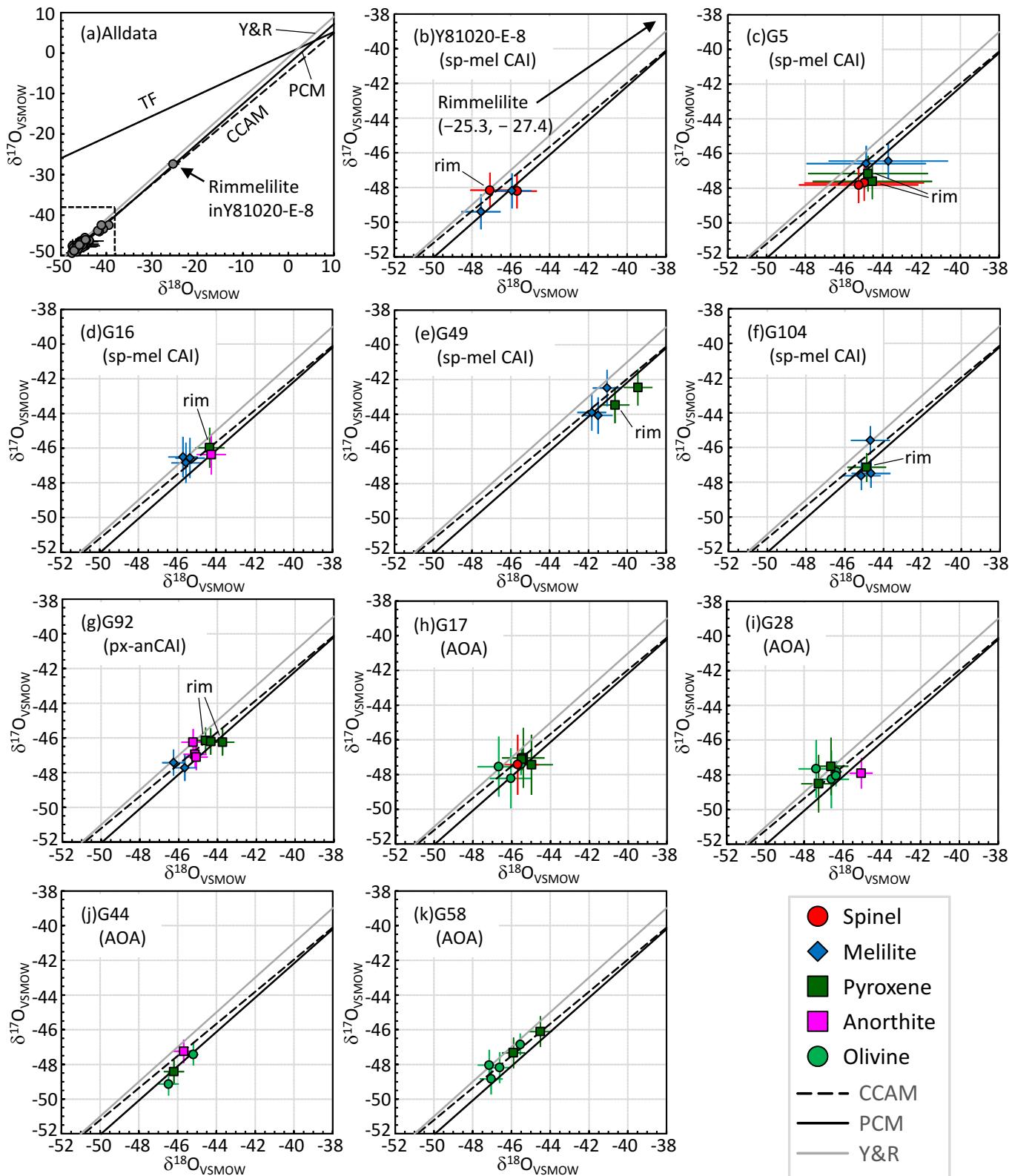


Figure 5

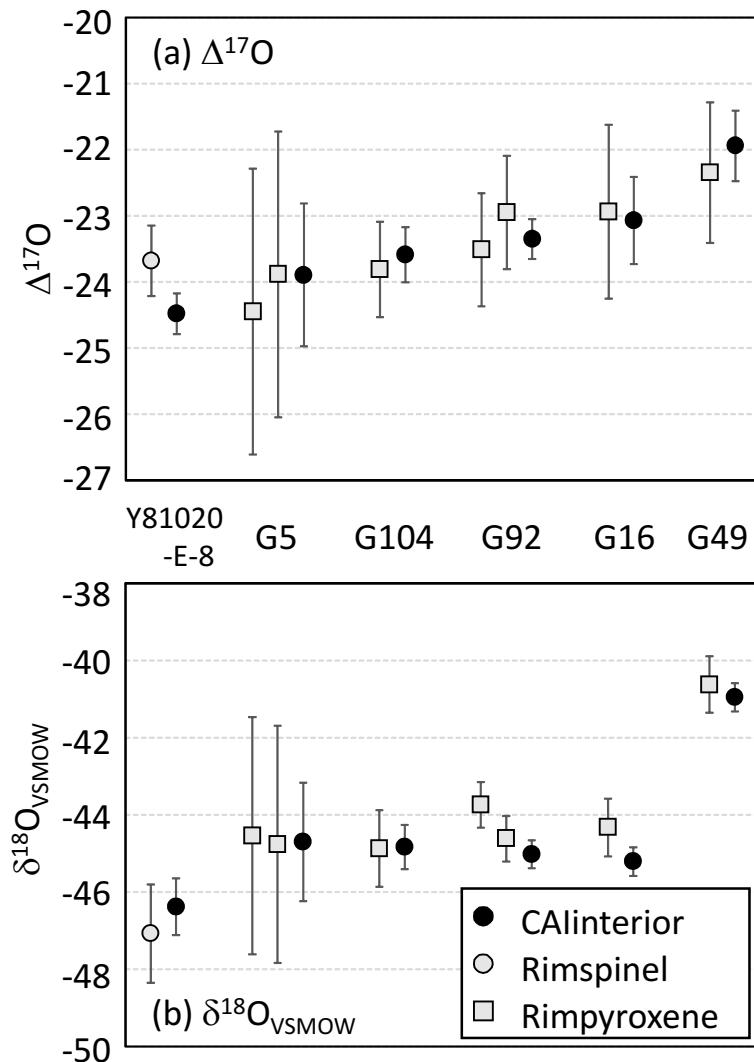


Figure 6

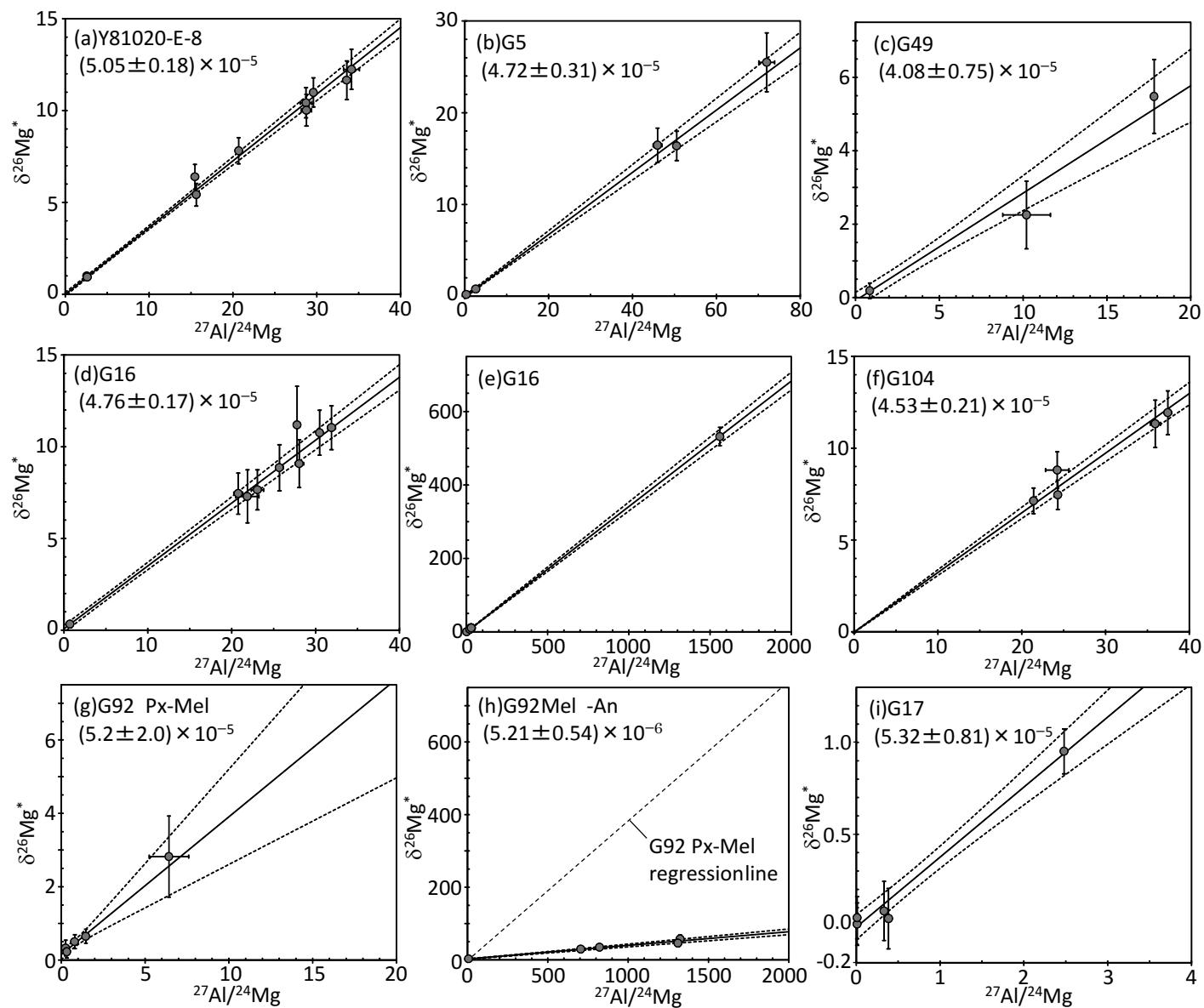


Figure 7

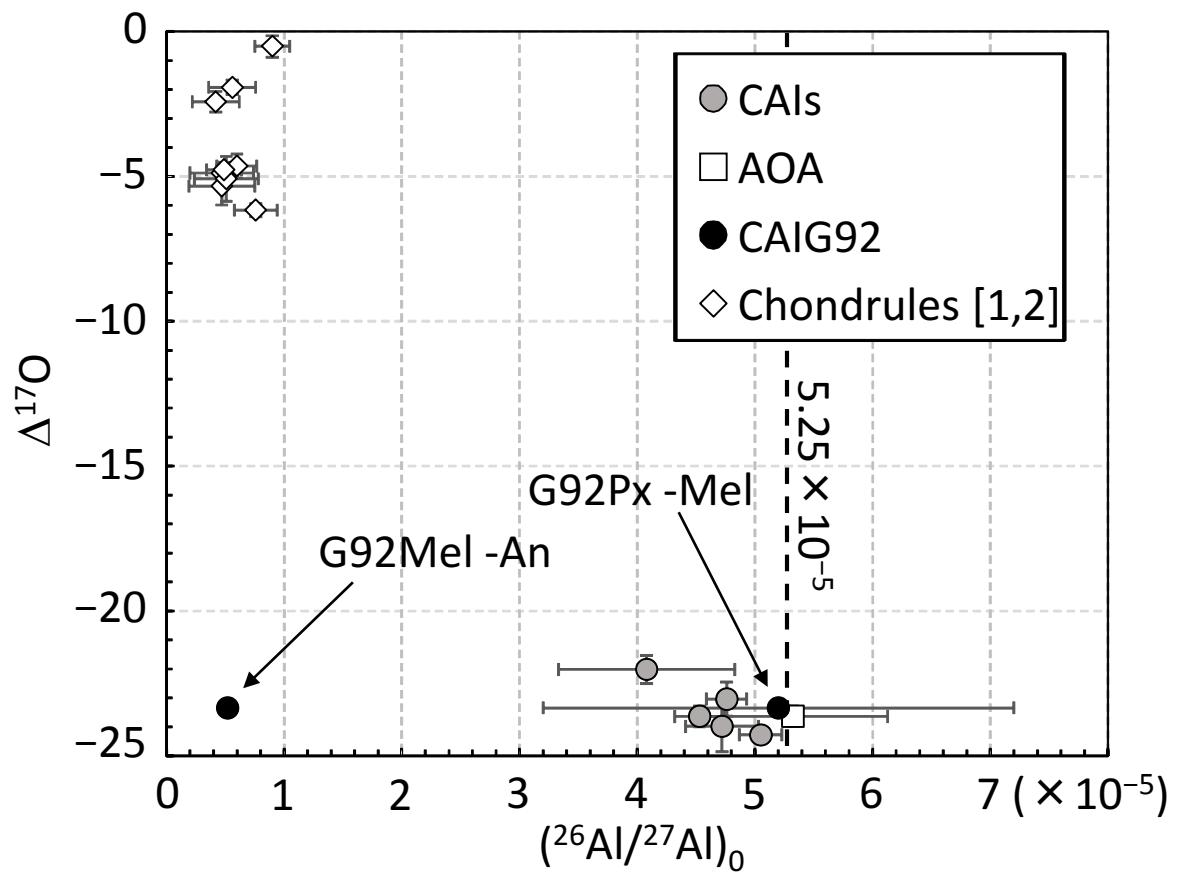


Figure 8

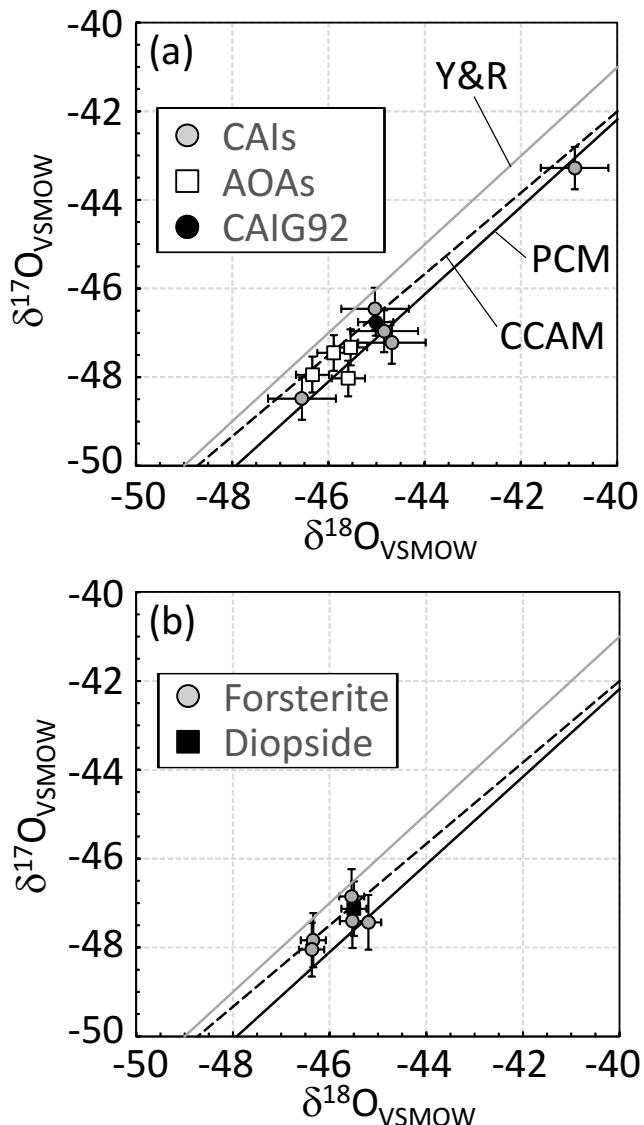
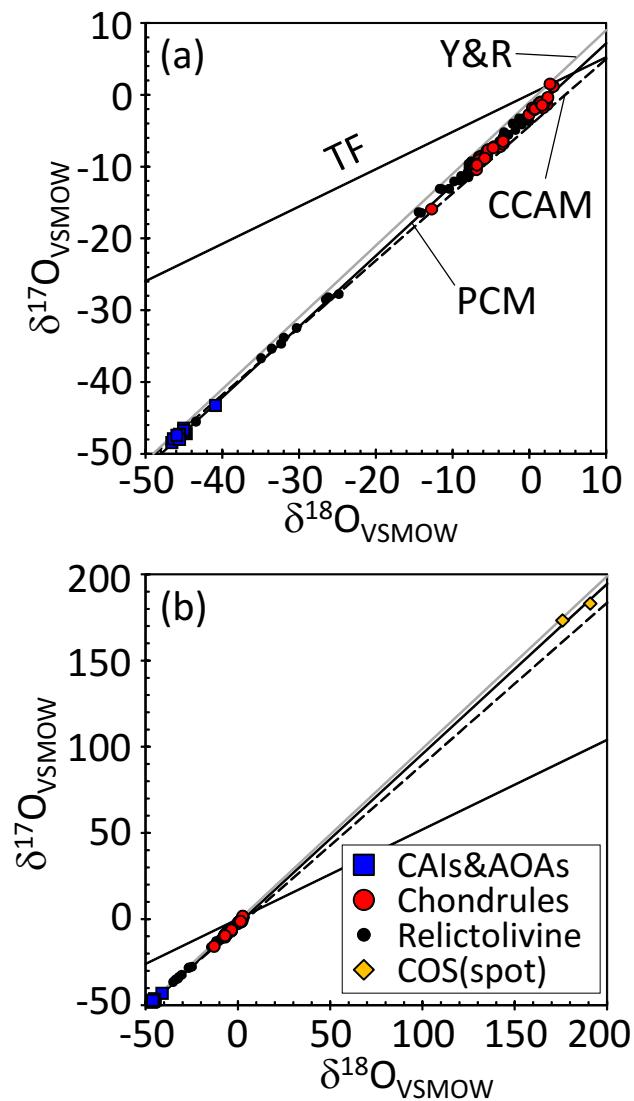



Figure 9

Table 1: Oxygen isotope ratios of Refractory Inclusions from Acer 094.

Sample/Analysis # ^a	Phase ^b	$\delta^{18}\text{O}_{\text{SMOW}}$ (2 SE) (‰)	$\delta^{17}\text{O}_{\text{SMOW}}$ (2 SE) (‰)	$\Delta^{17}\text{O}$ (2 SE) (‰)	Note
CAIs					
Y81020-E-8					
#62	Sp	-45.7 ± 1.3	-48.2 ± 0.9	-24.5 ± 0.5	
#63	Sp (rim)	-47.1 ± 1.3	-48.2 ± 0.9	-23.7 ± 0.5	
#61	Mel	-45.9 ± 1.3	-48.2 ± 0.9	-24.3 ± 0.5	
#66	Mel	-47.5 ± 1.3	-49.4 ± 0.9	-24.7 ± 0.5	
#67	Mel (rim)	-25.3 ± 1.3	-27.4 ± 0.9	-14.3 ± 0.5	
Average^c		-46.6 ± 0.7	-48.5 ± 0.5	-24.3 ± 0.3	excluding #67
G5					
#75	Fas (rim)	-44.5 ± 3.1	-47.6 ± 1.0	-24.4 ± 2.2	
#77	Fas (rim)	-44.8 ± 3.1	-47.2 ± 1.0	-23.9 ± 2.2	
#72	Sp	-45.0 ± 3.1	-47.7 ± 1.0	-24.3 ± 2.2	
#74	Sp	-45.3 ± 3.1	-47.8 ± 1.0	-24.3 ± 2.2	
#73	Mel	-43.7 ± 3.1	-46.4 ± 1.0	-23.7 ± 2.2	
#76	Mel	-44.9 ± 3.1	-46.6 ± 1.0	-23.3 ± 2.2	
Average^c		-44.7 ± 1.3	-47.2 ± 0.4	-24.0 ± 0.9	
G16					
#84	Fas (rim)	-44.3 ± 0.7	-46.0 ± 1.1	-22.9 ± 1.3	
#83	Mel	-45.7 ± 0.7	-46.5 ± 1.1	-22.7 ± 1.3	
#86	Mel	-45.3 ± 0.7	-46.6 ± 1.1	-23.0 ± 1.3	
#87	Mel	-45.5 ± 0.7	-46.8 ± 1.1	-23.2 ± 1.3	
#82	An	-44.2 ± 0.7	-46.4 ± 1.1	-23.4 ± 1.3	
Average^c		-45.0 ± 0.4	-46.5 ± 0.5	-23.0 ± 0.6	
G49					
#94	Fas	-39.4 ± 0.7	-42.5 ± 1.0	-21.9 ± 1.1	
#97	Fas (rim)	-40.6 ± 0.7	-43.5 ± 1.0	-22.3 ± 1.1	
#93	Mel	-41.5 ± 0.7	-44.1 ± 1.0	-22.5 ± 1.1	
#95	Mel	-41.8 ± 0.7	-43.9 ± 1.0	-22.2 ± 1.1	
#98	Mel	-41.0 ± 0.7	-42.5 ± 1.0	-21.2 ± 1.1	
Average^c		-40.9 ± 0.4	-43.3 ± 0.5	-22.0 ± 0.5	
G92					
#105	Fas (rim)	-43.7 ± 0.6	-46.3 ± 0.7	-23.5 ± 0.9	
#108	Fas (rim)	-44.6 ± 0.6	-46.1 ± 0.7	-22.9 ± 0.9	
#110	Fas	-44.3 ± 0.6	-46.2 ± 0.7	-23.1 ± 0.9	
#106	Mel	-45.7 ± 0.6	-47.7 ± 0.7	-24.0 ± 0.9	
#107	Mel	-46.3 ± 0.6	-47.4 ± 0.7	-23.4 ± 0.9	
#103	An	-45.3 ± 0.6	-46.3 ± 0.7	-22.7 ± 0.9	
#104	An	-45.2 ± 0.6	-47.0 ± 0.7	-23.5 ± 0.9	
#109	An	-45.1 ± 0.6	-47.1 ± 0.7	-23.7 ± 0.9	
Average^c		-45.0 ± 0.4	-46.8 ± 0.3	-23.3 ± 0.3	
G104					
#119	Fas (rim)	-44.9 ± 1.0	-47.1 ± 0.8	-23.8 ± 0.7	
#115	Mel	-44.7 ± 1.0	-47.5 ± 0.8	-24.3 ± 0.7	
#118	Mel	-45.2 ± 1.0	-47.6 ± 0.8	-24.1 ± 0.7	
#120	Mel	-44.7 ± 1.0	-45.6 ± 0.8	-22.3 ± 0.7	
Average^c		-44.8 ± 0.6	-47.0 ± 0.4	-23.6 ± 0.4	
AOAs					
G17					
#129	Fo	-46.1 ± 1.1	-48.2 ± 1.7	-24.3 ± 1.4	
#130	Fo (edge)	-46.7 ± 1.1	-47.5 ± 1.7	-23.3 ± 1.4	
#316 (2nd session) ^d	Fo (edge)	-45.5 ± 0.3	-47.4 ± 0.6	-23.7 ± 0.6	
#128	Fas	-45.0 ± 1.1	-47.4 ± 1.7	-24.0 ± 1.4	
#131	Fas	-45.4 ± 1.1	-47.0 ± 1.7	-23.4 ± 1.4	
#315 (2nd session) ^d	Fas	-45.5 ± 0.3	-47.1 ± 0.6	-23.5 ± 0.6	
#127	Sp	-45.7 ± 1.1	-47.4 ± 1.7	-23.7 ± 1.4	
Average^c		-45.5 ± 0.3	-47.3 ± 0.4	-23.6 ± 0.4	
G28					
#137	Fo (edge)	-46.6 ± 0.9	-48.3 ± 1.6	-24.0 ± 1.5	
#140	Fo	-47.4 ± 0.9	-47.7 ± 1.6	-23.0 ± 1.5	
#317 (2nd session) ^d	Fo (edge)	-46.3 ± 0.3	-47.8 ± 0.6	-23.7 ± 0.6	
#318 (2nd session) ^d	Fo (edge)	-46.4 ± 0.3	-48.0 ± 0.6	-23.9 ± 0.6	
#138	Fas	-46.6 ± 0.9	-47.5 ± 1.6	-23.3 ± 1.5	
#142	Fas	-47.3 ± 0.9	-48.5 ± 1.6	-23.9 ± 1.5	
#163	An	-45.1 ± 0.6	-47.9 ± 0.9	-24.5 ± 0.9	
Average^c		-46.3 ± 0.3	-47.9 ± 0.4	-23.9 ± 0.3	
G44					
#148	Fo (edge)	-46.5 ± 0.5	-49.1 ± 0.7	-25.0 ± 0.8	
#319 (2nd session) ^a	Fo (edge)	-45.2 ± 0.3	-47.4 ± 0.6	-23.9 ± 0.6	
#150	Fas	-46.2 ± 0.5	-48.4 ± 0.7	-24.4 ± 0.8	
#151	An	-45.7 ± 0.5	-47.2 ± 0.7	-23.5 ± 0.8	
Average^c		-45.6 ± 0.4	-48.0 ± 0.4	-24.2 ± 0.4	
G58					
#157	Fo	-47.1 ± 0.6	-48.0 ± 0.9	-23.5 ± 0.9	
#159	Fo	-46.6 ± 0.6	-48.2 ± 0.9	-23.9 ± 0.9	
#160	Fo	-47.0 ± 0.6	-48.8 ± 0.9	-24.4 ± 0.9	
#320 (2nd session) ^d	Fo (edge)	-45.5 ± 0.3	-46.8 ± 0.6	-23.2 ± 0.6	
#162	Fas	-45.9 ± 0.6	-47.3 ± 0.9	-23.5 ± 0.9	
#158	Fas	-44.5 ± 0.6	-46.1 ± 0.9	-23.0 ± 0.9	
Average^c		-45.9 ± 0.4	-47.5 ± 0.4	-23.5 ± 0.3	

a: Analysis points are shown in Fig. EA2.

b: Abbreviations: Sp=spinel, Mel=melilite, Fas=Al-Ti-rich diopside, An=anorthite, Fo=forsteritic olivine.

c: Uncertainty of $\Delta^{17}\text{O}$ is the error of the weighted mean value. Additional uncertainties of the instrumen

d: Multiple-FCs analysis with a high intensity beam.

Table 2: Al-Mg isotope systematics of Refractory Inclusions from Acfer 094

Sample/Analysis # ^a	Phase ^b	$\delta^{26}\text{Mg}$ (2 SE) (‰/amu)	$^{27}\text{Al}/^{24}\text{Mg}$ (2 SE)	$\delta^{26}\text{Mg}^*$ (2 SE) (‰)	Note
CAIs					
Y81020-E-8					
#100 (2nd session) ^c	Sp (rim)	1.17 ± 0.14	2.583 ± 0.027	0.99 ± 0.14	
#101 (2nd session) ^c	Sp (rim)	1.31 ± 0.14	2.637 ± 0.027	0.93 ± 0.11	
#9,10 ^d	Mel	1.21 ± 0.47	29.62 ± 0.29	10.99 ± 0.79	average
#11	Mel	0.95 ± 0.62	34.17 ± 0.95	12.25 ± 1.09	
#12,13 ^d	Mel	-1.38 ± 0.43	20.70 ± 0.24	7.82 ± 0.71	average
#14	Mel	-0.93 ± 0.39	15.65 ± 0.15	5.42 ± 0.62	
#15	Mel	-0.09 ± 0.50	28.74 ± 0.70	10.42 ± 0.83	
#16	Mel	0.36 ± 0.43	15.47 ± 0.21	6.40 ± 0.68	
#17	Mel	0.82 ± 0.59	33.59 ± 0.47	11.66 ± 1.06	
#18	Mel	-1.38 ± 0.50	28.79 ± 0.80	10.02 ± 0.86	
average & isochron ^e		0.21 ± 2.16	$\delta^{26}\text{Mg}^* = (0.363 ± 0.013) \times (^{27}\text{Al}/^{24}\text{Mg}) + (0.01 ± 0.10)$ $(^{26}\text{Al}/^{27}\text{Al})_0 = (5.05 ± 0.18) \times 10^{-8}$		
G5					
#78 (2nd session) ^f	Fas (rim)	-0.94 ± 0.28	0.337 ± 0.006	0.18 ± 0.20	
#77 (2nd session) ^f	Sp	-0.78 ± 0.28	2.624 ± 0.027	0.80 ± 0.16	
#52	Mel	-1.22 ± 1.60	72.01 ± 1.86	25.48 ± 3.21	100 cycles
#53	Mel	2.87 ± 0.88	50.55 ± 0.55	16.38 ± 1.60	
#56	Mel	-1.13 ± 1.01	45.98 ± 1.01	16.45 ± 1.87	100–300 c
average & isochron ^f		-0.24 ± 3.50	$\delta^{26}\text{Mg}^* = (0.339 ± 0.022) \times (^{27}\text{Al}/^{24}\text{Mg}) - (0.03 ± 0.13)$ $(^{26}\text{Al}/^{27}\text{Al})_0 = (4.72 ± 0.31) \times 10^{-8}$		
G16					
#80 (2nd session) ^f	Fas	-1.18 ± 0.28	0.717 ± 0.008	0.33 ± 0.19	
#20	Mel	0.47 ± 0.67	28.06 ± 0.50	9.08 ± 1.30	
#21	Mel	0.08 ± 0.85	31.90 ± 0.48	11.04 ± 1.20	
#22	Mel	-0.71 ± 1.03	27.79 ± 0.21	11.19 ± 2.11	41–150 cyc
#23	Mel	-0.63 ± 0.61	20.77 ± 0.52	7.45 ± 1.12	
#24	Mel	-0.36 ± 0.60	23.07 ± 0.72	7.65 ± 1.09	
#25	Mel	0.14 ± 0.68	25.69 ± 0.45	8.86 ± 1.25	
#26	Mel	0.41 ± 0.86	21.87 ± 1.38	7.28 ± 1.45	
#28	Mel	-1.46 ± 0.62	30.48 ± 0.26	10.76 ± 1.23	
#29	An	0.30 ± 8.90	1561 ± 16	532 ± 25	1–19 cycle
average & isochron ^{f,g}		-0.36 ± 1.38	$\delta^{26}\text{Mg}^* = (0.342 ± 0.012) \times (^{27}\text{Al}/^{24}\text{Mg}) + (0.09 ± 0.18)$ $(^{26}\text{Al}/^{27}\text{Al})_0 = (4.76 ± 0.17) \times 10^{-8}$		
G49					
#82 (2nd session) ^f	Fas	-0.13 ± 0.28	0.856 ± 0.028	0.19 ± 0.21	
#48	Mel	1.09 ± 0.58	17.82 ± 0.17	5.48 ± 1.01	
#50	Mel	2.24 ± 0.56	10.21 ± 1.43	2.25 ± 0.92	
average & isochron ^f		1.07 ± 2.37	$\delta^{26}\text{Mg}^* = (0.293 ± 0.054) \times (^{27}\text{Al}/^{24}\text{Mg}) - (0.08 ± 0.22)$ $(^{26}\text{Al}/^{27}\text{Al})_0 = (4.08 ± 0.75) \times 10^{-8}$		
G92					
#69 (2nd session) ^f	Fas (rim)	-0.44 ± 0.24	0.271 ± 0.012	0.33 ± 0.21	
#70 (2nd session) ^f	Fas	-0.55 ± 0.24	1.472 ± 0.048	0.65 ± 0.19	
#71 (2nd session) ^f	Fas	-0.63 ± 0.24	0.807 ± 0.021	0.50 ± 0.19	
#72 (2nd session) ^f	Fas (rim)	-0.39 ± 0.24	0.335 ± 0.011	0.23 ± 0.16	
#38	Mel	1.03 ± 0.71	6.43 ± 1.17	2.82 ± 1.10	
#33	An	2.60 ± 5.82	1324 ± 14	58 ± 12	1–85 cycle
#34	An	1.83 ± 4.09	1310 ± 14	46.0 ± 8.7	
#36	An	3.15 ± 2.90	822.5 ± 8.7	34.8 ± 5.2	
#37	An	9.74 ± 4.26	705.9 ± 7.7	29.4 ± 8.0	1–100 cyc
average & isochron ^{f,h}		-0.19 ± 1.38	$\delta^{26}\text{Mg}^* = (0.38 ± 0.14) \times (^{27}\text{Al}/^{24}\text{Mg}) + (0.15 ± 0.14)$ $(^{26}\text{Al}/^{27}\text{Al})_0 = (5.2 ± 2.0) \times 10^{-8}$	Fas&Mel	
G104					
#40	Mel	1.09 ± 0.68	37.43 ± 0.42	11.94 ± 1.19	
#41	Mel	0.91 ± 0.56	24.23 ± 1.41	8.81 ± 0.99	
#44	Mel	1.37 ± 0.68	35.94 ± 0.62	11.33 ± 1.29	1–211 cyc
#46	Mel	1.53 ± 0.48	24.31 ± 0.33	7.46 ± 0.80	
#47	Mel	1.56 ± 0.40	21.42 ± 0.16	7.13 ± 0.70	
average & isochron ^{f,i}		1.25 ± 0.56	$\delta^{26}\text{Mg}^* = (0.325 ± 0.015) \times (^{27}\text{Al}/^{24}\text{Mg}) - (0.03 ± 0.01)$ $(^{26}\text{Al}/^{27}\text{Al})_0 = (4.53 ± 0.21) \times 10^{-8}$	Assuming t	
AOAs					
G17					
#64 (2nd session) ^f	Fo (rim)	0.36 ± 0.24		0.01 ± 0.12	
#65 (2nd session) ^f	Fo (rim)	0.50 ± 0.24		0.04 ± 0.12	
#66 (2nd session) ^f	Fas	-0.37 ± 0.24	0.332 ± 0.005	0.08 ± 0.16	
#68 (2nd session) ^f	Fas	-0.36 ± 0.24	0.385 ± 0.008	0.04 ± 0.16	
#67 (2nd session) ^f	Sp	0.98 ± 0.24	2.480 ± 0.027	0.95 ± 0.12	
average & isochron ^f		0.24 ± 1.19	$\delta^{26}\text{Mg}^* = (0.381 ± 0.058) \times (^{27}\text{Al}/^{24}\text{Mg}) - (0.006 ± 0.069)$ $(^{26}\text{Al}/^{27}\text{Al})_0 = (5.32 ± 0.81) \times 10^{-8}$	Fas&Mel	
G28					
#83 (2nd session) ^f	Fo (rim)	0.68 ± 0.28		0.04 ± 0.16	
#84 (2nd session) ^f	Fo (rim)	0.34 ± 0.28		0.07 ± 0.16	
average ^f		0.51 ± 0.48		0.06 ± 0.12	
G44					
#89 (2nd session) ^f	Fo (rim)	1.12 ± 0.13		0.00 ± 0.08	
#92 (2nd session) ^f	Fo (rim)	0.92 ± 0.13		0.03 ± 0.08	
average & isochron ^f		1.02 ± 0.28		0.02 ± 0.06	
G58					
#93 (2nd session) ^f	Fo (rim)	0.65 ± 0.13		0.08 ± 0.07	
#94 (2nd session) ^f	Fo	0.55 ± 0.13		0.08 ± 0.09	
average & isochron ^f		0.60 ± 0.13		0.08 ± 0.06	

a: Analysis points are shown in Fig. EA2.
b: Abbreviations: Sp=spinel, Mel=melilitte, Fas=Al-Ti-rich diopside, An=anorthite, Fo=forsteritic olivine.
c: Multiple-FCs analysis with a high intensity beam.
d: Average value of two analyses at the same analysis spot.
e: Errors are 2 SD for $\delta^{26}\text{Mg}$ values and 95% confidence for isochrons.
f: Anorthite data is not used to calculate the $\delta^{26}\text{Mg}$ value.
g: Error is 95% confidence of the weighted mean value.