
Title: Tree Canopy Change and Neighborhood Stability: A Comparative Analysis of 

Washington, D.C. and Baltimore, MD.  

 

Authors: 

Wen-Ching Chuanga,*, Christopher G. Booneb , Dexter H. Lockec, J. Morgan Groved, Ali 

Whitmere, Geoffrey Buckleyf, and Sainan Zhangg  

Affiliations:   

aNational Research Council, U.S. Environmental Protection Agency, 26 W. Martin Luther King 

Drive, Cincinnati, Ohio, 45268. USA   

bSchool of Sustainability, Arizona State University, 800 South Cady Mall, Tempe, AZ 85287, 

USA 

cNational Socio-Environmental Synthesis Center (SESYNC), 1 Park Places, Suite 300, 

Annapolis, MD 21401, USA 

dUSDA Forest Service, 5523 Research Park Drive, Baltimore, MD 21201, USA 

eGeorgetown University, 3700 O Street NW, Washington, DC 20057, USA  

fDepartment of Geography, Ohio University, Athens, OH 45701, USA 

gUnited Nations Population Fund, 220 E 42nd St, New York, NY 10017, USA  

*Corresponding author 

  

E-mail addresses: Wen-Ching Chuang (Wen-Ching.Chuang@asu.edu), Christopher Boone 

(christopher.g.boone@asu.edu), Dexter H. Locke (dexter.locke@gmail.com), J. Morgan Grove 

(mgrove@fs.fed.us), Ali L. Whitmer (Ali.Whitmer@georgetown.edu), Geoffrey Buckley 

(buckleg1@ohio.edu), Sainan Zhang (szhang@unfpa.org). 

 

Chuang, Wen-Ching, et al. 2017. 
Tree canopy change and neighborhood stability: a comparative analysis of Washington, DC and Baltimore, MD.
Urban Forestry and Urban Greening 27:363-372.



 

1 

 

TREE CANOPY CHANGE AND NEIGHBORHOOD STABILITY: A COMPARATIVE 

ANALYSIS OF WASHINGTON, D.C. AND BALTIMORE, MD  

 

Abstract 

Trees provide important health, ecosystem, and aesthetic services in urban areas, but they 

are unevenly distributed. Some neighborhoods have abundant tree canopy and others nearly 

none. We analyzed how neighborhood characteristics and changes in income over time related to 

the distribution of urban tree canopy in Washington, D.C. and Baltimore, MD. We used stepwise 

multiple regression analysis to identify strong predictors of UTC, from variables found in 

neighborhoods with different patterns of wealth-stability over time. We then built spatial lag 

models to predict variation in UTC cover, using the results of a Principal Component Analysis of 

the socioeconomic, demographic, and housing characteristics of the two cities. We found that: 

(1) stable-wealthy neighborhoods were more likely to have more, and more consistent, tree 

canopy cover than other neighborhood types; (2) decreases and increases in income were 

negatively associated with UTC in Washington, D.C. but not Baltimore, where income stability 

in both wealthy and impoverished neighborhoods was a significant predictor of UTC; and (3) the 

association of high socioeconomic status with UTC coverage varied between the two cities.  

Keywords: Urban tree canopy (UTC), neighborhood stability, spatial lag regression, GIS.   

 

1. Introduction 

Trees provide a variety of ecosystem services and environmental benefits for urban 

residents. The environmental benefits of urban forests include heat-stress mitigation, carbon 

sequestration, noise reduction, air and water quality improvement, and stormwater reduction.  

Tree management is an important sustainability priority for municipalities because trees are an 

essential component of a well-functioning urban ecosystem and can be important for mitigating 

natural hazards such as flooding and excessive heat. Many cities have set ambitious goals for 

increasing tree canopy cover.  Our study cities, Washington, D.C. and Baltimore, MD plan to 

increase tree canopy cover from a current 35% to 40% by 2032 (O’Neil-Dunne, 2009b; District 

of Columbia Urban Tree Plan, 2013) and from 27% to 40% by 2037, respectively (Baltimore 

Sustainability Plan, 2009). If the cities are to meet these goals, the majority of tree growth will 

have to occur on residential property (O’Neil-Dunne, 2009ab). But tree planting alone does not 

constitute an effective urban tree canopy (UTC) plan.  Such plans also need to take into account 

how the interactions in social-ecological systems influence current tree distribution and 

conservation. Trees can survive for decades in cities when they are properly maintained. 

Therefore, investments to increase tree canopy coverage are long-term investments that are 

subject to the long-term dynamics of urban environments, which are heterogeneous socio-

ecological systems (Grove et al., 2015). To contribute to the understanding of these long-term 

dynamics as they relate to UTC, we analyzed how changes in neighborhood characteristics 

(income over time, educational attainment, racial and ethnic composition, age distribution, and 
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residential real-estate development) correlated to tree canopy coverage across census tracts in 

Washington, D.C. and Baltimore, MD.  

Theories about human population density, social stratification, and reference-group behavior 

have been used to explain tree canopy distribution (Locke and Grove, 2016). One theory holds 

that human population density drives vegetation change through development, which alters land 

(Smith et al., 2005; Marco et al., 2008; Cook et al., 2012). But variables other than population 

density influence vegetation cover in an area, and social stratification theory suggests three: 1) 

wealthier people have more social and spatial mobility than those with lower incomes, and are 

therefore able to live in neighborhoods that provide attractive amenities, including green spaces 

(Logan and Molotch, 2007; Roy Chowdhury et al., 2011); 2) the level of public investment in 

green infrastructure is positively correlated with the socioeconomic status and political power of 

residents (Grove et al., 2006); and 3) wealthier residents have more disposable income to invest 

in landscaping and can afford to maintain trees in their yards and neighborhoods (Hope et al., 

2002, 2006; Martin et al., 2004). A study of urban trees in six U.S. cities concluded that the more 

affluent the neighborhood, the more extensive the tree canopy (Schwarz et al., 2015). But wealth 

differences are not the sole determinant of the uneven distribution of urban trees. In some places, 

the higher the percentage of racial- and ethnic-minority residents, the lower the tree canopy 

cover; however, the strength of association varies geographically (Schwarz et al., 2015). 

Reference-group behavior theory recognizes the influences of population density, mobility, 

differentiated political power and income, and economic power on land management, but it puts 

more emphasis on the role of group identity in shaping neighborhood landscapes and 

maintaining the so-called “ecology of prestige” (Troy et al., 2007; Zhou et al., 2009; Grove et al., 

2014). The ecology of prestige theory holds that household vegetation symbolizes membership 

in a desirable social group. Of course, present-day tree canopy coverage may also reflect 

inherited landscapes (Luck et al., 2009; Clarke et al., 2013; Locke and Baine, 2015). For 

example, Boone et al. (2010) found that past, rather than present, neighborhood lifestyles and 

socioeconomic characteristics were better predictors of urban tree canopy cover in Baltimore. 

Most studies of UTC have used a single point in time or “snapshots” to compare social and 

built-environment characteristics with vegetation cover (Landry and Pu, 2010; Pham et al., 2012; 

Romolini et al., 2013). But tree distribution is determined by complex social-ecological 

dynamics over time. Therefore, we incorporated changing conditions at the neighborhood scale 

to evaluate how neighborhood stability influences the extent of canopy cover. Further, we 

compared two cities in the same geographic area, rather than focusing on just one city or 

metropolitan area, as most UTC studies have done. While there is clear value in understanding 

the idiosyncratic role of places and their individual histories, we argue that more comparative 

analyses are necessary to advance theory in urban ecology (Roy Chowdhury et al., 2011; Cook et 

al., 2012).  

We used time-series social and biophysical data to examine the dynamics of social 

characteristics and UTC in two cities that occupy a similar biome and have relatively common 

biophysical constraints and opportunities for vegetation growth: Washington, D.C. and 

Baltimore, MD. Our study has two parts. First, we quantified the spatial distribution of UTC in 

the two cities and examined the relationship between changes in income and built-environment 

characteristics with the amount of tree canopy at a fine scale (defined by an area with 100-m 

radius). This allowed us to consider whether positive or negative changes in income are related 
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to the distribution of UTC, conditioned by whether a city is growing in terms of population (D.C.) 

or declining (Baltimore). Second, we compared predictors of urban tree canopy distribution at 

the census-tract scale for both cities. The methods for this analysis employed a set of 

socioeconomic and biophysical variables, principal component analysis (PCA) for data reduction, 

and spatial regression models of the PCA components for each city. 

2. Materials and methods 

We first tested six hypotheses to identify the relationships among income change, and percentage 

of UTC at the neighborhood level in both cities. We sorted neighborhoods into five classes by 

their income change status, and observed UTC in these neighborhoods. Second, we used 

stepwise regression models to identify significant predictors of UTC. In this second part, we built 

spatial lag models, using the results of PCA of a set of variables, to predict UTC at the census-

tract level for both cities.  

2.1 Study areas 

Washington, D.C. and Baltimore, MD are located in the mid-Atlantic region of the eastern 

United States, adjacent to the Chesapeake Bay. Baltimore is about 60 kilometers northeast of 

Washington, D.C. Both cities are majority African-American and highly segregated (Logan et 

al., 2014). Baltimore was established in 1729 and Washington, D.C. in 1790, but the majority of 

urban expansion in both cities occurred in the 20th century, under similar technological regimes 

dominated by the automobile. Population peaked in both cities in 1950, followed by decades of 

population decline as surrounding suburbs boomed. The paths of these two cities have diverged 

more recently. Between 2000 and 2014, the population of Baltimore declined by ~30,000 

residents, while Washington grew by nearly 10% (current populations are 622,000 and 660,000, 

respectively). Median household income is rising faster in Washington, D.C.. Gentrification is 

occurring in some parts of both cities, but the magnitude is greater in Washington and 

corresponding rents are also higher (US Census ACS 2013; US Census 2000).  Washington can 

be characterized as a “pull” city, drawing people and investment into the city, while Baltimore 

remains largely a “push” city, with people leaving for the suburbs and other locations 

(Gottdiener and Hutchison, 2006). Both cities are undergoing change at both the citywide and 

neighborhood levels. With their geographic and historical similarities and contrasting recent 

growth patterns, Baltimore and Washington offer an opportunity to compare how population and 

socioeconomic change relate to urban tree canopy.  

2.2 Data  

We analyzed high-resolution tree canopy data for Washington and Baltimore with data from 

the University of Vermont Spatial Analysis Laboratory. The Washington dataset quantified tree 

canopy change, including loss, gain, and persistence, from 2006 to 2011. The only available 

high-resolution information for Baltimore was from a 2007 land-cover raster map. The two 

datasets were derived from Quickbird, LiDAR, and National Agricultural Imagery Program data. 

Resolution for the raster data was set at 0.6 m2. The shapefile for UTC change (loss, gain, no 

change) had a minimum mapping unit of 8 square meters. The canopy-change shapefile for 

Washington (Tree Canopy Change, Washington D.C., 2006 – 2011) and the Baltimore land-

cover raster (Land Cover Baltimore 2007) are freely available and distributed under the Creative 



 

4 

 

Commons Share Alike 3.0 license. Our comparative analyses are based on the static state of the 

tree canopy coverage in relation to income change in the two cities (UTC for Washington, D.C. 

for 2006 and Baltimore for 2007). In addition, we examined UTC change over time for 

Washington D.C. 

Consistent spatial units are necessary to study socioeconomic, demographic, and building-

characteristic change at the neighborhood level. However, geographic boundaries for the U.S 

Census Bureau can change over time. To make the Census data comparable over time, we 

aligned historical census information to year 2010 Census boundaries, using the Longitudinal 

Tract Data Base program. The program uses proportional area weighting to assign census-

variable values to the appropriate space (Logan et al., 2014). As of 2013, Washington had 179 

Census tracts (including the National Mall and Capitol Hill) and Baltimore had 200. Median 

household income data in inflation-adjusted dollars were acquired from the year 2000 Census 

and 2013 American Community Survey (ACS) from the U.S. Census Bureau.  

2.3 Study 1: Identifying the relationship between income change, the built environment and 

small area UTC (small area is defined by an area with 100-m radius) 

In the first part of the study, we aimed to examine the relationship between income change 

and extent of tree canopy cover. According to the nature of two different UTC datasets, the 

hypotheses were categorized into two groups: 

I. Existing tree canopy (Washington, D.C. and Baltimore MD): 

H1. Neighborhoods that remain relatively wealthy will have more tree canopy 

H2. Neighborhoods with decreasing wealth will have less existing tree canopy.  

H3.  Neighborhoods that remain relatively impoverished will have less existing tree 

canopy.  

II. Tree canopy change (Washington D.C. only) 

H4. Neighborhoods with increasing wealth will have increasing tree canopy (gain).  

H5. Neighborhoods with decreasing wealth will have canopy loss and/or low canopy 

gain. 

H6. Neighborhoods that remain relatively impoverished will have little to no tree canopy 

and/or low canopy gain.  

The hypotheses are based on social stratification theory, which states that wealthier 

households: (1) may choose to live in greener neighborhoods, (2) may be more effective in 

garnering public investment in green infrastructure in their neighborhoods, and (3) may spend 

more disposable income on landscaping in their yards. We also examined UTC in neighborhoods 

with increasing and decreasing incomes. Assuming that wealth is a key influence on tree canopy 

abundance, we expected that increase or decrease in wealth in a given neighborhood would have 

corresponding changes in tree canopy. 
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We used stepwise multiple regression models to test hypothesis H1─H3 for both cities. To 

increase the predictability of the model, we included built-environment variables: land area, 

number of housing units, and percentage of structures built in each decade from 1930 to 2010. 

Housing built before 1930 was included in the 1930 decade. The number of houses per unit of 

land area is a proxy for density of development and physical constraints on tree growth. The 

percentage (proportion) of structures built in each decade represents characteristics of the built 

environment that affect tree planting and growth. The examination of H4─H6 were based on the 

descriptive analysis of the UTC change for only Washington D.C..  

2.3.1 Defining neighborhood wealth type 

 

Because Washington and Baltimore have different growth trajectories, we used a relative 

measure of wealth within each city to assign wealth status to neighborhoods. Median household 

income was standardized to identify a neighborhood’s income status in relation to other 

neighborhoods within each city. We used the standard score, z, a statistical measurement of a 

variable’s relationship to the mean, to characterize the wealth status of neighborhoods. A 

positive standardized value meant the observation was above the mean (of 0) and a negative 

value meant the observation was below the mean. Our data yielded five wealth categories (see 

Figure 1): 

1. Remained relatively impoverished (NB1): neighborhoods with a standardized value below -

1 between 2000 and 2013. We refer to these neighborhoods as “stable-impoverished.”  

2. Decreasing wealth (NB2): neighborhoods with a standardized value above 0 in 2000 and 

below 0 in 2013. 

3. Remained above poverty (NB3): neighborhoods’ with standard values that remained below 

average (0) but above impoverished (-1) between 2000 and 2013.   

4. Increasing wealth (NB4): Neighborhoods with a standardized value below 0 in 2000 and 

above 0 in 2013.   

5. Remained relatively wealthy (NB5): neighborhoods that had standardized values above 0 

between 2000 and 2013. We refer to these neighborhoods as “stable-wealthy.” 

About 44% of the neighborhoods in both cities were in the NB3 category (remained above 

poverty). NB5 (remained relatively wealthy) was the second most common neighborhood type, 

making up 30% of Washington’s and 33% of Baltimore’s neighborhoods. NB5 neighborhoods 

were distributed on the periphery in both cities (Figure 2). Neighborhoods with increasing wealth 

(NB4) were found in Washington’s center; in Baltimore, many of the neighborhoods that 

remained relatively impoverished (NB1) were found in the urban core. 

2.3.2 Selecting samples for modeling UTC      

 We used statistical analysis to examine how well the five neighborhood types predicted 

existing UTC (static state) in small areas randomly distributed across the two cities. For each 

city, we generated twice as many random points as the total number of census tracts in the city; 

each point had a buffer zone of 100 m (i.e., was at least 100 m from any other point). When a 

buffer zone fell within the borders of two or more census tracts, we treated each portion on a 

tract as an individual object. Following this procedure, we selected 570 sample areas in 

Washington and 755 in Baltimore. Theoretically, the spatially random plots would capture the 



 

6 

 

variation in land use proportional to the coverage of those land uses. This method allowed us to 

examine UTC in a smaller spatial unit than the census tract, to complement the tract-level 

analysis we conducted in the second part of the study. The sample-selection process maximized 

the use of the very-high resolution UTC data, and was intended to make our assessment more 

accurate than it would have been if we had used only aggregate data.   

To understand how neighborhood-wealth type correlated with tree canopy, we used IBM 

SPSS 22 to conduct a stepwise multiple regression with the percent tree canopy cover in each 

sample area as the dependent variable.  This method allowed us to use different combinations of 

input variables to identify strong predictors of UTC at a very fine scale. While stepwise 

regression may not be a perfect method for identifying the strongest combination of UTC 

predictors, it does enable researchers to find models that are explanatory yet parsimonious. 

Since our input variables are not normally distributed, according to the Shapiro-Wilk test, 

we calculated Spearman correlation coefficient to assess relationships among variables. Some 

building characteristics are associated with each other (the smallest and largest correlation 

coefficient are between -0.63 and 0.57, p≤0.05). We further checked for collinearity by 

calculating the variance inflation factor (VIF) for each independent variable to ensure that there 

were no issues with multicollinearity in the models. The VIF values from both models were 

between 1.09─1.70, which does not raise concern ("Introduction to SAS", 2016). Moreover, we 

used F test to examine model fit. The F test of our multiple regression models indicated that 

including the independent variables significantly improved model fit. In addition, the model 

residual plots were examined to ensure homoscedasticity and normality of the residuals.   

2.4 Study 2: Predicting variations in UTC at the census-tract level using spatial lag models 

Urban tree distribution is often affected by a combination of current conditions and 

historical processes.  In the second part of the study, principal component analysis (PCA) was 

used to reduce data from 27 socioeconomic, demographic, and built-environment variables at the 

census-tract level from year 2013. PCA converts large numbers of variables that might be 

correlated into a smaller number of “principal” components. We then used the components to 

first build Ordinary Least Square (OLS) models and later spatial autoregressive models that 

accounted for spatial autocorrelation to estimate the association between the principal 

components and UTC cover. 

The 27 variables (Table 1) reflect the complex interactions between biophysical and social 

systems, and represent four aspects of a neighborhood:  

(1) Socioeconomic status: The proxy variables were median household income and 

education level. These variables can reflect residents’ political power and resources, as well as 

the disposable income available to invest in landscaping (Grove et al., 2006). It has been 

suggested that low-income residents might resist tree-planting to avoid gentrification and rising 

rents (Schwarz et al., 2015). 

(2) Race and ethnicity: Research has shown that minorities in urban areas are likely to 

have fewer environmental amenities than non-Hispanic white populations (e.g., Schwarz et al. 

2015). Cultural background has been found to influence the preference for open space; for 

instance, in Toronto, Canada, Chinese residents did not encourage tree planting in their 
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neighborhoods (Fraser and Kenney, 2000). In some African-American neighborhoods, residents 

preferred few trees in public areas because of concerns about safety and crime (Lohr et al., 

2004).    

(3) Age: Different age groups may have different attitudes toward tree-planting.  For 

example, Zhang (2007) found that young adults were more willing to contribute money and 

volunteer time to urban forestry activities than middle-aged and elderly people. 

(4) Housing and development characteristics: This category included the variables of 

housing ownership, vacancy rate, median housing value and rent, population density, median age 

of built structures, and percent of structures built by decade in each census tract. Housing values, 

ownership, and built environment can affect UTC coverage. Trees can add value to a home 

(Battaglia et al., 2014). Population density and building characteristics can reveal the physical 

constraints on tree planting and growth. Median age of housing was used to account for the fact 

that trees take time to grow and that current canopy cover reflects previous behaviors and 

preferences (Troy et al., 2007; Boone et al., 2010; Lowry Jr. et al., 2011). Median age of housing 

also represents the proportion of new development in a place. We viewed this variable as a 

general indicator of building age in a given neighborhood. 

We used the scores of the principal components we derived from PCA as independent 

variables in spatial models. We applied a Varimax rotation to minimize the number of the 

original variables that loaded highly on any one component and to increase the variation among 

them. Six components were retained for Washington D.C. and seven for Baltimore, MD, based 

on scree plots and examination of eigenvalues. Eigenvalues are the variances of components. In 

PCA, each variable is standardized and therefore has a variance of 1. Components that have 

eigenvalues greater than 1 are considered to be principal components worth retaining because 

their variance is higher than that of the original variables (“Introduction to SPSS: Principal 

Component Analysis,” 2016).  

The dependent variable in study 2 was the percentage of UTC in each census tract.  Rather 

than assuming that it was spatially independent, we tested for spatial autocorrelation of UTC. 

High-resolution tree canopy data were imported into ArcGIS 10.3 and zonal statistics were 

applied to calculate percentage of tree canopy. The spatial regression models and spatial statistics 

(Moran’s I) that measure spatial autocorrelation were estimated in Geoda version 1.6.7 (Anselin 

et al., 2006). Moran’s I is a weighted correlation coefficient that measures global spatial 

autocorrelation. The index falls between -1 (dispersed pattern), 0 (complete spatial randomness), 

and +1 (spatially autocorrelated pattern). We used first-order queen contiguity-based spatial 

weight matrices, which assign a spatial structure in units of observation according to an area’s 

spatial relation to its neighboring tracts, so that tracts sharing an edge, a corner, or both were 

defined as neighbors.  

3. Results 

3.1 Distribution of UTC in different types of neighborhoods  

We first examined extent of canopy cover (total coverage) for the two cities. UTC was low 

in the core of both cities. Washington’s average UTC by census tract was 28.63%, about six 

percentage points higher than Baltimore’s (Tables 2 and 3). The difference was statistically 

significant (Kruskal-Walis test with alpha = 0.05). As was expected, tree canopy was not evenly 
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distributed in either city. The distribution of UTC for both cities was highly spatially 

autocorrelated, with a Moran’s I of 0.52 (p-value <0.01) for Baltimore and 0.67 (p-value<0.01) 

for Washington, D.C.. The majority of UTC in both cities was concentrated on the periphery 

(Figure 3). In Baltimore, tracts with high UTC cover were located in the western and northern 

districts; in Washington, D.C. they were located in the western and northwestern parts of the 

city.  

In both cities, census tracts classified as stable-wealthy neighborhoods (NB5) had the 

highest average UTC, while the stable impoverished tracts (NB1) had the lowest. But there was a 

statistically significant difference between the cities’ stable-impoverished tracts: those in 

Washington had an average UTC 1.6 times higher than those in Baltimore (21.90% vs. 13.17%). 

Overall, both poor and wealthy neighborhoods in Washington, D.C. (Figure 4) had more tree 

canopy than the corresponding neighborhoods in Baltimore.   

We had canopy change data for only Washington, D.C. (Table 2). On average, that city’s 

stable-wealthy neighborhoods (NB5) had the highest percentage of UTC and the least amount of 

tree canopy gain. A possible explanation is that these stable-wealthy neighborhoods already have 

a high percentage of tree canopy cover and the space for growth is limited. Neighborhoods that 

remained impoverished (NB1) had the greatest tree canopy loss (3.88%) and an average net loss 

of -3.34%.  

3.2 Study 1: Relationship among income change, built characteristics, and small-area UTC  

Tables 4 and 5 show the results of the stepwise regression models. The Washington model 

(R2=0.31) explained more variance in the dependent variable than that of the Baltimore model 

(R2=0.23). Stable wealth (NB5) was positively associated with existing UTC in both cities but, 

interestingly, changes in income were negatively associated with UTC in Washington, D.C., but 

were not significant UTC predictors in Baltimore. Model results also indicated that stable-

impoverished status does not always have a negative relationship with UTC.   

3.3 Study 2: Predictions of tract-level UTC from spatial lag models 

The first six principal components explained 75.31% of the variance in the data from 

Washington, D.C. (Table 6). The features (the variables with heavy loading) of each component 

are listed below:  

Component 1 was weighted heavily toward median household income, % people with 

college degree, % of white population, % of Asian, % people aged from 18 to 65, median rent, 

and median home value. It also has negative and heavy loadings on % people with high school 

degree and lower, % African American and % population under 18 years old.    

Component 2 was weighted heavily on % of renters, % of housing structure built in the 

1970s and the 60’s, and median structure age. It also has negative and heavy loadings on median 

household income, % of owner-occupied structure, and % housing structure built in the 1930s 

and before.  

Component 3 was weighted heavily on % population above 65 years old, and % of housing 

structure built in the 1950s, 1940s, and 1930s and before.  
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Component 4 was weighted heavily on % housing structure built between year 2000 and 

2010, and median age of housing structure.  

Component 5 was weight heavily on % Hispanic population and population density. It also 

has a heavy and negative loading on vacancy rate.   

Component 6 was weighted heavily on % of housing structure built in the 1980s.  

For Baltimore, the PCA explained 75.06% of variance and extracted seven components 

(Table 7):  

Component 1 has high loading on median household income, % of population with college 

degree, % of while population, % of Asian population, median house value. It also has heavy and 

negative loadings on % of population with less than or high school degree only and % of housing 

structure built in the 1940s.  

Component 2 has high loading on % of renters; and negative loading on % structure 

occupied by owner, and % housing structure built in the 1950s.  

Component 3 has heavy loading on % of housing structure built in the 1970s, 1960s, and 

1950s, and median structure age; and negative loading on vacancy rate, and % housing structure 

built in the 30s and before.  

Component 4 has heavy loading on % of housing structure built between year 1990 and 

2009, and median structure age.  

Component 5 has heavy loading on % of Asian population, population age between 18 and 

64 years old; and negative loading on % population below age 18. 

Component 6 has heavy loading on % of Hispanic population; and negative loading on % 

population 65 years old and above.  

Component 7 has heavy loading on % population age above 65 years old, and housing 

structure built between 2010 and 2013.      

The Lagrange multiplier tests were applied to the ordinary least squares (OLS) regression 

models, and indicated that the spatial lag specification was more appropriate than the spatial 

error specification for our study sites (Anselin, 2005). Our spatial autoregressive models, which 

accounted for spatial autocorrelation and used principal components as independent variables, 

provided high R2 values (above 0.7). The Moran’s I of the residuals from our spatial lag models 

indicate that spatial lag specification accounted for the spatial autocorrelation present in the data. 

Our results also suggest that a principal components approach is effective at capturing the 

blended nature of socio-ecological variables that may be driving the spatial distribution of tree 

canopy in our two cities.  

In Washington, D.C., the spatial lag model results show three input variables are negatively 

associated with UTC. The observations of these variables are: (1) neighborhoods with a high 

percentage of renters with low to middle incomes and housing built in the 1960s and 1970s 
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(Component 2), (2) neighborhoods with a high percentage of housing built after 1990 

(Component 4), and (3) high-density, Hispanic communities (Component 5). In contrast, two 

variables were positively correlated with UTC: (1) neighborhoods with a high percentage of 

elderly population and housing structures built in the 1950s (Component 3), and (2) 

neighborhoods with housing built in the 1980s (Component 6).   

The spatial lag model for Baltimore found two components to be negatively associated with 

UTC. First, Component 5, weighted toward population with age between 18 and 65 years old 

(economically productive group) and Asian, and secondly Component 6, which was weighted 

toward Hispanics and the population with less than a high school degree. Significant components 

that were positively associated with UTC in Baltimore were neighborhoods weighted toward 

income, education, economically active groups, and non-Hispanic white population (Component 

1); and Component 3 which was weighted toward housing built between 1950 and 1970 and 

structure age. 

Tables 8 and 9 show the coefficient and p-value of each independent variable in the spatial 

lag models. The effects of components on predicting UTC cover varied between the two cities. 

For instance, we expected that Component 1, which has weights toward education, economically 

productive populations, would be a significant predictor of UTC, but the model results showed 

that to be true only in Baltimore. Components with heavy loading toward ethnic minority, such 

as Baltimore’s Component 5 (middle-income, economically active, and Asian communities) and 

Component 6 (Hispanic working class), and Washington’s Component 5 (high-density Hispanic 

communities) were all negatively associated with UTC.  The cities differed in the way housing 

characteristics were related to UTC. In Baltimore, Component 3 (with heavy weights on housing 

built between 1950 and 1970 and structure age) was positively associated with UTC. In 

Washington, a high percentage of housing built in the1980s was positively correlated with UTC, 

while a high percentage of housing built after 1990 was negatively correlated.    

Discussion  

Our findings supported Hypothesis 1, which stated that neighborhoods that remained 

relatively wealthy would have more tree canopy. The results of our stepwise regression models 

confirmed that “stable wealthy” (NB5) was a significantly and positively associated with UTC. 

However, income instability had different associations with UTC in the two cities, which have 

different growth trajectories. We were surprised to find that in Washington D.C., which is in a 

revival phase, both positive and negative income changes were negatively correlated with the 

extent of UTC. One could argue that new development and construction in rapidly gentrifying 

Washington D.C. leads to tree loss, but further investigation is required to substantiate or 

disprove that argument. Model results also indicated that stable-impoverished status does not 

always have a negative relationship with UTC. In Washington, a city that has undergone rapid 

changes in the past decade, stable-impoverished status was not a significant variable at all. But in 

Baltimore, which has been shrinking in recent decades, income stability, whether remained-

wealthy or remained-impoverished, was a significant predictor of the extent of canopy cover. 

Thus, H2 and H3 were not fully supported.  

Hypothesis 4, which stated that increasing wealth occurs with increasing tree canopy, was 

supported. We did find UTC gains in increasing-wealthy neighborhoods (NB4) in Washington, 
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DC. Surprisingly, we also found that Washington neighborhoods with decreasing wealth (NB2) 

had the highest UTC gain, the opposite of Hypothesis 5. This may due to previous planting and 

care when the neighborhoods were relatively wealthy. However, without proper care, trees can 

die in over time, which may be part of the reason that the NB2 group had the second highest rate 

of tree canopy loss of all neighborhood types. A report (O’Neil-Dunne 2009b) on the 

relationship between UTC and land use reveals that residential areas offer more potential for 

planting trees than any other type of land use in Washington D.C. Assuming that most of 

Washington’s UTC gain occurred in residential areas, one possible explanation for the 

correlation between decreasing wealth and UTC is that planting and maintenance efforts in the 

past have affected present-day UTC. It takes time for trees to grow, and the past investment in 

growing and maintaining trees may have resulted in high canopy gains in economically declining 

neighborhoods. This explanation is consistent with the findings of Boone et al. (2010) that past 

social and built-environmental conditions were better predictors of UTC than current conditions.  

Hypothesis 5, also unsupported, stated that neighborhoods with decreasing wealth (NB2) 

would show canopy loss and/or little canopy gain. Indeed, there were relatively large canopy 

losses in economically declining neighborhoods in Washington D.C. in comparison to the losses 

in NB4 and NB5. Nevertheless, tree canopy gain was highest in neighborhoods with declining 

wealth. Hypothesis 6 was not supported either. In Washington, stable-impoverished 

neighborhoods (NB1) had the largest loss of preexisting UTC, but also higher-than-average UTC 

gain (new planting and growth). 

In both cities, a high percentage of structures built in the 1950s was positively associated 

with UTC. Areas with housing built predominantly in the 1950s may have inherited trees from 

past residents. During the 1950s, both cities had robust tree-management programs (Merse et al., 

2009; Buckley, 2010; Rodier, 2011). Future studies might productively examine past tree-

management programs and their relationship to present-day UTC. In Baltimore, UTC was 

positively associated with high percentages of structures built in the 1950s, 60s, and 70s. It may 

be that tree canopy is more extensive in older areas simply because the trees in these places have 

had longer to grow than they have in newer areas.   

Our spatial regression models indicated that the combination of ethnic minority and middle 

or low socioeconomic status was negatively associated with UTC cover. That association bears 

further study. While much research has explored environmental injustice between white and 

African American populations, and the history of segregation that limited African Americans’ 

access to environmental goods (e.g., Boone et al., 2009), little attention has been paid to how 

those issues affect Hispanics and Asians in Baltimore and Washington.  

There are several possible explanations for our finding that a high-socioeconomic-status 

population was not a significant predictor of UTC in Washington D.C. Rapid population growth 

could be a driver that has led to rapid change and new development that has had adverse effects 

on tree conservation and new planting. It would be useful to examine whether new urban 

lifestyles (i.e., compact growth with housing options near jobs, shops, and schools, and reduced 

dependency on the automobile) will hinder or support UTC plans. A second explanation is that 

neighborhood change occurs at a faster rate than changes in UTC. Thus, increasing affluence 

may not manifest in UTC for several decades. More long-term UTC-change data are needed to 

test this explanation. Future studies to examine the relationship between UTC and variables 
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related to planning, such as land-use change and zoning, could contribute to assessing and 

developing UTC and municipal UTC plans. 

Tree conservation is as important as tree planting. Although we found new planting in some 

impoverished neighborhoods in D.C., the loss rate of preexisting trees was much faster than the 

rate of UTC gain (new planting and growth). Low-income neighborhoods may lack resources, 

knowledge, or incentives to maintain healthy trees. And residents of low-income areas might 

avoid tree planting to prevent rising rents and gentrification (Schwarz et al., 2015). Research that 

improves our understanding of the drivers of tree loss can help municipalities in their efforts to 

develop conservation plans that consider specific neighborhood characteristics and needs.   

Conclusion 

Many urban ecological studies focus on how urban growth impacts ecosystem services. We 

were specifically interested in how changes in population and economic activity affect the 

distribution of tree cover. This study is among the first to investigate the relationship between 

income dynamics, an indicator of social change, and the distribution of UTC. Although a recent 

cross-city study (Schwarz et al., 2015) found that high-income neighborhoods are more likely 

than low-income neighborhoods to have higher tree canopy cover, our analyses, using a more 

complex set of time-series data, suggest that income is not the only determinant of tree canopy 

cover, and that the impacts of income change on tree canopy cover vary between cities. Our 

study shows that high socioeconomic status is not necessarily a significant predictor of high tree 

canopy cover in a fast-growing city. Trees take years to grow. Social conditions and structure 

can change more rapidly than trees can reach maturity.  

Our analysis compared two cities with comparable regional climates, population sizes, 

diversity, and racial history, but different growth patterns over the past 20 years. We found some 

evidence for associations between neighborhood change and changes in UTC in Washington 

D.C. over a 5-year period. With longer time frames and more data from Baltimore, we may be 

able to learn more about the relationships among neighborhood transitions, urban land-cover 

change, and temporal lags and legacies. Our study can help inform efforts to understand the 

mechanistic relationships between neighborhood characteristics and UTC change (Grove et al., 

2015).  

Lack of UTC is an inner-city problem that needs to be considered in municipal sustainability 

and UTC plans. Spatial and temporal distribution of UTC result from complex interactions in 

heterogeneous social-ecological systems. The distribution of UTC in the two cities suggests that 

low-income neighborhoods may lack the resources, capacity, authority, or desire to overcome a 

scarcity of the benefits that are provided by tree canopy. Stable-impoverished neighborhoods had 

the lowest UTC cover and largest proportion of tree loss compared with other types of 

neighborhoods. Although there were new planting efforts in stable-impoverished neighborhoods 

in Washington, D.C., they were not enough to stem the overall loss of tree canopy in those 

neighborhoods. Environmental justice is frequently included as one of the objectives of urban 

tree canopy goals. However, merely increasing the investment in new planting in low-income 

and low-UTC areas may not produce a lasting increase in tree canopy. Preventing tree loss and 

providing incentives for planting and maintaining trees in residential areas may be as important 

as new planting implemented by municipalities. 
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TREE CANOPY CHANGE AND NEIGHBORHOOD STABILITY: A COMPARATIVE 

ANALYSIS OF WASHINGTON DC AND BALTIMORE  

 

 

 
 
Figure 1: Distribution of Z scores of income data and neighborhood type in Washington, 

D.C. between 2000 and 2013. (NB1) Remained relatively impoverished; (NB2) Decreasing 

wealth; (NB3) Remained above impoverished; (NB4) Increasing wealth; (NB5) Remained 

relatively wealthy.  
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Figure 2: Spatial distribution of Census tracts in five types of neighborhoods in 

Washington, D.C. (left) and Baltimore, MD (right) 
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Figure 3: Distribution of UTC in the two cities (presented by standard deviation) at the 

census-tract scale 
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Figure 4: Tree canopy coverage in five types of neighborhoods in Washington, D.C. (left) 

and Baltimore (right). Neighborhood Type: NB1-Stable impoverished; NB2-Decreasing 

wealth; NB3-Remained above impoverished; NB4-Increasing wealth; NB5-Stable wealthy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



TREE CANOPY CHANGE AND NEIGHBORHOOD STABILITY: A COMPARATIVE 

ANALYSIS OF WASHINGTON, D.C. AND BALTIMORE, MD  

 

Table 1 Variables from US Census and their Morna’s I for the both cities (Spatial unit: 

Census tract) 

Variable  Description 
D.C. 

Moran’s I 

Baltimore 

Moran’s I 

Wealth 

Median household income (in inflation-adjusted dollars) 
0.59 0.57 

Education level 

% of population with less than high school education  0.41 0.47 

% of population with high school degree 0.75 0.54 

% of population with college degree or above  0.71 0.62 

Race and ethnicity 

% of non-Hispanic white population 0.83 0.61 

% of African American population 0.86 0.64 

% of Hispanic White population  0.58 0.50 

% of Asian  0.64 0.32 

Age 

% of population under 18 years old 0.61 0.29 

% of population between 19 and 65 years old 0.60 0.31 

% of population 65 years old or above 0.31 0.27 

Housing characteristics 

% of owner-occupied housing 0.25 0.45 

% of renter-occupied housing 0.33 0.37 

% of vacant housing unit 0.31 0.56 

Median rent 0.50 0.34 

Median home value 0.71 0.55 

Age of the building/ housing structure -0.01 0.00 

% housing structure built in that decennial 0.00~0.56 0.01~0.56 

Population density (people/square mile) 0.57 0.33 

% of tree canopy coverage  0.67 0.52 

Note: all p-values ≤0.05 except for bolded numbers.   



 

Table 2 The change (2006-2011) of tree canopy in five types of neighborhoods in 

Washington, D.C.  

Neighborhood Typea 

NB1 

(n=8) 

NB2 

(n=11) 

NB3 

(n=78) 

NB4 

(n=26) 

NB5 

(n=54) 

Average tree canopy 

remains the same (%) 21.90 24.91 26.90 14.76 38.14 

Average gain (%) 0.54 0.69 0.44 0.60 0.34 

Average loss (%) 3.88 3.07 3.16 2.31 2.99 

Average tree canopy in 

2011 (gain + same, %) 22.44 25.60 27.34 15.36 38.48 

Net loss /gain (gain-loss, %) -3.34 -2.38 -2.72 -1.71 -2.65 
aNeighborhood Type: NB1-Stable impoverished; NB2-Decreasing wealth; NB3-Remained above 

impoverished; NB4-Increasing wealth; NB5-Stable wealthy. The average percentage of tree 

canopy at census-tract level was 28.63% in 2011. 

 

 

Table 3 2007 Tree canopy coverage in five types of neighborhoods in Baltimore, MD 

Neighborhood Typea 

NB1 

(n=12) 

NB2 

(n=22) 

NB3 

(n=87) 

NB4 

(n=11) 

NB5 

(n=66) 

2007 average tree canopy 13.17% 27.90% 19.55% 14.69% 29.60% 
aNeighborhood Type: NB1-Stable impoverished; NB2-Decreasing wealth; NB3-Remained above 

impoverished; NB4-Increasing wealth; NB5-Stable wealthy.  The average percentage of tree 

canopy at census-tract level: 23.00%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 4 Stepwise multiple regression analysis: Washington, D.C. (R2=0.31, p=0.00) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables: B(YEAR): % housing structure built in the decennial; Aland: Area of land; HU: 

Housing units. NB2: Decreasing wealth; NB4: Increasing wealth; NB5: Remained relatively 

wealthy. 

Note: VIF: variance inflation factor.  

Variables 

Unstandardized  

Coefficients 
Standardized 

Coefficients 
p-value VIF 

Estimate Std. Error 

(Constant) 17.27 3.32 
 

0.00 - 

NB5 12.51 2.16 0.25 0.00 1.52 

B1950 0.53 0.11 0.21 0.00 1.54 

B1990 -1.05 0.21 -0.20 0.00 1.26 

Aland 0.00 0.00 0.17 0.00 1.23 

HU 0.00 0.00 0.12 0.00 1.18 

NB2 -9.48 3.24 -0.11 0.00 1.19 

NB4 -8.73 3.12 -0.12 0.01 1.40 

B1940 -0.26 0.12 -0.10 0.04 1.70 



Table 5 Stepwise multiple regression analysis: Baltimore, MD (R2=0.23, p=0.00) 

 

Variables 

Unstandardized  

Coefficients 
Standardized  

Coefficients 
p-value VIF 

Estimate Std. Error 

(Constant) 2.27 1.90 
 

0.23 - 

B1950 0.28 0.05 0.20 0.00 1.38 

B1970 0.56 0.11 0.20 0.00 1.45 

NB5 7.84 1.34 0.21 0.00 1.20 

B1940 0.38 0.08 0.19 0.00 1.34 

HU 0.00 0.00 0.08 0.02 1.10 

NB1 -5.56 2.27 -0.08 0.02 1.10 

B1960 0.22 0.09 0.09 0.02 1.54 

Variables: B(YEAR): % housing structure built in the decennial; Aland: Area of land; HU: 

Housing units. NB1: Stable impoverished; NB5: Stable wealthy.     

Note: VIF: variance inflation factor.  



 

Table 6 Loadings of components and variance from Principal Component Analysis, and 

spatial autocorrelation of component scores for Washington D.C.:  

 

 

 

Component (Washington, D.C.) 2013 

1 2 3 4 5 6 

Median household income 0.72 -0.55 -0.04 -0.05 -0.03 0.22 

% below high school degree -0.79 0.27 -0.11 0.09 0.22 -0.08 

% with high school degree -0.88 0.29 0.05 0.04 -0.21 -0.01 

% college degree 0.92 -0.31 0.00 -0.06 0.07 0.04 

% white population  0.90 -0.16 -0.18 -0.07 0.05 0.16 

% Black population -0.90 0.13 0.17 0.07 -0.26 -0.10 

% Asian 0.74 0.19 -0.05 0.23 0.16 0.01 

% Hispanic white  0.09 -0.04 -0.04 -0.10 0.82 -0.15 

% under age 18 -0.86 -0.04 -0.01 0.06 -0.07 0.32 

% between age 18 and 65 0.72 0.24 -0.40 0.00 0.18 -0.36 

% age above 65 0.10 -0.35 0.73 -0.10 -0.21 0.13 

% owner-occupied housing 0.21 -0.84 0.29 -0.19 -0.12 -0.04 

% renter-occupied housing -0.21 0.84 -0.29 0.19 0.12 0.04 

Vacancy rate  -0.27 0.39 -0.08 0.00 -0.57 -0.23 

Median rent 0.83 -0.23 -0.10 0.07 0.00 0.09 

Median house value 0.67 -0.44 -0.14 -0.15 0.13 0.33 

% structure built 2010 & later -0.16 -0.07 -0.24 0.44 0.06 -0.10 

% built between 2000 & 2010 0.12 0.07 -0.10 0.91 0.00 -0.05 

% built between 1990 & 1999 0.03 0.22 -0.11 0.48 -0.21 0.25 

% built between 1980 & 1999 0.12 0.30 0.01 0.03 -0.10 0.71 

% built between 1970 & 1979 -0.14 0.64 0.03 0.15 -0.04 0.34 

% built between 1960 & 1969 -0.17 0.69 0.14 -0.05 -0.26 0.11 

% built between 1950 & 1959 -0.27 0.12 0.74 -0.16 0.00 -0.07 

% built between 1940 & 1949 -0.42 -0.08 0.55 -0.21 0.13 -0.35 

% built before 1940 0.31 -0.61 -0.51 -0.45 0.11 -0.11 

Population density  0.18 0.27 -0.41 -0.06 0.60 -0.14 

Structure age  -0.04 0.50 0.13 0.78 -0.16 0.15 

% of Variance 29.50 16.07 8.79 8.79 6.91 5.26 

Cumulative % 29.50 45.57 54.35 63.14 70.05 75.31 

Moran’s I of  
0.76 0.37 0.54 0.35 0.48 0.28 

Component scores 

Note 1: Values with a relatively heavy loading are in bold (≥0.4 or <-0.4). 

Note 2: All Moran’s I p-values are ≤0.01  

 



Table 7 Loadings of components and variance from Principal Component Analysis,  

and spatial autocorrelation of component scores for Baltimore, MD.:   

 

  
Component (Baltimore 2013) 

1 2 3 4 5 6 7 

Median household income 0.78 -0.52 -0.08 0.02 0.03 0.03 -0.09 

% below high school degree -0.62 0.34 -0.21 -0.04 -0.28 0.41 0.11 

% with high school degree -0.89 -0.03 0.01 0.02 -0.11 -0.05 -0.05 

% college degree 0.90 -0.16 0.11 0.01 0.22 -0.18 -0.02 

% white population  0.82 -0.15 -0.05 0.06 0.15 0.27 0.25 

% Black population -0.80 0.09 0.03 -0.05 -0.18 -0.40 -0.24 

% Asian 0.52 0.31 0.16 0.05 0.52 -0.03 0.05 

% Hispanic white  0.15 0.05 -0.06 -0.03 -0.04 0.85 0.07 

% under age 18 -0.48 0.10 0.18 -0.02 -0.65 0.19 -0.31 

% between age 18 and 65 0.45 -0.01 -0.25 -0.03 0.76 0.15 -0.10 

% age above 65 -0.01 -0.14 0.13 0.08 -0.24 -0.52 0.62 

% owner-occupied housing 0.24 -0.91 -0.01 -0.16 -0.05 -0.08 0.06 

% renter-occupied housing -0.24 0.91 0.01 0.16 0.05 0.08 -0.06 

Vacancy rate  -0.50 0.23 -0.61 -0.08 0.01 -0.12 0.01 

Median rent 0.49 -0.44 -0.26 0.05 0.27 0.04 -0.23 

Median house value 0.87 -0.03 -0.04 0.03 0.03 -0.01 -0.02 

% structure built 2010 & later 0.05 0.09 -0.07 -0.10 0.09 0.18 0.61 

% built between 2000 & 2010 0.12 0.04 -0.12 0.88 0.10 0.03 -0.03 

% built between 1990 & 1999 0.05 0.35 0.16 0.60 -0.09 -0.06 -0.02 

% built between 1980 & 1999 0.18 0.36 0.22 0.21 -0.32 -0.29 0.21 

% built between 1970 & 1979 0.23 0.37 0.59 0.12 -0.15 -0.28 0.10 

% built between 1960 & 1969 -0.01 0.17 0.79 -0.15 -0.09 -0.03 -0.08 

% built between 1950 & 1959 -0.28 -0.53 0.62 -0.14 0.08 0.04 -0.03 

% built between 1940 & 1949 -0.62 -0.31 0.09 -0.14 -0.03 0.06 0.23 

% built before 1940 0.25 0.09 -0.86 -0.31 0.10 0.11 -0.13 

Population density  0.10 0.34 -0.31 -0.27 -0.04 0.14 -0.45 

Structure age  0.01 0.13 0.62 0.66 -0.13 -0.11 0.06 

% of Variance 24.61 12.56 12.31 7.25 6.60 6.50 5.21 

Cumulative % 24.61 37.16 49.49 56.74 63.34 69.85 75.06 

Moran’s I of Component 

scores 
0.70 0.45 0.55 0.17 0.22 0.51 0.15 

 

Note1: Values with a relatively heavy loading are in bold (≥0.4 or <-0.4). 

Note 2: All Moran’s I p-values are ≤0.01  



 

Table 8 Results of spatial lag model for Washington, D.C. (R2=0.70) 

 

Variables Coefficient 

Constant 8.70* 

Component 1 0.76 

Component 2 -1.66* 

Component 3 2.70* 

Component 4 -2.44* 

Component 5 -1.51* 

Component 6 2.78* 

Lag Coefficient (Rho)=0.68* 

Moran's I of residuals=-0.01 

Note: The R2 and Moran’s I of residual of OLS model are 0.43 and 0.38*, respectively.   

*p≤0.01 

 

Table 9 Results of spatial lag model for Baltimore, MD (R2=0.75) 

 

Variables Coefficient 

Constant 5.05* 

Component 1 1.49* 

Component 2 -1.07 

Component 3 1.50* 

Component 4 -0.01 

Component 5 -1.36* 

Component 6 -1.30* 

Component 7 0.90 

Lag Coefficient (Rho)=0.77* 

Moran's I of residuals=-0.03 

Note: The R2 and Moran’s I of residual of OLS model are 0.46 and 0.33*, respectively.  

*p≤0.01 

 

 


