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Abstract

Context Urban heat island studies have found that
land cover, neighborhood social conditions and tem-
peratures are correlated. This received great academic
attention because of potential ecological, social and
health impacts. However, the processes and causalities
behind such correlations remain unclear, which impede
designing effective heat mitigation approaches.
Objectives Our study aims to answer two questions:
(1) Do social conditions influence temperature inde-
pendent of land cover? (2) Is land cover more closely
associated with temperature than neighborhood social
conditions or vice versa?

Methods The analysis is for the year 2000 and the
Gwynns Falls watershed in Baltimore, Maryland.
Census data for 297 block groups and remote sensed
data for land cover and surface temperature were used.
To answer question 1, we used structural equation
modeling to build and compare model fitness. We
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conducted partial correlation and regression analysis
to answer question 2.

Results Land cover (building and trees) leads both
social conditions (race and income) and temperature to
vary across space. When holding land cover constant,
social conditions significantly contribute to tempera-
ture variation.

Conclusions This study extends understanding
beyond simple correlation and determined that land
cover influences the spatial variation in neighborhood
social conditions and temperature.

Keywords Urban heat island - Neighborhood social
condition - Land cover - Land surface temperature -
Structural equation modeling - Baltimore

Introduction

Higher temperatures in cities, referred to as urban heat
island (UHI), increase energy and water use (Oke
1982; Arnfield 2003), lead to alterations to biotic
communities, and pose an exacerbated yet uneven
threat to human health (Basu and Samet 2002;
Klinenberg 2002; Harlan et al. 2006). Land transfor-
mation during the urbanization process—converting
lands from vegetation and bare soil to buildings, roads
and impervious surfaces—is the main cause of the
UHI (Oke 1995). Other causes include urban struc-
tures such as streets and buildings that change
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radiative fluxes and anthropogenic heat release such as
that associated with fossil fuel combustion to power
vehicles and industrial processes and the use of air
conditioners (Arnfield 2003). Urban heat island mod-
eling studies have found that vegetation cover and
impervious surfaces are the most important elements
in the urban landscape for explaining variation in heat
distribution (Oke 2006; Gartland 2011).

The spatial distribution of heat in the urban area is
not homogenous. In a previous study we found land
surface temperature (LST) to vary by more than 16 °C
across the City of Baltimore (Huang et al. 2011). The
heterogeneity in LST distribution is certainly influ-
enced by the physical elements of the system. But the
variation in social conditions (i.e. income, race,
education) across the system influences the differen-
tial exposure to excess heat experienced by urban
residents. The social conditions of a neighborhood are
receiving increased attention in UHI studies because
of the potential for these social conditions to influence
the health consequence of excess heat exposure
(Wilhelmi and Hayden 2010; Romero-Lankao et al.
2012). Social conditions have been found to be related
to LST. Neighborhoods with characteristics such as
more ethnic minority residents, residents with lower
income and education, and an aging population often
experience higher LST than other neighborhoods
(Klinenberg 2002; Hope et al. 2003; Buyantuyev and
Wu 2010; Huang et al. 2011). Furthermore, social
conditions may determine people’s ability to mitigate
and adapt to heat, such as the use of air conditioners
(Klinenberg 2002; Uejio et al. 2010).

The understanding that neighborhood social condi-
tions increase heat risk inspired two divergent but
relevant research approaches to incorporating social
conditions into UHI studies. One approach estimates
neighborhood heat vulnerability by constructing a
neighborhood heat risk/vulnerability index based on
social conditions, land cover types and LST. This index
does not examine the relationship among these vari-
ables but rather uses the variables to calculate the
index. The spatial variations of the neighborhood heat
risk/vulnerability index can then be mapped to illus-
trate which neighborhoods are the most vulnerable to
excess heat (Reid et al. 2009; Johnson et al. 2012). The
second approach investigates the relationship between
neighborhood social conditions and LST. By examin-
ing this relationship, studies found that demographic
and socioeconomic factors, such as race, population
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density, household income and crime levels, are
significantly correlated with the spatial variation in
LST (Jenerette et al. 2007; Buyantuyev and Wu 2010;
Huang et al. 2011). Correlation between land cover
types and LST can likely be explained by physical
processes of radiative fluxes and surface material
characteristics (Forman 2014). In contrast, the corre-
lation found between neighborhood social conditions
and LST are much more difficult to explain. The
correlation between LST and social conditions may
simply be a manifestation of the impact of land cover
on LST as neighborhood land cover types may be
correlated with social conditions. For example, studies
in Phoenix, AZ and Baltimore, MD found that higher
vegetation cover was typically associated with neigh-
borhoods characterized by a greater proportion of
White residents and higher average household incomes
(Harlan et al. 2008; Huang et al. 2011; Jenerette et al.
2011; Schwarz et al. 2015). Alternatively, social
conditions may impact LST independent of land cover
by some, as of yet, undetermined mechanism.

We know of no studies, other than Jenerette et al.
(2007) that have investigated how social conditions
and land cover independently contribute to variation in
LST. Jenerette et al. (2007) used path analysis to
examine the influence of social conditions on LST and
they concluded that this influence was primarily
indirect and mediated through vegetation. However,
path analysis is not designed to deduce causal
relationships from correlations but rather to quantita-
tively assess relationships that are known or assumed,
and to separate direct from indirect effects (Byrne
2013). For example, Jenerette et al. (2007) assumed
that vegetation coverage was the intermediate variable
between social conditions and LST. This means that
the social conditions of a neighborhood determine the
amount vegetation cover in that neighborhood, which,
in turn, influences LST. Using path analysis, Jenerette
et al. (2007) quantified the impact of the neighborhood
social conditions directly on LST relative to the
indirect impact of social conditions on LST through
influencing vegetation cover. However, path analysis
does not test whether this assumption, that social
conditions influence vegetation cover, holds in reality.
Neither does it compare its fitness with other alterna-
tive hypotheses such as land cover determining the
social conditions of the neighborhood, for example.

To fill this gap, we developed four hypotheses to
explain the relationship among social conditions, land
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cover, and LST variation. We examined these
hypotheses through structural equation modeling,
partial correlation, and regression modeling. We aim
to answer two questions: (1) Do neighborhood social
conditions influence the spatial variation of LST
independent of land cover? And (2) Is land cover
more closely associated with temperature than neigh-
borhood social conditions or vice versa? This second
question intends to sort out whether the land cover of a
neighborhood causes residents with certain social
characteristics to live there or the other way around
meaning that the social characteristics of the residents
determine the land cover in the neighborhood. We
selected percent cover of buildings and trees to
describe land cover types because these land cover
types most significantly affect LST (Zhou et al. 2011).
We used percent of the residents identified as White
and median household income to describe neighbor-
hood social conditions because these variables are
most frequently used in both research approaches
incorporating social conditions into UHI studies that
we briefly summarized (Jenerette et al. 2007; Harlan
et al. 2008). Race and income of a neighborhood are
frequently recognized as factors influencing residents’
vulnerability to excess heat as well as correlated with
land cover and surface temperature. Our goal is to
move beyond correlation in understanding the rela-
tionship among neighborhood social conditions, land
cover and LST.

Temperature variation is primarily influenced by
radiation and air flow. Social factors (such as race and
income) play a very minor role (if any) in the physical
process of temperature variation in urban areas. Our
motivation to articulate the relationship among neigh-
borhood land cover, social conditions and LST is not
to understand why temperature is higher in some
neighborhoods than others through combining social
conditions with land cover variables, but rather to
further dismantle the correlation among them to
explore what role land cover may play in the
correlation between LST and the social conditions
influencing residents’ vulnerability to excess heat.
Therefore, instead of choosing the social factors that
may influence LST such as energy use, we selected
race and income, which are widely recognized as
essential factors in estimating residents’ vulnerability.

We want to clarify that the words “influence” and
“impact” in the following text did not indicate social
conditions can directly change the thermodynamics

and generate spatial variations of temperatures.
Instead, these words were used from a statistical
perspective in the context of examining the correlation
among neighborhood social conditions, land cover and
LST. Our efforts will contribute to understand the
relationship among variations of residents’ exposure
to excess heat (represented as LST), social vulnera-
bility (represented as race and income) and land cover.

Methods
Study area

We focused on the Gwynns Falls (GF) watershed, a
study site of the Baltimore Ecosystem Study, a
National Science Foundation funded long-term eco-
logical research program. The GF watershed lies in
Baltimore City and Baltimore County, Maryland, and
is approximately 171.5 km?. The watershed traverses
an urban—suburban—rural gradient from the urban core
of Baltimore City, through older inner ring suburbs to
rapidly suburbanizing areas in the middle reaches and
a rural/suburban fringe in the upper section. Land
cover in the GF watershed varies from highly imper-
vious in the lower sections to a broad mix of uses in the
middle and upper sections. The socioeconomic char-
acteristics of watershed residents vary greatly. For
example, according to Census 2000, the average
median household income ranges from USD 25,217
in the lower sub-watersheds to USD 52,378 in the
upper sections (Geolytics 2000). Proportion of White
residents in block group varies from O to 99.5 %
(Geolytics 2000). Variations of land cover and neigh-
borhood social conditions make the GF watershed an
ideal site to address our research questions.

Data and analyses

We used block group, a census-based unit, as the unit
of analysis in this study. Block groups that are not
completely contained within the watershed were
retained if they are larger than 50 km” and more than
50 % of their land area is in the watershed. One census
block, located completely within the watershed, was
excluded from the analysis because census data was
missing. Consequently, we included 297 block groups
in the analysis. We used this block group boundary
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layer as the common boundary for all geospatial
operations.

The mean LST by block group was used as an
indicator of neighborhood temperature (Fig. la). We
obtained the LST data from the thermal infrared (TIR)
band (10.44-12.42 pm) of a Landsat 7 Enhanced
Thematic Mapper Plus (ETM+) image acquired at
approximately 10:30 am on July 28, 1999. Though this
is a single snapshot and does not represent temperature
variation throughout the year, the remote sensed data
does cover a large area and allows us to test
relationships between the spatial variation in LST
and other variables. The LST of all pixels contained
within a block group were averaged to provide the
mean LST by block group. The spatial resolution of
the TIR band is 60 m. The image was rectified to a
common Universal Transverse Mercator coordinate

Mean land surface temperature (°C)
. -4
3738
-3
31-33
2-30

system based on the 0.6 m orthorectified emerge
color-infrared aerial imagery collected in 1999 (Zhou
and Troy 2008), and was resampled using the nearest
neighbor algorithm with a pixel size of 60 m for the
thermal band. The resultant total root mean square
error was found to be less than 0.3 pixels. Further
details on calculating LST are documented in Huang
et al. (2011).

The percent of different land cover types for each
block group was calculated from a 0.6 m land cover
classification map (Fig. 1b, c). This classification map
was created using an object-based classification
approach (Zhou and Troy 2008) on color-infrared
aerial imagery collected in 1999. Five land cover
classes were included: woody vegetation (trees and
shrubs), herbaceous vegetation (grass and herbs),
pavement, bare soil and building (Cadenasso et al.

Fig. 1 Spatial variations of neighborhood a land surface temperature, b trees, ¢ building, d income and e percent White residents
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2007). The overall accuracy of the classification was
92.3 %, with producer’s accuracies ranging from 88.3
to 100 %, and user’s accuracies in the range of
83.6-97.7 %. Further details about the classification
methods and results are documented in Zhou and Troy
(2008). Neighborhood social conditions are reported
at the census block group level (Fig. 1d, e) and are
from the 2000 US Census (Geolytics 2000).

We developed four hypotheses based on the two
research questions (Fig. 2). Question one asks whether
neighborhood social conditions influence LST inde-
pendent of land cover. In other words, this question
asks whether the blue arrow from social conditions to
LST in Fig. 2 exists. The second question seeks to
identify whether social conditions or land cover is
more closely associated with temperature variation
across space than the other. In other words, which
direction would the red arrow between land cover

Q2: Is land cover more
closely associated with
LST variation than

neighborhood
Qil: Do social
neighborhood conditions? A2a: Land cover influences social
social conditions conditions and LST variation.
influence LST

independent of land cover?

pattern and social conditions point (Fig. 2). Four
hypotheses are proposed:

H1 Land cover influence LST directly as well as
through modifying neighborhood social conditions.
Social conditions influence LST independent of land
cover (LC).

H2 Neighborhood social conditions influence the
spatial variation in LST directly as well as through
modifying land cover patterns.

H3 Land cover influence spatial patterns of LST and
neighborhood social conditions. Social conditions do
not influence LST independent of LC.

H4 Neighborhood social conditions influence the
spatial variation of LST only through modifying land
cover patterns and do not influence LST independent
of LC.

A2b: Neighborhood social conditions
influence land cover and LST variation.

H1

Ala: Yes. Neighborhood
social conditions
influence LST
independent of land
cover’s influence on LST.

Land cover
pattern

Social
conditions

Land surface
temperature

H2

Land cover
pattern

Land surface
temperature

Social
conditions

H3

Alb: No. Neighborhood
social conditions

do not influence LST (H3)
or influence LST only
through land cover
patterns (H4).

Land cover
pattern

Y

Social
conditions

Land surface
temperature

H4

Land cover
pattern

Social
conditions

Land surface
temperature

Fig. 2 Possible relationships between neighborhood social factors, land cover and temperature. Questions 1 and 2 generated four
hypotheses (H1-H4). Each hypothesis represents a different assumption
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We used structural equation modeling to test Hl
and H2. Structural equation modeling is an extension
of general linear modeling and it enables researchers
to test causal relations among multiple variables
(Kline 2010). While these statistics cannot build a
theory to explain why one factor may cause another,
they can determine that one factor is more likely to
cause another rather than the other way around. Causal
relationships are hypothesized and the statistics then
test these hypotheses to determine whether they are
consistent with the collected data (Lei and Wu 2007).
In the Analysis of moment structures (AMOS) soft-
ware, we first built hypothesized models according to
H1 (LC model) and H2 (Social model), respectively
(Fig. 3). We then ran both models using our data and
calculated four model fitness indices to determine how
consistently each model fit the collected data. The
model fitness indices are Akaike information criterion
(AIC), normed fit index (NFI), p of close fit
(PCLOSE), and the Hoelter index. We used four
indices because a good fit indicated by one index may
not be echoed by another and using only one index
may be criticized as “cherry-picking” the index that
best supports key conclusions (Hooper et al. 2008).

To test H3, we conducted a partial correlation to
examine the impact of social conditions on LST while
controlling for the LC variables. If LST is not
correlated with social conditions when LC variables
are controlled, then we accept H3 that LC variables

LC Model Building Tree
White
R Income
residents
LST
Social Model White income
residents
Building Tree
LST

Fig. 3 Conceptual models contrasting driving factors and
intermediate factors influencing LST
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influence LST and neighborhood social conditions,
and conclude that social conditions do not influence
LST independent of LC variables. To test H4, we
conducted a regression analysis with LST as the
dependent variable and LC and social conditions as
independent variables. If social conditions are not
significant in this regression, then we accept H4 that
neighborhood social conditions only influence LST
through modifying land cover patterns, and conclude
that social conditions do not influence LST indepen-
dent of LC. We used two different approaches to test
H3 and H4. Because H3 has three “dependent”
variables (LST, income and White residents %) and
two “independent” variable (building % and tree %),
we used partial correlation to examine whether the
correlations measured from the Pearson correlation
between social variables and LST were spurious. H4,
on the other hand, has one “dependent” variable
(LST) and four “independent” variables (building %,
tree %, income, and White residents %). We used
multivariate regression to determine whether social
variables contribute to explaining the spatial variation
in LST. We did not consider spatial autocorrelation in
the models. According to previous studies (e.g., Li
et al. 2012), while the magnitudes of regression
coefficients based on ordinal least square (OLS)
regression models may differ from those based on
spatial auto regression models that account for spatial
autocorrelation, their directions do not change. These
results indicated that if the research focused on the
directions and relative importance of predictors, the
OLS models work fine by not accounting for spatial
autocorrelation.

Results
The four indices used to evaluate model fit do so

differently. The AIC index is a comparative measure
of fit such that the best model fit is identified by

Table 1 Comparing four model fitness indices

LC model Social model
AIC 34 239
NFI (>0.95) 0.993 0.736
PCLOSE (>0.05) 0.059 <0.001
Hoelter index (>200 or 75) 194 6
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comparing the index value for each model and the
smaller the value the better the fit. In contrast, the other
three fit indices indicate fitness of a model by
comparing values with a given threshold. Results of
the four fit indices all showed a better fit for the LC
model than the Social model (Fig. 3; Table 1). The LC
model had a much smaller AIC value than the Social
model (34 vs. 239), indicating a better fit for the LC
model. Results for both NFI and PCLOSE indicated
that the LC model had a good fit and the Social model
had a very poor fit. A NFI value above 0.95 indicates a
good fit, between 0.90 and 0.95 a marginal fit and
below 0.90 a very poor fit (Bentler and Bonett 1980).
According to NFI values, the LC model had a good fit
(NFI = 0.99) whereas the Social model had a very
poor fit (NFI = 0.74) (Bentler and Bonett 1980). The
cut-off value for PCLOSE was 0.05, and models with a
p value above 0.05 are considered a “close” fit (Byrne
2013). The LC model passed the 0.05 cut-off value
(p = 0.06), but the Social model did not (p < 0.01)
(Byrne 2013). The Hoelter index has a threshold of
200 meaning that values over 200 indicate a good fit
and values less than 75 indicate very poor fit (Byrne
2013). The Hoelter index for the LC model was close
but failed to pass the 200 threshold for a good fit with a
value 194. The Social model had a value of 6, which
indicated a poor fit (Byrne 2013). In summary, the LC
model was found to have a better fit for our dataset
than the Social model. These results indicate that tree
and building cover are more likely to influence the
spatial variation in LST directly as well as indirectly
through influencing race and income rather than the
other way around.

Partial correlation results indicated that both
income and race were correlated with LST at a 99 %
significance level when tree and building coverage
were controlled (Table 2). This means that the corre-
lation between LST and social conditions (income and
race) was not entirely due to their relationship with

Table 2 Partial correlation results

tree and building coverage. Therefore, we rejected H3
that the correlation between social conditions and LST
was spurious.

Our regression results showed that LC variables
(i.e. percent building and percent tree coverage) and
median household income were significant at a 99 %
confidence level, and p-value for percent of White
residents was 0.07 (Table 3). This means that when
controlling for the effects of LC variables, income still
significantly (at 0.01 level) contributed to explaining
LST variation while the significance of percent of
White residents became marginal. Therefore, we
rejected H4 that social conditions contribute to LST
only through LC variables.

Discussion

Neighborhood land cover impacts the spatial variation
of LST directly as well as indirectly through influenc-
ing the neighborhood’s social composition (i.e.
income and race). This understanding provides very
important insights on management initiatives aimed at
reducing temperature in neighborhoods vulnerable to
excess heat. Wolch et al. (2014) argued that neigh-
borhood greening efforts may increase housing costs
and property value, which can ultimately lead to
displacement of the very residents that the greening
efforts aimed to benefit. Our results provide support
for Wolch et al. (2014) argument because we found
that the land cover of a neighborhood influences its
social composition. Despite supporting Wolch et al.
(2014) argument, we are not discouraging greening
efforts; instead, we argue that more attention should be
paid to neighborhood social composition to make sure
the greening efforts benefit the targeted residents.
Our results have important implications for envi-
ronmental justice concerns. Previous studies estab-
lished correlations between neighborhood social

% Building % Tree % White residents Income
LST + - - -
LST, control % building and % tree NA NA — —
LST, control % White residents and income + — NA NA

All directional signs (4 and —) are significant with p-values less than 0.001
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Table 3 Results for regression analysis

Dependent variable: LST ~ Standardized coefficients — Sign.

% Building 0.46 <0.01
% Tree —-0.34 <0.01
% White residents —0.06 0.07
Income —-0.13 <0.01
Adj-R* = 0.724 - -

conditions and land cover (Harlan et al. 2008; Huang
et al. 2011; Jenerette et al. 2011; Schwarz et al. 2015).
Here we demonstrate that percent cover of trees and
buildings determines race and income of residents.
Landscapes experiencing high LST have fewer trees
and more buildings and are the neighborhoods char-
acterized by low household income and dominated by
residents identified as ethnic minority. Heat, an
environmental burden in the summer, is therefore
unevenly distributed among segments of the popula-
tion. Tracking the change of neighborhood land cover
patterns and associated change in social conditions
over time will enhance our understanding of how, and
to what extent, the land cover in a neighborhood
influences the social composition of the residents.

Our results indicated that race and income of
residents of a neighborhood do have a direct impact on
LST independent from land cover. The hypothesis that
both LST and social conditions are impacted by land
cover and therefore present a spurious correlation (H3)
does not hold. The hypothesis (H4) that social
conditions influence LST only through changing land
cover was also rejected. Rejecting H3 and H4
confirmed that a direct link between social conditions
and LST exists.

It is worth noting that variations in residents’
income or race of residents in a neighborhood can
change the neighborhood temperature only through
modifying physical variables, such as surface albedo,
wind flows, etc. Existing studies provide little clue on
what processes may lead to such effects of social
conditions on LST but we suggest several possibilities.
First, landscape configuration has an impact on LST
(Zhou et al. 2011). Holding composition of the
different elements that make up land cover (e.g.
buildings and trees) constant, LST can be significantly
increased or decreased by the different spatial
arrangements of these elements. Neighborhood social
characteristics may be associated with certain
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landscape configurations and therefore have an impact
on LST variation across space. Second, neighborhood
social characteristics may be associated with certain
house/yard features that impact LST but are not
captured by LC variables frequently used in UHI
studies. Examples include a swimming pool, a water
fountain, or green/white roofs. Finally, social charac-
teristics may be associated with certain household
decisions such as the use of air conditioners or lawn
irrigation practices, which may also influence spatial
variation in LST (Polsky et al. 2014). Future studies
focusing specifically on how social conditions link to
possible household decisions or landscape patterns
that may impact neighborhood LST would enhance
our understanding of the relationship between neigh-
borhood social conditions and LST and therefore
inform potentially more effective heat intervention
and mitigation approaches.

Conclusions

We examined the relationships between neighborhood
social conditions, land cover and temperatures in
Baltimore, MD. We found that neighborhood social
conditions, specifically race and income, impact the
spatial variation of LST independently from land
cover. Furthermore, we found that land cover (i.e.
percent coverage of trees and buildings) is the driving
force, leading both neighborhood social conditions
and LST to vary across space. These findings suggest
future research directions on how social conditions
influence LST as well as why and how land cover
influences neighborhood social conditions.
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