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Abstract

Context Urban heat island studies have found that

land cover, neighborhood social conditions and tem-

peratures are correlated. This received great academic

attention because of potential ecological, social and

health impacts. However, the processes and causalities

behind such correlations remain unclear, which impede

designing effective heat mitigation approaches.

Objectives Our study aims to answer two questions:

(1) Do social conditions influence temperature inde-

pendent of land cover? (2) Is land cover more closely

associated with temperature than neighborhood social

conditions or vice versa?

Methods The analysis is for the year 2000 and the

Gwynns Falls watershed in Baltimore, Maryland.

Census data for 297 block groups and remote sensed

data for land cover and surface temperature were used.

To answer question 1, we used structural equation

modeling to build and compare model fitness. We

conducted partial correlation and regression analysis

to answer question 2.

Results Land cover (building and trees) leads both

social conditions (race and income) and temperature to

vary across space. When holding land cover constant,

social conditions significantly contribute to tempera-

ture variation.

Conclusions This study extends understanding

beyond simple correlation and determined that land

cover influences the spatial variation in neighborhood

social conditions and temperature.

Keywords Urban heat island � Neighborhood social

condition � Land cover � Land surface temperature �
Structural equation modeling � Baltimore

Introduction

Higher temperatures in cities, referred to as urban heat

island (UHI), increase energy and water use (Oke

1982; Arnfield 2003), lead to alterations to biotic

communities, and pose an exacerbated yet uneven

threat to human health (Basu and Samet 2002;

Klinenberg 2002; Harlan et al. 2006). Land transfor-

mation during the urbanization process—converting

lands from vegetation and bare soil to buildings, roads

and impervious surfaces—is the main cause of the

UHI (Oke 1995). Other causes include urban struc-

tures such as streets and buildings that change
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radiative fluxes and anthropogenic heat release such as

that associated with fossil fuel combustion to power

vehicles and industrial processes and the use of air

conditioners (Arnfield 2003). Urban heat island mod-

eling studies have found that vegetation cover and

impervious surfaces are the most important elements

in the urban landscape for explaining variation in heat

distribution (Oke 2006; Gartland 2011).

The spatial distribution of heat in the urban area is

not homogenous. In a previous study we found land

surface temperature (LST) to vary by more than 16 �C
across the City of Baltimore (Huang et al. 2011). The

heterogeneity in LST distribution is certainly influ-

enced by the physical elements of the system. But the

variation in social conditions (i.e. income, race,

education) across the system influences the differen-

tial exposure to excess heat experienced by urban

residents. The social conditions of a neighborhood are

receiving increased attention in UHI studies because

of the potential for these social conditions to influence

the health consequence of excess heat exposure

(Wilhelmi and Hayden 2010; Romero-Lankao et al.

2012). Social conditions have been found to be related

to LST. Neighborhoods with characteristics such as

more ethnic minority residents, residents with lower

income and education, and an aging population often

experience higher LST than other neighborhoods

(Klinenberg 2002; Hope et al. 2003; Buyantuyev and

Wu 2010; Huang et al. 2011). Furthermore, social

conditions may determine people’s ability to mitigate

and adapt to heat, such as the use of air conditioners

(Klinenberg 2002; Uejio et al. 2010).

The understanding that neighborhood social condi-

tions increase heat risk inspired two divergent but

relevant research approaches to incorporating social

conditions into UHI studies. One approach estimates

neighborhood heat vulnerability by constructing a

neighborhood heat risk/vulnerability index based on

social conditions, land cover types andLST. This index

does not examine the relationship among these vari-

ables but rather uses the variables to calculate the

index. The spatial variations of the neighborhood heat

risk/vulnerability index can then be mapped to illus-

trate which neighborhoods are the most vulnerable to

excess heat (Reid et al. 2009; Johnson et al. 2012). The

second approach investigates the relationship between

neighborhood social conditions and LST. By examin-

ing this relationship, studies found that demographic

and socioeconomic factors, such as race, population

density, household income and crime levels, are

significantly correlated with the spatial variation in

LST (Jenerette et al. 2007; Buyantuyev and Wu 2010;

Huang et al. 2011). Correlation between land cover

types and LST can likely be explained by physical

processes of radiative fluxes and surface material

characteristics (Forman 2014). In contrast, the corre-

lation found between neighborhood social conditions

and LST are much more difficult to explain. The

correlation between LST and social conditions may

simply be a manifestation of the impact of land cover

on LST as neighborhood land cover types may be

correlated with social conditions. For example, studies

in Phoenix, AZ and Baltimore, MD found that higher

vegetation cover was typically associated with neigh-

borhoods characterized by a greater proportion of

White residents and higher average household incomes

(Harlan et al. 2008; Huang et al. 2011; Jenerette et al.

2011; Schwarz et al. 2015). Alternatively, social

conditions may impact LST independent of land cover

by some, as of yet, undetermined mechanism.

We know of no studies, other than Jenerette et al.

(2007) that have investigated how social conditions

and land cover independently contribute to variation in

LST. Jenerette et al. (2007) used path analysis to

examine the influence of social conditions on LST and

they concluded that this influence was primarily

indirect and mediated through vegetation. However,

path analysis is not designed to deduce causal

relationships from correlations but rather to quantita-

tively assess relationships that are known or assumed,

and to separate direct from indirect effects (Byrne

2013). For example, Jenerette et al. (2007) assumed

that vegetation coverage was the intermediate variable

between social conditions and LST. This means that

the social conditions of a neighborhood determine the

amount vegetation cover in that neighborhood, which,

in turn, influences LST. Using path analysis, Jenerette

et al. (2007) quantified the impact of the neighborhood

social conditions directly on LST relative to the

indirect impact of social conditions on LST through

influencing vegetation cover. However, path analysis

does not test whether this assumption, that social

conditions influence vegetation cover, holds in reality.

Neither does it compare its fitness with other alterna-

tive hypotheses such as land cover determining the

social conditions of the neighborhood, for example.

To fill this gap, we developed four hypotheses to

explain the relationship among social conditions, land
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cover, and LST variation. We examined these

hypotheses through structural equation modeling,

partial correlation, and regression modeling. We aim

to answer two questions: (1) Do neighborhood social

conditions influence the spatial variation of LST

independent of land cover? And (2) Is land cover

more closely associated with temperature than neigh-

borhood social conditions or vice versa? This second

question intends to sort out whether the land cover of a

neighborhood causes residents with certain social

characteristics to live there or the other way around

meaning that the social characteristics of the residents

determine the land cover in the neighborhood. We

selected percent cover of buildings and trees to

describe land cover types because these land cover

types most significantly affect LST (Zhou et al. 2011).

We used percent of the residents identified as White

and median household income to describe neighbor-

hood social conditions because these variables are

most frequently used in both research approaches

incorporating social conditions into UHI studies that

we briefly summarized (Jenerette et al. 2007; Harlan

et al. 2008). Race and income of a neighborhood are

frequently recognized as factors influencing residents’

vulnerability to excess heat as well as correlated with

land cover and surface temperature. Our goal is to

move beyond correlation in understanding the rela-

tionship among neighborhood social conditions, land

cover and LST.

Temperature variation is primarily influenced by

radiation and air flow. Social factors (such as race and

income) play a very minor role (if any) in the physical

process of temperature variation in urban areas. Our

motivation to articulate the relationship among neigh-

borhood land cover, social conditions and LST is not

to understand why temperature is higher in some

neighborhoods than others through combining social

conditions with land cover variables, but rather to

further dismantle the correlation among them to

explore what role land cover may play in the

correlation between LST and the social conditions

influencing residents’ vulnerability to excess heat.

Therefore, instead of choosing the social factors that

may influence LST such as energy use, we selected

race and income, which are widely recognized as

essential factors in estimating residents’ vulnerability.

We want to clarify that the words ‘‘influence’’ and

‘‘impact’’ in the following text did not indicate social

conditions can directly change the thermodynamics

and generate spatial variations of temperatures.

Instead, these words were used from a statistical

perspective in the context of examining the correlation

among neighborhood social conditions, land cover and

LST. Our efforts will contribute to understand the

relationship among variations of residents’ exposure

to excess heat (represented as LST), social vulnera-

bility (represented as race and income) and land cover.

Methods

Study area

We focused on the Gwynns Falls (GF) watershed, a

study site of the Baltimore Ecosystem Study, a

National Science Foundation funded long-term eco-

logical research program. The GF watershed lies in

Baltimore City and Baltimore County, Maryland, and

is approximately 171.5 km2. The watershed traverses

an urban–suburban–rural gradient from the urban core

of Baltimore City, through older inner ring suburbs to

rapidly suburbanizing areas in the middle reaches and

a rural/suburban fringe in the upper section. Land

cover in the GF watershed varies from highly imper-

vious in the lower sections to a broad mix of uses in the

middle and upper sections. The socioeconomic char-

acteristics of watershed residents vary greatly. For

example, according to Census 2000, the average

median household income ranges from USD 25,217

in the lower sub-watersheds to USD 52,378 in the

upper sections (Geolytics 2000). Proportion of White

residents in block group varies from 0 to 99.5 %

(Geolytics 2000). Variations of land cover and neigh-

borhood social conditions make the GF watershed an

ideal site to address our research questions.

Data and analyses

We used block group, a census-based unit, as the unit

of analysis in this study. Block groups that are not

completely contained within the watershed were

retained if they are larger than 50 km2 and more than

50 % of their land area is in the watershed. One census

block, located completely within the watershed, was

excluded from the analysis because census data was

missing. Consequently, we included 297 block groups

in the analysis. We used this block group boundary
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layer as the common boundary for all geospatial

operations.

The mean LST by block group was used as an

indicator of neighborhood temperature (Fig. 1a). We

obtained the LST data from the thermal infrared (TIR)

band (10.44–12.42 lm) of a Landsat 7 Enhanced

Thematic Mapper Plus (ETM?) image acquired at

approximately 10:30 am on July 28, 1999. Though this

is a single snapshot and does not represent temperature

variation throughout the year, the remote sensed data

does cover a large area and allows us to test

relationships between the spatial variation in LST

and other variables. The LST of all pixels contained

within a block group were averaged to provide the

mean LST by block group. The spatial resolution of

the TIR band is 60 m. The image was rectified to a

common Universal Transverse Mercator coordinate

system based on the 0.6 m orthorectified emerge

color-infrared aerial imagery collected in 1999 (Zhou

and Troy 2008), and was resampled using the nearest

neighbor algorithm with a pixel size of 60 m for the

thermal band. The resultant total root mean square

error was found to be less than 0.3 pixels. Further

details on calculating LST are documented in Huang

et al. (2011).

The percent of different land cover types for each

block group was calculated from a 0.6 m land cover

classification map (Fig. 1b, c). This classification map

was created using an object-based classification

approach (Zhou and Troy 2008) on color-infrared

aerial imagery collected in 1999. Five land cover

classes were included: woody vegetation (trees and

shrubs), herbaceous vegetation (grass and herbs),

pavement, bare soil and building (Cadenasso et al.

Fig. 1 Spatial variations of neighborhood a land surface temperature, b trees, c building, d income and e percent White residents

2510 Landscape Ecol (2016) 31:2507–2515

123



2007). The overall accuracy of the classification was

92.3 %, with producer’s accuracies ranging from 88.3

to 100 %, and user’s accuracies in the range of

83.6–97.7 %. Further details about the classification

methods and results are documented in Zhou and Troy

(2008). Neighborhood social conditions are reported

at the census block group level (Fig. 1d, e) and are

from the 2000 US Census (Geolytics 2000).

We developed four hypotheses based on the two

research questions (Fig. 2). Question one asks whether

neighborhood social conditions influence LST inde-

pendent of land cover. In other words, this question

asks whether the blue arrow from social conditions to

LST in Fig. 2 exists. The second question seeks to

identify whether social conditions or land cover is

more closely associated with temperature variation

across space than the other. In other words, which

direction would the red arrow between land cover

pattern and social conditions point (Fig. 2). Four

hypotheses are proposed:

H1 Land cover influence LST directly as well as

through modifying neighborhood social conditions.

Social conditions influence LST independent of land

cover (LC).

H2 Neighborhood social conditions influence the

spatial variation in LST directly as well as through

modifying land cover patterns.

H3 Land cover influence spatial patterns of LST and

neighborhood social conditions. Social conditions do

not influence LST independent of LC.

H4 Neighborhood social conditions influence the

spatial variation of LST only through modifying land

cover patterns and do not influence LST independent

of LC.

Fig. 2 Possible relationships between neighborhood social factors, land cover and temperature. Questions 1 and 2 generated four

hypotheses (H1–H4). Each hypothesis represents a different assumption
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We used structural equation modeling to test H1

and H2. Structural equation modeling is an extension

of general linear modeling and it enables researchers

to test causal relations among multiple variables

(Kline 2010). While these statistics cannot build a

theory to explain why one factor may cause another,

they can determine that one factor is more likely to

cause another rather than the other way around. Causal

relationships are hypothesized and the statistics then

test these hypotheses to determine whether they are

consistent with the collected data (Lei and Wu 2007).

In the Analysis of moment structures (AMOS) soft-

ware, we first built hypothesized models according to

H1 (LC model) and H2 (Social model), respectively

(Fig. 3). We then ran both models using our data and

calculated four model fitness indices to determine how

consistently each model fit the collected data. The

model fitness indices are Akaike information criterion

(AIC), normed fit index (NFI), p of close fit

(PCLOSE), and the Hoelter index. We used four

indices because a good fit indicated by one index may

not be echoed by another and using only one index

may be criticized as ‘‘cherry-picking’’ the index that

best supports key conclusions (Hooper et al. 2008).

To test H3, we conducted a partial correlation to

examine the impact of social conditions on LST while

controlling for the LC variables. If LST is not

correlated with social conditions when LC variables

are controlled, then we accept H3 that LC variables

influence LST and neighborhood social conditions,

and conclude that social conditions do not influence

LST independent of LC variables. To test H4, we

conducted a regression analysis with LST as the

dependent variable and LC and social conditions as

independent variables. If social conditions are not

significant in this regression, then we accept H4 that

neighborhood social conditions only influence LST

through modifying land cover patterns, and conclude

that social conditions do not influence LST indepen-

dent of LC. We used two different approaches to test

H3 and H4. Because H3 has three ‘‘dependent’’

variables (LST, income and White residents %) and

two ‘‘independent’’ variable (building % and tree %),

we used partial correlation to examine whether the

correlations measured from the Pearson correlation

between social variables and LST were spurious. H4,

on the other hand, has one ‘‘dependent’’ variable

(LST) and four ‘‘independent’’ variables (building %,

tree %, income, and White residents %). We used

multivariate regression to determine whether social

variables contribute to explaining the spatial variation

in LST. We did not consider spatial autocorrelation in

the models. According to previous studies (e.g., Li

et al. 2012), while the magnitudes of regression

coefficients based on ordinal least square (OLS)

regression models may differ from those based on

spatial auto regression models that account for spatial

autocorrelation, their directions do not change. These

results indicated that if the research focused on the

directions and relative importance of predictors, the

OLS models work fine by not accounting for spatial

autocorrelation.

Results

The four indices used to evaluate model fit do so

differently. The AIC index is a comparative measure

of fit such that the best model fit is identified by

Fig. 3 Conceptual models contrasting driving factors and

intermediate factors influencing LST

Table 1 Comparing four model fitness indices

LC model Social model

AIC 34 239

NFI ([0.95) 0.993 0.736

PCLOSE ([0.05) 0.059 \0.001

Hoelter index ([200 or 75) 194 6
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comparing the index value for each model and the

smaller the value the better the fit. In contrast, the other

three fit indices indicate fitness of a model by

comparing values with a given threshold. Results of

the four fit indices all showed a better fit for the LC

model than the Social model (Fig. 3; Table 1). The LC

model had a much smaller AIC value than the Social

model (34 vs. 239), indicating a better fit for the LC

model. Results for both NFI and PCLOSE indicated

that the LC model had a good fit and the Social model

had a very poor fit. A NFI value above 0.95 indicates a

good fit, between 0.90 and 0.95 a marginal fit and

below 0.90 a very poor fit (Bentler and Bonett 1980).

According to NFI values, the LC model had a good fit

(NFI = 0.99) whereas the Social model had a very

poor fit (NFI = 0.74) (Bentler and Bonett 1980). The

cut-off value for PCLOSEwas 0.05, andmodels with a

p value above 0.05 are considered a ‘‘close’’ fit (Byrne

2013). The LC model passed the 0.05 cut-off value

(p = 0.06), but the Social model did not (p\ 0.01)

(Byrne 2013). The Hoelter index has a threshold of

200 meaning that values over 200 indicate a good fit

and values less than 75 indicate very poor fit (Byrne

2013). The Hoelter index for the LC model was close

but failed to pass the 200 threshold for a good fit with a

value 194. The Social model had a value of 6, which

indicated a poor fit (Byrne 2013). In summary, the LC

model was found to have a better fit for our dataset

than the Social model. These results indicate that tree

and building cover are more likely to influence the

spatial variation in LST directly as well as indirectly

through influencing race and income rather than the

other way around.

Partial correlation results indicated that both

income and race were correlated with LST at a 99 %

significance level when tree and building coverage

were controlled (Table 2). This means that the corre-

lation between LST and social conditions (income and

race) was not entirely due to their relationship with

tree and building coverage. Therefore, we rejected H3

that the correlation between social conditions and LST

was spurious.

Our regression results showed that LC variables

(i.e. percent building and percent tree coverage) and

median household income were significant at a 99 %

confidence level, and p-value for percent of White

residents was 0.07 (Table 3). This means that when

controlling for the effects of LC variables, income still

significantly (at 0.01 level) contributed to explaining

LST variation while the significance of percent of

White residents became marginal. Therefore, we

rejected H4 that social conditions contribute to LST

only through LC variables.

Discussion

Neighborhood land cover impacts the spatial variation

of LST directly as well as indirectly through influenc-

ing the neighborhood’s social composition (i.e.

income and race). This understanding provides very

important insights on management initiatives aimed at

reducing temperature in neighborhoods vulnerable to

excess heat. Wolch et al. (2014) argued that neigh-

borhood greening efforts may increase housing costs

and property value, which can ultimately lead to

displacement of the very residents that the greening

efforts aimed to benefit. Our results provide support

for Wolch et al. (2014) argument because we found

that the land cover of a neighborhood influences its

social composition. Despite supporting Wolch et al.

(2014) argument, we are not discouraging greening

efforts; instead, we argue that more attention should be

paid to neighborhood social composition to make sure

the greening efforts benefit the targeted residents.

Our results have important implications for envi-

ronmental justice concerns. Previous studies estab-

lished correlations between neighborhood social

Table 2 Partial correlation results

% Building % Tree % White residents Income

LST ? - - -

LST, control % building and % tree NA NA - -

LST, control % White residents and income ? - NA NA

All directional signs (? and -) are significant with p-values less than 0.001
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conditions and land cover (Harlan et al. 2008; Huang

et al. 2011; Jenerette et al. 2011; Schwarz et al. 2015).

Here we demonstrate that percent cover of trees and

buildings determines race and income of residents.

Landscapes experiencing high LST have fewer trees

and more buildings and are the neighborhoods char-

acterized by low household income and dominated by

residents identified as ethnic minority. Heat, an

environmental burden in the summer, is therefore

unevenly distributed among segments of the popula-

tion. Tracking the change of neighborhood land cover

patterns and associated change in social conditions

over time will enhance our understanding of how, and

to what extent, the land cover in a neighborhood

influences the social composition of the residents.

Our results indicated that race and income of

residents of a neighborhood do have a direct impact on

LST independent from land cover. The hypothesis that

both LST and social conditions are impacted by land

cover and therefore present a spurious correlation (H3)

does not hold. The hypothesis (H4) that social

conditions influence LST only through changing land

cover was also rejected. Rejecting H3 and H4

confirmed that a direct link between social conditions

and LST exists.

It is worth noting that variations in residents’

income or race of residents in a neighborhood can

change the neighborhood temperature only through

modifying physical variables, such as surface albedo,

wind flows, etc. Existing studies provide little clue on

what processes may lead to such effects of social

conditions on LST but we suggest several possibilities.

First, landscape configuration has an impact on LST

(Zhou et al. 2011). Holding composition of the

different elements that make up land cover (e.g.

buildings and trees) constant, LST can be significantly

increased or decreased by the different spatial

arrangements of these elements. Neighborhood social

characteristics may be associated with certain

landscape configurations and therefore have an impact

on LST variation across space. Second, neighborhood

social characteristics may be associated with certain

house/yard features that impact LST but are not

captured by LC variables frequently used in UHI

studies. Examples include a swimming pool, a water

fountain, or green/white roofs. Finally, social charac-

teristics may be associated with certain household

decisions such as the use of air conditioners or lawn

irrigation practices, which may also influence spatial

variation in LST (Polsky et al. 2014). Future studies

focusing specifically on how social conditions link to

possible household decisions or landscape patterns

that may impact neighborhood LST would enhance

our understanding of the relationship between neigh-

borhood social conditions and LST and therefore

inform potentially more effective heat intervention

and mitigation approaches.

Conclusions

We examined the relationships between neighborhood

social conditions, land cover and temperatures in

Baltimore, MD. We found that neighborhood social

conditions, specifically race and income, impact the

spatial variation of LST independently from land

cover. Furthermore, we found that land cover (i.e.

percent coverage of trees and buildings) is the driving

force, leading both neighborhood social conditions

and LST to vary across space. These findings suggest

future research directions on how social conditions

influence LST as well as why and how land cover

influences neighborhood social conditions.
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