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Abstract 

This study investigated whether a latent class of children with math difficulties (MD) or math 

learning disabilities (MLD) emerged within a heterogeneous sample of learners.  A latent class 

analysis was computed on children (N = 447) in grade 3 who were administered a battery of 

math, reading, and cognitive measures.  The analysis yielded four important findings.  First, a 

discrete latent class of children with MD (15% of the sample) or MLD (10% of the sample) 

emerged when setting cut-off scores at or below the 25th and 11th percentile, respectively.  

Second, model testing yielded a high probability of finding children with MD or MLD with 

reading problems as well as a latent class of low problem solvers with average reading and 

calculation scores.   Third, knowledge of problem solving component processes, estimation and 

the executive component of WM were significant and unique correlates of latent classes at both 

cut-off points. Finally, children defined as MD at 25th percentile cut-off but not 11th percentile 

cut-off yielded high effect sizes on measures of reading, but not on cognitive measures, when 

compared to children identified at risk at both cut-off points. The results suggest that a 

statistically distinct latent class of children at risk for MD or MLD can be separated from a 

heterogeneous sample of children who vary in math, reading and fluid intelligence.  

 

Keywords: math disabilities, math difficulties, cognitive processes, latent class analysis 
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Abstract 

Educational Impact and Implication 

Using two traditional cut-off scores for defining serious math problems, a latent class of children 

with math difficulties (MD) and math learning disabilities (MLD) emerged within a 

heterogeneous sample of third grade learners. Regardless of cut-off score criterion, children with 

MD or MLD were found to have serious deficits related to both domain specific (i.e., estimation, 

knowledge of problem solving components), and domain general processes (i.e., executive 

component of WM). The results also showed a distinct latent class of poor problem solvers 

emerged, even though such children were average in calculation and reading abilities. There are 

at least three implications to the findings: (1) there  is a low probability of finding children with 

MD or MLD independent of reading problems, (2)  poor problem solvers shared similar deficits 

to children with MD and MLD on several cognitive measures (e.g., STM, identifying word 

problem solving components, numeracy, executive component of WM) and (3) an undue focus 

on reading and calculation for determining children at risk, may overlook the unique group of 

children at risk primarily in the area of problem solving.  
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Latent Class Analysis of Children with Math Difficulties and/or Disabilities: 

Are There Cognitive Differences?  

 
 

Math skills have been shown to have a significant impact on employability, apart from 

ethnic status, reading competence, and intelligence (Geary, 2011).  Unfortunately, a significant 

number of children demonstrate serious math difficulties (e.g., Mazzocco, Devlin, & McKenney; 

2008). School age children displaying characteristics of math difficulties (MD) have been 

estimated to be about 6.4% of the public school population (Badian, 1999; Geary, 1993).  The 

estimates of prevalence, however, vary (Barbaresi, Katusic, Colligan, Weaver, & Jacobsen, 

2005; Desoete, Roeyers, & DeClercq, 2004; Geary, Hoard, Nugent, & Bailey, 2012; Shalev, 

2007; Shalev, Manor, & Gross-Tsur, 2005; Martin et al., 2013) and in some estimates comprise 

up to 10% of the public school population (Geary, 2013).  A challenge in this field of research, 

though, is determining whether math learning disabilities can be considered as a distinct category 

from math difficulties (e.g., Geary, Hoard, Nugent, & Bailey, 2012, Murphy, Mazzocco, Hanich, 

& Early, 2007).  

 Researchers have used normative math test scores at various cutoffs points to determine 

math difficulties and/or disabilities. These cut-off points have ranged anywhere from the 5th 

through the 46th percentile (e.g., Murphy et al., 2007; Swanson & Jerman, 2006).  Recent 

criterion among researchers includes using norm- referenced math scores below the 11th 

percentile to identify children with Math Learning Disabilities (MLD; e.g., Geary, 2013; 

Mazzocco, Myers, Lewis, Hanich, & Murphy, 2013).  In contrast, math performance between 

11th to the 25th percentile is a criterion used to indicate children with math difficulties (MD, or 

Low Achievers) and scores above the 25th percentile to establish the highest group (Typically 
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Achieving) (e.g., Cirino & Berch, 2010; Geary et al., 2012; Mazzocco, Feigenson, & Halberda, 

2011).  However, several studies have highlighted subgroup heterogeneity even when using strict 

cut-off score criteria to define children at risk for MD or MLD (Mazzocco et al., 2008).  Thus, a 

challenge in this field of research is determining if the performance differences in children 

identified with MD can be differentiated from children with MLD on various achievement and 

cognitive measures (e.g., Geary et al., 2012; Murphy, Mazzocco, Hanich, & Early, 2007).  

This study has two purposes.  The first purpose was to determine if children at risk for 

math difficulties (MD) reflect a discrete latent class from those with math learning disabilities 

(MLD).  Traditionally, as indicated above, children at risk for MD have been defined as at risk 

by performing below the 25th percentile on norm referenced standardized math measures (e.g.,  

Cirino, Fuchs, Elias, Powell, & Schumacher, 2015;  Fuchs et al., 2006; Geary, 2013; Jordon & 

Hanich, 2003; Mazzocco, 2007; Siegel & Ryan, 1989;  Swanson, 2006; Vukovic & Lesaux, 

2013).  A further refinement in the sample selection of children at risk for math difficulties 

includes making sure that such children perform above the cut-off scores (> 25th percentile) on 

achievement measures other than math (i.e., reading).  This refinement is necessary to establish 

that risk status resides in math and not another academic area.  Likewise, further refinement in 

sample selection includes establishing that such children's math difficulties are not due to general 

intellectual difficulties (e.g., Geary, 2013). Thus, in school practice, children at risk for MD and 

MLD have been defined on normative measures as having intelligence scores in the average 

range (e.g., > 85 standard score) and reading scores above the 25th percentile. What differentiates 

the two groups is the severity of math performance on normative math measures: children with 

MD perform between the 11th and 25th percentile while children with MLD perform below the 

11th percentile on normative math measures.  
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However, this selection process of determining children at risk for MD or MLD has been 

criticized because of reliance on an artificial cut-off score (e.g., Branum-Martin, Fletcher, & 

Stuebing, 2013; Tolar, Fuchs, Fletcher, Fuchs, & Hamlett, 2016). In addition, such procedures 

ignore the frequency of comorbidity in children with math problems. That is, reading disabilities 

and math disabilities co-occur more frequently than expected by chance (e.g., Landerl & Moll, 

2010). Although a number of explanations emerge related to this comorbidity (e.g., sampling 

artifact, manifestations of a secondary disorder, alternative manifestations of the same etiology, 

see Willcutt, Petrill, Wu, Boada, DeFries, Olson, & Pennington, 2013 for a review), there is a 

high probability that children labelled as MD or MLD do not reflect a diagnostic category that is 

completely independent of reading difficulties (e.g., Cirino et al., 2015). For example, Cirino et 

al. administered a battery of measures to a large sample (N=660) of second graders and found 

that children designated with math difficulties (cut-off score for determining MD was < 25th 

percentile on arithmetic subtest on the Wide-Range Achievement Test) shared a similar profile to 

children with both reading and math difficulties on several measures.  Further, a number of 

comprehensive meta-analyses comparing children with MD and reading disabilities (RD) have 

also found minor differences between children with RD and MD groups on cognitive measures 

(e.g., Swanson & Jerman, 2006, Swanson, Jerman & Zheng, 2009), suggesting a common 

construct between the two disabilities. Thus, it is unclear as to whether a distinct latent class of 

children with MD or MLD can be clearly separated from children with comorbid disabilities.  

That is, the probability of identify children with serious math problems that are completely 

independent of reading problems is in question. 

To address some of the above issues, it is important to note there have been notable 

methodological advances that have contributed to our understanding of children's math 
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proficiency as it relates to children at risk for MD or MLD.  Recently, there have been advances 

in modeling the development of discrete processes based on the latent class analysis (e.g., 

Collins & Lanza, 2010; Muthén, 2006).  Latent class analysis (LCA) is a statistical method used 

to identify subgroups of individuals characterized by similar multidimensional patterns of 

responses (e.g., Collins, Hyatt, & Graham, 2000).   In one sense, LCA is a categorical analog to 

factor analysis.  Instead of defining attributes to a complex covariance structure, LCA posits 

unobserved classes to explain complex associations in a multidimensional contingency table.  

Studies that involve the analysis of unobserved classes from a heterogeneous sample are 

sometimes referred to as mixture models (e.g., Lubke & Muthén, 2005; Muthén, 2006).  A 

rationale for using latent class or mixture modeling is that although math skills can be 

represented as a continuous outcome variable, the sample may be composed of different groups 

(or classes) of individuals.  This group membership is not directly observed in latent growth 

models even though it is possible that the distribution of children's math proficiency reflects at 

least two different latent classes (e.g., children at risk and not at risk for math difficulties). The 

advantage of LCA when compared to other procedures, such as cluster analysis, is that it offers a 

probalistic model of the distribution latent classes in the data.  Further, the selection process 

allows for goodness of fit indices, contrary to most clustering techniques that focus on 

algorithms related to distance measures. In this study, we test the notion that discrete latent 

classes or mixtures representing different states of math proficiency exist in children who may be 

identified as at risk or not at risk for MD or children with MLD.  

The second purpose of this study determines the cognitive processes that correlate with 

performance of children at risk for math difficulties (MD) or math learning disabilities (MLD).  

On the assumption that a discrete subgroup of children at risk for MD or MLD emerges, it is 
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important to know the cognitive processes associated with these risk groups.  One of the most 

often referred cognitive process underlying serious math difficulties is working memory (e.g., 

Andersson, 2007; Bull, Johnston, & Roy, 1999; Cowan & Powell, 2014; David, 2012; Geary, 

2011; Kolkman, Kroesbergen, & Leseman, 2014; Mammarella, Lucangeli & Cornoldi, 2010; 

Meyer, Salimpoor, Wu, Geary, & Menon, 2010; Simmons, Willis, & Adams, 2012; Swanson, 

Jerman, & Zheng, 2008).  This domain general construct is viewed as a limited capacity system 

that is involved in the preservation of information while simultaneously processing the same or 

other information (e.g., Baddeley, 2012; Engle, Tuholski, Laughlin, & Conway, 1999).  

Although the association between WM and mathematical performance has been 

established in the literature, the components of WM that underlie predictions of math 

performance are unclear (see Simmons et al.; for review).  Some studies have suggested that the 

storage component of WM (referred to as the phonological loop or verbal STM) plays the major 

role in math performance, especially in the younger ages (e.g., Meyer, et al., 2010).  Other 

studies have noted that difficulties with math problems are tied to visual-spatial component of 

WM (referred to as the visual-spatial sketchpad, e.g., Ashkenazi, Rosenberg-Lee, Metcalfe, 

Swigward, & Menon, 2013; Bull, Johnston, & Roy, 1999).  In contrast, Lee, Ng, Ng, and Lim, 

(2004) found that neither the phonological loop nor the visual-spatial sketchpad, but rather the 

executive component of WM contributed significant variance to math problem solving solution 

accuracy. 

Given that the literature is unclear as to those WM components that uniquely predict 

math performance, further study is necessary.  We consider three competing models as an 

explanation of the role of WM in individual math performance in children: one focuses on 

processes related to phonological STM (phonological loop), another focuses information 
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activated from long-term memory specifically related to math, and the third focuses on processes 

related to an executive system. These models are covered in depth (Swanson, 2004, 2006, 

Swanson et al.,  2008; Swanson & Fung, 2016), but are briefly reviewed here.  

One model tested in this study is that the influence of WM on children's mathematical 

performance is primarily influenced by the phonological storage component of WM because of 

its strong association with reading (e.g., Baddeley, Gathercole, & Papagno, 1998, for a review).  

The model follows logically from the literature that links phonological skills to new word 

learning, comprehension, and mental calculation. The model assumes that children with MD 

have deficits in the storage of phonological information that constrains higher levels of 

processing (e.g., Crain, Shankweiler, Macaruso, & Bar-Shalom, 1990; Lauro, Reis, Cohen, 

Cecchetto, & Papagno, 2010; Majerus & Lorent, 2009). Because of the prevalence of comorbid 

math and reading difficulties, several studies has suggested children with serious math or reading 

problems share difficulties related to phonological processing (e.g., Hecht, Torgesen, Wagner, & 

Rashotte, 2001; Landerl, Bevan, & Butterworth, 2004; Mazzocco & Grimm, 2013; Vukovic & 

Lesaux, 2013). A mechanism assumed to play a role in the storage of phonological information 

is naming speed. That is, subvocal rehearsal processes that reduce the decay of memory items in 

the phonological store prior to output are assumed to be related to naming speed (e.g. Henry & 

Millar, 1993; McDougall, Hulme, Ellis, & Monk, 1994).   Poor performance on measures of 

naming speed that include numbers and letters have been attributed to both children with MD 

and children with MLD relative to typical achieving children (e.g., Mazzocco & Grim, 2013, see 

Table 1), suggesting difficulties in phonological processing (also see Geary, 2011).  

       A second model assumes that WM plays a key role in predictions of math, but does not 

identify specific components of WM in predicting math performance.  Rather, WM is viewed as 
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an activated portion of declarative long-term memory (Ericsson & Kintsch, 1995). Baddeley and 

Logie (1999) stated that a major role of WM “is retrieval of stored long term knowledge relevant 

to the tasks at hand, the manipulation and recombination of material allowing the interpretation 

of novel stimuli, and the discovery of novel information or the solution to problems” (p. 31).  

Information retrieved from long-term memory includes the accessing of  information needed to 

making decisions related to number line estimation and magnitude judgments (e.g., Fuchs et al. 

2012; Geary, 2011; Simmons et al., 2012) as well as the selection of  appropriate operations and 

algorithms for math solutions (e.g., Mayer & Hegarty, 1996).   

For example, children's estimation abilities, judging measurements and assigning 

numbers without counting, have been found to uniquely predict math skills (e.g., Fuchs et al., 

2012; Geary, 2011; Rousselle & Noël, 2007).  Number-line estimation tasks require children to 

estimate the position of target numbers on a line within numerals at end points (e.g., 0 and 100).  

The accuracy of number-line estimation has been found to correlate with general math 

achievement (e.g., Siegler & Opfer, 2003).  It has been argued that accurate estimation of 

numerical magnitudes is important for children’s mental representation of quantities (e.g., Booth 

& Siegler, 2008). That is, when children are solving arithmetic problems they activate both the 

answer to the problem as well as approximation of the answers magnitude to the accuracy of the 

problem. Thus, an adequate magnitude representation allows for a rejection of implausible 

answers. Children with MD have been found to have difficulties representing magnitudes 

accurately (e.g., Fuchs et al., 2012; Geary. 2011). In general, several studies have found the 

children with MD and MLD are less accurate than children with higher mathematical 

achievement (e.g., Geary, Hoard, Bryd-Craven, Nugent, & Numtree. 2007).  
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Another approach to assessing children’s mental representation of quantities is assessing 

their performance related to making judgments of number magnitude. Children’s basic 

understanding of mathematical thinking involves making judgments about numbers of larger or 

smaller magnitude.  Judgments of number magnitude (e.g., which is larger: 8 or 5) have been 

found to underlie math performance (e.g., Rousselle & Noël, 2007). Fast binary judgments of 

smaller versus larger numbers have a strong relationship between numerical and spatial relations 

(e.g., Dehanane, Bossini & Giraux, et al. 1993). For example, Mazzocco and Thompson (2005) 

found that magnitude judgments of one digit numbers along with mental addition and reading 

were predictive of MLD in the later elementary grades.  

Other information activated from LTM includes recognizing the components of word 

problems. Several studies have investigated whether the retrieval of contents in long-term 

memory, specifically the propositions within word problems outlined by Mayer and Hegarty 

(1996), mediate working memory and math problem-solving. These propositions within word 

problems are related to accessing numerical, relational, question and extraneous information as 

well as accessing the appropriate operations algorithms for solution. Thus, for children to 

effectively solve math problems they need to be able to translate each statement of the problem, 

integrate information to a coherent problem representation, devise and monitor the solution plan 

accurately and efficiently carry out the solution. Hegarty and colleagues (Hegarty, Mayer, & 

Green, 1992; Hegarty, Mayer & Monk, 1995) suggested that the identification of problem 

solving components plays a major role in translating key information within a word problem 

(e.g., converting text to a computation problem; e.g., Wong & Ho, 2017). Children who can 

problem-solve can directly translate key terms (e.g., less than, more than) whereas others (e.g., 

children with MD) pay attention to the numbers rather than to the relevant information within the 
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problem to solve the problem (e.g., Swanson, Cooney & Brock, 1993). Previous studies have 

found the children with MD perform poorly on accurately identifying the components of word 

problems (e.g., Swanson& Beebe-Frankenberger, 2004). 

  In line with the other two models, a third model views executive processes as (1) accessing 

information from LTM (e.g., accessing the correct algorithm) and (b) providing resources to 

lower-order (i.e., phonological system) skills.  That is, although math proficiency is related to the 

retrievability of contents in LTM and activities related to the phonological loop, activities of 

related to the executive system of WM may also underlie math proficiency. The executive 

component of WM (also termed “controlled attention”) is the residual variance captured in 

regression modelling when STM has been partialed-out out in the analysis (Engle et al., 1999).  

This residual variance (i.e., controlled attention) is assumed to reflect the inhibition of competing 

information from the targeted information (e.g., Unsworth, 2010). Several studies have shown a 

relationship between inhibition and poor performance in math (e.g., Blair & Razzo, 2007; Bull & 

Scerif, 2001; D’Amico & Passolunghi, 2009; Passolunghi & Pazzaglia, 2005).   A random 

generation task was used to assess inhibition in this study. The use of Random Generation tasks 

has been well articulated in the literature as a measure of inhibition (e.g., Baddeley, 1996; Towse 

& Cheshire, 2007).  The task is considered to tap inhibition because participants are required to 

actively monitor candidate responses and suppress responses that would lead to well learned 

sequences, such as 1-2-3-4 or a-b-c-d (Baddeley, 1996). 

In summary, the purpose of this study was to identify whether children at risk for MD reflect 

a latent class. The study determined if this potential latent class could be differentiated in terms 

of severity of math deficiencies and whether this differentiation reflected qualitatively different 
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cognitive processes.  To extend the literature in these areas, the study sought to answer two 

questions: 

1: Can a latent classification of children at risk for MD and MLD be identified within a 

heterogeneous sample of learners when performance in math, reading and intelligence 

measures are included in the analysis?  

The present study determines the probability of identifying a latent class of participants 

with MD or MLD using the 25th percentile or 11th percentile as a cut-off point within a sample 

that includes a large range of math, reading, and cognitive abilities. As mentioned, LCA is a 

"model-based clustering" approach that derives clusters using a probabilistic model that 

describes distribution of data. So instead of finding clusters of children with math problems, 

LCA describes the distribution of the data based on a model that assesses probabilities that 

certain cases are members of certain latent classes. Thus, with goodness of fit indices, it is 

possible to test whether a “latent structure” underlies the data. 

  As previously mentioned, performance at or below the 25th percentile on normed 

referenced math measures is commonly used to designate risk for MD (e.g., Fletcher et al., 1989;  

Fuchs et al., 2012; Siegel & Ryan, 1989; Swanson & Beebe-Frankenberger, 2004; Vukovic & 

Siegel, 2010).  However, as indicated earlier, we make a distinction in our data analysis between 

math difficulties (MD, math performance between the 11th to 25th percentile) and math learning 

disabilities (MLD, math performance < 11th percentile). Of interest is whether the profile 

(magnitude of differences on performance measures) differs among those children who retain 

risk status under both cut-off points (referred to as MLD) and those who only retain risk status at 

the 25th percentile cut-off point (referred to as MD).  Such a comparison on cognitive measures 

would address the issue as to whether the two groups reflect qualitatively different profiles. 
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Given the issues related to comorbidity mentioned earlier, of particular interest is whether our 

modeling testing of latent classes within the current data set would yield a subgroup with low 

math performance but reading scores above the 25th percentile. 

2. Do specific cognitive measures predict latent class membership?  

  Previous studies have emphasized WM as playing a major role in predictions of MD 

(e.g., Cowan & Powell, 2014; Swanson & Beebe-Frankenberger, 2004).  However, there are a 

number of other processes that may underlie the relationship between WM and math skills.  The 

processes considered in the current study are: knowledge of problem-solving processes, naming 

speed, estimation, number judgment, and inhibition. The importance of these processes was 

discussed earlier.  For example, STM storage (phonological loop) and related phonological 

processes (rapid naming speed), domain specific measures (measures of word problem solving 

components, estimation) as well as measures of executive processing (e.g., inhibition), have been 

implicated along with WM as predictors math performance (e.g., Cowan & Powell, 2014; Fuchs 

et al., 2006; 2012; Lee et al., 2004; Swanson & Beebe-Frankenberger, 2004). What is of interest, 

however, is whether children identified as MLD (below the 11th percentile) have more general 

cognitive and academic delays than children with more moderate delays (children with MD). 

Some studies (Hanich et al., 2001; Jordon & Hanich, 2003; Jordon, Hanich et al., 2002) have 

suggested that children with MLD may have more circumscribed difficulties (e.g., problems 

related to estimation, magnitude judgment, naming speed). Therefore, when compared to average 

achievers, it was of interest children to determine if performance differences of children with 

MD are more generalized than children with MLD. 

Method 

Participants 
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 The grade 3 children in this study were drawn from a longitudinal study that included at 

risk children in grade 2 to grade 5 (Fung, Orosco, Swanson, 2014; Swanson & Fung, 2016).After 

receiving signed parent permission forms, children in the third grade were administer a large 

battery of measures. In addition, children at risk and not at risk were identified by teacher 

nomination and previous test scores.  Grade 3 was selected since it included the largest sample 

and the focus of classroom instruction included both calculation and math word problems. Third 

graders were also selected from this study since this is the grade where serious math difficulties 

are first identified (e.g., Swanson & Beebe-Frankenberger, 2004). In addition, the stability of 

math difficulties can be determined by considering math performance on high stake tests in the 

earlier grades. The total sample consisted of 447 children in the third grade (chronological age M 

= 8.39, SD = 0.50; 222 males, 225 females) selected from six Southwest public schools.  The 

sample consisted of 199 Caucasians (49%), 133 Hispanics (33%), 20 African Americans (6%), 

23 Asians (6%), and 24 children (6%) who were identified as Native American or Vietnamese.  

Forty children showed mixed ethnicity (e.g., Hispanic + African American, Hispanic + 

Caucasian).  Based on school records, the sample was primarily low to middle SES based on free 

and reduced lunch eligibility, parent education levels, or parent occupation. 

Measures Used for Identifying Latent Classes 

Fluid Intelligence  

Fluid Intelligence.  Fluid intelligence was assessed by administering the Colored 

Progressive Matrices test (Raven, 1976).  The dependent measure was the number of problems 

solved correctly, which yielded a standardized score (M = 100, SD = 15). 

Calculation and Problem Solving Skills 
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Arithmetic calculation. The arithmetic computation subtest for the Wide Range 

Achievement Test-Third Edition (WRAT; Wilkinson, 1993) and the numerical operations subtest 

for the Wechsler Individual Achievement Test (WIAT; Psychological Corporation, 1992) were 

administered to measure calculation ability.  The dependent measure was the number of 

problems correct, which yielded a standard score (M = 100, SD = 15).  

Word problem-solving accuracy (WPS-accuracy). Word problem-solving accuracy 

was assessed using four measures.  The Story Problem subtest of the Test of Math Ability 

(TOMA-2, Brown, Cronin, & McEntire, 1994) required children to silently read a short story 

problem and solve the computational problem. The Story Problem-Solving subtest from the 

Comprehensive Mathematical Abilities Test (CMAT; Hresko, Schlieve, Herron, Swain, & 

Sherbenou, 2003) required the examiner to read each of the problems to the children, asking 

children to read along on their own paper.  Children were then asked to solve the word problem 

by writing out the answer. The KeyMath Revised Diagnostic Assessment (KeyMath; Connolly, 

1998) word problem-solving subtest involved the tester reading a series of word problems to the 

children while showing a picture illustrating the problem, and then asking them to verbalize the 

answer to problem.  Mental computation related to word problems was assessed from the 

arithmetic subtest of the Wechsler Intelligence Scale for Children, Third Edition (Psychological 

Corporation, 1992). Each word problem was orally presented and solved without paper or pencil. 

Questions ranged from simple addition to more complex calculations. 

Reading Skills 

Reading.  Reading comprehension was assessed by the Passage Comprehension subtest 

from the Test of Reading Comprehension-Third Edition (TORC; Brown, Hammill, & 
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Weiderholt, 1995) and word recognition was assessed by the reading measure decoding subtest 

of the Wide Range Achievement Test-Third Edition (WRAT-Reading; Wilkinson, 1993).  

Cognitive Measures Used for Determining Correlates of Latent Class Membership  

Working Memory 

Phonological loop.  This component of WM was measured using three tasks.  The 

Forward Digit Span subtest of the Wechsler Intelligence Scale for Children-Third Edition 

(WISC-III; Wechsler, 1991) assessed short term memory (STM) since it was assumed that 

forward digit spans presumably involved a subsidiary memory system (the phonological loop).  

The task involves a series of orally presented numbers which children repeat back verbatim.  The 

Word Span task was previously used by Swanson and Beebe-Frankenberger (2004), and assessed 

the children’s ability to recall increasingly large word lists (a minimum of two words to a 

maximum of eight words).  Testers read lists of common but unrelated nouns to the children, and 

were asked to recall the words.  Word lists gradually increased in set size from a minimum of 

two words to a maximum of eight.  The Phonetic Memory Span task assessed the children’s 

ability to recall increasingly large lists of nonsense words (e.g., des, seeg, seg, geez, deez, dez) 

ranging from two to seven words per list (Swanson et al., 2008).   

Central executive.  This component of WM was measured using three tasks.  The 

Listening Sentence Span task assessed children’s ability to remember numerical information 

embedded in a short sentence (Daneman & Carpenter, 1980).  Testers read a series of sentences 

to each child and then asked a question about a topic in one of the sentences, and then children 

were asked to remember and repeat the last word of each sentence in order. The Conceptual Span 

task assessed children’s ability to organize sequences of words into abstract categories 

(Swanson, 2013). The experimenter presented set of words (e.g., “shirt, saw, pants, hammer, 
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shoes, nails”), asked a process question ("Which word, 'level' or 'saw', was said in the list of 

words?"), and then asked the participant to recall the words that went together.  

Because WM tasks were assumed to tap a measure of controlled attention referred to as 

updating (e.g., Miyake, Friedman, Emerson, Witzki, & Howerter, 2000), an experimental 

Updating task, adapted from Swanson and Beebe-Frankenberger (2004) was also administered.  

A series of one-digit numbers was presented that varied in set length from 3, 5, 7, and 9.  No 

digit appeared twice in the same set.  The examiner told the child that the length of each list of 

numbers might be 3, 5, 7, or 9 digits.  Children were then told that they should only recall the last 

three numbers presented.  Each digit was presented at approximately one-second intervals.  After 

the last digit was presented the child was asked to name the last three digits, in order.  The 

dependent measure was the total number of sets correctly repeated (range 0 to 16).  

  Visual-spatial sketchpad.  This component of WM was measured using two tasks (see 

Swanson, 1992, for review of these tasks).  The Mapping and Directions Span task assessed 

whether the children could recall a visual-spatial sequence of directions on a map with no labels.  

Children were presented with a map for 10 seconds that contains lines connected to dots and 

square (buildings were squares, dots were stoplights, lines and arrows were directions to travel).  

After the removal of the map, children were asked a process question and then asked to draw the 

lines and dots on a blank map.  The Visual Matrix task assessed the children’s ability to 

remember visual sequences within a matrix.  Children were presented with a series of dots in a 

matrix and were allowed 5 seconds to study the pattern.  After removal of the matrix, children 

were asked a process question and asked to draw the dots they remembered seeing in the 

corresponding boxes of a blank matrix. 

Measures Assumed to Underlie the Relationship between WM and Math 
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The measures assumed to mediate the relationship between WM and math performance 

were related to accessing specific information from LTM (word problem solving components, 

estimation, and magnitude judgement), enhancing the storage of phonological information 

(naming speed) and inhibiting the accessing of irrelevant information (random generation). A 

description of each task follows.  

Word problem-solving components.  This experimental task assessed the child's ability 

to identify processing components of word problems (Swanson & Beebe-Frankenberger, 2004).  

Each booklet contained three problems that included pages assessing the recall of text from the 

word problems.  To control for reading problems, the examiner orally read each problem and all 

multiple-choice response options as the students followed along.  After the problem was read, 

students were instructed to turn to the next page on which they were asked a series of multiple-

choice questions requiring them to identify the correct propositions related to (1) question (2) 

number, (3) goal, (4) operation and (5) algorithm of each story problem. Children were also to 

identify the extraneous propositions for each story problem. 

  Estimation.  Two number line estimation tasks adapted from Siegler and Opfer's (2003) 

and Siegler and Booth’s (2004) study, were administered.  For set 1 of the Estimation task, 

children were asked to examine five straight lines that were 25-cm long.  Each line was identical 

in length and was marked with a zero at one end and one hundred on the other end, creating a 

blank number line.  A single number (e.g., 50. 75, 45, 32, 6, 22) was placed above the center of 

each line.  Children were asked to estimate where they thought the number presented should be 

placed on the line and indicated this by marking an X on the line.  For set 2, children were asked 

to examine another set of five straight lines.  For this set, however, each line was of a different 

length (25cm, 20cm, 12cm, 30cm, and 20cm) with end points of 0 and 100. The reason to 
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manipulate the length of the line was related to issues raised as to whether spatial information or 

magnitude judgment underlines problem in estimation (Chew, Forte et al., 2016). Several studies 

suggest that children who are poor on mathematical tasks have a reduced visual-spatial span 

(Bull & Scerif, 2001) and therefore we varied to length to have a better sense if difficulties were 

related to magnitude or spatial judgment. 

      For each of the 10 lines (set 1 and 2), the point of accuracy was calibrated for each line. 

Accuracy was calculated by using a transparency template and counting how many units of 

measure the X was from the correct answer.  For the five lines in Set 1, the distance from the 

accuracy point was computed for each ¼ inch.  For set 2, arithmetically equivalent distances 

were used to count off the distance between the participant's X and the where actual placement 

the correct answer should be on the line.  We converted difference scores (number of units from 

the exact point) to positive values by subtracting the difference score from 20 in each set.  Thus, 

our estimate of the number line estimation varied from that of Siegler and Opfer (2003), in that 

they used group level median placements fitted to linear analog models to make inferences about 

the children’s placements.  

Magnitude comparisons.  Two sets of digits were presented in 25 rows with three 

columns.  Each row had the same number of digits (1 digit, 2 digits, and 3 digits) in each 

column.  In the first set, children were asked to circle the largest number in each row as fast as 

they could in 30 seconds.  The second set also had an additional 25 rows of numbers with three 

numbers in each row.  Children were asked to circle the smallest number in each group as fast as 

they could in 30 seconds.  The numerical distance between a symbolic magnitude comparison 

was alternated across rows so that each row had one comparison close in numerical distance 

(e.g., 2 and 3) and one far in numerical distance (2 and 9).  Children were presented with 25 rows 
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of numbers with three numbers (either in pairs or in three digits) in each row.  The scores for set 

1 were the number of correctly identified largest numbers (set 1) within 30 seconds, and the 

scores for set 2 were the smallest numbers correctly identified within 30 seconds. 

 Naming speed.  The Comprehensive Test of Phonological Processing's (CTOPP; 

Wagner, Torgesen, & Rashotte, 2000) Rapid Digit and Rapid Letter Naming subtests were 

administered to assess speed in recalling numbers and letters.  Children received a page that 

contained four rows and nine columns of randomly arranged numbers (i.e., 4, 7, 8, 5, and 2).  

Children were required to name the numbers as quickly as possible for each of the two stimulus 

arrays containing 36 numbers, for a total of 72 numbers.  A stopwatch was used to time 

participants on naming speed.  The dependent measure was the total time to name both arrays of 

numbers.  The Rapid Letter Naming subtest is identical in format and in scoring to the Rapid 

Digit Naming subtest, except that it measures the speed children can name randomly arranged 

letters (i.e., s, t, n, a, k) rather than numbers. 

 Inhibition.  The Random Number and Random Letter Generation Tasks were 

administered to assess inhibition (Swanson & Beebe-Frankenberger, 2004). Children were first 

asked to write, as quickly as possible, numbers (or letters) in a non-random sequential order to 

establish a baseline.  They were then asked to write numbers as quickly as possible, out of order, 

in a 30-second period.  Scoring included an index for randomness, information redundancy, and 

percentage of paired responses to assess the tendency of participants to suppress response 

repetitions.  The measure of inhibition was calculated as the number of sequential letters or 

numbers, minus the number of correctly unordered numbers or letters, divided by the number of 

sequential letters or numbers, plus the number of unordered letters or numbers.  

Nestedness 
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According to Maas and Hox (2005), at least 50 level-2 observations (classrooms in this 

case) are needed to assure that estimated parameters are unbiased.  Because data were collected 

for children in 19 different classrooms, we considered utilizing a multi-level approach. However, 

the models would not converge due to the small number of clusters.  Thus, multi-level modeling 

was not used in the final analyses.  

Cut-off points   

The aim of this study was to determine whether discrete subgroups in math ability 

emerged among a heterogeneous group of third graders.  The manifest variables (calculation, 

problem solving, reading, fluid intelligence) in the first analysis to determine discrete groups 

were dummy coded as reflecting normative score as at or below the 25th  percentile (1 = at or 

below 25th percentile, 2 = above the 25th percentile).  The 25th percentile or a 90 standard score 

was based on the normative scores from the standardized math, reading and fluid intelligence 

measures.  However, it is important to note that several researchers have suggested this cut-off 

point is more likely to capture children with general achievement difficulties and not necessarily 

children with MLD (i.e., math learning disabilities).  A follow-up analysis we recomputed the 

latent classes and used scores below the 11th percentile as a cut-off point for determining children 

at risk for MLD.  Obviously some of the children identified as at risk at the 25th percentile cut-off 

point would not necessarily be represented in a latent class at the more severe cut-off.  However, 

on the assumption our sample is representative of children who experience serious difficulties in 

math; we will be able to compare the profiles (via probabilities of occurrence and effect sizes) of 

the latent classes that emerge at both cut-off points from those that emerge only at the 25th 

percentile cut-off.  It was of interest to determine if the cognitive profile of children identified as 

at risk for moderate MD (children yielding normative scores between the 11th and 25th percentile) 
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could be separated from children with MLD (severe MD). That is, do children identified as at 

risk only at the 25th percentile yield a distinct latent class when separated from children identified 

at risk below the 11th percentile cut-off? 

 Procedures 

Ten graduate students trained in test administration tested all participants in their schools.  

One session of approximately 45–60 minutes was required for small group test administration, 

and one session of 45–60 minutes was required for individual test administration.  During the 

group testing session, data were obtained from problem-solving process (components) booklets, 

Test of Reading Comprehension, Test of Mathematical Ability, and the Visual Matrix task.  The 

remaining tasks were administered individually.  Test administration was counterbalanced to 

control for order effects.   

Results 

Distribution of Measures 

Table 1 shows the means, standard deviations, skewness, kurtosis and sample reliability 

(Cronbach alpha) for each measure.  A preliminary analysis showed the classification measures 

met standard criteria for the univariate analysis (Kline, 2011).  Skewness less than 3 and kurtosis 

less than 4 did not occur on the classification measures, but did occur for some of the cognitive 

processing measures (e.g., Estimation, Numeracy).  However, a transformation of these measures 

did not change the pattern of the results and therefore the original scores were used in the 

analysis. Performance for the TOMA was of concern because mean scores were out of the 

normal range, even though standard score performance varied from 40 to 140 in the sample. It is 

important to note that this task required children to silently read and solve a story problem. We 

initially removed the outliers (SD > 3.5) for this task, but this did not change the pattern of 
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results. Thus, on the assumption this was a heterogeneous sample and performance reflected a 

continuum of skills, no outliers were removed from the analysis.   

Latent Class Analysis  

 Model fit.  In order to evaluate the model fit, and because LCA is an exploratory 

analysis, a series of models were fit, varying the number of latent classes between one and six 

(Nylund, Asparouhov, & Muthén, 2007; see Masyn, 2013, for a comprehensive review).  A 

combination of statistical indicators and substantive theory were used to decide on the best fitting 

model.  Models with different numbers were compared using information criteria (i.e., Bayesian 

Information Criteria-BIC, Akaike Information Criteria-AIC, and Adjusted BIC).  Lower values 

on these fit statistics indicated a better model fit.  Statistical model comparisons included 

likelihood ratio tests: the Lo-Mendell-Rubin Test (LMR) and the Bootstrap Likelihood Ratio 

Test (BLRT).  Both statistical procedures compared the improvement between neighboring class 

models (i.e., comparing models with two vs. three classes, and three vs. four, etc.) and provided 

p-values.  P-values were used to determine if there was a statistically significant improvement in 

fit for the inclusion of one more latent class. A nonsignificant P-value indicated for a K-class that 

the previous K-class with a significant P-value fit the data better. Among the information 

criterion measures, the BIC is generally preferred, as is the BLRT for statistical model 

comparisons (Nylund et al., 2007).  An additional consideration was the interpretability of the 

classes, as well as the size of the smallest class.   

Given the indices reported in Table 2, the three and four class models were studied for 

interpretability.  Both the LMR and BLRT yielded non-significant p-values for the four-class 

solution and significant p-values for the three class model, indicating that the three-class model 

provided an excellent fit to the data.  The BIC was lower for the three than the four class model. 
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Thus, the four-class and five- class models did not represent an improvement over the three-class 

model. In addition, adequate sample proportionality and item probabilities for the three-class 

model were more easily interpreted than the four class model.  Masyn (2013) suggested that class 

proportion values can be considered (i.e., “assign meaning to the classes” (p. 559) when 

determining the number of latent classes. The item probabilities for the three class model are 

reported in Table 3.  The entropy for the three class model was .75, an acceptable value (Nylund 

et al., 2007).  

Sample and item probabilities.  Table 3 shows the proportion of the sample in each 

latent class (gamma estimates), as well as the probabilities (rho estimates) for each measure 

(manifest variable) for each response category as a function of each latent class for the total 

sample.  Shown are the item probabilities for performance at or under the cut-off threshold of the 

25th percentile and below 11th percentile cut-off score.  These rho estimates reflected the latent 

class abilities of the given item-response, conditional on the given latent-class membership.  To 

facilitate discussion, and because there is no set standard for determining meaningful 

probabilities, item latent class probabilities above 70% were selected as reflecting MD status and 

these values are shown in bold.  That is, probabilities above .70 indicated risk of low 

performance for that particular manifest variable.  

At Risk for Math Difficulties (MD) 

Three latent classes emerged using the 25th percentile as a cut-off score.  As shown in the 

left section of Table 3, item response probabilities at or greater than .70 indicated high 

probabilities for risk status (children who performed at or under the 25th percentile).  The first 

latent class (LC=1) was labeled as average achievers across all manifest variables.   Latent class 

group 2 (LC=2) was characterized by low achievement in calculation, problem solving, and 
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reading comprehension, but average performance in areas of word identification and fluid 

intelligence.  This group was labeled as children at risk for MD.  Latent Class 3 (LC=3) was 

characterized by low achievement on selective measures of problem solving accuracy, but 

average achievement on the remaining manifest variables.  This group was labeled as poor 

problem solvers.   

To interpret these profiles further, the means and SDs for each of the normed manifest 

variables are reported in the top section of Table 4.  Mean scores were in the normal range for 

the average achievers (LC=1), whereas mean scores for children with MD (LC=2) were below 

the 25th percentile (90 standard) for all classification measures, except fluid intelligence.  In 

contrast, children with problem solving difficulties (LC=3) yielded average mean scores on 

measures of calculation and reading, but below the 25th percentile on three of the four problem 

solving measures.     

Sample Distribution.  The total sample proportional distributions for the three latent 

classes are shown in the top row of Table 3.  These estimates (gamma estimates) represented the 

proportion of the sample expected to be members of a particular latent class.  The largest 

proportional distribution of the sample occurs for LC= 3 (.54) followed by LC=1 (.32).  The 

proportional distribution of gender across the three latent class groups for males was .50, .52 and 

.49, respectively.  No significant effects were found for gender representation among the three 

latent classes, χ2 (2, N = 447) = .29, p =.86.  

In summary, given the research question and the statistical findings (BLRT) as well as 

the substantive meaning of each solution (item probabilities and proportional assignment 

discussed below); a three class model was selected.  The model included average achievers, 
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children with MD, and poor math problem solvers. The mean norm referenced scores for each 

latent class on the manifest variables are shown at the top of Table 4. 

 

Math Learning Disabilities (MLD) 

A follow-up to the above latent class analysis that used the 25th percentile as a cut-off 

score, the next analysis utilized the 11th percentile (based on the norms within the test manual) as 

a cut-off point to determine the latent classes.  As shown in Table 2, three latent classes emerged 

as the best fit.1 The right hand section of Table 3 shows that the largest proportional distribution 

of the sample occurred for LC=3 (.55) followed by LC=1 (.35).  An interpretation of the item 

probabilities shows a profile similar to the more liberal cut-off score (at or < 25th percentile).  

Latent class 1 reflected average achievers, latent class 2 reflected children with MLD and latent 

class 3 reflected children with low math problem solving skills.  The proportional distribution of 

gender for LC=1, LC=2, and LC=3 for males was .50, .51, and .49, respectively.  No significant 

effects were found for gender representation, χ2 (2, N = 447) = .07, p =.96. The mean norm 

referenced scores for each latent class on the manifest variables are shown at the bottom of   

Table 4. 

Comparison of Cut-off points 

As shown previously in Table 3, LC=2 was 15% of the total sample at the 25th percentile 

and 10% of the total sample at the < 11th percentile cut-off.  A cross-classification of the two cut-

off points was computed. As expected, there was a significant difference in sample 

representation for LC=1 thru LC=3 at the 25th percentile cut-off when compared to LC1 thru 

LC3 at the 11th percentile cut-off point, χ2 (4, N = 447) = 621.33, p < .0001.  The percentage of 

children identified as a MD latent class under the moderate cut-off (< 25th percentile) that 
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retained their status under the severe cut-off (< 11th percentile) was 57%.  The other 43% of the 

MD group transitioned into the poor math problem solving group.  The percentage of children 

identified as a latent class of poor math problem solvers (LC=3) under the moderate cut-off (< 

25th percentile) that retained status (LC=3) at the 11th percentile cut-off was 89%.  The remaining 

11 percent transitioned into the average achieving latent group. Regardless of cut-off points, 

none of the average achieving children transitioned into the “at risk for MD” or poor problem 

solving group. 

 Table 5 shows the profile of the group that retained latent class status at both cut-off 

points and those who transitioned out of risk group status by lowering the cut-off point to the 11th 

percentile. Consistent with our criteria, the retained group was defined as children with MLD and 

those that transition out of the latent class group at risk were defined as children with MD. As 

shown, except for fluid intelligence, all manifest (classification) variables for the retained MLD 

group yielded mean scores below the normal range (standard scores < 85). No significant 

differences were found in gender representation between the two (retained vs. transition) groups 

χ2 (1, N = 65) = .46, p=.49.   The transition group yielded normative scores in the average range 

on measures of fluid intelligence, calculation, and word identification (mean standard scores > 

85).  

As shown in Table 5, effect sizes (Cohen’s d ) were computed between those children 

who retained risk status (regardless of cut-off score) and those who transitioned out of the 

latent class related to risk by lowering the cut-off point to the 11th percentile. To make d’s 

interpretable, statisticians have adopted Cohen’s (1988) system for classifying d’s in terms of 

their size (i.e., .00 - .19 is described as trivial; .20 - .49, small; .50 - .79, moderate; .80 or 

higher, large). As shown in Table 5, the two groups, referred to as MD and MLD, respectively, 
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where compared on manifest variables used to determine latent status.  As expected, the 

shifting from one latent class to another was related to scores on the math measures. However, 

utilizing Cohen’s criterion of a high effect size (ES’s > .80), the magnitude of the ESs between 

the two groups was large for performance on reading measures.  Children with relatively higher 

reading scores were more likely to transition out the latent class group at risk by lowering the 

cut-off point (< 11th percentile). 

Correlates of Latent Classes 

The next analysis determined those cognitive variables external to the classification 

measures that played a significant role in predicting latent class membership.   

Confirmatory factor analysis.  The cognitive measures were reduced to latent 

constructs for the subsequent analysis. Further, converting the measures to latent constructs 

eliminated measurement error and allowed for a focus on shared variance rather than isolated 

task variance (e.g., Kline, 2011).  Therefore, in our next analysis we specified tasks as indicators 

of the problem solving process (question, number, goal, operations, algorithm, and irrelevant 

information), numeracy (numbers of high and low magnitude), estimation, speed (naming speed 

for numbers and letters), inhibition (random generation of numbers and letters),phonological 

loop or STM (Digit Forward Span, Word Span, and Phonetic Span), executive processing 

(Conceptual Span, Listening Sentence Span, updating), and visual-spatial sketch pad (matrix, 

mapping& directions).  

Several indices were selected because of their widespread use and relative ease of 

interpretation with regards to the assessment of model fit. These indices included the χ2 

goodness-of-fit test, comparative fit index (CFI), Tucker-Lewis index (TLI), and the root-mean-

square error of approximation (RMSEA), along with its associated confidence intervals.    It is 
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generally recognized that to support model fit a consensus among the following is needed:  a 

non-significant χ2 goodness-of-fit value; a CFI > .90; a TLI > .90; an RMSEA below .05 with the 

left endpoint of its 90% confidence interval markedly smaller than .05 (e.g., Hu & Bentler, 1999;  

Raykov & Marcoulides, 2008).  The model fit indices indicated a good model fit: χ2 (181) = 

297.21, p < .0001; CFI = .95; TLI = .94; RMSEA = .04 (.032, .048); SRMR = .048.  Thus, factor 

or latent scores were used as continuous variables in predicting latent class status.  

A comparison of the latent class groups on the mean factor scores (latent variables) in z-

score units are reported in Appendix A.  Also reported are effect sizes comparing each latent 

class on these variables.  Several large effect sizes according to Cohen’s (1988) criteria (ESs > 

.80) emerged.  As shown in Appendix A, average achievers (LC=1) superseded (magnitude of 

ESs were large) children at risk for MD (< LC=2 at 25th percentile cut-off) and children with 

MLD (LC= 2 at the 11th percentile cut-off) on all factor scores except on the latent 

measurement of naming speed.  

 Logistic regression. A logistic regression analysis was computed that included latent 

class membership as the criterion measure and cognitive processes (factor scores) as the 

predictor variables.  Table 6 shows the unique contribution of each cognitive process in 

predicting the latent class in a full model. Regardless of the two cut-off points, as shown in Table 

6, measures of domain specific component knowledge, estimation, and the executive component 

of WM were significant predictors of latent classes.  In contrast to the 25th percentile cut-off, 

however, additional significant unique predictors at the 11th percentile cut-off occurred for STM 

(phonological loop), naming speed and visual-spatial WM. This finding suggests that children at 

the lower cut-off may have more generalized cognitive difficulties when compared to selecting 

children at risk at the 25th percentile. These findings will be qualified later.   
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 Based on the three models discussed in the introduction, separate model predictions 

related to STM storage (phonological loop, naming speed), domain specific knowledge 

(components of word problems, magnitude judgments, and line estimation) and executive 

processing (WM, inhibition) were computed. Reported in Table 6 are the odds/ratio, estimates, 

and standard errors and significance of the odds ratios as indicated by the p value of the Wald 

statistic and model fit indices. The Akaike’s Information Criterion (AIC) allowed for a 

comparison of models that were not nested, and the Bayesian Criterion (BIC) allowed for a 

comparison of nested models (Hox, 2010, pp. 47-50).  In general, models with lower AIC, BIC 

and deviance values fit better than models with higher values. 

Three important findings are shown in Table 6. First, lower AIC, BIC and deviance 

values emerged for the domain specific model when compared to the other two partial models. 

However, when comparing AIC, BIC and deviance values to the full model, all three 

comparisons were significant (all ps < .01) suggesting none of the three specific models in 

isolation provided a parsimonious fit to the data when compared to the full model. Second, 

regardless of the cut-off point, component knowledge, estimation, and the executive component 

of WM were significant predictors of latent class membership in the full regression model. 

Additional significant predictors (STM, Naming speed, visual-spatial sketch pad) of latent class 

membership occurred at the lower cut-off point (< 11th percentile) when compared to the cut-off 

point at the 25th percentile.  Finally, regardless of the cut-off point, no significant unique 

variance was found for numeracy (small and large number magnitude judgements) and inhibition 

(random generation) in predictions of latent class membership.   

 Between latent class comparisons. Of interest in the next analysis was determining 

those cognitive processes that uniquely discriminated between each latent class. Table 7 shows 
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the results of a multinomial regression that used the poor problem solving latent class as a 

reference group (LC=3). This group was selected because it showed the greatest overlap when 

transitioning from one latent class to another. Of interest was determining the cognitive variables 

that separated poor math problem solvers (LC=3) from average achieving children (LC=1) and 

those cognitive variables that separated poor math problem solvers from children with MD 

(LC=2 at the 25th percentile cut-off) or MLD (LC=2 at the 11th percentile cut-off). The odds 

ratios reported in Table 7 represented the ratio of change in the odds of an event (i.e., in this case 

not belonging to the “at risk for problem solving deficits” latent class) and varied from 0 to 

infinity. An odds ratio greater than 1 indicated a higher chance of not being in the reference 

group (poor problem solver).  In contrast, an odds ratio less than 1 indicated a greater chance of 

belonging to the reference group.  When the odds ratio is 1 or close to it, no effect was found.  A 

nonsignificant odds ratio would suggest that the independent variable failed to provide reliable 

predictions to differentiate one latent class group from another.   

To interpret the outcomes in Table 7, consider the multinomial logit for a one-unit 

increase in average achieving group (LC=1) on the STM measure.  If a student in the average 

achieving group (LC=1) improved in STM by 1 point, the multinomial log odds of being 

classified as “not at risk for poor problem solving,” when compared to the poor problem solving 

group (LC=3), would be expected to increase by 1.33 units, while holding all other variables in 

the model constant. 

Table 7 shows a comparison between the poor problem solving latent class and average 

achieving children and between children with MD (cut-off < 25th percentile) and MLD (cut-off < 

11th percentile). Because there were multiple comparisons, alpha was set to .01. As shown, 

regardless of the cut-off point, average achievers out performed poor problem solvers on 
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measures of STM, knowledge of problem solving components, numeracy, and the executive 

component of WM. In contrast, children with MD or MLD could not be differentiated from poor 

problem solvers on measures of STM, numeracy, and measures of executive processing (WM 

and inhibition), suggesting that both latent classes suffer common difficulties on these measures. 

That is, given that poor math problem solvers were deficient on these measures relative to 

average achievers, we can assume that children with MD or MLD were deficient on these 

measures relative to average achievers.  A significant effect was found contrasting poor math 

problem solvers (LC=3) and children with MD (LC=2 at 25th percentile) or MLD (LC=2 at 11th 

percentile) on two measures. The poor problem-solving latent class out-performed children with 

MD or MLD on measures of naming speed and estimation.   

 Stable group comparisons. Obviously, latent class comparisons may yield equivocal 

findings because the results are susceptible to transitions between classes as a function of 

variations in cut-off points.  Thus, we compared children who retained (stable) their same latent 

classification as children at risk (LC=2) at both cut-off scores to those not retained.  Children that 

retained their risk status at both cut-off we considered as suffering from MLD whereas children 

who transitioned out of the risk status group at the lower cut-off score were considered children 

with MD. Table 8 shows the effect sizes comparing the children with MLD to the two other 

latent classes. Using Cohen’s (1988) criterion, large effect sizes (> .80) emerged in favor of 

average achievers (LC=1) when compared to children at risk for MLD (LC=2) on all cognitive 

measures, except naming speed and visual-WM. Large effect sizes also occurred between 

children with MLD (LC=2) and poor problem solvers (LC=3), suggesting that children with 

MLD yielded poor performance on measures related to knowledge of problem solving 

components and estimation.. However, it is important to note that several moderate effect sizes 
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(.50 to .80) occurred between children with MLD and poor problems solvers, suggesting children 

with MLD yielded poor performance on measures of STM, numeracy, and inhibition relative to 

poor problem solvers.    

However, the results do not address the question as to whether children with MLD vary 

from children with MD on cognitive measures. The previous analysis (see Table 5) showed large 

effect sizes between the two groups (transition group vs. stable group) on manifest variables 

related to reading and calculation. However, according to Cohen’s (1988) criteria, effect sizes 

between the two groups were small on measures of fluid intelligence and problem solving. 

Likewise, the magnitude of effect sizes between the two groups on the cognitive variables was 

miniscule. As shown in Table 9, means scores were higher for the transition group (children with 

MD) when compared to the stable group (children with MLD). However, according to Cohen’s 

criteria, the only variable to approach a moderate effect size (ES=.50) was performance on the 

magnitude judgment factor score. An advantage emerged for children with MD when compared 

to children with MLD on this measure. 

Discussion 

The purpose of this study was to identify whether a discrete class of children at risk for 

MD or MLD emerged within a heterogeneous sample that varied in math, reading and fluid 

intelligence. The results yielded three important findings. First, the results showed that three 

latent classes emerged (average achievers, children with math difficulties or disabilities, and poor 

problem solvers) when setting cut-off scores at or below the 25th percentile and below the 11th 

percentile on manifest variables. As expected, the latent class referred to as average achievers 

outperformed the other two latent classes on a host of measures besides math (see Appendix A). 

When the influence of the various predictors was held constant in a logistic regression analysis, 
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the cognitive variables that uniquely predicted these latent classes under both cut-off points were 

accuracy in identifying word problem solving components, estimating number values on a line, 

and span measures related to the executive component of WM. Finally, the results showed that 

poor problem solvers shared similar deficits to children with MD and MLD on several cognitive 

measures (e.g., STM, identifying word problem solving components, numeracy, executive 

component of WM), but yield advantages on measures of naming speed and estimation. Given 

these general findings, the results related to two questions that directed this study are now 

addressed. 

Question 1: Can a latent classification of children at risk for MD and MLD be identified 

within a heterogeneous sample of learners when performance in math, reading and 

intelligence measures are included in the analysis?  

            The results show that a latent class emerges related to math difficulties (MD) and math 

learning disabilities (MLD) within a heterogeneous sample of learners.  As shown in our analysis 

(see Table 3), the latent status membership probabilities for students at risk for both calculation 

and problem solving difficulties were approximately 15% of the total sample when the cut-off 

score was set at or below the 25th percentile and approximately 10% when set below the 11th 

percentile.  The results showed that the lower of incidence was due to the fact that approximately 

half of the children identified as at risk with combined low calculation and problem solving 

performance identified at the 25th percentile (N = 65) were considered less likely to be identified 

as at risk for MLD when the cut-off scores were set to the 11th percentile (N was reduced to 37). 

Thus, the question emerges as to what is gained comparing the two cut-off points beyond 

lowering the incidence of MD by using the stricter cut-off score?   
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We suggest three advantages. First, reading performance plays a major role in defining 

MD and MLD. The effect sizes for reading were clearly in favor of children who were in the 

11th to 25th percentile group when compared to children with MLD. Regardless of the degree of 

math severity, reading scores, especially comprehension, were in the below average range for 

both children with MD and children with MLD. As shown in Table 3, standard scores in passage 

comprehension were substantially lower than word identification, clearly suggesting that the 

children at risk in our sample were not proficient in reading comprehension.  However, their 

math and reading problems did not reflect general problems in aptitude.  That is, the normed 

scores for fluid intelligence measure for children with MD or MLD were in the normal range.  

Second, our results showed that a latent class of children with MD or MLD and average 

reading did not emerge. In our sampling, we did not find a separate latent class of poor readers 

independent of math problems.  Our findings are consistent with comprehensive meta-analyses 

of the published literature on math disabilities (Swanson & Jerman, 2006; Swanson et al., 2009) 

showing no clear cut differences on cognitive measures between children with math disabilities 

and children with reading disabilities (also see Swanson, 2012; Willcut et al., 2013).  

Although it has been argued that clear contrasts between children with MD and RD on 

cognitive measures do not emerge because reading performance is not controlled (e.g., see 

Jordan, 2007, also see Swanson et al., 2009 for review), our results suggest that children with 

MD or MLD experience some of the same processing difficulties as children with reading 

disabilities. As expected and consistent with other studies (e.g., Cirino et al. 2015), variations in 

cognitive performance emerged related to variations in the cut-off score used for classifying 

children. When latent classes related to a 25th percentile or 11th percentile cut-off are compared 

to a latent class of average achievers, the 11th percentile yielded more significant deficits on 
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cognitive measures than the 25th percentile cut-off (see Table 6). However, a key issue was 

whether a separable latent class of children with math problems would emerge without reading 

problems. No doubt, we could have created a cluster of children with only math problems (i.e., 

via a cluster analysis), and compared this group on measures external to the classification (e.g., 

reading). However, this procedure would be limited because we could not determine the 

probability that such a latent class would emerge when reading was considered as part of the 

sampling process (e.g., Hagenaars & McCutcheon, 2009). The main difference between LCA 

and other clustering algorithms is that LCA offers a "model-based clustering" approach that 

derives clusters using a probabilistic model that describes the distribution of data. So instead of 

finding clusters with a distance measure, a model describes distribution of data based on the 

probabilities that certain cases are members of certain latent classes. LCA assumes an underlying 

latent variable gives rise to the classes, whereas the cluster analysis is an empirical description of 

correlated attributes from a clustering algorithm. LCA is considered methodologically superior 

given that it has a formal chi-square significance test, which the cluster analysis does not.  

    Finally, the results show that math problem solving difficulties are independent of 

calculation difficulties. Our results indicated that a large segment of the sample shows 

difficulties in math problem solving when using the 25th percentile (53% of the total sample) 

and 11th percentile as cut-off points (55% of the sample). This finding is consistent with the 

National Mathematics Advisory Panel (2008), and to PISA (Programme for International Student 

Assessment; OCED 2012a, b), showing that U.S. children show substantial weaknesses when 

asked to solve math word problems relative to other achievement domains and in comparison to 

other industrialized countries.  In addition, longitudinal studies (e.g., Swanson et al., 2008) have 

shown that even when calculation and reading skills are at grade level, difficulties in math word 
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problem solving are persistent across the elementary school years. Also finding a latent class of 

children at risk for MLD as well as a latent class of poor problem solvers fits within current 

categories of learning disabilities.  These categories include specific disabilities in calculation 

and mathematical problem solving [see IDEA reauthorization, 2004, Sec. 300.8(c)(10)].  

Although the majority of classification research on MLD has focused on calculation deficits 

(Andersson, 2010; Geary 2011; Gersten et al., 2009; Swanson & Jerman, 2006), we found a 

latent class group showing math classification related to poor problem solving separately from 

problems in calculation.  

Question 2: Do specific cognitive measures predict latent class membership?  

  In terms of cognitive models that predict latent class status, three were considered. As 

reviewed in the introduction, these models considered whether STM storage (phonological loop), 

domain specific knowledge (components of word problems, magnitude judgments, and line 

estimation) and executive processing played a major role in predictions of latent class status.  

The results suggested that none of the above models in isolation provided a parsimonious 

account of the findings. The largest beta-weight loadings from the full logistic regression model 

were measures of domain specific knowledge (word problem solving components and 

estimation) and the executive component of WM.  These findings fit the literature attributing 

MD and MLD to deficits in magnitude representation (e.g., Fuch et al, 2012;  Martin et al., 2013; 

Geary, 2011 ), accessing specific knowledge related to  word problem structure (e.g., Swanson & 

Beebe-Frankenberg, 2004 ) and the executive component of working memory (e.g., Lee et al., 

2004)   The domain specific knowledge of problem solving components played a significant role 

in the predictions of latent class, which is consistent with other studies identifying children at 

risk for math problems (Swanson et al., 1993; Swanson & Beebe-Frankenberger, 2003).  In this 
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study, problem solving components tapped into children's recognition of question, number 

assignment, goals, and irrelevant information propositions within word problems. The findings 

related to estimation also fit within the current literature on identify children with serious math 

difficulties (e.g., Geary, 2013). It has been argued the core of math abilities may be the ability to 

develop a mental number line on the assumption that numbers are arranged spatially or on a 

continuum. An adequate magnitude representation allows for a rejection of implausible answers 

and therefore helps children compute correct answers. The high loadings related to the executive 

component of WM were an expected finding.  This finding is consistent with previous studies 

suggesting that the executive component of WM plays a major role in predicting math 

proficiency (e.g., Swanson & Beebe-Frankenberger, 2004). 

Implications 

There are two implications related to our findings.  First, within a heterogeneous sample 

of third grade learners, an identifiable group of children with MD was identified at the 25th 

percentile cut-off point. Although the 25th percentile has been used as a common "a priori cut-

off point" to identify children at risk the issue as to whether the cut-off score yields a latent class 

of children not proficient in math and/or a discrete identifiable group has not been established.  

Thus, this study contributes to the emerging literature that children with MD as well as MLD 

represent an identifiable group. The results provide empirical support for the commonly used 

25th percentile as an a priori cut-off score for determining risk. That is, latent class analyses 

showed a discrete group of children emerged as at risk for MD at this cut-off point.  

Second, the probability of finding a latent class of children with MD or MLD completely 

independent of reading problems may be quite low. Obviously, this implication is limited to our 

data set and may not generalize to other samples. However, our findings are consistent with a 
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number of other studies finding the math difficulties are comorbid with reading difficulties and 

therefore share similar processing deficits (e.g., Hecht et al, 2001; Jordon et al., 2003). For 

example, Swanson and Jerman’s (2006) meta-analysis of the published literature on MLD found 

no clear cut differences between children with arithmetic and reading difficulties on cognitive 

measures. Although the results of the meta-analysis suggested that effect sizes were in favor of 

children with reading disabilities (RD) when compared to children with MD across several 

measures, the substantive advantages for children with RD were isolated to measures of naming 

speed and visual-spatial WM. These overall findings were problematic because several studies 

have suggested that children with RD can be separated from children with MD (e.g., Jordan, 

Hanich, & Kaplan, 2003). No doubt, the poor differentiation between children with MD and 

those with reading difficulties may have occurred because the studies included samples with 

poor arithmetic skills accompanied by relatively low reading skills. Therefore, it was difficult to 

determine whether results attributed to MD were in fact due to arithmetic difficulties or whether 

they were outcomes related to generally poor academic skills that shared the same process that 

incorporated both reading and math skills. 

 Thus, there is a question as to whether children with MD or MLD suffer from the same 

processes associated with RD. For example, Jordan (2007) in her synthesis of the literature 

argued that authors have incorrectly assumed that MLD is related to language, which in turn 

suggests some commonality between math and reading.  Other studies (e.g., Landerl, Bevan, & 

Butterworth, 2004) have suggested that all children with MD, with or without reading problems, 

showed general deficits in number processing. Other authors also find evidence (e.g., Fuchs et 

al., 2008) that problem solving rather than number and arithmetic skills differentiates children 
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with MD from children with MD+RD. Thus, what may differentiate the two disabilities is the 

ability to solve complex word problems (e.g., Jordan et al., 2003).  

As shown in this study, the ability to solve math word problems yields a discrete latent 

class g, in which the majority children in this discrete class yield calculation and reading scores 

in the average range (see Table 4).  Thus, children with difficulties in math problem solving 

represent a distinct category (i.e., reading and calculation skills play a less important role) of risk 

that can be separated from children with a combination of reading and/or calculation deficits.  

Although the poor problem solving latent class shared similar cognitive deficits as children with 

MD or MLD relative to average achievers ( e.g., STM,  Knowledge of problem solving 

components, numeracy, executive component of WM), their skills related to naming speed and 

estimation supersede those of children with MD or MLD.  

How is it that a poor math problem solver does not necessarily suffer deficiencies in 

reading or calculation? We raise that question since it is commonly assumed that poor 

mathematical word problem solving can be linked to reading proficiency (e.g., Swanson et al., 

1993). This is because mathematical word problems are a form of text and the decoding and 

comprehension of text draws upon the phonological system. However, understanding 

mathematical word problems also involves a complex interaction of text comprehension and 

mathematical processes that are related to activities attributed to the WM system. There are some 

studies that clearly show that reading or reading related processes do not directly mediate the 

influence of WM on problem solving. For example, an earlier study by Swanson and Sachse-Lee 

(2001) found that for children with MLD and chronologically age-matched peers that 

phonological processing, verbal WM and visual WM contributed unique variance to word 

problem solution accuracy. Thus, they did not find support for the assumption that reading ability 



42 
LATENT CLASS ANALYSIS OF CHILDREN 

mediated the role of WM in solution accuracy. In a follow-up study, Swanson (2004) compared 

two age groups (7 and 11 years old) on WM and problem-solving measures. This study found 

that regardless of age, WM predicted solution accuracy in word problems independent of 

measures of problem representation, knowledge of operations and algorithms, phonological 

processing, fluid intelligence, reading, and math. Further, the results suggested that a general or 

executive system underlies age-related improvements in word problem-solving accuracy. 

Further, Swanson (2004) found that measures of LTM (such as calculation and knowledge of 

algorithms) entered into the regression analysis did not eliminate the contribution of WM to 

problem solving accuracy, a finding similar to ours. We did find that the retrievability of 

contents in LTM, propositions within word problems outlined by Mayer and Hegarty (1996) and 

estimation contributed unique variance to problem solving accuracy.  In general, our findings are 

consistent with models of high-order processing that suggest that WM resources activate relevant 

knowledge from LTM (Baddeley & Logie, 1999; Ericsson & Kintsch, 1995), as well as include a 

subsystem that controls and regulates the cognitive system (Baddeley, 1986). 

Limitations 

There are at least four limitations to this study.  First, although we used cut-off points 

identified in the literature as important in identifying children at risk for MD or MLD, we have 

not shown that the identification of latent classes validates a specific cut-off point.  Rather the 

results suggest the measures were able to identify subgroups to the cut-off to which they were 

applied. That is, the same or other latent classes may have emerged with other cut-off scores. 

Second, we did not establish the stability of math performance across multiple grades.  Although 

we used a variety of normed referenced measures to capture consistency in low math 

performance, performance across multiple grades was not assessed.  Third, we have an absence 
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of intervention information.  Thus, our study is limited to discussing the risk classification within 

a heterogeneous sample and not whether a particular intervention program would later influence 

the classification of children at risk. 

Finally, some reviewers raised questions about the power of our analyses on our 

classification measures. LCA has not at present provided procedures for conducting a power 

analysis.  For example, the small sample size for the “MLD” group may have potentially yielded 

more identifiable items in the areas other than reading with a larger sample.  In response to the 

sample size, Dziak Lanza, and Tan (2014) analyzed the predictive power of the Bootstrap 

likelihood ratio test (BLRT) in LCA analysis using a number of Monte-Carlo simulations.  For 

example, they found that the simulated power for detecting a three-class over a two-class model 

at .90 (alpha = .05) would require an N of 150 (see Table 3, p. 537).  Since our sample exceeded 

N = 150, we assume the BLRT procedure was adequately powered (see Table 2) to detect a 

three-class model from a four-class model. However, as useful as LCA is to determine 

meaningful patterns within the data, latent class assignment is not a definitive process.  Our over-

reliance on model fit compared to substantive theory can produce differing results.  Thus, due to 

the exploratory nature of the current work and definite sample size limitations for a parameter 

intensive model, we take a cautionary approach to modeling math problems in third graders.  

Summary 

In summary, this study yielded three important findings.  First, latent classifications of 

children at risk for MD and MLD could be identified among a sample of grade 3 children.  The 

results provide support for the notion that children at risk for serious math difficulties within a 

heterogeneous sample reflect two discrete classes: those with combined calculation, problem 

solving, and reading comprehension difficulties and those with math problem solving 
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difficulties.  Second, approximately half the children who are initially identified as at risk for 

MD at the 25th percentile are less likely to be at risk when setting the cut-off score to the 11th 

percentile.  Finally, regardless of the two cut-off score points, cognitive measures related to 

problem solving processes, estimation and the executive component of WM were the only 

cognitive measures that consistently predicted latent class status.  Overall, the results support the 

notion that children at risk for MD or MLD reflect a latent class group that can be separated from 

a heterogeneous sample of children who vary in math, reading and fluid intelligence.  

  



45 
LATENT CLASS ANALYSIS OF CHILDREN 

 

References 

Andersson, U. (2007). The contribution of working memory to children's mathematical word 

problem solving. Applied Cognitive Psychology, 21(9), 1201-1216. doi:10.1002/acp.1317 

Ashkenazi, S., Rosenberg-Lee, M., Metcalfe, A. W. S., Swigart, A. G., & Menon, V. (2013). 

Visuo–spatial working memory is an important source of domain-general vulnerability in 

the development of arithmetic cognition.Neuropsychologia, 51(11), 2305-2317. 

doi:/10.1016/j.neuropsychologia.2013.06.031 

Baddeley, A. D. (1996). Exploring the central executive. Quarterly Journal of  Experimental 

Psychology, 49(A), 5-28. doi:10.1080/713755608 

Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of 

Psychology, 63, 1-29. doi:10.1146/annurev 

Baddeley, A., Gathercole, S., & Papagno, C. (1998). The phonological loop as a language 

learning device. Psychological Review, 105, 158-173. doi:10.1037//0033-295X.105.1.158 

Badian, N. A. (1999). Persistent arithmetic, reading, or arithmetic and reading disability. Annals  

 of Dyslexia, 49, 45-70. doi:10.1007/s11881-999-0019-8 

Bailey, D. H., Watts, T. W., Littlefield, A. K., & Geary, D. C. (2014). State and trait effects on 

individual differences in children’s mathematical development. Psychological Science, 

25(11), 2017-2026. doi:10.1177/0956797614547539 

Barbaresi, W.J., Katusic, S.K., Colligan, R.C., Weaver, A.L., & Jacobson, S.J. (2005). Math 

learning disorder: Incidence in a population-based birth cohort, 1976-1982, Rochester, 

Minn. Ambulatory Pediatrics, 5, 281-289. doi: 10.1367/a04-209r.1  

https://post.ucr.edu/owa/redir.aspx?C=RIjf2L3xvUutOalJcpdFj5WFBVdc0tEIzYbH-d1vIcr3slSOnOctKjcBWBl3BCMGd-w3mDH_3hU.&URL=http%3a%2f%2fdx.doi.org%2f10.1002%2facp.1317
https://post.ucr.edu/owa/redir.aspx?C=ujon_djqdEqhyU6d53bUBk3QTCjhzNEIL_CS6-HX8Toz8p8dBQZkMCupqpztUVr76rPuh31FNxI.&URL=http%3a%2f%2fdx.doi.org%2f10.1016%2fj.neuropsychologia.2013.06.031
http://dx.doi.org/10.1007/s11881-999-0019-8
http://dx.doi.org/10.1177/0956797614547539
http://dx.doi.org/10.1367/a04-209r.1


46 
LATENT CLASS ANALYSIS OF CHILDREN 

Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief 

understanding to emerging math and literacy ability in kindergarten. Child Development, 

78(2), 647-663. doi:10.1111/j.1467-8624.2007.01019.x 

Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic 

learning. Child Development, 79(4), 1016-1031. doi:/10.1111/j.1467-8624.2008.01173.x 

Branum-Martin, L., Fletcher, J. M., & Stuebing, K. K. (2013). Classification and identification of 

reading and math disabilities: The special case of comorbidity. Journal of Learning 

Disabilities, 46(6), 490-499. doi:10.1177/0022219412468767 

Brown, V.L., Cronin, M.E., & McEntire, E. (1994). Test of Mathematical Ability, Austin, TX: 

PRO-ED. 

Brown, V.L., Hammill, D., & Weiderholt, L. (1995). Test of Reading Comprehension, Austin, 

TX, PRO-ED.    

Bull, R., Johnston, R. S., & Roy, J. A. (1999). Exploring the roles of the visual-spatial sketch pad 

and central executive in children’s arithmetical skills: Views from cognition and 

developmental neuropsychology. Developmental Neuropsychology, 15, 421-442. 

doi:10.1080/87565649909540759 

Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children's mathematics 

ability: Inhibition, switching, and working memory. Developmental Neuropsychology, 

19(3), 273-293. doi:10.1207/S15326942DN1903_3 

Censabella, S., & Noel, M. P. (2008). The inhibition capacities of children with mathematical 

disabilities. Child Neuropsychology, 14(1), 1-20. doi:10.1080/09297040601052318 

http://dx.doi.org/10.1111/j.1467-8624.2007.01019.x
https://post.ucr.edu/owa/redir.aspx?C=ujon_djqdEqhyU6d53bUBk3QTCjhzNEIL_CS6-HX8Toz8p8dBQZkMCupqpztUVr76rPuh31FNxI.&URL=http%3a%2f%2fdx.doi.org%2f10.1111%2fj.1467-8624.2008.01173.x
http://dx.doi.org/10.1207/S15326942DN1903_3


47 
LATENT CLASS ANALYSIS OF CHILDREN 

Chew, C. S., Forte, J. D., & Reeve, R. A. (2016). Cognitive factors affecting children’s 

nonsymbolic and symbolic magnitude judgment abilities: A latent profile analysis. 

Journal of Experimental Child Psychology, 152, 173-191. doi:10.1016/j.jecp.2016.07.001 

Cirino, P. T., & Berch, D. B. (2010). Introduction: Perspectives on math difficulty and disability 

in children. Learning and Individual Differences, 20(2), 61-62. doi: 

10.1016/j.lindif.2009.10.007 

Cirino, P. T., Fuchs, L. S., Elias, J. T., Powell, S. R., & Schumacher, R. F. (2015). Cognitive and mathematical 

profiles for different forms of learning difficulties. Journal of Learning Disabilities, 48(2), 156-175. 

doi:10.1177/0022219413494239 

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale,NJ: 

L. Erlbaum Associates. 

Collins, L. M., Hyatt, S. L., & Graham, J. W. (2000). Latent transition analysis as a way of 

testing models of stage-sequential change in longitudinal data. In T. D. Little, K. U. 

Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multilevel data: Practical 

issues, applied approaches and specific examples (pp. 147-161). New Jersey: Lawrence 

Erlbaum Associates. 

Collins, L. M., & Lanza, S. T. (2010). Latent class and latent transition analysis with 

applications in the social, behavioral, and health sciences. New Jersey: Wiley and Sons. 

Connolly, A. J. (1998). KeyMath Revised-normative update. Circle Pines, MN: American 

Guidance. 

Cowan, R., & Powell, D. (2014). The contributions of domain-general and numerical factors to 

third-grade arithmetic skills and mathematical learning disability. Journal of Educational 

Psychology, 106(1), 214-229. doi:10.1037/a0034097  

http://dx.doi.org/10.1016/j.jecp.2016.07.001
http://dx.doi.org/10.1177/0022219413494239


48 
LATENT CLASS ANALYSIS OF CHILDREN 

Crain, S., Shankweiler, D., Macaruso, P., & Bar-Shalom, E. (1990). Working memory and 

comprehension of spoken sentences: Investigations of children with reading disorder. 

Neuropsychological impairments of short-term memory. (pp. 477-508) Cambridge 

University Press, New York, NY. doi:10.1017/CBO9780511665547.023 

 

D'Amico, A., & Passolunghi, M. C. (2009). Naming speed and effortful and automatic inhibition 

in children with arithmetic learning disabilities. Learning and Individual Differences, 

19(2), 170-180. doi:10.1016/j.lindif.2009.01.001 

Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and 

reading. Journal of Verbal Learning and Verbal Behavior, 19(4), 450-466. 

doi:10.1016/S0022-5371(80)90312-6 

David, C. V. (2012). Working memory deficits in math learning difficulties: A meta-

analysis. International Journal of Developmental Disabilities, 58(2), 67-84. 

http://search.proquest.com/docview/1437965193?accountid=14521 

Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number 

magnitude. Journal of Experimental Psychology: General, 122(3), 371-396. 

doi:10.1037/0096-3445.122.3.371 

Desoete, A., Roeyers, H., & De Clercq, A. (2004). Children with mathematics learning 

disabilities in Belgium. Journal of Learning Disabilities, 37(1), 50-61. doi: 

10.1177/00222194040370010601  

 

http://dx.doi.org/10.1017/CBO9780511665547.023
http://dx.doi.org/10.1016/j.lindif.2009.01.001
https://post.ucr.edu/owa/redir.aspx?C=ujon_djqdEqhyU6d53bUBk3QTCjhzNEIL_CS6-HX8Toz8p8dBQZkMCupqpztUVr76rPuh31FNxI.&URL=http%3a%2f%2fsearch.proquest.com%2fdocview%2f1437965193%3faccountid%3d14521
http://dx.doi.org/10.1037/0096-3445.122.3.371
http://dx.doi.org/10.1177/00222194040370010601


49 
LATENT CLASS ANALYSIS OF CHILDREN 

Dziak, J. J., Lanza, S. T., & Tan, X. (2014). Effect size, statistical power, and sample size 

requirements for bootstrap likelihood ratio test in latent class analysis. Structural 

Equation Modeling, 21(4), 534-552. doi:10.1080/10705511.2014.919819 

Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. (1999). Working memory, 

short-term memory, and general fluid intelligence: A latent variable approach. Journal of 

Experimental Psychology: General, 128, 309-331. doi:10.1037//0096-3445.128.3.309  

Ericsson, K.A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 

102(2), 211-245.  doi:10.1037/0033-295X.102.2.211 

Fletcher, J. M., Espy, K. A., Francis, D. J., Davidson, K. C., Rourke, B. P., & Shaywitz, S. E. 

(1989). Comparisons of cutoff and regression-based definitions of reading disabilities. 

Journal of Learning Disabilities, 22(6), 334-338. doi:10.1177/002221948902200603 

Fuchs, L. S., Compton, D. L., Fuchs, D., Powell, S. R., Schumacher, R. F., Hamlett, C. L., & 

Vukovic, R. K. (2012). Contributions of domain-general cognitive resources and different 

forms of arithmetic development to pre-algebraic knowledge. Developmental Psychology, 

48(5), 1315-1326. doi:10.1037/a0027475  

Fuchs, L. S., Fuchs, D., Compton, D. L., Powell, S. R., Seethaler, P. M., Capizzi, A. M., 

Schatschneider, C., & Fletcher, J. M. (2006). The cognitive correlates of third-grade skill 

in arithmetic, algorithmic computation, and arithmetic word problems. Journal of 

Educational Psychology, 98(1), 29-43.doi:10.1037/0022-0663.98.1.29 

Fuchs, L. S., Fuchs, D., Stuebing, K., Fletcher, J. M., Hamlett, C. L., & Lambert, W. (2008). 

Problem solving and computational skill: Are they shared or distinct aspects of 

mathematical cognition? Journal of Educational Psychology, 100(1), 30-47. 

doi:10.1037/0022-0663.100.1.30 



50 
LATENT CLASS ANALYSIS OF CHILDREN 

 Fung, W. W., Swanson, H. L., & Orosco, M. J. (2014). Influence of reading and calculation on 

children at risk and not at risk for word problem solving: Is math motivation a mediator? 

Learning and Individual Differences, 36, 84-91. doi:10.1016/j.lindif.2014.10.011 

Geary, D. C. (1993). Mathematical disabilities: Cognitive, neuropsychological, and genetic 

components. Psychological Bulletin, 114(2), 345-362. doi:10.1037/0033-2909.114.2.345 

Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year 

longitudinal study. Developmental Psychology, 47(6), 1539-1552. doi:10.1037/a0025510 

Geary, D. C. (2013). Learning disabilities in mathematics: Recent advances. In H. L. Swanson,  

K. Harris, & S. Graham (2nd Eds.). Handbook of learning disabilities (pp. 239-256). NY: 

Guilford. 

Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive 

mechanisms underlying achievement deficits in children with mathematical learning 

disability. Child Development, 78(4), 1343-1359. doi:10.1111/j.1467-8624.2007.01069.x 

Geary, D. C., Hoard, M. K., & Nugent, L. (2012). Independent contributions of the central 

executive, intelligence, and in-class attentive behavior to developmental change in the 

strategies used to solve addition problems. Journal of Experimental Child Psychology, 

113(1), 49-65. doi:10.1016/j.jecp.2012.03.003 

Geary, D. C., Hoard, M. K., Nugent, L., & Bailey, D. H. (2012). Mathematical cognition deficits 

in children with learning disabilities and persistent low achievement: A five-year 

prospective study. Journal of Educational Psychology, 104(1), 206-223. 

doi:10.1037/a0025398 

Gersten, R., Chard, D.  J., Jayanthi, M., Baker, S.  K., Morphy, P., & Flojo, J. (2009). 

Mathematics instruction for students with learning disabilities: A meta-analysis of 

http://dx.doi.org/10.1016/j.lindif.2014.10.011
http://dx.doi.org/10.1037/0033-2909.114.2.345
http://dx.doi.org/10.1111/j.1467-8624.2007.01069.x
http://dx.doi.org/10.1016/j.jecp.2012.03.003
http://dx.doi.org/10.1037/a0025398


51 
LATENT CLASS ANALYSIS OF CHILDREN 

instructional components. Review of Educational Research, 79(3), 1202-1242. 

doi:10.3102/0034654309334431 

Hagenaars J.A. & McCutcheon, A.L. (2009). Applied Latent Class Analysis. Cambridge 

University Press. 

Hecht, S. A., Torgesen, J. K., Wagner, R. K., & Rashotte, C. A. (2001). The relations between 

phonological processing abilities and emerging individual differences in mathematical 

computational skills: A longitudinal study from second to fifth grades. Journal of 

Experimental Child Psychology, 79(2), 192-227. doi:10.1006/jecp.2000.2586 

Hegarty, M., Mayer, R. E., & Green, C. E. (1992). Comprehension of arithmetic word problems: 

Evidence from students' eye fixations. Journal of Educational Psychology, 84(1), 76-84. 

doi:10.1037/0022-0663.84.1.76 

Hegarty, M., Mayer, R. E., & Monk, C. A. (1995). Comprehension of arithmetic word problems: 

A comparison of successful and unsuccessful problem solvers. Journal of Educational 

Psychology, 87(1), 18-32. doi:10.1037/0022-0663.87.1.18 

Henry, L.A. & Millar, S. (1993). Why does memory span improve with age? A review of the 

evidence for two current hypotheses. European Journal of Cognitive Psychology, 5(3), 

241-287. doi:10.1080/09541449308520119 

Hox, J. (2010). Multilevel Analysis: Techniques and Applications (2nd Ed.) New York, 

NY:Routledge/Taylor & Francis. 

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: 

Conventional criteria versus new alternatives. Structural Equation Modeling: A 

Multidisciplinary Journal, 6(1), 1-55. doi:10.1080/10705519909540118 

http://dx.doi.org/10.1006/jecp.2000.2586
http://dx.doi.org/10.1037/0022-0663.84.1.76
http://dx.doi.org/10.1037/0022-0663.87.1.18


52 
LATENT CLASS ANALYSIS OF CHILDREN 

Hresko, W., Schlieve, P. L., Herron, S.R., Sawain, C., & Sherbenou, R. (2003). Comprehensive 

Math Abilities Test. Austin, TX: PRO-ED. 

Jahanshahi, M., Saleem, T., Ho, A. K., Dirnberger, G., & Fuller, R. (2006). Random number 

generation as an index of controlled processing. Neuropsychology, 20(4), 391-399. 

doi:10.1037/0894-4105.20.4.391 

Jordan, N. C. (2007). Do words count? connections between mathematics and reading 

difficulties. In D. B. Berch, & M. M. M. Mazzocco (Eds.), Why is math so hard for some 

children? The nature and origins of mathematical learning difficulties and disabilities. 

(pp. 107-120) Paul H Brookes Publishing, Baltimore, MD. Retrieved from 

http://search.proquest.com/docview/621662344?accountid=14521 

Jordan, N. C., & Hanich, L. B. (2000). Mathematical thinking in second-grade children with 

different forms of LD. Journal of Learning Disabilities, 33(6), 567-578. 

doi:10.1177/002221940003300605 

Jordan, N. C., & Hanich, L. B. (2003). Characteristics of children with moderate mathematics 

deficiencies: A longitudinal perspective. Learning Disabilities Research & Practice, 

18(4), 213-221. doi:10.1111/1540-5826.00076 

Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). Arithmetic fact mastery in young children: A 

longitudinal investigation. Journal of Experimental Child Psychology, 85(2), 103-119. 

doi:10.1016/S0022-0965(03)00032-8 

Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). A longitudinal study of mathematical competencies in 

children with specific mathematics difficulties versus children with comorbid mathematics and 

reading difficulties. Child Development, 74(3), 834-850. doi:10.1111/1467-8624.00571 

Jordon, N. C., Kaplan, D., & Hanich, L. B. (2002). Achievement growth in children with learning difficulties 

https://post.ucr.edu/owa/redir.aspx?C=RIjf2L3xvUutOalJcpdFj5WFBVdc0tEIzYbH-d1vIcr3slSOnOctKjcBWBl3BCMGd-w3mDH_3hU.&URL=http%3a%2f%2fdx.doi.org%2f10.1037%2f0894-4105.20.4.391
http://search.proquest.com/docview/621662344?accountid=14521
http://dx.doi.org/10.1177/002221940003300605
http://dx.doi.org/10.1111/1540-5826.00076
http://dx.doi.org/10.1016/S0022-0965(03)00032-8
http://dx.doi.org/10.1111/1467-8624.00571


53 
LATENT CLASS ANALYSIS OF CHILDREN 

in mathematics: Findings of a two-year longitudinal study. Journal of Educational Psychology, 94(3), 

586-597. doi:10.1037/0022-0663.94.3.586 

Kline, R.B.(2011). Principles and Practice of Structural Education Modeling (3rd ed). 

NY:Guilford.   

Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. M. (2014). Involvement of working 

memory in longitudinal development of number–magnitude skills. Infant and Child 

Development, 23(1), 36-50. doi:/10.1002/icd.1834 

Lanza, S. T., Dziak, J. J., Huang, L., Xu, S., & Collins, L. M. (2011). Proc LCA and Proc LTA 

users’ guide (Version 1.2.7). University Park: The Methodology Center, Penn State. 

Retrieved from: http://methodology.psu.edu. 

Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic 

numerical capacities: A study of 8-9-year-old students. Cognition, 93(2), 99-125. 

doi:10.1016/j.cognition.2003.11.004 

Landerl, K., & Moll, K. (2010). Comorbidity of learning disorders: Prevalence and familial 

transmission. Journal of Child Psychology and Psychiatry, 51(3), 287-294. 

doi:10.1111/j.1469-7610.2009.02164.x 

Lauro, L. J. R., Reis, J., Cohen, L. G., Cecchetto, C., & Papagno, C. (2010). A case for the 

involvement of phonological loop in sentence comprehension. Neuropsychologia, 48(14), 

4003-4011. doi:10.1016/j.neuropsychologia.2010.10.019 

Lee, K., Ng, S.F., Ng, E.L., & Lim, Z.Y. (2004). Working memory and literacy as predictors of 

performance on algebraic word problems. Journal of Experimental Child Psychology, 

89(2), 140-158. doi:10.1016/j.jecp.2004.07.001 

Logie, R. H., Gilhooly, K. J., & Wynn, V. (1994). Counting on working memory in arithmetic 

problem solving. Memory & Cognition, 22(4), 395-410. 

http://dx.doi.org/10.1037/0022-0663.94.3.586
https://post.ucr.edu/owa/redir.aspx?C=ujon_djqdEqhyU6d53bUBk3QTCjhzNEIL_CS6-HX8Toz8p8dBQZkMCupqpztUVr76rPuh31FNxI.&URL=http%3a%2f%2fdx.doi.org%2f10.1002%2ficd.1834
http://methodology.psu.edu/
http://dx.doi.org/10.1016/j.cognition.2003.11.004
http://dx.doi.org/10.1111/j.1469-7610.2009.02164.x
http://dx.doi.org/10.1016/j.neuropsychologia.2010.10.019


54 
LATENT CLASS ANALYSIS OF CHILDREN 

Lubke, G. H., & Muthén, B. (2005). Investigating population heterogeneity with factor mixture 

models. Psychological Methods, 10(1), 21-39. doi:10.1037/1082-989X.10.1.21 

Maas, C. J., & Hox, J. (2005). Sufficient sample sizes for multilevel modeling. Methodology: 

European Journal of Research Methods for the Behavioral and Social Sciences, 1(3), 86-

92. doi:10.1027/1614-2241.1.3.86 

Majerus, S., & Lorent, J. (2009). Is phonological short-term memory related to phonological 

analysis stages in auditory sentence processing? Journal of Cognitive Psychology, 21(8), 

1200-1225. doi:10.1080/09541440902733216 

Mammarella, I. C., Lucangeli, D., & Cornoldi, C. (2010). Spatial working memory and 

arithmetic deficits in children with nonverbal learning difficulties. Journal of Learning 

Disabilities.43(5), 455-468. doi:10.1177/0022219409355482 

Marcoulides, G. A., Gottfried, A. E., Gottfried, A. W., & Oliver, P. H. (2008). A latent transition 

analysis of academic intrinsic motivation from childhood through adolescence. 

Educational Research and Evaluation, 14(5), 411-427. doi:10.1080/13803610802337665 

Martin, R. B., Cirino, P. T., Barnes, M. A., Ewing-Cobbs, L., Fuchs, L. S., Stuebing, K. K., & 

Fletcher, J. M. (2013). Prediction and stability of mathematics skill and difficulty. 

Journal of Learning Disabilities, 46(5), 428-443. doi:10.1177/0022219411436214 

Masyn, K. (2013). Latent class analysis and finite mixture modeling. In T. Little 

(Ed.), The Oxford handbook of quantitative methods in psychology (Vol. 2, pp. 375-393). 

Oxford, UK: Oxford University Press.  

Mayer, R. E., & Hegarty, M. (1996). The process of understanding mathematical problem 

solving. In R.J. Sternberg & T. Ben-Zeev (Eds.). The Nature of Mathematical Thinking 

(pp.29-54). Mahwah, NJ: Erlbaum. 

file:///F:/../../dguzman-orth/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/AppData/Roaming/Microsoft/Word/10.1037/1082-989X.10.1.21
http://dx.doi.org/10.1080/09541440902733216


55 
LATENT CLASS ANALYSIS OF CHILDREN 

Mazzocco, M. M. M. (2007). Defining and differentiating mathematical learning disabilities and 

difficulties. In D. B. Berch, & M. M. M. Mazzocco (Eds.), Why is math so hard for some 

children? the nature and origins of mathematical learning difficulties and disabilities; 

why is math so hard for some children? the nature and origins of mathematical learning 

difficulties and disabilities (pp. 29-47, Chapter xxviii, 457 Pages) Paul H Brookes 

Publishing, Baltimore, MD.  

Mazzocco, M. M. M., & Devlin, K. T. (2008). Parts and 'holes': Gaps in rational number sense 

among children with vs. without mathematical learning disabilities. Developmental 

Science, 11(5), 681-691. doi:10.1111/j.1467-7687.2008.00717.x 

Mazzocco, M. M. M., Devlin, K. T., & McKenney, S. J. (2008). Is it a fact? timed arithmetic 

performance of children with mathematical learning disabilities (MLD) varies as a 

function of how MLD is defined. Developmental Neuropsychology, 33(3), 318-344. 

doi:10.1080/87565640801982403 

Mazzocco, M.M.M., Feigenson, L., & Halberda, J. (2011).  Impaired acuity of the approximate 

number system underlies mathematical learning disability (dyscalculia). Child 

Development, 82(4), 1224-1237. 

 

Mazzocco, M. M. M., & Grimm, K. J. (2013). Growth in rapid automatized naming from grades 

K to 8 in children with math or reading disabilities. Journal of Learning Disabilities, 

46(6), 517-533. doi:10.1177/0022219413477475 

Mazzocco, M. M. M., Myers, G. F., Lewis, K. E., Hanich, L. B., & Murphy, M. M. (2013). 

Limited knowledge of fraction representations differentiates middle school students with 

mathematics learning disability (dyscalculia) versus low mathematics achievement. 

http://dx.doi.org/10.1111/j.1467-7687.2008.00717.x
http://dx.doi.org/10.1080/87565640801982403
http://dx.doi.org/10.1177/0022219413477475


56 
LATENT CLASS ANALYSIS OF CHILDREN 

Journal of Experimental Child Psychology, 115(2), 371-387. 

doi:10.1016/j.jecp.2013.01.005 

Mazzocco, M. M., & Thompson, R. E. (2005). Kindergarten predictors of math learning 

disability. Learning Disabilities Research & Practice, 20(3), 142-155. 

doi:10.1111/j.1540-5826.2005.00129.x 

McDougall, S., Hulme, C., Ellis, A., & Monk, A. (1994). Learning to read: The role of short-

term memory and phonological skills. Journal of Experimental Child Psychology, 58(1), 

112-133. doi:10.1006/jecp.1994.1028 

Meyer, M. L., Salimpoor, V. N., Wu, S. S., Geary, D. C., & Menon, V. (2010). Differential 

contribution of specific working memory components to mathematics achievement in 2nd 

and 3rd graders. Learning and Individual Differences, 20(2), 101-109. 

doi:10.1016/j.lindif.2009.08.004 

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., & Howerter, A. (2000). The unity 

and diversity of executive functions and their contributions to complex “frontal lobe” 

tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100. 

doi:10.1006/cogp.1999.0734 

Murphy, M.M., Mazzocco, M.M.M., Hanich, L.B., & Early, M.C. (2007).  Cognitive 

characteristics of children with mathematics learning disability (MLD) vary as a function 

of the cutoff criterion used to define MLD.  Journal of Learning Disabilities, 40(5), 458-

478.- 

Muthén, B. (2006). The potential of growth mixture modeling. Infant and Child Development, 

15(6), 623-625. doi:10.1002/icd.482 

http://dx.doi.org/10.1016/j.jecp.2013.01.005
http://dx.doi.org/10.1111/j.1540-5826.2005.00129.x
file:///F:/dguzman-orth/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/AppData/Roaming/Microsoft/Word/10.1002/icd.482


57 
LATENT CLASS ANALYSIS OF CHILDREN 

Muthén, L. K., & Muthén, B. O. (1998-2010). Mplus User’s Guide (6th ed.). Los Angeles, CA: 

Muthén & Muthén. Retrieved from: 

https://www.statmodel.com/download/usersguide/Mplus%20Users%20Guide%20v6.pdf  

National Center for Education Statistics (2011). Mathematics achievement of fourth- and eighth-

graders in 2011. Retrieved September, 2014, from 

http://nces.ed.gov/timss/results11_math11.asp 

National Mathematics Advisory Panel (2008). The final report of the National Mathematics 

Advisory Panel. U.S. Department of Education. Retrieved September, 2014, from 

http://www2.ed.gov/about/bdscomm/list/mathpanel/report/final-report.pdf 

Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in 

latent class analysis and growth mixture modeling: A monte carlo simulation study. 

Structural Equation Modeling, 14(4), 535-569. doi:10.1080/10705510701575396  

OECD (2012a). Programme for International Student assessment (PISA): Results from PISA 

2012. Retrieved September, 2014, from http://www.oecd.org/pisa/keyfindings/PISA-

2012-results-US.pdf 

OECD (2012b). PISA 2012 results in focus. Retrieved September, 2014, from 

http://www.oecd.org/pisa/keyfindings/pisa-2012-results-overview.pdf 

Passolunghi, M. C., & Pazzaglia, F. (2004). Individual differences in memory updating in 

relation to arithmetic problem solving. Learning and Individual Differences, 14(4), 219-

230. doi:10.1016/j.lindif.2004.03.001 

PROC LCA & PROC LTA (Version 1.3.0) [Software]. (2013). University Park: The 

Methodology Center, Penn State. Retrieved from http://methodology.psu.edu 

https://www.statmodel.com/download/usersguide/Mplus%20Users%20Guide%20v6.pdf
http://nces.ed.gov/timss/results11_math11.asp
http://www2.ed.gov/about/bdscomm/list/mathpanel/report/final-report.pdf
http://www.oecd.org/pisa/keyfindings/PISA-2012-results-US.pdf
http://www.oecd.org/pisa/keyfindings/PISA-2012-results-US.pdf
http://www.oecd.org/pisa/keyfindings/pisa-2012-results-overview.pdf
http://dx.doi.org/10.1016/j.lindif.2004.03.001
http://methodology.psu.edu/


58 
LATENT CLASS ANALYSIS OF CHILDREN 

Psychological Corporation (1992). Wechsler Individual Achievement Test. San Antonio TX: 

Harcourt Brace & Co. 

Rasmussen, C., & Bisanz, J. (2005). Representation and working memory in early arithmetic. 

Journal of Experimental Child Psychology, 91(2), 137-157. 

doi:10.1016/j.jecp.2005.01.004 

Raven, J. C. (1976). Colored progressive matrices test. London, England: H. K. Lewis & Co. 

Ltd. 

Raykov, T., & Marcoulides, G. A. (2008). An introduction to applied multivariate analysis. 

Mahwah, NJ: Lawrence Erlbaum Associates.  

Rousselle, L., & Noël, M. (2007). Basic numerical skills in children with mathematics learning 

disabilities: A comparison of symbolic vs non-symbolic number magnitude. Cognition, 

102(3), 361-395. doi:/10.1016/j.cognition.2006.01.005 

SAS Institute. (2010). SAS/STAT software: Changes and Enhancements through release 9.3. 

Cary, NC: SAS Institute Inc. 

Shalev, R.S., (2007). Prevalence of developmental dyscalculia. In Berch, D.B. & Mazzocco, 

M.M.M. (Ed.), Why is math so hard for some children? The nature and origins of 

mathematical learning difficulties and disabilities (p. 49-60). Baltimore, MD: Paul H 

Brookes Publishing. 

Shalev, R. S., Auerbach, J., Manor, O., & Gross-Tsur, V. (2000). Developmental dyscalculia- 

prevalence and prognosis. European Child & Adolescent Psychiatry, 9(2), S58-S64.  doi: 

10.1007/s007870070009   

Shalev, R.S., Manor, O., & Gross-Tsur, V. (2005). Developmental dyscalculia: A prospective 6- 

year follow-up of a common learning disability. Developmental Medicine & Child 

https://post.ucr.edu/owa/redir.aspx?C=ujon_djqdEqhyU6d53bUBk3QTCjhzNEIL_CS6-HX8Toz8p8dBQZkMCupqpztUVr76rPuh31FNxI.&URL=http%3a%2f%2fdx.doi.org%2f10.1016%2fj.cognition.2006.01.005
http://dx.doi.org/10.1007/s007870070009


59 
LATENT CLASS ANALYSIS OF CHILDREN 

Neurology, 47, 121-125.  doi: 10.1111/j.1469-8749.2005.tb01100.x   10.1111/j.1467-

8624.2004.00684.x 

Siegler, R. S., & Opfer, J. (2003). The development of numerical estimation: Evidence for 

multiple representation of numerical quantity. Psychological Science, 14(3), 237-243. 

doi:10.1111/1467-9280.02438 

Siegler, R. S. & Booth, J. (2004). Development of numerical estimation in young children. Child 

Development, 75(2), 428-444. doi:10.1111/j.1467-8624.2004.00684.x 

Siegel, L. S., & Ryan, E. B. (1989). The development of working memory in normally achieving 

and subtypes of learning disabled children. Child Development, 60(4), 973-980. 

doi:10.2307/1131037 

Simmons, F. R., Willis, C., & Adams, A-M. (2012). Different components of working memory 

have different relationships with different mathematical skills. Journal of Experimental 

Child Psychology, 111(2), 139-155. doi:10.1016/j.jecp.2011.08.011 

Stanovich, K. E., & Siegel, L. (1994).  Phenotypic performances profile of children with reading 

disabilities: A regression-based test of the phonological-core variable-difference model.  

Journal of Education Psychology, 86(1), 24-53. doi:10.1037/0022-0663.86.1.24 

Swanson, H. L. (1992). Generality and modifiability of working memory among skilled and less 

skilled readers. Journal of Educational Psychology, 84(4), 473-488. doi:10.1037/0022-

0663.84.4.473 

Swanson, H. L. (2004). Working memory and phonological processing as predictors of children's 

mathematical problem solving at different ages. Memory & Cognition, 32(4), 648-661. 

doi:10.3758/BF03195856 

http://dx.doi.org/10.1111/j.1469-8749.2005.tb01100.x
http://dx.doi.org/10.1111/j.1467-8624.2004.00684.x
http://dx.doi.org/10.1111/j.1467-8624.2004.00684.x
http://dx.doi.org/10.3758/BF03195856


60 
LATENT CLASS ANALYSIS OF CHILDREN 

 Swanson, H. L. (2006). Cross-sectional and incremental changes in working memory and 

mathematical problem solving. Journal of Educational Psychology, 98(2), 265-281. 

doi:10.1037/0022-0663.98.2.265 

Swanson, H. L. (2008). Working memory and intelligence in children: What develops? Journal 

of Educational Psychology, 100(3), 581-602. doi:10.1037/0022-0663.100.3.581 

Swanson, H. L. (2012). Cognitive profile of adolescents with math disabilities: Are the profiles 

different from those with reading disabilities? Child Neuropsychology, 18(2), 125-143. 

doi: 10.1080/09297049.2011.589377 

Swanson, H.L. (2013). Abbreviated Test of Working Memory. American Psychological 

Association, Washington DC: PyscTESTS 

Swanson, H. L., & Beebe-Frankenberger, M. (2004). The relationship between working memory 

and mathematical problem solving in children at risk and not a risk for serious math 

difficulties. Journal of Educational Psychology, 96(3), 471-491. doi:10.1037/0022-

0663.96.3.471 

Swanson, H. L., Cooney, J. B., & Brock, S. (1993). The influence of working memory and 

classification ability on children's word problem solution. Journal of Experimental Child 

Psychology, 55(3), 374-395. doi:10.1006/jecp.1993.1021  

Swanson, H. L., & Fung, W. (2016). Working memory components and problem-solving 

accuracy: Are there multiple pathways? Journal of Educational Psychology, 108(8), 

1153-1177. doi:10.1037/edu0000116  

Swanson, H. L., Kudo, M., & Guzman-Orth, D. (2016). Cognition and literacy in english 

language learners at risk for reading disabilities: A latent transition analysis. Journal of 

Educational Psychology, 108(6), 830-856. doi:10.1037/edu0000102 

http://dx.doi.org/10.1037/0022-0663.98.2.265
http://dx.doi.org/10.1006/jecp.1993.1021
http://dx.doi.org/10.1037/edu0000116
http://dx.doi.org/10.1037/edu0000102


61 
LATENT CLASS ANALYSIS OF CHILDREN 

 

Swanson, H. L., & Jerman, O. (2006). Math disabilities: A selective meta-analysis of the literature. Review of 

Educational Research, 76(2), 249-274. doi:10.3102/00346543076002249 

Swanson, H. L., Jerman, O., & Zheng, X. (2008). Growth in working memory and mathematical 

problem solving in children at risk and not at risk for serious math difficulties. Journal of 

Educational Psychology, 100(2), 343-379. doi:10.1037/0022-0663.100.2.343. 

Swanson, H.L., Jerman, O., Zheng, X. (2009). Math disabilities and reading disabilities: Can 

they be separated? Journal of Psychoeducational Assessment , 27,175-196 

Swanson, H. L., & Sachse-Lee, C. (2001). Mathematical problem solving and working memory 

in children with learning disabilities: Both executive and phonological processes are 

important. Journal of Experimental Child Psychology, 79(3), 294-321. 

doi:10.1006/jecp.2000.2587 

Tolar, T. D., Fuchs, L., Fletcher, J. M., Fuchs, D., & Hamlett, C. L. (2016). Cognitive profiles of 

mathematical problem solving learning disability for different definitions of disability. 

Journal of Learning Disabilities, 49(3), 240-256. doi:10.1177/0022219414538520 

Towse, J., & Cheshire, A. (2007). Random generation and working memory. European Journal 

of Cognitive Psychology, 19 (3), 374-394. doi:10.1080/09541440600764570 

Towse, J.N., Hitch, G., & Hutton, U. (1998). A reevaluation of working memory capacity in 

children. Journal of Memory and Language, 39(2), 195-217. doi:10.1006/jmla.1998.2574 

Unsworth, N. (2010). Interference control, working memory capacity, and cognitive abilities: A 

latent variable analysis. Intelligence, 38(2), 255-267.doi:10.1016/j.intell.2009.12.003 

Vukovic, R. K., & Lesaux, N. K. (2013). The language of mathematics: Investigating the ways 

language counts for children’s mathematical development. Journal of Experimental Child 

Psychology, 115(2), 227-244. doi:10.1016/j.jecp.2013.02.002 

http://dx.doi.org/10.3102/00346543076002249
http://dx.doi.org/10.1006/jecp.2000.2587
http://dx.doi.org/10.1177/0022219414538520
http://dx.doi.org/10.1016/j.jecp.2013.02.002


62 
LATENT CLASS ANALYSIS OF CHILDREN 

Vukovic, R. K., Lesaux, N. K., & Siegel, L. S. (2010). The mathematics skills of children with 

reading difficulties. Learning and Individual Differences, 20(6), 639-643. 

doi:10.1016/j.lindif.2010.08.004 

Vukovic, R. K., & Siegel, L. S. (2010). Academic and cognitive characteristics of persistent 

mathematics difficulty from first through fourth grade. Learning Disabilities Research & 

Practice, 25(1), 25-38. doi:10.1111/j.1540-5826.2009.00298.x 

Wagner, R., Torgesen, J., & Rashotte, C. (2000). Comprehensive Test of Phonological 

Processing. Austin, TX: Pro-Ed. 

Wechsler, D. (1991). Wechsler Intelligence Scale for Children-Third Edition. San Antonio, TX: 

Psychological Corporation. 

Wilkinson, G. S. (1993). The Wide Range Achievement Test. Wilmington DE: Wide Range, Inc. 

Willcutt, E. G., Petrill, S. A., Wu, S., Boada, R., DeFries, J. C., Olson, R. K., & Pennington, B.  

 F. (2013). Comorbidity between reading disability and math disability: Concurrent 

psychopathology, functional impairment, and neuropsychological functioning. Journal of 

Learning Disabilities, 46(6), 500-516. doi:10.1177/0022219413477476 

Wong, T. T. & Suk-Han Ho, C. (2017). Component processes in arithmetic word-problem  

 solving and their correlates. Journal of Educational Psychology, 109, 520-531.  

http://dx.doi.org/10.1016/j.lindif.2010.08.004
http://dx.doi.org/10.1111/j.1540-5826.2009.00298.x


63 
LATENT CLASS ANALYSIS OF CHILDREN 

                                                               Footnote 

1. Although the fit indices supported a three latent class group, a four group LCA was also 

investigated on the assumption that a low math achieving but average reading group 

would emerge. No such group emerged.  Gamma estimates (class membership 

probabilities) were .28 for average achievers, .09 for children with MD, .35 for poor 

problem solvers across all problem solving measures, and .32 for poor problems solvers 

on word problem measures that required reading. No latent class emerged in which risk 

for MD (low calculation and problem solving) reflected a group with average reading 

scores.  
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Table 1 
Descriptive Information for Classification (standard scores) and Predictor Variables (raw 

scores) for Total Sample (N=447) 

  
Mean SD Min Max Kurtosis Skewness Reliability 

Classification Measure 
       Calculation 

        WIAT 
 

98.69 12.67 67 141 0.17 -0.24 0.84 
 WRAT-A 

 
98.77 10.36 66 134 0.03 0.53 0.80 

 Math Prob. Solving 
        TOMA 

 
78.50 21.02 40 140 0.65 -0.17 0.94 

 WISC-A 
 

97.61 31.46 10 180 -0.38 0.18 0.96 
 CMAT 

 
66.73 30.02 0 150 0.05 -0.99 0.97 

 KeyMath 
 

94.77 34.7 10 170 0.40 0.05 0.97 
 Reading 

         WRAT-R 
 

103.81 12.36 66 153 0.27 1.32 0.82 
 TORC 

 
92.84 23.19 30 160 -0.16 0.09 0.94 

 Fluid Intelligence 
        Raven 

 
100.07 15.15 42 128 -0.69 0.64 0.93 

 Problem Solving Components 
       Question 

 
2.15 0.92 0 3 -0.79 -0.36 0.71 

 Number 
 

2.32 0.86 0 3 -1.03 0.12 0.72 
 Goal 

 
1.80 0.94 0 3 -0.29 -0.84 0.71 

 Operation 1.86 0.85 0 3 -0.35 -0.49 0.71 
 Algorithm 1.79 0.87 0 3 -0.31 -0.56 0.70 
 Irrelevant 2.35 0.86 0 3 -1.18 0.48 0.76 
 Estimation 

        Estimation1 2.59 2.06 0 15 1.61 4.72 0.84 
 Estimation2 1.84 1.31 0 10 1.73 5.11 0.85 
 Numeracy 

        Numeracy1 18.75 6.58 0 38 -0.15 0.34 0.83 
 Numeracy2 10.24 3.8 0 25 -0.01 1.67 0.65 
 Naming Speed 

        Speed Digits 39.41 9.4 20 79 0.83 0.73 0.83 
 Speed Letters 42.82 10.64 0 107 0.63 4.37 0.82 
 Exec. WM 

        Concept Span 3.07 3.18 0 21 2.15 7.00 0.84 
 Listspan 

 
2.67 1.97 1 12 1.41 1.98 0.79 

 Update 
 

5.56 4.21 0 16 1.03 0.11 0.88 
 Visual-Sketch Pad 

        Map/Direction 1.75 0.55 1 5 1.91 4.41 0.65 
 Matrix 

 
11.94 8.13 0 33 0.40 -0.41 0.92 
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Phonological Loop-STM 
       Dforward 

 
6.72 1.73 2 14 0.36 0.50 0.81 

 Word-Span 8.24 3.47 2 20 0.36 -0.54 0.68 
 Phon-Span 3.13 2.23 0 14 0.95 1.33 0.63 
   

WIAT = Wechsler Individual Achievement Test.  WRAT-A = Wide Range Achievement Test 
arithmetic subtest. TOMA = Test of Mathematical Abilities. WISC = Arithmetic subtest from 
Wechsler Intelligence Scale for Children.   CMAT = Comprehensive Mathematical Abilities 
Test. KeyMath = KeyMath Revised Diagnostic Assessment. WRAT-Reading = Wide Range 
Achievement Test Reading Task. TORC = Test of Reading Comprehension.  Raven = Colored 
Progressive Matrices Test. Estimation1=set 1-vary numbers, Estimation2=set 2-vary line length, 
numeracy1=circle large number, numeracy2=circle small number.Concept= conceptual span, 
Listspan=Listening Span,  Dforward=digit forward, phon-span=pseudoword span task. 
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Table 2 

Fix Indices for Six Latent Class Models 

Cut off at or  < 25      

 LC=1 LC=2 LC=3 LC=4 LC=5 LC=6 

Log-likelihood: -2232.86 -1994.98 -1950.58 -1946.89 -1933.29 -1921.38 

G-squared: 835.95 360.2 271.4 264.01 236.82 212.99 

AIC: 853.95 398.2 329.4 342.01 334.82 330.99 

BIC: 890.87 476.15 448.37 502.01 535.84 573.04 

CAIC: 899.87 495.15 477.37 541.01 584.84 632.04 

Adjusted BIC 862.31 415.85 356.34 378.24 380.34 385.8 

Entropy 1.0 0.75 0.75 0.80 0.82 0.85 

Degrees 502 492 482 472 462 452 

LMR (p-value) - 0 0 .34 .27 .17 

BLRT (p-value) - 0 0 .66 .36 .42 

Cut off < 11      

 LC1 LC=2 LC=3 LC=4 LC=5 LC=6 

Log-likelihood: -1882.47 -1687.33 -1643.29 -1633.22 -1624.42 -1618.48 

G-squared: 633.81 243.53 155.45 135.3 117.71 105.83 

AIC: 651.81 281.53 213.45 213.30 215.71 223.83 

BIC: 688.73 359.48 332.42 373.30 416.73 465.88 

CAIC: 697.73 378.48 361.42 412.30 465.73 524.88 

Adjusted BIC 660.17 299.18 240.39 249.53 261.23 278.64 

Entropy 1.0 0.72 0.75 0.74 0.71 0.72 

Degrees 502 492 482 472 462 452 

LMR (p-value) - 0 .0180 .034 .19 .31 

BLRT (p-value) - 0 0 .065 .15 1.0 

 
Note. LC=Latent Class, AIC = Akaike’s Information Criterion; BIC = Bayesian Information 
Criterion; LMR = Lo-Mendell-Rubin Test; BLRT = Bootstrap Likelihood Ratio Test. 
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Table 3 

Probabilities of Assignment to Latent Classes 

  At or < 25th percentile   < 11th percentile  

GAMMA  Probabilities      

Latent Class  1 2 3  1 2 3 

  0.32 0.15 0.53  0.35 0.10 0.55 

Rho Estimatesa Math Difficulties (MD)   Math Learning Disabilities (MLD) 

Latent Class  1 2 3  1 2 3 

Calculation        

WIAT  0.003 0.82 0.24  0.00 0.59 0.08 

WRAT-A  0.006 0.46 0.13  0.01 0.40 0.01 

Math Problem Solving       

TOMA  0.28 0.92 0.81  0.31 0.96 0.83 

WISC-A  0.07 0.80 0.36  0.08 0.76 0.42 

CMAT  0.23 1.00 0.88  0.26 1.00 0.90 

KEYMATH  0.03 1.00 0.50  0.03 1.00 0.56 

Reading         

TORC  0.07 0.87 0.33  0.09 1.00 0.36 

WRAT-R  0.01 0.42 0.06  0.00 0.30 0.05 

Fluid Intelligence        

Raven  0.11 0.42 0.19  0.06 0.23 0.10 
 
a Note. = rho estimates >.70 (in bold) were considered high probability of Risk for MD ( < 25th 
percentile) or MLD ( < 11th percentile). 
 WIAT = Wechsler Individual Achievement Test.  WRAT-A = Wide Range Achievement Test 
arithmetic subtest. TOMA = Test of Mathematical Abilities. WISC = Arithmetic subtest from 
Wechsler Intelligence Scale for Children.   CMAT = Comprehensive Mathematical Abilities 
Test. KeyMath = KeyMath Revised Diagnostic Assessment. TORC = Test of Reading 
Comprehension. WRAT-Reading = Wide Range Achievement Test Reading Task.  Raven = 
Colored Progressive Matrices Test.
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Table 4 

Normed Referenced Scores for Classification Measures as a Function 
Of Latent Class 
 LC=1  LC=2  LC=3  

At or < 25th 
percentile 

     

Variable Mean SD Mean SD Mean SD 

Calculation      

WIAT 108.01 9.27 83.68 8.12 97.29 10.8 

WRAT-A 105.06 9.32 87.29 8.86 98.18 8.28 

Math Problem Solving     

TOMA 96.45 19.57 64.15 14.13 71.87 15.98 

WISC 119.15 23.25 65.69 23.78 93.61 28.44 

CMAT 96.38 20.43 56.62 17.88 77.51 22.33 

KEYMath 124.11 28.81 57.08 18.85 87.76 26.82 

Reading       

TORC 107.16 18.72 64.77 15.92 92.03 19.82 

WRAT-R 111.35 11.72 91.20 11.10 102.8 9.67 

Fluid Intelligence      

Raven 105.69 15.49 92.26 14.22 98.88 14.01 

 LC=1  LC=2  LC=3  

< 11th percentile      

Variable Mean SD Mean SD Mean SD 

Calculation      

WIAT 106.82 10.32 81.26 7.57 96.64 10.94 

WRAT-A 104.42 10.11 84.92 9.59 97.60 8.04 

Math Problem Solving     

TOMA 95.84 19.52 60.51 10.50 71.24 15.92 

WISC-A 119.33 23.56 64.87 28.27 90.04 27.99 

CMAT 95.91 20.24 54.62 19.17 74.79 21.88 

KEYMath 123.76 28.82 54.36 18.75 84.17 26.63 

Reading       

TORC 106.51 19.24 59.49 14.86 90.00 20.02 

WRAT-R 111.22 12.00 87.49 10.56 102.01 9.48 

Fluid Intelligence      

Raven 105.39 15.75 93.20 14.18 98.04 14.05 

WIAT = Wechsler Individual Achievement Test.  WRAT-A = arithmetic subtest from the Wide 
Range Achievement Test.  TOMA = Test of Mathematical Abilities.  WISC-A = arithmetic 
subtest from the Wechsler Intelligence Scale for Children. CMAT = Comprehensive 
Mathematical Abilities Test. KeyMath = KeyMath Revised Diagnostic Assessment. TORC = 
Test of Reading Comprehension.  WRAT-R = reading subtest from the Wide Range 
Achievement Test Reading Task. Raven = Colored Progressive Matrices Test.   
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Table 5 
Comparison of Children on Normed References Score who Transitioned out of the Latent Class 
Risk Group (N=28) at the 11th Percentile and Those That Remained (Stable) at Both Cut-off 
points (N=37). 
  Transition   Stable   

  M SD  M SD ES 

Classification       

Calculation       

WIAT  87.21 7.63  81.00 7.51 0.82 

WRAT  90.61 6.44  84.78 9.67 0.72 

Problem Solving       

TOMA  68.93 16.63  60.54 10.79 0.61 

WISC-A  70.00 18.66  62.43 26.81 0.33 

CMAT  58.93 15.48  54.86 19.53 0.23 

KEYMath  60.71 18.04  54.32 19.23 0.34 

Reading        

TORC  72.50 14.04  58.92 14.87 0.94 

WRAT-R  96.82 9.40  86.95 10.46 0.99 

Fluid Intelligence       

Raven  91.75 14.47  92.64 14.23 -0.06 

Note. Transition= Children defined as math difficulties at 25th percentile cut-off but not 11th 
percentile cut-off 
Stable=children who retained math risk status at both cut-off points (children with MLD). 
ES=Cohen’s effect size 
Classification measures are normed referenced standard scores. WIAT = Wechsler Individual 
Achievement Test.  WRAT = Wide Range Achievement Test. TOMA = Test of Mathematical 
Abilities. WISC-A = arithmetic subtest from theWechsler Intelligence Scale for Children.  
CMAT = Comprehensive Mathematical Abilities Test.KeyMath = KeyMath Revised Diagnostic 
Assessment.  TORC = Test of Reading Comprehension.  WRAT-R = reading subtest from the 
Wide Range Achievement Test Reading Task. Raven = Colored Progressive Matrices Test.  
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Table 6 
Logistic Regression Model Predicting Latent Classes at Two Cut-off Points 

  
At or <25th Percentile 

  
< 11th percentile 

 Parameter Odds Estimate SE Wald χ2 
 

Odds Estimate SE Wald χ2 

Full Model 
        Phonological Storage 

       STM 1.13 0.12 0.08 2.23 
 

1.28 0.24 0.09 7.86** 

Speed 0.87 -0.14 0.08 3.11 
 

0.82 -0.19 0.09 5.04* 

Domain Specific Knowledge 
  

 
    Component 1.16 0.14 0.05 7.88**  1.25 0.22 0.06 15.58*** 

Estimation 0.77 -0.27 0.08 10.35***  0.83 -0.19 0.09 4.63* 

Numeracy 1.12 0.11 0.06 3.47  1.1 0.1 0.06 2.48 

Executive Processing 
  

 
    WM-E 1.25 0.23 0.08 7.50**  1.29 0.25 0.09 8.26*** 

Inhibition 0.81 -0.21 0.13 2.74  0.87 -0.14 0.13 1.12 

Vis-WM 1.14 0.13 0.09 2.30  1.19 0.18 0.09 3.73* 

Model Fit Statistics 
   

 
    Criterion 

    
 

    AIC 734.928 
   

 642.713 
   BIC 770.67 

   
 678.454 

   Deviance 716.928 
   

 624.713 
   Reduced Model 1 

   
 

    Phonological Storage 
  

 
    STM 1.29 0.26 0.07 12.73***  1.50 0.41 0.08 27.66*** 

Speed 0.73 -0.32 0.05 40.90***  0.74 -0.30 0.05 35.34*** 

Model Fit Statistics 
   

 
    AIC 852.146 

   
 760.082 

   BIC 864.345 
   

 772.280 
   Deviance 846.146 

   
 754.082 

   Reduced Model 2 
   

 
    Domain Specific Knowledge 

  
 

    Component 1.17 0.16 0.04 12.19***  1.28 0.25 0.05 25.80*** 

Estimation 0.70 -0.36 0.05 47.44***  0.72 -0.33 0.05 37.10*** 

Numeracy 1.16 0.15 0.05 7.28**  1.16 0.15 0.06 6.95* 

Model Fit Statistics 
   

 
    AIC 808.517 

   
 721.572 

   BIC 824.697 
   

 737.752 
   Deviance 800.517 

   
 713.572 

   Reduced Model 3 
   

 
    Executive Processing 

  
 

    WM-E 1.37 0.32 0.08 16.3***  1.47 0.39 0.08 21.84*** 

Inhibition 1.00 0.01 0.11 0.01  1.09 0.09 0.12 0.59 

Vis-WM 1.26 0.23 0.09 7.21**  1.31 0.27 0.09 9.25** 
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Model Fit Statistics 
   

 
    AIC 869.037 

   
 776.048 

   BIC 885.264 
   

 792.275 
   Deviance 861.037 

   
 768.048 

    
Note. WM-E=executive component of working memory, Component=identifying problem 
solving components. Vis-WM=visual-spatial sketch pad  
AIC = Akaike’s Information Criterion; BIC = Bayesian Information Criterion 
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Table 7 
Full Multinomial Logistic Regression Model Predicting Latent Classes at Both Cut-off Points 
 

Full Model 
At or 
<25th 

   
<11th 

   
 

Compare Odds Estimate SE Wald χ2 Odds Estimate SE Wald χ2 
Storage 

         STM LC1 vs. LC3 1.33 0.28 0.11 7.23** 1.44 0.36 0.11 11.76*** 
STM LC2 vs. LC3 0.54 -0.62 0.17 13.61*** 0.73 -0.32 0.17 3.37 
Speed LC1 vs. LC3 0.85 -0.17 0.11 2.18 0.79 -0.23 0.11 4.29 
Speed LC2 vs. LC3 0.68 -0.38 0.13 8.21** 0.51 -0.68 0.14 22.3*** 
Domain Specific Knowledge 

       Component LC1 vs. LC3 1.47 0.39 0.08 24.44*** 1.52 0.42 0.08 29.06*** 
Component LC2 vs. LC3 0.77 -0.26 0.08 10.03*** 0.86 -0.15 0.09 2.90 
Estimation LC1 vs. LC3 0.72 -0.33 0.12 8.14** 0.79 -0.24 0.11 4.55 
Estimation LC2 vs. LC3 0.47 -0.75 0.14 29.64*** 0.56 -0.57 0.14 17.85*** 
Numeracy LC1 vs. LC3 1.30 0.26 0.08 10.61*** 1.27 0.24 0.08 9.16** 
Numeracy LC2 vs. LC3 0.82 -0.20 0.10 3.64 0.81 -0.22 0.11 3.64 
Executive Processing 

       WM-E LC1 vs. LC3 1.28 0.25 0.10 6.05** 1.34 0.30 0.10 8.19** 
WM-E LC2 vs. LC3 1.20 0.18 0.17 1.15 1.22 0.20 0.18 1.25 
Inhibition LC1 vs. LC3 0.85 -0.16 0.16 1.08 0.91 -0.10 0.16 0.36 
Inhibition LC2 vs. LC3 0.55 -0.61 0.26 5.44 0.75 -0.29 0.26 1.25 
Vis-WM LC1 vs. LC3 1.18 0.17 0.10 2.55 1.23 0.21 0.11 3.72 
Vis-WM LC2 vs. LC3 0.93 -0.07 0.17 0.19 1.12 0.11 0.18 0.37 

LC1=Average Achiever, LC2=Math Disabled (at or < 25th percentile or MLD (< 11th percentile). LC3= poor 
problem solvers .Component= problem solving component, Inhibition = Random generation of numbers and letters; 
Speed = Naming speed; WM-E = Working memory executive component (Conceptual Span, Listening Sentence 
Span, and Updating task); Vis-WM = Visual–spatial sketchpad (Visual Matrix and Mapping & Directions); STM = 
Short-term memory (Forward Digit Span, Backward Digit Span, Word Span, and Pseudoword Span).  
**p <.01,***p < .001 
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Table 8  
Means, Standard Deviations and Effect Size Comparisons among Stable Latent Classes 

  
LC=1, N=141) LC=2, N=37) LC=3, N=231) 

 
Effect Sizes 

  
M SD M SD M SD 

LC1 vs. 
LC2 

LC1 vs. 
LC3 

LC2 
vs.LC 3 

Classification 
         Calculation 
         WIAT 

 
108.01 9.27 81.00 7.51 97.79 10.74 3.22 1.02 -1.84 

WRAT-A 
 

105.06 9.32 84.78 9.67 98.45 7.80 2.14 0.77 -1.56 

Math Problem Solving 
        TOMA 

 
96.45 19.57 60.54 10.79 71.52 15.85 2.37 1.41 -0.82 

WISC-A 
 

119.15 23.25 62.43 26.81 92.47 27.98 2.27 1.04 -1.10 

CMAT 
 

96.38 20.43 34.86 19.53 56.71 21.78 3.08 1.88 -1.06 

KEYMath 
 

124.11 28.81 54.32 19.23 87.01 26.11 2.91 1.35 -1.44 

Reading 
          TORC 
 

107.16 18.72 58.92 14.87 92.12 19.61 2.87 0.78 -1.93 

WRAT-R 
 

111.35 11.72 86.95 10.46 102.64 9.32 2.20 0.83 -1.59 

Fluid Intelligence 
         Raven 

 
105.69 15.49 92.64 14.23 98.8 13.83 0.88 0.47 -0.44 

Cognitive Processes 
         STM 

 
0.63 1.09 -0.97 1.08 -0.09 1.33 1.47 0.60 -0.73 

Speed 
 

-0.41 1.39 0.6 2.08 -0.07 1.44 -0.58 -0.24 0.38 

Component 1.38 1.67 -2.16 2.35 -0.27 2.26 1.76 0.84 -0.82 

Estimation -0.64 1.28 1.22 1.40 0.01 1.31 -1.39 -0.49 0.90 

Numeracy 0.79 1.83 -1.51 1.69 -0.18 1.71 1.31 0.55 -0.78 

WM-E 
 

0.63 1.62 -0.59 1.06 -0.22 1.22 0.91 0.60 -0.32 

Inhibition 0.18 0.88 -0.55 0.69 0.01 0.84 0.93 0.21 -0.72 

Vis-WM 
 

0.38 1.30 -0.27 0.84 -0.14 1.21 0.61 0.41 -0.13 

Cognitive process measures are factor scores (z-scores) based on the total sample. 
Stable=children who maintained same LC status for at risk at both cut-off points. 
LC=1=Average Achiever, LC2=Math Disabled, LC3= poor problem solvers. 
Components=component processes, Speed = Naming speed; STM = Short-term memory WM-E 
= Working memory executive component, VIS-WM = Visual–spatial sketchpad.  
ES=Cohen’s d, ES1=LC=1 vs. LC=2, ES2=LC=1 vs. LC=3, ES3=LC=2 vs. LC=3,  
Bold=cognitive measures of moderate (> .50) and large (> .80) effect sizes. 
Note. Scores were not partialed for the influence of other variables. 
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Table 9 
Comparison of Children on Cognitive Measures who Transitioned out of MD Risk Group 
(N=28) and Those Who Remained Stable in the at Risk group (N=37) at Both Cut-Off Points 

  
Transition 

  
Stable 

  

  
M SD 

 
M SD ES 

Cognitive Processes 
      STM 

 
-1.05 0.94 

 
-0.97 1.08 -0.08 

Speed 
 

0.67 1.5 
 

0.6 2.08 0.04 

Component -1.94 2.24 
 

-2.16 2.35 0.1 

Estimation 1.25 2.11 
 

1.22 1.4 0.02 

Numeracy -0.78 1.9 
 

-1.51 1.69 0.41 

WM-E 
 

-0.65 0.7 
 

-0.59 1.06 -0.07 

Inhibition 
 

-0.46 0.71 
 

-0.55 0.69 0.13 

Vis-WM 
 

-0.4 0.97 
 

-0.27 0.84 -0.14 

Note. Transition= Children defined as at risk at 25th percentile cut-off but not 11th percentile cut-
off. Stable=children who retained risk status at both cut-off points. ES=Cohen’s effect size. 
Cognitive process measures are factor scores (z-scores) based on the total sample. STM=short-
term memory or phonological loop, Speed=naming speed, Component= accuracy identifying 
components of word problems, WM-E=executive component of WM, Inhibition=random 
generation ,Vis-WM= visual-spatial sketchpad. 
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 Appendix A 
Comparison of Latent Classes on Factor Scores (z-scores) for the Cognitive Measures 
At or <25th percentile 

       

 
LC=1/N=141 LC=2/N=65 LC=3/N=240 ES1 ES2 ES3 

 
Mean SD Mean  SD Mean SD 

   STM 0.63 1.09 -1.00 1.02 -0.06 1.33 1.60 0.52 -0.80 

Speed -0.41 1.39 0.63 1.84 -0.04 1.44 -0.57 -0.26 0.41 

Components 1.38 1.67 -2.07 2.29 -0.23 2.26 1.51 0.71 -0.81 

Estimation -0.64 1.28 1.23 1.74 0.01 1.33 -1.07 -0.49 0.79 

Numeracy 0.79 1.83 -1.19 1.81 -0.19 1.70 1.09 0.58 -0.57 

WM-E 0.63 1.62 -0.61 0.92 -0.17 1.26 1.35 0.63 -0.40 

Inhibition 0.18 0.88 -0.51 0.70 0.02 0.83 0.99 0.19 -0.69 

Vis-WM 0.38 1.3 -0.33 0.89 -0.12 1.22 0.80 0.41 -0.20 

          < 11th percentile 
        

 
LC=1/N=149 LC=2/N=39 LC=3/N=258 ES1 ES2 ES3 

 
Mean SD Mean SD Mean SD 

   STM 0.65 1.09 -0.93 1.10 -0.2 1.33 1.44 0.64 -0.60 

Speed -0.36 1.41 0.58 2.04 0.02 1.46 -0.46 -0.26 0.32 

Components 1.39 1.65 -2.14 2.29 -0.46 2.32 1.54 0.80 -0.73 

Estimation -0.64 1.25 1.29 1.49 0.14 1.47 -1.30 -0.53 0.78 

Numeracy 0.75 1.8 -1.57 1.71 -0.24 1.74 1.36 0.57 -0.77 

WM-E 0.65 1.62 -0.52 1.10 -0.26 1.19 1.06 0.76 -0.23 

Inhibition 0.19 0.86 -0.54 0.68 -0.05 0.84 1.07 0.29 -0.64 

Vis-WM 0.38 1.31 -0.28 0.83 -0.16 1.18 0.80 0.46 -0.12 
LC=1=Average Achiever, LC2=Math difficulties( < 25th percentile) or math learning disabilities (< 11th 
percentile).  
LC3= poor problem solvers. Cognitive process measures are factor scores (z-scores) based on the total 
sample. 
STM = Short-term memory , Speed = Naming speed; Components=component processes, WM-E = 
Working memory 
 executive component, Vis-WM = Visual–spatial sketchpad. ES=Cohen’s d, ES1=LC1 vs. LC2, 
ES2=LC1 vs. LC3,  
ES3=LC2 vs. LC3 . Note. ES values are not partialed for the influence of other variables.
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