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LATENT CLASS ANALYSIS OF CHILDREN

Abstract
This study investigated whether a latent class of children with math difficulties (MD) or math
learning disabilities (MLD) emerged within a heterogeneous sample of learners. A latent class
analysis was computed on children (N =447) in grade 3 who were administered a battery of
math, reading, and cognitive measures. The analysis yielded four important findings. First, a
discrete latent class of children with MD (15% of the sample) or MLD (10% of the sample)
emerged when setting cut-off scores at or below the 25th and 11th percentile, respectively.
Second, model testing yielded a high probability of finding children with MD or MLD with
reading problems as well as a latent class of low problem solvers with average reading and
calculation scores. Third, knowledge of problem solving component processes, estimation and
the executive component of WM were significant and unique correlates of latent classes at both
cut-off points. Finally, children defined as MD at 25th percentile cut-off but not 11th percentile
cut-off yielded high effect sizes on measures of reading, but not on cognitive measures, when
compared to children identified at risk at both cut-off points. The results suggest that a
statistically distinct latent class of children at risk for MD or MLD can be separated from a

heterogeneous sample of children who vary in math, reading and fluid intelligence.
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Abstract

Educational Impact and Implication
Using two traditional cut-off scores for defining serious math problems, a latent class of children
with math difficulties (MD) and math learning disabilities (MLD) emerged within a
heterogeneous sample of third grade learners. Regardless of cut-off score criterion, children with
MD or MLD were found to have serious deficits related to both domain specific (i.e., estimation,
knowledge of problem solving components), and domain general processes (i.e., executive
component of WM). The results also showed a distinct latent class of poor problem solvers
emerged, even though such children were average in calculation and reading abilities. There are
at least three implications to the findings: (1) there is a low probability of finding children with
MD or MLD independent of reading problems, (2) poor problem solvers shared similar deficits
to children with MD and MLD on several cognitive measures (e.g., STM, identifying word
problem solving components, numeracy, executive component of WM) and (3) an undue focus
on reading and calculation for determining children at risk, may overlook the unique group of

children at risk primarily in the area of problem solving.



LATENT CLASS ANALYSIS OF CHILDREN
Latent Class Analysis of Children with Math Difficulties and/or Disabilities:

Are There Cognitive Differences?

Math skills have been shown to have a significant impact on employability, apart from
ethnic status, reading competence, and intelligence (Geary, 2011). Unfortunately, a significant
number of children demonstrate serious math difficulties (e.g., Mazzocco, Devlin, & McKenney;
2008). School age children displaying characteristics of math difficulties (MD) have been
estimated to be about 6.4% of the public school population (Badian, 1999; Geary, 1993). The
estimates of prevalence, however, vary (Barbaresi, Katusic, Colligan, Weaver, & Jacobsen,
2005; Desoete, Roeyers, & DeClercq, 2004; Geary, Hoard, Nugent, & Bailey, 2012; Shalev,
2007; Shalev, Manor, & Gross-Tsur, 2005; Martin et al., 2013) and in some estimates comprise
up to 10% of the public school population (Geary, 2013). A challenge in this field of research,
though, is determining whether math learning disabilities can be considered as a distinct category
from math difficulties (e.g., Geary, Hoard, Nugent, & Bailey, 2012, Murphy, Mazzocco, Hanich,
& Early, 2007).

Researchers have used normative math test scores at various cutoffs points to determine
math difficulties and/or disabilities. These cut-off points have ranged anywhere from the 5th
through the 46th percentile (e.g., Murphy et al., 2007; Swanson & Jerman, 2006). Recent
criterion among researchers includes using norm- referenced math scores below the 11th
percentile to identify children with Math Learning Disabilities (MLD; e.g., Geary, 2013;
Mazzocco, Myers, Lewis, Hanich, & Murphy, 2013). In contrast, math performance between
11th to the 25th percentile is a criterion used to indicate children with math difficulties (MD, or

Low Achievers) and scores above the 25th percentile to establish the highest group (Typically
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Achieving) (e.g., Cirino & Berch, 2010; Geary et al., 2012; Mazzocco, Feigenson, & Halberda,

2011). However, several studies have highlighted subgroup heterogeneity even when using strict
cut-off score criteria to define children at risk for MD or MLD (Mazzocco et al., 2008). Thus, a
challenge in this field of research is determining if the performance differences in children
identified with MD can be differentiated from children with MLD on various achievement and
cognitive measures (e.g., Geary et al., 2012; Murphy, Mazzocco, Hanich, & Early, 2007).

This study has two purposes. The first purpose was to determine if children at risk for
math difficulties (MD) reflect a discrete latent class from those with math learning disabilities
(MLD). Traditionally, as indicated above, children at risk for MD have been defined as at risk
by performing below the 25" percentile on norm referenced standardized math measures (e.g.,
Cirino, Fuchs, Elias, Powell, & Schumacher, 2015; Fuchs et al., 2006; Geary, 2013; Jordon &
Hanich, 2003; Mazzocco, 2007; Siegel & Ryan, 1989; Swanson, 2006; Vukovic & Lesaux,
2013). A further refinement in the sample selection of children at risk for math difficulties
includes making sure that such children perform above the cut-off scores (> 25th percentile) on
achievement measures other than math (i.e., reading). This refinement is necessary to establish
that risk status resides in math and not another academic area. Likewise, further refinement in
sample selection includes establishing that such children's math difficulties are not due to general
intellectual difficulties (e.g., Geary, 2013). Thus, in school practice, children at risk for MD and
MLD have been defined on normative measures as having intelligence scores in the average
range (e.g., > 85 standard score) and reading scores above the 25™ percentile. What differentiates
the two groups is the severity of math performance on normative math measures: children with
MD perform between the 11™ and 25™ percentile while children with MLD perform below the

1" percentile on normative math measures.
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However, this selection process of determining children at risk for MD or MLD has been
criticized because of reliance on an artificial cut-off score (e.g., Branum-Martin, Fletcher, &
Stuebing, 2013; Tolar, Fuchs, Fletcher, Fuchs, & Hamlett, 2016). In addition, such procedures
ignore the frequency of comorbidity in children with math problems. That is, reading disabilities
and math disabilities co-occur more frequently than expected by chance (e.g., Landerl & Moll,
2010). Although a number of explanations emerge related to this comorbidity (e.g., sampling
artifact, manifestations of a secondary disorder, alternative manifestations of the same etiology,
see Willcutt, Petrill, Wu, Boada, DeFries, Olson, & Pennington, 2013 for a review), there is a
high probability that children labelled as MD or MLD do not reflect a diagnostic category that is
completely independent of reading difficulties (e.g., Cirino et al., 2015). For example, Cirino et
al. administered a battery of measures to a large sample (N=660) of second graders and found
that children designated with math difficulties (cut-off score for determining MD was < 25"
percentile on arithmetic subtest on the Wide-Range Achievement Test) shared a similar profile to
children with both reading and math difficulties on several measures. Further, a number of
comprehensive meta-analyses comparing children with MD and reading disabilities (RD) have
also found minor differences between children with RD and MD groups on cognitive measures
(e.g., Swanson & Jerman, 2006, Swanson, Jerman & Zheng, 2009), suggesting a common
construct between the two disabilities. Thus, it is unclear as to whether a distinct latent class of
children with MD or MLD can be clearly separated from children with comorbid disabilities.
That is, the probability of identify children with serious math problems that are completely
independent of reading problems is in question.

To address some of the above issues, it is important to note there have been notable

methodological advances that have contributed to our understanding of children's math
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proficiency as it relates to children at risk for MD or MLD. Recently, there have been advances
in modeling the development of discrete processes based on the latent class analysis (e.g.,
Collins & Lanza, 2010; Muthén, 2006). Latent class analysis (LCA) is a statistical method used
to identify subgroups of individuals characterized by similar multidimensional patterns of
responses (e.g., Collins, Hyatt, & Graham, 2000). In one sense, LCA is a categorical analog to
factor analysis. Instead of defining attributes to a complex covariance structure, LCA posits
unobserved classes to explain complex associations in a multidimensional contingency table.
Studies that involve the analysis of unobserved classes from a heterogeneous sample are
sometimes referred to as mixture models (e.g., Lubke & Muthén, 2005; Muthén, 2006). A
rationale for using latent class or mixture modeling is that although math skills can be
represented as a continuous outcome variable, the sample may be composed of different groups
(or classes) of individuals. This group membership is not directly observed in latent growth
models even though it is possible that the distribution of children's math proficiency reflects at
least two different latent classes (e.g., children at risk and not at risk for math difficulties). The
advantage of LCA when compared to other procedures, such as cluster analysis, is that it offers a
probalistic model of the distribution latent classes in the data. Further, the selection process
allows for goodness of fit indices, contrary to most clustering techniques that focus on
algorithms related to distance measures. In this study, we test the notion that discrete latent
classes or mixtures representing different states of math proficiency exist in children who may be

identified as at risk or not at risk for MD or children with MLD.

The second purpose of this study determines the cognitive processes that correlate with
performance of children at risk for math difficulties (MD) or math learning disabilities (MLD).

On the assumption that a discrete subgroup of children at risk for MD or MLD emerges, it is
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important to know the cognitive processes associated with these risk groups. One of the most
often referred cognitive process underlying serious math difficulties is working memory (e.g.,
Andersson, 2007; Bull, Johnston, & Roy, 1999; Cowan & Powell, 2014; David, 2012; Geary,
2011; Kolkman, Kroesbergen, & Leseman, 2014; Mammarella, Lucangeli & Cornoldi, 2010;
Meyer, Salimpoor, Wu, Geary, & Menon, 2010; Simmons, Willis, & Adams, 2012; Swanson,
Jerman, & Zheng, 2008). This domain general construct is viewed as a limited capacity system
that is involved in the preservation of information while simultaneously processing the same or
other information (e.g., Baddeley, 2012; Engle, Tuholski, Laughlin, & Conway, 1999).

Although the association between WM and mathematical performance has been
established in the literature, the components of WM that underlie predictions of math
performance are unclear (see Simmons et al.; for review). Some studies have suggested that the
storage component of WM (referred to as the phonological loop or verbal STM) plays the major
role in math performance, especially in the younger ages (e.g., Meyer, et al., 2010). Other
studies have noted that difficulties with math problems are tied to visual-spatial component of
WM (referred to as the visual-spatial sketchpad, e.g., Ashkenazi, Rosenberg-Lee, Metcalfe,
Swigward, & Menon, 2013; Bull, Johnston, & Roy, 1999). In contrast, Lee, Ng, Ng, and Lim,
(2004) found that neither the phonological loop nor the visual-spatial sketchpad, but rather the
executive component of WM contributed significant variance to math problem solving solution
accuracy.

Given that the literature is unclear as to those WM components that uniquely predict
math performance, further study is necessary. We consider three competing models as an
explanation of the role of WM in individual math performance in children: one focuses on

processes related to phonological STM (phonological loop), another focuses information
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activated from long-term memory specifically related to math, and the third focuses on processes
related to an executive system. These models are covered in depth (Swanson, 2004, 2006,
Swanson et al., 2008; Swanson & Fung, 2016), but are briefly reviewed here.

One model tested in this study is that the influence of WM on children's mathematical
performance is primarily influenced by the phonological storage component of WM because of
its strong association with reading (e.g., Baddeley, Gathercole, & Papagno, 1998, for a review).
The model follows logically from the literature that links phonological skills to new word
learning, comprehension, and mental calculation. The model assumes that children with MD
have deficits in the storage of phonological information that constrains higher levels of
processing (e.g., Crain, Shankweiler, Macaruso, & Bar-Shalom, 1990; Lauro, Reis, Cohen,
Cecchetto, & Papagno, 2010; Majerus & Lorent, 2009). Because of the prevalence of comorbid
math and reading difficulties, several studies has suggested children with serious math or reading
problems share difficulties related to phonological processing (e.g., Hecht, Torgesen, Wagner, &
Rashotte, 2001; Landerl, Bevan, & Butterworth, 2004; Mazzocco & Grimm, 2013; Vukovic &
Lesaux, 2013). A mechanism assumed to play a role in the storage of phonological information
is naming speed. That is, subvocal rehearsal processes that reduce the decay of memory items in
the phonological store prior to output are assumed to be related to naming speed (e.g. Henry &
Millar, 1993; McDougall, Hulme, Ellis, & Monk, 1994). Poor performance on measures of
naming speed that include numbers and letters have been attributed to both children with MD
and children with MLD relative to typical achieving children (e.g., Mazzocco & Grim, 2013, see
Table 1), suggesting difficulties in phonological processing (also see Geary, 2011).

A second model assumes that WM plays a key role in predictions of math, but does not

identify specific components of WM in predicting math performance. Rather, WM is viewed as
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an activated portion of declarative long-term memory (Ericsson & Kintsch, 1995). Baddeley and
Logie (1999) stated that a major role of WM “is retrieval of stored long term knowledge relevant
to the tasks at hand, the manipulation and recombination of material allowing the interpretation
of novel stimuli, and the discovery of novel information or the solution to problems” (p. 31).
Information retrieved from long-term memory includes the accessing of information needed to
making decisions related to number line estimation and magnitude judgments (e.g., Fuchs et al.
2012; Geary, 2011; Simmons et al., 2012) as well as the selection of appropriate operations and
algorithms for math solutions (e.g., Mayer & Hegarty, 1996).

For example, children's estimation abilities, judging measurements and assigning
numbers without counting, have been found to uniquely predict math skills (e.g., Fuchs et al.,
2012; Geary, 2011; Rousselle & Noél, 2007). Number-line estimation tasks require children to
estimate the position of target numbers on a line within numerals at end points (e.g., 0 and 100).
The accuracy of number-line estimation has been found to correlate with general math
achievement (e.g., Siegler & Opfer, 2003). It has been argued that accurate estimation of
numerical magnitudes is important for children’s mental representation of quantities (e.g., Booth
& Siegler, 2008). That is, when children are solving arithmetic problems they activate both the
answer to the problem as well as approximation of the answers magnitude to the accuracy of the
problem. Thus, an adequate magnitude representation allows for a rejection of implausible
answers. Children with MD have been found to have difficulties representing magnitudes
accurately (e.g., Fuchs et al., 2012; Geary. 2011). In general, several studies have found the
children with MD and MLD are less accurate than children with higher mathematical

achievement (e.g., Geary, Hoard, Bryd-Craven, Nugent, & Numtree. 2007).
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Another approach to assessing children’s mental representation of quantities is assessing
their performance related to making judgments of number magnitude. Children’s basic
understanding of mathematical thinking involves making judgments about numbers of larger or
smaller magnitude. Judgments of number magnitude (e.g., which is larger: 8 or 5) have been
found to underlie math performance (e.g., Rousselle & Noél, 2007). Fast binary judgments of
smaller versus larger numbers have a strong relationship between numerical and spatial relations
(e.g., Dehanane, Bossini & Giraux, et al. 1993). For example, Mazzocco and Thompson (2005)
found that magnitude judgments of one digit numbers along with mental addition and reading
were predictive of MLD in the later elementary grades.

Other information activated from LTM includes recognizing the components of word
problems. Several studies have investigated whether the retrieval of contents in long-term
memory, specifically the propositions within word problems outlined by Mayer and Hegarty
(1996), mediate working memory and math problem-solving. These propositions within word
problems are related to accessing numerical, relational, question and extraneous information as
well as accessing the appropriate operations algorithms for solution. Thus, for children to
effectively solve math problems they need to be able to translate each statement of the problem,
integrate information to a coherent problem representation, devise and monitor the solution plan
accurately and efficiently carry out the solution. Hegarty and colleagues (Hegarty, Mayer, &
Green, 1992; Hegarty, Mayer & Monk, 1995) suggested that the identification of problem
solving components plays a major role in translating key information within a word problem
(e.g., converting text to a computation problem; e.g., Wong & Ho, 2017). Children who can
problem-solve can directly translate key terms (e.g., less than, more than) whereas others (e.g.,

children with MD) pay attention to the numbers rather than to the relevant information within the



12
LATENT CLASS ANALYSIS OF CHILDREN

problem to solve the problem (e.g., Swanson, Cooney & Brock, 1993). Previous studies have
found the children with MD perform poorly on accurately identifying the components of word
problems (e.g., Swanson& Beebe-Frankenberger, 2004).

In line with the other two models, a third model views executive processes as (1) accessing
information from LTM (e.g., accessing the correct algorithm) and (b) providing resources to
lower-order (i.e., phonological system) skills. That is, although math proficiency is related to the
retrievability of contents in LTM and activities related to the phonological loop, activities of
related to the executive system of WM may also underlie math proficiency. The executive
component of WM (also termed “controlled attention™) is the residual variance captured in
regression modelling when STM has been partialed-out out in the analysis (Engle et al., 1999).
This residual variance (i.e., controlled attention) is assumed to reflect the inhibition of competing
information from the targeted information (e.g., Unsworth, 2010). Several studies have shown a
relationship between inhibition and poor performance in math (e.g., Blair & Razzo, 2007; Bull &
Scerif, 2001; D’Amico & Passolunghi, 2009; Passolunghi & Pazzaglia, 2005). A random
generation task was used to assess inhibition in this study. The use of Random Generation tasks
has been well articulated in the literature as a measure of inhibition (e.g., Baddeley, 1996; Towse
& Cheshire, 2007). The task is considered to tap inhibition because participants are required to
actively monitor candidate responses and suppress responses that would lead to well learned
sequences, such as 1-2-3-4 or a-b-c-d (Baddeley, 1996).

In summary, the purpose of this study was to identify whether children at risk for MD reflect
a latent class. The study determined if this potential latent class could be differentiated in terms

of severity of math deficiencies and whether this differentiation reflected qualitatively different
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cognitive processes. To extend the literature in these areas, the study sought to answer two
questions:

1: Can a latent classification of children at risk for MD and MLD be identified within a
heterogeneous sample of learners when performance in math, reading and intelligence

measures are included in the analysis?

The present study determines the probability of identifying a latent class of participants
with MD or MLD using the 25th percentile or 11" percentile as a cut-off point within a sample
that includes a large range of math, reading, and cognitive abilities. As mentioned, LCA is a
"model-based clustering" approach that derives clusters using a probabilistic model that
describes distribution of data. So instead of finding clusters of children with math problems,
LCA describes the distribution of the data based on a model that assesses probabilities that
certain cases are members of certain latent classes. Thus, with goodness of fit indices, it is

possible to test whether a “latent structure” underlies the data.

As previously mentioned, performance at or below the 25th percentile on normed
referenced math measures is commonly used to designate risk for MD (e.g., Fletcher et al., 1989;
Fuchs et al., 2012; Siegel & Ryan, 1989; Swanson & Beebe-Frankenberger, 2004; Vukovic &
Siegel, 2010). However, as indicated earlier, we make a distinction in our data analysis between
math difficulties (MD, math performance between the 11th to 25th percentile) and math learning
disabilities (MLD, math performance < 11th percentile). Of interest is whether the profile
(magnitude of differences on performance measures) differs among those children who retain
risk status under both cut-off points (referred to as MLD) and those who only retain risk status at
the 25th percentile cut-off point (referred to as MD). Such a comparison on cognitive measures

would address the issue as to whether the two groups reflect qualitatively different profiles.
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Given the issues related to comorbidity mentioned earlier, of particular interest is whether our
modeling testing of latent classes within the current data set would yield a subgroup with low
math performance but reading scores above the 25™ percentile.
2. Do specific cognitive measures predict latent class membership?

Previous studies have emphasized WM as playing a major role in predictions of MD
(e.g., Cowan & Powell, 2014; Swanson & Beebe-Frankenberger, 2004). However, there are a
number of other processes that may underlie the relationship between WM and math skills. The
processes considered in the current study are: knowledge of problem-solving processes, naming
speed, estimation, number judgment, and inhibition. The importance of these processes was
discussed earlier. For example, STM storage (phonological loop) and related phonological
processes (rapid naming speed), domain specific measures (measures of word problem solving
components, estimation) as well as measures of executive processing (e.g., inhibition), have been
implicated along with WM as predictors math performance (e.g., Cowan & Powell, 2014; Fuchs
et al., 2006; 2012; Lee et al., 2004; Swanson & Beebe-Frankenberger, 2004). What is of interest,
however, is whether children identified as MLD (below the 11™ percentile) have more general
cognitive and academic delays than children with more moderate delays (children with MD).
Some studies (Hanich et al., 2001; Jordon & Hanich, 2003; Jordon, Hanich et al., 2002) have
suggested that children with MLD may have more circumscribed difficulties (e.g., problems
related to estimation, magnitude judgment, naming speed). Therefore, when compared to average
achievers, it was of interest children to determine if performance differences of children with
MD are more generalized than children with MLD.

Method

Participants
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The grade 3 children in this study were drawn from a longitudinal study that included at
risk children in grade 2 to grade 5 (Fung, Orosco, Swanson, 2014; Swanson & Fung, 2016).After
receiving signed parent permission forms, children in the third grade were administer a large
battery of measures. In addition, children at risk and not at risk were identified by teacher
nomination and previous test scores. Grade 3 was selected since it included the largest sample
and the focus of classroom instruction included both calculation and math word problems. Third
graders were also selected from this study since this is the grade where serious math difficulties
are first identified (e.g., Swanson & Beebe-Frankenberger, 2004). In addition, the stability of
math difficulties can be determined by considering math performance on high stake tests in the
earlier grades. The total sample consisted of 447 children in the third grade (chronological age M
=8.39, SD = 0.50; 222 males, 225 females) selected from six Southwest public schools. The
sample consisted of 199 Caucasians (49%), 133 Hispanics (33%), 20 African Americans (6%),
23 Asians (6%), and 24 children (6%) who were identified as Native American or Vietnamese.
Forty children showed mixed ethnicity (e.g., Hispanic + African American, Hispanic +
Caucasian). Based on school records, the sample was primarily low to middle SES based on free
and reduced lunch eligibility, parent education levels, or parent occupation.

Measures Used for Identifying Latent Classes
Fluid Intelligence

Fluid Intelligence. Fluid intelligence was assessed by administering the Colored
Progressive Matrices test (Raven, 1976). The dependent measure was the number of problems
solved correctly, which yielded a standardized score (M = 100, SD = 15).

Calculation and Problem Solving Skills
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Arithmetic calculation. The arithmetic computation subtest for the Wide Range
Achievement Test-Third Edition (WRAT; Wilkinson, 1993) and the numerical operations subtest
for the Wechsler Individual Achievement Test (WIAT; Psychological Corporation, 1992) were
administered to measure calculation ability. The dependent measure was the number of
problems correct, which yielded a standard score (M = 100, SD = 15).

Word problem-solving accuracy (WPS-accuracy). Word problem-solving accuracy
was assessed using four measures. The Story Problem subtest of the Test of Math Ability
(TOMA-2, Brown, Cronin, & McEntire, 1994) required children to silently read a short story
problem and solve the computational problem. The Story Problem-Solving subtest from the
Comprehensive Mathematical Abilities Test (CMAT; Hresko, Schlieve, Herron, Swain, &
Sherbenou, 2003) required the examiner to read each of the problems to the children, asking
children to read along on their own paper. Children were then asked to solve the word problem
by writing out the answer. The KeyMath Revised Diagnostic Assessment (KeyMath; Connolly,
1998) word problem-solving subtest involved the tester reading a series of word problems to the
children while showing a picture illustrating the problem, and then asking them to verbalize the
answer to problem. Mental computation related to word problems was assessed from the
arithmetic subtest of the Wechsler Intelligence Scale for Children, Third Edition (Psychological
Corporation, 1992). Each word problem was orally presented and solved without paper or pencil.
Questions ranged from simple addition to more complex calculations.

Reading Skills
Reading. Reading comprehension was assessed by the Passage Comprehension subtest

from the Test of Reading Comprehension-Third Edition (TORC; Brown, Hammill, &
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Weiderholt, 1995) and word recognition was assessed by the reading measure decoding subtest
of the Wide Range Achievement Test-Third Edition (WRAT-Reading; Wilkinson, 1993).
Cognitive Measures Used for Determining Correlates of Latent Class Membership
Working Memory

Phonological loop. This component of WM was measured using three tasks. The
Forward Digit Span subtest of the Wechsler Intelligence Scale for Children-Third Edition
(WISC-III; Wechsler, 1991) assessed short term memory (STM) since it was assumed that
forward digit spans presumably involved a subsidiary memory system (the phonological loop).
The task involves a series of orally presented numbers which children repeat back verbatim. The
Word Span task was previously used by Swanson and Beebe-Frankenberger (2004), and assessed
the children’s ability to recall increasingly large word lists (a minimum of two words to a
maximum of eight words). Testers read lists of common but unrelated nouns to the children, and
were asked to recall the words. Word lists gradually increased in set size from a minimum of
two words to a maximum of eight. The Phonetic Memory Span task assessed the children’s
ability to recall increasingly large lists of nonsense words (e.g., des, seeg, seg, geez, deez, dez)
ranging from two to seven words per list (Swanson et al., 2008).

Central executive. This component of WM was measured using three tasks. The
Listening Sentence Span task assessed children’s ability to remember numerical information
embedded in a short sentence (Daneman & Carpenter, 1980). Testers read a series of sentences
to each child and then asked a question about a topic in one of the sentences, and then children
were asked to remember and repeat the last word of each sentence in order. The Conceptual Span
task assessed children’s ability to organize sequences of words into abstract categories

(Swanson, 2013). The experimenter presented set of words (e.g., “shirt, saw, pants, hammer,
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shoes, nails”), asked a process question ("Which word, 'level' or 'saw', was said in the list of
words?"), and then asked the participant to recall the words that went together.

Because WM tasks were assumed to tap a measure of controlled attention referred to as
updating (e.g., Miyake, Friedman, Emerson, Witzki, & Howerter, 2000), an experimental
Updating task, adapted from Swanson and Beebe-Frankenberger (2004) was also administered.
A series of one-digit numbers was presented that varied in set length from 3, 5, 7, and 9. No
digit appeared twice in the same set. The examiner told the child that the length of each list of
numbers might be 3, 5, 7, or 9 digits. Children were then told that they should only recall the last
three numbers presented. Each digit was presented at approximately one-second intervals. After
the last digit was presented the child was asked to name the last three digits, in order. The
dependent measure was the total number of sets correctly repeated (range 0 to 16).

Visual-spatial sketchpad. This component of WM was measured using two tasks (see
Swanson, 1992, for review of these tasks). The Mapping and Directions Span task assessed
whether the children could recall a visual-spatial sequence of directions on a map with no labels.
Children were presented with a map for 10 seconds that contains lines connected to dots and
square (buildings were squares, dots were stoplights, lines and arrows were directions to travel).
After the removal of the map, children were asked a process question and then asked to draw the
lines and dots on a blank map. The Visual Matrix task assessed the children’s ability to
remember visual sequences within a matrix. Children were presented with a series of dots in a
matrix and were allowed 5 seconds to study the pattern. After removal of the matrix, children
were asked a process question and asked to draw the dots they remembered seeing in the
corresponding boxes of a blank matrix.

Measures Assumed to Underlie the Relationship between WM and Math
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The measures assumed to mediate the relationship between WM and math performance
were related to accessing specific information from LTM (word problem solving components,
estimation, and magnitude judgement), enhancing the storage of phonological information
(naming speed) and inhibiting the accessing of irrelevant information (random generation). A
description of each task follows.

Word problem-solving components. This experimental task assessed the child's ability
to identify processing components of word problems (Swanson & Beebe-Frankenberger, 2004).
Each booklet contained three problems that included pages assessing the recall of text from the
word problems. To control for reading problems, the examiner orally read each problem and all
multiple-choice response options as the students followed along. After the problem was read,
students were instructed to turn to the next page on which they were asked a series of multiple-
choice questions requiring them to identify the correct propositions related to (1) question (2)
number, (3) goal, (4) operation and (5) algorithm of each story problem. Children were also to
identify the extraneous propositions for each story problem.

Estimation. Two number line estimation tasks adapted from Siegler and Opfer's (2003)
and Siegler and Booth’s (2004) study, were administered. For set 1 of the Estimation task,
children were asked to examine five straight lines that were 25-cm long. Each line was identical
in length and was marked with a zero at one end and one hundred on the other end, creating a
blank number line. A single number (e.g., 50. 75, 45, 32, 6, 22) was placed above the center of
each line. Children were asked to estimate where they thought the number presented should be
placed on the line and indicated this by marking an X on the line. For set 2, children were asked
to examine another set of five straight lines. For this set, however, each line was of a different

length (25c¢m, 20cm, 12cm, 30cm, and 20cm) with end points of 0 and 100. The reason to
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manipulate the length of the line was related to issues raised as to whether spatial information or
magnitude judgment underlines problem in estimation (Chew, Forte et al., 2016). Several studies
suggest that children who are poor on mathematical tasks have a reduced visual-spatial span
(Bull & Scerif, 2001) and therefore we varied to length to have a better sense if difficulties were
related to magnitude or spatial judgment.

For each of the 10 lines (set 1 and 2), the point of accuracy was calibrated for each line.
Accuracy was calculated by using a transparency template and counting how many units of
measure the X was from the correct answer. For the five lines in Set 1, the distance from the
accuracy point was computed for each % inch. For set 2, arithmetically equivalent distances
were used to count off the distance between the participant's X and the where actual placement
the correct answer should be on the line. We converted difference scores (number of units from
the exact point) to positive values by subtracting the difference score from 20 in each set. Thus,
our estimate of the number line estimation varied from that of Siegler and Opfer (2003), in that
they used group level median placements fitted to linear analog models to make inferences about
the children’s placements.

Magnitude comparisons. Two sets of digits were presented in 25 rows with three
columns. Each row had the same number of digits (1 digit, 2 digits, and 3 digits) in each
column. In the first set, children were asked to circle the largest number in each row as fast as
they could in 30 seconds. The second set also had an additional 25 rows of numbers with three
numbers in each row. Children were asked to circle the smallest number in each group as fast as
they could in 30 seconds. The numerical distance between a symbolic magnitude comparison
was alternated across rows so that each row had one comparison close in numerical distance

(e.g., 2 and 3) and one far in numerical distance (2 and 9). Children were presented with 25 rows
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of numbers with three numbers (either in pairs or in three digits) in each row. The scores for set
1 were the number of correctly identified largest numbers (set 1) within 30 seconds, and the
scores for set 2 were the smallest numbers correctly identified within 30 seconds.

Naming speed. The Comprehensive Test of Phonological Processing's (CTOPP;
Wagner, Torgesen, & Rashotte, 2000) Rapid Digit and Rapid Letter Naming subtests were
administered to assess speed in recalling numbers and letters. Children received a page that
contained four rows and nine columns of randomly arranged numbers (i.e., 4, 7, 8, 5, and 2).
Children were required to name the numbers as quickly as possible for each of the two stimulus
arrays containing 36 numbers, for a total of 72 numbers. A stopwatch was used to time
participants on naming speed. The dependent measure was the total time to name both arrays of
numbers. The Rapid Letter Naming subtest is identical in format and in scoring to the Rapid
Digit Naming subtest, except that it measures the speed children can name randomly arranged
letters (i.e., s, t, n, a, k) rather than numbers.

Inhibition. The Random Number and Random Letter Generation Tasks were
administered to assess inhibition (Swanson & Beebe-Frankenberger, 2004). Children were first
asked to write, as quickly as possible, numbers (or letters) in a non-random sequential order to
establish a baseline. They were then asked to write numbers as quickly as possible, out of order,
in a 30-second period. Scoring included an index for randomness, information redundancy, and
percentage of paired responses to assess the tendency of participants to suppress response
repetitions. The measure of inhibition was calculated as the number of sequential letters or
numbers, minus the number of correctly unordered numbers or letters, divided by the number of
sequential letters or numbers, plus the number of unordered letters or numbers.

Nestedness
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According to Maas and Hox (2005), at least 50 level-2 observations (classrooms in this
case) are needed to assure that estimated parameters are unbiased. Because data were collected
for children in 19 different classrooms, we considered utilizing a multi-level approach. However,
the models would not converge due to the small number of clusters. Thus, multi-level modeling
was not used in the final analyses.

Cut-off points

The aim of this study was to determine whether discrete subgroups in math ability
emerged among a heterogeneous group of third graders. The manifest variables (calculation,
problem solving, reading, fluid intelligence) in the first analysis to determine discrete groups
were dummy coded as reflecting normative score as at or below the 25" percentile (1 = at or
below 25th percentile, 2 = above the 25™ percentile). The 25" percentile or a 90 standard score
was based on the normative scores from the standardized math, reading and fluid intelligence
measures. However, it is important to note that several researchers have suggested this cut-off
point is more likely to capture children with general achievement difficulties and not necessarily
children with MLD (i.e., math learning disabilities). A follow-up analysis we recomputed the
latent classes and used scores below the 11™ percentile as a cut-off point for determining children
at risk for MLD. Obviously some of the children identified as at risk at the 25" percentile cut-off
point would not necessarily be represented in a latent class at the more severe cut-off. However,
on the assumption our sample is representative of children who experience serious difficulties in
math; we will be able to compare the profiles (via probabilities of occurrence and effect sizes) of
the latent classes that emerge at both cut-off points from those that emerge only at the 25"
percentile cut-off. It was of interest to determine if the cognitive profile of children identified as

at risk for moderate MD (children yielding normative scores between the 1 1™ and 25" percentile)
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could be separated from children with MLD (severe MD). That is, do children identified as at
risk only at the 25" percentile yield a distinct latent class when separated from children identified
at risk below the 11" percentile cut-off?
Procedures

Ten graduate students trained in test administration tested all participants in their schools.
One session of approximately 45—60 minutes was required for small group test administration,
and one session of 45-60 minutes was required for individual test administration. During the
group testing session, data were obtained from problem-solving process (components) booklets,
Test of Reading Comprehension, Test of Mathematical Ability, and the Visual Matrix task. The
remaining tasks were administered individually. Test administration was counterbalanced to
control for order effects.

Results

Distribution of Measures

Table 1 shows the means, standard deviations, skewness, kurtosis and sample reliability
(Cronbach alpha) for each measure. A preliminary analysis showed the classification measures
met standard criteria for the univariate analysis (Kline, 2011). Skewness less than 3 and kurtosis
less than 4 did not occur on the classification measures, but did occur for some of the cognitive
processing measures (e.g., Estimation, Numeracy). However, a transformation of these measures
did not change the pattern of the results and therefore the original scores were used in the
analysis. Performance for the TOMA was of concern because mean scores were out of the
normal range, even though standard score performance varied from 40 to 140 in the sample. It is
important to note that this task required children to silently read and solve a story problem. We

initially removed the outliers (SD > 3.5) for this task, but this did not change the pattern of
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results. Thus, on the assumption this was a heterogeneous sample and performance reflected a
continuum of skills, no outliers were removed from the analysis.
Latent Class Analysis

Model fit. In order to evaluate the model fit, and because LCA is an exploratory
analysis, a series of models were fit, varying the number of latent classes between one and six
(Nylund, Asparouhov, & Muthén, 2007; see Masyn, 2013, for a comprehensive review). A
combination of statistical indicators and substantive theory were used to decide on the best fitting
model. Models with different numbers were compared using information criteria (i.e., Bayesian
Information Criteria-BIC, Akaike Information Criteria-AIC, and Adjusted BIC). Lower values
on these fit statistics indicated a better model fit. Statistical model comparisons included
likelihood ratio tests: the Lo-Mendell-Rubin Test (LMR) and the Bootstrap Likelihood Ratio
Test (BLRT). Both statistical procedures compared the improvement between neighboring class
models (i.e., comparing models with two vs. three classes, and three vs. four, etc.) and provided
p-values. P-values were used to determine if there was a statistically significant improvement in
fit for the inclusion of one more latent class. A nonsignificant P-value indicated for a K-class that
the previous K-class with a significant P-value fit the data better. Among the information
criterion measures, the BIC is generally preferred, as is the BLRT for statistical model
comparisons (Nylund et al., 2007). An additional consideration was the interpretability of the
classes, as well as the size of the smallest class.

Given the indices reported in Table 2, the three and four class models were studied for
interpretability. Both the LMR and BLRT yielded non-significant p-values for the four-class
solution and significant p-values for the three class model, indicating that the three-class model

provided an excellent fit to the data. The BIC was lower for the three than the four class model.
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Thus, the four-class and five- class models did not represent an improvement over the three-class
model. In addition, adequate sample proportionality and item probabilities for the three-class
model were more easily interpreted than the four class model. Masyn (2013) suggested that class
proportion values can be considered (i.e., “assign meaning to the classes” (p. 559) when
determining the number of latent classes. The item probabilities for the three class model are
reported in Table 3. The entropy for the three class model was .75, an acceptable value (Nylund
et al., 2007).

Sample and item probabilities. Table 3 shows the proportion of the sample in each
latent class (gamma estimates), as well as the probabilities (rho estimates) for each measure
(manifest variable) for each response category as a function of each latent class for the total
sample. Shown are the item probabilities for performance at or under the cut-off threshold of the
25™ percentile and below 11" percentile cut-off score. These rho estimates reflected the latent
class abilities of the given item-response, conditional on the given latent-class membership. To
facilitate discussion, and because there is no set standard for determining meaningful
probabilities, item latent class probabilities above 70% were selected as reflecting MD status and
these values are shown in bold. That is, probabilities above .70 indicated risk of low
performance for that particular manifest variable.

At Risk for Math Difficulties (MD)

Three latent classes emerged using the 25" percentile as a cut-off score. As shown in the
left section of Table 3, item response probabilities at or greater than .70 indicated high
probabilities for risk status (children who performed at or under the 25" percentile). The first
latent class (LC=1) was labeled as average achievers across all manifest variables. Latent class

group 2 (LC=2) was characterized by low achievement in calculation, problem solving, and
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reading comprehension, but average performance in areas of word identification and fluid
intelligence. This group was labeled as children at risk for MD. Latent Class 3 (LC=3) was
characterized by low achievement on selective measures of problem solving accuracy, but
average achievement on the remaining manifest variables. This group was labeled as poor
problem solvers.

To interpret these profiles further, the means and SDs for each of the normed manifest
variables are reported in the top section of Table 4. Mean scores were in the normal range for
the average achievers (LC=1), whereas mean scores for children with MD (LC=2) were below
the 25™ percentile (90 standard) for all classification measures, except fluid intelligence. In
contrast, children with problem solving difficulties (LC=3) yielded average mean scores on
measures of calculation and reading, but below the 25™ percentile on three of the four problem
solving measures.

Sample Distribution. The total sample proportional distributions for the three latent
classes are shown in the top row of Table 3. These estimates (gamma estimates) represented the
proportion of the sample expected to be members of a particular latent class. The largest
proportional distribution of the sample occurs for LC= 3 (.54) followed by LC=1 (.32). The
proportional distribution of gender across the three latent class groups for males was .50, .52 and
49, respectively. No significant effects were found for gender representation among the three
latent classes, y° (2, N = 447) = .29, p =.86.

In summary, given the research question and the statistical findings (BLRT) as well as
the substantive meaning of each solution (item probabilities and proportional assignment

discussed below); a three class model was selected. The model included average achievers,



27
LATENT CLASS ANALYSIS OF CHILDREN

children with MD, and poor math problem solvers. The mean norm referenced scores for each

latent class on the manifest variables are shown at the top of Table 4.

Math Learning Disabilities (MLD)

A follow-up to the above latent class analysis that used the 25" percentile as a cut-off
score, the next analysis utilized the 1 1® percentile (based on the norms within the test manual) as
a cut-off point to determine the latent classes. As shown in Table 2, three latent classes emerged
as the best fit.! The right hand section of Table 3 shows that the largest proportional distribution
of the sample occurred for LC=3 (.55) followed by LC=1 (.35). An interpretation of the item
probabilities shows a profile similar to the more liberal cut-off score (at or < 25" percentile).
Latent class 1 reflected average achievers, latent class 2 reflected children with MLD and latent
class 3 reflected children with low math problem solving skills. The proportional distribution of
gender for LC=1, LC=2, and LC=3 for males was .50, .51, and .49, respectively. No significant
effects were found for gender representation, y° (2, N = 447) = .07, p =.96. The mean norm
referenced scores for each latent class on the manifest variables are shown at the bottom of
Table 4.

Comparison of Cut-off points

As shown previously in Table 3, LC=2 was 15% of the total sample at the 25" percentile
and 10% of the total sample at the < 1 1m percentile cut-off. A cross-classification of the two cut-
off points was computed. As expected, there was a significant difference in sample
representation for LC=1 thru LC=3 at the 25th percentile cut-off when compared to LC1 thru
LC3 at the 11" percentile cut-off point, x* (4, N = 447) = 621.33, p <.0001. The percentage of

children identified as a MD latent class under the moderate cut-off (< 25 percentile) that
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retained their status under the severe cut-off (< 11" percentile) was 57%. The other 43% of the
MD group transitioned into the poor math problem solving group. The percentage of children
identified as a latent class of poor math problem solvers (LC=3) under the moderate cut-off (<
25 percentile) that retained status (LC=3) at the 110 percentile cut-off was 89%. The remaining
11 percent transitioned into the average achieving latent group. Regardless of cut-off points,
none of the average achieving children transitioned into the “at risk for MD” or poor problem
solving group.

Table 5 shows the profile of the group that retained latent class status at both cut-off
points and those who transitioned out of risk group status by lowering the cut-off point to the 11"
percentile. Consistent with our criteria, the retained group was defined as children with MLD and
those that transition out of the latent class group at risk were defined as children with MD. As
shown, except for fluid intelligence, all manifest (classification) variables for the retained MLD
group yielded mean scores below the normal range (standard scores < 85). No significant
differences were found in gender representation between the two (retained vs. transition) groups
v (1, N=65) = .46, p=49. The transition group yielded normative scores in the average range
on measures of fluid intelligence, calculation, and word identification (mean standard scores >
85).

As shown in Table 5, effect sizes (Cohen’s d ) were computed between those children
who retained risk status (regardless of cut-off score) and those who transitioned out of the
latent class related to risk by lowering the cut-off point to the 1 1m percentile. To make d’s
interpretable, statisticians have adopted Cohen’s (1988) system for classifying d’s in terms of
their size (i.e., .00 - .19 is described as trivial; .20 - .49, small; .50 - .79, moderate; .80 or

higher, large). As shown in Table 5, the two groups, referred to as MD and MLD, respectively,
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where compared on manifest variables used to determine latent status. As expected, the
shifting from one latent class to another was related to scores on the math measures. However,
utilizing Cohen’s criterion of a high effect size (ES’s > .80), the magnitude of the ESs between
the two groups was large for performance on reading measures. Children with relatively higher
reading scores were more likely to transition out the latent class group at risk by lowering the
cut-off point (< 11™ percentile).

Correlates of Latent Classes

The next analysis determined those cognitive variables external to the classification
measures that played a significant role in predicting latent class membership.

Confirmatory factor analysis. The cognitive measures were reduced to latent
constructs for the subsequent analysis. Further, converting the measures to latent constructs
eliminated measurement error and allowed for a focus on shared variance rather than isolated
task variance (e.g., Kline, 2011). Therefore, in our next analysis we specified tasks as indicators
of the problem solving process (question, number, goal, operations, algorithm, and irrelevant
information), numeracy (numbers of high and low magnitude), estimation, speed (naming speed
for numbers and letters), inhibition (random generation of numbers and letters),phonological
loop or STM (Digit Forward Span, Word Span, and Phonetic Span), executive processing
(Conceptual Span, Listening Sentence Span, updating), and visual-spatial sketch pad (matrix,
mapping& directions).

Several indices were selected because of their widespread use and relative ease of
interpretation with regards to the assessment of model fit. These indices included the x>
goodness-of-fit test, comparative fit index (CFI), Tucker-Lewis index (TLI), and the root-mean-

square error of approximation (RMSEA), along with its associated confidence intervals. It is
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generally recognized that to support model fit a consensus among the following is needed: a
non-significant x> goodness-of-fit value; a CFI > .90; a TLI > .90; an RMSEA below .05 with the
left endpoint of its 90% confidence interval markedly smaller than .05 (e.g., Hu & Bentler, 1999;
Raykov & Marcoulides, 2008). The model fit indices indicated a good model fit: 5° (181) =
297.21, p <.0001; CFI= .95; TLI = .94; RMSEA = .04 (.032, .048); SRMR = .048. Thus, factor
or latent scores were used as continuous variables in predicting latent class status.

A comparison of the latent class groups on the mean factor scores (latent variables) in z-
score units are reported in Appendix A. Also reported are effect sizes comparing each latent
class on these variables. Several large effect sizes according to Cohen’s (1988) criteria (ESs >
.80) emerged. As shown in Appendix A, average achievers (LC=1) superseded (magnitude of
ESs were large) children at risk for MD (< LC=2 at 25" percentile cut-off) and children with
MLD (LC= 2 at the 11" percentile cut-off) on all factor scores except on the latent
measurement of naming speed.

Logistic regression. A logistic regression analysis was computed that included latent
class membership as the criterion measure and cognitive processes (factor scores) as the
predictor variables. Table 6 shows the unique contribution of each cognitive process in
predicting the latent class in a full model. Regardless of the two cut-off points, as shown in Table
6, measures of domain specific component knowledge, estimation, and the executive component
of WM were significant predictors of latent classes. In contrast to the 25" percentile cut-off,
however, additional significant unique predictors at the 1" percentile cut-off occurred for STM
(phonological loop), naming speed and visual-spatial WM. This finding suggests that children at
the lower cut-off may have more generalized cognitive difficulties when compared to selecting

children at risk at the 25™ percentile. These findings will be qualified later.
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Based on the three models discussed in the introduction, separate model predictions
related to STM storage (phonological loop, naming speed), domain specific knowledge
(components of word problems, magnitude judgments, and line estimation) and executive
processing (WM, inhibition) were computed. Reported in Table 6 are the odds/ratio, estimates,
and standard errors and significance of the odds ratios as indicated by the p value of the Wald
statistic and model fit indices. The Akaike’s Information Criterion (AIC) allowed for a
comparison of models that were not nested, and the Bayesian Criterion (BIC) allowed for a
comparison of nested models (Hox, 2010, pp. 47-50). In general, models with lower AIC, BIC
and deviance values fit better than models with higher values.

Three important findings are shown in Table 6. First, lower AIC, BIC and deviance
values emerged for the domain specific model when compared to the other two partial models.
However, when comparing AIC, BIC and deviance values to the full model, all three
comparisons were significant (all ps <.01) suggesting none of the three specific models in
isolation provided a parsimonious fit to the data when compared to the full model. Second,
regardless of the cut-off point, component knowledge, estimation, and the executive component
of WM were significant predictors of latent class membership in the full regression model.
Additional significant predictors (STM, Naming speed, visual-spatial sketch pad) of latent class
membership occurred at the lower cut-off point (< 1 1m percentile) when compared to the cut-off
point at the 25" percentile. Finally, regardless of the cut-off point, no significant unique
variance was found for numeracy (small and large number magnitude judgements) and inhibition
(random generation) in predictions of latent class membership.

Between latent class comparisons. Of interest in the next analysis was determining

those cognitive processes that uniquely discriminated between each latent class. Table 7 shows
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the results of a multinomial regression that used the poor problem solving latent class as a
reference group (LC=3). This group was selected because it showed the greatest overlap when
transitioning from one latent class to another. Of interest was determining the cognitive variables
that separated poor math problem solvers (LC=3) from average achieving children (LC=1) and
those cognitive variables that separated poor math problem solvers from children with MD
(LC=2 at the 25" percentile cut-off) or MLD (LC=2 at the 11" percentile cut-off). The odds
ratios reported in Table 7 represented the ratio of change in the odds of an event (i.e., in this case
not belonging to the “at risk for problem solving deficits” latent class) and varied from 0 to
infinity. An odds ratio greater than 1 indicated a higher chance of not being in the reference
group (poor problem solver). In contrast, an odds ratio less than 1 indicated a greater chance of
belonging to the reference group. When the odds ratio is 1 or close to it, no effect was found. A
nonsignificant odds ratio would suggest that the independent variable failed to provide reliable
predictions to differentiate one latent class group from another.

To interpret the outcomes in Table 7, consider the multinomial logit for a one-unit
increase in average achieving group (LC=1) on the STM measure. If a student in the average
achieving group (LC=1) improved in STM by 1 point, the multinomial log odds of being
classified as “not at risk for poor problem solving,” when compared to the poor problem solving
group (LC=3), would be expected to increase by 1.33 units, while holding all other variables in
the model constant.

Table 7 shows a comparison between the poor problem solving latent class and average
achieving children and between children with MD (cut-off < 25 percentile) and MLD (cut-off <
1" percentile). Because there were multiple comparisons, alpha was set to .01. As shown,

regardless of the cut-off point, average achievers out performed poor problem solvers on
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measures of STM, knowledge of problem solving components, numeracy, and the executive
component of WM. In contrast, children with MD or MLD could not be differentiated from poor
problem solvers on measures of STM, numeracy, and measures of executive processing (WM
and inhibition), suggesting that both latent classes suffer common difficulties on these measures.
That is, given that poor math problem solvers were deficient on these measures relative to
average achievers, we can assume that children with MD or MLD were deficient on these
measures relative to average achievers. A significant effect was found contrasting poor math
problem solvers (LC=3) and children with MD (LC=2 at 25™ percentile) or MLD (LC=2 at 11"
percentile) on two measures. The poor problem-solving latent class out-performed children with
MD or MLD on measures of naming speed and estimation.

Stable group comparisons. Obviously, latent class comparisons may yield equivocal
findings because the results are susceptible to transitions between classes as a function of
variations in cut-off points. Thus, we compared children who retained (stable) their same latent
classification as children at risk (LC=2) at both cut-off scores to those not retained. Children that
retained their risk status at both cut-off we considered as suffering from MLD whereas children
who transitioned out of the risk status group at the lower cut-off score were considered children
with MD. Table 8 shows the effect sizes comparing the children with MLD to the two other
latent classes. Using Cohen’s (1988) criterion, large effect sizes (> .80) emerged in favor of
average achievers (LC=1) when compared to children at risk for MLD (LC=2) on all cognitive
measures, except naming speed and visual-WM. Large effect sizes also occurred between
children with MLD (LC=2) and poor problem solvers (LC=3), suggesting that children with
MLD yielded poor performance on measures related to knowledge of problem solving

components and estimation.. However, it is important to note that several moderate effect sizes



34
LATENT CLASS ANALYSIS OF CHILDREN

(.50 to .80) occurred between children with MLD and poor problems solvers, suggesting children
with MLD yielded poor performance on measures of STM, numeracy, and inhibition relative to
poor problem solvers.

However, the results do not address the question as to whether children with MLD vary
from children with MD on cognitive measures. The previous analysis (see Table 5) showed large
effect sizes between the two groups (transition group vs. stable group) on manifest variables
related to reading and calculation. However, according to Cohen’s (1988) criteria, effect sizes
between the two groups were small on measures of fluid intelligence and problem solving.
Likewise, the magnitude of effect sizes between the two groups on the cognitive variables was
miniscule. As shown in Table 9, means scores were higher for the transition group (children with
MD) when compared to the stable group (children with MLD). However, according to Cohen’s
criteria, the only variable to approach a moderate effect size (ES=.50) was performance on the
magnitude judgment factor score. An advantage emerged for children with MD when compared
to children with MLD on this measure.

Discussion

The purpose of this study was to identify whether a discrete class of children at risk for
MD or MLD emerged within a heterogeneous sample that varied in math, reading and fluid
intelligence. The results yielded three important findings. First, the results showed that three
latent classes emerged (average achievers, children with math difficulties or disabilities, and poor
problem solvers) when setting cut-off scores at or below the 25th percentile and below the 11th
percentile on manifest variables. As expected, the latent class referred to as average achievers
outperformed the other two latent classes on a host of measures besides math (see Appendix A).

When the influence of the various predictors was held constant in a logistic regression analysis,
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the cognitive variables that uniquely predicted these latent classes under both cut-off points were
accuracy in identifying word problem solving components, estimating number values on a line,
and span measures related to the executive component of WM. Finally, the results showed that
poor problem solvers shared similar deficits to children with MD and MLD on several cognitive
measures (e.g., STM, identifying word problem solving components, numeracy, executive
component of WM), but yield advantages on measures of naming speed and estimation. Given
these general findings, the results related to two questions that directed this study are now
addressed.

Question 1: Can a latent classification of children at risk for MD and MLD be identified
within a heterogeneous sample of learners when performance in math, reading and

intelligence measures are included in the analysis?

The results show that a latent class emerges related to math difficulties (MD) and math
learning disabilities (MLD) within a heterogeneous sample of learners. As shown in our analysis
(see Table 3), the latent status membership probabilities for students at risk for both calculation
and problem solving difficulties were approximately 15% of the total sample when the cut-off
score was set at or below the 25th percentile and approximately 10% when set below the 11th
percentile. The results showed that the lower of incidence was due to the fact that approximately
half of the children identified as at risk with combined low calculation and problem solving
performance identified at the 25th percentile (N = 65) were considered less likely to be identified
as at risk for MLD when the cut-off scores were set to the 11th percentile (N was reduced to 37).
Thus, the question emerges as to what is gained comparing the two cut-off points beyond

lowering the incidence of MD by using the stricter cut-off score?
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We suggest three advantages. First, reading performance plays a major role in defining
MD and MLD. The effect sizes for reading were clearly in favor of children who were in the
11th to 25th percentile group when compared to children with MLD. Regardless of the degree of
math severity, reading scores, especially comprehension, were in the below average range for
both children with MD and children with MLD. As shown in Table 3, standard scores in passage
comprehension were substantially lower than word identification, clearly suggesting that the
children at risk in our sample were not proficient in reading comprehension. However, their
math and reading problems did not reflect general problems in aptitude. That is, the normed
scores for fluid intelligence measure for children with MD or MLD were in the normal range.

Second, our results showed that a latent class of children with MD or MLD and average
reading did not emerge. In our sampling, we did not find a separate latent class of poor readers
independent of math problems. Our findings are consistent with comprehensive meta-analyses
of the published literature on math disabilities (Swanson & Jerman, 2006; Swanson et al., 2009)
showing no clear cut differences on cognitive measures between children with math disabilities

and children with reading disabilities (also see Swanson, 2012; Willcut et al., 2013).

Although it has been argued that clear contrasts between children with MD and RD on
cognitive measures do not emerge because reading performance is not controlled (e.g., see
Jordan, 2007, also see Swanson et al., 2009 for review), our results suggest that children with
MD or MLD experience some of the same processing difficulties as children with reading
disabilities. As expected and consistent with other studies (e.g., Cirino et al. 2015), variations in
cognitive performance emerged related to variations in the cut-off score used for classifying
children. When latent classes related to a 25™ percentile or 1 percentile cut-off are compared

to a latent class of average achievers, the 1 10 percentile yielded more significant deficits on



37
LATENT CLASS ANALYSIS OF CHILDREN

cognitive measures than the 25™ percentile cut-off (see Table 6). However, a key issue was
whether a separable latent class of children with math problems would emerge without reading
problems. No doubt, we could have created a cluster of children with only math problems (i.e.,
via a cluster analysis), and compared this group on measures external to the classification (e.g.,
reading). However, this procedure would be limited because we could not determine the
probability that such a latent class would emerge when reading was considered as part of the
sampling process (e.g., Hagenaars & McCutcheon, 2009). The main difference between LCA
and other clustering algorithms is that LCA offers a "model-based clustering" approach that
derives clusters using a probabilistic model that describes the distribution of data. So instead of
finding clusters with a distance measure, a model describes distribution of data based on the
probabilities that certain cases are members of certain latent classes. LCA assumes an underlying
latent variable gives rise to the classes, whereas the cluster analysis is an empirical description of
correlated attributes from a clustering algorithm. LCA is considered methodologically superior

given that it has a formal chi-square significance test, which the cluster analysis does not.

Finally, the results show that math problem solving difficulties are independent of
calculation difficulties. Our results indicated that a large segment of the sample shows
difficulties in math problem solving when using the 25th percentile (53% of the total sample)
and 11th percentile as cut-off points (55% of the sample). This finding is consistent with the
National Mathematics Advisory Panel (2008), and to PISA (Programme for International Student
Assessment; OCED 2012a, b), showing that U.S. children show substantial weaknesses when
asked to solve math word problems relative to other achievement domains and in comparison to
other industrialized countries. In addition, longitudinal studies (e.g., Swanson et al., 2008) have

shown that even when calculation and reading skills are at grade level, difficulties in math word
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problem solving are persistent across the elementary school years. Also finding a latent class of
children at risk for MLD as well as a latent class of poor problem solvers fits within current
categories of learning disabilities. These categories include specific disabilities in calculation
and mathematical problem solving [see IDEA reauthorization, 2004, Sec. 300.8(c)(10)].
Although the majority of classification research on MLD has focused on calculation deficits
(Andersson, 2010; Geary 2011; Gersten et al., 2009; Swanson & Jerman, 2006), we found a
latent class group showing math classification related to poor problem solving separately from

problems in calculation.

Question 2: Do specific cognitive measures predict latent class membership?

In terms of cognitive models that predict latent class status, three were considered. As
reviewed in the introduction, these models considered whether STM storage (phonological loop),
domain specific knowledge (components of word problems, magnitude judgments, and line
estimation) and executive processing played a major role in predictions of latent class status.

The results suggested that none of the above models in isolation provided a parsimonious
account of the findings. The largest beta-weight loadings from the full logistic regression model
were measures of domain specific knowledge (word problem solving components and
estimation) and the executive component of WM. These findings fit the literature attributing
MD and MLD to deficits in magnitude representation (e.g., Fuch et al, 2012; Martin et al., 2013;
Geary, 2011 ), accessing specific knowledge related to word problem structure (e.g., Swanson &
Beebe-Frankenberg, 2004 ) and the executive component of working memory (e.g., Lee et al.,
2004) The domain specific knowledge of problem solving components played a significant role
in the predictions of latent class, which is consistent with other studies identifying children at

risk for math problems (Swanson et al., 1993; Swanson & Beebe-Frankenberger, 2003). In this
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study, problem solving components tapped into children's recognition of question, number
assignment, goals, and irrelevant information propositions within word problems. The findings
related to estimation also fit within the current literature on identify children with serious math
difficulties (e.g., Geary, 2013). It has been argued the core of math abilities may be the ability to
develop a mental number line on the assumption that numbers are arranged spatially or on a
continuum. An adequate magnitude representation allows for a rejection of implausible answers
and therefore helps children compute correct answers. The high loadings related to the executive
component of WM were an expected finding. This finding is consistent with previous studies
suggesting that the executive component of WM plays a major role in predicting math
proficiency (e.g., Swanson & Beebe-Frankenberger, 2004).
Implications

There are two implications related to our findings. First, within a heterogeneous sample
of third grade learners, an identifiable group of children with MD was identified at the 25th
percentile cut-off point. Although the 25th percentile has been used as a common "a priori cut-
off point" to identify children at risk the issue as to whether the cut-off score yields a latent class
of children not proficient in math and/or a discrete identifiable group has not been established.
Thus, this study contributes to the emerging literature that children with MD as well as MLD
represent an identifiable group. The results provide empirical support for the commonly used
25th percentile as an a priori cut-off score for determining risk. That is, latent class analyses
showed a discrete group of children emerged as at risk for MD at this cut-off point.

Second, the probability of finding a latent class of children with MD or MLD completely
independent of reading problems may be quite low. Obviously, this implication is limited to our

data set and may not generalize to other samples. However, our findings are consistent with a
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number of other studies finding the math difficulties are comorbid with reading difficulties and
therefore share similar processing deficits (e.g., Hecht et al, 2001; Jordon et al., 2003). For
example, Swanson and Jerman’s (2006) meta-analysis of the published literature on MLD found
no clear cut differences between children with arithmetic and reading difficulties on cognitive
measures. Although the results of the meta-analysis suggested that effect sizes were in favor of
children with reading disabilities (RD) when compared to children with MD across several
measures, the substantive advantages for children with RD were isolated to measures of naming
speed and visual-spatial WM. These overall findings were problematic because several studies
have suggested that children with RD can be separated from children with MD (e.g., Jordan,
Hanich, & Kaplan, 2003). No doubt, the poor differentiation between children with MD and
those with reading difficulties may have occurred because the studies included samples with
poor arithmetic skills accompanied by relatively low reading skills. Therefore, it was difficult to
determine whether results attributed to MD were in fact due to arithmetic difficulties or whether
they were outcomes related to generally poor academic skills that shared the same process that
incorporated both reading and math skills.

Thus, there is a question as to whether children with MD or MLD suffer from the same
processes associated with RD. For example, Jordan (2007) in her synthesis of the literature
argued that authors have incorrectly assumed that MLD is related to language, which in turn
suggests some commonality between math and reading. Other studies (e.g., Landerl, Bevan, &
Butterworth, 2004) have suggested that all children with MD, with or without reading problems,
showed general deficits in number processing. Other authors also find evidence (e.g., Fuchs et

al., 2008) that problem solving rather than number and arithmetic skills differentiates children
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with MD from children with MD+RD. Thus, what may differentiate the two disabilities is the
ability to solve complex word problems (e.g., Jordan et al., 2003).

As shown in this study, the ability to solve math word problems yields a discrete latent
class g, in which the majority children in this discrete class yield calculation and reading scores
in the average range (see Table 4). Thus, children with difficulties in math problem solving
represent a distinct category (i.e., reading and calculation skills play a less important role) of risk
that can be separated from children with a combination of reading and/or calculation deficits.
Although the poor problem solving latent class shared similar cognitive deficits as children with
MD or MLD relative to average achievers ( e.g., STM, Knowledge of problem solving
components, numeracy, executive component of WM), their skills related to naming speed and
estimation supersede those of children with MD or MLD.

How is it that a poor math problem solver does not necessarily suffer deficiencies in
reading or calculation? We raise that question since it is commonly assumed that poor
mathematical word problem solving can be linked to reading proficiency (e.g., Swanson et al.,
1993). This is because mathematical word problems are a form of text and the decoding and
comprehension of text draws upon the phonological system. However, understanding
mathematical word problems also involves a complex interaction of text comprehension and
mathematical processes that are related to activities attributed to the WM system. There are some
studies that clearly show that reading or reading related processes do not directly mediate the
influence of WM on problem solving. For example, an earlier study by Swanson and Sachse-Lee
(2001) found that for children with MLD and chronologically age-matched peers that
phonological processing, verbal WM and visual WM contributed unique variance to word

problem solution accuracy. Thus, they did not find support for the assumption that reading ability



42
LATENT CLASS ANALYSIS OF CHILDREN

mediated the role of WM in solution accuracy. In a follow-up study, Swanson (2004) compared
two age groups (7 and 11 years old) on WM and problem-solving measures. This study found
that regardless of age, WM predicted solution accuracy in word problems independent of
measures of problem representation, knowledge of operations and algorithms, phonological
processing, fluid intelligence, reading, and math. Further, the results suggested that a general or
executive system underlies age-related improvements in word problem-solving accuracy.
Further, Swanson (2004) found that measures of LTM (such as calculation and knowledge of
algorithms) entered into the regression analysis did not eliminate the contribution of WM to
problem solving accuracy, a finding similar to ours. We did find that the retrievability of
contents in LTM, propositions within word problems outlined by Mayer and Hegarty (1996) and
estimation contributed unique variance to problem solving accuracy. In general, our findings are
consistent with models of high-order processing that suggest that WM resources activate relevant
knowledge from LTM (Baddeley & Logie, 1999; Ericsson & Kintsch, 1995), as well as include a
subsystem that controls and regulates the cognitive system (Baddeley, 1986).
Limitations

There are at least four limitations to this study. First, although we used cut-off points
identified in the literature as important in identifying children at risk for MD or MLD, we have
not shown that the identification of latent classes validates a specific cut-off point. Rather the
results suggest the measures were able to identify subgroups to the cut-off to which they were
applied. That is, the same or other latent classes may have emerged with other cut-off scores.
Second, we did not establish the stability of math performance across multiple grades. Although
we used a variety of normed referenced measures to capture consistency in low math

performance, performance across multiple grades was not assessed. Third, we have an absence
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of intervention information. Thus, our study is limited to discussing the risk classification within
a heterogeneous sample and not whether a particular intervention program would later influence
the classification of children at risk.

Finally, some reviewers raised questions about the power of our analyses on our
classification measures. LCA has not at present provided procedures for conducting a power
analysis. For example, the small sample size for the “MLD” group may have potentially yielded
more identifiable items in the areas other than reading with a larger sample. In response to the
sample size, Dziak Lanza, and Tan (2014) analyzed the predictive power of the Bootstrap
likelihood ratio test (BLRT) in LCA analysis using a number of Monte-Carlo simulations. For
example, they found that the simulated power for detecting a three-class over a two-class model
at .90 (alpha = .05) would require an N of 150 (see Table 3, p. 537). Since our sample exceeded
N =150, we assume the BLRT procedure was adequately powered (see Table 2) to detect a
three-class model from a four-class model. However, as useful as LCA is to determine
meaningful patterns within the data, latent class assignment is not a definitive process. Our over-
reliance on model fit compared to substantive theory can produce differing results. Thus, due to
the exploratory nature of the current work and definite sample size limitations for a parameter

intensive model, we take a cautionary approach to modeling math problems in third graders.

Summary

In summary, this study yielded three important findings. First, latent classifications of
children at risk for MD and MLD could be identified among a sample of grade 3 children. The
results provide support for the notion that children at risk for serious math difficulties within a
heterogeneous sample reflect two discrete classes: those with combined calculation, problem

solving, and reading comprehension difficulties and those with math problem solving
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difficulties. Second, approximately half the children who are initially identified as at risk for
MD at the 25th percentile are less likely to be at risk when setting the cut-off score to the 11th
percentile. Finally, regardless of the two cut-off score points, cognitive measures related to
problem solving processes, estimation and the executive component of WM were the only
cognitive measures that consistently predicted latent class status. Overall, the results support the
notion that children at risk for MD or MLD reflect a latent class group that can be separated from

a heterogeneous sample of children who vary in math, reading and fluid intelligence.
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Footnote

1. Although the fit indices supported a three latent class group, a four group LCA was also
investigated on the assumption that a low math achieving but average reading group
would emerge. No such group emerged. Gamma estimates (class membership
probabilities) were .28 for average achievers, .09 for children with MD, .35 for poor
problem solvers across all problem solving measures, and .32 for poor problems solvers
on word problem measures that required reading. No latent class emerged in which risk
for MD (low calculation and problem solving) reflected a group with average reading

SCOores.
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Table 1

Descriptive Information for Classification (standard scores) and Predictor Variables (raw
scores) for Total Sample (N=447)
Mean
Classification Measure

Calculation
WIAT
WRAT-A

Math Prob. Solving

TOMA

WISC-A

CMAT

KeyMath
Reading

WRAT-R

TORC

Fluid Intelligence
Raven

98.69
98.77

78.50
97.61
66.73
94.77

103.81

92.84

100.07

Problem Solving Components

Question
Number

Goal
Operation
Algorithm
Irrelevant
Estimation
Estimationl
Estimation2
Numeracy
Numeracyl
Numeracy2
Naming Speed
Speed Digits
Speed Letters
Exec. WM
Concept Span
Listspan
Update
Visual-Sketch Pad
Map/Direction
Matrix

2.15
2.32
1.80
1.86
1.79
2.35

2.59
1.84

18.75
10.24

39.41
42.82

3.07
2.67
5.56

1.75
11.94

12.67
10.36

21.02
31.46
30.02

34.7

12.36
23.19

15.15

0.92
0.86
0.94
0.85
0.87
0.86

2.06
1.31

6.58
3.8

9.4
10.64

3.18
1.97
4.21

0.55
8.13

67
66

40
10

10

66
30

42

O O O O o o

141
134

140
180
150
170

153
160

128

w w w w w w

15
10

38
25

79
107

21

12
16

33

Kurtosis

0.17
0.03

0.65
-0.38
0.05
0.40

0.27
-0.16

-0.69

-0.79
-1.03
-0.29
-0.35
-0.31
-1.18

1.61
1.73

-0.15
-0.01

0.83
0.63

2.15
1.41
1.03

191
0.40

Skewness

-0.24
0.53

-0.17
0.18
-0.99
0.05

1.32
0.09

0.64

-0.36
0.12
-0.84
-0.49
-0.56
0.48

4.72
5.11

0.34
1.67

0.73
4.37

7.00
1.98
0.11

4.41
-0.41
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Reliability

0.84
0.80

0.94
0.96
0.97
0.97

0.82
0.94

0.93

0.71
0.72
0.71
0.71
0.70
0.76

0.84
0.85

0.83
0.65

0.83
0.82

0.84
0.79
0.88

0.65
0.92
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Phonological Loop-STM

Dforward 6.72 1.73 2 14
Word-Span 8.24 3.47 2 20
Phon-Span 3.13 2.23 0 14

65

0.36 0.50 0.81
0.36 -0.54 0.68
0.95 1.33 0.63

WIAT = Wechsler Individual Achievement Test. WRAT-A = Wide Range Achievement Test
arithmetic subtest. TOMA = Test of Mathematical Abilities. WISC = Arithmetic subtest from
Wechsler Intelligence Scale for Children. CMAT = Comprehensive Mathematical Abilities
Test. KeyMath = KeyMath Revised Diagnostic Assessment. WRAT-Reading = Wide Range
Achievement Test Reading Task. TORC = Test of Reading Comprehension. Raven = Colored
Progressive Matrices Test. Estimationl=set 1-vary numbers, Estimation2=set 2-vary line length,
numeracyl=circle large number, numeracy2=circle small number.Concept= conceptual span,
Listspan=Listening Span, Dforward=digit forward, phon-span=pseudoword span task.
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Table 2

Fix Indices for Six Latent Class Models

Cut off at or <25

LC=1 LC=2 LC=3 LC=4 LC=5 LC=6
Log-likelihood: -2232.86  -1994.98 -1950.58 -1946.89 -1933.29 -1921.38
G-squared: 835.95 360.2 2714 264.01 236.82 212.99
AlC: 853.95 398.2 329.4 342.01 334.82 330.99
BIC: 890.87 476.15 448.37 502.01 535.84 573.04
CAIC: 899.87 495.15 477.37 541.01 584.84 632.04
Adjusted BIC 862.31 415.85 356.34 378.24 380.34 385.8
Entropy 1.0 0.75 0.75 0.80 0.82 0.85
Degrees 502 492 482 472 462 452
LMR (p-value) - 0 0 34 .27 17
BLRT (p-value) - 0 0 .66 .36 42
Cut off <11
LC1 LC=2 LC=3 LC=4 LC=5 LC=6

Log-likelihood: -1882.47 -1687.33 -1643.29 -1633.22 -1624.42 -1618.48
G-squared: 633.81 243.53 155.45 135.3 117.71 105.83
AIC: 651.81 281.53 213.45 213.30 215.71 223.83
BIC: 688.73 359.48 332.42 373.30 416.73 465.88
CAIC: 697.73 378.48 361.42 412.30 465.73 524.88
Adjusted BIC 660.17 299.18 240.39 249.53 261.23 278.64
Entropy 1.0 0.72 0.75 0.74 0.71 0.72
Degrees 502 492 482 472 462 452
LMR (p-value) - 0 .0180 .034 .19 31
BLRT (p-value) - 0 0 .065 .15 1.0

Note. LC=Latent Class, AIC = Akaike’s Information Criterion; BIC = Bayesian Information
Criterion; LMR = Lo-Mendell-Rubin Test; BLRT = Bootstrap Likelihood Ratio Test.
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Table 3

Probabilities of Assignment to Latent Classes

At or < 25th percentile < 11th percentile

GAMMA Probabilities
Latent Class 1 2 3 1 2 3

0.32 0.15 0.53 0.35 0.10 0.55
Rho Estimates® Math Difficulties (MD) Math Learning Disabilities (MLD)
Latent Class 1 2 3 1 2 3
Calculation
WIAT 0.003 0.82 0.24 0.00 0.59 0.08
WRAT-A 0.006 0.46 0.13 0.01 0.40 0.01
Math Problem Solving
TOMA 0.28 092 0.81 0.31 0.96 0.83
WISC-A 0.07 0.80 0.36 0.08 0.76 0.42
CMAT 0.23 1.00 0.88 0.26 1.00 0.90
KEYMATH 0.03 1.00 0.50 0.03 1.00 0.56
Reading
TORC 0.07 0.87 0.33 0.09 1.00 0.36
WRAT-R 0.01 0.42 0.06 0.00 0.30 0.05
Fluid Intelligence
Raven 0.11 0.42 0.19 0.06 0.23 0.10

*Note. = rho estimates >.70 (in bold) were considered high probability of Risk for MD ( < 25th
percentile) or MLD (<1 1" percentile).

WIAT = Wechsler Individual Achievement Test. WRAT-A = Wide Range Achievement Test
arithmetic subtest. TOMA = Test of Mathematical Abilities. WISC = Arithmetic subtest from
Wechsler Intelligence Scale for Children. CMAT = Comprehensive Mathematical Abilities
Test. KeyMath = KeyMath Revised Diagnostic Assessment. TORC = Test of Reading
Comprehension. WRAT-Reading = Wide Range Achievement Test Reading Task. Raven =
Colored Progressive Matrices Test.
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Table 4

Normed Referenced Scores for Classification Measures as a Function

Of Latent Class
LC=1 LC=2 LC=3
At or < 25th
percentile
Variable = Mean SD Mean SD Mean SD
Calculation
WIAT 108.01 9.27 83.68 8.12 97.29 10.8
WRAT-A 105.06 9.32 87.29 8.86 98.18 8.28
Math Problem Solving
TOMA 96.45 19.57 64.15 14.13 71.87 15.98
WISC 119.15 23.25 65.69 23.78 93.61 28.44
CMAT 96.38 20.43 56.62 17.88 77.51 22.33
KEYMath 124.11 28.81 57.08 18.85 87.76 26.82
Reading
TORC 107.16 18.72 64.77 15.92 92.03 19.82
WRAT-R 111.35 11.72 91.20 11.10 102.8 9.67
Fluid Intelligence
Raven 105.69 15.49 92.26 14.22 98.88 14.01
LC=1 LC=2 LC=3
< 11th percentile
Variable = Mean SD Mean SD Mean SD
Calculation
WIAT 106.82 10.32 81.26 7.57 96.64 10.94
WRAT-A 104.42 10.11 84.92 9.59 97.60 8.04
Math Problem Solving
TOMA 95.84 19.52 60.51 10.50 71.24 15.92
WISC-A 119.33 23.56 64.87 28.27 90.04 27.99
CMAT 95.91 20.24 54.62 19.17 74.79 21.88
KEYMath 123.76 28.82 54.36 18.75 84.17 26.63
Reading
TORC 106.51 19.24 59.49 14.86 90.00 20.02
WRAT-R 111.22 12.00 87.49 10.56 102.01 9.48
Fluid Intelligence
Raven 105.39 15.75 93.20 14.18 98.04 14.05

WIAT = Wechsler Individual Achievement Test. WRAT-A = arithmetic subtest from the Wide
Range Achievement Test. TOMA = Test of Mathematical Abilities. WISC-A = arithmetic
subtest from the Wechsler Intelligence Scale for Children. CMAT = Comprehensive
Mathematical Abilities Test. KeyMath = KeyMath Revised Diagnostic Assessment. TORC =
Test of Reading Comprehension. WRAT-R = reading subtest from the Wide Range
Achievement Test Reading Task. Raven = Colored Progressive Matrices Test.
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Table 5
Comparison of Children on Normed References Score who Transitioned out of the Latent Class
Risk Group (N=28) at the 11™ Percentile and Those That Remained (Stable) at Both Cut-off

points (N=37).

Transition Stable

M SD M SD ES
Classification
Calculation
WIAT 87.21 7.63 81.00 7.51 0.82
WRAT 90.61 6.44 84.78 9.67 0.72
Problem Solving
TOMA 68.93 16.63 60.54 10.79 0.61
WISC-A 70.00 18.66 62.43 26.81 0.33
CMAT 58.93 15.48 54.86 19.53 0.23
KEYMath 60.71 18.04 54.32 19.23 0.34
Reading
TORC 72.50 14.04 58.92 14.87 0.94
WRAT-R 96.82 9.40 86.95 10.46 0.99
Fluid Intelligence
Raven 91.75 14.47 92.64 14.23 -0.06

Note. Transition= Children defined as math difficulties at 25" percentile cut-off but not 1"
percentile cut-off

Stable=children who retained math risk status at both cut-off points (children with MLD).
ES=Cohen’s effect size

Classification measures are normed referenced standard scores. WIAT = Wechsler Individual
Achievement Test. WRAT = Wide Range Achievement Test. TOMA = Test of Mathematical
Abilities. WISC-A = arithmetic subtest from theWechsler Intelligence Scale for Children.
CMAT = Comprehensive Mathematical Abilities Test. KeyMath = KeyMath Revised Diagnostic
Assessment. TORC = Test of Reading Comprehension. WRAT-R = reading subtest from the
Wide Range Achievement Test Reading Task. Raven = Colored Progressive Matrices Test.
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Table 6

Logistic Regression Model Predicting Latent Classes at Two Cut-off Points

At or <25th Percentile

Parameter  Odds Estimate
Full Model

Phonological Storage

STM 1.13 0.12
Speed 0.87 -0.14
Domain Specific Knowledge
Component 1.16 0.14
Estimation 0.77 -0.27
Numeracy 1.12 0.11
Executive Processing

WM-E 1.25 0.23
Inhibition 0.81 -0.21
Vis-WM 1.14 0.13
Model Fit Statistics

Criterion

AIC 734.928

BIC 770.67

Deviance 716.928
Reduced Model 1
Phonological Storage

STM 1.29 0.26
Speed 0.73 -0.32
Model Fit Statistics

AIC 852.146

BIC 864.345

Deviance 846.146
Reduced Model 2
Domain Specific Knowledge

Component 1.17 0.16
Estimation 0.70 -0.36
Numeracy 1.16 0.15
Model Fit Statistics

AIC 808.517

BIC 824.697

Deviance 800.517

Reduced Model 3

Executive Processing

WM-E 1.37 0.32
Inhibition 1.00 0.01
Vis-WM 1.26 0.23

SE

0.08
0.08

0.05
0.08
0.06

0.08
0.13
0.09

0.07
0.05

0.04
0.05
0.05

0.08
0.11
0.09

Wald x2

2.23
3.11

7.88%*
10.35%**
3.47

7.50**
2.74
2.30

12.73%**
40.90***

12.19%**
47.44%%*
7.28%*

16.3***
0.01
7.21%*

Odds

1.28
0.82

1.25
0.83
11

1.29
0.87
1.19

642.713
678.454
624.713

1.50
0.74

760.082
772.280
754.082

1.28
0.72
1.16

721.572
737.752
713.572

1.47
1.09
131

0.24
-0.19

0.22
-0.19
0.1

0.25
-0.14
0.18

0.41
-0.30

0.25
-0.33
0.15

0.39
0.09
0.27

< 11th percentile

Estimate SE

0.09
0.09

0.06
0.09
0.06

0.09
0.13
0.09

0.08
0.05

0.05
0.05
0.06

0.08
0.12
0.09
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Wald x2

7.86**
5.04*

15.58%**
4.63*
2.48

8.26***
1.12
3.73*

27.66***
35.34**x*

25.80***
37.10***
6.95*

21.84***
0.59
9.25%*
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Model Fit Statistics

AIC 869.037 776.048
BIC 885.264 792.275
Deviance 861.037 768.048

Note. WM-E=executive component of working memory, Component=identifying problem
solving components. Vis-WM=visual-spatial sketch pad
AIC = Akaike’s Information Criterion; BIC = Bayesian Information Criterion
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Table 7

Full Multinomial Logistic Regression Model Predicting Latent Classes at Both Cut-off Points

Full Model

Compare
Storage
STM LC1 vs. LC3
ST™M LC2 vs. LC3
Speed LCl1 vs. LC3
Speed LC2 vs. LC3
Domain Specific Knowledge
Component LCI1 vs. LC3
Component LC2 vs. LC3
Estimation LCl1 vs. LC3
Estimation LC2 vs. LC3
Numeracy  LC1 vs. LC3
Numeracy  LC2 vs. LC3
Executive Processing
WM-E LC1 vs. LC3
WM-E LC2 vs. LC3
Inhibition LCl1 vs. LC3
Inhibition LC2 vs. LC3
Vis-WM LC1 vs. LC3
Vis-WM LC2 vs. LC3

At or
<5t

Odds

1.33
0.54
0.85
0.68

1.47
0.77
0.72
0.47
1.30
0.82

1.28
1.20
0.85
0.55
1.18
0.93

Estimate

0.28
-0.62
-0.17
-0.38

0.39
-0.26
-0.33
-0.75

0.26
-0.20

0.25
0.18
-0.16
-0.61
0.17
-0.07

SE

0.11
0.17
0.11
0.13

0.08
0.08
0.12
0.14
0.08
0.10

0.10
0.17
0.16
0.26
0.10
0.17

Wald 2

7.23%*

13.61%***
2.18

8.21**

24 .44%**
10.03#**
8.14%*
29.64%**
10.61%***
3.64

6.05%*
1.15
1.08
5.44
2.55
0.19

<11th
Odds

1.44
0.73
0.79
0.51

1.52
0.86
0.79
0.56
1.27
0.81

1.34
1.22
0.91
0.75
1.23
1.12

Estimate

0.36
-0.32
-0.23
-0.68

0.42
-0.15
-0.24
-0.57

0.24
-0.22

0.30
0.20
-0.10
-0.29
0.21
0.11

SE

0.11
0.17
0.11
0.14

0.08
0.09
0.11
0.14
0.08
0.11

0.10
0.18
0.16
0.26
0.11
0.18

LCI=Average Achiever, LC2=Math Disabled (at or < 25" percentile or MLD (< 11" percentile). LC3= poor
problem solvers .Component= problem solving component, Inhibition = Random generation of numbers and letters;

Speed = Naming speed; WM-E = Working memory executive component (Conceptual Span, Listening Sentence

72

Wald y2

11.76%**
3.37

4.29

22 .3%%%

29.06%***
2.90
4.55
17.85%**
9.16**
3.64

8.19%*
1.25
0.36
1.25
3.72
0.37

Span, and Updating task); Vis-WM = Visual—spatial sketchpad (Visual Matrix and Mapping & Directions); STM =

Short-term memory (Forward Digit Span, Backward Digit Span, Word Span, and Pseudoword Span).

*Ep <.01,***p <.001
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Table 8

Means, Standard Deviations and Effect Size Comparisons among Stable Latent Classes

LC=1, N=141)

M SD
Classification
Calculation
WIAT 108.01 9.27
WRAT-A 105.06 9.32
Math Problem Solving
TOMA 96.45 19.57
WISC-A 119.15 23.25
CMAT 96.38 20.43
KEYMath 124.11 28.81
Reading
TORC 107.16 18.72
WRAT-R 111.35 11.72
Fluid Intelligence
Raven 105.69 15.49
Cognitive Processes
STM 0.63 1.09
Speed -0.41 1.39
Component 1.38 1.67
Estimation -0.64 1.28
Numeracy 0.79 1.83
WM-E 0.63 1.62
Inhibition 0.18 0.88
Vis-WM 0.38 1.30

Cognitive process measures are factor scores (z-scores) based on the total sample.
Stable=children who maintained same LC status for at risk at both cut-off points.

LC=2, N=37)

M SD

81.00
84.78

60.54
62.43
34.86
54.32

58.92
86.95

92.64

-0.97
0.6
-2.16
1.22
-1.51
-0.59
-0.55
-0.27

7.51
9.67

10.79
26.81
19.53
19.23

14.87
10.46

14.23

1.08
2.08
2.35
1.40
1.69
1.06
0.69
0.84

LC=3, N=231)

M SD
97.79 10.74
98.45 7.80
71.52 15.85
92.47 27.98
56.71 21.78
87.01 26.11
92.12 19.61

102.64 9.32
98.8 13.83
-0.09 1.33
-0.07 1.44
-0.27 2.26
0.01 1.31
-0.18 1.71
-0.22 1.22
0.01 0.84
-0.14 1.21

LC=1=Average Achiever, LC2=Math Disabled, LC3= poor problem solvers.
Components=component processes, Speed = Naming speed; STM = Short-term memory WM-E

= Working memory executive component, VIS-WM = Visual-spatial sketchpad.
ES=Cohen’s d, ES1=LC=1 vs. LC=2, ES2=LC=1 vs. LC=3, ES3=LC=2 vs. LC=3,

Bold=cognitive measures of moderate (> .50) and large (> .80) effect sizes.
Note. Scores were not partialed for the influence of other variables.

LC1 vs.

3.22
2.14

2.37
2.27
3.08
291

2.87
2.20

0.88

1.47
-0.58
1.76
-1.39
131
0.91
0.93
0.61
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Effect Sizes
LC1 vs.
LC3

1.02
0.77

141
1.04
1.88
1.35

0.78
0.83

0.47

0.60
-0.24
0.84
-0.49
0.55
0.60
0.21
0.41

vs.LC 3

-1.84
-1.56

-0.82
-1.10
-1.06
-1.44

-1.93
-1.59

-0.44

-0.73

0.38
-0.82

0.90
-0.78
-0.32
-0.72
-0.13
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Table 9
Comparison of Children on Cognitive Measures who Transitioned out of MD Risk Group
(N=28) and Those Who Remained Stable in the at Risk group (N=37) at Both Cut-Off Points

Transition Stable

M SD M SD ES
Cognitive Processes
STM -1.05 0.94 -0.97 1.08 -0.08
Speed 0.67 1.5 0.6 2.08 0.04
Component -1.94 2.24 -2.16 2.35 0.1
Estimation 1.25 2.11 1.22 14 0.02
Numeracy -0.78 1.9 -1.51 1.69 0.41
WM-E -0.65 0.7 -0.59 1.06 -0.07
Inhibition -0.46 0.71 -0.55 0.69 0.13
Vis-WM -0.4 0.97 -0.27 0.84 -0.14

Note. Transition= Children defined as at risk at 25™ percentile cut-off but not 11" percentile cut-
off. Stable=children who retained risk status at both cut-off points. ES=Cohen’s effect size.
Cognitive process measures are factor scores (z-scores) based on the total sample. STM=short-
term memory or phonological loop, Speed=naming speed, Component= accuracy identifying
components of word problems, WM-E=executive component of WM, Inhibition=random
generation ,Vis-WM= visual-spatial sketchpad.



Appendix A

Comparison of Latent Classes on Factor Scores (z-scores) for the Cognitive Measures

At or <25th percentile

LC=1/N=141

Mean SD
STM 0.63 1.09
Speed -0.41 1.39
Components 1.38 1.67
Estimation -0.64 1.28
Numeracy 0.79 1.83
WM-E 0.63 1.62
Inhibition 0.18 0.88
Vis-WM 038 1.3
< 11th percentile

LC=1/N=149

Mean SD
STM 0.65 1.09
Speed -0.36 1.41
Components 139 1.65
Estimation -0.64 1.25
Numeracy 0.75 1.8
WM-E 0.65 1.62
Inhibition 0.19 0.86
Vis-WM 0.38 1.31

LC=2/N=65
Mean SD
-1.00
0.63
-2.07
1.23
-1.19
-0.61
-0.51

-0.33

LC=2/N=39
Mean SD
-0.93
0.58
-2.14
1.29
-1.57
-0.52
-0.54

-0.28

1.02
1.84
2.29
1.74
1.81
0.92
0.70
0.89

1.10
2.04
2.29
1.49
1.71
1.10
0.68
0.83

LC=3/N=240

Mean SD
-0.06
-0.04
-0.23
0.01
-0.19
-0.17
0.02
-0.12

LC=3/N=258
Mean SD
-0.2
0.02
-0.46
0.14
-0.24
-0.26
-0.05
-0.16

1.33
1.44
2.26
1.33
1.70
1.26
0.83
1.22

1.33
1.46
2.32
1.47
1.74
1.19
0.84
1.18

ES1

1.60
-0.57
1.51
-1.07
1.09
1.35
0.99
0.80

ES1

1.44
-0.46
1.54
-1.30
1.36
1.06
1.07
0.80

ES2

0.52
-0.26
0.71
-0.49
0.58
0.63
0.19
0.41

ES2

0.64
-0.26
0.80
-0.53
0.57
0.76
0.29
0.46
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ES3

-0.80

0.41
-0.81

0.79
-0.57
-0.40
-0.69
-0.20

ES3

-0.60

0.32
-0.73

0.78
-0.77
-0.23
-0.64
-0.12

LC=1=Average Achiever, LC2=Math difficulties( < 25" percentile) or math learning disabilities (< 11"

percentile).

LC3= poor problem solvers. Cognitive process measures are factor scores (z-scores) based on the total

sample.

STM = Short-term memory , Speed = Naming speed; Components=component processes, WM-E =

Working memory

executive component, Vis-WM = Visual-spatial sketchpad. ES=Cohen’s d, ES1=LC1 vs. LC2,

ES2=LC1 vs. LC3,

ES3=LC2 vs. LC3 . Note. ES values are not partialed for the influence of other variables.
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