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Benford behavior sets in are the two most important problems
in the field. Most previous work studied systems of independent
random variables, and relied on the independence in their analyses.

Inspired by natural processes such as particle decay, we study
the dependent random variables that emerge from models of de-
composition of conserved quantities. We prove that in many in-
stances the distribution of lengths of the resulting pieces converges
to Benford behavior as the number of divisions grow, and give
several conjectures for other fragmentation processes. The main

difficulty is that the resulting random variables are dependent. We
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handle this by using tools from Fourier analysis and irrationality
exponents to obtain quantified convergence rates as well as in-
troducing and developing techniques to measure and control the
dependencies. The construction of these tools is one of the major
motivations of this work, as our approach can be applied to many
other dependent systems. As an example, we show that the n!
entries in the determinant expansions of n x n matrices with entries
independently drawn from nice random variables converges to
Benford’s Law.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction
1.1. Background

In 1881, American astronomer Simon Newcomb [1] noticed that the earlier pages of logarithm
tables, those which corresponded to numbers with leading digit 1, were more worn than other pages.
He proposed that the leading digits of certain systems are logarithmically, rather than uniformly,
distributed. In 1938, Newcomb's leading digit phenomenon was popularized by physicist Frank
Benford [2], who examined the distribution of leading digits in datasets ranging from street addresses
to molecular weights. The digit bias investigated by these scientists is now known as Benford’s Law.

Formally, a dataset is said to follow Benford's Law base B if the probability of observing a leading
digit d base B is logg( % ); thus we would have a leading digit of 1 base 10 approximately 30% of the
time, and a leading digit of 9 less than 5% of the time. More generally, we can consider all the digits of
the absolute value of a number. Specifically, given any x > 0 we can write it as

x = Sp(x)- 10%X), (1.1)

where Sp(x) € [1, B) is the significand of x and kg(x) is an integer; note two numbers have the same
leading digits if their significands agree. Benford’s Law is now the statement that Prob(Sz(x) < s) =
logg(s).

Benford's Law arises in applied mathematics [3], auditing [4-9], biology [10,11], computer sci-
ence [12], dynamical systems [13-17], economics [18,19], geology [20], number theory [21-23],
physics and astrophysics [24-31], signal processing [32], statistics [33,34] and voting fraud detec-
tion [35], to name just a few. See [36,37] for extensive bibliographies and [ 38-49] for general surveys
and explanations of the Law's prevalence, as well as the book edited by Miller [50], which develops
much of the theory and discusses at great length applications in many fields.

One of the most important questions in the subject, as well as one of the hardest, is to determine
which processes lead to Benford behavior. Many researchers [45,47,51-61] observed that sums,
products and in general arithmetic operations on random variables often lead to a new random
variable whose behavior is closer to satisfying Benford's law than the inputs, though this is not always
true (see [40]). Many of the proofs use techniques from measure theory and Fourier analysis, and
in some special cases it is possible to obtain closed form expressions for the densities which can
be analyzed directly. In certain circumstances these results can be interpreted through the lens of
a central limit theorem law; as we only care about the logarithms modulo 1, the Benfordness follows
from convergence of this associated density to the uniform distribution (see for example [47] or
Chapter 3 of [50]).

A crucial input in many of the above papers is that the random variables are independent. In this
paper we explore situations where there are dependencies. The dependencies we investigate are
different than many others in the literature. For example, previous work studied dynamical systems
and iterates or powers of a given random variable, where once the initial seed is chosen the resulting
process is deterministic; see for example [15,22,23,42,52]. In our systems instead of having just one
random variable we have a large number of independent random variables N generating an enormous
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number of dependent random variables M (often M = 2V, though in one of our examples involving
matrices we have M = N!). This work is the compilation of many projects over the past several years
of efforts to build a counting approach to control the dependencies. To show the utility of this new
perspective we successfully apply it in many systems.

Our introduction to the subject of this paper came from reading an article of Lemons [62] (though
see the next subsection for other related problems), who studied the decomposition of a conserved
quantity; for example, what happens during certain types of particle decay. As the sum of the piece
sizes must equal the original length, the resulting summands are clearly dependent. While it is
straightforward to show whether or not individual pieces are Benford, the difficulty is in handling
all the pieces simultaneously. We comment in greater detail about Lemons’ work in Appendix B.

In the next subsection we describe some of the systems we study. In analyzing these problems we
develop a technique to handle certain dependencies among random variables, which we then show
is applicable in other systems as well.

1.2. 1-Dimensional decomposition models and notation

The techniques we develop to show Benford behavior for problems with dependent random
variables are applicable to many systems. In the interest of space, we will describe in detail here
just three variations of a stick decomposition, and later discuss conjectures about other possible
decomposition processes and some results in higher dimensions. As an example of the power of this
approach we also prove that the leading digits of the n! terms in the determinant expansion of a
matrix whose entries are independent, identically distributed ‘nice’ random variables follow a Benford
distribution as n tends to infinity.

There is an extensive literature on decomposition problems; we briefly comment on some other
systems that have been successfully analyzed and place our work in context. Kakutani [63] considered
the following deterministic process. Let Qy = {0, 1} and given @y = {xg = 0, X1, ..., X, = 1} (where
the x;’s are in increasing order) and an & € (0, 1), construct Q. by adding points x; + «(Xi+1 — X;)
in each subinterval [x;, x;;1] where x;.1 — X = maxXj<¢<x_1/X,+1 — X¢|. He proved that as k — oo,
the points of Q; become uniformly distributed, which implies that this process is non-Benford. This
process has been generalized; see for example [64-69] and the references therein, and especially the
book [70]. See also [71] for processes related to particle decomposition, [72,73] for 2-dimensional
examples, [74] for a fractal setting, and [75] for some results on discrete fragmentation also inspired
by Lemons’ work.

Most of this paper is devoted to the following decomposition process (and generalizations) whose
first few levels are shown in Fig. 1. Begin with a stick of length L, and a density function f on (0, 1); all
cuts will be drawn from this density. Cut the stick at proportion py. This is the first level, and results in
two sticks. We now cut the left fragment at proportion p; and the right at proportion ps. This process
continues for N iterations. Thus if we start with one stick of length L, after one iteration we have sticks
of length Lp; and L(1 — p;), after two iterations we have sticks of length Lppz, Lp1(1— p2), L(1—p1)ps,
and L(1 — p;)(1 — p3), and so on. Iterating this process N times, we are left with 2" sticks.

We analyze whether the lengths of the resulting pieces follow Benford's Law for different choices
of f, as well as modifications of the fragmentation procedure. This process builds on earlier work in
the field, which we discuss after describing our systems.

(1) Unrestricted Decomposition Model: As described above, each proportion is drawn from
a distribution f and all pieces decompose.

(2) Restricted Decomposition Model: Proportions are chosen as in Case (1), but only one of
the two resulting pieces from each iteration decomposes further.

(3) Fixed Proportion Decomposition: All pieces decompose, but a fixed proportion p is
chosen prior to the decomposition process and is used for all sticks during every iteration.

In addition to similarities with the work mentioned above, the last problem is similar to a
fragmentation tree model investigated by Janson and Neininger [76]. Phrasing their work in our
language, they randomly chose and fixed b probabilities py, ..., pp and then at each stage each piece
of length x split into b pieces of length p;x, ..., prx, unless x is below a critical threshold in which
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Fig. 1. Unrestricted decomposition: Breaking L into pieces, N = 3.

case the piece is never decomposed further. They were interested in the number of pieces after their
deterministic process ended, whereas we are interested in the distribution of the leading digits of the
lengths. While it is possible to apply some of their results to attack our third model, the problem can
be attacked directly. The situation here is similar to other problems in the field. For example, Miller
and Nigrini [47] prove that certain products of random variables become Benford. While it is possible
to prove this by invoking a central limit theorem type argument, it is not necessary as we do not need
to know the distribution of the product completely, but rather we only need to know the distribution
of its logarithm modulo 1. Further, by not using the central limit theorem they are able to handle more
general distributions; in particular, they can handle random variables with infinite variance.

Before we can state our results, we first introduce some notation which is needed to determine
which f leads to Benford behavior.

Definition 1.1 (Mellin Transform, Mg(s)). Let f(x) be a continuous real-valued function on [0, o0).!
We define its Mellin transform,” A;(s), by

j(; f(x)xsi—x. (1.2)

We next define the significand indicator function; while we work base 10, analogous definitions
hold for other bases.

1 As our random variables are proportions, for us f is always a probability density with support on the unit interval.

2 Note My(s) = E[x*'], and thus results about expected values translate to results on Mellin transforms; as f is a density
M(1) = 1.Lettingx = €™ and s = o —i§ gives My(o —i§) = 27 [*_(f(e*™)e***") e~ 27 dy, which is the Fourier transform
of g(u) = 2mf(e*™)e?™ ", The Mellin and Fourier transforms as thus related; this logarithmic change of variables explains why
both enter into Benford's Law problems. We can therefore obtain proofs of Mellin transform properties by mimicking the proofs
of the corresponding statements for the Fourier transform; see [77,78].
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Definition 1.2 (Significand Indicator Function, ¢;). Fors € [1, 10), let

1 if the significand of x is at most s

¢s(x) = {O otherwise; (1.3)

thus s is the indicator function of the event of a significand at most s.

In all proofs, we label the set of stick lengths resulting from the decomposition process by {X;}.
Note that a given stick length can occur multiple times, so each element of the set {X;} has associated
to it a frequency.

Definition 1.3 (Stick Length Proportions, Py ). Given stick lengths {X;}, the proportion whose significand
is at most s, Py(s), is

Zj s(Xi)
#X)

In the Fixed Proportion Decomposition Model, we are able to quantify the rate of
convergence if logm]—;f? has finite irrationality exponent.

Py(s) = (1.4)

Definition 1.4 (Irrationality Exponent). A number « has irrationality exponent k if x is the supremum

of all y with
lim ¢”*! min |o — E‘ = 0. (1.5)
g—00 p aq

By Roth's theorem, every algebraic irrational has irrationality exponent 1. See for example [79-81]
for more details.

Finally, we occasionally use big-Oh and little-oh notation. We write f(x) = 0(g(x)) (or equivalently
f(x) <« g(x))ifthereexistanxp and aC > Osuchthat, forallx > xp, |[f(x)| < Cg(x), whilef(x) = o(g(x))
means lim,_, of (x)/g(x) =

1.3. Results

We state our results for the fragmentation models of Section 1.2 and some generalizations. While
a common way of proving a sequence is Benford base B is to show that its logarithms base B is
equidistributed® (see, for example, [42,80]), as we are using the Mellin transform and not the Fourier
transform we instead often directly analyze the significand function. To show that the first digits of
{X;} follow a Benford distribution, it suffices to show that

(1) limy_, oo E[Pn(s)] = ( ), and
(2) limy_, oo Var (Py(s ))

Viewing P,(s) as the cumulative distribution function of the process, the above shows that we have
convergence in distribution® to the Benford cumulative distribution function (see [82]).

For ease of exposition and proof we often concentrate on the uniform distribution case, and remark
on generalizations. In our proofs the key technical condition is that the densities satisfy (1.6). This is
a very weak condition if the densities are fixed, essentially making sure we stay away from random
variables where the logarithm modulo 1 of the densities is supported on translates of subgroups of
the unit interval. If we allow the densities to vary at each stage, it is still a very weak condition but
it is possible to construct a sequence of densities so that, while each one satisfies the condition, the
sequence does not. We give an example in Appendix A; see [47] for more details.

3a sequence {x,} is equidistributed modulo 1if for any (a. b) C (0, 1) we have iim,hx# -#n<N:x,€(a,b)}=b-a

4 p sequence of random variables Ry, R;, ... with corresponding cumulative distribution functions Fy, F;, ... converges in
distribution to a random variable R with cumulative distribution F if lim,_, 5. F,(r) = F(r) for each r where F is continuous.
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1.3.1. 1-Dimensional results

Theorem 1.5 (Unrestricted 1-Dimension Decomposition Model). Fix a continuous probability density f on
(0, 1) such that

27, 2mil
lim Mpl1— = 30, 1.6
N—oo Z L ( log]O) ( )
f=—00 m=1
££0
where h(x) is either f(x) or f(1 — x) (the density of 1 — p if p has density f). Given a stick of length L,
independently choose cut proportions p, pa. . . ., pyv_4 from the unit interval according to the probability

density f. After N iterations we have

X1 = Lpipapa---Pon-2Pon-1
X2 = Lpip2psa---ppv—2(1 — pyv—1)

Xy = L1=p)(1=ps)1—p7)--- (1 = pan-1_4)pon_y

Xy = L(1=p)(1=ps)X1—p7)-- (1= Pau-1_,)(1 = Po_y), (1.7)
and
Z?j] Qos(xi)
PN(S) = Z—N (18)
is the fraction of partition pieces X,, .. ., Xov whose significand is less than or equal to s (see (1.3) for the

definition of ). Then

(1) limy_, oo E[PN(S)] = l0g s,
(2) limy_ oo Var (Py(s)) = 0.

Thus as N — oo, the significands of the resulting stick lengths converge in distribution to Benford's
Law.

Remark 1.6. Theorem 1.5 can be greatly generalized. We assumed for simplicity that at each stage
each piece must split into exactly two pieces. A simple modification of the proof shows Benford
behavior is also attained in the limit if at each stage each piece independently splits into 0, 1, 2, ...
or k pieces with probabilities qo. 1. g2, ..., gk (so long as go < 1). Furthermore, we do not need to
use the same density for each cut, but can draw from a finite set of densities that satisfy the Mellin
transform condition. Interestingly, we can construct a counter-example if we are allowed to take
infinitely many distinct densities satisfying the Mellin condition (the Pigeonhole Principle ensures
that we get arbitrarily large number of copies of at least one, which suffices for the needed decay); we
give one in Appendix A.”

The discrete analogue of the unrestricted model also results in Benford behavior asymptotically.

Theorem 1.7. Consider the following fragmentation process. Start with a rod of integer length £ = £, in
iteration k select an integer X, € [1, £;] with uniform probability and fracture the rod so that you are left
with a piece of length Xy and a piece of length €, — X, =: £;,. Continue this process until £, = 0. Then if
{X¢} denotes the (random) set of the X;, as £ — oo the distribution of {X,} converges to (strong) Benford
behavior with probability 1.

3 The reason we need to be careful is that, while typically products of independent random variables converge to Benford
behavior, there are pathological choices where this fails (see Example 2.4 of [47]).
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Remark 1.8. The techniques used in the proof of Theorem 1.7 generalize naturally to a wide class
of integer-valued probability functions. In particular similar proofs should work for density functions
that produce a large number of fragments with high probability and can be well approximated by a
continuous process satisfying the Mellin Transform property of the previous section.

Theorem 1.9 (Restricted 1-Dimensional Decomposition Model). Start with a stick of length L, and cut this
stick at a proportion p, chosen uniformly at random from (0, 1). This results in two sticks, one of length
Lp; and one of length L(1 — p;). Do not decompose the stick of length L(1 — p,) further, but cut the other
stick at proportion p; also chosen uniformly from the unit interval. The resulting sticks will be of lengths
p1pz and p1(1 — pa). Again do not decompose the latter stick any further. Recursively repeat this process
N-1 times, leaving N sticks:

X, = L1-m)
Xo = Lpy(1—p2)

Xn—1 = Lpipa---pn—2(1—pn-1)-
Xy = Lpib2---DPn-1. (1.9)
The distribution of the leading digits of these resulting N sticks converges in distribution to Benford’s Law.

Remark 1.10. We may replace the uniform distribution with any nice distribution that satisfies the
Mellin transform condition of (1.6).

Theorem 1.11 (Fixed Proportion 1-Dimensional Decomposition Model). Choose any p € (0, 1). In Stage
1, cut a given stick at proportion p to create two pieces. In Stage 2, cut each resulting piece into two pieces
at the same proportion p. Continue this process N times, generating 2 sticks with N + 1 distinct lengths
(assuming p # 1/2) given by

x1 = Lp"
% = Ip"(1-p)
x3 = Lp"7*(1—py

xy = Lp(1—pN
xye1 = L1-p), (1.10)

where the frequency of x, is (") /2N. Choose y so that 10¥ = (1 — p)/p, which is the ratio of adjacent
lengths (i.e., x;.1/x;). The decomposition process results in stick lengths that converge in distribution to
Benford's Law if and only if v & Q. If y has finite irrationality exponent, the convergence rate can be
quantified in terms of the exponent, and there is a power savings.

1.3.2. 2-Dimensional results

The next two results are indicative of what can be done for fragmentation problems in higher
dimensions.

Fix a continuous probability density f on a 45° — 45° — 90° triangle T45,45,go._;‘\ny other
triangle T is the image of Tss_45_gp under some affine transformation ¥ +— AT + b.Because
affine transformations preserve ratios of areas, this affine transformation carries f to a continuous
probability distribution fr on T. Consider the following two-dimensional decomposition process.
Beginning with any triangle Ty, select a point in the interior of Ty according to the distribution fr,
and connect this point to each of the three vertices to obtain three sub-triangles. Now independently
select a point in the interior of each of the three sub-triangles T, ; according to fr; (i € {1, 2, 3}) and
repeat this process until there are 3" triangles. Let Xy denote the set of areas of the sub-triangles that
result from N iterations of the decomposition of Ty described above.
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Theorem 1.12 (Unrestricted Decomposition of Triangles). Let f\(x) = JEX-Y)ET45745790 fx, y)dy, fP>y) =
f(x_y)er45_45_90f(x’3’)d"~ If, for all choices of fn € {fM, f®, 1 — f) — f2)),

B il
li f - 1.11
im 3 T (1- 5555) =0 an
0

then the significands of the areas in X converge in distribution to Benford's law.

Remark 1.13. We could modify the condition of (1.11) slightly. As the absolute values of the Mellin
transforms are at most 1 (as we have probability densities), notice that as each f;, is drawn from the
same set of three functions that in the product at least one of these three functions appears at least
N /3 times. Thus we could replace the arbitrary product of f;;'s with identical f;,'s.

Remark 1.14. The condition (1.11) is again quite weak, and holds if f has bounded moments. Note
further that there is nothing special about our use of a 45° — 45° — 90° triangle except that it allows
us to express the Mellin condition relatively simply.

Affine mappings do not exist between arbitrary quadrilaterals, as affine mappings preserve parallel
lines. However, there are continuous mappings from arbitrary convex quadrilaterals to squares that
preserve the ratio of areas; the construction of Gromov after Knothe provides such a mapping with
other nice properties [83].

Theorem 1.15 (Unrestricted Decomposition of Quadrilaterals). Start with the unit square, a continuous
probability density f on (0, 1), and a continuous probability density g on (0, 1) x (0, 1). We independently
select a point on each side according to f. Call these A, B, C, D. Let @ be a homeomorphism between
the quadrilateral ABCD and the unit square with the property that & preserves ratios of areas. We then
choose a point E in the interior of ABCD according to g o &. We now connect E to each of A, B,C, D in
order to decompose the square into four convex quadrilaterals. We then perform the same decomposition
independently on each of these quadrilaterals, repeating this process until we obtain 4" quadrilaterals.
Suppose f and g have bounded moments. Let Xy denote the set of areas of the sub-quadrilaterals that
result from N iterations of the decomposition of the unit square described above. Then, as N — oo, the
significands of the areas in Xy converge in distribution to Benford’s law.

Remark 1.16. A more general version of Theorem 1.15 is true, with f and g satisfying a complicated
Mellin condition that is implied by finite moments.

1.4. Sketch of proofs

We briefly comment on the proofs. We proceed by quantifying the dependencies between the
various fragments, and showing that the number of pairs that are highly dependent is small. This
new technique is applicable to a variety of other systems, and we give another example below. These
dependencies introduce complications which prevent us from proving our claims by directly invoking
standard theorems on the Benfordness of products. For example, we cannot use the well-known fact
that powers of an irrational number r are Benford to prove Theorem 1.11 because we must also take
into account how many pieces we have of each fragment (equivalently, how many times we have r™
as a function of m). We provide arguments in greater detail than is needed for the proofs so that, if
someone wished to isolate out rates of convergence, that could be done with little additional effort.
While optimizing the errors is straightforward, doing so clutters the proof and can have computations
very specific to the system studied, and thus we have chosen not to extract the best possible error
bounds in order to keep the exposition as simple as possible.

We end with the promised example of another system where our techniques are applicable, The
proof, given in Section 7, utilizes the same techniques as that of the stick decomposition. We again
have a system with a large number of independent random variables, n, leading to an enormous
number of dependent random variables, n!.
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Theorem 1.17. Let A be an n x n matrix with independent, identically distributed entries a; drawn from
a distribution X with density f. The distribution of the significands of the n! terms in the determinant
expansion of A converge in distribution to Benford’s Law if (1.6) holds with h = f.

2. Proof of Theorem 1.5: Unrestricted decomposition

A crucial input in this proof is a quantified convergence of products of independent random
variables to Benford behavior, with the error term depending on the Mellin transform. We use
Theorem 1.1 of [45] (and its generalization, given in Remark 2.3 there); for the convenience of the
reader we quickly review this result and its proof in Appendix A of [84] (the expanded arXiv version
of this paper). The dependencies of the pieces are major obstructions and prevent us from simply
quoting this result; we surmount this by breaking the pairs into groups depending on how dependent
they are (specifically, how many cut proportions they share).

Remark 2.1. The key condition in Theorem 1.5, Eq. (1.6), is extremely weak and is met by most
distributions. For example, if f is the uniform density on (0, 1) then

2mil 2mie \ 7!
Me(1- =(1- , (2.1)
log 10 log 10

which implies

lim i - M1 2mit < 2 lim i 1 v
! log10/| = “Nooo log 10

=20 (2.2)

N—oo
f=-c0 m=1
€#£0
(we wrote the condition as [—[m=1Mf instead of M} to highlight where the changes would surface
if we allowed different densities for different cuts. While this condition is weak, it is absolutely
necessary to ensure convergence to Benford behavior; see Appendix A.

To prove convergence in distribution to Benford's Law, we first prove in Section 2.1 that E[Px(s)] =
log,ys, and then in Section 2.2 prove that Var (Py(s)) — 0; as remarked earlier these two results
yield the desired convergence. The proof of the mean is significantly easier than the proof of the
variance as expectation is linear, and thus there are no issues from the dependencies in the first
calculation, but there are in the second. The key contribution of this work is quantifying how often
certain dependencies can arise, which leads to a tractable analysis.

2.1. Expected value

Proof of Theorem 1.5 (Expected Value). By linearity of expectation,

2 o(X; 12
E[Py(s)] = E [%} = o DBl (23)
i=1

We recall that all pieces can be expressed as the product of the starting length L and cutting
proportions p;. While there are dependencies among the lengths X;, there are no dependencies among
the p;'s. A given stick length X; is determined by some number of factors k of p; and N — k factors of
1 — p; (where p; is a cutting proportion between 0 and 1 drawn from a distribution with density f).
By relabeling if necessary, we may assume

Xi = Lpapa---pi(1 — Prs1) - (1 — pn); (2.4)

the first k proportions are drawn from a distribution with density f(x) and the last N — k from a
distribution with density f(1 — x).
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The proof is completed by showing limy_, .o E[¢s(Xi)] = l0g;05. We have

k N
Elgs(X)] f f f (L]_[pr [] (l—pm))
p1=0 Jpa=0 PN_D = -

r=1 m=k+1

: ]_[ (pr) H f(1 = pm)dpydp; - - dpy. (2.5)
r=1

m=Kk+1

This is equivalent to studying the distribution of a product of N independent random vari-
ab!es (chosen from one of two densities) and then rescaling the result by L. The convergence of
L]_[r 1Pl Tmersa(1 — Pm) = X; to Benford follows from [45] (the key theorem is summarized for
the reader’s convenience in Appendix A in [84], the expanded arXiv version of this paper). We find
El[g(X;)] equals log,,s plus a rapidly decaying N-dependent error term. This is because the Mellin
transforms (with £ # 0) are always less than 1 in absolute value. Thus the error is bounded by the
maximum of the error from a product with N/2 terms with density f(x) or a product with N/2 terms
with density f(1 — x) (where the existence of N/2 such terms follows from the pigeonhole principle).
Thus limy_, oo E[Pn(s)] = log,ys, completing the proof. O

Remark 2.2. For specific choices of f we can obtain precise bounds on the error. For example, if each
cut is chosen uniformly on (0, 1), then the densities of the distributions of the p;’s and the (1 — p;)'s
are the same. By [47] or Corollary A.2 of [84],

1
E[ps(Xi)] — loges <« XLk (2.6)
and thus
2N
E[Py(s)] — logos < lZL—L (2.7)
i B107 S N Lo g9V T 29% '
2.2. Variance

The argument below introduces our technique to handle dependencies among random variables.

Proof of Theorem 1.5 (Variance). For ease of exposition we assume all the cuts are drawn from the
uniform distribution on (0, 1). To facilitate the minor changes needed for the general case, we argue
as generally as possible for as long as possible.

We begin by noting that since ¢y(X;) is either 0 or 1, ¢s(X;)?> = ¢(X;). From this observation, the
definition of variance and the linearity of the expectation, we have

Var (Py(s)) = E[Py(s)’] — E[Py(s))?

S 3
= E (—Zf:l%(x')) — E[P(s)P

2N

s l s Xl s X
= R Zl 1230N Z @ 2;5( ' o ]E[PN(S)]Z
L 17
1 1 (& y
= Z—N]E[PN(S)] -+ >N ZE[(Ps(Xi}fﬂs(Xj)] — E[Pn(s)]I". (2.8)

ij=1
I#]
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From Section 2.1, E[Py(s)] = log;,s + o(1). Thus
2N

1
Var (Pu(s)) = 3y | D ElsXes(X)) | — logigs + o(1). (29)
I,#;'I

The problem is now reduced to evaluating the cross terms over all i # j. This is the hardest part of the
analysis, and it is not feasible to evaluate the resulting integrals directly. Instead, for each i we partition
the pairs (X;, X;) based on how ‘close’ X; is to X; in our tree (see Fig. 1). We do this as follows. Recall
that each of the 2V pieces is a product of the starting length L and N cutting proportions. Note X; and
X; must share some number of these proportions, say k terms. Then one piece has the factor pi1 in
its product, while the other contains the factor (1 — py+1). The remaining N — k — 1 elements in each

product are independent from each other. After re-labeling, we can thus express any (X;, X;) pair as

Xi = L-pr-pa- Dk Di+1Pr+2' - PN
Xi = L-pi-p2---Pe+ (1= Pis1) - Ptz Dn- (2.10)

Note that if X;, our fixed piece, has some factors of 1 — p; we can incorporate those at the cost of
replacing some f(p;) with f(1 — p;), and the argument would proceed similarly; in the special case of
the uniform distribution these are the same.

With these definitions in mind, we have

1 1 1 1 1 k+1 N
Elp (X)X = f f f f f 0. (Ll‘[pr I pr)
p1=0 Jp=0 pN=0 JPy42=0 pn=0

Pl r=k+2
k N
" Ps (Ll_[pr-(hpm)- I1 ﬁr)
r=1 r=k+2

N N
- [1fwo T £1 = Br)dprdp, - - - dpndpis - - - dw. (2.11)
r=1 r=k+2

The difficulty in understanding (2.11) is that many variables occur in both g(X;) and ¢ (X;). The
key observation is that most of the time there are many variables occurring in one but not the other,
which minimizes the effects of the common variables and essentially leads to evaluating ¢, at almost
independent arguments. We make this precise below, keeping track of the errors. Define

k k
L = L(l_[pr) prr1, L= L(]_[pr)(l — Pern), (2.12)
== r=1

and consider the following integrals:

1 1 N N
I(Lh) = [ f ©s (L1 1—[ p,,) l—[ f(pr) dprsadpyrs - --dpy
P pPn=0

k4+2=0 r=k+2 r=k+2
1 1 N N

J(L2) = f f ®s (Lz l—[ ﬁr) n f(Pr) dP+2dPrss - - - dpn. (2.13)
Peiz=0  Jon=0 r=k+2  / r=k+2

We show that, for any L;, L, we have |I(L;)J(Ly) — (log;os)?| = o(1). Once we have this, then all
that remains is to integrate I(L;)J(L;) over the remaining k + 1 variables. The rest of the proof follows
from counting, for a given X;, how many X;’s lead to a given k.

It is at this point where we require the assumption about f(x) from the statement of the theorem,
namely that f(x) and f(1 — x) satisfy (1.6). For illustrative purposes, we assume that each cut p is
drawn from a uniform distribution, meaning f(x) and f(1 — x) are the probability density functions
associated with the uniform distribution on (0, 1). The argument can readily be generalized to other
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distributions; we choose to highlight the uniform case as it is simpler, important, and we can obtain
a very explicit, good bound on the error.

Both I(L;) and J(L,) involve integrals over N — k — 1 variables; we set n := N — k — 1. For the case
of a uniform distribution, Eq. (3.7) of [45] (or see Corollary A.2 in [84]) gives for n > 4 that®

¢(n)—1
2.9 2.

[I(Ly) — logyes| < ( )210gws, (2.14)

where ¢ (s)is the Riemann zeta function, which for Re(s) > 1equals Zﬁil 1/n®. Note that for all choices
of Ly, I(Ly) € [0, 1), and for n < 4 we may simply bound the difference by 1. It is also important to
note that forn > 1, ¢(n) — 1is 0(1/2"), and thus the error term decays very rapidly.

A similar bound exists for J(L,), and we can choose a constant C such that

I(L1) — logyes| = S’ U(Lz) — logyps| < 297 (2.15)
for all n, L;, L,. Because of this rapid decay, by the triangle inequality it follows that
2C
(L) - J(L2) — (logygs)?| < T (2.16)

For each of the 2V choices of i, and for each 1 < n < N, there are 2"! choices of j such that X; has
exactly n factors not in common with X;. We can therefore obtain an upper bound for the sum of the
expectation cross terms by summing the bound obtained for 2" 'I(L;) - J(L,) over all n and all i:

aN

2NN
2C
2 n—1 N
;(E[gos(x,-)wsoqn—iogms) < ;;2 = 224 (2.17)
ij

Substituting this into Eq. (2.9) yields

4C
Var (Pn(s)) =< o+ o(1). (2.18)
Since the variance must be non-negative by definition, it follows that limy_, »Var (Py(s)) = 0,
completing the proof if each cut is drawn from a uniform distribution. The more general case follows
analogously, appealing to [47] (or Theorem A.1 of [84]). O

3. Proof of Theorem 1.7: Discrete decomposition

The main idea of the proofis to show that fragments generated for sufficiently large rods can be well
approximated by a corresponding continuous fragmentation process in a way that preserves Benford
behavior. We formalize this notion in the following lemma.

Lemma 3.1. Suppose that the random integer on [1, £;] is generated first by selecting a random real
number ¢, € [0, 1], then rounding it up to the nearest multiple of 1/€,. Let © denote the continuous
process in which we start with a piece of length £, and fracture it in each iteration at cy.

Let X, denote the kth fragment generated P, and Y, denote the kth fragment generated by Q. Then

k
1
Ye < X | 1+ 1+ — + 0(1), 3.1
K < X H( JE}_) (1), (3.1)
j=1

where {; denote the remaining length of the fragment in process P after j breaks.

In practice, we use the following corollary of this lemma.

6 Qur situation is slightly different as we multiply the product by L,; however, all this does is translate the distribution of
the logarithms by a fixed amount, and hence the error bounds are preserved.
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Corollary 3.2. Suppose £,_1. Xk > log?(£) and g(£) = o(+/Tog(£)) where g(£) tends to infinity with .
Then for k such that k < g(£) log(£) we have
X = Yi(1+0(1)). (3.2)

We first show the corollary contingent on Lemma 3.1.

Proof of Corollary 3.2. Using that the £, are monotonically decreasing, we can tightly bound how
close X, and Yy, are:

k

1

Ye < X < Y]] (1 + E) +0(1). (3.3)
j=1 i

Here we bound the terms uniformly above by the largest term in our assumptions, raised to the

maximum number of fragments allowed in our hypothesis giving,

)g(f)log(f)

Xy & Yk(l+— +0(1)

log?(£)
£)
< Vet + 0(1),

where the second line follows by the limit definition of e since we are asymptoticin £, Taking the limit
in £ and combining error terms gives the desired bound. O

We now turn to the lemma.

Proof of Lemma 3.1. Let h, denote the length of the fragments in process Q after k breaks, ¢, denote
the continuous value on chosen on [1, hy) and d\, denote the rounded version of ¢, used in process 7.
Then we have Xg.1 = £(1 — di), Yer1 = hi(1 — ) and dy < ¢, < dy + ﬁ

To prove the lemma, it suffices to show that £; < hk]_[}:fU + elj)- and then absorb the error from
the final cut into the O(1) term. Note

k k
1
hksﬁszl—[d,-gel—[(c;+e—). (3.4)
i=1 =1 t=1

Then since ;.1 = difx < cily, factoring out ¢; from each term yields

k 1 k k 1 k 1
e]—[(cmLE:) < EHCiU(HE) < hkl—[(ﬂra). ] (3.5)
i=1 i= i= i=1

We now note that if we can show that almost all of the fragments satisfy the properties laid out
in Corollary 3.2, this will complete the proof of Theorem 1.7, as the pieces generated by Q are strong
Benford distributed by Theorem 1.5,

Lemma 3.3. Suppose {Y;}; = {Yi,..., Yy} is strong Benford as ¢ tends to infinity. Then any set
{Xe}e = {X1,.. .. Xy, } such that X; = Y;(1 4 o(1)) is strong Benford as € tends to infinity.

Proof. We fix a digitj and show that the distribution of the jth digit is Benford. Let D;(a) denote the jth
digit of a. Then since X; = Y;(1 + o(£)), there exists some function of £ tending to infinity with £ such
Dj(X;) = Di(Y;), unless D;_4(Y;) = 9 or D;_i(X;) = 9 for all k < f(£). Since the Y; are strong Benford and
are therefore Benford in each (j — k)th digit, this occurs a vanishing percentage of the time. O

We thus turn our attention to estimating the number of fragments generated by a piece of length
£. The two following results give the necessary approximations.

Lemma 3.4. Let F, denote the number of fragments generated by a piece of length £. Then as £ — oo,
P ((log(log(£)))* < F, < log(£)g(¢)) = 1—o(1). (3.6)
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Corollary 3.5. Define £, to be the length of the rod after k iterations of the process. Consider Y' .= {yy :
£ > log>(£)). Then with probability tending to 1,

[
t—o0 |Y‘
We show how Corollary 3.5 follows from 3.4.

= 1. (3.7)

Proof of Corollary 3.5. From the upper bound on Fy, [X\X’| <« log(log>(£))g(log?(£)). Thus employing
our lower bound on Y directly,
IX\X'| _ log(log(£))g(log’(£))  g(log’(£))
X1 (log(log(£)))? log(log(¢))’
Taking g such that g(u) = o(log(u)) completes the proof. O

(3.8)

All that remains is to prove Lemma 3.4.

Proof of Lemma 3.4. We first prove the upper bound. We do this by finding the expected value of
F, and applying Markov's inequality. We take the inductive hypothesis that E[F;] = Z <5 1 with the
base case E[F;] = 1 being clear. Since in the first break we get a single piece of length E - s for some
s > 0, we have the recurrence relation

11
E[F] = ; +5 > (1+ER]). (3.9)
s<f

Therefore, by the inductive hypothesis, we have that

1 1 £-1 5 1
Elfe] = 5+ ; (1 $ ; T) ; (3.10)
Each summand of the form 1/i appears in £ — i of the sums, so that
-1 s £-1 .
1 1 1 1 i+ (£ —1)
s 1 = g A = -~ 1 o1 3.11
e+eﬂ(+;i) +£!=] Z og(£) + 0(1). (3.11)

By Markov's inequality, P(F, > log(£)g(£)) = 0O (ﬁ)

We now prove the lower bound. The probability any of log(log(£))? breaks of a piece of length
greater than £'/2 at 1/(log(¢)) of its original length is o( 1), since

log(log(£))? 2
i 2 log(log(£
lim[1—- —— = lime et~ = i (3.12)
&>\ log(V(D) >0

For ¢ sufficiently large, if log(log(£))* breaks happen, none of which cut a piece down by a factor of
1/log(£), then the piece is of length greater than ¢'/2. This follows from,

1 log(log(£))?
e L L 3.13
(log( £)) > (3.13)

Proof of Theorem 1.7. The theorem follows by considering the subset X, defined earlier as the set
of all X, such that £, > log*(¢), which is strong Benford by Lemma 3.3 and Comllmy 3.2. Since with
probability tending to one this X’ is almost all of X (that is as £ — oo, we have ‘l’;l' — 1), X also
exhibits strong Benford behavior asymptotically in £ with probability tending toward 1. O

4, Proof of Theorem 1.9: Restricted 1-dimensional decomposition
As the proof is similar to that of Theorem 1.5, we just highlight the differences below.
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Proof of Theorem 1.9. We may assume that L = 1 as scaling does not affect Benford behavior. In the
analysis below we may ignore the contributions of X; for i € [1, log N] and all pairs of X;, X; such thatX;
and X; do not differ by at least log N proportions. Removing these terms does not affect whether or not
the resulting stick lengths converge to Benford (because log N/N — 0as N — oo), but does eliminate
strong dependencies or cases with very few products, both of which complicate our analysis.

As before, to prove that the stick lengths tend to Benford as N — oo we show that E[Py(N)] —
log,,s and Var (Ps(N)) — 0. The first follows identically as in Section 2.1. We have

i—1

Elpd(x)] f f f (1—p, ]‘[pl) (1= p) [T fipidprdps - (41)
p1=0 Jp2=0 pi= =1

tends to log,ys + o(1) as n — oo.
For the variance, we now have N and not 2" pieces, and find

log;os
N2

N
Z Elps(X)es(X)] | — logies + o(1). (4.2)

ij=1
1#]

Note that we may replace the above sum with twice the sum over i < j. Further, let A be the set

Var (Py(s)) =

= {(i,j): logN <i<j—logN < N — log N}. (4.3)

We may replace the sum in (4.2) with twice the sum over pairs in .4, as the contribution from the
other pairs is o(1). The analysis is thus reduced to bounding

2 )" Elps(X)esX)l, (44)
(ii)eA
where
i-1
X = Pil_[(l—Pr)
r=1
X = p,]_[(l—pr ]_[ 1-pr); (4.5)

we write X; and Xj in this manner to highlight the terms they have in common. Letting f(x) be the
density for the uniform distribution on the unit interval, we have

E SXI sX s I ]— r
[s(Xi)es(X; fpl_o [p[_o f_ofp (Pn p))

pj

= j—1 J
( ]_[ 1-p)[Ja-p ) J 1w dp - dp;. (46)
r=1 r=i r=1

The analysis of this integral is similar to that in the previous section. Let
i-1 -1
i = [Ja-p) g=]]-p (4.7)
r=1 r=i+1

That is, £; consists of the terms shared by X; and X}, and £; is the product of the terms only in X;. We
are left with showing that the integral

o0 o0 J
f Of , b (P s (i1 = pdgpy) - [ [f(pr)dpr - - dpy (4.8)
P1= pj=

r=1

is close to log,s.
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Fig. 2. Irrational case: p = 3/11, 1000 levels; y = log,,(8/3) € Q.
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Fig. 3. Rational case: p = 1/11,1000levels;y =1 € Q.

We highlight the differences from the previous section. The complication is that here £, appears in
both arguments, while before it only occurred once. This is why we restricted our pairs (i, j) to lie in .A.
Since we assume i > log N, there are a lot of terms in the product of £, and by the results of [45] (or
see Appendix A of [84]) the distribution of £, converges to Benford. Similarly, there are at least log N
new terms in the product for £, and thus £;(1 — p;)C;p; converges to Benford. An analysis similar to
that in Section 2 shows that the integral is close to logéos as desired. The proofis completed by noting
that the cardinality of A is N?/2 + O(N log N). Substituting our results into (4.2), we see the variance
tends to 0. Thus the distribution of the leading digits converges in distribution to Benford's Law. O

5. Proof of Theorem 1.11: Fixed 1-dimensional proportion decomposition
Recall that we are studying the distribution of the stick lengths that result from cutting a stick
at a fixed proportion p. We define y by 10¥ := =2, the ratio between adjacent piece lengths. The

resulting behavior is controlled by the rationality of y. We see this clearly in the three examples in
Figs. 2 through 4, where we show observed behavior plotted against Benford behavior.

51 Casel:y e Q
Lety =r/q.Herer € Z, q € N and gcd(r, q) = 1. Let S19(x;) denote the first digit of x;. As

ps 1-p)° = (10")V9%; = 10
Xjitqg = T Xj—{l )XJ'—IOXJ', (5.1)
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Fig. 4. Rational case: p = 1/{1+ 10°¥/10), 1000 levels; y = 33/10 € Q.

it follows that

S10(Xj+q) = S10(x;). (5.2)

Thus the significand of x; repeats every g indices.” We now show that the g different classes of leading
digits occur equally often as N — oo.

To do this, we use the multisection formula. Given a power series g(x Zk Oakxk we can take
the multisection Zg=oa£q+]x”q 1, where j and q are integers with 0 < j < q The multisection itself is
a power series that picks out every gth term from the original series, starting from the jth term. We
have a closed expression for the multisection in terms of the original function (see [85] for a proof of
this formula):

o0 1 g—1 ‘
Y g™ = =) w0 Fg(w), (5.3)
=0 q 5s=0

where @ = €27i/4 is a primitive gth root of unity. We apply this to g(x) = (1+ x)¥ = Y1, (™) .
To extract the sum of equally spaced binomial coefficients, we take the multlsectlon of the bmomlal
theorem withx = 1:

N g1 Y
5_ ( ) = 2 Z (cos —) cos M; (5.4)
£q+j q

note in the algebraic simplifications we took the real part of w¥~%)/2 which is permissible as the left
hand side is real and therefore the imaginary part sums to zero.
All terms with index j mod g share the same leading digit. Therefore the probability of observing a

term with index j mod g is given by
} i ( )” (N — 2j)s
. o Z cos — | cos ——
q q

7 [(5)+ () ()

q—1 N i
= % —i—;:(cos%s—) cos—ﬂ(N;ZJ}s)
(oo ofee) )
= —|1+Err|(g—1){cos— y B8]
q q

7 We are interested in determining the frequency with which each leading digit occurs. It is possible that two sticks x; and
x; are not a multiple of q indices apart but still have the same leading digit. Thus summing the frequency of every gth length
tells us that for each digit d the probability of a first digit d is a/q for some a € N,
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where Err[X] indicates an absolute error of size at most X. When ¢ = 1, the term inside the Err
vanishes. Forq € N, q > 1, cos(x /q) € [0, 1); as that value is raised to the Nth power, it approaches
0 exponentially fast. As N — oo, the term inside the Err disappears, leaving us 1/q. Hence the
probability of observing a particular leading digit converges to a multiple of 1/g, which is a rational
number. On the other hand, the probability from the Benford distribution is log;y(1 + 1/d) which
is an irrational number. Therefore the described cutting process does not result in perfect Benford
behavior. O

Remark 5.1. Instead of using the multisection formula, we could use the monotonicity (as we move
toward or away from the middle) to show that the different classes of j mod g have approximately
the same probability by adding or removing the first and/or last term in the sequence, which changes
which class dominates the other. We chose this approach as the multisection formula is useful in the
proof of Theorem 1.11 when the irrationality exponent of y is finite.

5.2. Casell:y & Q has finite irrationality exponent

We prove the leading digits of the 2V stick lengths are Benford by showing that the logarithms of
the piece lengths are equidistributed modulo 1(Benford's Law then follows by simple exponentiation;
see [42,80]). The frequency of the lengths x; follows a binomial distribution with mean N/2 and
standard deviation +/N/2. As the argument is long we briefly outline it. First we show that the
contributions from the tails of the binomial distribution are small. We then break the binomial
distribution into intervals that are a power of N smaller than the standard deviation, and show both
that the probability density function does not change much in each interval and that the logarithms
of the lengths in each interval are equidistributed modulo 1.

Specifically, choose a § € (0, 1/2); the actual value depends on optimizing various errors. Note
that N® <« +/N/2, the standard deviation. Let

N N
X = 5+£N5, Xei = 5+£N5+i, I = (e, x¢+1,..., %+ N —1). (5.6)

There are N/N® = N'7% such intervals. By symmetry, it suffices to just study the right half of the
binomial.

5.2.1. Truncation

Instead of considering the entire binomial distribution, for any ¢ > 0 we show that we may
truncate the distribution and examine only the portion that is within N¢ standard deviations of the
mean. Recall that we are only considering the right half of the binomial as well.

For € > 0, Chebyshev's Inequality® gives that the proportion of the density that is beyond N¢
standard deviations of the mean is

N
Prob(x—— zN“-\/N/Z) < N
As N tends to infinity this probability bec1omes negligilale. and thus we are justified in only con]sidering
1
the portion of the binomial from & — N27¢ to § + N2, Thus £ ranges from —Nz** to N2 %<,

(5.7)

5.2.2. Roughly equal probability within intervals

Let x, = N/2 + £N°. Consider the difference in the binomial coefficients of adjacent intervals,
which is related to the difference in probabilities by a factor of 1/2V. Note that this is a bound for the
maximum change in probabilities in an interval of length N® away from the tails of the distribution. For
future summation, we want to relate the difference to a small multiple of either endpoint probability;

8 While we could get better bounds by appealing to the Central Limit Theorem, Chebyshev's Inequality suffices.
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it is this restriction that necessitated the truncation from the previous subsection. Without loss of
generality we may assume £ > 0 and we find

()= Can) = (gm) = (aieliom)
Xg) (Xg+1 . %-FEN'S)_ %+(£+1)N3

N! N!
(”+e~6).(ﬂ—ewﬁ)1 G+ NS - (e + DNO)!
¥ p e+ DNOIE — e+ DN — NS + eno)(5 — eN?)!
(5 + ENS)I(S — NPT + (€ + INO)(T — (£ + )N

( N - (3 + NPT — IN°)!
%+6N5) (5 + €+ NS — (€ + 1N

N N enoyd — gnd

( ) o (5 e ) (58)
X (X + €+ DNO(T — (£+ 1)N®)!

Notice here that the difference in binomial coefficients is in terms of the probability at the left endpoint

of the interval, which allows us to express the difference in probabilities relative to the probability

within an interval. Let & (GHNOUG D e show that 1 — ap.y — O, which implies the
EN = (e N T~ Nd) &N ’ p

probabilities do not change s;gmﬁcantly over an interval. We have

IS (X + oY —eN)
T e+ DN — e+ ND)
Al
(B N
ps ZRIRT
. (]—4_2?7‘1)
logaeny > N? [log (1 — 2(:}—1:2) — log (l + 2(£ial))} 5 (5.9)

From Taylor expanding we know log(1 + u) = —u + u?/2 — O(u?). Thus letting u = 2(€£ + 1)/N'~ —#
(which is much less than 1 for N large as £ < NT‘HG) in the difference of logarithms above we

see the linear terms reinforce and the quadratic terms cancel, and thus the error is of size O(u®) =
0(€3/N3-38) = O(N3*~3/2), Therefore

logaen > N° [—4(15:_61) +O(N3E—3/2):|
N > e A+ INT 1 O(NI+3€=32)
= — [ 4 TINEY. B2
1—apn < 404 1IN L ootee32), i

Since we have truncated and £ < N2 5%, this implies (£ + 1)N?~1 « N®+¢=3 which tends to
zero if § < 1/2 — e. Substituting (5.10) into (5.8) yields

N N B N .
(Xr)—(xul) B (%HNS) ~ o)

(i\' ) (4(€ + NPT 4+ O(N°T3¢73/%)) (5.11)
;

A
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Since £ < NV/27%+¢ it follows that

‘(N) ( N ) & (N) (N,%Jﬂsﬁ +O(N5+3€“3/2)). (5.12)
Xy Xe41 X¢

As 8 < 1/2 — €, O(N*3¢—3/2) is dominated by N~2+5%€ since e is small. We have proved

Lemma5.2. let 6 € (0,1/2 —€)and £ < N2+, Then foranyi € {0, 1, ..., N®} we have
N N N

( ) - ( )‘ & ( )N‘%”*f. (5.13)
Xe Xei X¢

5.2.3. Equidistribution

We first do a general analysis of equidistribution of a sequence related to our original one, and then
show how this proves our main result.

Given an interval

N N
Ig = {Xg.,':3+EN3,...,—+(E+1)N6_]}1 (514)

2

we prove that log(x, ;) becomes equidistributed modulo 1 as N — oo. Fix an (a, b) C (0, 1). Let
Jela,b) C {0, 1, ..., N°} be the set of all i € I, such that log(x;;)mod 1 € (a, b); we want to show its
measure is (b — a)N® plus a small error. As the x,; form a geometric progression with common ratio
r = =2 = 10, their logarithms are equidistributed modulo 1 if and only if logr = y is irrational
(see [42,80]). Moreover, we can quantify the rate of equidistribution if the irrationality exponent « of
y is finite. From [86] we obtain a power savings:

Uela, b)| = (b—a)N* +0 (Nﬁ“—%“’)) ; (5.15)

see [22] for other examples of systems (such as the 3x + 1 map) where the irrationality exponent
controls Benford behavior, The key idea is to keep approximating general sums with simpler ones
that are tractable, with manageable errors at each step.

We now combine this quantified equidistribution with Lemma 5.2 and find (we divide by 2" later,
which converts these sums to probabilities)

2 () = Z1C)+o(G)r)]

iej(a.b) icjy(a.b)
— N —J4stepgs
- (xf;) 3 +0(N 3 N)
| \igJe(a.b)
NAT 5 s(1—1+¢) — 1484
= | ((b—a)N +O(N k 6))+O(N & f)]
f L
N N ,
= (b—a)N® (X )+N5 (X )-O(N“%”*f + NG )). (5.16)
£ €

Notice the error term above is a power smaller than the main term. If we show the sum over ¢ of the
main termis 14 o( 1), then the sum over £ of the error term is o( 1) and does not contribute in the limit
(it will contribute N~" for some n > 0).

Asxy = g + ¢N® we use the multisection formula (see (5.5)) with ¢ = N?, and find

N/N®

N N 5 N 24 N 3N
Z (Xe) = F(1+Err|:N (cosm) ]) = m-&—O(Z -e ) (5.17)

£=—N/N3$
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where Err[X] indicates an absolute error of size at most X and the simplification of the error comes
from Taylor expanding the cosine and standard analysis:

1 w?
log ((:os(n'/N‘S))N = Nlog (1 —~5i5@E T U(N—45})
1z —45 m? 12 1-45
= N —EW-I-O(N ) = —7N + O(N )
cos(m/N®) < e 3N (5.18)

for N large.
Remember, though, that we are only supposed to sum over |[£| < N 375+¢_The contribution from
the larger |€|, however, was shown to be at most O(N ~¢) in Section 5.2.1, and thus we find

> (b—aN? (:’) =140 (N"e“““z“ + N‘Zf) . (5.19)
£

As this is of size 1, the lower order terms in (5.16) do not contribute to the main term (their
contribution is smaller by a power of N).

We can now complete the proof of Theorem 1.11 when y ¢ @ has finite irrationality exponent.
Convergence in distribution to Benford’s law is equivalent to showing, for any (a, b) C (0, 1), that

N/NS Ns—1 N
Xei

> >, ow- = b—a+o(l) (5.20)

£=—N/N?

i=0
S]O(xg‘j)e(a.b)

however, we just showed that. Furthermore, our analysis gives a power savings for the error, and thus
we may replace the o(1) with N~7 for some computable > 0 which is a function of €, ¢’ and 8. This
completes the proof of this case of Theorem 1,11, O

Remark 5.3. A more careful analysis allows one to optimize the error. We want § (—% + e’) =
—1 48+ ¢, and thus we should take § = (3 —€)/(1+4 1 — ¢’). Of course, if we are going to optimize
the error we want a significantly better estimate for the probability in the tail. This is easily done by
invoking the Central Limit Theorem instead of Chebyshev's Inequality.

5.3. Case lll: y & Q has infinite irrationality exponent

While almost all numbers have irrationality exponent at most 2, the argument in Case Il does not
cover all possible y (for example, if y is a Liouville number such as anO‘"‘). We can easily adapt our
proof to cover this case, at the cost of losing a power savings in our error term. As y is still irrational,
we still have equidistribution for the logarithms of the segment lengths modulo 1; the difference is

now we must replace O (N‘S“*%+ €)) with o(N?). The rest of the argument proceeds identically, and
we obtain in the end an error of o( 1) instead of O(N "),

6. Two-dimensional fragmentation
In this section we prove Theorems 1.12 and 1.15, extending our results to two dimensions.
6.1. Decomposition of triangles

Proof of Theorem 1.12. Considering at each stage of the decomposition the proportions pt"), pt), p®
of the resultant sub-triangles to their parent, we obtain a sequence of random variables {(pgl), pgz),
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A

Fig. 5. Points A, B, C and D are chosen by taking random draws from a continuous distribution f and placing the point that
fraction of the way along the interval. A point is then selected from the unit square independently, and E is chosen based
on the mapping of this point under a fixed, continuous measure preserving map from the unit square to the green region. This
corresponds to a special case of the one-dimensional fragmentation and combination process described in Lemma 6.1, in which
the rod is first split into lengths corresponding to the area of the region enclosed in green and the sum of the outer regions.
The inner piece is split into four triangular pieces, which we can consider as a split of the rod into four pieces with length
corresponding to the areas of the triangles, and similarly for the outer piece. The inner and outer pieces are then combined in
pairs to reform the quadrilaterals outlined in black.

pEB))},-eN. Since affine transformations preserve ratios of areas, the probability density g on (0, 1) of
the proportions p', p?), p® is constant with respect to the shape of the triangle and depends only
on f. We may therefore reframe this two-dimensional process in terms of our one-dimensional rod
decomposition, where at each step the rod is broken into three pieces with proportions p'*), p®), p®
according to the distribution g.

We give our initial triangle Ty5-45-gp vertices at (0, 0), (0, 1), (1, 0). If we select the point (x, y)
in the interior of our triangle, the formula area = base x height gives that the sub-triangles have
areas %x, 1y, %(1 — x — y). The proportions of the areas of the sub-triangles to the original triangle
are therefére x,¥,1 — x — y (in particular, if f is uniform, then so is g.) These have distribution
f @ 1 — 1 _ f@ for f(1), f?) 35 in the statement of this theorem, and so Theorem 1.12 now
follows directly from Theorem 1.5. O

6.2. Decomposition of quadrilaterals

We now consider our model for decomposing convex quadrilaterals. We will describe the con-
struction process in detail below, illustrating it in Fig. 5.

We first set some notation, and then state and prove a lemma which allows us to reduce the 2-
dimensional fragmentation to 1-dimensional problems that our techniques can handle.

Let
K= xe (1) X+ +x=1}, (6.1)
and for any probability distribution f on S¥ let f be its first marginal, i.e.,
1 1
flx) = [ [ y2, o vy - - - dyg. (6.2)
y2=0 yk=0

A key lemma is a variant of the unrestricted fragmentation process in which pieces are allowed to
rejoin after breaks. We state and prove it in greater generality than is needed for our construction, as
the additional freedom may be of independent interest and is no harder to state and prove.

Lemma 6.1. Fix a probability density = on (0, 1), a probability density f on S¥, and a one-parameter
probability density G(6) on S* depending on a single random variable 8 such that (6.3) holds. Given a stick
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of length L, we perform the following iterated process.

1. Break the stick at a proportion p chosen according to 7.

2. Break one of the pieces into k sub-pieces X1, ..., Xy with proportions chosen according to f.

3. Independently break the other piece into k sub-pieces Y1. . . ., Y, with proportions according to G(p).
4. Combine each piece X; with the piece Y;, so that we have k pieces of lengths X1 + Y1, ..., Xy + Yi.
5. Repeat this process independently on each of the k resulting sub-pieces until there are kN pieces x.

If
N
lim ([ f f [ (p)fly )f( S )xm‘“’f""gmdzdydpdx) = 0, (6.3)
N—oo &= (1—ply

then as N — oo the significands of the lengths in X converge in distribution to Benford's law.

Proof of Lemma 6.1. For readability of the proof, we assume that our distributions f, G(#) are
symmetric; the general case follows similarly. Let ¢; denote the significand indicator function, so that

1 if the significand of x is at most s
gi(x) = { - (6.4)

0 otherwise.

Let Py(s) denote the proportion of pieces in & the significand of whose length is at most s. That is,
Pus) = — 3 X (6.5)

|X1 XeX

We now show that

r}Lngo E[Pn(s)] = logo(s) (6.6)
and
Niim Var (Py(s)) = 0, (6.7)

which together suffice to prove our theorem. The proof of (6.6) proceeds as in the proof of Theorem 1.5
except that we apply Theorem 1.1 of [45] with fpe) = 1/(6 + p/4) as opposed to fpe) = 1/6. We
therefore concentrate our attention on showing (2.9).

We have

Var (Py(s)) = E[PA(s)] — E[Px(s)]?

1
= g 2 EleOp(Y) - EIPy(s)”

X.Yex
1 1
= WEPNOI+ 55 D Eles(X)es(Y)] - EIPK(s)P
X#£YeX
1
= v 2 ElpXe)] — logyg(s) + o(1). (6.8)
X£Yex

Now, consider two arbitrary pieces X # Y € X. Call one iteration of the process 1-5 a “cut”, each
piece in X being the result of a sequence of N cuts, We can express X, Y each as a product of terms of
the form

pici + (1 — pi)Bi (6.9)

representing the ith cut, where p; is the proportion chosen in step 1 of our iterated process, ; is the
length of one of the pieces X; obtained in step 2, and f; is the length of one of the pieces Y; obtained
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in step 3. Since the sequences of cuts that produced X and Y may be the same up to some k < N, we
express X, Y more precisely by

X = L(proy +(1=p1)B1) - - (Pk—10k—1 + (1 — pr—1)Br—1) (Protx + (1 — pr)Bx)
(Prr1@k+1 + (1= Pr1)Brs1) - - - (Pvan + (1 — pn)BN)
=: Lay---ag—1 (Prax + (1 — Br)Br) kg1 -+ - AN
Liaksr---an

Y = L(pias + (1= p1)B1) -+ (Prerotemt + (1 = pe—1)Bi=1) (Prei + (1 — pe)By)
(Prs16rsr + (1 — pk+1)Bk+1) o (pvan + (1 — pN)BN)
= Lay---ax—q (Pka’; +(1—pe)f + %) k41 AN
= Lofigyq -y (6.10)

where q;, G; are independent random variables. We seek to describe their distribution.

Each «;, &; is some component of an independent random variable chosen according to f; by
symmetry, we may suppose it to be the first coordinate. Thus ;, &; are independent random variables
with distribution f. Likewise, the §;, B; are independent variables chosen according to G(p;). However,
«; and B/ are not independent. The distribution of the g;, G; has density

1 1., 1 L x—pz
h - G(p; dzdydp. 6.
) fo ¢(p)f0 f(y)fo (v Z)f((]p)y) 2dydp (6.11)

As in Section 2, we write

1 1 N N
w = [ (L1 I 01) [ it ot
a, ﬂN—O i=k+1

k+1=0 i=k+1
1 1 N N
) = [ o[ el ] a) [T Haxda - day (6.12)
ak+1=0 an=0 i=k+1 i=k+1
so that
1 1 1
Elos(X)p(Y)] = f f f f I(L;)(L>)day - - - dag_1dedPy. (6.13)
a=0 ag—1=0 Jar=0 J =0

It suffices to show that, for any L,, L, we have |I(L;)J(L;) — (log,es)*| = o(1) in N. This is proven in
Section 2 if h satisfies the Mellin condition (6.3). In other words if
N

&0 oo p1 p1 pl _ )
lim ([ [ [ f 7 (p) (¥)G(p: 2)f (ﬂ-x—r—%) x‘z”‘”mgwdzdydpdx) =0,
N—oo &~ \Jo Jo Jo Jo (1—ply

£#0

(6.14)
which is precisely (6.3)onx,f,G. O

We can now proceed to the proof of Benford behavior in the quadrilateral decomposition model.

Proof of Theorem 1.15. Unlike in the triangular case, affine transformations do not map between
arbitrary quadrilaterals, since affine transformations must preserve parallelism. However, there are
numerous continuous mappings from arbitrary convex quadrilaterals to squares that preserve the
ratio of areas; the construction of Gromov after Knothe provides such a mapping with other nice
properties [83]. The idea of the mapping is to send slices of the first quadrilateral to slices of the second
in a continuous way; see [87] for details on the specific construction. Therefore, given a probability
density f on the square, we obtain a unique probability density f' on any convex quadrilateral, and if
f is uniform then so is f.
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We now formulate our decomposition process in precise terms. We begin with the unit square,
a probability density f on (0, 1), and a probability density g on (0, 1)>. We independently select a
point on each side according to f. Call these A, B, C, D. We then choose a point E in the interior of the
quadrilateral ABCD according to the composition of g with a mapping that preserves ratios of areas. We
now connect E to each of A, B, C, D in order to decompose the square into four convex quadrilaterals.
We then perform the same decomposition independently on each of these quadrilaterals, repeating
this process until we obtain 4V quadrilaterals.

Again, we consider the ratios of the areas of the sub-quadrilaterals to their parent, and use
the resulting distribution to reframe this two-dimensional process as a decomposition of the rod.
Because of the existence of continuous mappings that preserve ratios of areas, it is enough to
consider the decomposition of the unit square, Each sub-quadrilateral can be thought of as having two
triangular components: one outside ABCD and one inside it. We will determine the distribution of the
proportions of the sub-quadrilaterals by conditioning on the area of the inner quadrilateral ABCD. In
terms of the decomposition of the rod, this corresponds to the following case of Lemma 6.1. We split
the rod into two pieces, one corresponding to the inner quadrilateral ABCD and one corresponding
to the outer area. We then split the former piece according to the areas of the inner triangles, and
the outer piece according to the areas of the outer triangles, and then recombine the corresponding
sub-pieces.

If (a, b, ¢, d) are the proportions of the points on each side, then the outer triangles have areas
1a(1—b), 3b(1 — ¢), 2¢(1 — d), 3d(1 — a) and the quadrilateral ABCD has area A = 1 — 3(a(1— b) +
b(1 —c)+c(1—d)+d(1—a)). Let ¥ denote the density of the probability distribution of .A. Let h;(.A)
denote the density of the distribution of the areas of the outer triangles conditional on A. Note that if
f is continuous, then so are 7 and h;. Let h; denote the density of the distribution of the ratios of the
areas of the inner triangles to A. Pulling back using any continuous area preserving mapping, we may
determine the distribution of h, by considering the case when ABCD is the unit square. In this case,
by selecting the point (x, y) we produce triangles of area 1xy, 1x(1 — y), 3(1 — x)y, 2(1 — x)(1 — y).
The areas of the inner triangles in ABCD are obtained by multiplying through by A. Therefore, if f and
g are both continuous, we see that h; is continuous.

Theorem 1.15 follows from applying Lemma 6.1 with this = above corresponding to the 7 of the
lemma and h; and h; corresponding to G and f, respectively. O

7. Proof of Theorem 1.17: Determinant expansion

The techniques introduced to prove that the continuous stick decomposition processes result in
Benford behavior can be applied to a variety of dependent systems. To show this, we prove that the n!
terms of a matrix determinant expansion follow Benford’s Law in the limit as long as the matrix entries
are independent, identically distributed nice random variables. As the proof is similar to our previous
results, we content ourselves with sketching the arguments, highlighting where the differences occur.
See [88] for additional examples of Benford behavior in matrix ensembles.

Consider an n x n matrix A with independent identically distributed entries a,q drawn from a
continuous real valued density f(x). Without loss of generality, we may assume that all entries of A
are non-negative. For 1 < i < n!, let X;, be the ith term in the determinant expansion of A. Thus
Xin= ﬂ;f:]apa[(p) where the o;’s are the n! permutation functions on {1, ..., n}.

We prove that the distribution of the significands of the sequence {Xi_n};L] converges in distribu-
tion to Benford’s Law when the entries of A are drawn from a distribution f that satisfies (1.6) (with
h = f). Recall that it suffices to show

(1) limy—ooE[Po(s)] = logyo(s), and
(2) limy_ooVar (Py(s)) = 0.

We first quantify the degree of dependencies, and then sketch the proofs of the mean and variance.
Fixi € {1,..., n!} and consider the number of terms X; , that share exactly k entries of A with X; .
Equivalently: If we permute the numbers 1, 2, ..., n, how likely is it that exactly k are returned to
their original starting position? This is the well-known probléme des rencontres (the special case of
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k = 0is counting derangements), and in the limit the probability distribution converges to that of
a Poisson random variable with parameter 1 (and thus the mean and variance tend to 1; see [89]).
Therefore, if K; ; denotes the number of terms X; , and X; , share, the probability that Kj; > logN is

o(1).

The determination of the mean follows as before. By linearity of expectation we have

BRG] = — 3 Bl (7.1)
T =1

It suffices to show that lim,_, o El@s{(Xin)] = logyys. We have

n
Elps(Xin)]l = ] [ f Ps napﬂf(m
@15y(1) ¥ 020,(2) Gnay(n)
n

p=1

; Hf(ﬂpo,-(p)) da14,(1)da24,(2) - - + Anoy(n)» 72
p=1
where ap,,p) are the entries of A. As these random variables are independent and f(x) satisfies (1.6),
the convergence to Benford follows from [45] (or see Appendix A of [84]).
To complete the proof of convergence to Benford, we need to control the variance of P,(s). Arguing
as before gives

n!

= | D ElpuXin)es(Xi.n)] | — logls + o(1). (7.3)
ij=1
i#]

logo(s) 1
n! (n")

Var (Py(s)) =

We then mimic the proof from Section 2.2. There we used that, for a fixed i, the number of the 2V
pairs (i, j) with n factors not in common was 2"~'; in our case we use K;j is approximately Poisson
distributed to show that, with probability 1 + o(1) there are at least log N different factors. The rest
of the proof proceeds similarly.

8. Future work

Many of our results concern continuous decomposition models in which a stick is broken at a
proportion p. We propose several variations of a discrete decomposition model in which a stick breaks
into pieces of integer length, which we hope to return to in a future paper.

Consider the following additive decomposition process. Begin with a stick of length L and uniformly
at random choose an integer length ¢ € [1,L — 1] at which to cut the stick. This results in two
pieces, one of length ¢ and one of length L — c. Continue this cutting process on both sticks, and only
stop decomposing a stick if its length corresponds to a term in a given sequence {a,}. As one cannot
decompose a stick of length one into two integer pieces, sticks of length one stop decomposing as
well.

Conjecture 8.1. The stick lengths that result from this decomposition process follow Benford's Law for
many choices of {an}. In particular, if either (i) {a,} = {2n} or (ii) {a,} is the set of all prime numbers then
the resulting stick lengths are Benford.

More generally one can investigate processes where the stick lengths continue decomposing if they
are in certain residue classes to a fixed modulus, or instead of stopping at the primes one could stop at
a sequence with a similar density, such as [nlogn]. It is an interesting question to see, for a regularly
spaced sequence, the relationship between the density of the sequence and the fit to Benford's law.
While one must of course be very careful with any numerical exploration, as many processes are
almost Benford (see for example the results on exponent random variables in [33,90]), Theorem 1.9
is essentially a continuous analogue of this problem when a, = 2n, and thus provides compelling
support.
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Fig. 6. (a) {a, = 2n): 2500 chi-square values of stick lengths to Benford behavior after decomposition of sticks of length

approximately 107, (b) {a, = pa} (the set of primes): 1000 chi-square values of stick lengths to Benford behavior after
decomposition of sticks of length approximately 10°%°.

Fig. 6(a) shows a histogram of chi-square values from numerical simulations with a x¢ distribution

overlaid (as we have 9 first digits, there are 8 degrees of freedom). A stick of length approximately 108
was decomposed according to the above cutting process, where {a,} = 2n. A chi-square value’ was
calculated by comparing the frequencies of each digit obtained from the simulation to the frequencies
predicted by Benford's Law. If the simulated data is a good fit to Benford's Law, the x? values should
follow a x? distribution. Examining the plot below shows that our numerical simulations support
Conjecture 8.1(i). Similarly, Fig. 6(b), which shows the chi-square values obtained when {a,} is the set
of all primes, supports Conjecture 8.1(ii).

Conjecture 8.2. Fix a monotonically increasing sequence {ay,}. Consider a decomposition process where a
stick whose length is in the sequence does not decompose further. The process is not Benford if {a,} is any
of the following: {n?}, (2"}, {F.} where F, is the nth Fibonacci number.

More generally, we do not expect Benford behavior if the sequence is too sparse, which is the case
for polynomial growth in n (when the exponent exceeds 1) or, even worse, geometric growth.

Fig. 7 features plots of the observed digit frequencies vs the Benford probabilities. These plots
also give the total number of fragmented pieces, the number of pieces whose lengths belong to the
stopping sequence, and the chi-squared value. Notice that the stopping sequences in Conjecture 8.2
result in stick lengths with far too high a probability of being of length 1. This fact leads us to believe
that the sequences are not “dense"” enough to result in Benford behavior.

In addition to proofs of the conjectures, future work could include further exploration of the
relationship between stopping sequence density and Benford behavior.
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9f X; are the simulation frequencies of each digiti = 1,2, ..., 9 and Y; are the frequencies of each digit as predicted by
Benford's Law, wherei =1, ..., 9, then the chi-squared value we calculated is given by ZL(X,-N - Y,-N)Z/NYf, where N is the
number of pieces.
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Fig. 7. (a) {a, = n?}: Distribution of stick lengths after decomposing sticks of initial length approximately 10°. (b) {a, = 2"}:
Distribution of stick lengths after decomposing 1000 sticks of initial length approximately 10°%. (c) {a, = F, )}, the Fibonacci
Numbers: Distribution of stick lengths after decomposing 500 sticks of initial length approximately 10°%,

Appendix A. Non-Benford behavior

We consider the following generalization of the Unrestricted Decomposition Model of Theorem 1.5,
where now the proportions at level n are drawn from a random variable with density ¢,. If there
are only finitely many densities and if the Mellin transform condition is satisfied, then the sequence
of stick lengths converges to Benford; if there are infinitely many possibilities, however, then it is
possible to obtain non-Benford behavior.

Specifically, we give an example of a sequence of distributions D with the following property: If
all cut proportions are drawn from any one distribution in D then the resulting stick lengths converge
to Benford’s Law, but if all cut proportions in the nth level are chosen from the nth distribution in D,
the stick lengths do not exhibit Benford behavior.

Itis technically easier to work with the densities of the logarithms of the cut proportions. Fix§ > 0
and choose a sequence of €,'s so that they monotonically decrease to zero and

o 3 16 logi 1—logy
< In —5 __’ L] - =
o 2072 (n+ 172 227" 2 2

- (A.1)

these values and the meaning of these constants will be made clear during the construction. Consider
the sequence of distributions with the following densities

x—lo l <€
gz n

sl = Ve ¥ (A2)

0 otherwise;

these will be the densities of the logarithms of the cut proportions.

If the logarithm of the cut proportion is drawn solely from the distribution ¢y for a fixed k, then
as the number of iterations of this cut process tends to infinity the resulting stick lengths converge
to Benford's Law. This follows immediately from Theorem 1.5 as the associated densities of the cut
proportions satisfy the Mellin condition (1.6).

We show that if the logarithms of the cut proportions for the nth iteration of the decomposition
process are drawn from ¢, then the resulting stick lengths do not converge to Benford behavior for
certain §. What we do is first show that the distribution of one stick piece (say the resulting piece
from always choosing the left cut at each stage) is non-Benford, and then we prove that the ratio
of the lengths of any two final pieces is approximately 1. The latter claim is reasonable as our cut
proportions are becoming tightly concentrated around 1/2; if they were all exactly 1/2 then all final
pieces would be the same length.

Instead of studying the Mellin transforms of the cut proportions we can study the Fourier
coefficients of the logarithms of the proportions (again, this is not surprising as the two transforms
are related by a logarithmic change of variables). For a function ¢ on [0, 1], its nth Fourier coefficient
is

il
#(n) = f P(x)e 2Ty, (A.3)
0
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Miller and Nigrini [47] proved that if Ry, ..., Ry are continuous independent random variables with
gn the density of log;,S1o(|Rm|), then the product R, - - - Ry converges to Benford's law if and only if
for each non-zero n we have limy_og;(n) - - - gu(0) = 0.

We show that if we take our densities to be the ¢,’s that the limit of the product of the Fourier
coefficients at 1 does not tend to 0. We have

1
" 1 [3ten 2n2¢2

(1) = — ey = — 1+ + 0(eh. (A4)
2¢ 1—en
As we are assuming €, < /ioer(BTn' we find for n large that
- n® + 2n
1) = , A5
As
N 2
2n 1
g T (A6)
N—oo (n+ 1% 2
n=1
we see that
N
Jlim TT16:(1)--én(0)] > 0. (A7)
n=1

This argument shows that the product of N random variables, where the logarithm of the nth
variable is drawn from the distribution ¢y, is not Benford. This product is analogous to the length of
one of the 2N sticks that are created after N iterations of our cut process. To show the entire collection
of stick lengths does not follow a Benford distribution, we argue that all of the lengths are virtually
identical because the cutting proportion tends to 1/2 (specifically, that the ratio of any two lengths is
approximately 1).

Let us denote the lengths of the sticks left after the Nth iteration of our cutting procedure by Xy ;,
wherei = 1, ..., 2", Each length is a product of N random variables; the nth term in the product is
either p, (or 1 — py,), where the logarithm of p, is drawn from the distribution ¢;,. Proving the ratio
of any two lengths is approximately 1 is the same as showing that log(Xy, /X ;) is approximately 0. If
we can show the largest ratio has a logarithm close to 0 then we are done. The largest (and similarly
smallest) ratio comes when Xy ; and Xy j have no terms in common, as then we can choose one to
have the largest possible cut at each stage and the other the smallest possible cut. Thus Xy ; always
has the largest possible cut; as the largest logarithm at the nth stage is €, + log % its proportion at

the nth level is e "% 2 Similarly Xy ; always has the smallest cut, which at the nth level is pmentioE 3
Therefore
N 1 N
i esn-Hog 3
logﬂ = logn —_— Z:Zen; (A.8)
n=1

XN j il e—fn+log%

as we chose ¢, < % 2% the maximum ratio between two pieces is at most 8. By choosing § sufficiently

small we can ensure that all the pieces have approximately the same significands (for example, if
8 < 10729 then we cannot get all possible first digits).

Appendix B. Notes on Lemons’ work

In his 1986 paper, On the Number of Things and the Distribution of First Digits, Lemons [62] models
a particle decomposition process and offers it as evidence for the prevalence of Benford behavior,
arguing that many sets that exhibit Benford behavior are merely the breaking down of some conserved
quantity. However, Lemons is not completely mathematically rigorous in his analysis of the model
(which he states in the paper), and glosses over several important technical points. We briefly mention
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some issues, such as concerns about the constituent pieces in the model as well as how the initial piece
decomposes. We discuss our resolutions of these issues as well as their impacts on the behavior of the
system.

The first issue in Lemons’ model concerns the constituent pieces. He assumes the set of possible
piece sizes is bounded above and below and is drawn from a finite set, eventually specializing to the
case where the sizes are in a simple arithmetic progression (corresponding to a uniform spacing),
and then taking a limit to assume the pieces are drawn from a continuous range, In this paper, we
allow our piece lengths to be drawn continuously from intervals at the outset, and not just in the
limit. This removes some, but by no means all, of the technical complications. One must always
be careful in replacing discrete systems with continuous ones, especially as there can be number-
theoretic restrictions on which discrete systems have a solution. Modeling any conserved quantity
is already quite hard with the restriction that the sum of all parts must total to the original starting
amount; if the pieces are forced to be integers then certain number theoretic issues arise, For example,
imagine our pieces are of length 2, 4 or 6, so we are trying to solve 2x; + 4x, + 6x3 = n. There are no
solutions if n = 2017, but there are 85,345 if n is 2018. By considering a continuous system from the
start, we avoid these Diophantine complications; see [75] for an analysis of the discrete setting.

A second issue missing from Lemons argument is how the conserved quantity, the number of
pieces, and the piece sizes should be related. The continuous limit thus requires consideration of three
quantities. Without further specification of their relative scaling, the power law distribution (which
leads to Benford behavior) is but one possible outcome. Statistical models of the fragmentation of a
conserved quantity based on integer partitioning have been constructed [91-93]. These models can
lead to a power law distribution but only for special weightings for the different partitions. Whether
this distribution can be obtained from equally weighted partitions (as used in Lemons argument) is
an important question, to which we hope to return.

A related issue is that it is unclear how the initial piece breaks up. The process is not described
explicitly, and it is unclear how likely some pieces are relative to others. Finally, while he advances
heuristics to determine the means of various quantities, there is no analysis of variances or correla-
tions. This means that, though it may seem unlikely, the averaged behavior could be close to Benford
while most partitions would be far from Benford.'"

These are important issues, and their resolution and model choice impact the behavior of the
system. We mention a result from Miller-Nigrini [ 33], where they prove that while order statistics are
close to Benford's Law (base 10), they do not converge in general to Benford behavior. In particular,
this means that if we choose N points randomly on a stick of length L and use those points to partition
our rod, the distribution of the resulting piece sizes will not be Benford. Motivated by this result and
Lemons' paper, we instead considered a model where at stage N we have 2" sticks of varying lengths,
and each stick is broken into two smaller sticks by making a cut on it at some proportion. Each cut
proportion is chosen from the unit interval according to a density f. Dependencies clearly exist within
this system as the lengths of final sticks must sum to the length of the starting stick.
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