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1. Introduction

The study of finite approximation properties has always played a central role in the
structure and classification program for operator algebras. In the amenable setting this
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can be seen, for example, in the seminal work of Connes on the classification of injective
factors [10] and also in Elliot’s classification program for simple nuclear C*-algebras [34].
For non-amenable operator algebras, there are two approximation properties that arise
as weak forms of amenability that stand out: the Haagerup property and the completely
bounded approximation property. These two operator algebraic properties have their
roots in the deep work of Cowling, de Canniere and Haagerup on the completely bounded
multipliers of Fourier algebras and group von Neumann algebras (cf. [15,12,11]). In the
group context, amenability of a (discrete) group G corresponds to the existence of an
approximate identity in the Fourier algebra A(G) consisting of finitely supported normal-
ized positive definite functions. The Haagerup property arises when one relaxes the finite
support assumption and allows for an approximate unit of normalized positive definite
functions that merely vanish at infinity (cf. [9] for the connection to group von Neu-
mann algebras). If one instead insists on having a finitely supported approximate unit
for A(G), but allows for functions of more general type (those uniformly bounded in the
completely bounded Fourier multiplier norm) this results in the fertile and robust notion
of weak amenability (cf. [11]). This latter notion has a straightforward generalization to
C*-algebras and von Neumann algebras, yielding the so-called (w*-)completely bounded
approximation property ((w*)-CBAP). The situation is a little more subtle when trans-
lating the Haagerup property to arbitrary von Neumann algebras, and this was obtained
only very recently (cf. [8] and [26] for two different, but equivalent, approaches).

The w*-CBAP has proved to be a remarkable tool in the study of non-amenable op-
erator algebras. Indeed, it yields a numerical invariant, called the Cowling—Haagerup
constant, which was used by Cowling and Haagerup [11| to distinguish the group
von Neumann algebras arising from lattices in the Lie groups Sp(1,n). Recently, in the
breakthrough work of Ozawa and Popa (cf. [29, Theorem 3.5] and [28]), the w*-CMAP
was shown to be intimately connected to several remarkable indecomposability results
for finite von Neumann algebras, such as strong solidity, absence of Cartan subalgebras,
primeness, and so on.

All the results mentioned about pertain mostly to (semi)finite von Neumann algebras.
However, several recent advancements have been made in the study of type III algebras.
Most notably, the work of Isono [19,20] on the structural theory of non-unimodular free
quantum group factors, as well as Boutonnét, Houdayer and Vaes’ very recent proof of
strong solidity for Shlyakhtenko’s free Araki-Woods factors [5]. These latter algebras
constitute the very first examples of non-injective strongly solid type III factors. Again,
in the type III setting a key role is played by the w*-CBAP, which had been estab-
lished previously by Houdayer and Ricard [18] for free Araki-Woods algebras, and by
De Commer, Yamashita and Freslon in the free quantum group case [13].

The present paper is concerned with the so-called g¢-Araki-Woods algebras
I'y(Hr, (Ut)ter)”, which were introduced by Hiai in [17]. These (typically type III)
von Neumann algebras are generated by the real parts of certain creation operators
acting on a g¢-deformed Fock space F,(H) (introduced in [7]). I'y(Hg, (Ut)ter)” can
be viewed as a deformation of a free Araki-Woods factor depending on a parameter
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q € (—1,1) (¢ = 0 being the undeformed case). In many senses the g-Araki—-Woods al-
gebras are expected to be structurally very similar to their free, undeformed cousins. In
fact, it is even known that for dimH < oo and |q| << 1, T'y(Hg, (Ut)ter)” is isomorphic
to its free cousin (cf. [22, Theorem 4.5]). However, not so much is known about these
algebras in the whole admissible regime of the parameter ¢. Let us just mention some
partial results: Very recently, advances were made on the factoriality problem (cf. [3]
and [33]). In many cases it is also known that ¢-Araki-Woods algebras are non-injective
(cf. [23]). For both properties there is really one case left open — g-Araki-Woods algebras
built from a two-dimensional Hilbert space H, in which one cannot rely in any way on
techniques used for ¢-Gaussian algebras, their tracial predecessors. All ¢g-Araki—-Woods
algebras are known to be QWEP? (cf. [24]), and it was only recently shown by the
third named author that these algebras possess the Haagerup approximation property
(cf. [35]).

In this paper, our goal is to establish the w*-CBAP for all ¢-Araki-Woods algebras.
Following Houdayer and Ricard’s lead from the free case [18|, we approach this problem
by trying to characterize a natural class of completely bounded maps on these algebras,
called radial multipliers, and estimate their norms. The classification problem for radial
multipliers appears to be hard even for small values of |¢| because the known isomor-
phism between a ¢-Araki—-Woods algebra and a free Araki-Woods factor does not carry
radial multipliers to radial multipliers. So even in this setting new techniques are cru-
cial. In [18], the authors used the universal property of the Fock representation of the
Toeplitz algebra to translate the question of computing the completely bounded norm of
a radial multiplier on a free-Araki—-Woods factor to an equivalent problem of computing
the completely bounded norm of the same multiplier, viewed now as a radial Fourier
multiplier on a free group. In this latter setting, one has an explicit formula (cf. [16,
Theorem 1.2]) involving the trace-class norm of a Hankel matrix associated with the
symbol of the multiplier. In particular, it follows from this result that the completely
bounded norms of radial multipliers on free Araki-Woods factors do not depend on the
type structure of the algebra. In the g-deformed setting, we conjecture that the same
type-invariance for radial multipliers should hold for all ¢-Araki-Woods algebras. Un-
fortunately, if one tries to mimic the approach of Houdayer and Ricard in the free case,
several major issues arise. One of them is that one has to work now with the Fock rep-
resentation of the g-deformed Toeplitz algebras, and it is an interesting open problem to
settle the universality question for the Fock representation here. In this paper we follow
a different route, inspired by transference principles for multipliers. More precisely, we
develop a non-tracial version of an ultraproduct embedding theorem of Junge and Zeng
for mixed g-Gaussian algebras [21]. Our construction (Theorem 3.1) yields a g-quasi-
free state-preserving embedding of an arbitrary I'y(Hg, (U)ier)” into an ultraproduct
of tensor products of tracial ¢-Gaussian algebras and other g-Araki-Woods algebras.
Using Theorem 3.1, we show that it is possible to transfer radial multipliers on (tracial)

2 A C*-algebra is QWEP if it is a quotient of a C*-algebra possessing the weak expectation property.
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gq-Gaussian algebras to arbitrary g-Araki-Woods algebras in such a way that the com-
pletely bounded norm does not increase (Theorem 4.1). Our transference result provides
strong evidence towards the conjecture that radial multipliers on g-Araki-Woods alge-
bras do not depend on the type structure, and we fully expect (but are unable to prove
at this time) that our transference principle should be isometric and bijective.

In any case, Theorem 4.1 does provide us with some new examples of completely
bounded radial multipliers on ¢-Araki—-Woods algebras. These are the projections onto
Wick words of a given finite length. Upper bounds for the norms of such multipliers
were obtained previously for g-Gaussian algebras by the first named author in [2]. These
norm estimates together with the extended second quantization functor [35] turn out to
be exactly what we need to establish the main result of the paper: the w*-CBAP for
all g-Araki-Woods algebras. In fact, just as in the free case, we obtain the completely
contractive version of this property (see Section 2 for the relevant definition):

Theorem 1.1. Let I'y(Hg, (Ut)ier)” be a q-Araki-Woods algebra. Then I'q(Hg, (Ut)ier)”
has the w*-complete metric approximation property.

As an application of the above result, we are able to answer affirmatively a question left
open by Nou [24, Remark after Theorem 6.3, concerning whether or not the canonical
w*-dense C*-subalgebras I'j(Hg, (Ut)tcr) C I'q(Hg, (Ui)ter)” are always QWEP; see
Corollary 5.3. It is our hope that Theorem 1.1 will lead to a deeper understanding of
the structure of g-Araki—-Woods algebras. In particular, we expect this result to be a
fundamental tool in the applications of deformation/rigidity tools to these algebras.

Let us conclude this section with a description of the layout of the main body of
the paper. In Section 2 we introduce the relevant notation and background on operator
spaces, von Neumann ultraproducts, and ¢-Araki—Woods algebras. In Section 3, we con-
struct our ultraproduct embedding and apply it in Section 4 to obtain the transference

principle for radial multipliers. Finally, we present the proof of Theorem 1.1 in Section 5.
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2. Preliminaries
2.1. Some notation

Throughout this paper, inner products on complex Hilbert spaces are always taken
to be conjugate-linear in the left variable. The algebraic tensor product of two complex
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vector spaces V, W will always be denoted by V' © W, and elementary tensors in V& W
will also be denoted using the symbol ©. Given a natural number n € N, we denote
by [n] ([n]o) the ordered set {1,2,...,n} ({0,1,2,...,n}). Given n,d € N we will inter-
changeably view multi-indices k = (k(1),k(2),...,k(d)) € [n]¢ as functions k : [d] — [n].
Given d € N, we denote by P(d) the lattice of partitions of the ordered set [d], and by
Pa(d) C P(d) the subset of pair partitions (i.e., partitions of [d] into disjoint subsets
(“blocks”) of size 2). The partial order < on P(d) is given by the usual refinement order
on partitions, and given 7,0 € P(d), we denote by 7V o € P(d) the lattice theoretic join
of m and o with respect to the partial order <. The number of blocks of a partition o will
be denoted by |o|. Finally, given a multi-index k : [d] — [n], we denote by ker k € P(d)
the partition defined by level sets of k: that is, 1 < r, s < d belong to the same block of
ker k iff k(r) = k(s).

2.2. Operator spaces

Some amount of the theory of operator spaces is necessary for our work; even the
statement of the main result uses notions from this field. Recall that an operator space
is a Banach space X endowed with a specific choice of norms on the matricial spaces
M, (X) := M,, ©X satisfying the so-called Ruan axioms, ensuring that it comes from an
isometric embedding of X into B(H), the C*-algebra of bounded linear operators on some
Hilbert space H. Given a pair of operator spaces X, Y and a linear map 7' : X — Y, the
cb norm of 7T is given by

T :=sup || Id,, ©T : M,, X — M,, @Y.
neN

If |T]|ep < o0, we say that T is completely bounded (cb). We can now define the ap-
proximation properties that we are interested in. Let X be an operator space. We say
that X possesses the completely bounded approximation property if there exists a net
(®;)ier of finite rank completely bounded maps on X such that sup,c; || P;lle < o0,
and lim;e; ||®;(z) — z|| = 0 for every x € X. If we can find a net (®;);e; such that
||P;||lce < 1 then we say that X has the complete metric approximation property. For
a dual operator space X (i.e. X ~ (X,)* for some operator space X,), there is a suit-
able analogue of this approximation property which takes into account this additional
structure. Namely, we say that X has the w*-complete metric approximation property
if there exists a net (®;);es of finite rank w*-continuous completely bounded maps on
X such that ||®;||s < 1 for each ¢ € I, and lim;ec; ®;(x) = x (weak-x) for every x € X.

We need to discuss two operator space structures associated with a given Hilbert
space.

Definition 2.1. Let H be a complex Hilbert space. We define the following operator space
structures on H:
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(i) the column Hilbert space structure H. is given by the identification H ~ B(C, H);
(ii) the row Hilbert space structure H, is given by the identification H ~ B(H, C).

Remark 2.2. Row (column) Hilbert spaces are homogeneous operator spaces, i.e. any
contraction 7' : K — H is a complete contraction T : K, — H, (T": K. — H.) (cf. [14,
Theorem 3.4.1 and Proposition 3.4.2]).

These Hilbertian operator spaces will turn out to be critical for obtaining a right
formulation of the non-commutative Khintchine inequalities (cf. Corollary 2.17 in Sub-
section 2.3).

In the theory of operator spaces there is a variety of different tensor products, anal-
ogous to tensor products of Banach spaces. There is, however, one tensor product that
stands out and does not have a Banach space theoretic counterpart — the Haagerup
tensor product.

Definition 2.3. Let X and Y be operator spaces. We define a bilinear map M,, ,.(X) X
M, ,(Y) > (z,y) = z-y € M,,(X ©®Y) to be the bilinear extension of the assignment
(A®x,Boy)— (AB,z ®y). For any z € M,,(X ®Y) we define the norm

|2llpn = nf{||z|||ly|| : 2 =2 -y, x € My, (X)), y € M, ,,(Y), r € N}.

This sequence of norms on the matricial spaces M, (X ® Y) satisfies Ruan’s axioms
and therefore defines an operator space structure on X ® Y, called the Haagerup tensor
product. The completions with respect to the norms |- ||, will be denoted M,,(X ®;Y).
For more information on the Haagerup tensor product, consult [14, Chapter 9] and [30,
Chapter 5.

Later on we will need the following proposition.

Proposition 2.4 (Proposition 9.3.4 from [1/]). Let K and H be complex Hilbert spaces.
Then the assignment HOK > € © 1 |€)(n| € K(K,H) (the compact operators) extends
to a complete isometry H, @5 K, ~ K(K,H).

2.3. q-Araki-Woods algebras

We present here a construction due to Hiai (cf. [17]), which builds upon previous de-
velopments: ¢g-Gaussian algebras of Bozejko and Speicher (cf. [6]) and free Araki-Woods
factors defined by Shlyakhtenko (cf. [32]).

The starting point is a real Hilbert space Hg equipped with a strongly continuous
one-parameter group of orthogonal transformations (Uy):er. The extension of (U;)ier to
a unitary group on Hc, the complexification of Hg, will be still denoted by (U;)icr. By
Stone’s theorem, there exists an injective, positive operator A on H¢ such that U, = A,

2A

On Hc we define a new inner product (¢|n)u := (§|1375;n) and denote by H the completion
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of He with respect to this inner product. Note that the norms defined by (-|-)y and (-|-)
coincide on Hg. This implies that I, the complex conjugation on Hc, is a closed operator
on H with dense domain Hc.

Next we form the ¢-Fock space F,(H). Since we will have to delve deeper into its
structure later on, we will present the construction here; in the following, H will be
an arbitrary complex Hilbert space, not necessarily the one constructed from the pair
(Hr, (Ut)ter)- First, let us fix ¢ € (—1,1). For any n we define P;' : HO" — H®" by

Uesn
where i(0) = [{(¢,j) € [n]* : i < j and o(i) > o(j)}| is the number of inversions. This

operator is (strictly) positive definite (cf. |7, Proposition 1]), so it defines an inner product
on H®™ by (£]n), := (€| P;'n); the completion with respect to this inner product will be
denoted by HSQ”. The ¢-Fock space is defined by the orthogonal direct sum F,(H) :=
D.>o HZ", where H;@’O = CQ. For our purposes, there are two important sets of operators
defined on the g-Fock space. For any { € H we define the g-creation operator a; (&) €
B(F,(H) by

a,(E)(e1 @ Oen) =010 Oey

and the g-annihilation operator a,(§) = (af](f))* € B(F4(H)). It is known (cf. [6, Re-
mark 1.2]) that

laa(@l =zl = {  _ W $22770 cem.

We are now ready to define g-Araki—Woods algebras.

Definition 2.5. Let (Hg, (U)tcr) be a real Hilbert space endowed with a strongly contin-
uous one-parameter group of orthogonal transformations. Let H be the complex Hilbert
space obtained as the completion of He with respect to (-|-)7. For any £ € Hg we define
54(&) € B(F¢(H)) by 54(&) = a;(§) +ay(&). We define the ¢-Araki-Woods algebra I, (H)
to be the von Neumann algebra generated by the set {s,(§) : ¢ € Hr} inside B(F,(H)).
In the special case U; = 1 we obtain the ¢g-Gaussian algebras of Bozejko and Speicher
and we will denote them, following the tradition, by I';(Hg) (cf. [6, Definition 2.1]).

Remark 2.6. Even though we choose to suppress the pair (Hg, (Ui)tecr) (and also the
double commutant symbol) in our notation for the remainder of the paper, we stress
that it is important to remember how the Hilbert space H was constructed from these
data. We feel that, at least in our setting, the notation that we adopt in this paper is
more convenient than the usual one.
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There is a distinguished vector (2 in F,(H), called the vacuum vector, which is equal
to 1 € C ~ H®? C F,(H). It is not hard to see that Q is cyclic and separating for
I',(H). In fact, one can verify that the algebraic direct sum @n>0 HE™ is contained in
[',(H). Using the generator A, one can explicitly identify a big enough subset of the
commutant I';(H)” for which € is cyclic (cf. [32, Lemma 3.1]), so  is also separating for
['y(H). It follows that the normal state x(-) = (2| - ) is faithful on I'j(H) (called the
g-quasi-free state) and F,(H) can be identified with the GNS Hilbert space associated
with x. What is more, the commutant can be identified with the version of our algebra
acting on the right, but in this case one has to not only use right versions of s,(&) but
also the real Hilbert space that one draws the vectors from needs to be changed (cf. [17,
Section 1]). We record here for later use the so-called Wick formula, which describes the
joint moments of the generators {sq(§)}een, with respect to x.

Theorem 2.7 (/17], [2/]). For any d € N and any ey, ...,eq € Hg, we have

Nsglen)sqlea) o syea)) = 30 @@ ] (erleno,

oc€P2(d) (rit)ec

where (o) denotes the number of crossings in the pairing o € Pa(d), and (r,t) € o
indicates that 1 < r <t < d are paired together by o. If d is odd, we interpret the above
(empty) sum as 0.

Since B,,~¢ HE™ C Ty (H)Q C F,(H), we are allowed to make the following definition.

Definition 2.8. Let { € D, HZ". Then there is exactly one operator W (¢) € I'y(H),
called the Wick word associated with &, such that W (£)Q = €.

This definition will help us in constructing maps on I';(H) from operators on H. Let
us first recall a version of this construction on the level of the ¢-Fock space (cf. [6,

Lemma 1.4]).

Definition 2.9. Let T': K — H be a contraction between complex Hilbert spaces. Then
the assignment

FoT)(er @ 0ey)=Ter ©@---0Tey,
extends to a contraction Fy(T): Fy(K) — F,4(H), called the first quantization of 7.

On the level of the von Neumann algebra I';(H) it is tempting to extend the assign-
ment

W ®: - ®ep) = W(Te1®---®Tey)
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to a nice map on I';(H). It turns out that under a mild additional assumption on 7" the
extension exists and is a normal, unital, completely positive® map. The next proposition
is an extension of Theorem 2.11 from [6], which is an analogous result for ¢g-Gaussian
algebras.

Proposition 2.10 (/35, Theorem 3.4]). Let (Kgr, (Vi)ter) and (Hgr, (Ut)ter) be real Hilbert
spaces equipped with respective one-parameter orthogonal groups. Construct out of them
complex Hilbert spaces K and H. Suppose that T: K — H is a contraction such that
T(Kr) C Hgr (a condition written more succinctly in the form ITJ = T, where J and
I are complex conjugations on K¢ and Hc, respectively). Then the assignment W(e; ®
e ®ep)  W(Tey ® ---®Te,y) extends to a normal ucp map T'y(T): T'y(K) — T'y(H)
that preserves the vacuum state. The maps I'y(T') is called the second quantization of T.

Remark 2.11. The analogous result in the free case (i.e. ¢ = 0) was crucial in the proof
of the w*-complete metric approximation property for the free Araki-Woods factors in
[18].

2.4. Wick formula and Nou’s non-commutative Khintchine inequality

To fulfill the purpose of this paper, that is to prove the w*-complete metric approx-
imation property for the g-Araki—-Woods algebras, we need to expand our knowledge of
the Wick words. Let us start with the celebrated Wick formula. The proof of the fol-
lowing result can be found in [6, Proposition 2.7] in the tracial case. The general case
follows along the same lines. See also [18, Lemma 3.2].

Proposition 2.12 (Wick formula). Suppose that ey, ..., e, € Hc. Then

Wt ®- - Oen)

n

= ) aj(es) .. allen_)agles, ) agle; g ), (2.2)

k=0 il7--~7in—k7jn—k+1a'-~7j‘n

where Iy = {i1 <+ <ip_k} and Is = {jn—k+1 < -+ < jn} form a partition of the set
[n] and i(l1,13) = 7:_1k(il — 1) is the number of inversions of the permutation defined
il, Zfl <n-—k

by I and I, i.e. the permutation o(l) := ji, ifl>n—k

. In particular, we have

W(e) = sq(e) for any e € Hg.

We will be concerned with the subspaces I'y (H) of I';(H) spanned by the sets {W(¢) :
¢ e Hg"}; elements of these subspaces will be called Wick words of length n. We will

3 From now on “unital, completely positive” will be abbreviated to ucp.



S. Awsec et al. / Journal of Functional Analysis 274 (2018) 544-572 553

also denote by fq(H) C I'y(H) the (non-closed) linear span of (FQ(H))neNO. Note that

I',(H) is a w*-dense *-subalgebra of I'y(H), called the algebra of Wick words. Note that
if & =e ©---©ey, where e1,...,e, € Hg then W(&) — s,(e1)...s4(en) is a sum of
Wick words of length strictly smaller than n, so inductively one can show that fq(H)
is the same as the x-algebra generated by {s,(§) : £ € Hr}. Let now (e;)icr be a fixed
orthonormal basis for Hg. Then the algebra of Wick words fq(H) is *-isomorphic to
the x-algebra of non-commutative polynomials C((X;);es | X; = X). The isomorphism
in this case is given by X; — sq(e;) = Wi(e;). See [24, Remark after Lemma 3.2| for
details. At times we will also need to consider the C*-completion 4,(H) of fq(H). The
most important part of the proof of the main theorem is providing an estimate (which
must grow at most polynomially in n) for the ¢b norm of the projection from fq(H) onto
[y (H). Therefore we need to understand the operator space structure of these spaces.
This will be accomplished by reformulating the Wick formula so that it is more amenable
to operator space theoretic techniques, following Nou’s lead (cf. [23]). We first define some
relevant maps.

Definition 2.13. Let H be a complex Hilbert space coming from a pair (Hg, (Uy)ier). We
define maps Z, U and S on the algebraic direct sum @n>0 Hg" by

(i) Z(e1 @ - Oep):i=1e1 © - O ley;
(11) U(el®"‘®€n):6n®"'®61;
(iii) S = 7U.

The antilinear map Z is a natural extension of the complex conjugation on Hc, thereby
it should be really viewed as a closed linear operator from F,(H) to JF,(H) mapping
e1® - @eytole; @ ® Ie,. The flip map U actually extends to a unitary on F,(H).
The last map, .S, is a conjugation relevant to the Tomita—Takesaki theory. For future
reference, let us point out that the modular automorphism group (o;);cr associated to
the ¢g-quasi-free state x was computed in [32,17], and is given by

01(54(€)) = 54(U_4&) = s4(A™"¢) (€ € He).
We still need two more maps for our reformulation of the Wick formula.

Definition 2.14. Fix £ € Ny and n € N such that 0 < k < n. We define the map
o et HE — HQ,@(”"“) ®n Hg@k by specifying its values on a dense subspace:

R’:,k‘(61®. ' ‘®€n) = Z qi(11712)(ei1 ®. ’ .®ein7k)®h (ejnfkle'l ®' ’ '®6jn)'

i17~-'7infkajn7k+la~~~ajn

—Qk

We also define U, (H(?(”*’“)) ®n (Hq ) — B(F,(H)) by

Uni((e1© - Oen—)®n (Crki1 @ O,)) = ag(e1) ... ag(en—r)ag(en—kt1) - - - aglen).
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Remark 2.15. Nou proved (cf. [23, Lemma 4 and Corollary 1]) that ||Upkllee < C(q),
where C(q) = [[72,(1 — ¢")~'. This constant C(g) will appear throughout the paper.

We are now ready to state the reformulated Wick formula and the corresponding
Khintchine inequality.

Proposition 2.16. For any & € HZ"™ we have W (&) = 3"} _o Un.k(Ly— OI)R;, ,.(§), where

1,,_ is the identity map on Hg(n_k).

Corollary 2.17 (/23, Theorem 3]). Let K be a Hilbert space. If £ € B(K) ® HZ" then

max || (Id O Ly, © )R; x) (I < [AdOW)(©)] (2.3)

0<k<n

1AW < Cla)n+1) max || (A6(Lok @ DR, 1) (€]
(2.4)

The norm ||(IdOW)(&)| is computed in B(K) Qmin I'q(H), and the other norms are
computed in B(K) Qxmin <H?(n_k)) ®p (ﬁ?k) )

Proof. Inequality (2.4) follows from the Wick formula in Proposition 2.16, complete
boundedness of U, ; and the triangle inequality, as in the proof of Theorem 1 in [23].
The proof of (2.3) is also a repetition of the argument in Nou’s paper. O

2.5. Radial multipliers on q-Araki—Woods algebras

In this paper, we will be primarily interested in a special class of completely bounded
linear maps on ¢-Araki-Woods algebras, called radial multipliers. In the following, we
fix an arbitrary g-Araki-Woods algebra I'y(H).

Definition 2.18. Let ¢ : Ny — C be a bounded function. The (w*-densely defined) linear
map my : I';(H) — I'y(H) given by

my,(W(€)) = p(m)W(E) (€ € (Ho)™™)

is called the radial multiplier with symbol ¢. If m, extends to a completely bounded
map m,, : Ag(H) = Ay (H), we call m, a completely bounded radial multiplier on I'; (H).

Remark 2.19. It is an easy exercise to see that completely bounded radial multipliers m,,
automatically extend (uniquely) to normal maps on I'j(H) = A,(H)"” with the same cb
norm (cf. [18, Lemma 3.4]). It comes from the fact that one can work on the level of the
predual of I';(H), using the embedding « — x(z-), and there the subspace generated by
A, (H) is norm-dense.
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In the course of the proof of the complete metric approximation property for g-Araki—
Woods algebras we will need the following result obtained by the first-named author.

Theorem 2.20 (/2. Proposition 5.3 and the remark following it]). Let Hg be a real Hilbert
space and let I'y(Hg) be the q-Gaussian algebra associated with it. Fixn € N and consider
the radial multiplier my, associated to the Kronecker delta symbol o, (k) = 6,(k) =
On,k- Then my is a cb radial multiplier and corresponds to the projection P, of I'q(Hg)
onto the ultraweakly closed span of {W(§) : & € HO™}. Moreover, we have ||[my, |lep <
Clg)2(n+1)2.

2.6. Ultraproducts of von Neumann algebras

In this subsection we will mostly follow [1]. Ultraproducts of von Neumann algebras
are very useful, e.g. in the study of central sequences in connection with property I.
The original construction was applicable only in the case of tracial algebras. The main
difference in the type III case is that there are two different notions of ultraproducts,
each having its own virtues.

We start with a definition due to Ocneanu [25], which is closer to the ultraproduct of
tracial von Neumann algebras. We fix a sequence (M,,, ¢, )nen of von Neumann algebras
equipped with normal faithful states, and a non-principal ultrafilter w on N. Recall that
if all the states were tracial, the ultraproduct would be defined as the direct product

(°(N,M,,) := {(zn) € [] Ma : sup ||z, | < o0}

neN neN

quotiented by the ideal of L?-null sequences, i.e. sequences (z,) € ¢*°(N,M,) such
that lim,—, @n(xrx,) = 0. The problem in the non-tracial case is that this sub-
space is just a left ideal and there is no reason why we should prefer lim,,_,., @, (z} z,)
to limy, ., @(zpe}). This little nuisance can be taken care of by defining ||z[|% :=

(p(z*x —|—a:x*))% and working with the condition limy, ||, ||, = 0 instead. This,
unfortunately, gives rise to another problem — the subspace

lo(Ma, ) = {(2) € °(N,My,) = lim ||z, |, = 0}

is still not an ideal. We need to find the largest subalgebra inside ¢>°(N, M,,) in which
lw(My,, ¢r) is an ideal. This leads us to the next definition.

Definition 2.21. Let (M,,, ,) be a sequence of von Neumann algebras equipped with
normal faithful states. Define

M (M, o) = {(@n)nen € £2°(N, Mp) = ()l C Lo, lo(@n) C 1)

Then M“(M,,, p,) is a C*-algebra in which I,(M,, ¢,) is a closed ideal. Therefore we
can form the quotient
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(Mm (pn)w = Mw(Mn; Spn)/lw(Mrn (pn)

which is, a priori, a C*-algebra but actually turns out to be a von Neumann algebra
(cf. [25, Proposition on page 32]), called the Ocneanu ultraproduct of the sequence
(M, ©n)nen. The image of a sequence (x,)neny € M“ (M, ¢,) in the quotient algebra
(M, 9 )¢ will be denoted by (z,)%.

Remark 2.22. The ultraproduct state (©,,)¥((x,)¥) := lim,, ., @n(x,) is a normal faith-
ful state on (M,,, ¢,)%.

Despite being a natural generalization of the tracial ultraproduct, the Ocneanu ultra-
product suffers from being inadequate for the purpose of non-commutative integration.
One particular problem is that the Banach space ultraproduct of preduals is usually
bigger than the predual of the Ocneanu ultraproduct.

There is a different construction that, as shown in [31], interacts nicely with ultraprod-
ucts of non-commutative LP-spaces. Once again, we start from a sequence (M, @5, )nen of
von Neumann algebras endowed with normal faithful states. Using the GNS construction,
we view M,, C B(H,,). Let (M,,),, denote the Banach space ultraproduct of the sequence
(M,,)nen, which is a C*-algebra. Let (H,,), be the ultraproduct of the corresponding
GNS Hilbert spaces. Then we can view (M,,),, as acting on (H,,),, via

(Zn)w(€n)w = (Tn&n)w- (2.5)

It is not hard to see that this is well defined (by the joint continuity of the map B(H) xH >
(z,8) — z€ € H).

Definition 2.23. Let (M,,, ¢, )nen be a sequence of von Neumann algebras equipped with
normal faithful states, represented faithfully on the GNS Hilbert spaces, i.e. M,, C B(H,,).
The Raynaud ultraproduct is defined as the weak closure inside B((H,,).,) of the image
of the natural diagonal representation (2.5) of the C*-ultraproduct (M,,),, on (H;).; it
is denoted by [[* (My, ©n)-

Remark 2.24. The ultraproduct state on the Raynaud ultraproduct, which is a vector
state induced by the ultraproduct of the cyclic vectors for the GNS representations of
algebras M,,, denoted by (¢,,)., is generally not faithful.

There is a nice relationship between the two constructions which is summarized in
the following theorem.

Theorem 2.25 ([1, Theorem 5.7]). Let (My, ¢n)nen be a sequence of von Neumann al-
gebras equipped with normal faithful states. Let H,, := L*(M,,, p,) be the GNS-Hilbert
space associated with the state @, on M,, so we have [[“(My,v,) C B((H,),). Let
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M® = (M, )% and ©* = (p,)*. Define a map w: L*(M*,¢*) < (H,), from the
GNS-Hilbert space of (M¥, %) given by

w ((2n)* (o)) = (Tn&p, )ws

where & (with an appropriate subscript) is the cyclic vector coming from the GNS con-
struction. Then w is an isometry and w* ([I* (M, ¢n)) w = M®.

Remark 2.26. Let p be the support projection of the ultraproduct state (¢,,). on the Ray-
naud ultraproduct [[“(M,,, ¢,). Then M is x-isomorphic to the corner p ([T (M, ¥n)) p
of the Raynaud ultraproduct (cf. [1, Proposition 3.15]).

We would now like to describe a useful theorem from [24] concerning embeddings into
ultraproducts.

Theorem 2.27 (/2/, Theorem 4.3]). Let (N, 1) and (My,, ©n)nen be von Neumann algebras
equipped with normal faithful states. Let w be a mon-principal ultrafilter on N and let
[T° (M., @) be the Raynaud ultraproduct. Let (o1')icr denote the modular group of ¢y, .
Let p € [[*(My,, @) denote the support of the ultraproduct state (oy).. Suppose that
N C N is a weak*-dense x-subalgebra of N and we are given a *x-homomorphism

w
®:N— H(I\/In,cpn).
Assume that ® satisfies the following conditions:

(i) It is state preserving, i.e. (¢n)w (®(2)) = ¥(z) for any z € N;
(ii) For any x € ®(N) there is a representative () nen € €2°(N, M,,) such that z,, is an-
alytic for (o} )ier and the sequence (o™ ;(xy))nen is bounded (cf. [24. Lemma 4.1]).
(iii) For all t € R and for all y = (yn)w € ®(N), irrespective of the choice of the
representative (Yn)nen € (N, M,,), we have

p(o{ (Yn))wp € PBp,
where B is the w*-closure of ®(N).
Then the map © := p®p : N — p ([T (M, ) p is a state-preserving *-homomorphism
that can be extended to a normal x-isomorphism from N onto pBp. Moreover, there exists

a normal, state-preserving conditional expectation from ] (Mp, ©n) onto ©(N).

Remark 2.28. From the Remark following Theorem 2.25 we deduce that the image of ©
is actually contained in an isomorphic copy of Ocneanu ultraproduct.
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This theorem will be our most important ally in the next section of the paper. We
will exploit the fact that it connects nicely the Ocneanu ultraproduct and the Raynaud
ultraproduct, allowing us to resort to whichever one we prefer; both will be useful for us.

We end this section with a simple remark strengthening the connection between
Theorem 2.27 and the Ocneanu ultraproduct. Suppose that (x,)nen € £°(N,M,,) is a
representative of an element = € (M,,),, such that the sequence (¢”,(x,,))nen is bounded.
Then the sequence (z,,)n,en belongs to M“(M,,, ¢,,), so it defines an element of the Oc-
neanu ultraproduct. Indeed, suppose that (y,) € l,(My,,p,). We would like to check
that lim,,_,,, ||xnynH# = 0. It boils down to checking that lim, . o, (yiziz,y,) = 0
and lim,, ., ©n(Tpynyizr) = 0. The first equality is easy to verify because y z) x,y, <

|z |2y yn and the sequence (z,)nen is bounded. For the second one we will use the
KMS condition:

On(TnYn¥nTn) = Pn(YnYnTno”i(zn)).

Note that z,, := z}0",;(z,) is a bounded sequence. If we denote u,, = \/y,y: then we
have to bound ¢(u2y,,). By the Cauchy—Schwarz inequality we get

|‘Pn(un(unzn)) < SOn( )wn(z:uizn)

By assumption we have lim,, ., ¢, (u2) = lim, ., ¢, (yny:) = 0. The second term can
be bounded above by the norm ||z%u?z,| that is bounded, so the product converges to
zero.

3. An ultraproduct embedding for g-Araki-Woods algebras

In this section we prove a result which shows that an arbitrary ¢-Araki—Woods algebra
embeds in a state preserving way into an ultraproduct of tensor products of ¢g-Gaussian
algebras and ¢-Araki—Woods algebras. This result will be key to our establishment of a
transference principle for completely bounded radial multipliers in the following section.

We begin with some notation. Let I';(H) be a fixed g-Araki-Woods algebra for some
q € (—1,1), and write ¢ = gog1 for some |q| < go < 1. For any m € N, we let I'y,(R™)
be a ¢g-Gaussian algebra and I'j, (H® C™) be a g-Araki-Woods algebra, where the inner
product on H® C™ is the tensor product of the given deformed inner product on H and
the non-deformed one on C™. In other words, if (U;); ~ Hg is the orthogonal group
associated to I'y(H), then (U; ® 1); ~ Hg ® R™ is the orthogonal group associated to
I';,(H® C™). Denote by x, x0,m and X1, the g-quasi-free states on I'j(H), ', (R™) and
[';,(H® C™), respectively. For each m, fix an orthonormal basis (e, .., e, ) of R™ and
define

U (€) Z (er) ®W(£®ey) €Ty (R™MBT, (H® C™) (£ € He).
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Finally, we fix a non-principal ultrafilter w on N, form the corresponding (Raynaud)
ultraproduct

A= H (F‘IO (Rm)®Fq1 (HoC™), Xo,m & Xl,m)a

and let p € A be the support of the ultraproduct state (xo0.m @ X1.m)w-
With the above notation fixed, we can now state our embedding result.

Theorem 3.1.
(1) The mapping
W(§) = (um(€))w € A (§ € He)

extends wuniquely to a state-preserving x-homomorphism mn, : (Iy(H),x) —
(A, (XO,m ® Xl,m)w)' .

(2) The map © := pr,()p : T'y(H) — pAp extends to a normal state-preserving
x-1somorphism

© : T,(H) = O(T,(H)) C pAp.

Moreover, ©(L';(H)) is the range of a normal state-preserving conditional expectation
E:A—©O(,H)).

Proof. (1). Recall that the algebra of Wick words is *-isomorphic to the x-algebra of non-
commutative polynomials, so any *-homomorphism 7, : fq(H) — A is uniquely deter-
mined by specifying the images (m,, (W (e;)))icr C A. Thus to conclude that the claimed
7, exists and is well-defined, we just need to check that each sequence (u,(£))men
(¢ € Hc) is norm-bounded and hence defines an element (u,,(§)), € A. To this end,
we apply (the n = 1 version of) Corollary 2.17 with coefficients W (£ ® ex) € B(K) =
B(Fy, (H® C™)) (see also the first inequality on page 18 of [23]) to conclude that

um ()] < 2(1 — go)~/2m

1
2
9

')

Y W(Eoe)W(E©e)

cma {| SO W(E e W(E )
k=1

<2(1—qo) AW (E @ el

Finally we check that 7, is state-preserving. By linearity, it suffices to show that for any
de N and &, ...,&; € Hg, we have

li

m
m—o0

(XO,m ® Xl,m)(um(gl) T um(gd)) = X(W(fl) Teels W(gd))
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Fixing m and considering the terms on the left-hand side above, we have

(XO,m ® Xl,m)(um(€1> Teee” Um(fd))
=m™ " Xom(Wler) - - Wler@)Xem (W (& © exqy) - - W(€a © ex(ay))
k:[d]—[m)]
=m = Z < Z qL(U )( Z qL(U H (& O exr & © ek(t)>U>
k:[d|—[m] o€Pa(d) o’ €P2(d) (rit)eo’
ker k>0
=2 (O @) (X a TT le)
k:[d]—[m] oc€Pa(d) o’ cPa(d) (rit)eo’
ker k>0 ker k>0’
= Y @2 I el > mm
0,0’ €P2(d) (r,t)€c’! k:[d]—[m]

ker k>0 ,ker k>0’

= > @4 I & leom 2t

0,0’ €P2(d) (ryt)Eo’
Since
W}gnoo m—d/2+‘o'\/o-’| _ 5070/ (O', o € PQ(d)),

we conclude that

W}EHOO(XO,m ® X1,m) (Um (1) - -+ um (€a))
Yo g I &léo =xW(&)-... - W(a)).
oc€P2(d) (rit)€oc

(2). To exhibit the desired properties of © := pm,,(-)p, we will verify conditions (i)—(iii)
in Theorem 2.27 for the *-homomorphism 7. (i) follows immediately from part (1) of the
present theorem. For (ii), we note that by linearity and multiplicativity of m,,, it suffices
to check condition (ii) on the generators 7,(W(§)) = (um(§))w, (£ € Hc). However,
there is a minor issue here coming from the fact that for arbitrary £ € Hc, there is
no reason to expect elements u,,(§) € I'y,(R™)®I'y, (H ® C™) to even be analytic, let
alone the sequence (0_;(um(€)))men be uniformly bounded. To overcome this issue,
put HE" = Uy~ 1a-1,5(A)Hc, where 115-1 3(A) denotes the spectral projection of the
analytic generator A corresponding to the interval [A~1, \]. Following [4, Theorem 3.1],
we see that HY" C Hc is a dense linear subspace such that THE" = H{". Moreover, for
each £ € HY", we have that ¢ (respectively W (£)) is analytic for the action of the unitary
group U; = A® (respectively the modular automorphism group o;), and

W) = W(AT%)  (z€C).
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In our present setting, we shall restrict the domain of m, to the x-subalgebra
fq(H)an C fq(H), consisting of linear combinations of Wick words of the form W (¢)
with £ € (HE")©™, (n € Np). Since fq(H)(m is still w*-dense in I';(H) and is generated by
(W(€))eeHan, we just have to show that the equivalence class representative (u,(£))men
for m,, (W (&)) satisfies condition (ii) of Theorem 3.1 for each £ € HE". To this end, note
that on Iy, (R™)®I'y, (H® C™), we have

O';n:idpqo(Rm)@o'tFﬁ(H@(C ) &

"MW oe) = WA o) (E€He e ).

It follows from these identities that if £ € HE" and e € C™, then elements W (£ ® e) and
um (&) are analytic for their respective modular groups and

m

T Wlen oo e )

o (un(€)) = (

= =S Wle) @ WA 0 a) = u, (47, (z€C)
k=1

The uniform boundedness of the sequence (¢, (§))men now follows along the same
lines as that of (u;,(&))men:

Sup ([0t (€) | = sup [um (A€ < 2(1 = o) F [W(ATHE @ 1))

For (iii), it again suffices by linearity and multiplicativity to verify that for all
WW(W(E)) = (um(é))un (5 € H(C)?

p((a7" (um(§)))w)p € PBp,

where B is the w*-closure of 7, (fq(H)) in A. But this last point is obvious, because by
the previous computation, o™ (., (£)) = um(A~HE) for all m, giving

P07 (um(€))w)p = P((um(A™"E))w)p = pru(W(AT"E))p € pBp. O
4. Transferring radial multipliers

The main aim of this section is to use the ultraproduct embedding result (Theorem 3.1)
of the previous section to establish the following transference result for radial multipliers
on ¢-Araki—-Woods algebras. In what follows, we freely use the notation of the previous
sections.

Theorem 4.1. Let ¢ : N — C be a function such that the associated radial multipliers
my, : I'y(R™) — I'y(R™) have completely bounded norms uniformly bounded in m. Then
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the radial multiplier defined by ¢ on any q-Araki-Woods algebra I'q(H) is completely
bounded and

[Ime = Ty(H) = Ty(H)len < SL;%H% Ty (R™) = Ty (R™) e
m

= [|my, : Ty(lor) = Tg(lor)||chb-

The main technical tool in establishing Theorem 4.1 is the following intertwining-
type property for projections onto Wick words of a given length with respect to the
ultraproduct embedding given by Theorem 3.1.

Theorem 4.2. Let I';(H) be a g-Araki-Woods algebra. Let P,: I'y(H) — I'q(H) be the
projection onto the ultraweakly closed span of {W (§) : € € HE"™}. Then, using the notation
from Theorem 3.1, we have

Oo P, =p(P,®I1d),po 6. (4.1)

There are two things that have to be verified in Theorem 4.2. The first one, which is a
routine check, is to prove that (P,®Id),, (and therefore also the composition p(P,®Id),p)
is a well-defined map on the (Raynaud) ultraproduct A. Using Theorem 2.20, we can
show that (P, ® Id),, is well defined on the C*-ultraproduct A C A. To conclude, we
have to verify that it extends to a normal map on A. Since we are dealing with the
Raynaud ultraproduct, the predual of our ultraproduct is equal to the Banach space
ultraproduct of preduals. On each level we can take the predual map of (P, ® Id),,en
and use this sequence to obtain a map ¥ on the ultraproduct of L'-spaces, the predual
of the ultraproduct. The dual of ¥ coincides with (P, ® Id),, on the C*-ultraproduct,
hence it is its unique normal extension. A similar argument is presented, for instance, in
[18, Lemma 3.4].

The second step in proving Theorem 4.2 is to understand the images of Wick words
under the x-homomorphism 7, : fq(H) — A. To accomplish this, for any d € N and
&1,...,&a € He, we define elements W5(&; © -+ © &y) € A by setting

W6 © - ©&a)

= m_% Z W(ek(l)) e W(ek(d)) & W(& © ek(l)) .. W(fd ® ek(d))
k: [d]—[m]

injective w

Because we are summing over distinct indices, the vectors ey(y),. .., €xq) are pairwise
orthogonal, so Wi(ey(1)) ... W(ekwa) = Wiera) © --- © exq)). One can then use the
Khintchine inequality (Corollary 2.17) to prove that the sequence defining W*(&; ®---®
€q) is uniformly bounded, hence defines a legitimate element of the ultraproduct. We
will not give more details here because in the next proposition we show that m,(W (& ©
e ®&)) =W © - ® &), so it definitely is an element of the ultraproduct.
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Theorem 4.3. Let &1,...,&4 € He. Let m, be as in Theorem 3.1. Then 7,(W ({1 ® -+ ®
§a)) =WH(& ©- - ©&a).

Proof. We proceed by induction on d € Ny. The base cases d = 0,1 are obvious from
the definitions. Now assume that the claimed formula is true for all lengths 0 < d’ < d,
and consider the d+1 case. Fix &y,&1,...,&q € Hc. It then follows from Proposition 2.12
that the following relation holds.

d
W(& 0 0&) =W(EW(E O &) — > ¢ & uW(E06...050...08),
=1

where, as usual, 5 means that the tensor factor & is deleted from the simple tensor under
consideration. Applying 7, to this relation and using our induction hypothesis, we have

d
To(W(&0. . .0€)) = W (&)W (&10...08)— Y ¢ H{I&la) v W (610, . .0&0. . .Ok).
=1

(4.2)
Next, we expand the first term on the right-hand side in the above equation:

W2 (&)W © -+ © &)

= |m™ Z Wer()) ® W(o © exo))
k(0)=1

x | m—% Z Wierw)) - Wieray) @ W(1 ©epay) - Wi(ka © epay)
[d]—[m]

1nJect1ve w
_ 441
=|m 2 Z W(er(o)) - Wier) @ W(o © exo)) - - W(€a © ex(ay)
k: [d]o—[m]
injective

m d
+ |m = Z Z Z W(ew)) - - Wlera) @ W(o ® eg) --- W(la © egay)
(0)=1 =1 k: [d]—[m]
injective

k(0)=k(1)

B

W& o0& @ &) (this is the first term in the preceding sum)

d
+ Y |m =2 Z > Wlew) - Wlena) ® W(ko © ex)) - W(€a © exay)

=1 k(0)=1k: [d]—[m]
mJectlve
k(0)=k(l) w
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The first term is already a part of what we wanted, but we also have to deal with the
second term. Note that for £(0) = k(I) and k(1) # - - - # k(d) we have

W (en() - Wlenwy) = Wleno) @~ ® enay) + @5 Wlew() - - Wlena) - - Wena)
(4.3)
and
W (& © ex0)) - - W (€q © exay)) (4.4)
=W ((§ @ er) @+ O (&4 © ex(ay))
+ (I& © ex)|& © ex@))vdl " W (&L © exqry) - .- W(&/Q\ek(z)) W © eray)
=W ((§ @ er0) © - O (& © ex(ay))
+ (&S valm W (& @ enqry) - -- W(&/G\ek(z)) W (G © eray)-
Indeed, if (v1,...,v4) € Hc is a family of orthogonal vectors then W(vy)... W(vg) =

W(vy ®---®ug), as we remarked earlier. In our case we have a sequence (w, vy, ...,vq),
where Jw is orthogonal to all vectors v; for j # [, so we get

W)W (vy) ... W(vg)Q2 = (" (w) + a(lw))vy © -+ - © vy
=wOU O Ovg+allw)(vy @ O vg)
:w®vl®”'®Ud+qi_l<lw|vl>le®”'®6\l®”'®vd7
hence the formula above. Tensoring W (eg(q)) - .. W (eg(ay) with W(&o © exoy) - .- W (& ©
ex(d)) (keeping in mind that goq1 = q) gives us four terms, one of which is

—

¢ I&I&) W (erqry) - - - Wlerwy) - - - Wleway) © W (&L ® epy) - -
XW(il/GD\ek(l)) o W(d © exa))

and we will deal with the three other terms later. To these expressions we need to apply
the sum

d m
Y 3y
=1 k(0)=1k: [d]—[m]
injective
k(D —k(0)
Since k(l) and k(0) are omitted, we can forget about the condition k() = k(0) and
perform the sum over k(0) immediately, resulting in a sum

d
Yoy
1=1 k: [d\{l}—[m]

injective
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Without the sum over [, this is the sum over d — 1 distinct indices appearing in the
definition of W*¥, so we get the sum

d
S T IGIE) W © 0§ O @ L)
=1

To sum up, we have checked so far that

d
W2 (&)W (E10---Oba) = W (£0- - -Oa)+ D ¢ HI&|&)uW* (§10- - OGO - O8a)+ R,
=1

where R is the “remainder” term that will turn out to be a zero element of the ultra-
product. Inserting this into (4.2) we get that

(W O ©&) =W (& 0 0&) + R,
so if we can check that R is really a zero element then this ends the proof. 0O

Let us just recall that R comes from the three so far neglected terms arising from
tensoring W(eg()) - .. Wi(eray) with W(& © er(o)) .- W(a © eg(ay). It can be written
as

d
( ZRH + (I&l&) gt R2,l(m)+qélR3J(m))> :

w

where:

m

Ryy(m)= > Y Wleno) © - ©en) @ W((& @ er) @+ O (€4 O exay));
](0)=1 k' [d]—[m]
injective

k(1)=Fk(0)

Ra(m) =

Z Z Wek) @ ... ©eray) @ W& © eray) © W& O eray) ©W(Ea © egay),

k(0)=1k: [d]—[m]
1n3ect1ve

k(1)=k(0)

and
Rg l(m) =

Z Z Wi(er(1)) - - (ek(l)) W eway) @ W((€o © ero)) © ... © (4 © exay))-

k(0)=1k: [d]—[m]
injective

k(1)=k(0)
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Recall the formulas (4.3) and (4.4). After tensoring the right-hand sides we get four
terms, one of which was already incorporated in the proof of Theorem 4.3. The other
three are:

W(eko) © - O exay) @ W((& © ex0)) @ ... O (£a ® exa))),

—

ql1_1<150|§l>W(€k(0) ©...0erw) @W(E1 Oer)) - - WG Oerqy) - W(a © era),

and

ab "W lepy) - - W/(e-k\(l)) o Wera) @ W (& ® er) © .- O (€4 © exay))-

To obtain R, we just need to take sums over appropriate sets of indices.

We will now examine properties of R. Since qq, q1, and the range of summation over
[ is fixed, to show that R is a zero element in the ultraproduct, it suffices to show
that lim,, o m_d_;rlHRi’lH =0 for any 1 < ¢ < 3 and [ € [d]. We will use Nou’s
noncommutative Khintchine inequality for this (Corollary 2.17), but before that we need

to obtain a bound for the coefficients.

Lemma 4.4. There exists a constant D(d) > 0 (depending only on the initial choice of
&1,...,&a € He) such that for all m € N and all k : [d] — [m], the following inequalities
hold:

W ((& © ex)) @ © (§a @ ex@))ll < D(d)
W (&1 © exqr) - - W(&/Q\ek(n) W(Ea O er@)ll < D(d)
<D

W (ex1)) - Wlenq)) - - - Wiergay) | < D(d).

Proof. The second and third inequality will follow if we can show that there is a constant
D > 0 such that [|[W (& © eg)ll, [[W(er)|| < D (independently of » € [d]). But the
existence of D follows from the simple fact for any ¢-Araki-Woods algebra I';(H) and
€ € He, we have [W(€)llr, ) < llaz ()| + lag (]| < 2(1~|ql)~1/ max{ [¢]]. | Z€]}. Now
consider the first inequality. By the Khintchine inequality with K = C (Corollary 2.17),
the left-hand side is bounded by

Clg)(d +1) (La—1 © I)(Rg, (S0 © k(o)) © - © (€a @ ex(a)))) |-

max ||
0<I<d
Writing the above (14—; © )R}, terms as sums of simple tensors, one easily sees that
the corresponding norms are bounded by a constant depending only on d. (Note that
the unboundedness of Z plays no role here, as &, ...,&; € Hc remain fixed.) 0O
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We need one more proposition. In the following, m € N and &,...,&; are fixed
as usual. Let I; denote the set of indices (k(0),...,k(d)) € [m]*! that are pairwise
distinct except for the pair (k(0),%k(l)); a generic element of I; will be called i and
the corresponding tensor ey ® -+ ® eyq) Will also be denoted by i. We will denote
W(ek(o) Q- ® ek(d)) by W; and W ((& ® Bk(o)) Q- ® (&g ©® ek:(d))) by Wig.

Proposition 4.5. Given any Hilbert space K and any family of operators (A;)icr, C B(K),
the following inequalities hold.

1Y As @ Wil| < C(d) sup || As]lm?
I

icl;

icl;

1" Ay @ W < C(d) sup || As|m?,
I;

where C(d) > 0 depends only on d and the choice of vectors &y,&1,...,&q € He.

Proof. The proofs of both inequalities are essentially the same. We will deal with the
first one; to obtain a proof of the second one has to apply conjugation in some places
but since we are dealing with a fixed number of vectors &, ..., &;, the unboundedness
of conjugation does not play any role. By the Khintchine inequality (Corollary 2.17) we
need to deal with

A; ® R} i
0&}2&11 | zf: i ® Ry (G
!
up to a d-dependent constant.
Since Ry, ; is a sum of operators that only permute vectors, and the coefficients of
this sum are summable, we just need to take care of a single term of the form

max || Z A; @0 (i) (@410,
I,

0<k<d+1

where o denotes the action of the permutation and the decoration (d + 1, k) reminds us
of the fact that o(i) is viewed now as an element of HEUHI=R) o, H®*. Whatever the o,
the tensor o(i)g41,x is always of the form e;, © - ©e;,_, ® e, ., OO ey, where for
different indices i and i’ these tensors are different. The key property that we will need
is that we have two orthonormal systems (vy)ses C H¥(@H1=F) and (w;);es € H®* such
that for any i € I; we have o(i)g+1,1 = vs ® w; for some s € S and j € J. Therefore we
can get rid of the sign o and just consider

0<heds1 | ; Ai @ d(arp -
1

Since we are dealing with tensor powers of H equipped with g-deformed inner prod-
ucts, we would rather have families (v{)ses and (w})jes that are orthonormal in
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H? (d+1-5) and H?k, respectively. To achieve this, we will use the operators defining
the g-deformed inner products, Pj“_k and P,f. Let £(i)g+1,6 be tensors defined by
(PIH1=F)2 @ (P5)3)(E(i)a41,k) = idg+1k- Then we can write &(i)qp1n = v, ® w) for
some tensors v; and w’ coming from orthonormal families in Hf(dﬂ_k) and H?k. Since
the row/column Hilbert spaces are homogeneous operator spaces (and Haagerup ten-
sor product allows tensoring cb maps) we can bound maxogi<d+1 || 2_7, Ai ® a1,k by
maxogk<d+1 || 27, Ai @ &)+,
of (P(;Hl_k)% and (P;’) 3. Because we are using the Haagerup tensor product, we have the

|, up to a d-dependent constant coming from the norms

following completely isometric isomorphism H. ®j K, ~ KC(K,H). Under this identifica-

tion the tensors £(i)441,x correspond to matrix units in K(HPF, H;@(dﬂfk)). This means
that the operators A; fill different entries in a large operator matrix. By comparing the

operator norm with the Hilbert—Schmidt norm we get the estimate

ZAi(X)Wi

iel;

< o(d) (Z ||Ai||2) < () <|fz| sup ||Ai||2) "

iel, el

which can be further bounded by

1
C(d) <md sup ||Ai||2> . C’(d)m% sup || 4. D
iel, icl,

Finally, to conclude that R = 0 in the ultraproduct, we just observe that each compo-
nent R;; = (R;;(m))men is a sequence of terms of the form appearing in Proposition 4.5
with coefficients (A;(m))men,ier, uniformly bounded in i and m by the constant D(d)
from Lemma 4.4, so the norm m_%Ru(m) is bounded from above by C(d)D(d)m~z,
and hence tends to zero. This finishes the proof of Theorem 4.3. With this tool at hand,

we prove Theorem 4.2.

Proof of Theorem 4.2. Let W (£) be a Wick word associated with & € Hgd. Then we
easily obtain 7, (P, W(§)) = dp.aW?*(§). On the other hand, let us first apply 7, to
obtain W¥*(§). Since, as we already remarked earlier, W(eg)) ... Wi(ewq)) = Wiera) ®
-+ ®ey(q)), the operators acted on by the P, part of the operator (P, ®1d), are exactly
of length n. Therefore (P, ® Id),W?*(§) = 6,,¢4W?(£). By linearity, this implies that
7w o P, = (P, ® Id), o 7w, on the algebra of Wick words fq(H). Compressing by the
support projection p, we then obtain

Qo P, =p(P, ®Id), om,(-)p=p (P, ®Id)ypo©® on TI,(H),

where in the second equality we used the fact that p € 7, (fq(H))’ (see [24, Lemma 4.1]).
Since the desired equality holds on the ultraweakly dense subset I';(H), and all maps
under consideration are normal, equality holds everywhere. 0O

Let us now furnish a proof of the transference result for radial multipliers.
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Proof of Theorem 4.1. From Theorem 4.2 we get that Oomy,(x) = p(m,®Id),poO(x) for
any x = W (&) with £ € (H¢)®?. By linearity we can extend this equality to all 2 € fq(H).
It follows that we have control on the cb norm of m, acting on the norm-closure of finite
Wick words, i.e. on the C*-algebra A,(H). Since m, is automatically normal (cf. [18,

Lemma 3.4]), it extends to a normal map on I';(H) with the same cb norm, so we get

Img : T'g(H) = Lg(H)llep < sup [[my = Ty (R™) — Ty (R™) e
meN
Since I';(R™) is a subalgebra of T';,(R™*1) which is the range of a normal faithful trace-

preserving conditional expectation that intertwins the action of my, the sequence of
norms on the right-hand side is non-decreasing, so

||m¢ :Ty(H) = Tg(H)len < W}I_I)noo Hmtp 1T (R™) = Ty (R™)|ch-

By the same token, this limit is not greater than ||my : I'y(f2.r) = I'q(42,r)]|cb. Since the
union of the algebras I'y(R™) is strongly dense in I';(¢2 ), the union of the preduals is
norm-dense in the predual of I'y(f2 r). Therefore the limit of norms is equal to the norm
of the multiplier defined on L'(T';(f2r)). By dualising, we get that

lim _{lmg : Ty (R™) = Ty (R™)[ler, = [[my : Ty (l2,r) = Ty(lap)llen. O

m— o0

Let us conclude this section with an application to the extension of Theorem 2.20 to
general ¢-Araki—-Woods algebras.

Corollary 4.6. Let I';(H) be a q-Araki-Woods algebra. Let P, be the projection onto Wick
words of length n, defined by P,W (§) = 6, aW (§), where £ € Hgd. Then P,, extends to
a completely bounded, normal map on T'y(H) and | P,|ls < Cq)?(n + 1)%.

Proof. We just observe that P, = m, , where ¢, is the Kroenecker delta-function
on (k) = 6gn. By Theorems 2.20 and 4.1, we obtain || P, : I'y(H) = T'y(H)|lcb < || Py -
Ty(l2r) = Tg(l2g)llen < Clg)*(n+1)%. O

The last section will be devoted to the proof of the complete metric approximation
property for I';(H).

5. Proof of Theorem 1.1

Before proving our main result, we need to recall one more lemma.

Lemma 5.1 (/18, Proposition 3.17]). Let H be the Hilbert space constructed from the pair
(Hr, (Ut)ter)- Let I be the complex conjugation on He. Then there exists a net (T;);er
of finite-rank contractions on H that satisfy IT;1 = T;, i.e. preserve Hr, and converge
strongly to identity.
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Proof of Theorem 1.1. We define a net I',, 1 ; := T'y(e 'T;)Qp, wheren € N, ¢ > 0,4 € I,
the finite-rank maps 7T; come from the previous lemma, and @, = Py + --- + P, =
My 0.1,y 1S the radial multiplier which projects onto Wick words of length at most n.
Each T+, is a finite rank map on I';(H); indeed, @, tells us that we have only Wick
words of bounded length and 7T; tells us that we can only draw vectors from a finite
dimensional Hilbert space, so we are left with a space of the form ®]_,, (Cm)®d, which
is finite-dimensional. We will pass to a limit with ¢ — oo, n — oo and ¢ — 0. The rate of
convergences of ¢t and n will not be independent and will be chosen in a way that assures
the convergence ||’ ¢ ;l|co — 1. Let us check now that it is possible, using a standard
argument of Haagerup (note that I'y(e™") Py = e~ P):

||Fn,t,i”cb = Hrq(e_tTi)Qanb
< ||Fq(e_t)Qn”cb
< ITg(e™llep + ITg(e™) (X = Qn)llep

<1+ e ™| Pl
k>n

< 1+ CO(q)? Z e Mk +1)%
k>n

Since the series Y ,~,e " (k + 1)? is convergent, for any ¢ > 0 the sum will tend to
zero when n — oco. Therefore we can choose the parameters i,n — co and t — 0 such

that the completely bounded norms of the operators I';, ; ; tend to 1. Then the operators
Fn,t,i

HFn,t,i ch

to 1. Since the denominators converge to 1 and the net is uniformly bounded, it suffices

are completely contractive. We have to check that they converge ultraweakly

to prove strong convergence on a linearly dense set. It is very easy to verify that the
convergence holds for finite simple tensors, so this ends the proof. 0O

Let us state two corollaries of (the proof) of this theorem.

Corollary 5.2. Let H be the Hilbert space constructed from the pair (Hg, (Ut)ier). Con-
sider the o-weakly dense C*-algebra Ay(H) C T'y(H) generated by the set {W (&) : £ €
Hr} C B(F4(H)). This C*-algebra has the complete metric approximation property.

Proof. Consider once again the maps Iy, ;; := I';(e *T;)Q,. The ranges of these maps
are contained in fq(H), the bounds for the norms remain the same, so it suffices to
check the pointwise convergence in norm. Since the maps are uniformly bounded, it
suffices to check the convergence on a linearly dense set, hence we may assume that
r=W(& ©---©&). If n is large enough the @,, that appears in the definition of T',, ¢ ;
has no effect on x, so we get

Tppit—x=e "W(T6H O 0T&) —W(E O O&).
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This last expression is easily seen to converge to zero in norm as t — 0 and ¢ — oo. This
can be seen either using the Khintchine inequality (Corollary 2.17), or just by expressing
W(&1®---©&) as a non-commutative polynomial in a,(§,)’s and a;(,)’s and invoking
the fact that

lim [|ag (Tigk) — aq ()| = lim [lag(Ti&x) — aq(&x)ll

< (1— gl lim | T3¢k = &ll = 0. O
Corollary 5.3. The C*-algebra Ay(H) is QWEP.

Proof. We will show that A, (H) is weakly cp complemented in the von Neumann algebra
I'y(H), meaning that there exists a ucp map ® : I'y(H) — (Ay4(H))™" such that ®| 4 1) =
Id. Let (®;);er be the net of maps implementing at the same time the w*-complete met-
ric approximation property of I';(H) and the complete metric approximation property
of A,(H). Using this net, we get maps ®; : I';(H) — (A4(H))™", as ®; maps I';(H) into
A, (H). There exists a cluster point of this net in the point-weak*-topology and this
cluster point is obviously a ucp map that is equal to identity, when restricted to A4 (H),
because the net (®;);c; converges pointwise to identity on A4(H). Since all g-Araki-
Woods algebras are QWEP (cf. [24]) and this property descends to subalgebras that are
weakly cp complemented (cf. [27, Proposition 4.1 (ii)]), we get the claimed result. O
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