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1. Introduction

The theory of discrete quantum groups provides a rich source of interesting examples
of C*-algebras and von Neumann algebras. In addition to ordinary discrete groups, there
is a wealth of examples and phenomena arising from genuinely quantum groups [15,42,
7,29,25,1]. Within the class of non-amenable discrete quantum groups, the so-called free
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quantum groups of Wang and Van Daele [34,41] somehow form the most prominent
examples.

In this paper, our main focus is on the structural theory of a family of II;-factors
associated to a special family of free quantum groups, called the orthogonal free quantum
groups. Given an integer N > 2, the orthogonal free quantum group FO is the discrete
quantum group defined via the full Woronowicz C*-algebra

Cf (FON) = (uij, 1 <i,j < N | u = [uy;] unitary, u;; = uj; Vi, j).

The C*-algebra Cf(FOy) can be interpreted simultaneously as a free analogue of the
C*-algebra of continuous functions on the real orthogonal group Oy, and also as a “ma-
tricial” analogue of the full free group C*-algebra Cf ((Z/2Z)*"). Indeed, by quotienting
by the commutator ideal or by setting u;; = 0 (¢ # j), respectively, we obtain surjective
Woronowicz-C*-morphisms

C{ (FOn) — C(On), Ci(FOyN) — CF((Z/22)*N).

Using the (tracial) Haar state h : Cf (FOxn) — C, the GNS construction yields in the
usual way a Hilbert space ¢£?(FOy) and a corresponding von Neumann algebra £(FOy) =
T (CF(FON))" C B(£%(FOy)), where 7, denotes the GNS representation. Over the past
two decades, the structure of the algebras £L(FOx) has been investigated by many hands,
and in many respects FOy and L(FOy) (N > 3) were shown to share many properties
with free groups F,, and their von Neumann algebras L(F},).

For example, L(FOy) is a full type II;-factor, it is strongly solid, and in particular
prime and has no Cartan subalgebra; it has the Haagerup property (HAP), is weakly
amenable with Cowling—Haagerup constant 1 (CMAP), and satisfies the Connes’ Em-
bedding conjecture [3,32,19,9,17,11,16]. Moreover, it is known that L£(FOy) behaves
asymptotically like a free group factor in the sense that the canonical generators of
L(FOp) become strongly asymptotically free semicircular systems as N — oo [5,10].

With these many similarities between L(FOpy) and L(F,) at hand, the following
question naturally arises:

Can L(FOy) be isomorphic to a free group factor?

This particular question has been circulating within the operator algebra and quantum
group communities ever since the publication of Banica’s thesis [3,4] in the mid 1990’s,
which first connected the corepresentation theory of free quantum groups to Voicules-
cu’s free probability theory. This deep connection with free independence established by
Banica was a direct inspiration for the many structural results for L(FOy) described in
the previous paragraph. In this paper, our main objective is to finally answer the above
question in the negative.

The first evidence suggesting a negative answer to an isomorphism with a free group
factor came from the work of the second author [36], where the L?-cohomology of
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FOy was investigated. There it was shown that the first L2-Betti number of FOy
vanishes for all N > 3, see also [24]. Combining this result with some deep work of
Connes—Shlyakhtenko [13], Jung [20], and Biane-Capitaine-Guionnet [8] on free entropy
dimension, it was shown by Collins and the authors [11] that for N > 4':

do(u) = 6" (u) =1, (1)

where u = (ui;)1<i j<n is the set of canonical self-adjoint generators of L(FOy), and
do, 0™ are Voiculescu’s (modified) microstates free entropy dimension and non-microstates
free entropy dimension, respectively [40,38,39].

Recall that if X is a finite set of self-adjoint generators of a finite von Neumann
algebra M with faithful normal tracial state 7, do(X) can be interpreted as an asymptotic
Minkowski dimension of the space of microstates of X. The fundamental problem relating
to dg is whether or not it is a W*-invariant: If X, X' C M, are finite sets generating
the same von Neumann subalgebra, do we have do(X) = do(X’)? If the answer to this
question is yes, then this would solve the well-known free group factor isomorphism
problem since £(F,,) admits a finite generating set X with do(X) = n [40].

In the remarkable work [21], Jung introduced a certain technical strengthening of
the condition do(X) < «a (see Section 2.3 for details), which he called a-boundedness
of X. There, Jung proved the remarkable result that if (M, ) is a finite von Neumann
algebra generated by a 1-bounded set X C M,, containing at least one element with
finite free entropy, then every other self-adjoint generating set X’ of M has dp(X’) < 1.
In this case, we call M a strongly 1-bounded von Neumann algebra, and §y becomes a
W*-invariant for M. Note, in particular, that any strongly 1-bounded von Neumann
algebra cannot be isomorphic to any (interpolated) free group factor L(F;) (r > 2) [21,
Corollary 3.6].

The main result of this paper is an upgrade of the free entropy dimension estimate
(1) to the following theorem:

Theorem (See Theorem 4.5 and Corollary 4.4). For each N > 3, L(FOy) is a strongly
1-bounded von Neumann algebra. In particular, L(FOy) is never isomorphic to an in-
terpolated free group factor.

Note that II;-factors which have property Gamma, or have a Cartan subalgebra, or
are tensor products of infinite dimensional factors, are automatically strongly 1-bounded
by [21]. This is not the case of L(FOy). Instead, our proof of strong 1-boundedness relies
on and is heavily inspired by recent works of Jung [22] and Shlyakhtenko [30].

If F is an [-tuple of non-commutative polynomials over m variables, one can com-
pute Voiculescu’s free derivative OF which yields by evaluation an operator 0F(X) €

! These values are also conjectured to hold for N = 3 but in that case Connes embeddability of L(FOx)
is open and therefore only the inequality —oco < dp(u) < 6" (u) < 1 is known.
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M ® M° ® B(C™,C"). In [22], Jung showed that if (M,7) is a finite von Neumann
algebra, X € M is an m-tuple satisfying the polynomial relations F(X) = 0, then X
is a-bounded with o = m — rank(9F (X)), provided that OF (X )*0F(X) has a non-zero
modified Liick—Fuglede-Kadison determinant. See Section 2 for any undefined notation
and terms here.

In [30], Shlyakhtenko gave another proof of Jung’s result above using non-microstates
free entropy techniques, and moreover used this result to show that whenever I' is an
infinite, finitely generated and finitely presented sofic group with vanishing first L2-Betti
number, then L£(T") is strongly 1-bounded. The key idea here being that there always

m

™ and rational-polynomial

exists a canonical system of generators X € Q[I']7: c L(T)
relations F'(X) = 0, where

(1) m —rank(OF (X)) = B2(1) — g2 (1) + 1.
(2) OF(X)*0F(X) has a non-zero modified Liick-Fuglede-Kadison determinant.

Note that the first condition above holds for any finitely generated finitely presented
group, whereas the second, typically very difficult to check condition comes for “free”
for sofic groups — thanks to Elek and Szabd’s solution to Liick’s determinant conjecture
for sofic groups [14].

Returning to the quantum groups FOy, it is very natural to view these objects as
quantum analogues of finitely generated, finitely presented sofic groups with vanish-
ing first L2-Betti number. Indeed, FOy is hyperlinear in the sense of [11], and even
residually finite in the sense that the underlying Hopf x-algebra C[FOy] is residually
finite-dimensional [12]. However discrete quantum groups are much more linear in nature
than ordinary discrete groups and it is not clear whether there is a quantum analogue of
soficity that would allow one to prove Liick’s determinant conjecture for discrete quan-
tum group rings.

Our strategy in this paper for proving our strong 1-boundedness theorem, which now
can be seen as a quantum analogue of Shlyakhtenko’s sofic group result, is to first take
the canonical system of generators X = u = (u;;)1<i j<n and form the natural vector of
quadratic relations F'(X) = 0 associated to the defining orthogonality relations of FOy.
We then proceed to show conditions (1) and (2) from above for this choice of F' and X.
Establishing (1) turns out to be a relatively straightforward adaptation of the results in
the group case (see Lemma 4.1).

On the other hand, establishing (2) directly turns out to be much more involved
and constitutes the main technical component of the paper. Without the analogue of
Elek—Szabd’s results in this setting, we must check the determinant condition for D =
OF (X)*0F (X) explicitly. This amounts to proving the integrability of the function log__ :
[0,00) = R with respect to the spectral measure of D, where log, (t) = log(t) if t > 0
and log, (0) = 0.

This integrability condition is established by proving an identification of D, up to
amplification and unitary equivalence, with the operator 2(1+Re(0)), where © € B(K)
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is the so-called edge-reversing operator of the quantum Cayley tree associated to the
quantum group FOpy. Here, K denotes the edge Hilbert space associated to the quantum
Cayley tree. Quantum Cayley graphs where introduced by the second author in [35] and
studied further in [36], where they were a key ingredient to prove the vanishing of the
first L2-Betti number of FOy. More specifically, a large part of [35,36] was devoted to
the study of the eigenspaces K;t = Ker(© + id).

In the quantum case, © is not involutive and the understanding of its behavior on
the orthogonal complement of K ;‘ @ K, is essential for the study of the integrability
condition of D. In the present article, we unveil a shift structure for the action of Re(0) on
the orthogonal complement of K ;‘ @® K , reducing the initial problem to an integrability
question for real parts of weighted shifts.

Finally, let us conclude this introduction with the following natural question: Although
we now know that L£(FOy) is not isomorphic to a free group factor, could it still be
possible that L(FOy) is isomorphic to £(T') for some other classical discrete group I'? In
particular, what about I" being an ICC lattice in SL(2,C)? For such T', it is known that
L(T) is a full, strongly solid, strongly 1-bounded II;-factor which has the HAP and the
CMAP. Note also that [18] provides other examples of groups I' such that £(T") satisfies
the same properties.

The remainder of the paper is organized as follows. In Section 2 we introduce some
basic notation and preliminaries about discrete quantum groups and free entropy dimen-
sion. In Section 3 we proceed to the spectral analysis of the reversing operator, reducing
the determinant class question to the case of weighted shifts. In Section 4 we study the
relations in FOpy from the point of view of free entropy dimension and we prove the main
1-boundedness result. Finally the Appendix summarizes some background results from
[35,36] on quantum Cayley graphs used in Section 3.
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2. Notation and preliminaries

Scalar products are linear on the right. We denote by ® the tensor product of Hilbert
spaces and the minimal tensor product of C*-algebras. We use the leg numbering notation
for elements of multiple tensor products. The flip operator on Hilbert spaces is denoted
Y : H® K - K ® H. For example, if H, K, L are Hilbert spaces, T € B(H ® K),
S e B(K), thenTis €« BBH®K®L), So e BBHRK®L), T3 € B(LRQ K ® H) are
given by T ®1id, id ® S ® id, and (id ® ¥)(id ® T)(id ® X), respectively.
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Let us denote log, (t) = log(t) for t > 0 and log, (0) = 0. The function log, can be
applied to positive operators using Borel functional calculus. If M is a von Neumann
algebra with finite faithful normal trace 7, Liick’s modified Fuglede-Kadison determinant
of x € M is Af(x) = exp(r(log,(|z|))) € [0,00). We will say that x € (M,7) is of
determinant class if AT (z) > 0, i.e. 7(log, (|z|)) > —oc. Here, the quantity 7(log, (|z]))
is computed via the Lebesgue integral

ll|l

rlog, (o) = [ 1og()du(n) = lim [ logN)du(A) € [0, o]
(0,00) €

where p denotes the spectral distribution of |x| induced by 7.

We denote L?(M,7) the GNS space, equipped with the natural left and right
M-module structures z§ = zy and §x = yxr = Jx*J§, where £ denotes the image
in L?(M,7) of z € M. We denote M° the opposite von Neumann algebra, L?(M°, T) the
corresponding GNS space with left and right actions of M° denoted §x = vz, xi = Ty,
where we use the product of M.

2.1. Discrete quantum groups

We use the setting of Woronowicz C*-algebras [43], i.e. unital C*-algebras A equipped
with a s-homomorphism A : A — A ® A such that (A ® id)A = (id ® A)A and
A(A)(1® A), A(A)(A® 1) are dense in A ® A. Woronowicz proved the existence and
uniqueness of a state h € A* such that (h ® id)A = (id ® h)A = h(-)1, called the Haar
state [42]. The Woronowicz C*-algebra (A, A) is called reduced if the GNS representation
7, associated with A is faithful. Note that (7, ® m,)A factors through 7, and in this
way 7 (A) is naturally a reduced Woronowicz C*-algebra.

If T is a discrete group, the full and reduced C*-algebras C{ ('), C;(T") are Woronowicz
C*-algebras with respect to the coproducts given by A(g) = g® g, where group elements
g € I are identified with the corresponding unitary elements in C{(T"), C;(T). In general
we shall interpret Woronowicz C*-algebras as discrete quantum group C*-algebras and
denote (A4,A) = (C*(I'),A), where T is the discrete quantum group associated with
(A, A). There is always a reduced version C;(I') of C*(T'), as above, as well as a full
version Cf(T). The von Neumann algebra of I' is £(I') = C}(I')” C B(¢*(T")), where
£2(T") is the GNS space of h.

The main class of examples for the present article are the orthogonal free quantum
groups FO(Q) [41,34,3], where Q € GLy(C) is a matrix such that QQ € Cly. The
corresponding full Woronowicz C*-algebras are defined by generators and relations:

Ci(FO(Q)) = (uij, 1 < i, <n | u unitary, QuQ ™" = u)

where 4 = (uj;);j, with the coproduct given on generators by A(u;;) = >, uix ® ug;. In
the case @) = Iy we denote FO(Q) = FOn.
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Remark 2.1. In the literature, another commonly used (dual) notation for the C*-algebra
Ci(FOy) is C*(O%), or sometimes A,(N). The notation C*(OF) refers to the fact
that this C*-algebra can be viewed as a free analogue of the C*-algebra of continuous
functions on the real orthogonal group Op. In terms of Pontryagin duality for quan-
tum groups, Oj\', = IE‘O/\N is the compact dual of the discrete quantum group FOy
and the Fourier transform [28] induces the identifications C*(0Of) = C;f(FOy) and
L>(0%) = m,(C*(0%))" = L(FOy). Since our perspective is to view our objects as
quantum analogues of discrete groups, we stick to the notation FO .

Denote by 7, : C*(I') — B(£?(T')) the GNS representation associated with the Haar
state, with canonical cyclic vector & € ¢?(I"). The multiplicative unitary [2] of T is the
unitary operator V acting on £2(T') ® £2(T') and given by the formula V(z& ® y&) =
Ax)(1 ®@ y)(€o @ &) for x, y € C*(I'). It satisfies the so-called pentagonal equation
Vi2Vi3Vas = VazVia. The reduced algebra C7(T') € B(¢%(T)) can be recovered as the
closed linear span of the slices (¢ ® id)(V), ¢ € B(£%(T))., with coproduct A(z) =
V(z ® 1)V*. Another useful operator is the polar part of the antipode. This is the
involutive unitary U € B(¢*(T")) given by U(z&) = R(x)& (xz € C*(T')), where R :
C*(T') — C*(I')° is the unitary antipode.

The dual algebra co(T') can be defined as the closed linear span, in B(¢*(T')), of the
slices (id ®@ p)(V), ¢ € B(¢*(I'))«, and equipped with the coproduct A : ¢o(T') —
M(co(T) ® co(I'),a — V*(1 ® a)V (following [2]). It is a (not necessarily unital)
Hopf-C*-algebra [33]. We have then V' € M (¢o(I')®@C;(I")). We denote py = (id®@h)(V) €
¢o(T), which is also the orthogonal projection onto C&y C H.

In the “classical case”, when I' is a real discrete group, on can check that V =
>_ger 0g ®mr(g), where dg is the characteristic function of {g} acting by pointwise mul-
tiplication on ¢2(T") and 7, (g) is the operator of left translation by g. In particular co(T)
identifies with the C*-algebra of functions on I' vanishing at infinity, as the notation
suggests.

2.2. Quantum Cayley graphs

Let p1 € Z(M(co(I'))) be a central projection such that Up; = p1U and pop; = 0.
The quantum Cayley graph X [35] associated to (T',p;) is given by

— the vertex and edge Hilbert spaces £2(X(9) = ¢2(I") and £2(X)) = £2(T") @ p £2(T"),

— the vertex and edge C*-algebras co(X ) = ¢(T) and co(X™M) = ¢(T") ® prco(T),
naturally represented on the corresponding Hilbert spaces,

~ the reversing operator © = %(1® U)V (U @ U)Y € B(£2(XW)),

~ the boundary operator E =V € B(£2(XM), 2(X0) @ ¢2(x©)).

For brevity we denote £2(X(®)) = ¢(I') = H and (X)) = H @ pyH = K. The fact
that p; commutes with U ensures that K is stable under © and ©*. Using the densely
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defined “augmentation form” € : H — C induced by the co-unit of C{(T'), one can also
consider source and target maps Ey = (id® €)F, Fy : (e®id)E : K — H. When p; has
finite rank, these are in fact bounded operators.

In the classical case, p; is the characteristic function of a subset S C T' such that
S~! = S and e ¢ S. Denoting by (e,)ger the canonical Hilbertian basis of ¢2(T), it
is easy to compute O(e; ® e) = egn ® -1 and E(eg @ ep) = e4 @ egp. Hence the
operators ©, E encode the graph structure of the usual Cayley graph associated with
(T, S), with edges given by “source, direction” pairs (g,h) € I' x S. Note that in the
quantum case, © is always unitary, but not necessarily involutive. More details about
quantum Cayley graphs, especially in the case of trees, are given in the Appendix.

If T is a discrete group, the unitaries v = g € C{(I") or C}(T") corresponding to group
elements can be recovered as those unitaries v which are group-like, i.e. satisfy the relation
A(v) = v ® v. More generally, a unitary corepresentation of a Woronowicz C*-algebra
C*(T') on a Hilbert space H is a unitary element v € M(K(H) @ C*(T'))) such that
(id® A)(v) = vigv13 € M(K(H) @ C*(T') ® C*(T")). Here, K(H) denotes the C*-algebra
of compact operators on the Hilbert space H. Applying id ® 7, yields a bijection between
corepresentations of C*(I") and C¥(T"), hence one can speak of corepresentations of the
discrete quantum group I

We denote by Corep(T") the category of finite dimensional corepresentations of T'. It
is a rigid tensor C*-category, with direct sum v @ w, and tensor product v @ w = v13wa3.
The space of v € Corep(T") is denoted H, and we put dimv = dim H,. We write v C w
(resp. v ~ w) if Hom(v,w) contains an injective (resp. bijective) map, and we choose
a set Irr(T") of representatives of irreducible corepresentations up to equivalence. Any
corepresentation dual to v will be denoted v, and the quantum (or intrinsic) dimension
of v is denoted qdimv. See e.g. [26] for more details.

The structure of ¢o(I') can be described using the theory of corepresentations.
More precisely, there is a canonical dense subspace of H that can be identified with
P cier B(Hy) in such a way that co(I') C B(H) identifies with co— @, cppyr B(Ha)
acting on the dense subspace by left multiplication. Moreover this gives a decom-
position of the multiplicative unitary V (which is also a unitary corepresentation):
V=23 getmr @€ M(co(T)®Cy(T)). We denote p, € co(I') C B(H) the minimal central
projection corresponding to the block B(H,), so that H = @ p,H and p,H ~ B(H,).
For the trivial corepresentation 7 = id¢c ® 1 we have p, = pg.

2.3. Free entropy dimension

There are two main approaches to free entropy dimension, based respectively on mi-
crostates and conjugate variables. The tools that we are going to use in this article are
more closely related to the second one, although the invariance of strong 1-boundedness
under von Neumann algebra isomorphisms is proved by Jung in the first framework.

For a tuple of indeterminates © = (z1,...,%m), we denote C(x) the corresponding
algebra of noncommutative polynomials. The free difference quotient 9; is the unique
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derivation 9; : C(z) — C(z) ® C(z) such that d;,z; = §;;(1 ® 1), where C(z) ® C(z) is
equipped with the bimodule structure P- (R ® S) - Q = PR ® SQ. We denote 9P =
Y oiP®el € Clx)®Clx)® (C™)* and, if P = (P1,...,P) € C{a)l, 9P = Y, 0,P; ®
ej ®ef € Clz) ® C(xr) ® B(C™,C).

Fix a tuple X = (X1,...,X,,) of self-adjoint elements in a von Neumann algebra M
with faithful finite normal trace 7, and denote W*(X) C M the von Neumann subalgebra
generated by X. We say that & € L?(M, 1) is the (necessarily unique) conjugate variable
of X; if & € L2(W*(X),7) and (&, P(X)) = (1 ® 7)((0; P)(X)) for all P € C(z). The
free Fisher information of X is ®*(X) = Y, [|&]|3 if all conjugate variables exist, and
“+o00 otherwise.

Replacing M by a free product if necessary, one can assume that M contains a free
family S = (S1,...,Sm) of elements with (0, 1)-semicircular law with respect to 7, which
is also freely independent from X. The non-microstates free entropy [39] is defined by

+oo
(X) =1 / (52 — (X + VS) ) d + 2 log(2re) €[00, +oo],

and the non-microstates free entropy dimension is

0*(X) =m — lim inf M
e—0 log /€

The (modified) microstates free entropy dimension do(X) is defined by the very same for-
mula, using the relative microstates free entropy x(X ++/€S : S) instead of x*(X + /€S)
[38).

One can observe that we have §y(X) < a iff x(X + /€S : S) < (o —m)|log+/e| +
o(log+/€) as € — 0. Following Jung [21], one says that X is a-bounded (for &) if it
satisfies the slightly stronger condition x(X + /€S : S) < (o —m)|log /€| + K for small
€ > 0 and some K independent of e. Similarly, one can say that X is a-bounded for §*
if x*(X +1/€eS) < (a—m)|log €|+ K.

Recall that it is a major open question in free probability theory to decide whether
do(X) is an invariant of W*(X). Indeed, L£(F,,) admits a tuple of generators X such
that dp(X) = m [40], and therefore the W*-isomorphism invariance of 6y would provide
a solution to the celebrated free group factor isomorphism problem. Jung proved the
following very strong result: if X is 1-bounded and x(X;) > —oo for at least one ¢, then
any other tuple X’ of self-adjoint generators of W*(X) is 1-bounded [21]. In particular,
in that case one cannot have W*(X) ~ L(F,,) for m > 2. Let us also record the following
deep result comparing the two versions of free entropy: we always have x(X) < x*(X)
[8]. In particular x(X + /€S : S) < x*(X + 1/€S) so that 1-boundedness for 6* implies
1-boundedness for d&g.

Our main tool in this article is the following result, originally proved by Jung in
the microstates framework [22], and reproved by Shlyakhtenko using non-microstates
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free entropy [30]. As above, for any P € C(z)! and X € M one can consider P €
C(z)®C(z)® B(C™,C!) and OP(X) € M ® M°® B(C™,C') is a bounded operator from
L*(M,7)®L*(M°,7)®C™ to L?(M,7)® L*(M°,7)®C'. The operator P(X ) moreover
respects the right M ® M°-module structures given by ((®&®n) - (2 Qy) = (2 RYERN.
We denote by rank(0P(X)) the Murray—von Neumann dimension over M ® M° of the
closure of Im(QP(X)) in L?(M,7) ® L*(M°,7) ® Cl.

Theorem 2.2. ([21, Thm. 6.9] and [30, Thm. 2.5]) Suppose that X € M satisfies the
identity F(X) = 0 for F € C(x)!. Assume moreover that OF(X) is of determinant class.
Then X is a-bounded for §g and 6*, with o = m — rank(0F (X)).

3. Regularity of the reversing operator

In Section 4 we will prove that £L(FOy) is strongly 1-bounded by applying Theorem 2.2
to the tuple X of canonical generators and a specific vector of relations F'. It will turn
out that the real part of the operator OF (X) is closely related to the real part of the
reversing operator © of the quantum Cayley graph of FOpy with its canonical generators.
In this section we prove the crucial technical result that 1 + Re® is of determinant
class — which is a regularity property for the spectral measure of Re© at the edge
of the spectrum. This result can be seen as further evidence that the quantum groups
FOp should be somehow regarded as quantum analogues of sofic or determinant class
groups.

Note that all results in this section hold also in the non-Kac case, that is, for all
discrete quantum groups FO(Q) with Q@ € GLyN(C), N > 2, QQ € Cly, except
the ones isomorphic to the duals of SU11(2) — which corresponds to the assumption
qdimu > 2.

Our study relies heavily on results about quantum Cayley graphs proved in [35,36],
which we recall in the Appendix. Note that the eigenspace K} = Ker(© +id) — and,
by symmetry K, = Ker(© —id) —, were the main subject of study in [35,36]. These
stable subspaces behave trivially with respect to the determinant class issue. Note also
that in the classical case, they span the whole of the ambient edge Hilbert space K, but
not in the case of FOy. Hence our main concern in the present article is the behavior of
Oon KjtNK;+.

Recall the Definition A.9 of the reflection operator W, which is isometric and invo-
lutive. The study of K in [35] shows that W restricts to the identity on K and K .
More precisely, the proof of [35, Theorem 5.3] shows that any vector £ € K can be
written E = ¢ — (1+W)n+p__O(n— () with ( € K., and n € K,_, and W restricts
to the identity on K, and K__ by definition.

Definition 3.1. We denote K, = Ker(W—1), K, = Ker(W+1) and L = K,NK-NK*.
We have then an orthogonal decomposition K = K} @ K, © K, @ L.
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The structure of K, and the behavior of ©+0* on K, are quite simple and we describe
them in the next Proposition. We use the notation for the left /right ascending/descending
subspaces, e.g. K,_ = p,_K, which is recalled in the Appendix.

Proposition 3.2. We have K, C K._ & K__ and the orthogonal projection onto K, _
restricts to an isomorphism K, ~ K,_ (up to a constant \/2). Moreover K, is
(© 4+ ©*)-stable and in the isomorphism with K,_ the operator © + ©* corresponds
to —(r 4+ 1r*), where r = —p__Op,_.

Proof. Since by definition W restricts to the identity on K,, and K__ and switches
K,_ and K__ in an involutive and isometric way, the first two assertions are clear. The
identity WOW = ©* implies [W,© + ©*] = 0 hence K, and K, are (0 + ©*)-stable.
Due to this stability and the inclusion K, C K,_ & K_, we have ©+0* = (p,_ +p_,)
(©4+0*)(py- +p_,) on K,. Since p,_Op_, =p_,Op._ =0 by A.6 this yields

©+0"=p, (O©+0")p, +p . (©+6O%)p_, on K,
and the last assertion follows. O

Note that the operator r on K _ was studied in [35], and it is an infinite direct sum of
right shifts with explicit weights converging to 1. Note however that we will be interested
in vector states corresponding to vectors in K, , whereas K, LK, , so that the behavior
of ©® 4+ ©* on K, is not relevant for our precise analytical issue.

Now we turn to the study of ® + ©* on L. It turns out that it also behaves like the
real part of a shift, but the study is slightly more involved. Recall the shorthand notation
r=-p,_Op,_,s=p, Op,, and s’ =p, O%p__.

Proposition 3.3. Consider the map A= (14+W)(r —r*) +2(s* —s'*) : K,_ — K. Then
A is injective, In A = L and A*A =8 — 2(r + r*)%.

Proof. We note that s* = p,,©*p,_ is injective on K, : indeed the weights s;; ap-
pearing in A.11 vanish only for | = 0, and ¢oK,_ = {0}. In particular p, , A = 2s* is
injective, hence A is injective.

It is clear from the definitions that L and Im A are subspaces of K. Hence we have
ImA = L iff Ker A"NK, = L* N K, = K & K. But we have K & K, C K, and
K} o K, =Ker(© —id) @ Ker(© +id) = Ker(6* —id) = Ker(© — ©*). Hence it suffices
to prove that A*({) = 0 & ©¢ = ©*( for ( € K. The second identity is equivalent to
the four equations obtained by applying p, ., p4_, p_. and p__.

Since ¢ = W, the equations p,,0¢ = p,,0*C and p__O( = p__0O*( are trivial —
indeed we have e.g. for the first one:

Pi+OC=p peOC=p, Op (+p, Op_ ( by Proposition A.6
=pOp W(+p,Op ¢
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=p, . O"p, _(+p..0"p__( by Propositions A.9 and A.7
=p,.O"p,_(=p,,0"C by Proposition A.6.

Moreover the equations p,_O( = p,_0*C and p_,O( = p_,O*C are equivalent
because p,_OW( = Wp_,0*C and p,_©*W({ = Wp_,0(. Finally the equation
p+-OC = p, ©*C reads p, Op, ¢+ p, Op,,( = p, Op, (+p, O'p__(, ie
—r( 4+ s¢ = —r*( + s'¢, which is equivalent to A*¢ = 0 since { = W¢.

Finally we can compute, using Equations (A.3) and (A.4) which read respectively
ss*+rr*=p,_ and §'s’"* +r*r=p,_:

NA=ANp A+Np, A+ANp_ A+Ap__A
=4ss* + (r* —=r)(r—r*)+ (r* —r)(r —r*) +4s's"™*
=2(r* —r)(r —r*) +4(1d — rr*) + 4(id — r*r) =8 = 2(r +r*)%. O
Recall that r is a direct sum of right shifts with weights ¢ ; € [0,1] converging to 1
as k — oco. In particular one sees that |7 + r*|| = 2 so that 0 € Sp(A*A) and the image
of A is not closed. Denoting K the “canonical dense subspace of K7, i.e. the algebraic

direct sum of the subspaces p, K, we clearly have A(K,._ N K) C K hence LNK is a
dense subspace of L.

Proposition 3.4. There exists an isomorphism Y : K,_ — L and vectors e; € qg1p1 K, _
such that T*(© + ©*)Y = —(r +7*) and (h @ Te)(YTY*) = Y (filTf:), where f; =
(8 = 2(r +1*)?)~1/2¢;.

Proof. We first show that (© + ©*)A = —A(r + r*). Since WA = A we have
P4+ (© 4+ O*)A =2p,,OA and we compute, using the identity (A.2):

P+OA=p . Op A+p . Op A=p . Op W(r—7r")—2p, Op_ s~
=s"(r—r")—2s"r=—=s"(r+r") = —%p++A(r +7r*).
If we knew that p, . is injective on L, this would suffice to obtain the desired relation
because we already know that (© + ©*)(L) C L. This is true but not completely obvi-
ous since Im A is only dense in L. So we check the other components. We have, using
again (A.3) and (A.4):
pr-OA=p, Op, A+p, Op, A= —r(r—1")+2ss" and
p_O*AN=p, Op. A+p, _O*p__A=—r"(r—r")—2ss"* hence
P (O+ O A= (= —rr* + ' r +7%) = —(r — ) (r + 1) = —p, _A(r +17).

Applying W to both sides we obtain p_(© + 0*)A = —p__A(r + r*). Finally we have
using (A.1):
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p__(O+O0 A =2p__OA=2p__Op, A+2p__Op, A=25*(r—r*)+4p__Op,_ s*
=28 (r —r*)+ 45 r* =28 (r+r*) = —p__A(r +1%).

Then we perform the polar decomposition of A as A = Y|A|, with [A] = VA*A €
B(K, ). Since A has dense image in L, T € B(K, ,L) is a surjective isometry.
Since (0 4+ ©*), (r + r*) are self-adjoint, the identity (0 + ©*)A = —A(r + r*) implies
(0 +605YT =-"T(r+r").

To compute h ® Tr we fix an ONB ((;); of p1H, so that we have (h @ Tr)(X) =
i€ ® G | X(&o ® (). Observe that { @ p1H = poK = qopoK @© q1poK, and we can
assume that the one-dimensional subspace qopoK is spanned by &y ® ;. Since 7, s, &',
W commute with the projections ¢, it is also the case for A. In particular the property
goK_ = {0} implies goL = {0}, hence £ ® (3 L L. On the other hand the vectors £, ® ¢;,
i > 2, form a basis of ¢1pgK.

We have then (h @ Tr)(YTY*) = > ,o0(YT*(& @ G) | TT*(€o @ ¢;)). We obtain the
formula of the statement by putting f; = Y* (€0 ® ¢;). Note moreover that |A| is injective
and |A| = (8 — 2(r 4 7*)?)}/2 by Proposition 3.3. Hence f; has the required form if we
define e; = |A|(f;) = A* (& ® () = 25" (§o ® (i) € p1 K, _. Since § ® (; € 1 K we have
e; € ap1 K _ as claimed. O

Theorem 3.5. The element 1+Re® € UL(FO,)U ® B(p1H) is of determinant class with
respect to the functional (h ® Tr).

Proof. Denote p;, Dy s Pa, pr the orthogonal projections onto K;, K, K, and L respec-
tively. Since they commute with ©+0*, we have to prove that (h®Tr)(log, (¢(1+Re®)))
is finite for each projection ¢ = pf, p,, pa, pr separately. This is clear for p}, p, since
1+ Re® = 0 and 2 on the corresponding subspaces. The term with p, vanishes since
(h®Tr) is a sum of vector states associated to vectors in pgK = poK,, which is orthog-
onal to K, CK,_® K__.

Hence we are left with the term corresponding to p;, = YT*, which according to
Proposition 3.4 is equal to:

(h® Tr)(YTY*log, (14+Re©)YY") = (h ® Tr)(Tlog, (1 — Rer)Y™)
= Z@(fz | 10g+(1 —Rer)fi)
= %Zi(ei | (1-— (Rer)2)_1 log, (1 — Rer)e;).

We fix i and we put 19 = e;/||e;|| € q1p1 K,_. According to A.11 the map r maps g1 pr K, _
isometrically to gipr+1K, _, up to the scalar cxy11 € ]0,1], and we have r*(ng) = 0. If
we define recursively 111 = r1/||r7x ||, this shows that we can identify the restriction
of r to C*(r)no with a weighted unilateral shift on ¢?(N) ~ Span{n;}. Observe moreover

that 1o lies in the range of \/1 — (Rer)2, since ¢; = 2¢/21/1 — (Rer)2 f;. The result now

follows from the following Lemma. O
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Lemma 3.6. Let R be a weighted unilateral shift on ¢*(N) with weights ¢ € ]0,1] —
other words Ry, = ci110k+1 where (O1)y is the canonical basis of (2(N). We assume that
do is in the range of \/1 — (Re R)? and we denote w the vector state associated to dy.
Then w((1 — (Re R)*)~log, (1 — Re R)) is finite.

Remark 3.7. Denote by p the spectral measure of Re(R) with respect to w, Which is
supported on [—1, 1]. Then we have w(f(Re R)) = (do|f(Re R)dp) = f f(®)du(t) for any
feL>*(-1,1)),and if f : [-1,1] — R is any Borel map we say that w(f(Re R)) is finite if
[ is integrable with respect to 4. In the Lemma above we take f(t) = (1—t*)"*log (1—t)
and the finiteness of w(f(Re R)) is equivalent to the convergence, at 1 and —1, of the
integral

1—1¢2

1
[Pt 0. @)

—1

Proof. This kind of result is perhaps well-known to experts in operator theory. However
we provide an elementary proof for the convenience of the reader.

We proceed by comparison with the standard unilateral shift Ry : dx — dgr1. Re-
call that the moments my(Re(Ro)) = w((Re Ry)*) are given in terms of the Catalan
numbers C;, = lerl( ) by mars1 = 0, mo, = 47FC) [27, Corollary 2.14]. Recall
also that the Catalan numbers are counting the number of Dyck paths m € Dj of
length 2k, as can be seen by expanding (Ry + R)?*6y and looking for the dy com-
ponent. See [27, Propositions 2.11 and 2.13]. In the case of a general R, we still have
mop+1 = 0 because R is odd with respect to the natural Z,-grading. Moreover, still
by expanding (R + R*)?¥§, one sees that the even moments mo;(Re R) are given by a
sum over Dyck paths, moy(Re R) = 47* > rep, Cns Where the contributions ¢, are prod-
ucts of weights cj. In particular we have ¢, € ]0,1] and 0 < ma,(ReR) < 47F#Dy, =
mak(Re Ro).

As above, denote by p, po the spectral measures of Re(R) and Re(Ry) with re-
spect to w, which are both supported on [—1,1]. Note that f : t — 1/(1 — t?) is
p-integrable because dy lies in the range of /1 — (Re R)2: indeed, approximating f by
fo :t = min(f(¢),C) and writing 50 = g(Re R)¢ with ¢ € 2(N), g : t = /1 — 12, we
have |fc( ) () < 1 hence [1) fo(t)du(t) = (C(feg?)(Re R)C) < ||| for all C and
f_ ) < ||¢||? by monotone convergence.

In partlcular the integral (2) converges iff the corresponding integral over [0,1] is
finite. Adding the finite quantity fol log, (14 ¢)/(1 — ¢*)du(t) to this new integral, we
conclude that the convergence of (2) is equivalent to

1 1
log, (1 —t?) 1 [log, (1—1t?)
— 0 du(t) = = | ——————=du(t -
[ e =5 [ >
0 21
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where in the right-hand integral we have switched back to integrating over [—1, 1] using
the fact that p is symmetric.

We then perform the power series expansion log, (1—t2)/(1—t%) = Y axt®* on]—1,1[:
the convergence of (2) is equivalent to the finiteness of

/ b‘gi%”du(t) _ / St du(t).

-1 1 keN

Since it is readily seen that all coefficients aj are non-positive and 2* is non-negative,
one can permute the sum and the integral and compare to Ry:

1—¢2 1-1t
4 kEN keEN e

1 1
log, (1 —t2 log, (1 — 2
/ ydu(t) = armar(ReR) > Y agmax(Re Ry) = / Lﬂdm(t).
Now we can conclude because the spectral measure of Ry with respect to w is
well-known: it is the semicircular law duo(t) = Lv/1—t2dt [27, Proposition 2.15].
Hence we are led to the following Bertrand integral, which is well-known to be fi-
nite:

1

log(1 — t?)
———>=dt > —0c0. O
=

-1

4. Free entropy and relations in FOpn

In this section we will apply Jung and Shlyakhtenko’s Theorem 2.2 to M = L(FOy) C
B(H). We fix the tuple of standard generators u = (u;;);;, which we now consider as
elements of the reduced C*-algebra C}(FOp). We consider the “canonical” vector of
relations F = (Fy, Fy) € C(x;;) ® (Mn(C) & My(C)) given by F; = z'z — 1 and
Fy = zat — 1, with z = (2g)m € C(z;;) @ Mn(C). Note that we have m = N? and
| = 2N? with the notation of Section 2.

Recall from Section 2 that rank 0F(u) is the Murray—von Neumann dimension of
Im OF(u) in the right M ® M°-module H ® H° ® (My(C) @ My(C)). The following
Lemma is a straightforward adaptation of [30, Lemma 3.1] and its proof, and relies
heavily on the computation of the first L?-Betti number of FOy in [36].

Lemma 4.1 (/30, Lemma 3.1]). We have rank OF (u) = N? — 1.

Proof. By definition, C[FOy] is the quotient of C(x;;) by the ideal generated by the
polynomials Fpr, p = 1,2, k, I = 1,...N. Recall that H ® H° is equipped with the
M, M-bimodule structure corresponding to the left action of M (resp. M*°) on itself. We
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make it into a C(z;j), C(z;;)-bimodule by evaluating polynomials at x;; = u,j, so that
P-((®§) Q=Pu)®Q(u).

A derivation ¢ : C(z;;) — H ® H° factors through C[FOy] iff we have 6(Fpr) = 0
for all p, k, | — indeed by Leibniz’ rule and the fact that F,(u) = 0 this implies
(PF,uQ) = 0 for all P, Q € C(x;;). Now derivations § : C(z;;) - H ® H° are in
1-1 correspondence with the tuples of values (;; = 0(z;;) € H ® H°, the derivation
corresponding to ((;;);; being given by 6(P) = OP#( = Y 0;;P#¢;j. Then 0 factors
through C[FOy] iff 0F#¢ = (OF,k1#C)pki = 0. Here we use the notation (R ® S)#& =
R-¢-S.

This shows that the space of derivations Der(C[FOy], H® H?) is isomorphic as a right
M ® M°-module to Ker F(u) C (H ® H°)™, where m = N2. Taking von Neumann
dimensions, we obtain

rank OF (u) = N? — dimg o Der(C[FOyN], H @ H®).
On the other hand there are general exact sequences for Hochschild cohomology:

0 — H°(C[FON],H ® H°) — H ® H° — Inn(C[FOy], H ® H°) — 0,
0 — Inn(C[FOy], H ® H°) — Der(C[FOy], H ® H°) — H'(C[FOx], H ® H®) — 0.

If one uses the definition ﬂ,(f)(IFON) = dimpygme H*(C[FON], H ® H°) for the L?-Betti
numbers (see [23,31]), the additivity of Liick—von Neumann dimension readily yields

dimpsgareDer(C[FON], H @ H°) = B2 (FON) — 52 (FON) + 1.
By [36, Corollary 5.3] this is equal to 1, which concludes the proof. O

Recall that 0F(u) = O(Fy, Fy)(u) is an operator in B(H) ® B(H) ® B(My(C),
Mp(C) ® Mn(C)). In the next Lemma we identify My (C) with p; H and we make the
connection with the reversing operator studied in Section 3.

Lemma 4.2. We have O(Fy, F5)(u)*0(Fy, F3)(u) = 20F; (u)*0F (u) € B(HRHR@MyN(C))
and OF;(u)*0F(u) is unitarily conjugated to 2 + 2Re(®@ ® 1) € B(H @ pH ® H).
Moreover the state (h ® h ® Tr) is transformed into (h ® Tr @h)(Vss - Vas) under the
same conjugation.

Proof. We first compute the free derivatives. We have Fip = Zp ZTpkTp, — Ok hence
0ijFip = 01;(1 ® xyy) + 015 (23 ® 1). Using the matrix units E;; as a basis of My (C),
this yields

OF1(Eij) = > 10ik(1 ® 2 @ Et) + 32 05(zik @ 1 ® Egy)
=> 1@z ®Ej) + 3 (2 © 1 @ Eyj)
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sothat 0Fy = > ,,(1@zy QTN E))+> i (i 1A (Ey;)) where A(M) € B(Mn(C)) is
the map of left multiplication by M, and T' € B(My(C)) is the transpose map. Similarly
for F2 = (Z TpTip — 6kl)kl we have

OFy(Eij) = Y 10i(1 @ 215 @ Egt) + Y1002k ® 1 @ Egy)
=2, 1@z @ Ey) + ) (21 ® 1 ® Egy)

and 0F, = > (1@ x1; @ TA(E)T) + > (2r; @ 1 @ M(E;)T).

Then we evaluate at x;; = u;;. Recall that C}(FOy) ® C¥(FOn)° acts on H ® H by
id ® p, where p(x) is the map of right multiplication by x, which can also be written
p(z) = US(z)U in the Kac case. Here S is the antipode and we have in particular
S(uij) = uj;. We obtain in B(H ® H @ My(C)):

OF, (u) = Z(l ® UupU @ TA(Ey)) + Z(Uik ® 1@ AE,))

—(1@URT)([Id® N (up)(1®U 1) + (id ® \)(u3,),

where u € My (C}(FOn)) ~ My(C) ®@ CF(FOuy).

Now we identify My (C) = B(CY) with p; H using the decomposition of the multi-
plicative unitary recalled in Section 2 — in particular we have then (id®\)(ug1) = u2y €
CHT) ®@ p1co(T) € B(H ® p1H). Moreover in this identification T' corresponds with the
restriction of U to py H. Hence we have finally 0F; (u) = (19U @ U)uza (19U @ 1) +uly,
which is also the restriction of (1@ U @ U)V32(1@U @ 1) + V3 to H ® H ® p1H. This
is a sum of two unitaries and we obtain in particular OF; (u)*0F;(u) = 2+ 2ReW on
H®H®pH, where W = Va1 (10 U @ U)Var(10 U @ 1).

Proceeding similarly with F5 we obtain

OFy(u) = > (1@ UuuU @ TA(E)T) + > (uk; @ 1 @ A(Ex;)T)
=(1UT)([ida N (u)(10UT)+ (ide N (uz) (101 T)
=1UeU)Va(leUeU)+ Vs (11eU) on HRH®p H,

and 0Fs(u)*0F3(u) = 242 Re(10URU ) Vs2 (10U RU ) V31 (101RU). We moreover observe
that (10U @U)Va(1oUU) € 10 B(H)@Ucy(FON)U and Vi € B(H)®1®co(FOy).
Since [c(T), Uco(I')U] = 0, we can permute both terms and we obtain 0F(u)*0F;(u) =
2+ 2ReW = 0F(u)*0F; (u).

Now we perform unitary conjugations to “simplify” W. We first use U323 which
yields the symmetric form W ~,, V51UsVa3 € B(H ® p1 H ® H). Conjugating further by
U we obtain W ~,, ViaUsVas, where V = Y(1®U)V(1®U)X. Finally we conjugate by
Vi3Va3 and we use the formula Vi3Va3Via = Vi5Vi3 from [2, Proposition 6.1]:

W~y VizVasViaUs Vi = Vi VisUs Vi = VigUs = O @ 1.
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Notice at last that h® h® Tr is a sum of vector states associated to vectors of the form
& ® & ® (. We have Uy = & and V(§p ® 1) = & ® 1. Applying the various unitaries
used to transform W we obtain

Vi3VasU1 Ea3Ua(§0 @ §o @ () = VizVas(§o @ (@ &o) = Vasz(§o ® (@ &o)
and the last claim follows. O
Thanks to Theorem 3.5 we can finally prove our main theorem:
Theorem 4.3. The von Neumann algebra L(FOy) is strongly 1-bounded for all N > 3.

Proof. The 1-boundedness of the tuple of generators u = (u;;) of L(FOy) is a straight-
forward consequence of Jung’s and Shlyakhtenko’s Theorem 2.2, applied to v and to the
relations F' = (Fy) introduced at the beginning of this section. Note that on the matrix
algebra B(p1H) ® 1, any positive functional, and in particular (Tr®h)(V* - V), is domi-
nated by a multiple of the standard trace Tr ®h. Then OF (u) is of determinant class with
respect to (h ® h ® Tr) by Lemma 4.2 and Theorem 3.5. Moreover N2 —rank F (u) = 1
by Lemma 4.1.

Strong 1-boundedness of L(FOy) will now follow if at least one of the generators u;;
has finite free entropy. Recall that for a single self-adjoint variable X = X; in a finite
von Neumann algebra (M, 7) with law p, we have the formula [37, Proposition 4.5]

X0 = [ [ 1og1s ~ tlau(s)autt) + €.

In particular if © has an essentially bounded density with respect to the Lebesgue measure
(and is compactly supported), then x(X) is evidently finite. This is indeed the case
for all generators u;; of L(FOx) — according to [6, Theorem 5.3 the density is even
continuous. O

Corollary 4.4. For N > 3 the von Neumann algebra L(FOy) is not isomorphic to any
finite von Neumann algebra (with separable predual) which admits a tuple of self-adjoint
generators X with 60(X) > 1. In particular it is not isomorphic to any free group factor

L(F,).

More generally, £L(FOy) is not isomorphic to any interpolated free group factor L(F;.),
nor to any group von Neumann algebra £(T') where I' = *;f:lZ/niZ is a free product
of cyclic groups, for instance I' = (Z/2Z)*". Indeed these von Neumann algebras admit
tuples of self-adjoint generators with §g = r, o = k — Zle n; ! respectively and these
values are strictly bigger than 1 in the non amenable cases. According to [21, Lemma 3.7],
L(FOp) is not isomorphic either to any free product of R“-embeddable diffuse finite von
Neumann algebras.
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Appendix A. Computation rules in quantum Cayley trees

In this appendix we recall definitions and results from [35,36] about quantum Cayley
graphs for discrete quantum groups. We use the notation about discrete quantum groups
recalled in Section 2.

Definition A.1 ([35, Definition 3.1]). Let T be a discrete quantum group, and fix a central
projection p; € Z(M(co(T'))) such that Up; = p1U and pop; = 0. The quantum Cayley
graph X [35] associated to (T, p1) is given by

— the vertex and edge Hilbert spaces £2(X () = ¢2(I") and £2(XM) = ¢2(T") @ p £2(I),

— the vertex and edge C*-algebras co(X () = ¢o(T) and co(XM) = ¢o(T") @ prco(T),
naturally represented on the corresponding Hilbert spaces,

~ the antilinear involutions J(®) = J and J®) = J @ J on £2(X(®) and £2(XM),

~ the boundary operator E =V € B(£2(XM), 2(X0) @ ¢2(Xx©)).

the reversing operator @ = (1 ®@ U)V (U @ U)X € B(£2(XW)),

We denote £2(X(©)) = ¢2(I') = H and (X)) = H®pH = K. We also consider the
source and target operators F1 = (id® €)E, Fy: (e ®id)E : K — H, which are a priori
only densely defined.

Recall that H is the GNS space for the Haar state h € C*(I')*, with canonical cyclic
vector &. Denote C[I'] the canonical dense Hopf x-subalgebra of C*(T"). The following
Proposition computes the structure maps of the quantum Cayley graph in terms of the
Hopf algebra structure of C[T'].

Proposition A.2 (35, Lemma 3.5, Proposition 3.6]). For any z, y € C[T'] we have

= O(z6 ®yéo) = (Id @ 5)((z @ 1)A(y)) (o @ o),
— (26 @ ybo) = e(y)xo and Ez(z&o @ yéo) = 2y&o-

Moreover E1© = Ey and E;© = FEy. If p1 € ¢o(T), then Ey and Ey are bounded.

A key feature of the quantum case is that the reversing operator need not be invo-
lutive — in fact if p; is “generating” © is involutive iff I" is a genuine discrete group
[35, Proposition 3.4]. Hence the study of the following eigenspaces becomes non trivial,
important, and turns out to be useful for applications:

Definition A.3 (/35, Definition 3.1]). The space of antisymmetric (or geometric) edges is
K} = Ker(© +id). The space of symmetric edges is K, = Ker(© — id).

Recall the isomorphism co(I') = co— @ qerer(r) Paco(I') With paco(I') ~ B(H,). The
classical Cayley graph introduced in the next Definition is an essential tool for the study
of the quantum Cayley graph.
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Definition A.4 ([35, Definition 3.1, Lemma 4.4]). Denote D C Irr(I") the subset such
that p1 = > cp Pa- The classical Cayley graph G associated to (T', p1) is given by

— the vertex set G(©) = Irr(T),

— the edge set G = {(a, 3,7,4) ; o, B € Irr(I"), vy € D,1 < i < dim Hom(8,a ® )},
— the boundary map e : G — GO x GO (o, B,7,i) — (, B),

— the reversing map 0 : GV — G (a, B,7,i) — (8, a,7,1).

The component v of an edge is called its direction. If e is injective, and in particular
if the classical Cayley graph G is a tree, G™") can and will be identified with {(c, 8) €
Irr(T)? | 3y € D B C a®~}. The origin of the classical Cayley graph G is the trivial
corepresentation 7 and if G is connected we denote |a| = d(7, «) the distance of a vertex
a to the origin.

To any subset A C G() one can associate the projection p = Y acaPa € M (co(X ).
One can proceed similarly with G and ¢ (X (1)), but one can also associate to
B c GO x GO the projection p = > (apyen BT (Pa ® pp)E € M (co(XM)), whose
image corresponds to the space of edges going from « to 8. This motivates the following
definition.

Definition A.5. Assume that the classical Cayley graph G associated to (T, p1) is a tree.
For any n € N one puts p, = Z|a|=npa € B(H) and p, = Z|a\=npa ®p1 € B(K). The
left and right projections onto ascending edges are p,, = Y E*(pp @ ppt1)E € B(K)
and p,, = JWp, JB ¢ B(K). The projections onto descending edges are p,_ =
> E*(pn ® pn_1)E and p_, = JWp, JV. Finally one puts p,. = piyPus, ps- =
PixDPs—s Py =D-3Pyys P-— =P_yPy-and K., =p K, K. _=p, K, K  =p_ K,
K _=p__K.

In the classical case one has p,, = p,, so that p,_ = p_, = 0. However in the quan-
tum case p,_ and p__ are in general non-zero, and this is related to the non involutivity
of the reversing operator. The following proposition shows indeed that p,_©p,_ acts as
a right shift in the decomposition K,_ = @p, K, _.

Proposition A.6 ([35, Proposition 4.3]). Assume that the classical Cayley graph associ-
ated to (I',p1) 4s a tree. Then we have

~ Pay +Ps =id and pyy +p_y =1d, [Pas,Pix] =0, [Pas,Pn] = [Pas,Pn] =0,
= Op Pn = Pnt1P%-O and Op_,pn = pr—1P+ 0,

Px- = Op O and p_, = O"p,, 0,
— Eop, = Esp_, =0 and pp B2 = Espn_1pyy + Eopniap .

We denote r = —p,_Op,_ and s =p,_Op,,.
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In the rest of the Appendix we consider the case of a free product of orthogonal and
unitary free quantum groups: I' = F = FO(Q1) * - - - * FO(Qy) * FU(Ry) * - - - * FU(Ry),
endowed with the projection py = ) .1 Pa associated to the set D of fundamental rep-
resentations of the factors FO(Q;), FU(R;), together with their duals. This is a little
bit stronger than requiring the classical Cayley graph G to be a tree, see [35, Propo-
sition 4.5]. In that case we have the following useful facts. Note that the identities
(P +p)O"(pyy +p )= (Pry +p-)O "(psy +p__) can be interpreted as a weak
involutivity property.

Proposition A.7 ([35, Proposition 4.7, Proposition 5.1]). Consider the quantum Cay-
ley graph of (F,p1). Then the restriction Ey : K., — H is injective and we have

(Pyy +p-)O" Py +p__) = (pys +p-)O " (psy +p__) for all n.
Here is an example of computation using the rules above:

Lemma A.8. In the quantum Cayley graph of (F,p1) we have

p-_Op O"p,_=-p_ _Op, Op,_ (A1)

p++Op__Op,_ = -—p, . O"p, Op,_ (A.2)
P+-Op, O p,_ =p, —p, Op,_O"p,_ (A.3)
P ©'p__Op._=p, —p, O'p, Op, . (A.4)

Proof. For the first identity it suffices to use A.6 and write p__Op, O*p, _ +
p--Op, Op, =p Op,Op, +p Op, O'p, =p O0"p,_ = 0. The second
identity is proved similarly after replacing p,,©p__ with p,  ©*p__ on the left-hand side
thanks to A.7. The third identity appears already in the proof of [35, Proposition 6.2].
For the last one we note that, according to A.6, p,_©*p__Op,_ =p,_O*p_,Op,_ and
py_©*p, _Op,_ = p,_O*p,,Op,_. Adding both operators we obtain p,_©0*Op,_ =
py-. O

The subspaces K,_ and K_, are strongly connected to each other through the reflec-
tion operator W introduced as follows.

Proposition A.9 (/35, Lemma 5.2]). Consider the quantum Cayley graph of (F,p1).
There exists a unique unitary operator w : K, — K_, such that w(p,_©)"p,, =
(p_.© YHYnp,, for alln > 1. We denote W = wp, _ +w*p_, +p,, +p__ € B(K): this
is an involutive unitary operator such that WOW = ©*, Wp,, = p,,., Wp__ = p__
and Wp,_ =p_,W.

The families of projections {p,}, {pst,P+_,p_4+,p__} form two commuting partitions
of the unit in B(K). To perform the most precise analysis of © one needs to further
decompose the space K. Observe that there are 4 commuting representations of ¢y(I")
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on K, given by 74 : ¢o(I')®* — B(K) = B(H®p1H),z20y®y @2 — (z@y)(Uz'U®
Uy'U). In the case of FOp, the subspaces p, K ~ B(H, ® H;) are irreducible with
respect to 74, and the subspaces p..p, K ~ B(H,+1, H,+1) are irreducible with respect
to the representation m4 o (A ® A) of ¢(I') ® ¢o(T"). The reversing operator © does not
commute to these representations, but it does commute to w4 o A [35, Proposition 3.7]
and we consider:

Definition A.10. Denote ¢, = m4A3(py) € B(K). We have > ¢ = id and [q,px] =
[q1,ps] = 0. We have p,,qipr, # 0iff 0 <1 < k+1, po-qpr # 0iff 1 <1 < k and
po_qpr #0if 0 <1< k-1

The subspace qoK is the “classical subspace” of the space of edges, see [35, Re-
marks 6.4] and [36, Reminder 4.3]. In particular ©% = id on ¢ K.

Proposition A.11 (/35, Lemma 6.3]). Consider the quantum Cayley graph of (FOn,p1).
For all choices of signs the operator p,,Op,. is a multiple of an isometry on each
subspace qip.pn K and we have, for p, v, p', v' € {+,—} and p,prq # 0:

Cry1, of pv = p'v and pf =+

LOPL = ;
[P, Op. P Sk1, Of pv # W'V and p' = +

ce if pr=p'v and pf = —

LOp. = .
||pu D kaZH Sk Zfl“/ # ,U/l// and N/ —

5 qdim(ay) qdim(ag_1)

where s;,; = and ¢, + s2, = 1, with the convention that
k.l qdim(ay) qdim(ag—1) k.t kit ’
qdim(a_1) = 0.
Note that this statement corrects [35, Lemma 6.3] in the case when p/ = —, which is

not used in that article.
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