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recent free entropy dimension rank theorem of Jung and 
Shlyakhtenko.
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1. Introduction

The theory of discrete quantum groups provides a rich source of interesting examples 
of C∗-algebras and von Neumann algebras. In addition to ordinary discrete groups, there 

is a wealth of examples and phenomena arising from genuinely quantum groups [15,42,
7,29,25,1]. Within the class of non-amenable discrete quantum groups, the so-called free 

* Corresponding author.

E-mail addresses: mbrannan@math.tamu.edu (M. Brannan), roland.vergnioux@unicaen.fr
(R. Vergnioux).

https://doi.org/10.1016/j.aim.2018.02.007
0001-8708/© 2018 Elsevier Inc. All rights reserved.



134 M. Brannan, R. Vergnioux / Advances in Mathematics 329 (2018) 133–156

quantum groups of Wang and Van Daele [34,41] somehow form the most prominent 
examples.

In this paper, our main focus is on the structural theory of a family of II1-factors 
associated to a special family of free quantum groups, called the orthogonal free quantum 

groups. Given an integer N ≥ 2, the orthogonal free quantum group FON is the discrete 

quantum group defined via the full Woronowicz C∗-algebra

C∗
f (FON ) = 〈uij , 1 ≤ i, j ≤ N | u = [uij ] unitary, uij = u∗

ij ∀i, j〉.

The C∗-algebra C∗
f (FON ) can be interpreted simultaneously as a free analogue of the 

C∗-algebra of continuous functions on the real orthogonal group ON , and also as a “ma-
tricial” analogue of the full free group C∗-algebra C∗

f ((Z/2Z)�N ). Indeed, by quotienting 

by the commutator ideal or by setting uij = 0 (i �= j), respectively, we obtain surjective 

Woronowicz-C∗-morphisms

C∗
f (FON ) → C(ON ), C∗

f (FON ) → C∗
f ((Z/2Z)�N ).

Using the (tracial) Haar state h : C∗
f (FON ) → C, the GNS construction yields in the 

usual way a Hilbert space �2(FON ) and a corresponding von Neumann algebra L(FON) =
πh(C∗

f (FON ))′′ ⊆ B(�2(FON )), where πh denotes the GNS representation. Over the past 
two decades, the structure of the algebras L(FON ) has been investigated by many hands, 
and in many respects FON and L(FON ) (N ≥ 3) were shown to share many properties 
with free groups Fn and their von Neumann algebras L(Fn).

For example, L(FON ) is a full type II1-factor, it is strongly solid, and in particular 
prime and has no Cartan subalgebra; it has the Haagerup property (HAP), is weakly 

amenable with Cowling–Haagerup constant 1 (CMAP), and satisfies the Connes’ Em-
bedding conjecture [3,32,19,9,17,11,16]. Moreover, it is known that L(FON ) behaves 
asymptotically like a free group factor in the sense that the canonical generators of 
L(FON ) become strongly asymptotically free semicircular systems as N → ∞ [5,10].

With these many similarities between L(FON ) and L(Fn) at hand, the following 

question naturally arises:

Can L(FON ) be isomorphic to a free group factor?

This particular question has been circulating within the operator algebra and quantum 

group communities ever since the publication of Banica’s thesis [3,4] in the mid 1990’s, 
which first connected the corepresentation theory of free quantum groups to Voicules-
cu’s free probability theory. This deep connection with free independence established by 

Banica was a direct inspiration for the many structural results for L(FON ) described in 

the previous paragraph. In this paper, our main objective is to finally answer the above 

question in the negative.
The first evidence suggesting a negative answer to an isomorphism with a free group 

factor came from the work of the second author [36], where the L2-cohomology of 
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FON was investigated. There it was shown that the first L2-Betti number of FON

vanishes for all N ≥ 3, see also [24]. Combining this result with some deep work of 
Connes–Shlyakhtenko [13], Jung [20], and Biane–Capitaine–Guionnet [8] on free entropy 

dimension, it was shown by Collins and the authors [11] that for N ≥ 41:

δ0(u) = δ∗(u) = 1, (1)

where u = (uij)1≤i,j≤N is the set of canonical self-adjoint generators of L(FON ), and 

δ0, δ∗ are Voiculescu’s (modified) microstates free entropy dimension and non-microstates 
free entropy dimension, respectively [40,38,39].

Recall that if X is a finite set of self-adjoint generators of a finite von Neumann 

algebra M with faithful normal tracial state τ , δ0(X) can be interpreted as an asymptotic 

Minkowski dimension of the space of microstates of X. The fundamental problem relating 

to δ0 is whether or not it is a W∗-invariant: If X, X ′ ⊂ Msa are finite sets generating 

the same von Neumann subalgebra, do we have δ0(X) = δ0(X ′)? If the answer to this 
question is yes, then this would solve the well-known free group factor isomorphism 

problem since L(Fn) admits a finite generating set X with δ0(X) = n [40].
In the remarkable work [21], Jung introduced a certain technical strengthening of 

the condition δ0(X) ≤ α (see Section 2.3 for details), which he called α-boundedness

of X. There, Jung proved the remarkable result that if (M, τ) is a finite von Neumann 

algebra generated by a 1-bounded set X ⊂ Msa containing at least one element with 

finite free entropy, then every other self-adjoint generating set X ′ of M has δ0(X ′) ≤ 1. 
In this case, we call M a strongly 1-bounded von Neumann algebra, and δ0 becomes a 

W ∗-invariant for M . Note, in particular, that any strongly 1-bounded von Neumann 

algebra cannot be isomorphic to any (interpolated) free group factor L(Fr) (r ≥ 2) [21, 
Corollary 3.6].

The main result of this paper is an upgrade of the free entropy dimension estimate 

(1) to the following theorem:

Theorem (See Theorem 4.3 and Corollary 4.4). For each N ≥ 3, L(FON ) is a strongly 

1-bounded von Neumann algebra. In particular, L(FON) is never isomorphic to an in-

terpolated free group factor.

Note that II1-factors which have property Gamma, or have a Cartan subalgebra, or 
are tensor products of infinite dimensional factors, are automatically strongly 1-bounded 

by [21]. This is not the case of L(FON ). Instead, our proof of strong 1-boundedness relies 
on and is heavily inspired by recent works of Jung [22] and Shlyakhtenko [30].

If F is an l-tuple of non-commutative polynomials over m variables, one can com-
pute Voiculescu’s free derivative ∂F which yields by evaluation an operator ∂F (X) ∈

1 These values are also conjectured to hold for N = 3 but in that case Connes embeddability of L(FON )
is open and therefore only the inequality −∞ ≤ δ0(u) ≤ δ∗(u) ≤ 1 is known.
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M ⊗ Mop ⊗ B(Cm, Cl). In [22], Jung showed that if (M, τ) is a finite von Neumann 

algebra, X ∈ Mm
sa is an m-tuple satisfying the polynomial relations F (X) = 0, then X

is α-bounded with α = m − rank(∂F (X)), provided that ∂F (X)∗∂F (X) has a non-zero 

modified Lück–Fuglede–Kadison determinant. See Section 2 for any undefined notation 

and terms here.
In [30], Shlyakhtenko gave another proof of Jung’s result above using non-microstates 

free entropy techniques, and moreover used this result to show that whenever Γ is an 

infinite, finitely generated and finitely presented sofic group with vanishing first L2-Betti 
number, then L(Γ) is strongly 1-bounded. The key idea here being that there always 
exists a canonical system of generators X ∈ Q[Γ]msa ⊂ L(Γ)m

sa and rational-polynomial 
relations F (X) = 0, where

(1) m − rank(∂F (X)) = β
(2)
1 (Γ) − β

(2)
0 (Γ) + 1.

(2) ∂F (X)∗∂F (X) has a non-zero modified Lück–Fuglede–Kadison determinant.

Note that the first condition above holds for any finitely generated finitely presented 

group, whereas the second, typically very difficult to check condition comes for “free” 

for sofic groups – thanks to Elek and Szabó’s solution to Lück’s determinant conjecture 

for sofic groups [14].
Returning to the quantum groups FON , it is very natural to view these objects as 

quantum analogues of finitely generated, finitely presented sofic groups with vanish-
ing first L2-Betti number. Indeed, FON is hyperlinear in the sense of [11], and even 

residually finite in the sense that the underlying Hopf ∗-algebra C[FON ] is residually 

finite-dimensional [12]. However discrete quantum groups are much more linear in nature 

than ordinary discrete groups and it is not clear whether there is a quantum analogue of 
soficity that would allow one to prove Lück’s determinant conjecture for discrete quan-
tum group rings.

Our strategy in this paper for proving our strong 1-boundedness theorem, which now 

can be seen as a quantum analogue of Shlyakhtenko’s sofic group result, is to first take 

the canonical system of generators X = u = (uij)1≤i,j≤N and form the natural vector of 
quadratic relations F (X) = 0 associated to the defining orthogonality relations of FON . 
We then proceed to show conditions (1) and (2) from above for this choice of F and X. 
Establishing (1) turns out to be a relatively straightforward adaptation of the results in 

the group case (see Lemma 4.1).
On the other hand, establishing (2) directly turns out to be much more involved 

and constitutes the main technical component of the paper. Without the analogue of 
Elek–Szabó’s results in this setting, we must check the determinant condition for D =
∂F (X)∗∂F (X) explicitly. This amounts to proving the integrability of the function log+ :
[0, ∞) → R with respect to the spectral measure of D, where log+(t) = log(t) if t > 0
and log+(0) = 0.

This integrability condition is established by proving an identification of D, up to 

amplification and unitary equivalence, with the operator 2(1 +Re(Θ)), where Θ ∈ B(K)
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is the so-called edge-reversing operator of the quantum Cayley tree associated to the 

quantum group FON . Here, K denotes the edge Hilbert space associated to the quantum 

Cayley tree. Quantum Cayley graphs where introduced by the second author in [35] and 

studied further in [36], where they were a key ingredient to prove the vanishing of the 

first L2-Betti number of FON . More specifically, a large part of [35,36] was devoted to 

the study of the eigenspaces K±
g = Ker(Θ ± id).

In the quantum case, Θ is not involutive and the understanding of its behavior on 

the orthogonal complement of K+
g ⊕ K−

g is essential for the study of the integrability 

condition of D. In the present article, we unveil a shift structure for the action of Re(Θ) on 

the orthogonal complement of K+
g ⊕K−

g , reducing the initial problem to an integrability 

question for real parts of weighted shifts.
Finally, let us conclude this introduction with the following natural question: Although 

we now know that L(FON ) is not isomorphic to a free group factor, could it still be 

possible that L(FON ) is isomorphic to L(Γ) for some other classical discrete group Γ? In 

particular, what about Γ being an ICC lattice in SL(2, C)? For such Γ, it is known that 
L(Γ) is a full, strongly solid, strongly 1-bounded II1-factor which has the HAP and the 

CMAP. Note also that [18] provides other examples of groups Γ such that L(Γ) satisfies 
the same properties.

The remainder of the paper is organized as follows. In Section 2 we introduce some 

basic notation and preliminaries about discrete quantum groups and free entropy dimen-
sion. In Section 3 we proceed to the spectral analysis of the reversing operator, reducing 

the determinant class question to the case of weighted shifts. In Section 4 we study the 

relations in FON from the point of view of free entropy dimension and we prove the main 

1-boundedness result. Finally the Appendix summarizes some background results from 

[35,36] on quantum Cayley graphs used in Section 3.
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2. Notation and preliminaries

Scalar products are linear on the right. We denote by ⊗ the tensor product of Hilbert 
spaces and the minimal tensor product of C∗-algebras. We use the leg numbering notation 

for elements of multiple tensor products. The flip operator on Hilbert spaces is denoted 

Σ : H ⊗ K → K ⊗ H. For example, if H, K, L are Hilbert spaces, T ∈ B(H ⊗ K), 
S ∈ B(K), then T12 ∈ B(H ⊗ K ⊗ L), S2 ∈ B(H ⊗ K ⊗ L), T32 ∈ B(L ⊗ K ⊗ H) are 

given by T ⊗ id, id ⊗ S ⊗ id, and (id ⊗ Σ)(id ⊗ T )(id ⊗ Σ), respectively.
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Let us denote log+(t) = log(t) for t > 0 and log+(0) = 0. The function log+ can be 

applied to positive operators using Borel functional calculus. If M is a von Neumann 

algebra with finite faithful normal trace τ , Lück’s modified Fuglede–Kadison determinant 
of x ∈ M is Δ+

τ (x) = exp(τ(log+(|x|))) ∈ [0, ∞). We will say that x ∈ (M, τ) is of 
determinant class if Δ+

τ (x) > 0, i.e. τ(log+(|x|)) > −∞. Here, the quantity τ(log+(|x|))
is computed via the Lebesgue integral

τ(log+(|x|)) =
∫

(0,∞)

log(λ)dμ(λ) = lim
ε→0+

‖x‖∫

ε

log(λ)dμ(λ) ∈ [−∞, ∞[

where μ denotes the spectral distribution of |x| induced by τ .
We denote L2(M, τ) the GNS space, equipped with the natural left and right 

M -module structures xŷ = x̂y and ŷx = ŷx = Jx∗Jŷ, where x̂ denotes the image 

in L2(M, τ) of x ∈ M . We denote M◦ the opposite von Neumann algebra, L2(M◦, τ) the 

corresponding GNS space with left and right actions of M◦ denoted ŷx = ŷx, xŷ = x̂y, 
where we use the product of M .

2.1. Discrete quantum groups

We use the setting of Woronowicz C∗-algebras [43], i.e. unital C∗-algebras A equipped 

with a ∗-homomorphism Δ : A → A ⊗ A such that (Δ ⊗ id)Δ = (id ⊗ Δ)Δ and 

Δ(A)(1 ⊗ A), Δ(A)(A ⊗ 1) are dense in A ⊗ A. Woronowicz proved the existence and 

uniqueness of a state h ∈ A∗ such that (h ⊗ id)Δ = (id ⊗ h)Δ = h(·)1, called the Haar 
state [42]. The Woronowicz C∗-algebra (A, Δ) is called reduced if the GNS representation 

πh associated with h is faithful. Note that (πh ⊗ πh)Δ factors through πh and in this 
way πh(A) is naturally a reduced Woronowicz C∗-algebra.

If Γ is a discrete group, the full and reduced C∗-algebras C∗
f (Γ), C∗

r (Γ) are Woronowicz 

C∗-algebras with respect to the coproducts given by Δ(g) = g ⊗g, where group elements 
g ∈ Γ are identified with the corresponding unitary elements in C∗

f (Γ), C∗
r (Γ). In general 

we shall interpret Woronowicz C∗-algebras as discrete quantum group C∗-algebras and 

denote (A, Δ) = (C∗(Γ), Δ), where Γ is the discrete quantum group associated with 

(A, Δ). There is always a reduced version C∗
r (Γ) of C∗(Γ), as above, as well as a full 

version C∗
f (Γ). The von Neumann algebra of Γ is L(Γ) = C∗

r (Γ)′′ ⊂ B(�2(Γ)), where 

�2(Γ) is the GNS space of h.
The main class of examples for the present article are the orthogonal free quantum 

groups FO(Q) [41,34,3], where Q ∈ GLN (C) is a matrix such that QQ̄ ∈ CIN . The 

corresponding full Woronowicz C∗-algebras are defined by generators and relations:

C∗
f (FO(Q)) = 〈uij , 1 ≤ i, j ≤ n | u unitary, QūQ−1 = u〉

where ū = (u∗
ij)ij , with the coproduct given on generators by Δ(uij) =

∑
k uik ⊗ ukj . In 

the case Q = IN we denote FO(Q) = FON .
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Remark 2.1. In the literature, another commonly used (dual) notation for the C∗-algebra 

C∗
f (FON ) is Cu(O+

N ), or sometimes Ao(N). The notation Cu(O+
N ) refers to the fact 

that this C∗-algebra can be viewed as a free analogue of the C∗-algebra of continuous 
functions on the real orthogonal group ON . In terms of Pontryagin duality for quan-
tum groups, O+

N = F̂ON is the compact dual of the discrete quantum group FON

and the Fourier transform [28] induces the identifications Cu(O+
N ) = C∗

f (FON ) and 

L∞(O+
N ) = πh(Cu(O+

N ))′′ = L(FON ). Since our perspective is to view our objects as 
quantum analogues of discrete groups, we stick to the notation FON .

Denote by πh : C∗(Γ) → B(�2(Γ)) the GNS representation associated with the Haar 
state, with canonical cyclic vector ξ0 ∈ �2(Γ). The multiplicative unitary [2] of Γ is the 

unitary operator V acting on �2(Γ) ⊗ �2(Γ) and given by the formula V (xξ0 ⊗ yξ0) =
Δ(x)(1 ⊗ y)(ξ0 ⊗ ξ0) for x, y ∈ C∗(Γ). It satisfies the so-called pentagonal equation 

V12V13V23 = V23V12. The reduced algebra C∗
r (Γ) ⊂ B(�2(Γ)) can be recovered as the 

closed linear span of the slices (ϕ ⊗ id)(V ), ϕ ∈ B(�2(Γ))∗, with coproduct Δ(x) =
V (x ⊗ 1)V ∗. Another useful operator is the polar part of the antipode. This is the 

involutive unitary U ∈ B(�2(Γ)) given by U(xξ0) = R(x)ξ0 (x ∈ C∗(Γ)), where R :
C∗(Γ) → C∗(Γ)◦ is the unitary antipode.

The dual algebra c0(Γ) can be defined as the closed linear span, in B(�2(Γ)), of the 

slices (id ⊗ ϕ)(V ), ϕ ∈ B(�2(Γ))∗, and equipped with the coproduct Δ : c0(Γ) →
M(c0(Γ) ⊗ c0(Γ)), a �→ V ∗(1 ⊗ a)V (following [2]). It is a (not necessarily unital) 
Hopf-C∗-algebra [33]. We have then V ∈ M(c0(Γ) ⊗C∗

r (Γ)). We denote p0 = (id⊗h)(V ) ∈
c0(Γ), which is also the orthogonal projection onto Cξ0 ⊂ H.

In the “classical case”, when Γ is a real discrete group, on can check that V =∑
g∈Γ δg ⊗ πh(g), where δg is the characteristic function of {g} acting by pointwise mul-

tiplication on �2(Γ) and πh(g) is the operator of left translation by g. In particular c0(Γ)
identifies with the C∗-algebra of functions on Γ vanishing at infinity, as the notation 

suggests.

2.2. Quantum Cayley graphs

Let p1 ∈ Z(M(c0(Γ))) be a central projection such that Up1 = p1U and p0p1 = 0. 
The quantum Cayley graph X [35] associated to (Γ, p1) is given by

– the vertex and edge Hilbert spaces �2(X(0)) = �2(Γ) and �2(X(1)) = �2(Γ) ⊗ p1�2(Γ),
– the vertex and edge C∗-algebras c0(X(0)) = c0(Γ) and c0(X(1)) = c0(Γ) ⊗ p1c0(Γ), 

naturally represented on the corresponding Hilbert spaces,
– the reversing operator Θ = Σ(1 ⊗ U)V (U ⊗ U)Σ ∈ B(�2(X(1))),
– the boundary operator E = V ∈ B(�2(X(1)), �2(X(0)) ⊗ �2(X(0))).

For brevity we denote �2(X(0)) = �2(Γ) = H and �2(X(1)) = H ⊗ p1H = K. The fact 
that p1 commutes with U ensures that K is stable under Θ and Θ∗. Using the densely 
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defined “augmentation form” ε : H → C induced by the co-unit of C∗
f (Γ), one can also 

consider source and target maps E1 = (id ⊗ ε)E, E2 : (ε ⊗ id)E : K → H. When p1 has 
finite rank, these are in fact bounded operators.

In the classical case, p1 is the characteristic function of a subset S ⊂ Γ such that 
S−1 = S and e /∈ S. Denoting by (eg)g∈Γ the canonical Hilbertian basis of �2(Γ), it 
is easy to compute Θ(eg ⊗ eh) = egh ⊗ eh−1 and E(eg ⊗ eh) = eg ⊗ egh. Hence the 

operators Θ, E encode the graph structure of the usual Cayley graph associated with 

(Γ, S), with edges given by “source, direction” pairs (g, h) ∈ Γ × S. Note that in the 

quantum case, Θ is always unitary, but not necessarily involutive. More details about 
quantum Cayley graphs, especially in the case of trees, are given in the Appendix.

If Γ is a discrete group, the unitaries v = g ∈ C∗
f (Γ) or C∗

r (Γ) corresponding to group 

elements can be recovered as those unitaries v which are group-like, i.e. satisfy the relation 

Δ(v) = v ⊗ v. More generally, a unitary corepresentation of a Woronowicz C∗-algebra 

C∗(Γ) on a Hilbert space H is a unitary element v ∈ M(K(H) ⊗ C∗(Γ))) such that 
(id ⊗ Δ)(v) = v12v13 ∈ M(K(H) ⊗ C∗(Γ) ⊗ C∗(Γ)). Here, K(H) denotes the C∗-algebra 

of compact operators on the Hilbert space H. Applying id⊗πh yields a bijection between 

corepresentations of C∗(Γ) and C∗
r (Γ), hence one can speak of corepresentations of the 

discrete quantum group Γ.
We denote by Corep(Γ) the category of finite dimensional corepresentations of Γ. It 

is a rigid tensor C∗-category, with direct sum v ⊕ w, and tensor product v ⊗ w = v13w23. 
The space of v ∈ Corep(Γ) is denoted Hv and we put dim v = dim Hv. We write v ⊂ w

(resp. v � w) if Hom(v, w) contains an injective (resp. bijective) map, and we choose 

a set Irr(Γ) of representatives of irreducible corepresentations up to equivalence. Any 

corepresentation dual to v will be denoted v̄, and the quantum (or intrinsic) dimension 

of v is denoted qdim v. See e.g. [26] for more details.
The structure of c0(Γ) can be described using the theory of corepresentations. 

More precisely, there is a canonical dense subspace of H that can be identified with ⊕
α∈Irr Γ B(Hα) in such a way that c0(Γ) ⊂ B(H) identifies with c0− ⊕

α∈Irr Γ B(Hα)
acting on the dense subspace by left multiplication. Moreover this gives a decom-
position of the multiplicative unitary V (which is also a unitary corepresentation): 
V =

∑
α∈Irr Γ α ∈ M(c0(Γ) ⊗C∗

r (Γ)). We denote pα ∈ c0(Γ) ⊂ B(H) the minimal central 
projection corresponding to the block B(Hα), so that H =

⊕
pαH and pαH � B(Hα). 

For the trivial corepresentation τ = idC ⊗ 1 we have pτ = p0.

2.3. Free entropy dimension

There are two main approaches to free entropy dimension, based respectively on mi-
crostates and conjugate variables. The tools that we are going to use in this article are 

more closely related to the second one, although the invariance of strong 1-boundedness 
under von Neumann algebra isomorphisms is proved by Jung in the first framework.

For a tuple of indeterminates x = (x1, . . . , xm), we denote C〈x〉 the corresponding 

algebra of noncommutative polynomials. The free difference quotient ∂i is the unique 
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derivation ∂i : C〈x〉 → C〈x〉 ⊗ C〈x〉 such that ∂ixj = δij(1 ⊗ 1), where C〈x〉 ⊗ C〈x〉 is 
equipped with the bimodule structure P · (R ⊗ S) · Q = PR ⊗ SQ. We denote ∂P =∑

∂iP ⊗ e∗
i ∈ C〈x〉 ⊗ C〈x〉 ⊗ (Cm)∗ and, if P = (P1, . . . , Pl) ∈ C〈x〉l, ∂P =

∑
∂iPj ⊗

ej ⊗ e∗
i ∈ C〈x〉 ⊗ C〈x〉 ⊗ B(Cm, Cl).

Fix a tuple X = (X1, . . . , Xm) of self-adjoint elements in a von Neumann algebra M

with faithful finite normal trace τ , and denote W ∗(X) ⊂ M the von Neumann subalgebra 

generated by X. We say that ξi ∈ L2(M, τ) is the (necessarily unique) conjugate variable 

of Xi if ξi ∈ L2(W ∗(X), τ) and 〈ξi, P (X)〉 = (τ ⊗ τ)((∂iP )(X)) for all P ∈ C〈x〉. The 

free Fisher information of X is Φ∗(X) =
∑

i ‖ξi‖2
2 if all conjugate variables exist, and 

+∞ otherwise.
Replacing M by a free product if necessary, one can assume that M contains a free 

family S = (S1, . . . , Sm) of elements with (0, 1)-semicircular law with respect to τ , which 

is also freely independent from X. The non-microstates free entropy [39] is defined by

χ∗(X) = 1
2

+∞∫

0

(
m

1+t − Φ∗(X +
√

tS)
)

dt + m
2 log(2πe) ∈ [−∞, +∞[ ,

and the non-microstates free entropy dimension is

δ∗(X) = m − lim inf
ε→0

χ∗(X +
√

εS)
log

√
ε

.

The (modified) microstates free entropy dimension δ0(X) is defined by the very same for-
mula, using the relative microstates free entropy χ(X +

√
εS : S) instead of χ∗(X +

√
εS)

[38].
One can observe that we have δ0(X) ≤ α iff χ(X +

√
εS : S) ≤ (α − m)| log

√
ε | +

o(log
√

ε ) as ε → 0. Following Jung [21], one says that X is α-bounded (for δ0) if it 
satisfies the slightly stronger condition χ(X +

√
εS : S) ≤ (α − m)| log

√
ε | + K for small 

ε > 0 and some K independent of ε. Similarly, one can say that X is α-bounded for δ∗

if χ∗(X +
√

εS) ≤ (α − m)| log
√

ε | + K.
Recall that it is a major open question in free probability theory to decide whether 

δ0(X) is an invariant of W ∗(X). Indeed, L(Fm) admits a tuple of generators X such 

that δ0(X) = m [40], and therefore the W∗-isomorphism invariance of δ0 would provide 

a solution to the celebrated free group factor isomorphism problem. Jung proved the 

following very strong result: if X is 1-bounded and χ(Xi) > −∞ for at least one i, then 

any other tuple X ′ of self-adjoint generators of W ∗(X) is 1-bounded [21]. In particular, 
in that case one cannot have W ∗(X) � L(Fm) for m ≥ 2. Let us also record the following 

deep result comparing the two versions of free entropy: we always have χ(X) ≤ χ∗(X)
[8]. In particular χ(X +

√
εS : S) ≤ χ∗(X +

√
εS) so that 1-boundedness for δ∗ implies 

1-boundedness for δ0.
Our main tool in this article is the following result, originally proved by Jung in 

the microstates framework [22], and reproved by Shlyakhtenko using non-microstates 
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free entropy [30]. As above, for any P ∈ C〈x〉l and X ∈ Mm
sa one can consider ∂P ∈

C〈x〉 ⊗C〈x〉 ⊗B(Cm, Cl) and ∂P (X) ∈ M ⊗M◦ ⊗B(Cm, Cl) is a bounded operator from 

L2(M, τ) ⊗L2(M◦, τ) ⊗Cm to L2(M, τ) ⊗L2(M◦, τ) ⊗Cl. The operator ∂P (X) moreover 
respects the right M ⊗ M◦-module structures given by (ζ ⊗ ξ ⊗ η) · (x ⊗ y) = ζx ⊗ yξ ⊗ η. 
We denote by rank(∂P (X)) the Murray–von Neumann dimension over M ⊗ M◦ of the 

closure of Im(∂P (X)) in L2(M, τ) ⊗ L2(M◦, τ) ⊗ Cl.

Theorem 2.2. ([21, Thm. 6.9] and [30, Thm. 2.5]) Suppose that X ∈ Mm
sa satisfies the 

identity F (X) = 0 for F ∈ C〈x〉l. Assume moreover that ∂F (X) is of determinant class. 

Then X is α-bounded for δ0 and δ∗, with α = m − rank(∂F (X)).

3. Regularity of the reversing operator

In Section 4 we will prove that L(FON ) is strongly 1-bounded by applying Theorem 2.2
to the tuple X of canonical generators and a specific vector of relations F . It will turn 

out that the real part of the operator ∂F (X) is closely related to the real part of the 

reversing operator Θ of the quantum Cayley graph of FON with its canonical generators. 
In this section we prove the crucial technical result that 1 + Re Θ is of determinant 
class — which is a regularity property for the spectral measure of Re Θ at the edge 

of the spectrum. This result can be seen as further evidence that the quantum groups 
FON should be somehow regarded as quantum analogues of sofic or determinant class 
groups.

Note that all results in this section hold also in the non-Kac case, that is, for all 
discrete quantum groups FO(Q) with Q ∈ GLN (C), N ≥ 2, QQ̄ ∈ CIN , except 
the ones isomorphic to the duals of SU±1(2) — which corresponds to the assumption 

qdim u > 2.
Our study relies heavily on results about quantum Cayley graphs proved in [35,36], 

which we recall in the Appendix. Note that the eigenspace K+
g = Ker(Θ + id) — and, 

by symmetry K−
g = Ker(Θ − id) —, were the main subject of study in [35,36]. These 

stable subspaces behave trivially with respect to the determinant class issue. Note also 

that in the classical case, they span the whole of the ambient edge Hilbert space K, but 
not in the case of FON . Hence our main concern in the present article is the behavior of 
Θ on K+⊥

g ∩ K−⊥
g .

Recall the Definition A.9 of the reflection operator W , which is isometric and invo-
lutive. The study of K+

g in [35] shows that W restricts to the identity on K+
g and K−

g . 
More precisely, the proof of [35, Theorem 5.3] shows that any vector ξ ∈ K+

g can be 

written ξ = ζ − (1 + W )η + p−−Θ(η − ζ) with ζ ∈ K++ and η ∈ K+−, and W restricts 
to the identity on K++ and K−− by definition.

Definition 3.1. We denote Ks = Ker(W −1), Ka = Ker(W +1) and L = Ks∩K+⊥
g ∩K−⊥

g . 
We have then an orthogonal decomposition K = K+

g ⊕ K−
g ⊕ Ka ⊕ L.
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The structure of Ka and the behavior of Θ +Θ∗ on Ka are quite simple and we describe 

them in the next Proposition. We use the notation for the left/right ascending/descending 

subspaces, e.g. K+− = p+−K, which is recalled in the Appendix.

Proposition 3.2. We have Ka ⊂ K+− ⊕ K−+ and the orthogonal projection onto K+−

restricts to an isomorphism Ka � K+− (up to a constant 
√

2). Moreover Ka is 

(Θ + Θ∗)-stable and in the isomorphism with K+− the operator Θ + Θ∗ corresponds 

to −(r + r∗), where r = −p+−Θp+−.

Proof. Since by definition W restricts to the identity on K++ and K−− and switches 
K+− and K−+ in an involutive and isometric way, the first two assertions are clear. The 

identity W ΘW = Θ∗ implies [W, Θ + Θ∗] = 0 hence Ka and Ks are (Θ + Θ∗)-stable. 
Due to this stability and the inclusion Ka ⊂ K+− ⊕ K−+ we have Θ + Θ∗ = (p+− + p−+)
(Θ + Θ∗)(p+− + p−+) on Ka. Since p+−Θp−+ = p−+Θp+− = 0 by A.6 this yields

Θ + Θ∗ = p+−(Θ + Θ∗)p+− + p−+(Θ + Θ∗)p−+ on Ka,

and the last assertion follows. �

Note that the operator r on K+− was studied in [35], and it is an infinite direct sum of 
right shifts with explicit weights converging to 1. Note however that we will be interested 

in vector states corresponding to vectors in K++ whereas Ka⊥K++, so that the behavior 
of Θ + Θ∗ on Ka is not relevant for our precise analytical issue.

Now we turn to the study of Θ + Θ∗ on L. It turns out that it also behaves like the 

real part of a shift, but the study is slightly more involved. Recall the shorthand notation 

r = −p+−Θp+−, s = p+−Θp++ and s′ = p+−Θ∗p−−.

Proposition 3.3. Consider the map Λ = (1 + W )(r − r∗) + 2(s∗ − s′ ∗) : K+− → K. Then 

Λ is injective, Im Λ = L and Λ∗Λ = 8 − 2(r + r∗)2.

Proof. We note that s∗ = p++Θ∗p+− is injective on K+−: indeed the weights sk,l ap-
pearing in A.11 vanish only for l = 0, and q0K+− = {0}. In particular p++Λ = 2s∗ is 
injective, hence Λ is injective.

It is clear from the definitions that L and Im Λ are subspaces of Ks. Hence we have 

Im Λ = L iff Ker Λ∗ ∩ Ks = L⊥ ∩ Ks = K+
g ⊕ K−

g . But we have K+
g ⊕ K−

g ⊂ Ks and 

K+
g ⊕ K−

g = Ker(Θ − id) ⊕ Ker(Θ + id) = Ker(Θ2 − id) = Ker(Θ − Θ∗). Hence it suffices 
to prove that Λ∗(ζ) = 0 ⇔ Θζ = Θ∗ζ for ζ ∈ Ks. The second identity is equivalent to 

the four equations obtained by applying p++, p+−, p−+ and p−−.
Since ζ = Wζ, the equations p++Θζ = p++Θ∗ζ and p−−Θζ = p−−Θ∗ζ are trivial — 

indeed we have e.g. for the first one:

p++Θζ = p++p�+Θζ = p++Θp−+ζ + p++Θp−−ζ by Proposition A.6

= p++Θp−+Wζ + p++Θp−−ζ
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= p++Θ∗p+−ζ + p++Θ∗p−−ζ by Propositions A.9 and A.7

= p++Θ∗p�−ζ = p++Θ∗ζ by Proposition A.6.

Moreover the equations p+−Θζ = p+−Θ∗ζ and p−+Θζ = p−+Θ∗ζ are equivalent 
because p+−ΘWζ = Wp−+Θ∗ζ and p+−Θ∗Wζ = Wp−+Θζ. Finally the equation 

p+−Θζ = p+−Θ∗ζ reads p+−Θp+−ζ + p+−Θp++ζ = p+−Θ∗p+−ζ + p+−Θ∗p−−ζ, i.e. 
−rζ + sζ = −r∗ζ + s′ζ, which is equivalent to Λ∗ζ = 0 since ζ = Wζ.

Finally we can compute, using Equations (A.3) and (A.4) which read respectively 

ss∗ + rr∗ = p+− and s′s′ ∗ + r∗r = p+−:

Λ∗Λ = Λ∗p++Λ + Λ∗p+−Λ + Λ∗p−+Λ + Λ∗p−−Λ

= 4ss∗ + (r∗ − r)(r − r∗) + (r∗ − r)(r − r∗) + 4s′s′∗

= 2(r∗ − r)(r − r∗) + 4(id − rr∗) + 4(id − r∗r) = 8 − 2(r + r∗)2. �

Recall that r is a direct sum of right shifts with weights ck,l ∈ [0, 1] converging to 1
as k → ∞. In particular one sees that ‖r + r∗‖ = 2 so that 0 ∈ Sp(Λ∗Λ) and the image 

of Λ is not closed. Denoting K the “canonical dense subspace of K”, i.e. the algebraic 

direct sum of the subspaces pnK, we clearly have Λ(K+− ∩ K) ⊂ K hence L ∩ K is a 

dense subspace of L.

Proposition 3.4. There exists an isomorphism Υ : K+− → L and vectors ei ∈ q1p1K+−

such that Υ∗(Θ + Θ∗)Υ = −(r + r∗) and (h ⊗ Tr)(ΥT Υ∗) =
∑

(fi|Tfi), where fi =
(8 − 2(r + r∗)2)−1/2ei.

Proof. We first show that (Θ + Θ∗)Λ = −Λ(r + r∗). Since W Λ = Λ we have 

p++(Θ + Θ∗)Λ = 2p++ΘΛ and we compute, using the identity (A.2):

p++ΘΛ = p++Θp−+Λ + p++Θp−−Λ = p++Θp−+W (r − r∗) − 2p++Θp−−s′ ∗

= s∗(r − r∗) − 2s∗r = −s∗(r + r∗) = −1
2p++Λ(r + r∗).

If we knew that p++ is injective on L, this would suffice to obtain the desired relation 

because we already know that (Θ + Θ∗)(L) ⊂ L. This is true but not completely obvi-
ous since Im Λ is only dense in L. So we check the other components. We have, using 

again (A.3) and (A.4):

p+−ΘΛ = p+−Θp+−Λ + p+−Θp++Λ = −r(r − r∗) + 2ss∗ and

p+−Θ∗Λ = p+−Θ∗p+−Λ + p+−Θ∗p−−Λ = −r∗(r − r∗) − 2s′s′ ∗ hence

p+−(Θ + Θ∗)Λ = (−r2 − rr∗ + r∗r + r∗2) = −(r − r∗)(r + r∗) = −p+−Λ(r + r∗).

Applying W to both sides we obtain p−+(Θ + Θ∗)Λ = −p−+Λ(r + r∗). Finally we have 

using (A.1):
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p−−(Θ + Θ∗)Λ = 2p−−ΘΛ = 2p−−Θp+−Λ + 2p−−Θp++Λ = 2s′ ∗(r − r∗) + 4p−−Θp++s∗

= 2s′ ∗(r − r∗) + 4s′ ∗r∗ = 2s′ ∗(r + r∗) = −p−−Λ(r + r∗).

Then we perform the polar decomposition of Λ as Λ = Υ|Λ|, with |Λ| =
√

Λ∗Λ ∈
B(K+−). Since Λ has dense image in L, Υ ∈ B(K+−, L) is a surjective isometry. 
Since (Θ + Θ∗), (r + r∗) are self-adjoint, the identity (Θ + Θ∗)Λ = −Λ(r + r∗) implies 
(Θ + Θ∗)Υ = −Υ(r + r∗).

To compute h ⊗ Tr we fix an ONB (ζi)i of p1H, so that we have (h ⊗ Tr)(X) =∑
i(ξ0 ⊗ ζi | X(ξ0 ⊗ ζi)). Observe that ξ0 ⊗ p1H = p0K = q0p0K ⊕ q1p0K, and we can 

assume that the one-dimensional subspace q0p0K is spanned by ξ0 ⊗ ζ1. Since r, s, s′, 
W commute with the projections ql, it is also the case for Λ. In particular the property 

q0K+− = {0} implies q0L = {0}, hence ξ0 ⊗ ζ1⊥L. On the other hand the vectors ξ0 ⊗ ζi, 
i ≥ 2, form a basis of q1p0K.

We have then (h ⊗ Tr)(ΥT Υ∗) =
∑

i≥2(Υ∗(ξ0 ⊗ ζi) | T Υ∗(ξ0 ⊗ ζi)). We obtain the 

formula of the statement by putting fi = Υ∗(ξ0 ⊗ ζi). Note moreover that |Λ| is injective 

and |Λ| = (8 − 2(r + r∗)2)1/2 by Proposition 3.3. Hence fi has the required form if we 

define ei = |Λ|(fi) = Λ∗(ξ0 ⊗ ζi) = 2s∗(ξ0 ⊗ ζi) ∈ p1K+−. Since ξ0 ⊗ ζi ∈ q1K we have 

ei ∈ q1p1K+− as claimed. �

Theorem 3.5. The element 1 +Re Θ ∈ UL(FOn)U ⊗B(p1H) is of determinant class with 

respect to the functional (h ⊗ Tr).

Proof. Denote p+
g , p−

g , pa, pL the orthogonal projections onto K+
g , K−

g , Ka and L respec-
tively. Since they commute with Θ +Θ∗, we have to prove that (h ⊗Tr)(log+(q(1 +Re Θ)))
is finite for each projection q = p+

g , p−
g , pa, pL separately. This is clear for p+

g , p−
g since 

1 + Re Θ = 0 and 2 on the corresponding subspaces. The term with pa vanishes since 

(h ⊗ Tr) is a sum of vector states associated to vectors in p0K = p0K++ which is orthog-
onal to Ka ⊂ K+− ⊕ K−+.

Hence we are left with the term corresponding to pL = ΥΥ∗, which according to 

Proposition 3.4 is equal to:

(h ⊗ Tr)(ΥΥ∗ log+(1 + Re Θ)ΥΥ∗) = (h ⊗ Tr)(Υ log+(1 − Re r)Υ∗)

=
∑

i(fi | log+(1 − Re r)fi)

= 1
8

∑
i(ei | (1 − (Re r)2)−1 log+(1 − Re r)ei).

We fix i and we put η0 = ei/‖ei‖ ∈ q1p1K+−. According to A.11 the map r maps q1pkK+−

isometrically to q1pk+1K+−, up to the scalar ck+1,1 ∈ ]0, 1], and we have r∗(η0) = 0. If 
we define recursively ηk+1 = rηk/‖rηk‖, this shows that we can identify the restriction 

of r to C∗(r)η0 with a weighted unilateral shift on �2(N) � Span{ηk}. Observe moreover 
that η0 lies in the range of 

√
1 − (Re r)2, since ei = 2

√
2
√

1 − (Re r)2fi. The result now 

follows from the following Lemma. �
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Lemma 3.6. Let R be a weighted unilateral shift on �2(N) with weights ck ∈ ]0, 1] — in 

other words Rδk = ck+1δk+1 where (δk)k is the canonical basis of �2(N). We assume that 

δ0 is in the range of 
√

1 − (Re R)2 and we denote ω the vector state associated to δ0. 

Then ω((1 − (Re R)2)−1 log+(1 − Re R)) is finite.

Remark 3.7. Denote by μ the spectral measure of Re(R) with respect to ω, which is 
supported on [−1, 1]. Then we have ω(f(Re R)) = (δ0|f(Re R)δ0) =

∫ 1

−1
f(t)dμ(t) for any 

f ∈ L∞([−1, 1]), and if f : [−1, 1] → R is any Borel map we say that ω(f(Re R)) is finite if 
f is integrable with respect to μ. In the Lemma above we take f(t) = (1 −t2)−1 log+(1 −t)
and the finiteness of ω(f(Re R)) is equivalent to the convergence, at 1 and −1, of the 

integral

1∫

−1

log+(1 − t)
1 − t2

dμ(t). (2)

Proof. This kind of result is perhaps well-known to experts in operator theory. However 
we provide an elementary proof for the convenience of the reader.

We proceed by comparison with the standard unilateral shift R0 : δk → δk+1. Re-
call that the moments mk(Re(R0)) = ω((Re R0)k) are given in terms of the Catalan 

numbers Ck = 1
k+1

(
2k
k

)
by m2k+1 = 0, m2k = 4−kCk [27, Corollary 2.14]. Recall 

also that the Catalan numbers are counting the number of Dyck paths π ∈ Dk of 
length 2k, as can be seen by expanding (R0 + R∗

0)2kδ0 and looking for the δ0 com-
ponent. See [27, Propositions 2.11 and 2.13]. In the case of a general R, we still have 

m2k+1 = 0 because R is odd with respect to the natural Z2-grading. Moreover, still 
by expanding (R + R∗)2kδ0 one sees that the even moments m2k(Re R) are given by a 

sum over Dyck paths, m2k(Re R) = 4−k
∑

π∈Dk
cπ, where the contributions cπ are prod-

ucts of weights ck. In particular we have cπ ∈ ]0, 1] and 0 ≤ m2k(Re R) ≤ 4−k#Dk =
m2k(Re R0).

As above, denote by μ, μ0 the spectral measures of Re(R) and Re(R0) with re-
spect to ω, which are both supported on [−1, 1]. Note that f : t �→ 1/(1 − t2) is 
μ-integrable because δ0 lies in the range of 

√
1 − (Re R)2: indeed, approximating f by 

fC : t �→ min(f(t), C) and writing δ0 = g(Re R)ζ with ζ ∈ �2(N), g : t �→
√

1 − t2, we 

have |fC(t)g(t)2| ≤ 1 hence 
∫ 1

−1
fC(t)dμ(t) = (ζ|(fCg2)(Re R)ζ) ≤ ‖ζ‖2 for all C and ∫ 1

−1
f(t)dμ(t) ≤ ‖ζ‖2 by monotone convergence.

In particular the integral (2) converges iff the corresponding integral over [0, 1] is 
finite. Adding the finite quantity 

∫ 1

0
log+(1 + t)/(1 − t2)dμ(t) to this new integral, we 

conclude that the convergence of (2) is equivalent to

1∫

0

log+(1 − t2)
1 − t2

dμ(t) =
1
2

1∫

−1

log+(1 − t2)
1 − t2

dμ(t) > −∞,
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where in the right-hand integral we have switched back to integrating over [−1, 1] using 

the fact that μ is symmetric.
We then perform the power series expansion log+(1 −t2)/(1 −t2) =

∑
akt2k on ]−1, 1[: 

the convergence of (2) is equivalent to the finiteness of

1∫

−1

log+(1 − t2)
1 − t2

dμ(t) =

1∫

−1

∑

k∈N

akt2kdμ(t).

Since it is readily seen that all coefficients ak are non-positive and t2k is non-negative, 
one can permute the sum and the integral and compare to R0:

1∫

−1

log+(1 − t2)
1 − t2

dμ(t) =
∑

k∈N

akm2k(Re R) ≥
∑

k∈N

akm2k(Re R0) =

1∫

−1

log+(1 − t2)
1 − t2

dμ0(t).

Now we can conclude because the spectral measure of R0 with respect to ω is 
well-known: it is the semicircular law dμ0(t) = 1

π

√
1 − t2dt [27, Proposition 2.15]. 

Hence we are led to the following Bertrand integral, which is well-known to be fi-
nite:

1∫

−1

log(1 − t2)√
1 − t2

dt > −∞. �

4. Free entropy and relations in FON

In this section we will apply Jung and Shlyakhtenko’s Theorem 2.2 to M = L(FON ) ⊂
B(H). We fix the tuple of standard generators u = (uij)ij , which we now consider as 
elements of the reduced C∗-algebra C∗

r (FON ). We consider the “canonical” vector of 
relations F = (F1, F2) ∈ C〈xij〉 ⊗ (MN (C) ⊕ MN (C)) given by F1 = xtx − 1 and 

F2 = xxt − 1, with x = (xkl)kl ∈ C〈xij〉 ⊗ MN (C). Note that we have m = N2 and 

l = 2N2 with the notation of Section 2.
Recall from Section 2 that rank ∂F (u) is the Murray–von Neumann dimension of 

Im ∂F (u) in the right M ⊗ M◦-module H ⊗ H◦ ⊗ (MN (C) ⊕ MN (C)). The following 

Lemma is a straightforward adaptation of [30, Lemma 3.1] and its proof, and relies 
heavily on the computation of the first L2-Betti number of FON in [36].

Lemma 4.1 ([30, Lemma 3.1]). We have rank ∂F (u) = N2 − 1.

Proof. By definition, C[FON ] is the quotient of C〈xij〉 by the ideal generated by the 

polynomials Fpkl, p = 1, 2, k, l = 1, . . . N . Recall that H ⊗ H◦ is equipped with the 

M, M -bimodule structure corresponding to the left action of M (resp. M◦) on itself. We 
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make it into a C〈xij〉, C〈xij〉-bimodule by evaluating polynomials at xij = uij , so that 
P · (ζ ⊗ ξ) · Q = P (u)ζ ⊗ ξQ(u).

A derivation δ : C〈xij〉 → H ⊗ H◦ factors through C[FON ] iff we have δ(Fpkl) = 0
for all p, k, l — indeed by Leibniz’ rule and the fact that Fpkl(u) = 0 this implies 
δ(PFpklQ) = 0 for all P , Q ∈ C〈xij〉. Now derivations δ : C〈xij〉 → H ⊗ H◦ are in 

1-1 correspondence with the tuples of values ζij = δ(xij) ∈ H ⊗ H◦, the derivation 

corresponding to (ζij)ij being given by δ(P ) = ∂P#ζ =
∑

∂ijP#ζij . Then δ factors 
through C[FON ] iff ∂F#ζ = (∂Fpkl#ζ)pkl = 0. Here we use the notation (R ⊗ S)#ξ =
R · ξ · S.

This shows that the space of derivations Der(C[FON ], H ⊗H◦) is isomorphic as a right 
M ⊗ M◦-module to Ker ∂F (u) ⊂ (H ⊗ H◦)m, where m = N2. Taking von Neumann 

dimensions, we obtain

rank ∂F (u) = N2 − dimM⊗M◦Der(C[FON ], H ⊗ H◦).

On the other hand there are general exact sequences for Hochschild cohomology:

0 → H0(C[FON ], H ⊗ H◦) → H ⊗ H◦ → Inn(C[FON ], H ⊗ H◦) → 0,

0 → Inn(C[FON ], H ⊗ H◦) → Der(C[FON ], H ⊗ H◦) → H1(C[FON ], H ⊗ H◦) → 0.

If one uses the definition β
(2)
k (FON ) = dimM⊗M◦ Hk(C[FON ], H ⊗ H◦) for the L2-Betti 

numbers (see [23,31]), the additivity of Lück–von Neumann dimension readily yields

dimM⊗M◦Der(C[FON ], H ⊗ H◦) = β
(2)
1 (FON ) − β

(2)
0 (FON ) + 1.

By [36, Corollary 5.3] this is equal to 1, which concludes the proof. �

Recall that ∂F (u) = ∂(F1, F2)(u) is an operator in B(H) ⊗ B(H) ⊗ B(MN (C), 
MN (C) ⊕ MN (C)). In the next Lemma we identify MN(C) with p1H and we make the 

connection with the reversing operator studied in Section 3.

Lemma 4.2. We have ∂(F1, F2)(u)∗∂(F1, F2)(u) = 2∂F1(u)∗∂F1(u) ∈ B(H⊗H⊗MN (C))
and ∂F1(u)∗∂F1(u) is unitarily conjugated to 2 + 2 Re(Θ ⊗ 1) ∈ B(H ⊗ p1H ⊗ H). 
Moreover the state (h ⊗ h ⊗ Tr) is transformed into (h ⊗ Tr ⊗h)(V ∗

23 · V23) under the 

same conjugation.

Proof. We first compute the free derivatives. We have F1kl =
∑

p xpkxpl − δkl hence 

∂ijF1kl = δkj(1 ⊗ xil) + δlj(xik ⊗ 1). Using the matrix units Eij as a basis of MN (C), 
this yields

∂F1(Eij) =
∑

klδjk(1 ⊗ xil ⊗ Ekl) +
∑

klδjl(xik ⊗ 1 ⊗ Ekl)

=
∑

l(1 ⊗ xil ⊗ Ejl) +
∑

k(xik ⊗ 1 ⊗ Ekj)
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so that ∂F1 =
∑

il(1 ⊗xil ⊗Tλ(Eli)) +
∑

ik(xik ⊗1 ⊗λ(Eki)) where λ(M) ∈ B(MN (C)) is 
the map of left multiplication by M , and T ∈ B(MN (C)) is the transpose map. Similarly 

for F2 = (
∑

xkpxlp − δkl)kl we have

∂F2(Eij) =
∑

klδik(1 ⊗ xlj ⊗ Ekl) +
∑

klδil(xkj ⊗ 1 ⊗ Ekl)

=
∑

l(1 ⊗ xlj ⊗ Eil) +
∑

k(xkj ⊗ 1 ⊗ Eki)

and ∂F2 =
∑

l(1 ⊗ xlj ⊗ Tλ(Elj)T ) +
∑

k(xkj ⊗ 1 ⊗ λ(Ekj)T ).
Then we evaluate at xij = uij . Recall that C∗

r (FON ) ⊗ C∗
r (FON )◦ acts on H ⊗ H by 

id ⊗ ρ, where ρ(x) is the map of right multiplication by x, which can also be written 

ρ(x) = US(x)U in the Kac case. Here S is the antipode and we have in particular 
S(uij) = uji. We obtain in B(H ⊗ H ⊗ MN (C)):

∂F1(u) =
∑

(1 ⊗ UuliU ⊗ Tλ(Eli)) +
∑

(uik ⊗ 1 ⊗ λ(E∗
ik))

= (1 ⊗ U ⊗ T )(id ⊗ λ)(u32)(1 ⊗ U ⊗ 1) + (id ⊗ λ)(u∗
31),

where u ∈ MN (C∗
r (FON )) � MN (C) ⊗ C∗

r (FON ).
Now we identify MN (C) = B(CN ) with p1H using the decomposition of the multi-

plicative unitary recalled in Section 2 — in particular we have then (id⊗λ)(u21) = u21 ∈
C∗

r (Γ) ⊗ p1c0(Γ) ⊂ B(H ⊗ p1H). Moreover in this identification T corresponds with the 

restriction of U to p1H. Hence we have finally ∂F1(u) = (1 ⊗U ⊗U)u32(1 ⊗U ⊗1) +u∗
31, 

which is also the restriction of (1 ⊗ U ⊗ U)V32(1 ⊗ U ⊗ 1) + V ∗
31 to H ⊗ H ⊗ p1H. This 

is a sum of two unitaries and we obtain in particular ∂F1(u)∗∂F1(u) = 2 + 2 Re W on 

H ⊗ H ⊗ p1H, where W = V31(1 ⊗ U ⊗ U)V32(1 ⊗ U ⊗ 1).
Proceeding similarly with F2 we obtain

∂F2(u) =
∑

(1 ⊗ UujlU ⊗ Tλ(Elj)T ) +
∑

(ukj ⊗ 1 ⊗ λ(Ekj)T )

= (1 ⊗ U ⊗ T )(id ⊗ λ)(u∗
32)(1 ⊗ U ⊗ T ) + (id ⊗ λ)(u31)(1 ⊗ 1 ⊗ T )

= (1 ⊗ U ⊗ U)V ∗
32(1 ⊗ U ⊗ U) + V31(1 ⊗ 1 ⊗ U) on H ⊗ H ⊗ p1H,

and ∂F2(u)∗∂F2(u) = 2 +2 Re(1 ⊗U⊗U)V32(1 ⊗U⊗U)V31(1 ⊗1 ⊗U). We moreover observe 

that (1 ⊗U ⊗U)V32(1 ⊗U ⊗U) ∈ 1 ⊗B(H) ⊗Uc0(FON )U and V31 ∈ B(H) ⊗1 ⊗c0(FON ). 
Since [c0(Γ), Uc0(Γ)U ] = 0, we can permute both terms and we obtain ∂F2(u)∗∂F2(u) =
2 + 2 Re W = ∂F1(u)∗∂F1(u).

Now we perform unitary conjugations to “simplify” W . We first use U2Σ23 which 

yields the symmetric form W ∼u V21U2V23 ∈ B(H ⊗ p1H ⊗ H). Conjugating further by 

U1 we obtain W ∼u Ṽ12U2V23, where Ṽ = Σ(1 ⊗ U)V (1 ⊗ U)Σ. Finally we conjugate by 

V13V23 and we use the formula V13V23Ṽ12 = Ṽ12V13 from [2, Proposition 6.1]:

W ∼u V13V23Ṽ12U2V ∗
13 = Ṽ12V13U2V ∗

13 = Ṽ12U2 = Θ ⊗ 1.
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Notice at last that h ⊗h ⊗Tr is a sum of vector states associated to vectors of the form 

ξ0 ⊗ ξ0 ⊗ ζ. We have Uξ0 = ξ0 and V (ξ0 ⊗ 1) = ξ0 ⊗ 1. Applying the various unitaries 
used to transform W we obtain

V13V23U1Σ23U2(ξ0 ⊗ ξ0 ⊗ ζ) = V13V23(ξ0 ⊗ ζ ⊗ ξ0) = V23(ξ0 ⊗ ζ ⊗ ξ0)

and the last claim follows. �

Thanks to Theorem 3.5 we can finally prove our main theorem:

Theorem 4.3. The von Neumann algebra L(FON ) is strongly 1-bounded for all N ≥ 3.

Proof. The 1-boundedness of the tuple of generators u = (uij) of L(FON ) is a straight-
forward consequence of Jung’s and Shlyakhtenko’s Theorem 2.2, applied to u and to the 

relations F = (Fpkl) introduced at the beginning of this section. Note that on the matrix 

algebra B(p1H) ⊗ 1, any positive functional, and in particular (Tr ⊗h)(V ∗ · V ), is domi-
nated by a multiple of the standard trace Tr ⊗h. Then ∂F (u) is of determinant class with 

respect to (h ⊗ h ⊗ Tr) by Lemma 4.2 and Theorem 3.5. Moreover N2 − rank ∂F (u) = 1
by Lemma 4.1.

Strong 1-boundedness of L(FON) will now follow if at least one of the generators uij

has finite free entropy. Recall that for a single self-adjoint variable X = X1 in a finite 

von Neumann algebra (M, τ) with law μ, we have the formula [37, Proposition 4.5]

χ(X) =
∫∫

log |s − t|dμ(s)dμ(t) + C.

In particular if μ has an essentially bounded density with respect to the Lebesgue measure 

(and is compactly supported), then χ(X) is evidently finite. This is indeed the case 

for all generators uij of L(FON ) — according to [6, Theorem 5.3] the density is even 

continuous. �

Corollary 4.4. For N ≥ 3 the von Neumann algebra L(FON) is not isomorphic to any 

finite von Neumann algebra (with separable predual) which admits a tuple of self-adjoint 

generators X with δ0(X) > 1. In particular it is not isomorphic to any free group factor 

L(Fn).

More generally, L(FON ) is not isomorphic to any interpolated free group factor L(Fr), 
nor to any group von Neumann algebra L(Γ) where Γ = ∗k

i=1Z/niZ is a free product 
of cyclic groups, for instance Γ = (Z/2Z)∗N . Indeed these von Neumann algebras admit 
tuples of self-adjoint generators with δ0 = r, δ0 = k −

∑k
i=1 n−1

i respectively and these 

values are strictly bigger than 1 in the non amenable cases. According to [21, Lemma 3.7], 
L(FON ) is not isomorphic either to any free product of Rω-embeddable diffuse finite von 

Neumann algebras.
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Appendix A. Computation rules in quantum Cayley trees

In this appendix we recall definitions and results from [35,36] about quantum Cayley 

graphs for discrete quantum groups. We use the notation about discrete quantum groups 
recalled in Section 2.

Definition A.1 ([35, Definition 3.1]). Let Γ be a discrete quantum group, and fix a central 
projection p1 ∈ Z(M(c0(Γ))) such that Up1 = p1U and p0p1 = 0. The quantum Cayley 

graph X [35] associated to (Γ, p1) is given by

– the vertex and edge Hilbert spaces �2(X(0)) = �2(Γ) and �2(X(1)) = �2(Γ) ⊗ p1�2(Γ),
– the vertex and edge C∗-algebras c0(X(0)) = c0(Γ) and c0(X(1)) = c0(Γ) ⊗ p1c0(Γ), 

naturally represented on the corresponding Hilbert spaces,
– the antilinear involutions J (0) = J and J (1) = J ⊗ J on �2(X(0)) and �2(X(1)),
– the boundary operator E = V ∈ B(�2(X(1)), �2(X(0)) ⊗ �2(X(0))).
– the reversing operator Θ = Σ(1 ⊗ U)V (U ⊗ U)Σ ∈ B(�2(X(1))),

We denote �2(X(0)) = �2(Γ) = H and �2(X(1)) = H ⊗ p1H = K. We also consider the 

source and target operators E1 = (id ⊗ ε)E, E2 : (ε ⊗ id)E : K → H, which are a priori

only densely defined.

Recall that H is the GNS space for the Haar state h ∈ C∗(Γ)∗, with canonical cyclic 

vector ξ0. Denote C[Γ] the canonical dense Hopf ∗-subalgebra of C∗(Γ). The following 

Proposition computes the structure maps of the quantum Cayley graph in terms of the 

Hopf algebra structure of C[Γ].

Proposition A.2 ([35, Lemma 3.5, Proposition 3.6]). For any x, y ∈ C[Γ] we have

– Θ(xξ0 ⊗ yξ0) = (id ⊗ S)((x ⊗ 1)Δ(y))(ξ0 ⊗ ξ0),
– E1(xξ0 ⊗ yξ0) = ε(y)xξ0 and E2(xξ0 ⊗ yξ0) = xyξ0.

Moreover E1Θ = E2 and E2Θ = E1. If p1 ∈ c0(Γ), then E1 and E2 are bounded.

A key feature of the quantum case is that the reversing operator need not be invo-
lutive — in fact if p1 is “generating” Θ is involutive iff Γ is a genuine discrete group 

[35, Proposition 3.4]. Hence the study of the following eigenspaces becomes non trivial, 
important, and turns out to be useful for applications:

Definition A.3 ([35, Definition 3.1]). The space of antisymmetric (or geometric) edges is 
K+

g = Ker(Θ + id). The space of symmetric edges is K−
g = Ker(Θ − id).

Recall the isomorphism c0(Γ) = c0−
⊕

α∈Irr(Γ) pαc0(Γ) with pαc0(Γ) � B(Hα). The 

classical Cayley graph introduced in the next Definition is an essential tool for the study 

of the quantum Cayley graph.
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Definition A.4 ([35, Definition 3.1, Lemma 4.4]). Denote D ⊂ Irr(Γ) the subset such 

that p1 =
∑

α∈D pα. The classical Cayley graph G associated to (Γ, p1) is given by

– the vertex set G(0) = Irr(Γ),
– the edge set G(1) = {(α, β, γ, i) ; α, β ∈ Irr(Γ), γ ∈ D, 1 ≤ i ≤ dim Hom(β, α ⊗ γ)},
– the boundary map e : G(1) → G(0) × G(0), (α, β, γ, i) �→ (α, β),
– the reversing map θ : G(1) → G(1), (α, β, γ, i) �→ (β, α, ̄γ, i).

The component γ of an edge is called its direction. If e is injective, and in particular 
if the classical Cayley graph G is a tree, G(1) can and will be identified with {(α, β) ∈
Irr(Γ)2 | ∃γ ∈ D β ⊂ α ⊗ γ}. The origin of the classical Cayley graph G is the trivial 
corepresentation τ and if G is connected we denote |α| = d(τ, α) the distance of a vertex 

α to the origin.

To any subset A ⊂ G(0) one can associate the projection p =
∑

α∈A pα ∈ M(c0(X(0))). 
One can proceed similarly with G(1) and c0(X(1)), but one can also associate to 

B ⊂ G(0) × G(0) the projection p =
∑

(α,β)∈B E∗(pα ⊗ pβ)E ∈ M(c0(X(1))), whose 

image corresponds to the space of edges going from α to β. This motivates the following 

definition.

Definition A.5. Assume that the classical Cayley graph G associated to (Γ, p1) is a tree. 
For any n ∈ N one puts pn =

∑
|α|=n pα ∈ B(H) and pn =

∑
|α|=n pα ⊗ p1 ∈ B(K). The 

left and right projections onto ascending edges are p�+ =
∑

n E∗(pn ⊗ pn+1)E ∈ B(K)
and p+� = J (1)p�+J (1) ∈ B(K). The projections onto descending edges are p�− =∑

n E∗(pn ⊗ pn−1)E and p−� = J (1)p�−J (1). Finally one puts p++ = p+�p�+, p+− =
p+�p�−, p−+ = p−�p�+, p−− = p−�p�− and K++ = p++K, K+− = p+−K, K−+ = p−+K, 
K−− = p−−K.

In the classical case one has p+� = p�+ so that p+− = p−+ = 0. However in the quan-
tum case p+− and p−+ are in general non-zero, and this is related to the non involutivity 

of the reversing operator. The following proposition shows indeed that p+−Θp+− acts as 
a right shift in the decomposition K+− =

⊕
pnK+−.

Proposition A.6 ([35, Proposition 4.3]). Assume that the classical Cayley graph associ-

ated to (Γ, p1) is a tree. Then we have

– p�+ + p�− = id and p+� + p−� = id, [p�±, p±�] = 0, [p±�, pn] = [p�±, pn] = 0,

– Θp+�pn = pn+1p�−Θ and Θp−�pn = pn−1p�+Θ, 

p�− = Θp+�Θ∗ and p−� = Θ∗p�+Θ,

– E2p+− = E2p−+ = 0 and pnE2 = E2pn−1p++ + E2pn+1p−−.

We denote r = −p+−Θp+− and s = p+−Θp++.
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In the rest of the Appendix we consider the case of a free product of orthogonal and 

unitary free quantum groups: Γ = F = FO(Q1) ∗ · · · ∗ FO(Qk) ∗ FU(R1) ∗ · · · ∗ FU(Rl), 
endowed with the projection p1 =

∑
α∈D pα associated to the set D of fundamental rep-

resentations of the factors FO(Qi), FU(Rj), together with their duals. This is a little 

bit stronger than requiring the classical Cayley graph G to be a tree, see [35, Propo-
sition 4.5]. In that case we have the following useful facts. Note that the identities 
(p++ + p−−)Θn(p++ + p−−) = (p++ + p−−)Θ−n(p++ + p−−) can be interpreted as a weak 

involutivity property.

Proposition A.7 ([35, Proposition 4.7, Proposition 5.1]). Consider the quantum Cay-

ley graph of (F, p1). Then the restriction E2 : K++ → H is injective and we have 

(p++ + p−−)Θn(p++ + p−−) = (p++ + p−−)Θ−n(p++ + p−−) for all n.

Here is an example of computation using the rules above:

Lemma A.8. In the quantum Cayley graph of (F, p1) we have

p−−Θp++Θ∗p+− = −p−−Θp+−Θ∗p+− (A.1)

p++Θp−−Θp+− = −p++Θ∗p+−Θp+− (A.2)

p+−Θp++Θ∗p+− = p+− − p+−Θp+−Θ∗p+− (A.3)

p+−Θ∗p−−Θp+− = p+− − p+−Θ∗p+−Θp+−. (A.4)

Proof. For the first identity it suffices to use A.6 and write p−−Θp++Θ∗p+− +
p−−Θp+−Θ∗p+− = p−−Θp�+Θ∗p+− + p−−Θp�−Θ∗p+− = p−−ΘΘ∗p+− = 0. The second 

identity is proved similarly after replacing p++Θp−− with p++Θ∗p−− on the left-hand side 

thanks to A.7. The third identity appears already in the proof of [35, Proposition 6.2]. 
For the last one we note that, according to A.6, p+−Θ∗p−−Θp+− = p+−Θ∗p−�Θp+− and 

p+−Θ∗p+−Θp+− = p+−Θ∗p+�Θp+−. Adding both operators we obtain p+−Θ∗Θp+− =
p+−. �

The subspaces K+− and K−+ are strongly connected to each other through the reflec-

tion operator W introduced as follows.

Proposition A.9 ([35, Lemma 5.2]). Consider the quantum Cayley graph of (F, p1). 
There exists a unique unitary operator w : K+− → K−+ such that w(p+−Θ)np++ =
(p−+Θ−1)np++ for all n ≥ 1. We denote W = wp+− + w∗p−+ + p++ + p−− ∈ B(K): this 

is an involutive unitary operator such that W ΘW = Θ∗, Wp++ = p++, Wp−− = p−−

and Wp+− = p−+W .

The families of projections {pn}, {p++, p+−, p−+, p−−} form two commuting partitions 
of the unit in B(K). To perform the most precise analysis of Θ one needs to further 
decompose the space K. Observe that there are 4 commuting representations of c0(Γ)
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on K, given by π4 : c0(Γ)⊗4 → B(K) = B(H ⊗ p1H), x ⊗ y ⊗ y′ ⊗ x′ �→ (x ⊗ y)(Ux′U ⊗
Uy′U). In the case of FON , the subspaces pnK � B(Hn ⊗ H1) are irreducible with 

respect to π4, and the subspaces p±±pnK � B(Hn±1, Hn±1) are irreducible with respect 
to the representation π4 ◦ (Δ ⊗ Δ) of c0(Γ) ⊗ c0(Γ). The reversing operator Θ does not 
commute to these representations, but it does commute to π4 ◦ Δ3 [35, Proposition 3.7]
and we consider:

Definition A.10. Denote ql = π4Δ3(p2l) ∈ B(K). We have 
∑

ql = id and [ql, pk] =
[ql, p±±] = 0. We have p++qlpk �= 0 iff 0 ≤ l ≤ k + 1, p±∓qlpk �= 0 iff 1 ≤ l ≤ k and 

p−−qlpk �= 0 iff 0 ≤ l ≤ k − 1.

The subspace q0K is the “classical subspace” of the space of edges, see [35, Re-
marks 6.4] and [36, Reminder 4.3]. In particular Θ2 = id on q0K.

Proposition A.11 ([35, Lemma 6.3]). Consider the quantum Cayley graph of (FON , p1). 
For all choices of signs the operator p±±Θp±± is a multiple of an isometry on each 

subspace qlp±±pnK and we have, for μ, ν, μ′, ν′ ∈ {+, −} and pµ′ν′pkql �= 0:

‖pµνΘpµ′ν′pkql‖ =

{
ck+1,l if μν = μ′ν′ and μ′ = +
sk+1,l if μν �= μ′ν′ and μ′ = +

‖pµνΘpµ′ν′pkql‖ =

{
ck,l if μν = μ′ν′ and μ′ = −
sk,l if μν �= μ′ν′ and μ′ = −

where s2
k,l =

qdim(αl) qdim(αl−1)
qdim(αk) qdim(αk−1)

and c2
k,l + s2

k,l = 1, with the convention that 

qdim(α−1) = 0.

Note that this statement corrects [35, Lemma 6.3] in the case when μ′ = −, which is 
not used in that article.
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