

1 **Effects of the spatial configuration of trees on urban heat mitigation: A comparative**
2 **study**

3 WeiQi Zhou ^{a,b*}, Jia Wang ^{a,b}, Mary L. Cadenasso ^c

4 ^a State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-

5 Environmental Sciences, Chinese Academy of Sciences, No. 18 Shuangqing Road, Beijing
6 100085, China

7 ^b University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China

8 ^c Department of Plant Sciences, University of California, Davis, One Shields Ave, Davis CA
9 95616, USA

10

11 **ABSTRACT:**

12 Urban greenspace has significant cooling effects on urban heat. Recent studies investigating
13 the effects of spatial configuration of greenspace show significant, but inconsistent results,
14 including both positive and negative effects. To investigate the causes of this inconsistency,
15 we compared Baltimore, MD and Sacramento, CA, USA, two cities with very different
16 climatic conditions. We quantified and compared the relationships between the spatial
17 configuration of trees and land surface temperature (LST) using different statistical
18 approaches, and conducted the analyses using spatial units of different sizes, based on

* Corresponding author.
E-mail address: wzhou@rcees.ac.cn (W. Zhou).

19 trees mapped from 1 m high resolution imagery. We found: (1) Trees' cooling efficiency was
20 higher in Baltimore than in hotter and drier Sacramento. Additionally, percent cover of trees
21 was more important than their spatial configuration in predicting LST in Baltimore, but the
22 opposite was found in Sacramento. (2) Spatial configuration of trees affects LST more in
23 Sacramento than in Baltimore, and the effects of spatial configuration of trees on LST varied
24 greatly in terms of magnitude, significance, and even direction, between the two cities.
25 Notably, mean patch size had significantly positive effects on LST in Baltimore, but negative
26 effects in Sacramento. In contrast, edge density had negative effects on LST in Baltimore,
27 but positive effects in Sacramento. (3) Different statistical approaches resulted in dramatic
28 changes in the relationships between LST and configuration metrics. Our results underscore
29 the necessity of controlling the effects of percent cover of trees, when quantifying the effects
30 of spatial configuration of trees on LST. (4) Spatial autocorrelation may influence
31 relationships between landscape metrics and LST, particularly when the unit of analysis is
32 relatively small. (5) The relationships between spatial configuration metrics and LST are
33 stronger with an increase of the size of the analytical unit. This study can enhance our
34 understanding of the effects of spatial configuration of greenspace on urban heat island
35 (UHI). It also provides important insights to urban planners and natural resource managers
36 on how to mitigate the impact of urbanization on UHI through urban design and vegetation
37 management.

38 **Keywords:** Urban tree canopy; Spatial configuration; Urban heat mitigation; Urban Ecology,

39 Baltimore, Sacramento

40 **1. Introduction**

41 Urban heat island (UHI) describes the phenomenon by which urban areas are warmer than
42 surrounding non-urban areas (Voogt and Oke 2003). Increased temperatures due to the UHI
43 effect may increase water consumption and energy use in urban areas (Santamouris et al.
44 2015; Wan et al. 2012), alter species composition and distribution (Niemelä 1999; White et
45 al. 2002), and lead to an increase in the production of ground level ozone which has direct
46 consequences for human health (Akbari et al. 2001; Akbari et al. 1996). In addition, excess
47 heat affects the comfort of urban dwellers and leads to greater health risks (Poumadere et al.
48 2005). In fact, extreme heat increases mortality and morbidity in cities worldwide (Fouillet et
49 al. 2006; Harlan and Ruddell 2011). Consequently, how to mitigate and adapt to the UHI has
50 become a major research focus in urban climatology and urban ecology (Arnfield 2003;
51 Weng 2009; Zhou et al. 2011).

52 Considerable research has demonstrated the significant cooling effects of urban
53 greenspace on urban heat (Fan et al. 2015; Jenerette et al. 2007; Kong et al. 2014; Li et al.
54 2016; Ma et al. 2010; Weng et al. 2004; Zhou et al. 2011). Increasing the percent cover of
55 greenspace can greatly reduce ambient air temperatures and land surface temperatures
56 (Bowler et al. 2010; Connors et al. 2013; Fan et al. 2015; Li et al. 2012; Weng et al. 2004;
57 Zhou et al. 2011; Zhou et al. 2014). In addition, the spatial configuration (or arrangement) of
58 greenspace, can also have significant effects on land surface temperature (LST) (Chen et al.

59 2014; Fan et al. 2015; Kong et al. 2014; Li et al. 2013b; Li et al. 2012; Maimaitiyiming et al.
60 2014; Myint et al. 2015; Zhou et al. 2011). Because cities have limited space for greening,
61 managers and decision-makers would benefit from knowing how to optimize the spatial
62 configuration of greenspace to further alleviate urban heat stress (Huang et al. 2011; Li et al.
63 2016; Myint et al. 2015; Zhou et al. 2011).

64 We know that simply increasing the percent cover of greenspace leads to a reduction of
65 temperatures; this relationship is very consistent. What is less known, however, is the effects
66 of the spatial configuration of that greenspace on urban temperatures. Research results are,
67 in some cases, contradictory. For example, greater patch density of greenspace reduced
68 LST in studies conducted in Shenzhen (Li et al. 2010) and Shanghai, China (Li et al. 2011),
69 Baltimore, USA (Zhou et al. 2011), and Berlin, Germany (Dugord et al. 2014), but was
70 associated with increased LST in Beijing, China (Li et al. 2013b; Li et al. 2012). Similarly,
71 edge density of greenspace was found to be negatively correlated to LST in many cities
72 (Dugord et al. 2014; Li et al. 2011; Li et al. 2014; Maimaitiyiming et al. 2014; Rhee et al.
73 2014; Zhang et al. 2009; Zhou et al. 2011), but positively correlated in others (Li et al. 2013b;
74 Wu et al. 2014). This inconsistency prevents the application of results to urban greenspace
75 planning and management (Li et al. 2013b).

76 The reasons for this inconsistency remain largely unaddressed. It may be because
77 these studies have been conducted 1) in cities with contrasting climatic conditions; 2) using a
78 variety of statistical analysis (Fan et al. 2015; Kong et al. 2014; Li et al. 2013b; Li et al. 2012;

79 Myint et al. 2015; Zhou et al. 2011); 3) based on maps from image data with spatial
80 resolution ranging from sub-meter to 1000 m (Li et al. 2013b; Rhee et al. 2014; Wu et al.
81 2014; Zhou et al. 2011); and 4) using a variety of analytical units with different sizes such as
82 grids or pixels (Peng et al. 2016; Rhee et al. 2014), city blocks (Dugord et al. 2014), sub-
83 districts (Li et al. 2013b), or self-defined polygons (Zhou et al. 2011). Does spatial
84 configuration of greenspace affect temperatures differently in cities with different climatic
85 conditions? Or, is this inconsistency due to the varied statistical approaches applied, or
86 different units of analysis, or different resolutions of data to map greenspace?

87 Here, we address these questions by conducting a comparison study of Baltimore, MD
88 and Sacramento, CA, USA, two cities with very different climatic conditions. We quantified
89 and compared the relationships between spatial configuration of trees and LST using
90 different statistical approaches, and conducted the analyses at sampling units of different
91 sizes. We mapped tree canopies using 1 m resolution imagery. This decision was based on
92 the work of Li et al. (2013b) and Zhou et al. (2014), which suggested that the spatial
93 resolution of image data used to map greenspace influenced the statistical relationships
94 between spatial configuration of greenspace and LST, and that high spatial resolution image
95 data are more appropriate in such analysis. Results from the present study can enhance the
96 understanding of the effects of spatial configuration of greenspace on UHI. In addition,
97 important insights can be provided to urban planners and natural resource managers on how
98 to mitigate the impact of urbanization on UHI through urban design and vegetation

99 management.

100

101 **2. Methods**

102 *2.1. Study area*

103 The research focuses on two cities with contrasting climatic conditions, Baltimore, Maryland,

104 USA, and Sacramento, California, USA. Baltimore is a temperate coastal city characterized

105 by hot and humid summers (Brazel et al. 2000), while Sacramento has a Mediterranean

106 climate characterized by hot, but dry summers. Baltimore is built in a biome dominated by

107 temperate broadleaf and mixed forest, whereas Sacramento belongs to a biome dominated

108 by grassland, with riparian forests only along the streams and shrub and woodlands that do

109 not occur until in the sierra foothills and higher elevation (Imhoff et al. 2010).

110 Baltimore is the largest city in Maryland, with a total area of 239 km² and total population

111 of approximately 0.62 million in 2014. Close to the Chesapeake Bay, its annual average

112 temperature is 12.6°C, and average precipitation is approximately 1070mm. Sacramento is

113 the capital city of California. It has a total area of 259 km², and total population of about 0.48

114 million in 2014. Located at the confluence of the Sacramento and American rivers, its annual

115 average temperature is 16.2°C and average precipitation is approximately 450mm. The

116 similarity in the sizes of total population and area, but the contrast in climatic conditions and

117 biomes, make the two cities ideal for the comparisons conducted in this research.

118 *2.2. Data*

119 *2.2.1. Land surface temperature*

120 The LST data were derived from the thermal infrared (TIR) band (10.40-12.50 μm) of two

121 Landsat-5 Thematic Mapper (TM) images with a spatial resolution of 120 m (Fig. 1B_{LST},

122 S_{LST}). The TM data for Baltimore and Sacramento were acquired on August 11, 2007 (row

123 33/path 15), and August 14, 2010 (row 33/path 44), respectively. LST was derived for

124 different years in order to coincide with the years the land cover for the two cities was

125 collected – Baltimore in 2007 and Sacramento in 2010.

126 We first calculated the top-of-atmospheric (TOA) radiance based on the digital number

127 (DN) of the TM TIR band (Chander and Markham 2003; Landsat Project Science Office

128 2009). We then calculated the surface-leaving radiance from TOA radiance by removing the

129 effects of the atmosphere in the thermal region (Asgarian et al. 2015; Barsi et al. 2005;

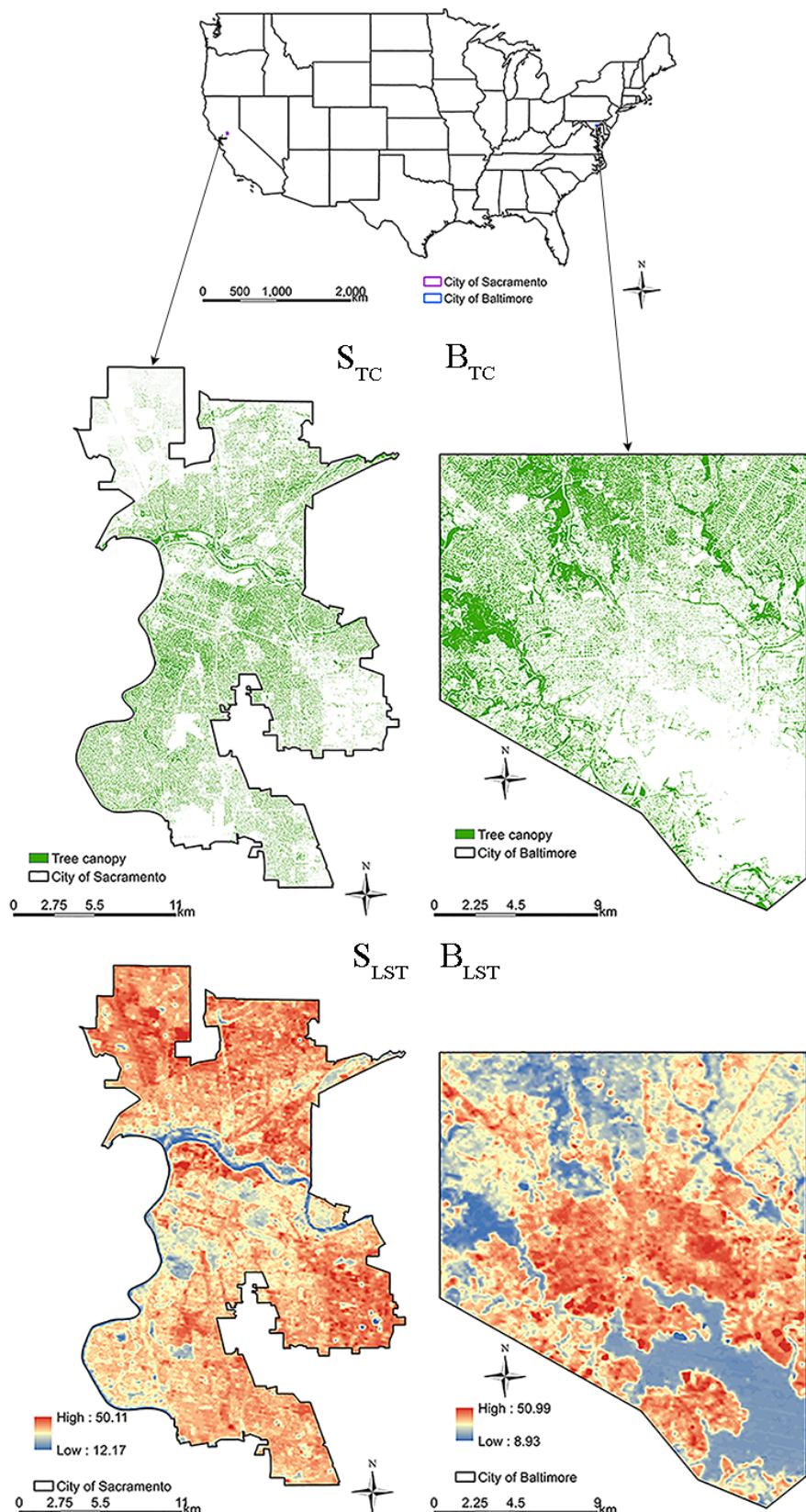
130 Sobrino et al. 2004; Yuan and Bauer 2007; Zhou et al. 2014). Finally, LST was calculated

131 from surface-leaving radiance using the Plank function (Chander and Markham 2003;

132 Chander et al. 2009).

133 2.2.2. *Spatial pattern of tree canopy*

134 We mapped the urban tree canopy based on 1-m resolution imagery from the National
135 Agriculture Imagery Program (NAIP), using an object-based classification approach
136 (MacFaden et al. 2012; Zhou and Troy 2008). The imagery is 4-band color-infrared, with
137 radiometric depth of 8 bits. Ancillary data, such as light detecting and ranging (Lidar) data
138 and building footprint layers, were used to aid in classification. Six classes were included in
139 the classification map: trees (i.e., tree canopy), grasses, pavement, buildings, water and bare
140 soil (Fig. 1 B_{TC} , S_{TC}). The accuracies of the land cover classifications were assessed by
141 visually referencing to sub-meter high-resolution imagery using protocol developed in Zhou
142 and Troy (2008). The overall accuracies of the classifications were 95.7% for Baltimore and
143 93.6% for Sacramento. The user's and producer's accuracy of trees for Baltimore were
144 97.3% and 97.5%, and 98.2% and 96.7% for Sacramento.



146 **Fig.1.** The spatial distribution of tree canopy and land surface temperatures in Baltimore

147 (panels B_{TC} and B_{LST}) and Sacramento (Panels S_{TC} and S_{LST}).

148 There are numerous metrics that can be used to measure and describe spatial patterns

149 of land cover features (Gustafson 1998; McGarigal 2002). Here, we chose 5 landscape

150 metrics to measure the spatial pattern of urban trees, including one composition metric:

151 percent cover of trees (PTree), and four configuration metrics: (1) mean patch size

152 (AREA_MN), (2) edge density (ED), (3) mean patch shape index (SHAPE_MN), and (4)

153 largest patch index (LPI) (Table 1). These metrics represent the primary characteristics

154 describing the spatial pattern of trees, including the abundance of trees, size and shape of

155 patches, edge density, and fragmentation. These metrics were chosen based on the

156 following considerations: (1) importance in both theory and practice (Lee et al. 2009; Li and

157 Wu 2004; Peng et al. 2010; Zhou et al. 2011), (2) easily calculated and interpretable (Li et al.

158 2012; Zhou et al. 2011), and (3) minimal redundancy (Riitters et al. 1995; Li and Wu 2004;

159 Zhou et al. 2011). These metrics were calculated in ArcGISTM 10.1.

160

161

162

163

164

165

166 **Table 1**

167 Landscape metrics used in this study, after McGarigal et al. (2002)

Categories	Landscape Metrics (abbreviation)	Description	Equation	Citations
	Percent cover of tree canopy (PTree)	Proportion of tree canopy area within an analysis unit.	$\frac{\sum_{i=1}^n a_i}{A} * 100$ (%)	(Li et al. 2014; Zhou et al. 2011)
Configuration	Mean patch size (AREA_MN)	The average area of tree canopy patches within an analysis unit.	$\frac{\sum_{i=1}^n a_i}{N}$ (m ²)	(Kong et al. 2014; Zhang et al. 2009)
	Mean patch shape index (SHAPE_MN)	The average shape index of tree canopy patches within an analysis unit.	$\frac{\sum_{i=1}^n \frac{0.25 * p_i}{\sqrt{A}}}{N}$	(Li et al. 2012; Peng et al. 2010)
	Edge density (ED)	The total perimeter of tree canopy patches per km ² within an analysis unit.	$\frac{\sum_{i=1}^n p_i}{A} * 10000$ (m/ha)	(Connors et al. 2013; Maimaitiyiming et al. 2014)
	Largest patch index (LPI)	The proportion of the largest tree canopy patch within an analysis unit.	$\frac{\max a_i}{A} * 100$ (%)	(Rhee et al. 2014; Zhou et al. 2011)

168 a_i area of tree canopy patch i ; p_i perimeter of tree canopy patch i ; A total area of analysis169 unit; N number of patches of tree canopy.

170 2.3 Statistics analysis

171 We investigated the relationships among spatial patterns of tree canopy and LST at multiple

172 scales, that is, using different sizes of analytical units. Specifically, 5 sizes of analytical unit
173 were used: 1) 1 x 1 pixel (or a grid cell of 120m x 120 m, the same as the pixel size of the
174 Landsat TM thermal band), 2) 3 x 3 pixels (360m x 360 m), 3) 5 x 5 pixels (600m x 600 m),
175 4) 7 x 7 pixels (840m x 840 m), and 5) 9 x 9 pixels (1080m x 1080 m) (Liu and Weng 2009).

176 For each analytical unit (i.e., a grid cell), we calculated the mean LST as the response
177 variable for statistical analyses. The predictor variables were the percent cover of tree
178 canopies, and the four landscape metrics (Table 1). Table A1 shows the mean and standard
179 deviation of LST and landscape metrics.

180 A Pearson correlation matrix was first developed to examine the correlations between
181 LST and the spatial pattern metrics of trees. We then conducted a partial correlation analysis
182 to investigate the relationships between LST and the configuration metrics, by controlling for
183 the effect of the percent cover of trees. Controlling for the effect tree canopy percent is
184 necessary because the configuration metrics were highly correlated to percent cover of
185 trees, and therefore the Pearson correlation analysis may obtain spurious relationships
186 between LST and configuration metrics.

187 We then used ordinary least squares (OLS) multiple linear regression model and spatial
188 autoregression (SAR) model to examine the effects of the spatial pattern of trees on LST. We
189 used standardized coefficients (beta weights) to evaluate the relative importance of percent
190 cover and configuration metrics on predicting LST (Weng et al. 2006; Yan et al. 2014; Zhou
191 et al. 2011), and variance partitioning to quantify the explanatory power of the predictors

192 (Anderson and Gribble 1998; Li et al. 2013a; Li et al. 2012).
193 The OLS regression model is the most commonly used statistical analysis, with the
194 assumption that the error terms are independent. The primary analyses showed that
195 significant spatial autocorrelation ($P < 0.01$) occurred in the residuals of the OLS model.
196 Consequently, spatial autoregression models that integrate spatial autocorrelation into
197 modeling were more appropriate to investigate the relationships between LST and spatial
198 patterns of trees (Li et al. 2012). We also included the OLS regression model for comparison
199 purposes, as many studies in the literature use such analyses. Below, we briefly describe the
200 spatial autoregression models and variance partitioning. More details can be found in Li et al.
201 (2012).

202 With SAR, the neighborhood relationship of the response variable is explicitly measured
203 by a ($n \times n$) matrix of spatial weights, which is integrated into the standard multiple linear
204 regression to account for spatial autocorrelation (Anselin 2005a). The spatial autocorrelation
205 can be modeled in two ways: a spatial lag model and a spatial error model (Anselin 2005a).
206 The spatial lag model assumes that the spatial autoregressive occurs only in the response
207 variable. The form of the spatial lag model is:

$$208 \quad y = \rho W y + \beta X + \varepsilon \quad (1)$$

209 where $W y$ is a ($n \times 1$) vector of the spatially lagged response variable, ρ is a spatial
210 autoregressive coefficient, X is a ($n \times k$) vector of explanatory variables, β is a ($k \times 1$) vector
211 of regression coefficients, and ε is a ($n \times 1$) vector of independently distributed errors.

212 In contrast, the spatial error model assumes the spatial effects that are not fully
213 explained by the explanatory variables occurs in the error terms, and therefore, is expressed
214 as:

215
$$y = \beta X + \lambda W\mu + \varepsilon \quad (2)$$

216 where $W\mu$ is a $(n \times 1)$ vector of spatially lagged errors, and λ is a spatial autoregressive
217 coefficient.

218 We used the Lagrange Multiplier statistics to compare the two modeling approaches,
219 and found that the spatial error model better fit the data in this study. The regressions were
220 then run using the spatial error model, and a maximum likelihood method. The R^2 values
221 were calculated as detailed in Lichstein et al. (2002), which were comparable with those from
222 the OLS regression model. The regressions were run in GeoDa 1.6.7 and spdep package of
223 R (Version 2.12.1; R Development Core Team 2011)

224 Variance partitioning was used to quantify the relative variations in LST explained by:
225 the percent cover of trees and the configuration metrics. The variation of LST was divided
226 into four fractions: (1) unique effects of percent cover of trees, (2) unique effects of
227 configuration metrics, (3) joint effects of percent cover of trees and configuration metrics, and
228 (4) unexplained. Variance partitioning was conducted following the procedure detailed in
229 Anderson and Gribble (1998) and in Heikkinen et al. (2005), using the spdep package
230 (Anselin 2005b) of R (Version 2.12.1; R Development Core Team 2011).

231

232 **3. Results**

233 *3.1. The spatial distribution of trees and LST in the two cities*

234 The percent cover of trees, as well as the spatial configuration, differed greatly between the
235 two cities (Fig. 1B_{TC}, S_{TC}). Approximately 27.1% of the land in Baltimore was covered by
236 trees, but only 16.7% in Sacramento. Compared to Sacramento, trees in Baltimore are more
237 clustered, especially in the northwest region of the city (Fig. 1B_{TC}). For both cities, percent
238 cover of trees varied greatly in space. Taking the analytical unit of 600 x 600 m as an
239 example, percent cover of trees in grid cells varied from 0.50% to 92.62% across Baltimore,
240 with a standard deviation of 18.73%. In Sacramento, percent cover ranged from 0 to 58.68%,
241 with a standard deviation of 12.12% (Table A1). The mean patch size of trees in Baltimore
242 was 599.6 m², much greater than that of 73.80 m² in Sacramento. In contrast, the patch
243 density and edge density of trees in Sacramento were much higher than that of Baltimore
244 (2227/km² versus 399/km² for patch density and 819.85 m/ha versus 422.31 m/ha for edge
245 density), suggesting that tree cover was more fragmented in Sacramento. The mean shape
246 index was similar in the two cities (1.32 in Baltimore and 1.39 in Sacramento), suggesting
247 that the complexity of the tree patches is similar.

248 Land surface temperatures varied greatly in space for both cities (Fig. 1S_{LST}, S_{LST}). LST
249 in Baltimore ranged from 8.93°C to 50.99°C, with a mean of 33.37°C and standard deviation
250 of 4.69°C, while it ranged from 12.17°C to 50.11°C, with a mean of 35.60°C and standard

251 deviation of 3.25°C in Sacramento (Table A1). For both cities, LST was significantly
252 autocorrelated in space, as indicated by Moran's I (Baltimore: Moran's I = 0.88, p < 0.01;
253 Sacramento: Moran's I = 0.72, p < 0.01). LST tended to be higher in locations with less tree
254 canopy coverage (Fig. 1B_{TC}, B_{TC}, S_{LST}, S_{LST}).

255 *3.2. Effect of spatial patterns of trees on LST: difference between cities and across analytical
256 scales*

257 *3.2.1 Effects of percent cover of trees on LST*

258 The percent cover of trees was significantly negatively correlated with LST, across all
259 analytical scales, for both cities, suggesting LST decreased with the increase of percent
260 cover of trees (Table 2; Fig. A1). The Pearson correlation analysis showed that percent cover
261 of tree canopy had the strongest correlation with LST among the 5 metrics. For both cities,
262 the strength of the correlations between LST and percent cover of trees, as indicated by the
263 correlation coefficients, increased with the increase of the size of the analytical unit. The
264 correlations between LST and percent cover of trees, however, were generally stronger in
265 Baltimore than in Sacramento across all 5 analytical scales, suggesting that percent cover of
266 trees might explain more variations of LST in milder coastal regions compared to hotter and
267 drier ones.

268

269 **Table 2**

270 Correlation coefficients between LST and landscape metrics. The italic and bold rows are for
 271 partial correlation analysis, where for configuration metrics, the control variable was percent
 272 cover of tree, and for percent cover of tree, the control variables were the configuration metrics.

City	Scale	PTree	AREA_MN	SHAPE_MN	ED	LPI
Baltimore	120m	-0.830** -0.260**	-0.561** 0.054**	-0.418** 0.003	-0.559** -0.033**	-0.782** 0.036**
	360m	-0.904** -0.502**	-0.453** 0.059*	-0.604** -0.143**	-0.555** -0.007	-0.805** 0.076**
	600m	-0.926** -0.499**	-0.478** 0.085	-0.752** -0.308**	-0.578** -0.011	-0.796** 0.123**
	840m	-0.937** -0.574**	-0.687** 0.119	-0.764** -0.363**	-0.604** -0.053	-0.779** 0.185**
	1080m	-0.948** -0.562**	-0.535** 0.149	-0.767** -0.390**	-0.618** -0.116	-0.778** 0.224*
	120m	-0.640** -0.234**	-0.354** -0.147**	-0.361** -0.115**	-0.464** 0.197**	-0.602** -0.157**
	360m	-0.723** -0.134**	-0.704** -0.432**	-0.332** -0.051*	-0.525** 0.309**	-0.611** -0.219**
	600m	-0.768** -0.087*	-0.750** -0.475**	-0.345** 0.041	-0.564** 0.341**	-0.588** -0.238**
Sacramento	840m	-0.811** -0.105	-0.788** -0.529**	-0.545** 0.025	-0.609** 0.375**	-0.609** -0.253**
	1080m	-0.819** 0.047	-0.822** -0.565**	-0.578** -0.022	-0.610** 0.410**	-0.589** -0.259**

273 ** P<0.01, * P<0.05 (2-tailed)

274

275 3.2.2. *Effects of spatial configuration of trees on LST*

276 The Pearson correlation analysis showed that all 4 metrics of tree configuration were
277 significantly, negatively correlated with LST, across all analytical scales, for both cities (Table
278 2). Similar to percent cover of trees, the strength of the correlations between LST and the 4
279 configuration metrics also generally increased with the increase of the size of the analytical
280 unit; the correlations between LST and the 4 configuration metrics were stronger in Baltimore
281 than in Sacramento. Among the 4 configuration metrics, the largest patch index had relatively
282 strong correlations with LST.

283 After controlling for the effects of percent cover of trees, the correlations (i.e., partial
284 correlations) between configuration metrics and LST changed greatly, as indicated by the
285 results from the partial correlation analysis (Table 2). These changes included the following:
286 1) the strength of partial correlations, measured by the partial correlation coefficients, greatly
287 decreased, compared with their corresponding Pearson correlation coefficients; 2) some of
288 the configuration metrics were no longer significantly correlated to LST; and 3) more notably,
289 the relationships between some of the configuration metrics and LST changed from negative
290 to positive.

291 These changes in the relationships between LST and configuration metrics, however,
292 varied dramatically in the two cities, in terms of magnitude, significance, and direction.

293 Specifically, after controlling for the effects of percent cover of trees, the correlation between
294 mean patch size (AREA_MN) and LST changed from negative to positive when the analytical
295 unit was less than or equal to 360m, and then to no longer significant in Baltimore. Similarly,
296 edge density (ED) was no longer significantly correlated to LST at the analytical unit greater
297 than 120 m on a side. In Sacramento, however, AREA_MN still had a relatively strong
298 negative relationship with LST across all scales, but the relationships between ED and LST
299 changed from negative to positive. SHAPE_MN remained significantly correlated with LST in
300 Baltimore, but not in Sacramento. LPI remained significantly correlated with LST for both
301 cities. However, these correlations changed from negative to positive in Baltimore, when
302 controlling for the effects of percent cover of trees (Table 2). For all 4 configuration metrics,
303 the partial correlations were stronger in Sacramento than in Baltimore, in contrast to the
304 Pearson correlations.

305 *3.2.3. Relative importance of amount and configuration of trees on LST*

306 Results from the OLS multiple linear regressions showed that in Baltimore, percent cover of
307 trees (PTree) had significantly negative effects on LST, across the 5 analytical scales (Table
308 3). In addition, PTree was the most important predictor of LST, playing a much more
309 important role in predicting LST than the other spatial configuration variables, as suggested
310 by the standard coefficients (Table 3). None of the configuration variables were significant at
311 any analytical scale. Among the 4 configuration metrics, shape index (SHAPE_MN) played a

312 relatively important role in predicting LST, and had a negative effect (Table 3). Results from
313 the variation partitioning also indicated that percent cover of trees played a more important
314 role than that of configuration of trees (Fig. 2).

315 In Sacramento, however, the relative importance of percent cover of trees (PTree) and
316 spatial configuration differed greatly from that of Baltimore. PTree became no longer
317 significantly related to LST at the analytical units having length scales of 840 m and 1080 m.
318 In contrast, mean patch size (AREA_MN) was significant at all 5 analytical units, and shape
319 index (SHAPE_MN) and edge density (ED) were significant at all scales except for 360 m. In
320 addition, configuration metrics became more important in predicting LST, with AREA_MN
321 being the most important predictor of LST for analytical units larger than 120 m on a side
322 (Table 3). Results from the variation partitioning also indicated that configuration of trees
323 played a more important role than that of percent cover of trees (Fig. 2).

324

325

326

327

328

329

330

331

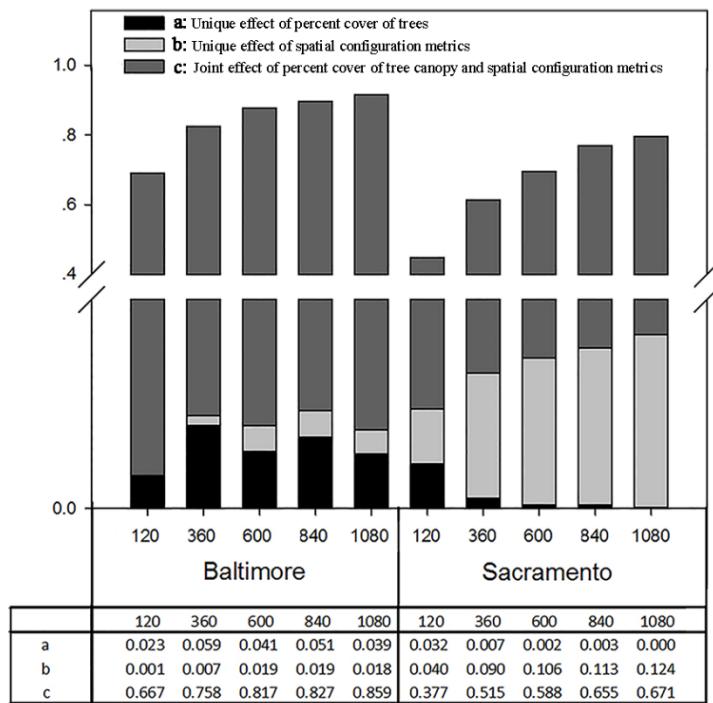
332 **Table 3**

333 Results from the OLS multiple linear regressions and the diagnostics for spatial dependence.

334 The bold and italic rows are standardized coefficients.

City	Scale	PTree	AREA_MN	SHAPE_MN	ED	LPI	R ²	Moran's I	AIC	
Baltimore	120m		-0.154**	7.879E-05**	0.024	1.772E-06	0.007	0.690	0.602	63539.400
		-0.911	0.043	0.002	0.014	0.042				
	360m		-0.195**	5.860E-05**	-2.071**	1.359E-05**	0.024**	0.824	0.460	5478.030
		-1.046	0.060	-0.091	0.085	0.126				
	600m		-0.168**	1.291E-04**	-8.697**	1.225E-05*	0.001	0.877	0.427	1619.540
		-0.883	0.099	-0.203	0.073	0.005				
	840m		-0.179**	2.168E-04	-10.290**	1.692E-05*	0.003	0.897	0.372	708.088
		-0.934	0.088	-0.202	0.097	0.017				
	1080m		-0.168**	1.080E-04	-11.524**	9.709E-06	-0.003	0.915	0.424	365.764
		-0.865	0.064	-0.199	0.054	-0.014				
Sacramento	120m		-0.160**	-0.001**	-0.993**	1.435E-05**	-0.002	0.449	0.653	75885.800
		-0.817	-0.039	-0.138	0.304	-0.006				
	360m		-0.083**	-0.014**	0.309	-1.991E-06	0.008	0.612	0.393	6578.530
		-0.419	-0.434	0.018	-0.041	0.019				
	600m		-0.047*	-0.019**	3.649**	-1.137E-05**	0.016	0.696	0.323	1973.260
		-0.245	-0.596	0.142	-0.231	0.033				
	840m		-0.051	-0.023**	7.498**	-1.450E-05*	0.068*	0.770	0.369	823.595
		-0.266	-0.700	0.203	-0.298	0.114				
	1080m		0.025	-0.032**	8.182**	-2.671E-05**	0.028	0.796	0.318	413.287
		0.131	-0.876	0.212	-0.546	0.046				

335 ** P<0.01, * P<0.05 (2-tailed)



336

337 **Fig. 2.** The results of variance partitioning for percent cover of tree canopy and spatial

338 configuration across spatial scales.

339 Overall, results from the spatial error models were similar to those of the OLS regression

340 models (Table 4). This was particularly true when the analytical units were relatively large.

341 For example, when the analytical unit was greater than or equal to 600 m on a side, the

342 coefficients of the predictors, and the R^2 values were similar between OLS models and

343 spatial error models. However, it should be noted that at the analytical length scale of 120 m,

344 the absolute values of coefficients from the spatial error models were much smaller than

345 those from the OLS regression models, suggesting the importance of considering spatial

346 autocorrelation at finer scales.

347 For both OLS and SAR, results from the standard coefficients and variance partitioning

348 showed that among the five metrics, PTree was the most important predictor of LST in

349 Baltimore. In Sacramento, however, configuration metrics, such as AREA_MN, were better

350 predictors of LST than PTree, when the size of analytical unit was greater than 120m (for

351 OLS) or 360m (for SAR).

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366 **Table 4**

367 The results of spatial error models. The bold and italic rows are standardized coefficients.

City	Scale	PTree	AREA_MN	SHAPE_MN	ED	LPI	R^2	AIC
Baltimore	120m		-0.059**	9.370E-06	-0.122**	-1.376E-06	0.004**	
		-0.349	0.005	-0.012	-0.011	0.026	0.932	42232.200
	360m		-0.148**	2.432E-05*	-0.997**	1.072E-05**	0.010	
		-0.790	0.025	-0.044	0.067	0.052	0.900	4663.350
	600m		-0.171**	7.819E-05**	-5.565**	2.306E-05**	0.010	
		-0.900	0.060	-0.130	0.137	0.048	0.920	1405.970
Sacramento	840m		-0.165**	8.307E-05	-10.560**	2.135E-05**	0.001	
		-0.858	0.034	-0.207	0.123	0.004	0.924	641.347
	1080m		-0.164**	5.917E-05	-11.100**	1.735E-05*	-0.003	
		-0.846	0.035	-0.191	0.097	-0.013	0.941	317.275
	120m		-0.063**	0.000	-0.251**	5.363E-06**	0.003	
		-0.319	0.001	-0.035	0.114	0.011	0.865	51781.6
Sacramento	360m		-0.114**	-0.007**	-0.218	5.921E-06*	0.015	
		-0.572	-0.211	-0.013	0.120	0.035	0.741	5875.27
	600m		-0.047*	-0.015**	2.631**	-8.548E-06	0.001	
		-0.243	-0.480	0.102	-0.173	0.002	0.763	1827.85
	840m		-0.072*	-0.021**	7.121**	-8.109E-06	0.061*	
		-0.379	-0.637	0.193	-0.167	0.102	0.827	744.035
	1080m		0.019	-0.034**	8.371**	-2.298E-05**	0.029	
		0.101	-0.932	0.217	-0.469	0.048	0.838	379.032

368

** P<0.01, * P<0.05 (2-tailed)

369 **4. Discussion**

370 *4.1. The effects of tree cover and its spatial configuration on LST: Relative importance varied
371 greatly between cities in different climatic zones*

372 Percent cover of trees had similar effects on LST for both cities despite the different climatic
373 conditions of these cities. These results are similar to findings from previous studies (Li et al.
374 2011; Li et al. 2013b; Weng et al. 2004; Zhou et al. 2011). Increasing the percent cover of
375 trees can significantly decrease LST for both cities. However, the efficiency in cooling,
376 defined as the decrease in degrees of LST with every 1% increase in tree cover (Buyantuyev
377 and Wu 2010; Hamada and Ohta 2010; Li et al. 2013b; Peng et al. 2016; Xie et al. 2013),
378 was higher in Baltimore than in Sacramento at all five scales of analytical unit (Table 5). The
379 results remained the same even after considering the effects of spatial configuration, except
380 for the analysis at the scale of 120m (Table 3&4). These results contrast with previous work
381 conducted within southern California that showed more effective cooling by vegetation in
382 hotter and drier desert regions compared to milder coastal ones (Tayyebi and Jenerette
383 2016). However, it should be noted that Tayyebi and Jenerette (2016) used the normalized
384 difference vegetation index (NDVI) to measure the abundance of vegetation, which includes
385 both trees and grass/lawns. But here we used the percent cover of trees. Previous findings
386 have shown that grass is less effective than tree canopy for LST cooling (Myint et al. 2013),

387 and its cooling effectiveness is likely to be more affected by different management practices
388 such as irrigation.

389 The cooling efficiency of urban trees can be affected by many factors such as tree
390 species, spatial configuration of trees, and management practices because, for example,
391 transpiration rates of urban trees vary greatly by species (Pataki et al. 2011; Wang et al.
392 2011), and are affected by climatic factors such as air temperature, total radiation, vapor
393 pressure deficit, and ambient pollutants such as ozone (Wang et al. 2011). These contrasting
394 results warrant further research on the cooling effectiveness of vegetation/trees that requires
395 field work on species identity, species transpiration rates, vegetation management such as
396 irrigation, and more detailed climate records (McCarthy et al. 2011; Pataki et al. 2011; Polsky
397 et al. 2014; Zhou et al. 2008).

398

399 **Table 5**

400 Results from OLS linear regression. The response variable, LST, was predicted by PTree

Scale	Baltimore		Sacramento	
	Coef.	R ²	Coef.	R ²
120m	-0.144	0.689	-0.129	0.409
360m	-0.173	0.817	-0.147	0.523
600m	-0.18	0.858	-0.152	0.59
840m	-0.184	0.877	-0.158	0.657
1080m	-0.188	0.898	-0.16	0.671

401

402 Effects of spatial configuration of tree cover on LST, however, varied greatly in the two

403 cities, in terms of magnitude, significance, and even direction of effect. Some configuration
404 metrics had contradictory effects on LST between the two cities. For example, after
405 controlling for the effects of percent cover of trees, mean patch size was positively correlated
406 to LST in Baltimore, but was negatively correlated in Sacramento. Because larger patches
407 have lower edge densities (Table A2), it follows that edge density was negatively correlated
408 to LST in Baltimore, but was positively correlated in Sacramento. Previous studies on
409 different cities have also found contradictory results of spatial configuration of
410 greenspace/tree canopy on LST. For example, edge density of vegetation cover was found to
411 be negatively correlated with LST in Baltimore (Zhou et al. 2011), Shanghai (Li et al. 2011; Li
412 et al. 2014), and Berlin (Dugord et al. 2014), but positive in Beijing (Li et al. 2013b). Our
413 results from the comparison of the two cities indicated that the spatial configuration of trees
414 may have different effects on LST in cities with different climatic conditions. These results
415 enhance the understanding of the inconsistency of effects of spatial configuration of
416 trees/greenspace on LST from previous studies.

417 Trees ameliorate temperatures primarily in two ways: providing shade and through
418 evapotranspiration. The contradictory results of configuration metrics found in the two cities
419 may be due to differences in the relative contributions of the two cooling processes and
420 these differences may be related to different climatic conditions between the cities. Here, we
421 again take edge density as an example. Increasing total edges and edge density may
422 potentially lead to an increase of shade provided by trees to surrounding surfaces (Li et al.

423 2012; Zhou et al. 2011). In addition, greater total edges and edge density may also enhance
424 energy flow and exchange between trees and their surrounding areas (Cadenasso et al.
425 2003; Zhou et al. 2011). Consequently, considering only the shading process, increasing
426 edge density will lead to lower LST. However, increased edge density is frequently a result of
427 more fragmented tree cover, given a fixed amount of total tree coverage. As large and
428 continuous tree stands generally have lower temperature than that of fragmented and
429 smaller patches (Cao et al. 2010; Yokohari et al. 1997; Zhang et al. 2009), suggesting
430 stronger evapotranspiration efficiency of larger patches, increasing edge density is likely to
431 reduce evapotranspiration efficiency. This is particularly predominant in cities such as
432 Sacramento that have very dry and hot summers, during which vegetation is very likely to
433 experience water and temperature stress (Connors et al. 2013; Maimaitiyiming et al. 2014).
434 This is because the ambient temperature and humidity affect the transpiration rate of trees in
435 a non-linear (an inverted U shape) way (Lambers et al. 2008; Schulze et al. 2005). That is,
436 while increasing temperature and reducing humidity to some extent can induce the stomata
437 open and thus enhance transpiration, excessive heat and increasing vapor pressure deficit
438 between leaf and air will lead to dramatic reduction in transpiration (Lambers et al. 2008;
439 Schulze et al. 2005). Therefore, whether the increase of edge density will lead to a
440 decrease or increase in LST will largely depend on the net effects of increased shading
441 effects and reduced evapotranspiration effects. In Mediterranean climate cities such as
442 Sacramento, the reduction in evapotranspiration caused by increased edge density is likely

443 to outweigh increased shading. Consequently, edge density has a positive relationship with
444 LST, given a fixed amount of tree coverage. But this is the opposite in cities such as
445 Baltimore that experience a relative humid summer.

446 Similar to edge density, whether the increase of mean patch size leads to a decrease or
447 increase in LST largely depends on the joint effects of the two key cooling processes,
448 shading and evapotranspiration of trees. In contrast to edge density, an increase in mean
449 patch size will likely result in increased evapotranspiration efficiency (Cao et al. 2010;
450 Yokohari et al. 1997; Zhang et al. 2009), but reduced shading effects. An increase in mean
451 patch size will likely lead to reduced shading effects because given a fixed amount of tree
452 cover, an increase in mean patch size leads to a decrease in edge density (Table A2), which
453 results in reduced shading effects, as discussed above. In the hotter and drier Sacramento
454 area, the increased evapotranspiration caused by increased mean patch size is likely to
455 outweigh reduction in shading. Therefore, mean patch size has a negative relationship with
456 LST, given a fixed amount of tree coverage. In Baltimore, however, reduction in shading
457 outweighed increased evapotranspiration, and thus an increase in mean patch size led to
458 higher LST.

459 Notably, the relative importance of mean patch size in predicting LST increased with the
460 increased size of analytical unit in Sacramento, but the opposite was found in Baltimore, both
461 suggesting clear scale effects. These scale effects may suggest that the two cooling
462 processes, shading and evapotranspiration of trees, and their relative importance, change

463 with scale, and differ by cities with different climatic conditions. This hypothesis, however,
464 warrants further research.

465 The relative importance of percent cover of trees, and spatial configuration on LST also
466 varied greatly between the two cities. Percent cover of trees was the most important variable
467 in predicting LST in Baltimore. This is consistent with many of the previous studies that have
468 found that percent cover of trees (or greenspaces) plays a more important role than their
469 spatial configuration (Li et al. 2012; Xie et al. 2013; Zhou et al. 2011). However, spatial
470 configuration of tree cover, such as the mean patch size, played a more important role in
471 predicting LST than the percent cover of trees in Sacramento. In fact, the importance of
472 percent cover of trees in predicting LST decreased with the increase of the size of analytical
473 unit, and even became insignificant at the size of 840m and greater (Table 3). This result is
474 similar to the findings of Maimaitiyiming et al. (2014) in a study conducted in Aksu, Xinjiang,
475 China, and of Li et al. (2016) in a study of Phoenix, Arizona, USA. Both cities are relatively
476 dry and hot in summer, similar to Sacramento. These results indicated that the relative
477 importance of percent cover of trees and their spatial configuration may vary by cities with
478 different climatic conditions. It should be noted, however, that at the finest scale in this study
479 -- analytical unit of 120m, -- percent cover of trees was a much better predictor of LST than
480 any configuration metrics in Sacramento (Table 3). With the recent availability of very fine
481 resolution LST data (7m resolution, e.g., Jenerette et al. 2016), research on how the
482 relationship between spatial pattern of trees and LST varies by unit of analysis at a scale

483 finer than 120m would be highly desirable to expand our understanding of the scale effects.

484 *4.2. The methodological implications: It is crucially important to choose the appropriate*
485 *statistical approaches*

486 Our results underscore the necessity of controlling for the effects of percent cover of trees

487 when quantifying the effects of spatial configuration of tree cover on LST. For both cities,

488 after controlling for the effects of percent cover of trees (either through partial correlation or

489 linear regression modelling), the relationships between LST and configuration metrics

490 dramatically changed, compared with results from the Pearson correlation analysis. For

491 example, the relationship between LST and mean patch size (AREA_MN) changed from

492 negative to positive in Baltimore. Similarly, the relationship between LST and edge density

493 (ED) in Sacramento changed from negative to positive. This is because most of the

494 configuration variables are inherently correlated to percent cover of trees (Table A3&A4; Li

495 and Wu 2004; Peng et al. 2010; Riitters et al. 1995). For example, mean patch size had a

496 significantly negative correlation with LST based on the Pearson correlation analysis ($r=-$

497 0.56, $p<0.01$; Table 2) in Baltimore at the scale of 120m. This observed correlation, however,

498 is due to the very strong positive correlation between mean patch size and percent cover of

499 trees ($r=0.70$, $p<0.01$; Table A3). After controlling for the effect of percent cover of trees,

500 mean patch size in fact had a significantly positive correlation with LST, due to the reasons

501 we discussed in section 4.1. Therefore, it is crucially important to use statistical methods

502 such as partial correlation and multiple regression models, instead of Pearson correlation, to
503 assess the relative contributions of percent cover of trees and configuration to LST. Using
504 Pearson correlation analysis may generate misleading results.

505 Other statistical approaches, such as path analysis and structural equation modeling
506 have been increasingly used to identify the complex and nested relationships among social
507 conditions, land cover and surface temperatures (Jenerette et al. 2007; Huang and
508 Cadenasso 2016; Tayyebi and Jenerette 2016), which potentially allow the evaluation of
509 direct and indirect effects of tree cover and configuration on LST.

510 Our results also showed that the spatial autocorrelation could influence the relationships
511 between landscape metrics and LST. This is particularly true when the unit of analysis is
512 relatively small. However, when the unit of analysis in this study is relatively large (i.e., equal
513 to or greater than a linear dimension of 600 m), results from OLS modeling and SAR
514 modeling were similar, in terms of both regression coefficient and R^2 . This may suggest that
515 the frequently used OLS is appropriate at such scales.

516 We found that with increasing size of the analytical unit, the relationships between LST
517 and spatial pattern metrics, including both percent cover and configuration, became stronger.
518 The spatial pattern of tree cover also explained more variation in LST. We did not find a
519 “best” size of analytical unit, at which the correlations (or R^2) peaked, and a turning point
520 occurred (Liu and Weng 2009; Peng et al. 2016; Weng et al. 2004). This may be due to the
521 very different data used, as well as the approaches for scaling. Here, the spatial resolution of

522 the image data used to map tree cover was 1 m, but most previous studies used the 30 m
523 Landsat TM data.

524

525 **5. Conclusions**

526 Urban greenspace, particularly trees, has significant cooling effects on urban heat. It is
527 widely recognized that increasing percent coverage of greenspace can greatly reduce
528 ambient air temperatures and land surface temperatures in urban environments. However,
529 recent studies investigating the effects of spatial configuration of greenspace show
530 significant, but inconsistent results, including the direction of the effects. To investigate the
531 causes of this inconsistency, we conducted a comparison study of Baltimore, MD and
532 Sacramento, CA, USA, two cities with very different climatic conditions, using different
533 statistical approaches and analytical units with varied sizes. We found: (1) Trees' cooling
534 efficiency generally was higher in Baltimore than in the hotter and drier Sacramento. (2) The
535 effects of spatial configuration of trees on LST varied greatly in terms of magnitude,
536 significance, and even direction, between the two cities, suggesting spatial configuration of
537 trees may play different roles in cities with different climatic conditions. Percent cover of trees
538 was more important than their spatial configuration in predicting LST in Baltimore, but the
539 opposite was found in Sacramento. Therefore, urban planners and managers should be
540 cautious about directly applying results found in cities with different climatic conditions. (3)

541 When using different statistical approaches, the relationships between LST and configuration
542 metrics could dramatically change. Our results underscore the necessity of controlling the
543 effects of percent cover of trees, when quantifying the effects of spatial configuration of trees
544 on LST. These results contribute to the understanding of the inconsistent results from
545 previous studies, which may be caused by the different methods applied (e.g., Pearson
546 correlation analysis versus partial correlation). (4) Spatial autocorrelation could influence the
547 relationships between landscape metrics and LST, particularly when the unit of analysis is
548 relatively small. (5) With the increase of the size of analytical unit, the relationships between
549 spatial configuration metrics and LST became stronger. This study can enhance the
550 understanding on the effects of spatial configuration of greenspace on UHI. It also provides
551 important insights to urban planners and natural resource managers on how to mitigate the
552 impact of urbanization on UHI through urban design and vegetation management.

553

554 **Acknowledgments**

555 The support of the National Natural Science Foundation of China (41371197 and 41422104)
556 and the One Hundred Talents program of Chinese Academy of Sciences is gratefully
557 acknowledged.

558 **References**

559 Akbari, H., Pomerantz, M., & Taha, H. (2001). Cool surfaces and shade trees to reduce

560 energy use and improve air quality in urban areas. *Solar Energy*, 70, 295-310

561

562 Akbari, H., Rosenfeld, A., Taha, H., & Gartland, L. (1996). Mitigation of summer urban heat

563 islands to save electricity and smog. In, *76th Annual Meteorological Society Meeting, Atlanta*,

564 GA

565

566 Anderson, M.J., & Gribble, N.A. (1998). Partitioning the variation among spatial, temporal

567 and environmental components in a multivariate data set. *Australian Journal of Ecology*, 23,

568 158-167

569

570 Anselin, L. (2005a). Exploring spatial data with GeoDaTM: a workbook. University of Illinois,

571 Urbana

572

573 Anselin, L. (2005b). Spatial Regression Analysis in R: A Workbook. University of Illinois,

574 Urbana

575

576 Arnfield, A.J. (2003). Two decades of urban climate research: a review of turbulence,

577 exchanges of energy and water, and the urban heat island. *International Journal of*

578 *Climatology*, 23, 1-26

579

580 Asgarian, A., Amiri, B.J., & Sakieh, Y. (2015). Assessing the effect of green cover spatial

581 patterns on urban land surface temperature using landscape metrics approach. *Urban*

582 *Ecosystems*, 18, 209-222

583

584 Barsi, J.A., Schott, J.R., Palluconi, F.D., & Hook, S.J. (2005). Validation of a web-based

585 atmospheric correction tool for single thermal band instruments. In, *Optics & Photonics 2005*

586 (pp. 58820E-58820E-58827): International Society for Optics and Photonics

587

588 Bowler, D.E., Buyung-Ali, L., Knight, T.M., & Pullin, A.S. (2010). Urban greening to cool

589 towns and cities: A systematic review of the empirical evidence. *Landscape and Urban*

590 *Planning*, 97, 147-155

591

592 Brazel A., N. Selover, R. Vose and G. Heisler (2000). The Tale of Two Climates—Baltimore

593 and Phoenix Urban LTER Sites. *Climate Research*, 15, 123-135

594

595 Buyantuyev, A., & Wu, J.G. (2010). Urban heat islands and landscape heterogeneity: linking

596 spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns.

597 *Landscape Ecology*, 25, 17-33

598

599 Cadenasso, M.L., Pickett, S.T., Weathers, K.C., & Jones, C.G. (2003). A framework for a
600 theory of ecological boundaries. *Bioscience*, 53, 750-758

601

602 Cao, X., Onishi, A., Chen, J., & Imura, H. (2010). Quantifying the cool island intensity of
603 urban parks using ASTER and IKONOS data. *Landscape and Urban Planning*, 96, 224-231

604

605 Chander, G., & Markham, B. (2003). Revised Landsat-5 TM radiometric calibration
606 procedures and postcalibration dynamic ranges. *Ieee Transactions on Geoscience and*
607 *Remote Sensing*, 41, 2674-2677

608

609 Chander, G., Markham, B.L., & Helder, D.L. (2009). Summary of current radiometric
610 calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. *Remote Sensing*
611 *of Environment*, 113, 893-903

612

613 Chen, A.L., Yao, X.A., Sun, R.H., & Chen, L.D. (2014). Effect of urban green patterns on
614 surface urban cool islands and its seasonal variations. *Urban Forestry & Urban Greening*,
615 13, 646-654

616

617 Connors, J.P., Galletti, C.S., & Chow, W.T.L. (2013). Landscape configuration and urban heat
618 island effects: assessing the relationship between landscape characteristics and land surface
619 temperature in Phoenix, Arizona. *Landscape Ecology*, 28, 271-283

620

621 Dugord, P.-A., Lauf, S., Schuster, C., & Kleinschmit, B. (2014). Land use patterns,
622 temperature distribution, and potential heat stress risk—The case study Berlin, Germany.
623 *Computers, Environment and Urban Systems*, 48, 86-98

624

625 Fan, C., Myint, S.W., & Zheng, B.J. (2015). Measuring the spatial arrangement of urban
626 vegetation and its impacts on seasonal surface temperatures. *Progress in Physical*
627 *Geography*, 39, 199-219

628

629 Fouillet, A., Rey, G., Laurent, F., Pavillon, G., Bellec, S., Guiheneuc-Jouyaux, C., Clavel, J.,
630 Jouglard, E., & Hémon, D. (2006). Excess mortality related to the August 2003 heat wave in
631 France. *International Archives of Occupational and Environmental Health*, 80, 16-24

632

633 Gustafson, E.J. (1998). Quantifying landscape spatial pattern: What is the state of the art?
634 *Ecosystems*, 1, 143-156

635

636 Hamada, S., & Ohta, T. (2010). Seasonal variations in the cooling effect of urban green
637 areas on surrounding urban areas. *Urban Forestry & Urban Greening*, 9, 15-24

638

639 Harlan, S.L., & Ruddell, D.M. (2011). Climate change and health in cities: impacts of heat
640 and air pollution and potential co-benefits from mitigation and adaptation. *Current Opinion in*
641 *Environmental Sustainability*, 3, 126-134

642

643 Heikkinen, R.K., Luoto, M., Kuussaari, M., & Poyry, J. (2005). New insights into butterfly-
644 environment relationships using partitioning methods. *Proc Biol Sci*, 272, 2203-2210

645

646 Huang, G.L., Zhou, W.Q., & Cadenasso, M.L. (2011). Is everyone hot in the city? Spatial
647 pattern of land surface temperatures, land cover and neighborhood socioeconomic
648 characteristics in Baltimore, MD. *Journal of Environmental Management*, 92, 1753-1759

649

650 Imhoff, M.L., Zhang, P., Wolfe, R.E., & Bounoua, L. (2010). Remote sensing of the urban
651 heat island effect across biomes in the continental USA. *Remote Sensing of Environment*,
652 114, 504-513

653

654 Jenerette, G.D., Harlan, S.L., Brazel, A., Jones, N., Larsen, L., & Stefanov, W.L. (2007).
655 Regional relationships between surface temperature, vegetation, and human settlement in a
656 rapidly urbanizing ecosystem. *Landscape Ecology*, 22, 353-365

657

658 Jenerette, G.D., Harlan, S.L., Buyantuev, A., Stefanov, W.L., Declet-Barreto, J., Ruddell,
659 B.L., Myint, S.W., Kaplan, S., & Li, X. (2016). Micro-scale urban surface temperatures are
660 related to land-cover features and residential heat related health impacts in Phoenix, AZ
661 USA. *Landscape Ecology*, 31, 745-760

662

663 Kong, F.H., Yin, H.W., Wang, C.Z., Cavan, G., & James, P. (2014). A satellite image-based
664 analysis of factors contributing to the green-space cool island intensity on a city scale. *Urban*
665 *Forestry & Urban Greening*, 13, 846-853

666

667 Landsat Project Science Office (2009). *Landsat 7 science data users handbook*. Washington,
668 DC: Goddard Space Flight Center, NASA (URL:
669 <http://landsathandbook.gsfc.nasa.gov/handbook.html>)

670

671 Lambers, H., Chapin III, F.S., & Pons, T.L. (2008). Plant physiological ecology(pp. 163-217).
672 New York: Springer

673

674 Lee, S.W., Hwang, S.J., Lee, S.B., Hwang, H.S., & Sung, H.C. (2009). Landscape ecological
675 approach to the relationships of land use patterns in watersheds to water quality
676 characteristics. *Landscape and Urban Planning*, 92, 80-89

677

678 Li, H.B., & Wu, J.G. (2004). Use and misuse of landscape indices. *Landscape Ecology*, 19,
679 389-399

680

681 Li, J.X., Song, C.H., Cao, L., Zhu, F.G., Meng, X.L., & Wu, J.G. (2011). Impacts of landscape
682 structure on surface urban heat islands: A case study of Shanghai, China. *Remote Sensing
683 of Environment*, 115, 3249-3263

684

685 Li, S.C., Zhao, Z.Q., Xie, M.M., & Wang, Y.L. (2010). Investigating spatial non-stationary and
686 scale-dependent relationships between urban surface temperature and environmental
687 factors using geographically weighted regression. *Environmental Modelling & Software*, 25,
688 1789-1800

689

690 Li, W.F., Bai, Y., Chen, Q.W., He, K., Ji, X.H., & Han, C.M. (2014). Discrepant impacts of land
691 use and land cover on urban heat islands: a case study of Shanghai, China. *Ecological
692 Indicators*, 47, 171-178

693

694 Li, X., Zhou, W., & Ouyang, Z. (2013a). Forty years of urban expansion in Beijing: What is
695 the relative importance of physical, socioeconomic, and neighborhood factors? *Applied
696 Geography*, 38, 1-10

697

698 Li, X.M., Zhou, W.Q., & Ouyang, Z.Y. (2013b). Relationship between land surface
699 temperature and spatial pattern of greenspace: What are the effects of spatial resolution?
700 *Landscape and Urban Planning*, 114, 1-8

701

702 Li, X.M., Zhou, W.Q., Ouyang, Z.Y., Xu, W.H., & Zheng, H. (2012). Spatial pattern of
703 greenspace affects land surface temperature: evidence from the heavily urbanized Beijing
704 metropolitan area, China. *Landscape Ecology*, 27, 887-898

705

706 Li, X.X., Li, W.W., Middel, A., Harlan, S., Brazel, A., & Turner, B. (2016). Remote sensing of
707 the surface urban heat island and land architecture in Phoenix, Arizona: Combined effects of
708 land composition and configuration and cadastral-demographic-economic factors. *Remote
709 Sensing of Environment*, 174, 233-243

710

711 Lichstein, J.W., Simons, T.R., Shriner, S.A., & Franzreb, K.E. (2002). Spatial autocorrelation
712 and autoregressive models in ecology. *Ecological Monographs*, 72, 445-463

713

714 Liu, H., & Weng, Q.H. (2009). Scaling Effect on the Relationship between Landscape Pattern
715 and Land Surface Temperature: A Case Study of Indianapolis, United States.

716 *Photogrammetric Engineering and Remote Sensing*, 75, 291-304

717

718 Ma, Y., Kuang, Y.Q., & Huang, N.S. (2010). Coupling urbanization analyses for studying
719 urban thermal environment and its interplay with biophysical parameters based on TM/ETM
720 plus imagery. *International Journal of Applied Earth Observation and Geoinformation*, 12,
721 110-118

722

723 MacFaden, S.W., O'Neil-Dunne, J.P.M., Royar, A.R., Lu, J.W.T., & Rundle, A.G. (2012). High-
724 resolution tree canopy mapping for New York City using LIDAR and object-based image
725 analysis. *Journal of Applied Remote Sensing*, 6, 1-23

726

727 Maimaitiyiming, M., Ghulam, A., Tiyip, T., Pla, F., Latorre-Carmona, P., Halik, U., Sawut, M., &
728 Caetano, M. (2014). Effects of green space spatial pattern on land surface temperature:
729 Implications for sustainable urban planning and climate change adaptation. *ISPRS Journal of
730 Photogrammetry and Remote Sensing*, 89, 59-66

731

732 McCarthy, H.R., Pataki, D.E., & Jenerette, G.D. (2011). Plant water - use efficiency as a
733 metric of urban ecosystem services. *Ecological Applications*, 21, 3115-3127

734

735 McGarigal, K., Cushman, S., Neel, M., & Ene, E. (2002). FRAGSTATS: Spatial Pattern
736 Analysis Program For Categorical Maps. In, *Computer software program produced by the
737 authors at the University of Massachusetts, Amherst. Available at the following
738 web site: <http://www.umass.edu/landeco/research/fragstats/fragstats>*

739

740 Myint, S.W., Zheng, B.J., Talen, E., Fan, C., Kaplan, S., Middel, A., Smith, M., Huang, H.-P.,
741 & Brazel, A. (2015). Does the spatial arrangement of urban landscape matter? Examples of
742 urban warming and cooling in Phoenix and Las Vegas. *Ecosystem Health and Sustainability*,
743 1, 1-15

744

745 Niemelä, J. (1999). Ecology and urban planning. *Biodiversity & Conservation*, 8, 119-131

746 Pataki, D.E., McCarthy, H.R., Litvak, E., & Pincetl, S. (2011). Transpiration of urban forests in
747 the Los Angeles metropolitan area. *Ecological Applications*, 21, 661-677

748

749 Peng, J., Wang, Y.L., Zhang, Y., Wu, J.S., Li, W.F., & Li, Y. (2010). Evaluating the
750 effectiveness of landscape metrics in quantifying spatial patterns. *Ecological Indicators*, 10,
751 217-223

752

753 Peng, J., Xie, P., Liu, Y.X., & Ma, J. (2016). Urban thermal environment dynamics and
754 associated landscape pattern factors: A case study in the Beijing metropolitan region.

755 *Remote Sensing of Environment*, 173, 145-155

756

757 Polsky, C., Grove, J.M., Knudson, C., Groffman, P.M., Bettez, N., Cavender-Bares, J., Hall, S.J., Heffernan, J.B., Hobbie, S.E., & Larson, K.L. (2014). Assessing the homogenization of urban land management with an application to US residential lawn care. *Proceedings of the National Academy of Sciences*, 111, 4432-4437

761

762 Poumadere, M., Mays, C., Le Mer, S., & Blong, R. (2005). The 2003 heat wave in France: dangerous climate change here and now. *Risk analysis*, 25, 1483-1494

764

765 R Development Core Team. (2011). R: a language and environment for statistical computing. Version 2.12.1. R Foundation for Statistical Computing, Vienna

767

768 Ren, Z.B., Zheng, H.F., He, X.Y., Zhang, D., & Yu, X.Y. (2015). Estimation of the Relationship Between Urban Vegetation Configuration and Land Surface Temperature with Remote Sensing. *Journal of the Indian Society of Remote Sensing*, 43, 89-100

771

772 Rhee, J., Park, S., & Lu, Z. (2014). Relationship between land cover patterns and surface temperature in urban areas. *Giscience & Remote Sensing*, 51, 521-536

774

775 Riitters, K.H., O'Neill, R.V., Hunsaker, C.T., Wickham, J.D., Yankee, D.H., Timmins, S.P., Jones, K.B., & Jackson, B.L. (1995). A factor analysis of landscape pattern and structure metrics. *Landscape Ecology*, 10, 23-39

778

779 Riva-Murray, K., Riemann, R., Murdoch, P., Fischer, J.M., & Brightbill, R. (2010). Landscape characteristics affecting streams in urbanizing regions of the Delaware River Basin (New Jersey, New York, and Pennsylvania, U.S.). *Landscape Ecology*, 25, 1489-1503

782

783 Santamouris, M., Cartalis, C., Synnefa, A., & Kolokotsa, D. (2015). On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—a review. *Energy and Buildings*, 98, 119-124

786

787 Schulze, E.-D., Beck, E., & Müller-Hohenstein, K. (2005). Plant ecology(pp. 253-379). Berlin: Springer

789

790 Sobrino, J.A., Jiménez-Muñoz, J.C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. *Remote Sensing of Environment*, 90, 434-440

792

793 Tayyebi, A., & Darrel Jenerette, G. (2016). Increases in the climate change adaption

794 effectiveness and availability of vegetation across a coastal to desert climate gradient in
795 metropolitan Los Angeles, CA, USA. *Science of the Total Environment*, 548–549, 60-71

796

797 Team, R. (2011). A language and environment for statistical computing. *R Development Core*
798 *Team*

799

800 Voogt, J.A., & Oke, T.R. (2003). Thermal remote sensing of urban climates. *Remote Sensing*
801 *of Environment*, 86, 370-384

802

803 Wan, K.K.W., Li, D.H.W., Pan, W.Y., & Lam, J.C. (2012). Impact of climate change on
804 building energy use in different climate zones and mitigation and adaptation implications.
805 *Applied Energy*, 97, 274-282

806

807 Wang, H., Ouyang, Z., Chen, W., Wang, X., Zheng, H., & Ren, Y. (2011). Water, heat, and
808 airborne pollutants effects on transpiration of urban trees. *Environmental Pollution*, 159,
809 2127-2137

810

811 Weng, Q.H. (2009). Thermal infrared remote sensing for urban climate and environmental
812 studies: Methods, applications, and trends. *ISPRS Journal of Photogrammetry and Remote*
813 *Sensing*, 64, 335-344

814

815 Weng, Q.H., Lu, D.S., & Liang, B.Q. (2006). Urban surface biophysical descriptors and land
816 surface temperature variations. *Photogrammetric Engineering & Remote Sensing*, 72, 1275-
817 1286

818

819 Weng, Q.H., Lu, D.S., & Schubring, J. (2004). Estimation of land surface temperature–
820 vegetation abundance relationship for urban heat island studies. *Remote Sensing of*
821 *Environment*, 89, 467-483

822

823 White, M.A., Nemani, R.R., Thornton, P.E., & Running, S.W. (2002). Satellite evidence of
824 phenological differences between urbanized and rural areas of the eastern United States
825 deciduous broadleaf forest. *Ecosystems*, 5, 260-273

826

827 Wu, H., Ye, L.P., Shi, W.Z., & Clarke, K.C. (2014). Assessing the effects of land use spatial
828 structure on urban heat islands using HJ-1B remote sensing imagery in Wuhan, China.
829 *International Journal of Applied Earth Observation and Geoinformation*, 32, 67-78

830

831 Xie, M.M., Wang, Y.L., Chang, Q., Fu, M.C., & Ye, M.T. (2013). Assessment of landscape
832 patterns affecting land surface temperature in different biophysical gradients in Shenzhen,

833 China. *Urban Ecosystems*, 16, 871-886

834

835 Yan, H., Fan, S.X., Guo, C.X., Wu, F., Zhang, N., & Dong, L. (2014). Assessing the effects of
836 landscape design parameters on intra-urban air temperature variability: The case of Beijing,
837 China. *Building and Environment*, 76, 44-53

838

839 Yokohari, M., Brown, R.D., Kato, Y., & Moriyama, H. (1997). Effects of paddy fields on
840 summertime air and surface temperatures in urban fringe areas of Tokyo, Japan. *Landscape*
841 and *Urban Planning*, 38, 1-11

842

843 Yuan, F., & Bauer, M.E. (2007). Comparison of impervious surface area and normalized
844 difference vegetation index as indicators of surface urban heat island effects in Landsat
845 imagery. *Remote Sensing of Environment*, 106, 375-386

846

847 Zhang, X.Y., Zhong, T.Y., Feng, X.Z., & Wang, K. (2009). Estimation of the relationship
848 between vegetation patches and urban land surface temperature with remote sensing.
849 *International Journal of Remote Sensing*, 30, 2105-2118

850

851 Zhou, W.Q., Huang, G.L., & Cadenasso, M.L. (2011). Does spatial configuration matter?
852 Understanding the effects of land cover pattern on land surface temperature in urban
853 landscapes. *Landscape and Urban Planning*, 102, 54-63

854

855 Zhou, W.Q., Qian, Y.G., Li, X.M., Li, W.F., & Han, L.J. (2014). Relationships between land
856 cover and the surface urban heat island: seasonal variability and effects of spatial and
857 thematic resolution of land cover data on predicting land surface temperatures. *Landscape*
858 *Ecology*, 29, 153-167

859

860 Zhou, W., Troy, A., & Grove, M. (2008). Modeling residential lawn fertilization practices:
861 integrating high resolution remote sensing with socioeconomic data. *Environmental*
862 *Management*, 41, 742-752

863

864 Zhou, W.Q., & Troy, A. (2008). An object - oriented approach for analysing and
865 characterizing urban landscape at the parcel level. *International Journal of Remote Sensing*,
866 29, 3119-3135

867 **Appendix**

868 **Table A1**

869 A Descriptive statistics of LST and landscape metrics of trees.

870	City	scale	LST		PTree		AREA_MN		SHAPE_MN		ED		LPI	
			mean	SD	mean	SD	mean	SD	mea	SD	mean	SD	mean	SD
Baltimore	120	31.87	4.14	27.51	24.45	950.02	2267.63	1.37	0.40	57518.11	33468.78	19.25	23.91	
	360	31.87	3.83	28.11	20.52	1191.00	3949.92	1.37	0.17	52488.62	24066.84	14.66	19.97	
	600	31.87	3.56	28.13	18.73	980.78	2740.28	1.35	0.08	51759.32	21151.46	12.34	17.99	
	840	31.78	3.40	28.83	17.71	866.37	1379.75	1.35	0.07	52364.87	19491.47	11.50	17.04	
	1080	31.68	3.28	29.73	16.89	901.85	1933.74	1.34	0.06	53401.59	18325.08	11.26	16.30	
	city	31.87	4.14	27.10		599.60	19526.35	1.32	0.54	478.26		2.14		
Sacramento	120	33.27	2.97	16.93	15.10	81.65	243.84	1.25	0.41	90008.97	62935.26	6.82	9.99	
	360	33.28	2.56	17.29	12.87	79.54	81.49	1.32	0.15	88252.77	51997.52	3.43	6.04	
	600	33.31	2.35	17.42	12.12	80.66	73.43	1.33	0.09	87813.52	47579.94	2.39	4.94	
	840	33.35	2.18	17.41	11.49	80.57	67.24	1.32	0.06	87552.63	44935.50	1.87	3.66	
	1080	33.30	2.06	18.00	10.81	81.28	57.09	1.33	0.05	89677.74	42027.10	1.72	3.43	
	city	33.27	2.97	16.66		73.80	1098.00	1.39	3.33	819.85		0.03		

871 **Table A2**872 Partial correlation between mean patch size and dege density controlling for the effect of
873 percent cover of trees.

874

	Baltimore	Sacraemento
120	-0.655**	-0.438**
360	-0.475**	-0.746**
600	-0.454**	-0.789**
840	-0.643**	-0.807**
1080	-0.528**	-0.846**

875 ** P<0.01 (2-tailed)

876

877

878

879

880

881

882

883

884

885

886

887

888 **Table A3**

889 Correlation matrix between independent variables in Baltimore.

scale	PTree	AREA_MN	SHAPE_MN	ED	LPI
120m	PTree	1			
	AREA_MN	0.70**	1		
	SHAPE_MN	0.51**	0.31**	1	
	ED	0.66**	0.11**	0.54**	1
	LPI	0.95**	0.78**	0.45**	0.45** 1
360m	PTree	1			
	AREA_MN	0.53**	1		
	SHAPE_MN	0.61**	0.46**	1	
	ED	0.61**	0.00	0.44**	1
	LPI	0.91**	0.61**	0.52**	0.31** 1
600m	PTree	1			
	AREA_MN	0.54**	1		
	SHAPE_MN	0.73**	0.50**	1	
	ED	0.62**	0.04*	0.53**	1
	LPI	0.88**	0.64**	0.52**	0.29** 1
840m	PTree	1			
	AREA_MN	0.76**	1		
	SHAPE_MN	0.72**	0.46**	1	
	ED	0.63**	0.16	0.65**	1
	LPI	0.87**	0.87**	0.45**	0.27** 1
1080m	PTree	1			
	AREA_MN	0.60**	1		
	SHAPE_MN	0.72**	0.34**	1	
	ED	0.62**	0.05	0.67**	1
	LPI	0.86**	0.71**	0.40**	0.25** 1

890 ** P<0.01, * P<0.05 (2-tailed)

891

892

893

894 **Table A4**

895 Correlation matrix between independent variables in Sacramento.

scale	Ptree	PTree	AREA_MN	SHAPE_MN	ED	LPI
120m	Ptree	1				
	AREA_MN	0.40**	1			
	SHAPE_MN	0.44**	0.20**	1		
	ED	0.85**	0.12**	0.48**	1	
	LPI	0.84**	0.52**	0.31**	0.50**	1
360m	Ptree	1				
	AREA_MN	0.67**	1			
	SHAPE_MN	0.41**	0.38**	1		
	ED	0.87**	0.31**	0.40**	1	
	LPI	0.70**	0.76**	0.19**	0.36**	1
600m	Ptree	1				
	AREA_MN	0.69**	1			
	SHAPE_MN	0.48**	0.46**	1		
	ED	0.87**	0.32**	0.44**	1	
	LPI	0.61**	0.72**	0.14**	0.28**	1
840m	Ptree	1				
	AREA_MN	0.70**	1			
	SHAPE_MN	0.69**	0.57**	1		
	ED	0.88**	0.34**	0.65**	1	
	LPI	0.61**	0.75**	0.22**	0.28**	1
1080m	Ptree	1				
	AREA_MN	0.73**	1			
	SHAPE_MN	0.69**	0.62**	1		
	ED	0.88**	0.38**	0.64**	1	
	LPI	0.57**	0.69**	0.21*	0.27**	1

896 ** P<0.01, * P<0.05 (2-tailed)

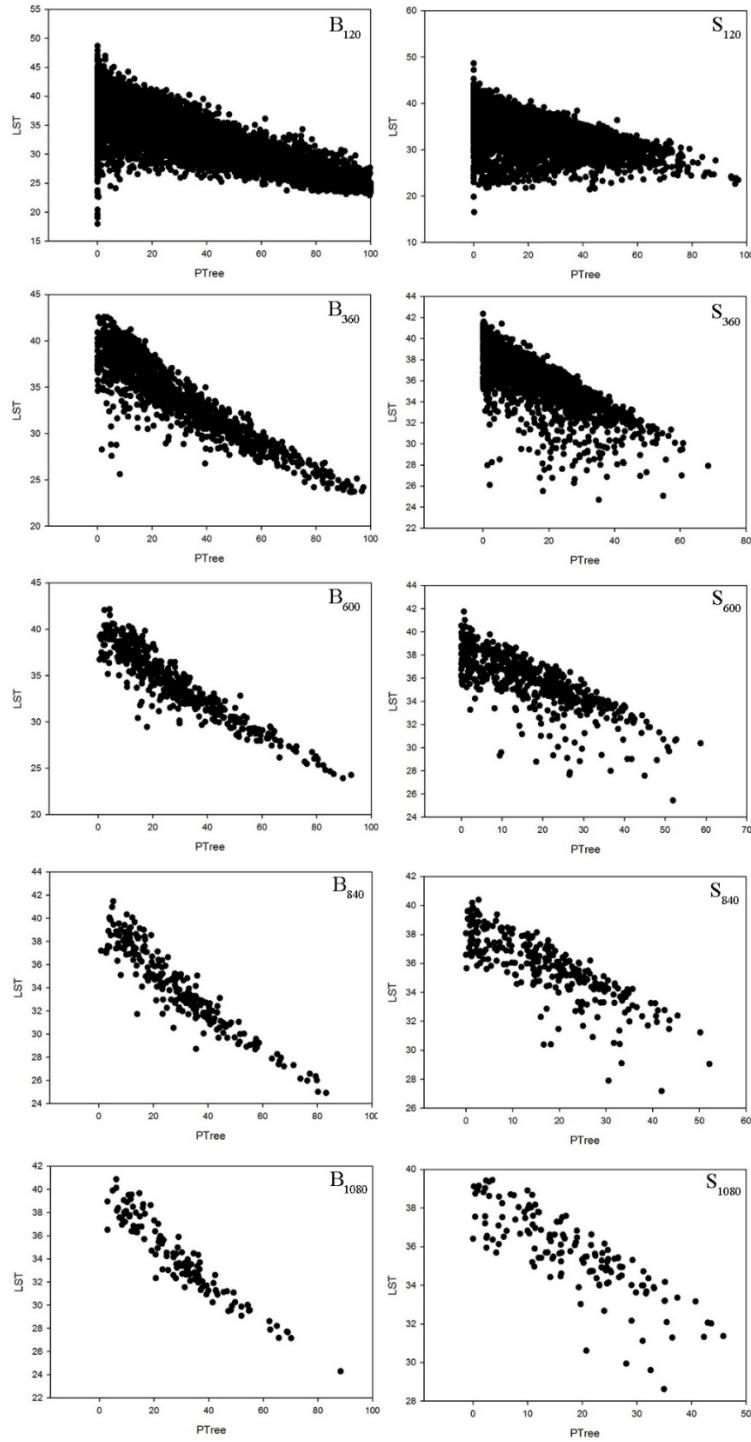
897

898

899

900

901



902

903 Fig. A1 Scattergrams of land surface temperature (LST) VS.Percent cover of tree canopy
 904 across all scales at two cities: B₁₂₀, B₃₆₀, B₆₀₀, B₈₄₀ and B₁₀₈₀: Baltimore; S₁₂₀, S₃₆₀, S₆₀₀, S₈₀₀
 905 and S₁₀₈₀: Scaramento.