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ABSTRACT:

Urban greenspace has significant cooling effects on urban heat. Recent studies investigating
the effects of spatial configuration of greenspace show significant, but inconsistent results,
including both positive and negative effects. To investigate the causes of this inconsistency,
we compared Baltimore, MD and Sacramento, CA, USA, two cities with very different
climatic conditions. We quantified and compared the relationships between the spatial
configuration of trees and land surface temperature (LST) using different statistical

approaches, and conducted the analyses using spatial units of different sizes, based on
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trees mapped from 1 m high resolution imagery. We found: (1) Trees’ cooling efficiency was

higher in Baltimore than in hotter and drier Sacramento. Additionally, percent cover of trees

was more important than their spatial configuration in predicting LST in Baltimore, but the

opposite was found in Sacramento. (2) Spatial configuration of trees affects LST more in

Sacramento than in Baltimore, and the effects of spatial configuration of trees on LST varied

greatly in terms of magnitude, significance, and even direction, between the two cities.

Notably, mean patch size had significantly positive effects on LST in Baltimore, but negative

effects in Sacramento. In contrast, edge density had negative effects on LST in Baltimore,

but positive effects in Sacramento. (3) Different statistical approaches resulted in dramatic

changes in the relationships between LST and configuration metrics. Our results underscore

the necessity of controlling the effects of percent cover of trees, when quantifying the effects

of spatial configuration of trees on LST. (4) Spatial autocorrelation may influence

relationships between landscape metrics and LST, particularly when the unit of analysis is

relatively small. (5) The relationships between spatial configuration metrics and LST are

stronger with an increase of the size of the analytical unit. This study can enhance our

understanding of the effects of spatial configuration of greenspace on urban heat island

(UHI). It also provides important insights to urban planners and natural resource managers

on how to mitigate the impact of urbanization on UHI through urban design and vegetation

management.

Keywords: Urban tree canopy; Spatial configuration; Urban heat mitigation; Urban Ecology,
2
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Baltimore, Sacramento

1. Introduction

Urban heat island (UHI) describes the phenomenon by which urban areas are warmer than

surrounding non-urban areas (Voogt and Oke 2003). Increased temperatures due to the UHI

effect may increase water consumption and energy use in urban areas (Santamouris et al.

2015; Wan et al. 2012), alter species composition and distribution (Niemela 1999; White et

al. 2002), and lead to an increase in the production of ground level ozone which has direct

consequences for human health (Akbari et al. 2001; Akbari et al. 1996). In addition, excess

heat affects the comfort of urban dwellers and leads to greater health risks (Poumadere et al.

2005). In fact, extreme heat increases mortality and morbidity in cities worldwide (Fouillet et

al. 2006; Harlan and Ruddell 2011). Consequently, how to mitigate and adapt to the UHI has

become a major research focus in urban climatology and urban ecology (Arnfield 2003;

Weng 2009; Zhou et al. 2011).

Considerable research has demonstrated the significant cooling effects of urban

greenspace on urban heat (Fan et al. 2015; Jenerette et al. 2007; Kong et al. 2014; Li et al.

2016; Ma et al. 2010; Weng et al. 2004; Zhou et al. 2011). Increasing the percent cover of

greenspace can greatly reduce ambient air temperatures and land surface temperatures

(Bowler et al. 2010; Connors et al. 2013; Fan et al. 2015; Li et al. 2012; Weng et al. 2004;

Zhou et al. 2011; Zhou et al. 2014). In addition, the spatial configuration (or arrangement) of

greenspace, can also have significant effects on land surface temperature (LST) (Chen et al.
3
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2014; Fan et al. 2015; Kong et al. 2014; Li et al. 2013b; Li et al. 2012; Maimaitiyiming et al.

2014; Myint et al. 2015; Zhou et al. 2011). Because cities have limited space for greening,

managers and decision-makers would benefit from knowing how to optimize the spatial

configuration of greenspace to further alleviate urban heat stress (Huang et al. 2011; Li et al.

2016; Myint et al. 2015; Zhou et al. 2011).

We know that simply increasing the percent cover of greenspace leads to a reduction of

temperatures; this relationship is very consistent. What is less known, however, is the effects

of the spatial configuration of that greenspace on urban temperatures. Research results are,

in some cases, contradictory. For example, greater patch density of greenspace reduced

LST in studies conducted in Shenzhen (Li et al. 2010) and Shanghai, China (Li et al. 2011),

Baltimore, USA (Zhou et al. 2011), and Berlin, Germany (Dugord et al. 2014), but was

associated with increased LST in Beijing, China (Li et al. 2013b; Li et al. 2012). Similarly,

edge density of greenspace was found to be negatively correlated to LST in many cities

(Dugord et al. 2014; Li et al. 2011; Li et al. 2014; Maimaitiyiming et al. 2014; Rhee et al.

2014; Zhang et al. 2009; Zhou et al. 2011), but positively correlated in others (Li et al. 2013b;

Wu et al. 2014). This inconsistency prevents the application of results to urban greenspace

planning and management (Li et al. 2013b).

The reasons for this inconsistency remain largely unaddressed. It may be because

these studies have been conducted 1) in cities with contrasting climatic conditions; 2) using a

variety of statistical analysis (Fan et al. 2015; Kong et al. 2014; Li et al. 2013b; Li et al. 2012;
4
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Myint et al. 2015; Zhou et al. 2011); 3) based on maps from image data with spatial

resolution ranging from sub-meter to1000 m (Li et al. 2013b; Rhee et al. 2014; Wu et al.

2014; Zhou et al. 2011); and 4) using a variety of analytical units with different sizes such as

grids or pixels (Peng et al. 2016; Rhee et al. 2014), city blocks (Dugord et al. 2014), sub-

districts (Li et al. 2013b), or self-defined polygons (Zhou et al. 2011). Does spatial

configuration of greenspace affect temperatures differently in cities with different climatic

conditions? Or, is this inconsistency due to the varied statistical approaches applied, or

different units of analysis, or different resolutions of data to map greenspace?

Here, we address these questions by conducting a comparison study of Baltimore, MD

and Sacramento, CA, USA, two cities with very different climatic conditions. We quantified

and compared the relationships between spatial configuration of trees and LST using

different statistical approaches, and conducted the analyses at sampling units of different

sizes. We mapped tree canopies using 1 m resolution imagery. This decision was based on

the work of Li et al. (2013b) and Zhou et al. (2014), which suggested that the spatial

resolution of image data used to map greenspace influenced the statistical relationships

between spatial configuration of greenspace and LST, and that high spatial resolution image

data are more appropriate in such analysis. Results from the present study can enhance the

understanding of the effects of spatial configuration of greenspace on UHI. In addition,

important insights can be provided to urban planners and natural resource managers on how

to mitigate the impact of urbanization on UHI through urban design and vegetation
5
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2. Methods

2.1. Study area

The research focuses on two cities with contrasting climatic conditions, Baltimore, Maryland,
USA, and Sacramento, California, USA. Baltimore is a temperate coastal city characterized
by hot and humid summers (Brazel et al. 2000), while Sacramento has a Mediterranean
climate characterized by hot, but dry summers. Baltimore is built in a biome dominated by
temperate broadleaf and mixed forest, whereas Sacramento belongs to a biome dominated
by grassland, with riparian forests only along the streams and shrub and woodlands that do
not occur until in the sierra foothills and higher elevation (Imhoff et al. 2010).

Baltimore is the largest city in Maryland, with a total area of 239 km? and total population
of approximately 0.62 million in 2014. Close to the Chesapeake Bay, its annual average
temperature is 12.6°C, and average precipitation is approximately 1070mm. Sacramento is
the capital city of California. It has a total area of 259 km?, and total population of about 0.48
million in 2014. Located at the confluence of the Sacramento and American rivers, its annual
average temperature is 16.2°C and average precipitation is approximately 450mm. The

similarity in the sizes of total population and area, but the contrast in climatic conditions and
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biomes, make the two cities ideal for the comparisons conducted in this research.

2.2. Data

2.2.1. Land surface temperature

The LST data were derived from the thermal infrared (TIR) band (10.40-12.50 um) of two

Landsat-5 Thematic Mapper (TM) images with a spatial resolution of 120 m (Fig. 1B.sT,

Sis1)- The TM data for Baltimore and Sacramento were acquired on August 11, 2007 (row

33/path 15), and August 14, 2010 (row 33/path 44), respectively. LST was derived for

different years in order to coincide with the years the land cover for the two cities was

collected — Baltimore in 2007 and Sacramento in 2010.

We first calculated the top-of-atmospheric (TOA) radiance based on the digital number

(DN) of the TM TIR band (Chander and Markham 2003; Landsat Project Science Office

2009). We then calculated the surface-leaving radiance from TOA radiance by removing the

effects of the atmosphere in the thermal region (Asgarian et al. 2015; Barsi et al. 2005;

Sobrino et al. 2004; Yuan and Bauer 2007; Zhou et al. 2014). Finally, LST was calculated

from surface-leaving radiance using the Plank function (Chander and Markham 2003;

Chander et al. 2009).
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2.2.2. Spatial pattern of tree canopy

We mapped the urban tree canopy based on 1-m resolution imagery from the National

Agriculture Imagery Program (NAIP), using an object-based classification approach

(MacFaden et al. 2012; Zhou and Troy 2008). The imagery is 4-band color-infrared, with

radiometric depth of 8 bits. Ancillary data, such as light detecting and ranging (Lidar) data

and building footprint layers, were used to aid in classification. Six classes were included in

the classification map: trees (i.e., tree canopy), grasses, pavement, buildings, water and bare

soil (Fig. 1 Brc, Stc). The accuracies of the land cover classifications were assessed by

visually referencing to sub-meter high-resolution imagery using protocol developed in Zhou

and Troy (2008). The overall accuracies of the classifications were 95.7% for Baltimore and

93.6% for Sacramento. The user’s and producer’s accuracy of trees for Baltimore were

97.3% and 97.5%, and 98.2% and 96.7% for Sacramento.



145

o

I City of Sacramento
M I City of Balimore

B Tree canopy
I Tree canopy 3 x SICity of Baltimore
I City of Sacramento -
0275 55 L + 0225 45
LST

o High : 50.99

\ .Low:a.ss
I City of Sacramento S COCity of Ballimore
Q275 58 e 0 225 45 4




146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Fig.1. The spatial distribution of tree canopy and land surface temperatures in Baltimore
(panels Brc and B st) and Sacramento (Panels Stc and S st).

There are numerous metrics that can be used to measure and describe spatial patterns
of land cover features (Gustafson 1998; McGarigal 2002). Here, we chose 5 landscape
metrics to measure the spatial pattern of urban trees, including one composition metric:
percent cover of trees (PTree), and four configuration metrics: (1) mean patch size
(AREA_MN), (2) edge density (ED), (3) mean patch shape index (SHAPE_MN), and (4)
largest patch index (LPI) (Table 1). These metrics represent the primary characteristics
describing the spatial pattern of trees, including the abundance of trees, size and shape of
patches, edge density, and fragmentation. These metrics were chosen based on the
following considerations: (1) importance in both theory and practice (Lee et al. 2009; Li and
Wu 2004; Peng et al. 2010; Zhou et al. 2011), (2) easily calculated and interpretable (Li et al.
2012; Zhou et al. 2011), and (3) minimal redundancy (Riitters et al. 1995; Li and Wu 2004;

Zhou et al. 2011). These metrics were calculated in ArcGIS™ 10.1.

10



166 Table 1

167  Landscape metrics used in this study, after McGarigal et al. (2002)

Categories  Landscape Metrics Description Equation Citations
(abbreviation) (Unit)
s Percent cover of tree Proportion of tree canopy ™ a 100 (Li et al. 2014;
% canopy area within an analysis unit. Zhou et al. 2011)
3 pT (%)
5 (PTree)
O
Mean patch size The average area of tree nLa; (Kong et al. 2014;
(AREA_MN) canopy patches within an N Zhang et al. 2009)
2
analysis unit. (m?)
Mean patch shape index = The average shape index of ?:1% (Li etal. 2012;
( SHAPE_MN) tree canopy patches within N Peng et al. 2010)
[
-% an analysis unit.
=
=2
E Edge density The total perimeter of tree v (Connors et al. 2013;
(ED) canopy patches per km? Maimaitiyiming et al.
within an analysis unit. (m/ha) 2014)
Largest patch index The proportion of the largest max a; 100 (Rhee et al. 2014;
*
(LPI) tree canopy patch within an A Zhou et al. 2011)
analysis unit. (%)
168 a;area of tree canopy patch i; p;perimeter of tree canopy patch /; A total area of analysis

169  unit; N number of patches of tree canopy.

170 2.3 Statistics analysis

171  We investigated the relationships among spatial patterns of tree canopy and LST at multiple

11
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scales, that is, using different sizes of analytical units. Specifically, 5 sizes of analytical unit

were used: 1) 1 x 1 pixel (or a grid cell of 120m x 120 m, the same as the pixel size of the

Landsat TM thermal band), 2) 3 x 3 pixels (360m x 360 m), 3) 5 x 5 pixels (600m x 600 m),

4) 7 x 7 pixels (840m x 840 m), and 5) 9 x 9 pixels (1080m x 1080 m) (Liu and Weng 2009).

For each analytical unit (i.e., a grid cell), we calculated the mean LST as the response

variable for statistical analyses. The predictor variables were the percent cover of tree

canopies, and the four landscape metrics (Table 1). Table A1 shows the mean and standard

deviation of LST and landscape metrics.

A Pearson correlation matrix was first developed to examine the correlations between

LST and the spatial pattern metrics of trees. We then conducted a partial correlation analysis

to investigate the relationships between LST and the configuration metrics, by controlling for

the effect of the percent cover of trees. Controlling for the effect tree canopy percent is

necessary because the configuration metrics were highly correlated to percent cover of

trees, and therefore the Pearson correlation analysis may obtain spurious relationships

between LST and configuration metrics.

We then used ordinary least squares (OLS) multiple linear regression model and spatial

autoregression (SAR) model to examine the effects of the spatial pattern of trees on LST. We

used standardized coefficients (beta weights) to evaluate the relative importance of percent

cover and configuration metrics on predicting LST (Weng et al. 2006; Yan et al. 2014; Zhou

et al. 2011), and variance partitioning to quantify the explanatory power of the predictors
12
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(Anderson and Gribble 1998; Li et al. 2013a; Li et al. 2012).

The OLS regression model is the most commonly used statistical analysis, with the

assumption that the error terms are independent. The primary analyses showed that

significant spatial autocorrelation (P<0.01) occurred in the residuals of the OLS model.

Consequently, spatial autoregression models that integrate spatial autocorrelation into

modeling were more appropriate to investigate the relationships between LST and spatial

patterns of trees (Li et al. 2012). We also included the OLS regression model for comparison

purposes, as many studies in the literature use such analyses. Below, we briefly describe the

spatial autoregression models and variance partitioning. More details can be found in Li et al.

(2012).

With SAR, the neighborhood relationship of the response variable is explicitly measured

by a (n x n) matrix of spatial weights, which is integrated into the standard multiple linear

regression to account for spatial autocorrelation (Anselin 2005a). The spatial autocorrelation

can be modeled in two ways: a spatial lag model and a spatial error model (Anselin 2005a).

The spatial lag model assumes that the spatial autoregressive occurs only in the response

variable. The form of the spatial lag model is:

y=pWy+pX+e (1)

where Wy is a (n x 1) vector of the spatially lagged response variable, p is a spatial

autoregressive coefficient, X is a (n x k) vector of explanatory variables, B is a (k x 1) vector

of regression coefficients, and € is a (n x 1) vector of independently distributed errors.
13
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In contrast, the spatial error model assumes the spatial effects that are not fully
explained by the explanatory variables occurs in the error terms, and therefore, is expressed
as:

y=BX+AWu+e (2)
where Wy is a (n x 1) vector of spatially lagged errors, and A is a spatial autoregressive
coefficient.

We used the Lagrange Multiplier statistics to compare the two modeling approaches,
and found that the spatial error model better fit the data in this study. The regressions were
then run using the spatial error model, and a maximum likelihood method. The R? values
were calculated as detailed in Lichstein et al. (2002), which were comparable with those from
the OLS regression model. The regressions were run in GeoDa 1.6.7 and spdep package of
R (Version 2.12.1; R Development Core Team 2011)

Variance partitioning was used to quantify the relative variations in LST explained by:
the percent cover of trees and the configuration metrics. The variation of LST was divided
into four fractions: (1) unique effects of percent cover of trees, (2) unique effects of
configuration metrics, (3) joint effects of percent cover of trees and configuration metrics, and
(4) unexplained. Variance partitioning was conducted following the procedure detailed in
Anderson and Gribble (1998) and in Heikkinen et al. (2005), using the spdep package

(Anselin 2005b) of R (Version 2.12.1; R Development Core Team 2011).

14
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3. Results

3.1. The spatial distribution of trees and LST in the two cities

The percent cover of trees, as well as the spatial configuration, differed greatly between the
two cities (Fig. 1Btc, Stc). Approximately 27.1% of the land in Baltimore was covered by
trees, but only 16.7% in Sacramento. Compared to Sacramento, trees in Baltimore are more
clustered, especially in the northwest region of the city (Fig. 1Br¢). For both cities, percent
cover of trees varied greatly in space. Taking the analytical unit of 600 x 600 m as an
example, percent cover of trees in grid cells varied from 0.50% to 92.62% across Baltimore,
with a standard deviation of 18.73%. In Sacramento, percent cover ranged from 0 to 58.68%,
with a standard deviation of 12.12% (Table A1). The mean patch size of trees in Baltimore
was 599.6 m?, much greater than that of 73.80 m? in Sacramento. In contrast, the patch
density and edge density of trees in Sacramento were much higher than that of Baltimore
(2227/km? versus 399/km? for patch density and 819.85 m/ha versus 422.31 m/ha for edge
density), suggesting that tree cover was more fragmented in Sacramento. The mean shape
index was similar in the two cities (1.32 in Baltimore and 1.39 in Sacramento), suggesting
that the complexity of the tree patches is similar.

Land surface temperatures varied greatly in space for both cities (Fig. 1S.st, Sist). LST
in Baltimore ranged from 8.93°C to 50.99°C, with a mean of 33.37°C and standard deviation

of 4.69°C, while it ranged from 12.17°C to 50.11°C, with a mean of 35.60°C and standard

15
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deviation of 3.25°C in Sacramento (Table A1). For both cities, LST was significantly

autocorrelated in space, as indicated by Moran’s | (Baltimore: Moran’s | = 0.88, p < 0.01;

Sacramento: Moran’s | = 0.72, p < 0.01). LST tended to be higher in locations with less tree

canopy coverage (Fig. 1Btc, Brc, SisT, SisT).

3.2. Effect of spatial patterns of trees on LST: difference between cities and across analytical

scales

3.2.1 Effects of percent cover of trees on LST

The percent cover of trees was significantly negatively correlated with LST, across all

analytical scales, for both cities, suggesting LST decreased with the increase of percent

cover of trees (Table 2; Fig. A1). The Pearson correlation analysis showed that percent cover

of tree canopy had the strongest correlation with LST among the 5 metrics. For both cities,

the strength of the correlations between LST and percent cover of trees, as indicated by the

correlation coefficients, increased with the increase of the size of the analytical unit. The

correlations between LST and percent cover of trees, however, were generally stronger in

Baltimore than in Sacramento across all 5 analytical scales, suggesting that percent cover of

trees might explain more variations of LST in milder coastal regions compared to hotter and

drier ones.
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269  Table 2

270  Correlation coefficients between LST and landscape metrics. The italic and bold rows are for

271  partial correlation analysis, where for configuration metrics, the control variable was percent

272  cover of tree, and for percent cover of tree, the control variables were the configuration metrics.

City  Scale PTree AREA MN  SHAPE_MN ED LPI
120m -0.830" -0.561" -0.418" -0.559" -0.782"
-0.260" 0.054~ 0.003 -0.033" 0.036"
360m -0.904" -0.453" -0.604" -0.555 -0.805 "
-0.502* 0.059° -0.143" -0.007 0.076"
()
g 600m -0.926" -0.478" -0.752" -0.578" -0.796"
3 -0.499** 0.085 -0.308" -0.011 0.123"
840m -0.937" -0.687" -0.764" -0.604" -0.779"
-0.574* 0.119 -0.363" -0.053 0.185°
1080m -0.948" -0.535 -0.767" -0.618" -0.778"
-0.562** 0.149 -0.390" -0.116 0.224
I f2om 060" 384" - 031" o464 -0602"
-0.234* -0.147" -0.115~ 0.197" -0.157"
360m -0.723" -0.704" -0.332" -0.525 06117
° -0.134* -0.432" -0.051 0.309" -0.219°
g 600m -0.768" -0.750" -0.345 " -0.564" -0.588"
§ -0.087* -0.475~ 0.041 0.341" -0.238"
840m -0.811" -0.788" -0.545 " -0.609" -0.609"
-0.105 -0.529" 0.025 0.375~ -0.253"
1080m -0.819" -0.822" -0.578" -0.610" -0.589"
0.047 -0.565~ -0.022 0.410" -0.259"

273  ** P<0.01, * P<0.05 (2-tailed)
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3.2.2. Effects of spatial configuration of trees on LST

The Pearson correlation analysis showed that all 4 metrics of tree configuration were

significantly, negatively correlated with LST, across all analytical scales, for both cities (Table

2). Similar to percent cover of trees, the strength of the correlations between LST and the 4

configuration metrics also generally increased with the increase of the size of the analytical

unit; the correlations between LST and the 4 configuration metrics were stronger in Baltimore

than in Sacramento. Among the 4 configuration metrics, the largest patch index had relatively

strong correlations with LST.

After controlling for the effects of percent cover of trees, the correlations (i.e., partial

correlations) between configuration metrics and LST changed greatly, as indicated by the

results from the partial correlation analysis (Table 2). These changes included the following:

1) the strength of partial correlations, measured by the partial correlation coefficients, greatly

decreased, compared with their corresponding Pearson correlation coefficients; 2) some of

the configuration metrics were no longer significantly correlated to LST; and 3) more notably,

the relationships between some of the configuration metrics and LST changed from negative

to positive.

These changes in the relationships between LST and configuration metrics, however,

varied dramatically in the two cities, in terms of magnitude, significance, and direction.
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Specifically, after controlling for the effects of percent cover of trees, the correlation between

mean patch size (AREA_MN) and LST changed from negative to positive when the analytical

unit was less than or equal to 360m, and then to no longer significant in Baltimore. Similarly,

edge density (ED) was no longer significantly correlated to LST at the analytical unit greater

than 120 m on a side. In Sacramento, however, AREA_MN still had a relatively strong

negative relationship with LST across all scales, but the relationships between ED and LST

changed from negative to positive. SHAPE_MN remained significantly correlated with LST in

Baltimore, but not in Sacramento. LPI remained significantly correlated with LST for both

cities. However, these correlations changed from negative to positive in Baltimore, when

controlling for the effects of percent cover of trees (Table 2). For all 4 configuration metrics,

the partial correlations were stronger in Sacramento than in Baltimore, in contrast to the

Pearson correlations.

3.2.3. Relative importance of amount and configuration of trees on LST

Results from the OLS multiple linear regressions showed that in Baltimore, percent cover of

trees (PTree) had significantly negative effects on LST, across the 5 analytical scales (Table

3). In addition, PTree was the most important predictor of LST, playing a much more

important role in predicting LST than the other spatial configuration variables, as suggested

by the standard coefficients (Table 3). None of the configuration variables were significant at

any analytical scale. Among the 4 configuration metrics, shape index (SHAPE_MN) played a
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relatively important role in predicting LST, and had a negative effect (Table 3). Results from

the variation partitioning also indicated that percent cover of trees played a more important

role than that of configuration of trees (Fig. 2).

In Sacramento, however, the relative importance of percent cover of trees (PTree) and

spatial configuration differed greatly from that of Baltimore. PTree became no longer

significantly related to LST at the analytical units having length scales of 840 m and 1080 m.

In contrast, mean patch size (AREA_MN) was significant at all 5 analytical units, and shape

index (SHAPE_MN) and edge density (ED) were significant at all scales except for 360 m. In

addition, configuration metrics became more important in predicting LST, with AREA_MN

being the most important predictor of LST for analytical units larger than 120 m on a side

(Table 3). Results from the variation partitioning also indicated that configuration of trees

played a more important role than that of percent cover of trees (Fig. 2).
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332 Table 3

333  Results from the OLS multiple linear regressions and the diagnostics for spatial dependence.

334 The bold and italic rows are standardized coefficients.

City Scale PTree AREA_MN SHAPE_MN ED LPI R? Moran's| AIC
-0.154**  7.879E-05**  0.024 1.772E-06 0.007
120m 0.690 0.602 63539.400
-0.911 0.043 0.002 0.014 0.042
-0.195"*  5.860E-05**  -2.071** 1.359E-05**  0.024**
360m 0.824 0.460 5478.030
-1.046 0.060 -0.091 0.085 0.126
o
_g -0.168*  1.291E-04**  -8.697** 1.225E-05* 0.001
= 600m 0.877 0.427 1619.540
o -0.883 0.099 -0.203 0.073 0.005
-0.179*  2.168E-04 -10.290** 1.692E-05* 0.003
840m 0.897 0.372 708.088
-0.934 0.088 -0.202 0.097 0.017
-0.168"*  1.080E-04 -11.524** 9.709E-06 -0.003
1080m 0.915 0.424 365.764
-0.865 0.064 -0.199 0.054 -0.014
-0.160*™  -0.001** -0.993** 1.435E-05"  -0.002
120m 0.449 0.653 75885.800
-0.817 -0.039 -0.138 0.304 -0.006
-0.083**  -0.014** 0.309 -1.991E-06 0.008
360m 0.612 0.393 6578.530
° -0.419 -0.434 0.018 -0.041 0.019
=
E -0.047* -0.019** 3.649** -1.137E-05** 0.016
g 600m 0.696 0.323 1973.260
S -0.245 -0.596 0.142 -0.231 0.033
-0.051 -0.023** 7.498** -1.450E-05*  0.068*
840m 0.770 0.369 823.595
-0.266 -0.700 0.203 -0.298 0.114
0.025 -0.032** 8.182** -2.671E-05"* 0.028
1080m 0.796 0.318 413.287
0.131 -0.876 0.212 -0.546 0.046

335 ** P<0.01, * P<0.05 (2-tailed)
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I 2: Unique effect of percent cover of trees
[ b Unique effect of spatial configuration metrics
1.0 A I c: Joint effect of percent cover of tree canopy and spatial configuration metrics

8
4 )V |

0.0

AN

120 360 600 840 1080 | 120 360 600 840 1080
Baltimore Sacramento

120 360 600 840 1080 | 120 360 600 840 1080
a 0.023 0.059 0.041 0.051 0.039| 0.032 0.007 0.002 0.003 0.000
b 0.001 0.007 0.019 0.019 0.018| 0.040 0.090 0.106 0.113 0.124
[ 0.667 0.758 0.817 0.827 0.859| 0.377 0.515 0.588 0.655 0.671

Fig. 2. The results of variance partitioning for percent cover of tree canopy and spatial
configuration across spatial scales.

Overall, results from the spatial error models were similar to those of the OLS regression
models (Table 4). This was particularly true when the analytical units were relatively large.
For example, when the analytical unit was greater than or equal to 600 m on a side, the
coefficients of the predictors, and the R?values were similar between OLS models and
spatial error models. However, it should be noted that at the analytical length scale of 120 m,
the absolute values of coefficients from the spatial error models were much smaller than

those from the OLS regression models, suggesting the importance of considering spatial



346 autocorrelation at finer scales.

347 For both OLS and SAR, results from the standard coefficients and variance partitioning

348  showed that among the five metrics, PTree was the most important predictor of LST in

349 Baltimore. In Sacramento, however, configuration metrics, such as AREA_MN, were better

350 predictors of LST than PTree, when the size of analytical unit was greater than 120m (for

351  OLS) or 360m (for SAR).
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359
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366 Table 4

367  The results of spatial error models. The bold and italic rows are standardized coefficients.

City Scale PTree AREA_MN SHAPE_MN ED LPI RA2 AlC
-0.059** 9.370E-06 -0.122** -1.376E-06 0.004**
120m 0.932 42232.200
-0.349 0.005 -0.012 -0.011 0.026
-0.148** 2.432E-05* -0.997** 1.072E-05** 0.010
360m 0.900 4663.350
° -0.790 0.025 -0.044 0.067 0.052
S
o
_g -0.171** 7.819E-05**  -5.565** 2.306E-05** 0.010
® 600m 0.920 1405.970
@ -0.900 0.060 -0.130 0.137 0.048
-0.165** 8.307E-05 -10.560** 2.135E-05**  0.001
840m 0.924 641.347
-0.858 0.034 -0.207 0.123 0.004
-0.164** 5.917E-05 -11.100** 1.735E-05* -0.003
1080m 0.941 317.275
-0.846 0.035 -0.191 0.097 -0.013
-0.063** 0.000 -0.251** 5.363E-06** 0.003
120m 0.865 51781.6
-0.319 0.001 -0.035 0.114 0.011
-0.114** -0.007** -0.218 5.921E-06* 0.015
360m 0.741 5875.27
i) -0.572 -0.211 -0.013 0.120 0.035
[
Q
g -0.047* -0.015** 2.631** -8.548E-06 0.001
6 600m 0.763 1827.85
8 -0.243 -0.480 0.102 -0.173 0.002
-0.072* -0.021** 7.121** -8.109E-06 0.061*
840m 0.827 744.035
-0.379 -0.637 0.193 -0.167 0.102
0.019 -0.034** 8.371** -2.298E-05** 0.029
1080m 0.838 379.032
0.101 -0.932 0.217 -0.469 0.048
368 ** P<0.01, * P<0.05 (2-tailed)
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4. Discussion

4.1. The effects of tree cover and its spatial configuration on LST: Relative importance varied

greatly between cities in different climatic zones

Percent cover of trees had similar effects on LST for both cities despite the different climatic

conditions of these cities. These results are similar to findings from previous studies (Li et al.

2011; Li et al. 2013b; Weng et al. 2004; Zhou et al. 2011). Increasing the percent cover of

trees can significantly decrease LST for both cities. However, the efficiency in cooling,

defined as the decrease in degrees of LST with every 1% increase in tree cover (Buyantuyev

and Wu 2010; Hamada and Ohta 2010; Li et al. 2013b; Peng et al. 2016; Xie et al. 2013),

was higher in Baltimore than in Sacramento at all five scales of analytical unit (Table 5). The

results remained the same even after considering the effects of spatial configuration, except

for the analysis at the scale of 120m (Table 3&4). These results contrast with previous work

conducted within southern California that showed more effective cooling by vegetation in

hotter and drier desert regions compared to milder coastal ones (Tayyebi and Jenerette

2016). However, it should be noted that Tayyebi and Jenerette (2016) used the normalized

difference vegetation index (NDVI) to measure the abundance of vegetation, which includes

both trees and grass/lawns. But here we used the percent cover of trees. Previous findings

have shown that grass is less effective than tree canopy for LST cooling (Myint et al. 2013),
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and its cooling effectiveness is likely to be more affected by different management practices

such as irrigation.

The cooling efficiency of urban trees can be affected by many factors such as tree

species, spatial configuration of trees, and management practices because, for example,

transpiration rates of urban trees vary greatly by species (Pataki et al. 2011; Wang et al.

2011), and are affected by climatic factors such as air temperature, total radiation, vapor

pressure deficit, and ambient pollutants such as ozone (Wang et al. 2011). These contrasting

results warrant further research on the cooling effectiveness of vegetation/trees that requires

field work on species identity, species transpiration rates, vegetation management such as

irrigation, and more detailed climate records (McCarthy et al. 2011; Pataki et al. 2011; Polsky

et al. 2014; Zhou et al. 2008).

Table 5

Results from OLS linear regression. The response variable, LST, was predicted by PTree

Baltimore Sacramento
Scale Coef. R? Coef. R?
120m -0.144 0.689 -0.129 0.409
360m -0.173 0.817 -0.147 0.523
600m -0.18 0.858 -0.152 0.59
840m -0.184 0.877 -0.158 0.657
1080m -0.188 0.898 -0.16 0.671

Effects of spatial configuration of tree cover on LST, however, varied greatly in the two
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cities, in terms of magnitude, significance, and even direction of effect. Some configuration

metrics had contradictory effects on LST between the two cities. For example, after

controlling for the effects of percent cover of trees, mean patch size was positively correlated

to LST in Baltimore, but was negatively correlated in Sacramento. Because larger patches

have lower edge densities (Table A2), it follows that edge density was negatively correlated

to LST in Baltimore, but was positively correlated in Sacramento. Previous studies on

different cities have also found contradictory results of spatial configuration of

greenspace/tree canopy on LST. For example, edge density of vegetation cover was found to

be negatively correlated with LST in Baltimore (Zhou et al. 2011), Shanghai (Li et al. 2011; Li

et al. 2014), and Berlin (Dugord et al. 2014), but positive in Beijing (Li et al. 2013b). Our

results from the comparison of the two cities indicated that the spatial configuration of trees

may have different effects on LST in cities with different climatic conditions. These results

enhance the understanding of the inconsistency of effects of spatial configuration of

trees/greenspace on LST from previous studies.

Trees ameliorate temperatures primarily in two ways: providing shade and through

evapotranspiration. The contradictory results of configuration metrics found in the two cities

may be due to differences in the relative contributions of the two cooling processes and

these differences may be related to different climatic conditions between the cities. Here, we

again take edge density as an example. Increasing total edges and edge density may

potentially lead to an increase of shade provided by trees to surrounding surfaces (Li et al.
27
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2012; Zhou et al. 2011). In addition, greater total edges and edge density may also enhance

energy flow and exchange between trees and their surrounding areas (Cadenasso et al.

2003; Zhou et al. 2011). Consequently, considering only the shading process, increasing

edge density will lead to lower LST. However, increased edge density is frequently a result of

more fragmented tree cover, given a fixed amount of total tree coverage. As large and

continuous tree stands generally have lower temperature than that of fragmented and

smaller patches (Cao et al. 2010; Yokohari et al. 1997; Zhang et al. 2009), suggesting

stronger evapotranspiration efficiency of larger patches, increasing edge density is likely to

reduce evapotranspiration efficiency. This is particularly predominant in cities such as

Sacramento that have very dry and hot summers, during which vegetation is very likely to

experience water and temperature stress (Connors et al. 2013; Maimaitiyiming et al. 2014).

This is because the ambient temperature and humidity affect the transpiration rate of trees in

a non-linear (an inverted U shape) way (Lambers et al. 2008; Schulze et al. 2005). That is,

while increasing temperature and reducing humidity to some extent can induce the stomata

open and thus enhance transpiration, excessive heat and increasing vapor pressure deficit

between leaf and air will lead to dramatic reduction in transpiration (Lambers et al. 2008;

Schulze et al. 2005). Therefore, whether the increase of edge density will lead to a

decrease or increase in LST will largely depend on the net effects of increased shading

effects and reduced evapotranspiration effects. In Mediterranean climate cities such as

Sacramento, the reduction in evapotranspiration caused by increased edge density is likely
28
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to outweigh increased shading. Consequently, edge density has a positive relationship with

LST, given a fixed amount of tree coverage. But this is the opposite in cities such as

Baltimore that experience a relative humid summer.

Similar to edge density, whether the increase of mean patch size leads to a decrease or

increase in LST largely depends on the joint effects of the two key cooling processes,

shading and evapotranspiration of trees. In contrast to edge density, an increase in mean

patch size will likely result in increased evapotranspiration efficiency (Cao et al. 2010;

Yokohari et al. 1997; Zhang et al. 2009), but reduced shading effects. An increase in mean

patch size will likely lead to reduced shading effects because given a fixed amount of tree

cover, an increase in mean patch size leads to a decrease in edge density (Table A2), which

results in reduced shading effects, as discussed above. In the hotter and drier Sacramento

area, the increased evapotranspiration caused by increased mean patch size is likely to

outweigh reduction in shading. Therefore, mean patch size has a negative relationship with

LST, given a fixed amount of tree coverage. In Baltimore, however, reduction in shading

outweighed increased evapotranspiration, and thus an increase in mean patch size led to

higher LST.

Notably, the relative importance of mean patch size in predicting LST increased with the

increased size of analytical unit in Sacramento, but the opposite was found in Baltimore, both

suggesting clear scale effects. These scale effects may suggest that the two cooling

processes, shading and evapotranspiration of trees, and their relative importance, change
29
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with scale, and differ by cities with different climatic conditions. This hypothesis, however,

warrants further research.

The relative importance of percent cover of trees, and spatial configuration on LST also

varied greatly between the two cities. Percent cover of trees was the most important variable

in predicting LST in Baltimore. This is consistent with many of the previous studies that have

found that percent cover of trees (or greenspaces) plays a more important role than their

spatial configuration (Li et al. 2012; Xie et al. 2013; Zhou et al. 2011). However, spatial

configuration of tree cover, such as the mean patch size, played a more important role in

predicting LST than the percent cover of trees in Sacramento. In fact, the importance of

percent cover of trees in predicting LST decreased with the increase of the size of analytical

unit, and even became insignificant at the size of 840m and greater (Table 3). This result is

similar to the findings of Maimaitiyiming et al. (2014) in a study conducted in Aksu, Xinjiang,

China, and of Li et al. (2016) in a study of Phoenix, Arizona, USA. Both cities are relatively

dry and hot in summer, similar to Sacramento. These results indicated that the relative

importance of percent cover of trees and their spatial configuration may vary by cities with

different climatic conditions. It should be noted, however, that at the finest scale in this study

-- analytical unit of 120m, -- percent cover of trees was a much better predictor of LST than

any configuration metrics in Sacramento (Table 3). With the recent availability of very fine

resolution LST data (7m resolution, e.g., Jenerette et al. 2016), research on how the

relationship between spatial pattern of trees and LST varies by unit of analysis at a scale
30



483  finer than 120m would be highly desirable to expand our understanding of the scale effects.

484  4.2. The methodological implications: It is crucially important to choose the appropriate

485  statistical approaches

486  Our results underscore the necessity of controlling for the effects of percent cover of trees

487  when quantifying the effects of spatial configuration of tree cover on LST. For both cities,

488  after controlling for the effects of percent cover of trees (either through partial correlation or

489 linear regression modelling), the relationships between LST and configuration metrics

490 dramatically changed, compared with results from the Pearson correlation analysis. For

491 example, the relationship between LST and mean patch size (AREA_MN) changed from

492  negative to positive in Baltimore. Similarly, the relationship between LST and edge density

493  (ED) in Sacramento changed from negative to positive. This is because most of the

494  configuration variables are inherently correlated to percent cover of trees (Table A3&A4; Li

495  and Wu 2004; Peng et al. 2010; Riitters et al. 1995). For example, mean patch size had a

496  significantly negative correlation with LST based on the Pearson correlation analysis (r=-

497  0.56, p<0.01; Table 2) in Baltimore at the scale of 120m. This observed correlation, however,

498 is due to the very strong positive correlation between mean patch size and percent cover of

499 trees (r=0.70, p<0.01; Table A3). After controlling for the effect of percent cover of trees,

500 mean patch size in fact had a significantly positive correlation with LST, due to the reasons

501 we discussed in section 4.1. Therefore, it is crucially important to use statistical methods
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such as partial correlation and multiple regression models, instead of Pearson correlation, to
assess the relative contributions of percent cover of trees and configuration to LST. Using
Pearson correlation analysis may generate misleading results.

Other statistical approaches, such as path analysis and structural equation modeling
have been increasingly used to identify the complex and nested relationships among social
conditions, land cover and surface temperatures (Jenerette et al. 2007; Huang and
Cadenasso 2016; Tayyebi and Jenerette 2016), which potentially allow the evaluation of
direct and indirect effects of tree cover and configuration on LST.

Our results also showed that the spatial autocorrelation could influence the relationships
between landscape metrics and LST. This is particularly true when the unit of analysis is
relatively small. However, when the unit of analysis in this study is relatively large (i.e., equal
to or greater than a linear dimension of 600 m), results from OLS modeling and SAR
modeling were similar, in terms of both regression coefficient and R?. This may suggest that
the frequently used OLS is appropriate at such scales.

We found that with increasing size of the analytical unit, the relationships between LST
and spatial pattern metrics, including both percent cover and configuration, became stronger.
The spatial pattern of tree cover also explained more variation in LST. We did not find a
“best” size of analytical unit, at which the correlations (or R?) peaked, and a turning point
occurred (Liu and Weng 2009; Peng et al. 2016; Weng et al. 2004). This may be due to the

very different data used, as well as the approaches for scaling. Here, the spatial resolution of
32
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the image data used to map tree cover was 1 m, but most previous studies used the 30 m

Landsat TM data.

5. Conclusions

Urban greenspace, particularly trees, has significant cooling effects on urban heat. It is

widely recognized that increasing percent coverage of greenspace can greatly reduce

ambient air temperatures and land surface temperatures in urban environments. However,

recent studies investigating the effects of spatial configuration of greenspace show

significant, but inconsistent results, including the direction of the effects. To investigate the

causes of this inconsistency, we conducted a comparison study of Baltimore, MD and

Sacramento, CA, USA, two cities with very different climatic conditions, using different

statistical approaches and analytical units with varied sizes. We found: (1) Trees’ cooling

efficiency generally was higher in Baltimore than in the hotter and drier Sacramento. (2) The

effects of spatial configuration of trees on LST varied greatly in terms of magnitude,

significance, and even direction, between the two cities, suggesting spatial configuration of

trees may play different roles in cities with different climatic conditions. Percent cover of trees

was more important than their spatial configuration in predicting LST in Baltimore, but the

opposite was found in Sacramento. Therefore, urban planners and managers should be

cautious about directly applying results found in cities with different climatic conditions. (3)
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When using different statistical approaches, the relationships between LST and configuration

metrics could dramatically change. Our results underscore the necessity of controlling the

effects of percent cover of trees, when quantifying the effects of spatial configuration of trees

on LST. These results contribute to the understanding of the inconsistent results from

previous studies, which may be caused by the different methods applied (e.g., Pearson

correlation analysis versus partial correlation). (4) Spatial autocorrelation could influence the

relationships between landscape metrics and LST, particularly when the unit of analysis is

relatively small. (5) With the increase of the size of analytical unit, the relationships between

spatial configuration metrics and LST became stronger. This study can enhance the

understanding on the effects of spatial configuration of greenspace on UHI. It also provides

important insights to urban planners and natural resource managers on how to mitigate the

impact of urbanization on UHI through urban design and vegetation management.
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867  Appendix

868 Table A1

869 A Descriptive statistics of LST and landscape metrics of trees.

870 City  scale LST PTree AREA_MN SHAPE_MN ED LPI

mean SD mean SD mean SD mea SD mean SD mean SD

120 31.87 414 27.51 24.45 950.02 2267.63 1.37 0.40 57518.11 33468.78 19.25 23.91

360 31.87 3.83 28.11 20.52 1191.00 3949.92 1.37 0.17 52488.62 24066.84 14.66 19.97

3.56 28.13 18.73 980.78 2740.28 1.35 0.08 51759.32 21151.46 12.34 17.99

Baltimore
(o))
o
o
w
—
[00]
~

840 31.78 3.40 28.83 17.71 866.37 1379.75 1.35 0.07 52364.87 19491.47 11.50 17.04

1080 31.68 3.28 20.73 16.89 901.85 1933.74 1.34 0.06 53401.59 18325.08 11.26 16.30

city 31.87 414 27.10 599.60 195626.35 1.32 0.54 478.26 2.14
"""""" 120 3327 297 1693 1510 8165 24384 125 041 9000897 6203526 682 999
g 360 33.28  2.56 17.29 12.87 79.54 81.49 1.32 0.15 88252.77 51997.52 3.43 6.04
é 600 33.31 2.35 17.42 12.12 80.66 73.43 1.33 0.09 87813.52 47579.94 2.39 4.94

G
3 840 33.365 218 17.41 11.49 80.57 67.24 1.32 0.06 87552.63 44935.50 1.87 3.66
1080 33.30 2.06 18.00 10.81 81.28 57.09 1.33 0.05 89677.74 42027.10 1.72 3.43

city 33.27 297 16.66 73.80 1098.00 1.39 3.33 819.85 0.03




871 Table A2

872 Partial correlation between mean patch size and dege density controlling for the effect of

873  percent cover of trees.

874
Baltimore @ Sacraemento
120 -0.655** -0.438**
360 -0.475** -0.746**
600 -0.454** -0.789**
840 -0.643** -0.807**
1080 -0.528** -0.846**
875 ** P<0.01 (2-tailed)
876
877
878
879
880
881
882
883
884
885
886
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Table A3

Correlation matrix between independent variables in Baltimore.

scale PTree AREA_MN SHAPE_MN ED LPI
PTree 1
AREA_MN  0.70** 1
120m SHAPE_MN 0.51* 0.31* 1
ED 0.66** 0.11* 0.54** 1
LPI 0.95** 0.78** 0.45** 0.45** 1
""""" PTree 1
AREA_MN  0.53** 1
360m SHAPE_MN 0.61** 0.46** 1
ED 0.61** 0.00 0.44* 1
LPI 0.91* 0.61** 0.52** 0.31* 1
""""" PTree 1
AREA_MN  0.54** 1
600m SHAPE_MN 0.73** 0.50** 1
ED 0.62** 0.04* 0.53** 1
LPI 0.88** 0.64** 0.52** 0.29** 1
""""" PTree 1
AREA_MN  0.76** 1
840m SHAPE_MN 0.72** 0.46** 1
ED 0.63** 0.16 0.65** 1
LPI 0.87** 0.87** 0.45** 0.27** 1
""""" PTree 1
AREA_MN  0.60** 1
1080m SHAPE_MN 0.72** 0.34** 1
ED 0.62** 0.05 0.67** 1
LPI 0.86** 0.71* 0.40** 0.25* 1

** P<0.01, * P<0.05 (2-tailed)
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Table A4

Correlation matrix between independent variables in Sacramento.

scale PTree AREA_MN SHAPE_MN ED LPI
Ptree 1
AREA_MN 0.40** 1
120m SHAPE_MN  0.44** 0.20** 1
ED 0.85** 0.12** 0.48** 1
LPI 0.84** 0.52** 0.31* 0.50** 1
C PTee 1
AREA_MN 0.67** 1
360m SHAPE_MN  0.41* 0.38** 1
ED 0.87** 0.31* 0.40** 1
LPI 0.70** 0.76** 0.19* 0.36** 1
O PTee 1T
AREA_MN 0.69** 1
600m SHAPE_MN  0.48* 0.46** 1
ED 0.87** 0.32* 0.44* 1
LPI 0.61** 0.72* 0.14* 0.28** 1
O PTee 1T
AREA_MN 0.70** 1
840m SHAPE_MN  0.69** 0.57* 1
ED 0.88** 0.34* 0.65** 1
LPI 0.61** 0.75* 0.22** 0.28** 1
 PTee 1
AREA_MN 0.73** 1
1080m SHAPE_MN  0.69** 0.62** 1
ED 0.88** 0.38** 0.64** 1
LPI 0.57* 0.69** 0.21* 0.27* 1

** P<0.01, * P<0.05 (2-tailed)
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Fig. A1 Scattergrams of land surface temeprature (LST) VS.Percent cover of tree canopy

across all scales at two cities: B12(), 8360, Beoo, 8840 and B103()Z Baltimore; S120, 8360, 8600, Sgoo

and Sqgg0: Scaramento.
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