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Urbanization erodes ectomycorrhizal fungal 
diversity and may cause microbial communities  
to converge
Dietrich J. Epp Schmidt1, Richard Pouyat2, Katalin Szlavecz3, Heikki Setälä4, D. Johan Kotze4,  
Ian Yesilonis5, Sarel Cilliers6, Erzsébet Hornung7, Miklós Dombos8 and Stephanie A. Yarwood1*

Urbanization alters the physicochemical environment, introduces non-native species and causes ecosystem characteristics to 
converge. It has been speculated that these alterations contribute to loss of regional and global biodiversity, but so far most 
urban studies have assessed macro-organisms and reported mixed evidence for biodiversity loss. We studied five cities on 
three continents to assess the global convergence of urban soil microbial communities. We determined the extent to which 
communities of bacteria, archaea and fungi are geographically distributed, and to what extent urbanization acts as a filter on 
species diversity. We discovered that microbial communities in general converge, but the response differed among microbial 
domains; soil archaeal communities showed the strongest convergence, followed by fungi, while soil bacterial communities 
did not converge. Our data suggest that urban soil archaeal and bacterial communities are not vulnerable to biodiversity loss, 
whereas urbanization may be contributing to the global diversity loss of ectomycorrhizal fungi. Ectomycorrhizae decreased in 
both abundance and species richness under turf and ruderal land-uses. These data add to an emerging pattern of widespread 
suppression of ectomycorrhizal fungi by human land-uses that involve physical disruption of the soil, management of the plant 
community, or nutrient enrichment.

We are in an era of unprecedented human impact1 as 
human modification of the landscape alters ecosystem 
function2,3, shifting the local physical, chemical and biotic 

environments4–6. Urban ecosystems favour species that are well-
adapted to a variety of anthropogenic processes such as frequent 
disturbance, increased nutrient inputs, landscape fragmentation 
and facilitated dispersal7–9. The impact of urbanization on global 
species distribution has been characterized as biotic homogeniza-
tion6,8,10. It has been suggested that biotic homogenization is a major 
mechanism of global biodiversity loss7. However, there is conflict 
in the literature, as biotic homogenization is often interpreted to 
mean that particular species are expected to appear across all urban 
areas and exclude endemic populations11. Although it is possible 
that urbanization leads to the spread of cosmopolitan species, such 
as Columba livia domestica (pigeons) or Festuca arundinacea (tall 
fescue grass), it is also possible for different urban centres to con-
tain different species, for example F. arundinacea and Poa pratensis 
(Kentucky blue grass), but converge in terms of functional guilds or 
traits12. Such convergence can lead to biodiversity loss if it results in 
the exclusion of one species or set of species in favour of another9. 
It is important to note that highly endemic species are more vulner-
able to being driven extinct by local exclusion events13.

Extinction is not measured directly8 and thus must be inferred. 
When community data are examined using dissimilarity indices, 
extirpation is usually captured implicitly only when total richness 
decreases, resulting in a smaller denominator (typically similarity/

dissimilarity indices place total diversity of combined sites in the 
denominator, and shared/unique species in the numerator) and thus 
a greater similarity (or convergence) among sites8. But convergence 
could be due to an increase in shared taxa without any loss in diver-
sity across sites; to account for this possibility, one must also exam-
ine species richness to confirm that convergence was due to species 
loss at each site. Thus, it is not possible to infer global biodiversity 
loss using a single metric, and instead we must infer biodiversity 
loss based on a constellation of features of the global community. 
In the case of soil microbial communities, we considered global 
biodiversity loss to be likely only if they met the following condi-
tions: first, there is a strong geographic pattern (representing a high 
‘average’ degree of endemism and thus vulnerability to extinction); 
second, there is a convergence in community composition similar-
ity (implying a decreased prevalence of unique taxa); and third, 
there is a decrease in abundance and species richness within each 
sample (demonstrating site-specific decreases in biodiversity)8,14. 
We hypothesized that urban land-use will structure the microbial 
community, causing a global convergence of community compo-
sition under urban land-use relative to reference ecosystems, and 
potentially lead to biodiversity loss. To test this, we compared the 
soil microbial communities from three different urban land-use  
categories and a reference site, in five cities, on three continents.

Soils were sampled from five cities: Baltimore, USA; Helsinki 
and Lahti, Finland; Budapest, Hungary; and Potchefstroom, South 
Africa (Fig.  1). These cities are all part of the Global Urban Soil 
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Ecology and Education Network5 (GLUSEEN), a distributed experi-
mental network where agreed upon protocols are used to investigate 
urban soils. The study design used in GLUSEEN constitutes previ-
ously defined land-use (habitat) categories that represent a range 
of disturbance and management impacts of the urban landscape 
(Table 1). In our definition, disturbance is an event that substan-
tially physically disrupts the soil profile. We define the manage-
ment category as habitat subjected to intentional and repeated 
alteration that maintains a particular state of the ecosystem. Four 
land-use categories were sampled: reference, remnant, turf and 
ruderal (Table  1). Reference sites were unmanaged, undisturbed 
soils located outside the urban matrix that represented native soil 
type and biome typical of the region5. A typical reference site is 
one that has been intentionally set aside for habitat conservation 
or preservation. Remnant sites are reflective of the reference habi-
tat, but are embedded within the urban matrix (that is, are unused 
or undeveloped lots with similar vegetative cover to those found in 
reference sites). Turf sites included park, residential and municipal 
lawns maintained in a stable state due to mowing. Ruderal sites were  
chosen based on a recent history of substantial disturbance to the 
soil profile, typically associated with construction or demolition 
activity. Each land-use category was replicated five times within 
each city, meaning that 20 sites were sampled in each city and a total 
of 100 sites were sampled in the study.

Results
An important indicator of a community’s vulnerability to bio
diversity loss is the degree of endemism among its members13; cos-
mopolitan organisms are less vulnerable to being driven extinct 
by local exclusion events (either by habitat alteration or through 
competition) than are highly endemic species. We used the strength 
of geographic patterns in community composition among sites to 
indicate the ‘average’ degree of endemism. The abundance of major 
taxonomic groups differed across cities for all three domains.

The bacterial communities exhibited differentiation among cit-
ies and among land-use categories (nested two-level PERMANOVA 
of Bray–Curtis similarity by land-use categories nested within city: 
city: n =​ 20, F =​ 16.06, R2 =​ 0.31, P =​ 0.001; land-use: n =​ 5, F =​ 4.14, 
R2 =​ 0.30, P =​ 0.001). Thus bacteria were significantly structured by 
geography (Fig. 1a,b). Pairwise comparisons show that among the 
cities, Potchefstroom and Budapest exhibited the greatest differen-
tiation (t-test: n =​ 20, t =​ 9.96, P <​ 0.001), wheras Baltimore bacte-
rial communities had the highest evenness (two-tailed ANOVA of 
Peilou’s J index by city: n =​ 20, F =​ 47.92, P <​ 0.001). A post-hoc 
Tukey analysis indicated that only Baltimore differed in evenness 
from other cities (α​ =​ 0.05). Although some bacterial groups such 
as Planctomycetes, which averaged 17% of bacterial sequences in 
Baltimore soils but made up less than 7% of sequences in each of the 
other four cities (Fig. 1a,b), exhibited noticeable geographic patterns, 
no single taxon alone explained the pattern of geography. For exam-
ple, 30 phyla were significant indicators of Baltimore, whereas no 
other city had more than 8 significant indicator phyla (Monte Carlo 
test of significance: 1,000 permutations, α​ =​  0.05; Supplementary 
Table 6); SIMPER15 analysis revealed that many phyla drove dif-
ferences among pairwise comparisons between cities, particularly 
for Baltimore (Supplementary Table 7); and in a generalized linear 
model regression of phyla versus city, roughly 50% of taxa were 
significant predictors of city category (Supplementary Table 8). 
Land-use also imposed a filter on the bacterial community; within 
each city, bacterial communities in the reference and remnant sites 
were significantly different from turf and ruderal sites. However, 
the turf and ruderal sites for the individual cities remained distinct, 
suggesting that although urbanization changes the bacterial com-
munity, geographic distribution is still a stronger organizing factor 
(Fig. 2a). Land-use category did not affect the taxonomic richness 
(that is, the number of operational taxonomic units (OTUs) per 

sample; Fig. 2c), which is consistent with recent data from urban 
parks in New York City16. Along with community composition,  
bacterial gene quantity was determined by multiplying quantita-
tive polymerase chain reaction (Q-PCR)-determined 16S ribo-
somal RNA (rRNA) gene copy numbers to the percent abundance 
of sequences matching bacterial OTUs. This multiplication was 
necessary, because we used the same primers for both Q-PCR and 
sequencing (Supplementary Information), a primer set that simul-
taneously amplifies both archaea and bacteria (archaea discussed 
below). Bacterial gene copy numbers were not significantly different 
across all site categories (Fig. 2b; two-tailed ANOVA with land-use 
category blocked by city: n =​ 25, F =​ 2.50, P =​ 0.064).

Fungal communities, like the bacteria, were significantly struc-
tured by geography and land-use (PERMANOVA Bray–Curtis dis-
similarity by land-use nested within city: city: n =​ 20, F =​ 13.19, 
R2 =​ 0.30, P =​ 0.001; land-use: n =​ 5, F =​ 3.51, R2 =​ 0.30, P =​ 0.001; 
Fig. 2d). However, unlike the bacteria, turf and ruderal sites con-
tained significantly fewer fungal internal transcribed spacer (ITS) 
gene copy numbers than the reference and remnant sites (ANOVA 
with city as blocking factor for land-use category ‘treatments’: 
n =​  25, F =​  4.05, P =​  0.01; Fig. 2e). Taxonomic richness did not 
change between the four site categories (Fig. 2f). The relative pro-
portions of Basidiomycota were highest in Baltimore, then Finland, 
and decreased in the remaining three cities (Fig. 1a,b).

The archaeal community also exhibited a significant effect of geog-
raphy and a significant effect of land-use category among archaeal 
OTUs (Fig. 2g; PERMANOVA of Bray–Curtis dissimilarity indices 
with land-use categories nested within city: city: n =​ 20, F =​ 8.35, 
R2 =​ 0.21, P =​ 0.001; land-use: n =​ 5, F =​ 2.92, R2 =​ 0.28, P =​ 0.001). 
More detailed abundance distribution data are provided in the 
Supplementary Information. Along with composition, archaeal gene 
quantity was determined by multiplying Q-PCR-determined 16S 
gene copy numbers to the percent abundance of sequences matching 
archaeal OTUs. Surprisingly, turf sites contained the most archaeal 
16S rRNA gene copies (2.34 ×​ 109 gene copies per gram of dry soil; 
ANOVA of gene copy number with city as blocking factor for land-
use category ‘treatments’: n =​  25, F =​  2.8, P =​  0.044), with fewer 
archaeal sequences detected in both the reference and remnant sites 
(Fig. 2h). Likewise, archaeal species richness was also higher in the 
turf sites (ANOVA of OTU richness with city as blocking factor for 
land-use category ‘treatments’: n =​ 25, F =​ 16.53, P <​ 0.001; Fig. 2i). 
These data suggest that management practices such as increased 
nutrients may favour a larger, more diverse archaeal community  
(see Supplementary Fig. 1 for more detail).

Microbial community composition was correlated with a num-
ber of soil physiochemical parameters measured and reported else-
where5, further elucidating distribution patterns. Global bacterial 
and fungal community compositions were highly correlated with 
soil pH, percent organic matter and organic C (Fig.  1c). Soil pH 
was the strongest predictor of Bray–Curtis distance in both the 
bacterial (PERMANOVA: n =​ 94, R2 =​ 0.31, F =​ 23.83 P =​ 0.001; 
Fig. 1c) and fungal community (PERMANOVA: n =​ 84, R2 =​ 0.043, 
F =​ 6.77, P =​ 0.001; Fig. 1c), a phenomena that has previously been 
reported17–19. The most significant covariate in the archaeal com-
munity was also pH (PERMANOVA: n =​ 94, R2 =​ 0.10, F =​ 15.16, 
P =​  0.001; Fig.  1c), followed by humus (PERMANOVA: n =​  94, 
R2 =​ 0.024, F =​ 3.68, P =​ 0.003). Humus was also the second most 
significant covariate in bacteria (PERMANOVA: n =​ 94, R2 =​ 0.025, 
F =​ 5.02, P =​ 0.001), but not fungi, for which potassium was the  
second most significant covariate (PERMANOVA: n  =​  84, 
R2 =​ 0.023, F =​ 3.68, P =​ 0.001; Fig. 1c). These data suggest that the 
archaeal distribution does not necessarily correspond to bacterial or 
fungal distributions.

Urban soil microbial community convergence. Convergence 
of microbial communities represents a decrease in dominance of  
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Figure 1 | Geographic distribution of cities sampled, edaphic co-factors and community composition. a,b, Geographic distribution of cities (a) and  
the mean (n =​ 25) relative abundance of the most common microbial taxa (b; from top to bottom: most abundant six archaeal classes; most abundant 
seven bacterial phyla; and most abundant six fungal classes). Each taxon is averaged within each of the five cities from left to right: (1) Baltimore, USA;  
(2) Helsinki, Finland; (3) Lahti, Finland; (4) Budapest, Hungary; (5) Potchefstroom, South Africa. Error bars represent standard error. White circles  
indicate the location of each city on the map, and the number corresponds to that city’s community composition (bar charts 1–5 in b). c, Heat map 
representing the R2 values (0.0–0.3) of correlations between edaphic factors and community composition of each community. Map made with  
Natural Earth (http://www.naturalearthdata.com/).
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site-specific species, and may result in biodiversity loss. We mea-
sured convergence as a reduction of between-site variance under 
the three categories of urban land-use, and regarded reference sites 
as a proxy for the historic state of the soil conditions for each city. 
We used Bray–Curtis dissimilarity index to compare site similar-
ity. If microbial communities had converged, we expected to see a 
smaller multivariate dispersion (variance) of urban sites among cit-
ies compared with a larger multivariate dispersion of reference sites 
among cities.

We tested for convergence using the betadisper function in the 
vegan15 statistical package in R (version 3.1.3; ref. 20), a multivari-
ate analogue of the Levene’s test of homogeneity of variances21. We 
analysed variances according to three site groupings (Fig. 3): first 
we compared the four land-use categories (n =​ 25); then we catego-
rized sites into high or low management impact groups (discussed 
below; n =​ 50); and finally we categorized sites into groups based on 
whether they fall inside or outside the urban matrix (inside n =​ 75; 
outside n =​ 25). These groupings were applied to the global dataset 
(Fig. 3) and within each individual city (Supplementary Fig. 4) to 
elucidate potential drivers of convergence.

The archaeal communities showcased convergence particularly 
well; the archaeal community converged in turf and ruderal sites 
relative to reference and remnant sites (two-tailed ANOVA of multi-
variate dispersion by land-use: n =​ 25, F =​ 19.78, P <​ 0.001; Fig. 3a). 
The fungal community also converged (two-tailed ANOVA of mul-
tivariate dispersion by land-use: n =​ 25, F =​ 2.73, P =​ 0.048); ruderal 
sites were less variable relative to reference sites. The bacterial  
community differed in variance between site categories (two-tailed 
ANOVA of multivariate dispersion by group: n  =​  25, F  =​  3.31, 
P =​  0.023); however, a post-hoc Tukey’s HSD indicated that this 
was driven by a slight increase in variance among remnant sites and 
slight decrease in variance among turf sites relative to the reference. 
Thus, although the variance of remnant and turf sites was different, 
the variance of neither turf nor ruderal sites differed significantly 
from the reference (Fig. 3a). These data show that the three micro-
bial domains each respond differently to urbanization, and that  
bacteria in particular did not converge.

Using the same approach, we explored whether soil microbial 
communities converge simply because they exist within the urban 
matrix, or whether direct management and disturbance lead to a 
greater degree of convergence. To do this, we conducted two tests. 
First, we grouped all reference and remnant sites together (low 
impact), and compared them with a grouping of all turf and ruderal 
(high impact; Fig. 3b). In this case, all three microbial communities 
converged (two-tailed ANOVA of multivariate dispersion by group: 
archaea: n =​ 50, F =​ 19.31, P <​ 0.001; bacteria: n =​ 50, F =​ 9.82, 
P =​ 0.002; fungi: n =​ 50, F =​ 6.32, P =​ 0.014). To test for differ-
ences due to being within the city, reference sites were compared 
with a grouping of remnant, turf and ruderal (Fig.  3c). Soil bac-
teria and fungi did not converge in cities, suggesting that human 
actions such as soil disturbance and direct management of the flora 
alter microbial communities more than other indirect effects such 
as increased air temperature or atmospheric nitrogen deposition 
within an urban centre. Thus, distinct human processes define 
each of the high impact sites, yet when grouped together they have 

lower variation than the reference and remnant sites across all three 
domains. This suggests that one or both of the following mecha-
nisms is at play: a common set of organisms is able to exploit these 
altered environments; or, as has been reported in the biotic homog-
enization literature for other taxa, there is a consistent suppression 
of certain functional groups (guilds)9.

To answer whether urban land-use suppresses organisms of cer-
tain metabolic strategies (or functions), we assigned functional guilds 
to our identified OTUs, using publicly available databases. Attempts 
to characterize bacterial and archaeal functional differences were 
hampered due to database limitations. Functional guild assignment 
by FunGUILDs pointed to a loss of ectomycorrhizal fungi (ECM) as 
the main driver for convergence and differences between land-uses 
in the fungal community. When ECM sequences were examined 
at the OTU level, there were significant effects of land-use nested 
within city (Fig. 4a; two-tailed PERMANOVA of Bray–Curtis dis-
tance by land-use nested within city: city: n =​  12–20, F =​  2.32, 
P =​ 0.001; land-use: n =​ 3–5, F =​ 1.35, R2 =​ 0.23, P =​ 0.001). Turf 
and ruderal sites converged relative to reference and remnant sites 
at the family level (ANOVA of multivariate dispersion by group: 
n =​ 12–20, F =​ 6.06, P =​ 0.016; Fig. 4d). There was also a significant 
decrease in ECM abundance (ANOVA of OTU sequence calls by 
land-use: n =​ 25, F =​ 5.25, P =​ 0.003; Fig. 4b) and OTU richness of 
ECM within the turf and ruderal sites (ANOVA of OTU richness by 
land-use: n =​ 25, F =​ 8.63, P <​ 0.001; Fig. 4c). These analyses under-
estimate the degree of ECM diversity loss because there were 14 sites 
omitted due to a lack of ECM sequences (one reference site, two rem-
nant sites, four turf sites and seven ruderal sites); five of the omitted 
sites, including the reference, remnant and three of the ruderal sites, 
were from Potchefstroom, which is situated in a grassland biome 
that typically has few ECM hosts. Our ECM data support previous 
research that reported lower ECM colonization in disturbed urban 
soils22. As we targeted DNA rather than mRNA, these data also sug-
gest that if a tree is planted in these soils in the future, there will not 
be ECM present to colonize the new vegetation.

Discussion
A major concern of urbanization is that biotic homogenization will 
lead to global biodiversity loss. However, the pattern of conver-
gence among urban biotic communities does not inherently imply 
a loss in biodiversity8. Our fungal, archaeal and bacterial datasets 
demonstrate how biotic homogenization may be associated with 
biodiversity loss in some communities, but not others. Our most 
compelling evidence for biodiversity loss was found in the fungal 
dataset, where we found evidence of endemism and an urban filter  
effect; the convergence of ruderal sites relative to the reference 
shows that this filter is consistent across cities globally. Many factors  
probably contribute to this observed change, including soil factors 
such as pH and nutrient concentration, but also the presence of par-
ticular host plants23. We found that the convergence of urban sites 
was associated with a precipitous decline in abundance and rich-
ness of ECM in the four northern cities. There is a caveat, however; 
of all the land-use categories in Potchefstroom (South Africa), turf 
sites exhibited the highest abundance of ECM, with a similar aver-
age abundance to those found in other turf sites in the other cit-
ies (representing a true convergence of ECM abundance under turf 
management). It is important that we investigate more cities that are 
situated in diverse biomes, outside temperate or boreal forest eco-
systems, to confirm this result. It is likely that ECM are suppressed 
in northern cities due to shifts in vegetation; because ECMs are 
mutualists, they rely on the colonization of woody plants, and when 
these plants are removed this functional group declines. Our results 
support previous research that human management and distur-
bance decreases ECM diversity, particularly in temperate and boreal 
biomes where they are most diverse24. Our data also support previ-
ous studies suggesting that loss of diversity may be an important  

Table 1 | A summary of the four land-use categories defined 
along a disturbance–management spectrum.

Site Within city Disturbed soil Unmanaged

Reference X

Remnant X X

Turf X X

Ruderal X X X
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mean value under each land-use (n =​ 25). In all cases, error bars represent standard error and letters indicate post-hoc Tukey’s HSD significance at α​ =​ 0.05.  
The asterisk indicates an instance where the ANOVA found a significant effect of land-use (two-tailed ANOVA of archaeal abundance by land-use: F =​ 2.81, 
P =​ 0.044,), but a Tukey’s HSD did not identify any pairwise comparisons that met α​ =​ 0.05; reference and remnant sites each differed from turf at α​ =​ 0.07.
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factor driving convergence8,9, and provide the first microbial evi-
dence supporting the connection between biotic homogenization 
and global biodiversity loss7.

In contrast, convergence of the archaeal communities provides 
a scenario in which communities may converge without losing 
biodiversity. Archaeal communities converged in turf and ruderal 

sites, suggesting that urbanization is an environmental filter that 
increases community similarity. But there was little evidence that 
endemic species were being excluded; archaeal species richness 
and abundance actually increased in turf and ruderal sites, suggest-
ing that new archaea may not have been competing with endemic 
diversity for resources. The bacterial community presents yet a third 
response. Even though the bacterial communities did exhibit geo-
graphic distribution patterns and urbanization did seem to impact 
bacterial abundance, urban land-use does not seem to impact  
bacterial diversity per se; there was little evidence for convergence 
of the community composition and no change in species richness.

Our study shows a similar geographic structuring of the micro-
bial community to that found in atmospheric dust distributed 
across the USA25; although we found no evidence of convergence 
among cities and little evidence of convergence within cities relative  
to the soil community reference sites, a previous study25 found that 
the urban atmospheric microbial community was enriched with 
soil-associated taxa, and homogenized within the city relative to 
more rural locals. In cases where some bacterial lineages seem to 
be extirpated locally, the rapid rate of bacterial evolution26,27 and 
horizontal transfer of genetic materials28 may have allowed bacterial 
diversity and function to remain intact. Given the numerous differ-
ences between soil archaea and bacteria, we cannot be sure exactly 
why they responded differently. There is evidence, however, that 
each domain may inhabit different niches. For example, researchers 
studying bacterial and archaeal ammonia oxidizers have shown that 
ammonia-oxidizing archaea are able to use lower concentrations of 
ammonia29 and increase in abundance with lower pH30, suggesting 
that both metabolic strategy and the soil environment may be a fac-
tor in the response of bacteria and archaea to urbanization31,32.

Although several previous studies have examined soil microbial 
communities within a single city22,33, those studies could not infer 
global diversity loss, because they did not examine multiple regions. 
Our regional comparisons have shown that although urbanization 
leads to changes in community composition across a wide range of 
microbes, communities from each of the three microbial domains 
had specific response patterns to the different land-use categories. 
We found that ECM seemed to be the only group that experienced 
significant diversity loss due to urban land-uses. Our findings on 
the loss of ECM are consistent with the literature documenting 
ECM suppression by management24 and nitrogen enrichment34, and 
suggest that loss of host species through land conversion (to agri-
culture and otherwise) may be significant factors in ECM loss. This 
is consistent with studies showing that habitat loss is perhaps the 
most significant driver of global biodiversity loss35. Moreover, ECM 
are important members of the community because they increase the 
efficiency of plant nutrient capture, and increase carbon storage in 
temperate and boreal soils36. To mitigate the loss of these important 
organisms, we recommend that future urban planning should do 
the following: include remnants of native plant communities that 
will support these microbes; landscape using native host species; 
and reduce nutrient loading for turf sites in particular.

Methods
Soil sampling. In each city, we took special care to ensure that soil type was 
consistent across all selected site categories (Table 1). In particular, we favoured 
well-drained upland soils, avoiding riparian zones and soils that are often saturated. 
Each sample consisted of five 2.5 cm diameter ×​ 10 cm deep soil cores (excluding 
the Oi (L) and Oe (F) horizons), which were homogenized in a sterile plastic bag 
using a sterile scoopula. A soil sample from each homogenized bag, weighing ~2 g, 
was preserved in 4 ml Lifeguard preservation solution (MoBio). This procedure was 
repeated at 5 locations per land-use category in each of the five cities, resulting in 
100 samples in total (n =​ 5). Physical and chemical soil properties of the sampled 
soils have been published previously5.

Illumina amplicon sequencing returned 12.5 million archaeal and bacterial 
16S rRNA sequences, and 6.2 million fungal ITS sequences. By comparing 16S 
rRNA sequences to the Greengenes database at 97% similarity, 270,000 OTUs 
were identified across all samples. This included 3,700 archaeal OTUs, 255,481 
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Figure 3 | Within-group multivariate dispersal by grouping variable in 
each domain. Multivariate dispersion, representing within-group variance, 
among communities at the OTU level. Points represent the total variance 
of all cities. a, Group 1 is reference, group 2 is remnant, group 3 is turf, 
group 4 is ruderal (each with an n =​ 25). Archaea (F =​ 19.78, P <​ 0.001), 
bacteria (F =​ 3.31, P =​ 0.023) and fungi (F =​ 2.73, P =​ 0.048) have unequal 
variances. b, Group 1 is reference and remnant sites, and group 2 is turf 
and ruderal (each with an n =​ 50). Archaea (F =​ 19.31, P <​ 0.001), bacteria 
(F =​ 9.82, P =​ 0.002) and fungi (F =​ 6.32, P =​ 0.014) have unequal variance 
among groups. c, Group 1 is reference sites and group 2 is all other sites 
(n =​ 25 for reference and n =​ 75 for all others). Only archaea had unequal 
variances among groups (F =​ 16.64, P <​ 0.001). Lowercase letters indicate 
significant difference between groups, determined using a multivariate 
version of the Levene’s test for equality of variances.
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Rox (Sigma), 1.0 μ​l of 10 μ​M forward and reverse primers, and 2 μ​l DNA diluted  
to 1.25 ng ml−1. The standard curve was a 1:10 serial dilution of 2.5 μ​g ml−1 DNA 
and concentrations are calculated based on the size of the plasmid containing  
an insert. An inhibition correction was applied using the following strategy:  
2 μ​l of each sample was pooled and quantified using the fluorometer; a soil 
standard curve consisted of 1:10 serial dilutions. We calculated a soil efficiency 
standard correction according to previously reported protocol40, but rejected this 
correction because it applied a more significant correction to samples with higher 
gene counts rather than lower gene counts. There was a total of ten Q-PCR plates, 
five for 16S quantification and 5 for ITS quantification. Each contained 20 samples; 
one from each land-use category in each city.

Amplicon sequencing targeted a section of the 16S rRNA using primers  
515F +​ adapter and 806R +​ adapter (Supplementary Table 2), and the ITS1 region 
in fungi using primers ITS1F +​ adapter and ITS2 +​ adapter (Supplementary  
Table 2). Adapters were ligated to the forward and reverse strands, and the 
libraries were indexed using the Nextera XT 96 index kit (Illumina). Samples were 
sequenced using an Illumina MiSeq 2000 at the Oregon State University Center  
for Genome Research and Biocomputing. The sequencing kit produced 250 base 
pairs, paired-end read and was run with a 10% Phix.

Bioinformatics and statistical analysis. The QIIME pipeline41 was used in 
processing sequence libraries, with a few variations between the 16S and ITS 
sequence analysis. For ITS samples, the number of allowable homopolymer repeats 
in the split-libraries was increased from six to eight, because at the default of six, 
80% of the sequences were eliminated. For both gene loci, we conducted  

bacterial OTUs and 17,439 unassigned OTUs. Rarefaction analysis did not result in 
plateaued curves, suggesting additional sequencing would yield even more OTUs. 
On average, 62,132 sequences per sample were generated for the fungi and a total 
of 12,620 OTUs were identified by matching to the UNITE database37. Rarefaction 
curves of the fungal sequences indicated that this sequencing was sufficient to 
accurately sample fungal diversity. Rarefaction curves and sequences for each 
sample can be found in the Supplementary Information.

DNA extraction and preparation. Soils were extracted following the  
MOBIO Laboratories Powerlyzer Powersoils DNA isolation kit protocol  
(MoBio), with two exceptions. First, instead of adding 0.25 g of dry soil to the  
bead beating tubes in step two, 750 μ​l of soil suspended in Lifeguard solution  
was added to each tube. Second, a Fastprep-24 set to 3.5 m s−1 for 45 s was used  
in cell lysis (MP Biomedical). The exact weight of each soil sample used for 
extraction was calculated based on the measured weight of a 0.5 ml aliquot of  
soil slurry dried at 60 °C for one week. Extracted DNA was quantified using a 
QuBit 2.0 Fluorometer (Invitrogen). DNA extracts were diluted to 1.25 ng μ​l−1 
for sequencing amplification and Q-PCR. DNA samples were stored at −​20 °C 
between each analysis.

Microbial community analysis. Q-PCR for the combined bacterial and archaeal 
community was performed using the primers F515 and 806R of the V4 region38 
(Supplementary Table 2). Fungal community was quantified by targeting the ITS 
region using ITS1F and 5.8S (ref. 39; Supplementary Table 2). The master mix for 
each Q-PCR reaction was as follows: 16 μ​l of Kicqstart Sybr Green Readymix with 
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open-reference OTU picking. The Ribosomal Database Project (RDP)42 classifier 
was used to assign taxonomy of representative fungal sequences against the UNITE 
database37; we used uclust to cluster the 16s OTUs and blasted representative 
sequences against the Greengenes database43. Both datasets were clustered at 
97% similarity. Analyses at lower taxonomic resolutions were clustered according 
to putative taxonomy (that is, based on the Greengenes database). The reverse 
primers were removed in the split-libraries step and the minimum overlap in 
joining the paired-end reads (ea-utils44, fastq-join.py) was increased from 6 to  
50 bases in both amplicon libraries. All other functions in the QIIME pipeline were 
run on default settings. Our QIIME pipeline workflow went as follows: fastq-join.py;  
convert_fastqual_Fastq.py; split-libraries.py; cat; pick-otus.py; pick_rep_set.py; 
assign_taxonomy.py; make_otu_table.py; biom convert; and summarize_taxa.py.  
We used outputs from the make_otu_table and summarize_taxa functions in 
our downstream data analysis in R and PC-ORD. Full scripts can be found in the 
Supplementary Information.

The relative abundance of putatively defined archaea, bacteria and fungi were 
calculated separately for each domain by dividing the number of sequence calls 
for a given taxa in each sample by the total number of sequences in any given 
sample. Land-use categories within each city were averaged. The abundance of 
major taxonomic groups differed across cities for all three domains. Richness was 
calculated as the total OTUs at each site; 16S sequences were rarefied to 70,000 
and ITS sequences were rarefied to 20,000 to ensure comparability of results 
across sites. Shannon–Weiner and Pielou’s J diversity indices were also calculated 
and are available in the Supplementary Information. Both R and PC-ORD 
platforms were used to construct Bray–Curtis distance matrices. For all statistical 
analyses, we considered α​ =​ 0.05 as statistically significant; PC-ORD45 was used 
to compare differences in community composition and was also used to calculate 
indicator values46 for each taxa, and subsequently employed a Monte Carlo test 
of significance on indicator values. The betadisper and adonis functions (of the 
vegan package15) in R (ref. 20; version 3.1.3) were used to test for difference in 
within group variance among site categories and to run nested PERMANOVA, 
respectively. We also used the vegan package to run blocked two-way ANOVAs and 
Tukey post-hoc analyses for differences in ITS and 16S gene abundances between 
site categories, using city as the blocking factor. For all statistical analyses, we 
applied α​ =​ 0.05. All R scripts can be found in the Supplementary Information.

For all ECM analysis, each sample was rarefied to 20,000 sequences to 
standardize sampling effort. R scripts for rarefaction and downstream statistics 
are available in the Supplementary Information. We used the R statistical packages 
vegan, stats20 and lawstat47 (scripts in Supplementary Information). Ten sites 
falling under 20,000 sequences were omitted from all statistical analyses, while 
an additional 14 sites were omitted from our ECM community composition 
analysis because they lacked any ECM. The fungal database program FUNGuilds 
was used to assign putative function to identified OTUs48. As we rarefied the 
community to equal sampling depth, we treat sequence abundance as accurately 
representing the proportion or relative abundance of ECM that make up each 
community. We standardized sequence abundance across samples using a 
correction factor calculated by dividing the number of ITS genes in that sample 
(determined by Q-PCR49) by the average number of ITS genes across all samples. 
Richness values were calculated as the total number of distinct OTUs at each site. 
Convergence was identified by comparing within-group variances among land-use 
categories and tested using Levene’s test of equality of variances. The non-metric 
multidimensional scaling (NMS) ordination was constructed in PC-ORD45, with 
Beals smoothing applied to the distance matrix, accounting for the high incidence 
of zeroes within the ECM community.

Code availability. R scripts and data files necessary to replicate this research are 
publicly available on the Github repository (https://github.com/Djeppschmidt/
GLUSEEN).

Data availability. Our sequence data are available on NCBI under project number 
PRJNA339869.
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