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Abstract— This paper presents a systematic approach for the
3-D mapping of underwater caves. Exploration of underwater
caves is very important for furthering our understanding
of hydrogeology, managing efficiently water resources, and
advancing our knowledge in marine archaeology. Underwater
cave exploration by human divers however, is a tedious, labor
intensive, extremely dangerous operation, and requires highly
skilled people. As such, it is an excellent fit for robotic
technology, which has never before been addressed. In addition
to the underwater vision constraints, cave mapping presents
extra challenges in the form of lack of natural illumination
and harsh contrasts, resulting in failure for most of the state-of-
the-art visual based state estimation packages. A new approach
employing a stereo camera and a video-light is presented. Our
approach utilizes the intersection of the cone of the video-light
with the cave boundaries: walls, floor, and ceiling, resulting in
the construction of a wire frame outline of the cave. Successive
frames are combined using a state of the art visual odometry
algorithm while simultaneously inferring scale through the
stereo reconstruction. Results from experiments at a cave, part
of the Sistema Camilo, Quintana Roo, Mexico, validate our
approach. The cave wall reconstruction presented provides an
immersive experience in 3-D.

I. INTRODUCTION

The importance of underwater cave mapping spans sev-

eral fields. First, it is crucial in monitoring and tracking

groundwater flows in karstic aquifers. According to Ford and

Williams [1] 25% of the world’s population relies on karst

water resources. Our work is motivated by the Woodville

Karst Plain (WKP) which is a geomorphic region that

extends from Central Leon County around the “Big Bend” of

Florida [2]. Due to the significance of WKP, the Woodville

Karst Plain Project (WKPP) has explored more than 34 miles

of cave systems in Florida since 1987 [3], proving the cave

system to be the longest in USA [4]. This region is an

important source of drinking water and is also a sensitive and

vulnerable ecosystem. There is much to learn from studying

the dynamics of the water flowing through these caves.

Volumetric modeling of these caves will give researchers a

better perspective about their size, structure, and connectivity.

These models have even greater importance than simply

enhancing the mapping. Understanding the volume of the

conduits and how that volume increases and decreases over

space is a critical component to characterizing the volume of

flow through the conduit system. Current measurements are

limited to point-flow velocities of the cave metering system

and a cross-sectional volume at that particular point. This
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Fig. 1. Typical scene from an underwater cave.

paper presents a first step towards robotic mapping of an

underwater cave. Fig. 1 shows an underwater cave environ-

ment. The proposed approach results in 3-D reconstructions

which will give researchers the above described capabilities.

Furthermore, volumetric models, will be incredibly helpful

for those involved with environmental and agricultural stud-

ies throughout the area, and once perfected this technology

could help map other subterranean water systems, as well as

any 3-D environment that is difficult to map. The Woodville

Karst Plain area is sensitive to seawater intrusions which

threaten the agriculture and the availability of drinking water;

for more details see the recent work by Zexuan et al. [5].

Second, detailed 3-D representations of underwater caves

will provide insights to the hydrogeological processes that

formed the caves. Finally, because several cave systems

contain historical records dating to the prehistoric times,

producing accurate maps will be valuable to underwater

archaeologists.

Operations in underwater caves can be grouped under

three categories: motion inside the known part of the cave;

exploration of new territory; and surveying of newly explored

areas. Most transportation in the explored part of caves

is performed using diver propulsion vehicles (DPVs). All

explored areas are marked by permanently attached cave line,

which provides a direct route to the exit; see Fig. 2 where a

diver is inspecting the line. When divers explore uncharted

territory, they proceed without the DPVs, laying out line

and tying it to protrusions on the floor, walls, or ceiling.

The third phase, surveying, consists of two divers measuring

distances, using a cave-line with knots every 3 m between

attachment points. Simultaneously, the divers also measure

the water depth at each attachment point, as well as the

azimuth of the line leading to the next attachment point. All

the information is recorded on a slate or waterproof paper.

Estimates of the height and width of the passage can also

be recorded, if time permits. The above described process is



Fig. 2. A cave diver attaching a branch line to the main line of the cave.

error-prone and time consuming, and at greater depths results

in significant decompression times, where total dive time can

reach between 15 to 28 hours per dive. This paper presents

a first step of utilizing robotic technology to assist in cave

exploration via the use of a stereo camera and a video-light.

In many cases, during DPV rides, the divers attach cameras

to their DPV and/or to themselves in order to document

the exploration. Consequently, introducing a stereo camera,

with a GoPro form-factor, does not complicate the standard

operating procedures and does not increase the cognitive load

of the divers.

The presented approach utilizes the presence of the ar-

tificial lighting to produce a rough model of the traversed

area. In particular, the video-light cone is used to identify

the walls of the cave from a single stereo pair. Furthermore,

motion between consecutive stereo pairs is estimated and

the 3-D reconstruction is utilized to produce an approximate

volumetric map of the cave.

The next section discusses related work. Section III illus-

trates the challenges present in the underwater cave domain

and presents an overview of the proposed approach. Experi-

mental results from an underwater cave, part of the Sistema

Camilo, Quintana Roo, Mexico, are presented in Section IV.

The paper finishes with a discussion of lessons learned and

an outline of future work.

II. RELATED WORK

The majority of underwater mapping up to now consists

of fly-overs with downward pointing sensors mapping the

floor surface. The resulting representation consists of 2.5

dimensional mesh-maps or image mosaics with minimal

structure in the third dimension. In addition to underwater

caves, several other underwater environments exhibit promi-

nent three dimensional structure. Shipwrecks, are significant

historical sites. Producing accurate photorealistic 3-D models

of these wrecks will assist in historical studies and also

monitor their deterioration over time. Finally, underwater

infrastructure inspection [6] is another dangerous and tedious

task that is required to be performed at regular intervals. Such

infrastructure includes bridges, hydroelectric dams [7], water

supply systems [8], and oil rigs. For more information please

refer to the Massot-Campos and Oliver-Codina survey [9] for

an overview of 3-D sensing underwater.

Most of the underwater navigation algorithms [10]–[13]

are based on acoustic sensors such as Doppler Velocity

Log (DVL), ultra-short baseline (USBL) and sonar. Gary et.

al. [14] presented a 3D model of a cenote using LIDAR and

sonar data collected by DEPTHX (DEep Phreatic THermal

eXplorer) vehicle having DVL, IMU and depth sensor for

underwater navigation. Corke et. al. [15] compared acoustic

and visual methods for underwater localization. However,

collecting data using DVL, sonar, and USBL while diving is

expensive and sometimes not suitable in cave environments.

Using stereo vision underwater has been proposed by

several groups, however, most of the work has focused

on open areas with natural lighting, or artificial light that

completely illuminates the field of view. Small area dense re-

construction of a lit area was proposed by Brandou et al. [16].

Mahon et. al. [17] proposed a SLAM algorithm based on the

viewpoint augmented navigation (VAN) using stereo vision

and DVL in underwater environment. A framework proposed

by Leone et al. [18] operated over mainly flat surfaces.

Several research groups have investigated the mapping and/or

inspection of a ship’s hull using different techniques [19]–

[22], the most famous shipwreck visual survey being that

of the Titanic [23]. Error analysis was performed recently

by Sedlazeck and Koch [24]. The problem of varying il-

lumination was addressed by Nalpantidis et al. [25] for

above-ground scenes in stereo reconstruction. More recently,

Servos, Smart and Waslander [26] presented a stereo SLAM

algorithm with refraction correction in order to address the

transitions between water, plastic, and air that exist in the

underwater domain.

III. 3-D RECONSTRUCTION USING STEREO VIDEO

A. Challenges

As can be seen in Fig. 3, the complete absence of

natural illumination in combination with the presence of

several sources of artificial illumination, such as: each diver’s

primary light and also one or more video-lights, results

in huge lighting variations in the scene. In particular each

diver’s primary light generates a tightly focused beam which

is constantly moving with the motion of the diver. In Fig. 4a,

there are three divers present: one holding the video light,

his tanks visible at the bottom of the image; one traveling

with the camera, not visible; and a third one whose DPV

is visible at the top of the image. The primary light of the

third diver can be seen as a blue beam pointing downwards,

starting at the left of the DPV.

The lighting variations make the success of traditional

visual odometry [27] algorithms near impossible. The main

assumption of Brightness Constancy Constraint underlying

most visual odometry algorithms is violated by the constantly

moving light-sources. Table I presents tests of five open

source packages of vision based SLAM on underwater cave

vision datasets; as expected most of them failed on the longer

sequence and the rest were not able to extract the scale of the

environment. It is worth noting that several of the packages

are expecting specific motions in order to initialize [28].

Complete results are not presented due to space constraints;

interested readers should refer to the work of Quattrini

Li et al. [29] for a detailed analysis of more packages



(a) (b) (c)

Fig. 3. Left camera images of an underwater cave with different illuminations. Illumination in the cave is provided by the lights individual divers have
and also from a strong video-light. (a) Diver in front holds a strong video-light; see how the cone of light outlines the boundaries of the cave. (b) Diver
with video-light follows behind the camera. (c) The diver with the camera also holds the light.

and a variety of datasets. The selection of the algorithms

presented here was motivated of testing a variety of methods;

feature based [30], [31], semi-direct [32], direct [33], and

global [34]. The main challenge these algorithms face is

the constant change of the field of view and the dramatic

lighting variations resulting from occlusions and from light

absorption over distance. Among the most successful was the

ORB-SLAM [30] with its latest incarnation as ORB-SLAM

2, still in beta version, working with stereo images. While

some of these packages, produced an acceptable trajectory,

their shape reconstruction from the detected 3-D features was

plagued by noise.

B. Wireframe reconstruction

Using light variations to infer shape has been used exten-

sively in the past [35]–[37]. The 3-D reconstruction consists

of several steps. First the images have to be rectified; a

process achieved through a process called camera calibration.

Camera Calibration: While calibrating a camera is a

well studied problem, the camera used (stereo Dual GoPro

Hero1) presented us with a major challenge. By default the

camera is utilizing a SuperView mode which stretches the

wide angle image even further. Above water traditional Cam-

era Calibrations packages such as the ones in MATLAB 2

and OpenCV3 were unable to calibrate the camera. For

underwater footage, the refraction of light through the water,

the port, and finally the lens, resulted in partial elimination of

the artificially introduced distortion of the SuperView mode.

The image though was still distorted enough that OpenCV

was unable to perform satisfactory calibration; several pixel

calibration error. MATLAB in contrast, by selecting images

through the complete viewing sphere, and rejecting images

from the areas where images were already used, avoided

overfitting and produced Camera Calibration with an error

of 0.8 pixels. Utilizing the MATLAB produced internal

parameters, the left (see Fig. 4(a)) and right images are

rectified in order to remove the strong distortions from the

wide angle lens of the GoPro camera; see Fig. 4(b) for the

rectified image.

Contour Tracking: Adaptive thresholding is used in

order to identify the areas with different illumination; see

1http://gopro.com/
2http://www.mathworks.com/products/matlab/
3http://opencv.org/

Fig. 5. Select features matched at the boundary between left and right
image of a stereo pair.

Fig. 4(c) for the thresholded image where the cone of the

video-light meets the cave walls. Selecting the right value

for thresholding the image required some domain knowledge,

and currently was perform per video sequence, by a human.

Current experiments consider adjusting the threshold based

on keeping a balance between the amount of light and dark

areas, but that work is outside the scope of this paper.

During the next step, edge detection marks the boundaries

between light and dark areas; see Fig. 4(d) for the boundaries

of Fig. 4(b). The OpenCV Canny edge detector [38] is used

to identify the edges marking the lighter area boundaries. As

can be seen, the edge map is very noisy and thus not suitable

for estimating the walls of the cave. A filter is applied to the

contour list, eliminating short contours. More specifically,

for every contour, its bounding box is calculated and then

only the highest fifth percentile is kept. While this method

can eliminate elongated contours, experiments with the actual

underwater cave video footage proved to not affect the main

boundaries. The filtered contours can be seen in Fig. 4(e).

Figure 4(f) superimposes the filtered contours on the rectified

image; the areas where the cone of light meets the cave walls

are clearly identifiable. In addition, the area with acceptable

lighting is extracted for use at the motion estimation. The

edge map of the boundaries is used then as input to a stereo

reconstruction algorithm.

Sparse Stereo Reconstruction: The 3-D structure of

the cave boundaries is estimated for each stereo pair. For

every point on the contour of the left image a SURF feature

descriptor [39] is calculated using the left rectified image.

Consequently, the same descriptor is matched on the right

rectified image. Outlier rejection is facilitated by searching

only locations at the same row and to the right of the left-

image feature’s coordinates. As the camera calibration error

is 0.8 pixels, it justifies the assumption above. Previous

work on feature quality [40]–[42] for underwater images

indicated SURF [39] to be the most appropriate feature







The camera was mounted on a DPV and the video-light was

carried in different configurations in order to demonstrate

alternative lighting schemes.

B. Camera Calibration

As mentioned above, the stereo camera used utilizes a

recording mode termed superview, which stretches the image

in order to produce more aesthetically pleasing videos. Post-

processing all the calibration footage collected, error analysis

showed, as expected, the error to slightly increase with

distance; see Fig. 9.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Distance from camera (m)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

E
rr

o
r 

M
e
tr

ic
 1

: 
In

te
r-

p
o

in
t 

E
rr

o
r 

(m
)

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Distance from camera (m)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

E
rr

o
r 

M
e
tr

ic
 2

: 
O

u
t 

o
f 

P
la

n
e
 E

rr
o

r 
(m

)

(b)

Fig. 9. (a) Average error of the inter-point distance of the target; (b)
Average error of the reconstructed points from the best plane fitting 3-D
points of the checkerboard. The results were from 4,000 images of the
calibration target presented to the stereo camera underwater.

C. Stereo reconstruction

Figure 8(b) presents the 3-D reconstruction of a long video

of 7 min 28 sec. The structure corresponds with the cave

morphology, however it is difficult to discern in the still

image. The accompanying video presents a fly-through the

cave. Figure 10 presents the 3-D reconstruction of a cave

segment from a short ten seconds traversal. The left and right

walls are clearly identifiable, while the floor and ceiling are

occluded from the two divers that swam in the field of view.

V. CONCLUSIONS

This paper presented first ever reconstruction results from

an underwater cave using a novel approach utilizing the artifi-

cial lighting of the scene as a tool to map the boundaries. The

proposed technique was applied on real stereo video footage

from a cave in Mexico, where an exploration team collected

visual data using a light in different configurations. Central to

our approach was the strategy of minimum interference with

the standard procedures of the dive team. As cave diving is

considered one of the most extreme activities, increasing the

cognitive load, or hampering the functionality of the teams

equipment was out of the question.

We are currently working on developing a stereo cam-

era/light configuration that will produce the best reconstruc-

tion results without interfering with the operations of the

divers. It is worth noting that in the presented experiments

the video-light and the camera were carried by different

divers thus constantly changing their relative pose. Selecting

appropriate lighting and fixing it to the camera has proven

to be a challenging task. We will continue to experimentally

test different VO algorithms on the stereo footage and adapt

the most promising ones to operate inside the segmented part

of the image with adequate illumination, ensuring accurate

pose estimation for consecutive stereo image pairs. Future

work will consider the characterization of shadows, other

divers, and dark areas due to light absorption which will be

eliminated from the shape calculations.

The final result of the discussed work will be an algorith-

mic solution producing a volumetric map of the cave and an

estimate of the camera’s trajectory. The proposed approach

will advance the state of the art for Visual SLAM [47], [48]

in extreme conditions.
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