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Abstract. We introduce an invariant linked to some foundational questions

in geometric measure theory and provide bounds on this invariant by decom-
posing an arbitrary cycle into uniformly rectifiable pieces. Our invariant mea-

sures the difficulty of cutting a nonorientable closed manifold or mod-2 cycle in

Rn into orientable pieces, and we use it to answer some simple but long-open
questions on filling volumes and mod-ν currents.
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1. Introduction

If T is a Lipschitz curve in RN , there is a minimal surface U whose boundary
is T . If we trace T twice to obtain a curve 2T , there is a minimal surface U ′

whose boundary is 2T . At first glance, one might guess that U ′ = 2U . This is
easy to prove when N = 2 and is a theorem of Federer [Fed75] when N = 3, but
remarkably, it is false when N ≥ 4! L. C. Young constructed an example of a curve
T : S1 → R4 that lies on an embedded Klein bottle and a chain U such that U is a
minimal filling of T , but 2U is not a minimal filling of 2T . In fact, massU ′ is only
about 1.5massU [You63].

A version of Young’s example is shown in Figure 1. Consider a Klein bottle K
embedded in R4 and draw 2k + 1 equally-spaced rings on K. Since these rings are
drawn on a Klein bottle, we can orient them so that adjacent rings have “opposite”
orientations. Let T be the sum of these rings.

On one hand, we can fill 2T with a chain supported on K. Since the rings
have alternating orientations, we can fill each pair of adjacent rings with a thin
cylindrical band. The curves in T cut K into 2k + 1 bands, and if we give these
bands alternating orientations, their boundary is 2T (right side of Fig. 1). When k
is large, this is nearly optimal and has mass roughly areaK.

On the other hand, we cannot use the same technique to fill T . Since there’s an
odd number of rings in T , we can fill all but one of the rings using k bands, but we
need to fill the last ring with a disc (middle of Fig. 1). When k is large, a filling like
this is nearly optimal and has area roughly (areaK)/2 plus the area of the extra
disc — well over half the area of a minimal filling of 2T .

Questions in geometric measure theory related to this example and examples
with different multipliers found by Morgan [Mor84] and White [Whi84] have been

T A filling of T A filling of 2T

Figure 1. Fillings of a 1-cycle on a Klein bottle. The 1-cycle
T consists of 2k + 1 loops with alternating orientations. In the
middle, we fill T with k cylindrical bands and a disc, and on the
right, we fill 2T with 2k + 1 cylindrical bands with alternating
orientations.
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open almost since Federer and Fleming’s first papers developing normal and integral
currents. Because of these examples, the flat distance

(1) F(A) = inf{massR+massS | A = R+ ∂S,R ∈ Rd(RN ), S ∈ Rd+1(RN )},
is not a norm; if T is as above, then we may have F(νT ) < νF(T ). Here, Rd(Rn)
is the set of rectifiable d–currents (Sec. 2.2). Consequently, several basic questions
have remained unanswered, including:

(1) If ν > 0 is a positive integer and Fd(RN ) is the space of integral flat d–
chains in RN , is the multiply-by-ν map f : Fd(RN ) → Fd(RN ), f(T ) = νT
an embedding?

(2) Is the set of flat chains modulo ν a quotient of the integral flat chains?
(3) We can define a real flat norm by replacing the rectifiable currents in (1)

by normal currents. How is the real flat norm related to the flat distance?

In this paper, we will relate the first two of these questions to the geometry of
nonorientable cycles in RN and answer both of them positively (Corollaries 1.4 and
1.5).

Specifically, we will define the following invariant. If A is a mod–ν cycle in RN

(a Lipschitz cycle (Sec. 2.1) or integral current modulo ν (Sec. 2.2)) and R is a
Z–cycle (Lipschitz cycle or integral current) such that A ≡ R (mod ν), we say that
R is a pseudo-orientation of A. Let the nonorientability of A be

NO(A) = inf{massR | R is a pseudo-orientation of A}.
Any smooth submanifold of RN has a pseudo-orientation. For example, suppose

that M is a nonorientable genus-g surface smoothly embedded in RN and that
A = [M ] is the fundamental class of M . This is a cycle with Z2 coefficients,
but we can lift it to a cycle with integer coefficients by cutting M into orientable
pieces. Let Γ be a smooth graph embedded in M whose complement consists of
orientable pieces M1, . . . ,Mn. We choose orientations on the Mi arbitrarily to get
fundamental classes [M1], . . . , [Mn]. Then R0 :=

∑
[Mi] is a 2–chain over Z and

supp ∂R0 ⊂ Γ. Each edge of Γ occurs in ∂R0 with coefficient 0 or ±2, depending
on the orientations of the neighboring regions in M . Let R1 be a chain with integer
coefficients such that ∂R1 = ∂R0/2 and define R = R0 + 2R1. Then

R ≡
∑

[Mi] ≡ [M ] (mod 2),

so R is a pseudo-orientation of [M ]. The mass of R, however, could be much larger
than the area of M , especially if M is very complicated.

In this paper, we will show that the nonorientability of a cycle is bounded by its
mass:

Theorem 1.1. For every ν, d,N > 0, there is a c > 0 such that

NO(A) ≤ cmassA

for every A ∈ Iνd(RN ) with ∂A = 0.

Here, Iνd(RN ) is the set of integral currents modulo ν; when ν > 0, ν ∈ Z, the
integral currents modulo ν are a chain complex that contains the mod-ν polyhedral
chains as a dense subset.

Note that it is not clear a priori that every integral current mod ν with no
boundary has a pseudo-orientation. Federer [Fed69, 4.2.26] asserted that there are
integral currents modulo 2 that do not lift to integral currents, though his example,
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an infinite sum of projective planes with finite total mass, turns out to have an
error (see [Pau77, 2.5]).

The theorem will follow from the following statement about cycles in the unit
grid in RN :

Theorem 1.2. For every ν, d,N > 0, there is a c > 0 such that if τ is the unit
grid in RN and A ∈ Cd(τ ;Zν) is a mod-ν cellular cycle in τ , then there is a cellular
cycle R ∈ Cd(τ ;Z) such that A ≡ R (mod ν) and massR ≤ cmassA. It follows
that

NO(A) ≤ cmassA.

(Indeed, though several of our applications will involve integral currents and flat
chains, our use of currents will be restricted to the proofs of those applications, and
the proof of Theorem 1.2 can be read without previous familiarity with currents.)

The main difficulty in proving Theorem 1.2 is dealing with cycles that have
complex topology at many scales and many locations. For example, consider the
following sequence of surfaces: Let C0 be the 2-dimensional surface of a unit 3-cube
embedded in R4. The surface C0 is orientable, but we can make it nonorientable
by gluing crosscaps to its faces. Let Σ be a crosscap consisting of a union of faces
in the grid of side length 10−1, with boundary the unit square. We can partition
C0 into 6 unit squares and construct C1 by replacing each square by a copy of Σ.

Then C1 is a surface in the grid of side length 10−1, homeomorphic to a connected
sum of six projective planes. Its fundamental class is a mod-2 cycle, and any pseudo-
orientation of C1 must cut through each crosscap, so NO([C1]) ∼ 1.

There are no large faces in C1 to replace by crosscaps, but we can still add nonori-
entability at smaller scales by replacing smaller faces in C1 by smaller crosscaps.
Choose 100 faces of C1 of side length 10−1 and replace them by scaled copies of Σ
to obtain C2. Each new crosscap contributes roughly 10−2 to the nonorientability,
so in total, they contribute roughly 1.

Proceeding inductively, we replace 100i faces of Ci of side length 10−i to obtain
Ci+1. A pseudo-orientation of Ck must cut through all of the crosscaps at every
scale, so

NO([Ck]) ∼
k−1∑
i=0

100i10−2i = k.

This is much larger than the area of the surface we started with. The only reason
that this does not contradict Theorem 1.1 is that each added crosscap of diameter
r also increases the area of the surface by roughly r2, so

area(Ck) ∼ 1 +

k−1∑
i=0

100i10−2i ∼ k + 1.

One can also imagine more complicated versions of Ck using different scale factors
or replacing squares by more complicated surfaces. Theorem 1.1 implies that in all
such constructions, the extra nonorientability coming from replacing a square by a
surface is bounded by the added area. Nevertheless, we conjecture that the ratio
NO(A)
massA approaches its supremum for a sequence of self-similar surfaces like the Ci.

A remarkable feature of Theorem 1.1 is that it gives a bound that is independent
of the topology of A; many related bounds depend on the topology. If d = 2 and A
is the fundamental class of a surface M ⊂ RN , then bounds on the nonorientability
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of [M ] are related to bounds on systoles of M , which typically depend on the genus
of M .

For example, as noted above, the nonorientability of M is related to the difficulty
of partitioning M into orientable pieces. By choosing an orientation on each piece,
one can lift such a partition to a partition of the double cover M̃ into two pieces
of equal area. Cheeger’s inequality implies that there are surfaces (scalings of
arithmetic hyperbolic surfaces) with unit area and genus g such that any curve
or set of curves that cuts the surface into two equal pieces has length at least√
g. Similarly, one way to obtain a graph Γ in M whose complement consists of

orientable pieces is to let Γ be a pants decomposition of M . In a paper with Larry
Guth and Hugo Parlier [GPY11], we showed that every pants decomposition of a
“random” genus g surface of area 1 has total length at least g2/3−ϵ.

This could suggest that some of the unusual geometric properties (large systoles,
expander-type properties, large pants decompositions, etc.) that occur in arithmetic
hyperbolic surfaces and random surfaces may not occur in surfaces that embed
bilipschitzly (with respect to the euclidean metric, not in the sense of Nash) in RN .
It would be interesting to know if this is the case.

1.1. Applications. Theorem 1.1 has several applications in geometric measure
theory and the study of currents. First, Theorem 1.1 provides an answer to a
question of L. C. Young. Let us define the filling volume FV(T ) of a Lipschitz

d-cycle (i.e., a formal sum of Lipschitz simplices) T ∈ CLip
d (RN ;Z) with ∂T = 0

to be the infimal mass of a Lipschitz (d + 1)–chain U ∈ CLip
d+1(RN ;Z) such that

∂U = T . It follows from Theorem 1.1 that:

Corollary 1.3. For any d,N, ν > 0, there is a c > 0 such that for any d–cycle

T ∈ CLip
d (RN ;Z),

FV(T ) ≤ cFV(νT ).

The behavior of c when ν is large is an open and interesting question, because

the limit limν→∞
FV(νT )

ν is equal to the real filling volume FVR(T ) of T . The real

filling volume is the infimal mass of a Lipschitz (d+1)–chain U ∈ CLip
d+1(RN ;R) with

real coefficients such that ∂U = T . L. C. Young’s example shows that the integral
and real filling volumes of a cycle can be different, but it is unknown whether the
ratio of these filling volumes is bounded.

The theorem also answers some questions about integral currents and flat chains
that have been open since the 1960’s. In particular, the following corollaries answer
a question in 4.2.26 of [Fed69] and part of a cluster of related questions studied by
Almgren [Whi98].

Corollary 1.4. Let d, n, ν ∈ N. The multiply-by-ν map f : Fd(RN ) → Fd(RN ),
f(T ) = νT is an embedding, and the images νFd(RN ) and νId(RN ) are closed.

and

Corollary 1.5. If T ∈ Iνd(RN ) is an integral current mod ν, then T ≡ TZ (mod ν)
for some integral current TZ.

Corollary 1.5 is somewhat subtle because of the terminology used to describe
currents mod ν. One can define quotients Fd(RN )/νFd(RN ) and Id(RN )/νId(RN )
that have many of the properties of flat chains and integral currents modulo ν. But
it is not clear a priori that these quotients satisfy completeness and compactness
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properties. For instance, any projective plane, and thus any finite sum of projective
planes, is congruent mod 2 to an integral current, but it is unclear whether an
infinite sum with finite total mass is congruent to an integral current. To avoid
this problem, Federer [Fed69] defined the flat chains modulo ν as the quotient

Fν
d (RN ) = Fd(RN )/νFd(RN ) by the closure of the multiples of ν and defined the

integral currents modulo ν as the set Iνd(RN ) of rectifiable currents mod ν with
rectifiable boundary mod ν. Corollary 1.4 and Corollary 1.5 imply that these
definitions are the same as the naive definitions.

Corollary 1.6.

Fν
d (RN ) = Fd(RN )/νFd(RN )

Iνd(RN ) = Id(RN )/νId(RN ).

1.2. Techniques. In this section, we will sketch the proof of Theorem 1.1. We will
go into more detail in Section 4.

As we saw in the example A = [Ck] above, NO(A) is a sum of contributions from
many different places and scales; the surface Ck consists of many crosscaps, and
one large crosscap contributes as much nonorientability as many small ones. One
can use the Federer-Fleming deformation theorem to bound the amount of nonori-
entability that comes from each scale (see Prop. 4.1), but Theorem 1.1 requires a
bound on the total contribution from all scales.

We solve this problem by developing new techniques to decompose cycles in
RN into topologically and geometrically simple pieces. In particular, we devise
a way to break down a cycle in RN into a sum of cycles that either lie close to
planes or are topologically bounded. The decomposition has two stages: first,
we decompose cycles in RN into cycles with uniformly rectifiable supports, then
we apply corona decompositions to break those cycles into pieces with bounded
geometry and topology.

Uniformly rectifiable sets were developed by David and Semmes as a quantita-
tive version of the notion of rectifiable sets. (See Section 4.1 for definitions and
references.) The first part of the proof is the following theorem.

Theorem 1.7. If A ∈ Cd(τ ;Zν) is a d-cycle in the unit grid in RN , then there are
cycles M1, . . . ,Mk ∈ Cd(τ ;Zν) and uniformly rectifiable sets E1, . . . , Ek ⊂ RN with
bounded uniform rectifiability constants such that

(1) A =
∑

i Mi,
(2) suppMi ⊂ Ei,
(3) massMi ∼ |Ei|, and
(4)

∑
i |Ei| ≲ massA.

Here, | · | represents d-dimensional Hausdorff measure. The proof of Theorem 1.7
relies on results of David and Semmes on quasiminimizing sets; they show that if a
set E is not uniformly rectifiable, then there is a compactly supported deformation
that decreases the volume of the set. We use a sequence of such deformations to
construct the desired decomposition.

This decomposition breaks complicated surfaces into “simple” pieces. For exam-
ple, the surface Ck above is built by starting with a simple surface and repeatedly
replacing discs in the surface by handles and crosscaps. This decomposition reverses
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this process. That is, if we write

Ck = C0 +

k+1∑
i=0

(Ci+1 − Ci),

then we can write each term Ci+1 −Ci as a sum of the fundamental classes of 100i

disjoint projective planes of diameter roughly 10−i. We can thus write Ck as the
sum of the unit cube and a large number of projective planes of different scales.
The total area of all of these pieces is at most a multiple of the area of Ck, and each
piece is uniformly rectifiable. In fact, each projective plane is a scaling of a fixed
projective plane, so each piece is uniformly rectifiable with the same constants.

The second stage of the decomposition is more complicated to describe and we
will sketch it more fully in Section 4.2. The idea of the decomposition is that a
uniformly rectifiable set E is close to a Lipschitz graph at “most” locations and
scales. This can be expressed in terms of a corona decomposition, which, very
roughly speaking, breaks E× (0,∞) into “good” and “bad” cubes so that the total
size of the set of bad cubes is bounded and such that when (x, r) lies in a good
cube, B(x, r) is close to a Lipschitz graph. Furthermore, the good cubes can be
collected into stopping-time regions so that all the cubes in a stopping-time region
lie close to the same Lipschitz graph, and the total size of the set of stopping-time
regions is also bounded.

If M is supported on a uniformly rectifiable set, we will use a corona decompo-
sition of suppM to decompose it into a sum of cycles, one for each bad cube and
each stopping-time region. The cycle corresponding to a bad cube will be a sum
of boundedly many cells; these cycles are combinatorially simple, but could have
nontrivial topology.

The stopping-time regions are more complex. Each stopping-time region may
contain arbitrarily many good cubes, so the corresponding cycle may consist of
arbitrarily many faces. A stopping-time region, however, lies close to a Lipschitz
graph, which restricts the topology of the cycle.

Thus, each bad cube corresponds to a geometrically simple cycle with nontrivial
topology and each stopping-time region corresponds to a cycle with complicated
geometry but controlled topology. The cycles sum to M , and each piece Bi satisfies
an inequality NO(Bi) ≲ massBi. The bounds on the total size of the corona
decomposition then imply

NO(M) ≲
∑
i

massBi ≲ mass(M).

Combining these two stages, we obtain the desired bound on NO(A).

1.3. Overview. We start by introducing some necessary notation and other pre-
liminaries (Sec. 2), including cellular and Lipschitz chains and some versions of the
Federer-Fleming deformation theorem. Then, in Section 3, we derive the applica-
tions Thm. 1.1 and Corollaries 1.3–1.5 from Thm. 1.2.

In the remaining sections of the paper, we prove Thm. 1.2. The proof breaks
down into two main pieces, which we sketch in Section 4. First, in Sec. 5, we
introduce uniform rectifiability and prove Thm. 1.7, which decomposes an arbitrary
cellular cycle into a sum of cycles with uniformly rectifiable support. Then, in
Sec. 7, we prove that Thm. 1.2 holds for cycles with uniformly rectifiable support
and conclude that Thm. 1.2 holds in general.
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2. Preliminaries

2.1. Definitions and notation. In this section we will give some definitions and
notation, including asymptotic notation, polyhedral complexes, QC complexes, Lip-
schitz chains, and flat equivalence.

We will write f ≲ g when there is a universal constant c > 0 such that f ≤ cg.
If, instead, there is a c = c(α, β) depending on some parameters α, β such that
f ≲ c(α, β)g, we write f ≲α,β g, and if f ≲ g and g ≲ f , we write f ∼ g. In this
paper, all implicit constants will be taken to depend on d and N , so we will omit
those subscripts in our notation.

A polyhedral complex is a locally finite CW-complex whose cells are isometric to
convex polyhedra, glued by isometries. Such a complex is quasiconformal if there
is a c such that each cell is c-bilipschitz equivalent to a scaling of the unit ball of
the same dimension. We will refer to quasiconformal polyhedral complexes as QC
complexes and we will refer to c as the QC constant of the complex.

The QC complex we will use most frequently is a complex Σ that subdivides
RN × [1,∞) into dyadic cubes. To construct Σ, we tessellate each slab of the form
RN × [2i, 2i+1] by dyadic cubes of side length 2i, then let Σ be the QC complex
whose top-dimensional cells are the cubes in these tessellations. Note that when
i > 0, the plane RN × {2i} is part of two such tessellations, one with side 2i and
one with side 2i−1, so the plane is subdivided into cubes of side 2i−1.

Suppose thatX is a polyhedral complex. We will also denote its underlying space
by X when it is not ambiguous, and we denote its d-skeleton by X(d). We will think
of cells of X as closed sets. We let C∗(X;K) be the complex of cellular chains on

X with coefficient group K and we let CLip
∗ (X;K) denote the complex of singular

Lipschitz chains or simply Lipschitz chains on X with coefficients in K. When K
is not mentioned, we take the coefficient group to be Z. This is the subcomplex
of the complex of singular chains consisting of formal sums of Lipschitz maps of

simplices into X. Given a chain A ∈ CLip
∗ (X;K), we define suppA to be the union

of the images of the simplices that occur in A with non-zero coefficients. Since the
barycentric subdivision of X is a simplicial complex, we can view C∗(X;K) as a

subset of CLip
∗ (X;K) by identifying each face of X with the sum of the simplices

in its barycentric subdivision.

Suppose that A ∈ CLip
d (RN ;K) is a Lipschitz d-chain with coefficients in a

normed abelian group K and that

A =
∑
i

aiαi,
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where ai ∈ K and the αi are Lipschitz maps from the standard d-simplex to RN .
By Rademacher’s Theorem, the αi’s are differentiable almost everywhere, so we
may define

massA =
∑
i

|ai| vold αi,

where

vold α =

∫
∆

|Jα(x)| dx

and Jα(x) is the jacobian determinant of α. In this paper, K will either be R or Z
with the usual norm or it will be Zν with norm

|x| = min{|y| | x ≡ y (mod ν)}.

If X is a polyhedral complex, then defining the mass of a chain is slightly more
complicated. Suppose that α : ∆ → X is a Lipschitz map defined on a d-simplex
∆. For each cell σ ⊂ X, let ∆σ = α−1(intσ). Then the ∆σ’s partition ∆ into
countably many disjoint measurable subsets such that the image of each subset lies
in a single cell of X. Consider the restriction

α|∆σ
: ∆σ → σ.

Since α is Lipschitz, we can extend this to a Lipschitz map α′
σ : ∆ → σ by the

Whitney extension theorem. This map is differentiable a.e. in ∆, and the derivative
Dα′

σ(x) is independent of the choice of extension when x is a Lebesgue density point
of ∆σ. Thus the jacobian determinant Jα(x) is well-defined almost everywhere on
∆σ. Repeating this for the other cells of X, we can define Jα(x) almost everywhere
on ∆ and define

(2) vold α =

∫
∆

|Jα(x)| dx.

Let

massA =
∑
i

|ai| vold αi,

for any chain

A =
∑
i

aiαi.

If B ⊂ X is a Borel set and A is a Lipschitz chain, let massB A be the mass of
the restriction of A to B. That is, if ∆ is a simplex and α : ∆ → X is Lipschitz,
we let

volB α =

∫
α−1(B)

|Jα(x)| dx.

If A =
∑

i aiαi for some maps αi : ∆ → X and some coefficients ai, we let

(3) massB A =
∑
i

|ai| volB αi

and

∥A∥1 =
∑
i

|ai|.
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A single surface may have many different triangulations, each of which corre-
sponds to a different Lipschitz chain. To avoid this, we will define the notion of flat

equivalence. Given a chain A ∈ CLip
d (X;K), we define its filling volume as

FV(A) = inf
B∈CLip

d+1(X;K)

∂B=A

massB

and define its flat norm as

F(A) = inf{massQ+massR | Q ∈ CLip
d (X;K), R ∈ CLip

d (X;K), A = Q+ ∂R}.

If we take Q = A, R = 0, this definition implies that F(A) ≤ massA and when

A is a cycle, then F(A) ≤ FV(A). Two chains A,A′ ∈ CLip
d (X;K) are called

flat-equivalent if F(A−A′) = 0.
Lipschitz d-chains in a d-complex (or in the d-skeleton of a complex) are flat-

equivalent to cellular chains.

Lemma 2.1. If X is a polyhedral complex and A ∈ CLip
d (X(d);K) is a Lipschitz

d-chain such that supp ∂A ⊂ X(d−1) (in particular, if A is a cycle), then there is a
cellular chain A′ ∈ Cd(X;K) which is flat-equivalent to A. If we write

A′ =
∑

K∈X(d)

aK [K],

where aK ∈ K, K ranges over the d-cells of X, and [K] is the chain corresponding
to K, then

|aK | ≤ massK(A)

Hd(K)
.

Proof. Consider A as an element of HLip
d (X(d), X(d−1);K), the relative Lipschitz

homology. Since X is locally finite and thus locally a Lipschitz neighborhood re-
tract, its Lipschitz homology and its singular homology are isomorphic. Since it is
a CW complex, its singular homology is isomorphic to its cellular homology. There-
fore, there is a cellular chain A′ ∈ Cd(X;K) which is homologous to A relative to

X(d−1). That is, there is some (d+ 1)-chain B ∈ CLip
d (X(d);K) such that

∂B − (A−A′) ∈ CLip
d (X(d−1);K).

But B is a (d+ 1)-chain in X(d), so its mass is 0. The difference ∂B − (A−A′) is
a d-chain in X(d−1), so its mass is also 0, and F(A−A′) = 0.

If K is a d-cell, its coefficient aK is the degree with which A covers K. Since ∂A
lies in the (d− 1)-skeleton of X, this degree is well-defined and

|aK | ≤ massK(A)

Hd(K)
,

as desired. □

More generally, Lipschitz chains in a QC complex can be approximated by cellu-
lar chains. This is a consequence of the deformation theorem, which we will discuss
in Section 2.3.
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2.2. Currents over Z and Zν . Here we will recall some notation and theorems
for currents with coefficients in Z and in Zν . This will primarily be used in proving
the applications to currents in Section 3.2; it is not necessary for the proof of the
main theorem.

For a full development of integral currents and flat chains, see [Fed69] or [Sim83].
Our development of currents modulo ν is taken from [Fed69]. Let Rd(RN ) be the
set of rectifiable d–currents; these are currents with compact support that can be
approximated in the mass norm by Lipschitz images of polyhedral chains. Let
Id(RN ) = {T ∈ Rd(RN ) | ∂T ∈ Rd−1(RN )} be the set of integral d–currents. Both
of these are subsets of the set Fd(RN ) of integral flat chains,

Fd(RN ) = {R+ ∂S | R ∈ Rd(RN ), S ∈ Rd+1(RN )}.
If T ∈ Fd(RN ), we define its flat norm by

F(T ) = inf{massR+massS | T = R+ ∂S,R ∈ Rd(RN ), S ∈ Rd+1(RN )}.
When B(0, r) is a closed ball containing suppT , it suffices to take the infimum
above over chains R and S with supports in B(0, r). The set {T ∈ Fd(RN ) |
suppT ⊂ B(0, r)} is complete with respect to F [Fed69, 4.1.24].

Federer and Fleming proved that integral currents satisfy a compactness property
[FF60].

Theorem 2.2 ([FF60, 8.13, 7.1], [Fed69, 4.2.17]). If K ⊂ RN is a compact Lipschitz
neighborhood retract and Ti ∈ Id(RN ) is a sequence of integral currents such that
suppTi ⊂ K and

sup
i
(massTi +mass ∂Ti) < ∞,

then there is a subsequence Tki
and an integral current T ∈ Id(RN ) such that

limi F(T − Tki) = 0 and suppT ⊂ K.

Extending the definitions above to currents modulo ν while keeping the com-
pactness property is subtle. Again, for a full development of currents modulo ν, see
[Fed69, 4.2.26]. Let ν ≥ 2 be an integer. When T ∈ Fd(RN ), we define its mod-ν
flat norm by letting

Fν(T ) = inf{massR+massS |R ∈ Rd(RN ), S ∈ Rd+1(RN ), Q ∈ Fd(RN ),

T = R+ ∂S + νQ}.
(4)

The mod-ν flat norm of any multiple of ν is zero, but it is a priori unclear that the
converse holds, namely, that if Fν(T ) = 0, then T ∈ νFd(RN ). (See Corollary 1.4.)
Let

νFd(RN ) = {T ∈ Fd(RN ) | Fν(T ) = 0}.
This is a closed subgroup with respect to F , and we define the flat chains modulo
ν as:

Fν
d (RN ) = Fd(RN )/νFd(RN ).

If T,U ∈ Fd(RN ), we denote the coset of T in Fν
d (RN ) by (T )ν , and if T and U

are in the same coset (i.e., Fν(T − U) = 0), we write T ≡ U (mod ν).
If T ∈ Fd(RN ), we define massν T to be the smallest m ∈ R such that for every

ϵ > 0, there exists an R ∈ Rd(RN ) such that Fν(R− T ) ≤ ϵ and massR ≤ m+ ϵ.
We define

suppν T =
⋂

{suppR | R ∈ Fd(RN ), R ≡ T (mod ν)}.
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These functions are constant on cosets of νFd(RN ), so they descend to functions
on mod-ν currents.

We define rectifiable and integral currents modulo ν as subsets of Fν
d (RN ). Let

Rν
d(RN ) = {(T )ν ∈ Fν

d (RN ) | T ∈ Rd(RN )}
and

Iνd(RN ) = {T ∈ Rν
d(RN ) | ∂T ∈ Rν

d−1(RN )}.
Note that (Id(RN ))ν ⊂ Iνd(RN ), but equality is not obvious. Indeed, as noted in the
introduction, Federer claimed that generally Iνd(RN ) ̸= (Id(RN ))ν , using an infinite
sum of embedded projective planes as an example, but this is incorrect, as we shall
see in Corollary 1.6.

Like their counterparts with integer coefficients, integral currents modulo ν sat-
isfy a compactness property:

Theorem 2.3 (see [Fed69, 4.2.26]). If K ⊂ RN is a compact Lipschitz neighborhood
retract and Ti ∈ Iνd(RN ) is such that suppν Ti ⊂ intK and

sup
i
(massν Ti +massν ∂Ti) < ∞,

then there is a subsequence Tki
and a T ∈ Iνd(RN ) such that limi Fν(T − Tki

) = 0
and suppν T ⊂ K.

2.3. The deformation theorem. Federer and Fleming proved a deformation the-
orem stating that a chain T in RN with finite mass and finite boundary mass can
be approximated by a cellular chain P in a grid of side length r such that the mass
of P and the flat norm of P − T are bounded in terms of the mass of T and the
mass of ∂T [FF60]. We state a version of their theorem for Lipschitz chains; see
[ECH+92, 10.3.3] for the proof.

Theorem 2.4 ([ECH+92, 10.3]). Let Σ be a finite-dimensional simplicial complex
such that each simplex is L–bilipschitz equivalent to the standard simplex of diameter
s. There is a constant c depending on dimΣ and L such that if K is a normed

abelian group, a ∈ CLip
k (Σ;K) is a Lipschitz k–chain, and ∂a ∈ Ck−1(Σ;K) is a

cellular cycle, then there is a cellular P̄ (a) ∈ Ck(Σ;K) and a Lipschitz Q̄(a) ∈
CLip

k+1(Σ;K) such that

(1) ∂a = ∂P̄ (a)
(2) ∂Q̄(a) = a− P̄ (a)
(3) mass P̄ (a) ≤ c ·mass(a)
(4) mass Q̄(a) ≤ cs ·mass(a)
(5) supp P̄ (a) ∪ supp Q̄(a) ⊂ nbhd supp a.

In [ECH+92], this is stated in the case that a is a cycle with integer coeffi-
cients, but the proof also works when a has cellular boundary and for more general
coefficient groups. In the case that the boundary of a is not cellular, one can ap-
proximate a by letting P̄ ′(a) = P̄ (a − Q̄(∂a)). This is a cellular chain such that
∂P̄ ′(a) = P̄ (∂a) and

mass P̄ ′(a) ≲ mass a+ smass ∂a.

Unfortunately, this result is not suitable for approximating flat chains, which may
not have finite mass or finite-mass boundary. White [Whi99] solved this problem by
constructing a chain map P from (a suitably generic subset of) the complex of flat
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chains to the polyhedral chains; this map commutes with the boundary operator
and is chain-homotopic to the identity map via a chain homotopy H. White used
these operators to approximate flat chains by polyhedral chains of comparable flat
norm.

In the following lemma, we construct a version of White’s deformation operators
for Lipschitz chains. Note that we define the operator P on merely a locally finite set
of chains T rather than on all Lipschitz chains. This is necessary because White’s
construction produces a family of operators that are only bounded on average. No
operator produces good approximations of every chain, so to get suitable bounds,
the operator must depend on the set of chains that we want to approximate.

If X is a QC complex and B ⊂ X, let nbhd(B) be the union of all the cells of X

that intersect B. If S ⊂ X, let HCd(S) denote the d-dimensional Hausdorff content
of S and let Hd(S) denote its d-dimensional Hausdorff measure.

Lemma 2.5. Let X be a QC complex of dimension N . Let T ⊂ CLip
∗ (X; ∗) be a

set of chains, possibly of different dimensions and coefficient groups, which is closed
under taking boundaries. Suppose that T is locally finite in the sense that there is
a n > 0 such that for any cell D ∈ X, no more than n elements of T have supports
that intersect nbhdD.

Then there is a C > 0 depending on n, N , and the QC constant of X, and there
is a locally Lipschitz map p : X → X such that for any T ∈ T with dimension d
and coefficients in K,

(1) p(suppT ) ⊂ X(d),
(2) mass p♯(T ) ≤ CmassT, and

(3) HCd(p(supp(T ))) ≤ C HCd(suppT ).

By Lemma 2.1, each chain p♯(T ) is flat-equivalent to a cellular chain, which we
denote P (T ) ∈ Cd(X;K). Then P is a chain homomorphism; i.e., for all T, T ′ ∈
T with the same dimension and coefficient group, we have ∂P (T ) = P (∂T ) and
P (T + T ′) = P (T ) + P (T ′).

These maps are local in the sense that for any cell D of X, we have p(D) ⊂ D.
In fact,

(4) if Y ⊂ X, then for any T ∈ T ,

massY P (T ) ≤ CmassnbhdY T,

(5) HCd(suppP (T ) ∩ Y ) ≤ C HCd(suppT ∩ nbhdY ).

Therefore, if T ∈ T , then P (T ) is supported on nbhd(suppT ), and if T ∈ T is
cellular, then P (T ) = T.

If T ⊂ CLip
∗ (X; ∗) is a locally finite set of chains and P : ⟨T ⟩ → C∗(X; ∗) is as

in the lemma, we call P a deformation operator approximating T .
We defer the proof of Lemma 2.5 to Appendix A.
David and Semmes used a different deformation lemma to deform d-dimensional

sets into the d-skeleton of a grid in RN . This lemma can be generalized to QC
complexes. If U ⊂ X, we say that a map f : X → X is a deformation supported
on U if

{x ∈ X | x ̸= f(x)} ∪ {f(x) ∈ X | x ̸= f(x)} ⊂ U.

Lemma 2.6 (see [DS00, Prop. 3.1, Lemma 3.31]). Let X be a QC complex of
dimension N and let d < N . Let E ⊂ X be a closed set such that Hd(E ∩B) < ∞
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for any ball B ⊂ RN and let X0 ⊂ X be a subcomplex. Then there is a C > 0
depending on N and the QC constant of X and a deformation p : X → X supported
on nbhdX0 that is Lipschitz on each cell of X and collapses E∩X0 to the d-skeleton
of X. That is,

(1) p(E ∩X0) ⊂ X
(d)
0 ,

(2) p restricts to the identity map on X(d),
(3) p satisfies

Hd(p(E)) ≤ CHd(E)

Hd(p(E))−Hd(E) ≤ CHd(E ∖X(d))

As in the previous lemma, for any cell D of X, we have p(D) ⊂ D. In fact, if
intD is the interior of D, then

(4) Hd(p(E ∩ intD)) ≤ CHd(E ∩ intD).
(5) If Y ⊂ X, then

Hd(p(E) ∩ Y ) ≤ CHd(E ∩ nbhdY ).

(6) If

c−1rd ≤ Hd(E ∩B(x, r)) ≤ crd

for any x ∈ E and any 0 < r < maxσ∈X diamσ, (i.e., E is Ahlfors d-
regular) then we can take p to be Lipschitz with Lipschitz constant depending
on c and N .

Sketch of proof. This lemma is essentially Prop. 3.1 and Lemma 3.31 of [DS00]
with two differences. First, Prop. 3.1 of [DS00] applies to grids in RN rather than
QC complexes. This is a minor difference; the key lemma used in the proof of
Prop. 3.1 is a bound on the size of a random projection from the interior of a ball
to its boundary, and this bound applies equally to grid cells and to cells in a QC
complex. This bound implies parts 4 and 5.

Second, we need to show the second bound in part 3. By part 4,

Hd(p(E ∖X(d))) ≤ CHd(E ∖X(d)),

so, since p(E ∩X(d)) = E ∩X(d), we have

Hd(p(E))−Hd(E) ≤ Hd(p(E ∖X(d)))−Hd(E ∖X(d))

≤ CHd(E ∖X(d))

as desired. □

If U is a closed subset of X(d), a similar process lets us “trim” any d-cells of X
which are only partially covered by U by pushing U into their boundaries. This
results in an approximation of U that is almost a union of d-cells of X. For any
S ⊂ X, let

S∗ = {x ∈ RN | Hd(S ∩B(x, r)) > 0 for all r > 0}.
This is a closed set.

Lemma 2.7. Let X be a QC complex of dimension N and let d < N . Let U ⊂ X(d)

be a closed set. Then there is a map q : X → X which is Lipschitz on each cell of
X such that:

(1) for any cell D of X, we have q(D) ⊂ D,
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(2) q restricts to the identity map on X(d−1) and restricts to a degree-1 map
on each d-cell of X, and

(3) q(U)∗ is the union of all of the d-cells whose interiors are contained in U ,
so q(U)∗ ⊂ U and |q(U)| ≤ |U |.

Proof. We construct q on each d-cell of X, then extend it to X. Let D ∈ X(d) be
a d-cell. Since X is a QC complex, we may identify D with a closed ball

B = B(0, R) ⊂ Rd

by a bilipschitz map. If intB ⊂ U or if B ∩ U = ∅, we define q as the identity on
B. Otherwise, there’s some y ∈ intB such that y ̸∈ U . Since U is closed, we may
let ϵ > 0 be such that B(x, ϵ) ∩U = ∅ and B(x, 2ϵ) ⊂ B. Then there is a Lipschitz
map B → B which sends B(x, ϵ) homeomorphically to B, is the identity on ∂B,
and sends B ∖ B(x, ϵ) to ∂B. We define q to be such a map on B. In either case,
q is a degree-1 map of B to itself and restricts to the identity map on ∂B, so q is
well-defined on all of X(d) and is the identity on X(d−1), just as we claimed. Once
we’ve defined q on the d-skeleton, we can extend it to all of X by a sequence of
radial extensions.

Finally, for each d-cell D ∈ X(d), we either have intD ⊂ q(U) (if intD ⊂ U)
or intD ∩ q(U) = ∅ (otherwise), so q(U)∗ is the union of all of the d-cells that are
contained in U . □

2.4. Nonorientability. Let τ be the unit grid in RN and let ν be an integer such
that ν ≥ 2. If A ∈ Cd(τ ;Zν) (resp. A ∈ Iνd(RN )) is a cycle, a mod-ν pseudo-
orientation or simply pseudo-orientation of A is a cycle R ∈ Cd(τ ;Z) (resp. A ∈
Id(RN )) such that A ≡ R (mod ν). For all A ∈ C(τ ;Zν) and A ∈ Iνd(RN ), we
define

NO(A) = inf{massR | R is a pseudo-orientation of A}.
Every cellular cycle A ∈ Cd(τ ;Zν) has a pseudo-orientation. We can construct

one such pseudo-orientation by letting AZ ∈ Cd(τ) be an integral chain such that
AZ ≡ A (mod ν); i.e., a chain AZ =

∑
i āiσi where each coefficient āi is congruent

mod ν to the corresponding coefficient of A. Then ∂AZ ≡ ∂A ≡ 0 (mod ν), so ∂AZ
is a multiple of ν. Let B ∈ Cd(τ ;Z) be a multiple of ν such that ∂B = ∂AZ. Then
AZ −B is a cycle, and AZ −B ≡ A (mod ν).

Unfortunately, the procedure above does not work if A is an integral current
modulo ν. In this case, it is not a priori clear that there is an integral current AZ
such that AZ ≡ A (mod ν) and suppAZ = suppA. One of the main goals of this
paper is to prove that in fact, every cycle A ∈ Iνd(RN ) has a pseudo-orientation.

3. Applications

In this section, we will use Theorem 1.2 to prove the applications in Section 1.1.

3.1. Nonorientability and filling volumes. When T is a cycle with integer coef-
ficients, the difference between FV(T ) and FV(νT ) is closely connected to nonori-
entability. On one hand, nonorientable surfaces give rise to cycles T such that
FV(2T ) < 2FV(T ). L. C. Young [You63] gave a recipe for producing a curve
T from a nonorientable surface M embedded in RN ; he defines T as a “zigzag”
across M that represents a torsion class in H1(M ;Z2). Then 2T can be filled
by a surface lying entirely on M , while any filling of T must cut through M , so
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2FV(T ) > FV(2T ). Similar techniques for fillings of different multiplicities appear
in [Mor84] and [Whi84].

On the other hand, the following lemma bounds the difference between FV(T )
and FV(νT ) in terms of the nonorientability of U mod ν ∈ Cd+1(τ ;Zν).

Lemma 3.1. If T ∈ Cd(τ) is a cycle in the unit grid τ in RN and U ∈ Cd+1(τ) is
a chain such that ∂U = νT , then

FV(T ) ≤ massU +NO(U mod ν)

ν
.

Proof. Let R ∈ Cd+1(τ) be a pseudo-orientation of U mod ν such that massR =
NO(U mod ν) and let B = U−R

ν . Since R ≡ U (mod ν), the coefficients of U − R
are all multiples of ν, so B ∈ Cd+1(τ). Further,

∂B =
νT − 0

ν
= T,

so B is a filling of T and

FV(T ) ≤ massB ≤ massU

ν
+

massR

ν
.

□

This implies a cellular version of Corollary 1.3:

Corollary 3.2. If T ∈ Cd(τ) is a cycle in the unit grid τ in RN , then FV(T ) ≲ν

FV(νT ).

Proof. Let U ∈ Cd+1(τ) be a chain such that ∂U = νT and massU ≲ FV(νT ). By
Theorem 1.2, NO(U mod ν) ≲ν FV(νT ), so by the previous lemma,

FV(T ) ≲ν massU ≲ν FV(νT ).

□

Corollary 1.3 follows by approximating T by a cellular cycle.

Proof of Corollary 1.3. Let T be a Lipschitz d–cycle and let ϵ > 0. Theorem 2.4
implies that there is an r > 0 and an approximating cycle Tr = P̄ (T ) ∈ Cd(τr)
such that FV(T − Tr) ≤ mass Q̄(T ) ≤ ϵ, where τr is the grid of side length r. By
Corollary 3.2, there is a c > 0 depending on d, N , and ν such that FV(Tr) ≤
cFV(νTr), so

FV(T ) ≤ FV(Tr) + ϵ ≤ cFV(νTr) + ϵ ≤ cFV(νT ) + (ν + 1)ϵ.

Letting ϵ go to zero, we conclude that FV(T ) ≤ cFV(νT ). □

3.2. Currents modulo ν. In this section, we will show that Theorem 1.1 and
Corollaries 1.4–1.6 follow from Theorem 1.2. Our main tool is the following lemma:

Lemma 3.3. For all d,N, ν > 0, and for all T ∈ Fd(RN ),

(5) F(T ) ≲ν F(νT ) + F(νT )
d+1
d .

Proof. First, we claim that (5) holds for cellular chains and a cellular flat norm.
That is, we claim that if r > 0, R, T ∈ Cd(τr), and S ∈ Cd+1(τr) are such that
νT = R+ ∂S and F = massR+massS, then

(6) F(T ) ≲ν F + F
d+1
d .
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For A ∈ C∗(τr), let (A)ν be the image of A in C∗(τr;Zν).
We have ∂R = ν∂T ≡ 0 (mod ν), so (R)ν is a mod-ν d–cycle. By Theorem 1.2,

it has a pseudo-orientation ΨR ∈ Cd(τr) such that ∂ΨR = 0, ΨR ≡ R (mod ν),
and massΨR ≲ν massR ≤ F . Consequently,

R′ =
R−ΨR

ν

is a chain with integer coefficients such that massΨR ≲ν F .
Let M ∈ Cd+1(τr) be a chain such that ∂M = ΨR. By the isoperimetric in-

equality for RN , we may assume massM ≲ F (d+1)/d. Then

∂(M + S) = ΨR + ∂S ≡ R+ ∂S ≡ νT ≡ 0 (mod ν),

so (M + S)ν is a mod-ν cycle. There is a pseudo-orientation ΨM+S ∈ Cd+1(τr)
such that ∂ΨM+S = 0, ΨM+S ≡ M + S (mod ν) and

massΨM+S ≲ν massM +massS ≲ F + F
d+1
d .

Let U = ΨM+S −M . Then ∂U = −ΨR and S ≡ U (mod ν), so

S′ =
S − U

ν
has integer coefficients and

R′ + ∂S′ = ν−1(R−ΨR + ∂S +ΨR) = T.

Therefore,

F(T ) ≤ massR′ +massS′ ≤ F +massΨR +massΨM+S ≲ν F + F
d+1
d ,

as desired.
When T is a flat chain, we approximate it by cellular chains using White’s

deformation operators. Let ϵ > 0 and let R ∈ Rd(RN ) and S ∈ Rd+1(RN ) be
such that νT = R + ∂S and massR + massS ≤ F(νT ) + ϵ. By [Whi99, 1.1,1.2],
there are an r > 0 and cellular approximations R0, S0, and T0 ∈ C∗(τr) such that
R0+∂S0 = νT0, F(T −T0) < ϵ, massR0 ≲ massR, and massS0 ≲ massS. Letting
F0 = massR0 +massS0, (6) implies that

F(T ) ≤ F(T0) + ϵ ≲ F0 + F
d+1
d

0 + ϵ ≲ F(νT ) + ϵ+ (F(νT ) + ϵ)
d+1
d .

Letting ϵ go to 0, we obtain (5). □

Cor. 1.4 follows from the lemma.

Proof of Cor. 1.4. By the lemma, the two norms F(T ) and F(νT ) on Fd(RN )
induce equivalent topologies, so the multiply-by-ν map in Corollary 1.4 is an em-
bedding. For any closed ball B ⊂ RN , let

Fd,B = {T ∈ Fd(RN ) | suppT ⊂ B};
This set is complete [Fed69, 4.1.24], so νFd,B is complete as well.

If T is in the closure of νFd(RN ), let B be a closed ball such that suppT ⊂ B;
let p : RN → B be the closest-point projection. If Ti ∈ νFd(RN ) is a sequence such
that F(T − Ti) → 0, then F(T − p♯(Ti)) → 0 as well, and p♯(Ti) ∈ νFd,B . Since
νFd,B is complete, this implies that T ∈ νFd,B ⊂ νFd(RN ).

Similarly, if Id,B = {T ∈ Id(RN ) | suppT ⊂ B}, then Id,B is complete by
Theorem 2.2. The same argument with Fd replaced by Id implies that νId(RN ) is
closed. □
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The lemma is also helpful to show that Theorem 1.2 implies Theorem 1.1 and
Corollary 1.5:

Proof of Theorem 1.1. Suppose that A ∈ Iνd(RN ) and that ∂A = 0. Let r > 0 be
such that suppA ⊂ B(0, r) and let B = B(0, r+1). By the deformation theorem for
integral currents modulo ν [Fed69, 4.2.26], there is a sequence Pk ∈ Cd(τk;Zν) of
cellular approximations of A in finer and finer grids so that the cycles Pk converge
to A as k → ∞ and suppPk ⊂ B, massPk ≲ν massν A for all k.

For each k > 0, let Rk ∈ Id(RN ) be a pseudo-orientation of Pk. By Theorem 1.2,
we can choose the Rk so that

massRk ≤ cmassPk ≲ massν A.

Let p : RN → B be the closest-point projection and let R′
k = p♯(Rk). Then R′

k is
also a pseudo-orientation of Pk and massR′

k ≤ massRk. By Theorem 2.2, there
is some subsequence ki such that R′

ki
converges. Let R = limi R

′
ki

∈ Id(RN ). We
claim that R is a pseudo-orientation of A.

We have R′
ki

− Pki ∈ νId(RN ) for all i and R − A = limi R
′
ki

− Pki . By Corol-

lary 1.4, this implies R − A ∈ νId(RN ), so R ≡ A (mod ν). Finally, ∂R = 0 and
massR ≲ν massν A, so NO(A) ≲ν massν A. □

Proof of Cor. 1.5. Let T ∈ Iνd(RN ). Then ∂T is a mod-ν cycle, so by Theorem 1.1,
it lifts to an integral current S ∈ Id−1(RN ) such that ∂S = 0, S ≡ ∂T (mod ν),
and massS ≲ massν ∂T . By the isoperimetric inequality for integral currents, there
is an R ∈ Id(RN ) such that ∂R = S and massR ≲ (massν ∂T )d/(d−1).

Consider the mod-ν current T ′ = T − (R)ν . Since ∂T ≡ ∂R (mod ν), this is a
cycle modulo ν, so, applying Theorem 1.1 again, there is a U ∈ Id(RN ) such that
U ≡ T ′ (mod ν) and massU ≲ massν T ′. The sum U + R is an integral current
such that U +R ≡ T ′ +R ≡ T (mod ν) and

mass(U +R) ≲ massν T + (massν ∂T )d/(d−1).

□

Finally, Corollaries 1.4 and 1.5 imply that the set of integral currents modulo ν
is a quotient of the set of integral currents.

Proof of Corollary 1.6. Let qν : Id(RN ) → Iνd(RN ) be the map qν(T ) = (T )ν .
Corollary 1.5 implies that qν is a surjection with kernel equal to the closure of
νId(RN ). By Corollary 1.4, the set νId(RN ) is closed, so in fact,

Iνd(RN ) = Id(RN )/νId(RN ).

□

4. Sketch of the proof of Theorem 1.2

In this section, we will sketch the proof of Theorem 1.2. The proof will use
a multiscale argument to construct a pseudo-orientation of A; this argument was
inspired by unpublished work of Larry Guth.

In unpublished work, Guth proved a superlinear bound on the problem in Corol-
lary 1.3. He showed that if T ∈ Cd(τ) is a cycle in the unit grid τ in RN , then
FV(T ) ≲ (log FV(2T )) FV(2T ) [Gut09]. His argument used a multiscale argument
to bound fillings of T based on approximations of 2T at many scales. Guth used
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a similar argument to prove the Perpendicular Pair Inequality in [Gut13]; the fol-
lowing proposition, obtained in collaboration with Guth, applies these arguments
to nonorientability.

Proposition 4.1 (see [Gut13, §8]). For every ν, d,N > 0, there is a c > 0 such
that if A ∈ Cd(τ ;Zν) is a mod-ν cellular cycle in the unit grid in RN , then

NO(A) ≤ c(massA)(logmassA).

Proof. We bound NO(A) by breaking it into contributions from different scales.
We will construct a sequence of cycles Pk, Pk−1, . . . , P1 approximating A at finer
and finer scales, and show that passing from Pk to Pk−1 adds up to massA to the
nonorientability of A. Since there are logarithmically many scales, we obtain the
desired bound.

Let k be such that 2dk ≫ massA and k ≲ logmassA. Let Xi = RN × [2i, 2i+1]
and let Σ be the QC complex introduced in Section 2.1, which subdivides RN ×
[1,∞) into dyadic cubes so that Xi is tiled by cubes of side length 2i. Then A×[1] is
a cellular cycle in Σ. A pseudo-orientation of A×[1] projects to a pseudo-orientation
of A, so NO(A) ≤ NO(A× [1]).

Let P be a deformation operator as in Lemma 2.5 approximating all chains of
the form A× [2i, 2i+1] or A× [2i] by cellular chains in Σ. Then for each i, the cycle

Pi = P (A× [2i]) ∈ Cd(Σ;Zν)

approximates A at scale 2i and satisfies massPi ≲ massA. Similarly, for each i,
the chain

Vi = P (A× [2i, 2i+1]) ∈ Cd+1(Σ;Zν)

forms a chain with boundary Pi+1 − Pi and massVi ≲ 2i massA. We will use the
Vi to bound NO(A).

Note that since A× [1] is already cellular, P0 = A× [1]. Furthermore, because Pk

is a cellular d-cycle in Xk with massPk ≲ massA and each d-cell in Xk has volume
on the order of 2dk (much bigger than massA), we have Pk = 0. It follows that

k−1∑
i=0

∂Vi = Pk − P0 = −A× [1]

and

NO(A) ≤
k−1∑
i=0

NO(∂Vi).

For each i, we construct a pseudo-orientation of ∂Vi by decomposing Vi as a sum
of cells. Let Wi ∈ Cd+1(Σ) be a chain with integer coefficients between −ν

2 and ν
2

such that Wi ≡ Vi (mod ν). Then massWi = massVi. Let Ri = ∂Wi ∈ Cd(Σ).
This is an integral cycle and Ri ≡ ∂Vi (mod ν), so Ri is a pseudo-orientation of
∂Vi.

We can estimate the mass of Ri by counting the number of cells in Wi. By
Lemma 2.5, we have

massWi = massVi ≲ 2i massA.

Since Wi is a sum of cubes of side length ∼ 2i and (d + 1)-volume ∼ 2i(d+1), we
have

∥Wi∥1 ∼ 2i massA

2i(d+1)
∼ 2−id massA.
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The boundary of each of these simplices has volume ∼ 2id, so massRi ≲ massA,
and

NO(A) ≤
k−1∑
i=0

massRi ≲ massA(logmassA)

as desired. □

This is very close to the desired linear bound, but improving this argument
to a linear bound is difficult. The main obstacle is that NO(A) may have large
contributions from a wide range of scales. The bound in the proposition comes
from showing that each scale can contribute at most massA to the nonorientability
and that there are logarithmically many scales. To prove Theorem 1.2, we must
show instead that the total contribution from all scales is bounded by massA.

In the introduction, we constructed an example of a surface Ck that contains
crosscaps of many scales. If we rescale Ck to get a cellular surface with area of order
k102k, the result typifies some of the difficulties we will encounter. The rescaled
surface contains many crosscaps at scales 1, 10, . . . , 10k, and each scale contributes
roughly 102k to the nonorientability. By varying the number of crosscaps added
at each scale, we can construct a wide variety of examples with varying areas and
nonorientabilities. In order to prove Theorem 1.2, we must show that any such
surface can be decomposed into simple pieces.

4.1. Decomposing cycles into uniformly rectifiable pieces. The first part
of the proof of Theorem 1.2 decomposes a cycle in RN into a sum of cycles with
uniformly rectifiable supports; for the full statement, see Theorem 1.7. This decom-
position breaks complicated surfaces into “simple” pieces; in particular, it breaks
the example Ck above into the initial cube C0 and a collection of projective planes
of different scales.

Recall that a set E ⊂ Rn is Ahlfors d-regular (or simply d-regular) with regularity
constant ϵ > 0 if for any x ∈ E and any 0 < r < diamE,

ϵrd ≤ |E ∩B(x, r)| ≤ ϵ−1rd.

(Here and in the rest of the paper, we use |E| to denote the Hausdorff d-measure of
a subset of RN .) We say that E is d-rectifiable if, up to a set of Hausdorff d–measure
zero, it can be covered by countably many Lipschitz images of Rd.

Uniform rectifiability is a quantitative version of rectifiability that measures the
size and complexity of the Lipschitz images that cover E. There are several ways
to define uniform rectifiability, and we will primarily use the following definition:

Definition 4.2. A set E ⊂ RN is uniformly d-rectifiable if there is a ϵ > 0 such
that E is Ahlfors d-regular with regularity constant ϵ and, for all x ∈ E and
0 < r < diamE, there is an ϵ−1-Lipschitz map f : Bd(r) → Rn such that

|f(Bd(r)) ∩ E ∩B(x, r)| ≥ ϵrd,

where Bd(r) is the ball of radius r in Rd.

This is also known as having big pieces of Lipschitz images (BPLI). We call ϵ
the uniform rectifiability (UR) constant of E. Note that this definition is scale-
invariant, so if E is uniformly rectifiable, any scaling of E is uniformly rectifiable
with the same constant.

Then, for example, the surfaces Ci constructed in the introduction are all uni-
formly rectifiable, but with a constant depending on i; as i grows, the area of the
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sets grows and their geometry becomes more complicated. Indeed, if A is a cellular
cycle, then suppA is a finite union of unit cubes, so it is automatically uniformly
rectifiable, albeit with a constant depending strongly on A. The important feature
of Theorem 1.7 is that it decomposes A into a sum of pieces with UR constants
that are independent of A.

The proof of Theorem 1.7 relies on results of David and Semmes on quasimin-
imizing sets. Roughly, a set E ⊂ RN is quasiminimizing if compactly supported
deformations do not locally decrease the volume of the set too much. (For a more
detailed definition, see Sec. 5.1.) In [DS00], David and Semmes prove that quasi-
minimizing sets are uniformly rectifiable. Consequently, for every k > 1, there is an
ϵ such that if a set E is not ϵ–uniformly rectifiable, there is a compactly supported
deformation that locally decreases its volume by a factor of at least k.

Let A be a cellular cycle, let E = suppA and suppose that f : RN → RN is such
a deformation of E. That is, there is a set S ⊂ RN such that f is the identity map
outside S, f(S) ⊂ S, and

|f(S ∩ E)| ≤ |S ∩ E|
k

.

Generally, there will be many possible deformations to choose from; we choose
one so that diamS is close to minimal. This ensures that E is quasi-minimizing
(and thus uniformly rectifiable) on scales smaller than the diameter of S. Then
M = A− f♯(A) is a cycle such that

suppM ⊂ (S ∩ E) ∪ f(S ∩ E).

Since E is uniformly rectifiable on scales smaller than the diameter of S, the set
S∩E is uniformly rectifiable (possibly with worse constants). To show the uniform
rectifiability of suppM , we need to control f(S ∩ E).

Unfortunately, although |f(S ∩ E)| is small, we have poor control over the ge-
ometry of f(S ∩ E), especially near the boundary of S. We thus prove a slight
strengthening of David and Semmes’s theorem (Proposition 5.8). This proposition
allows us to choose S, f , ϵ depending on k so that if

S′ = {x ∈ RN | d(x, S) < ϵdiamS},

then

|f(S′ ∩ E)| ≤ |S′ ∩ E|
k

.

This lets us adjust f so that f(S′ ∩ E) is uniformly rectifiable. Specifically, we let
τS′ be a Whitney cube decomposition of S′ and use Lemma 2.6 to approximate
f(S′ ∩ E) by a union of cells of τS′ and approximate f♯(A) by a cellular chain
P (f♯(A)). In Lemma 5.12, we show that suppP (f♯(A)) is contained in a uniformly
rectifiable set.

The result of this is a cycle M = A − P (f♯(A)) whose support is contained in
a uniformly rectifiable set. Furthermore, f♯(A) has substantially smaller support
than A; we have

| suppA| − | supp f♯(A)| ≳ | suppM |.
Letting A1 = P (f♯(A)), we can repeat this process inductively to construct a se-

quence of cycles A2, A3, . . . such that Ai is a deformation of Ai−1 and vold suppAi

is strictly decreasing. Since the Ai are cellular, this sequence terminates and we
can write A =

∑
i Mi, where Mi = Ai−1 −Ai and | suppA| ≲

∑
i | suppMi|.
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It is helpful to consider the result of applying this process to the surface Ck

constructed in the introduction. Let A be a copy of Ck, scaled to be a cellular
cycle. When r is small, sets like suppA ∩ B(x, r) contain few or no crosscaps and
are quasiminimizing. As we increase r, the intersections suppA∩B(x, r) will contain
more and larger crosscaps, until finally r is large enough that suppA∩B(x, r) is no
longer quasiminimizing. At this point, there is an x1 ∈ suppA and a deformation
supported in B(x1, r) that replaces suppA ∩ B(x1, r) with a substantially smaller
minimal surface. Let A1 be the result of deforming A and let M1 = A0−A1. Then
M1 contains most of the crosscaps in suppA ∩B(x1, r).

In fact, there will be many xi such that suppA ∩ B(xi, r) is not quasiminimiz-
ing. We can repeat this process in each such ball to remove more and more small
crosscaps from A, eventually obtaining a cycle Ak with most of its small crosscaps
removed. Without those small crosscaps, Ak is quasiminimizing at scale r, so we
can increase r again until suppAk∩B(x, r) is no longer quasiminimizing. We repeat
this process roughly k times, each time removing larger and larger crosscaps from
A, until finally, A is quasiminimizing at all scales.

This decomposition is like the construction of A in reverse. We originally con-
structed A by starting with a cube, then adding crosscaps at all scales, starting with
the largest crosscaps and ending with the smallest. To decompose A, we reverse
that process, removing the crosscaps from smallest to largest.

4.2. Bounding the nonorientability of uniformly rectifiable cycles. The
second part of the proof of Theorem 1.2 is to bound the nonorientability of cycles
supported on uniformly rectifiable sets. Specifically, we claim that

Proposition 4.3. If A ∈ Cd(τ ;Zν) and suppA is contained in a d-dimensional
uniformly rectifiable set E, then

NO(A) ≲ |E|,
with implicit constant depending only on ν, N and the uniform rectifiability constant
of E.

The main idea of the proof is to combine the methods of Prop. 4.1 with a corona
decomposition of the support of A.

Recall that in Prop. 4.1, we constructed a pseudo-orientation of a cycle A by
approximating cycles of the form A × [2i] in a complex Σ that decomposes RN ×
[1,∞) into dyadic cubes. We let P be a deformation operator for Σ as in Lemma 2.5.
For each i, we constructed an approximation Pi = P (A × [2i]) consisting of cubes
of side length 2i, then connected these approximations by chains Vi = P (A ×
[2i, 2i+1]). The chain Vi has boundary equal to Pi+1 − Pi, and we constructed a
pseudo-orientation of ∂Vi by choosing random orientations on the cells that make
up Vi. The mass of this pseudo-orientation is bounded by the total volume of the
boundaries of all of the cells of the Vi, and by counting cells, we find that

(7) NO(Pi − Pi+1) ≲ massA

When Pi+1 has simpler topology than Pi, this estimate is reasonably accurate.
For example, if A is covered by crosscaps of diameter roughly 2i, those crosscaps
will appear in Pi but not in Pi+1. The difference Pi − Pi+1 is nonorientable, and
(7) is sharp.

The fact that makes Proposition 4.3 possible is that if A is uniformly rectifiable,
then there are many scales and locations on which A is close to a plane. When
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this happens, one approximation looks very similar to another approximation, so
we can skip over intermediate scales.

For example, suppose that d = 2, ν = 2, and that K is a Klein bottle smoothly
embedded in RN . We suppose that K has scale roughly 2k, so that areaK ∼ 22k,
diamK ∼ 2k, and the intersection of K with any ball of radius at most 2k is close
to a plane. Let 2j ≪ 2k and let K ′ be the result of replacing many discs in K of
radius 2j by crosscaps. The surface K ′ only has topological features at two scales,
2j and 2k. If r ≪ 2j or if 2j ≪ r < 2k, then the intersection of K ′ with a ball of
radius r is close to a plane. Let A = [K ′].

Since A is approximately flat on scales between 2j and 2k, we may suppose that
Pi = P (A× [2i]) = P ([K]× [2i]) when j ≤ i ≤ k. Then we can construct a pseudo-
orientation of Pk − Pj by lifting [K] to a chain with integer coefficients. Let γ be
a simple closed curve such that K ∖ γ is an orientable cylinder D. By the systolic
inequality for the Klein bottle, we may suppose ℓ(γ) ≲

√
areaK ∼ 2k. This cylinder

has a fundamental class [D] ∈ C2(Σ;Z) such that [D] ≡ [K] (mod 2), ∂[D] = 2[γ];
it follows that P ([D] × [2i]) ≡ Pi (mod 2) for all i. Let H = P ([D] × [2j , 2k]) ∈
C3(Σ;Z). Then

∂H = P ([D]× [2k]− [D]× [2j ] + 2[γ]× [2j , 2k])

≡ Pk − Pj (mod 2),

so ∂H is a pseudo-orientation of Pk − Pj , and

NO(Pk − Pj) ≤ mass ∂H ≲ massD +massP (2[γ]× [2j , 2k])

≲ 22k ∼ massA.(8)

If A only has topological features at a few scales, then we can alternate between
these two estimates, using (7) at scales where Pi−1 and Pi are different and (8) for
ranges of scales where the Pi’s do not change very much. If the number of scales is
bounded, we only use each estimate boundedly many times and we obtain a linear
bound on the nonorientability.

The main problem with this approach is that even if A is uniformly rectifiable,
it can have features at infinitely many different scales. To construct such a set, we
can start with a cube of side length 2k and replace half of the faces of the cube by
crosscaps of scale 2k. If we cover half of the remainder with crosscaps of scale 2k−1,
then cover half of the remainder with even smaller crosscaps, and so on, the result
is uniformly rectifiable, but has complicated topology at all scales.

Nevertheless, a uniformly rectifiable set cannot be complicated everywhere and
at all scales. This idea can be quantified by using a corona decomposition of E. An
(η, θ) corona decomposition of E partitions E × R into a set B of bad cubes and a
set F of stopping-time regions. (See Section 6 for more details.) The number and
size of the bad cubes and stopping-time regions is bounded. On bad cubes, we have
little control over the geometry of E, but if S ∈ F is a stopping-time region, there
is a Lipschitz graph Γ(S) with Lipschitz constant at most η such that for every
(x, t) ∈ S, d(x,Γ(S)) ≲ θt.

We will use this decomposition of E×R to decompose A. Let k be as in Prop. 4.1,
so that 2k ∼ diamE and P (A×[2k]) = 0. Let A = A×[1, 2k]. Then suppA ⊂ E×R,
so we can write

A =
∑
Q∈B

AQ +
∑
S∈F

AS
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where AQ and AS are the restrictions of A to the corresponding bad cubes and
stopping-time regions in E × R. Then

P (∂A) = P (A× [2k])− P (A× [1])

and ∑
Q∈B

P (∂AQ) +
∑
S∈F

P (∂AS) = −A× [1].

So
NO(A) ≤

∑
Q∈B

NO(P (∂AQ)) +
∑
S∈F

NO(P (∂AS)).

When Q ∈ B is a bad cube, P (∂AQ) will consist of boundedly many cells of Σ,
so its nonorientability will be bounded. When S ∈ F is a stopping-time region, S
will be approximated by a Lipschitz graph. This will induce a pseudo-orientation
on P (∂AS) and give a bound on its nonorientability

In total, the stopping-time regions will contribute roughly massA to NO(A), and
the bad cubes are sparse enough and small enough that they will also contribute
roughly massA. Adding these together will give the desired linear bound on NO(A).

5. Decomposing cycles into uniformly rectifiable pieces

In this section, we prove Theorem 1.7, which states that any cycle in RN can
be decomposed into a sum of cycles supported on uniformly rectifiable sets. The
main tool we use to construct this decomposition is a result of David and Semmes
[DS00] stating that quasiminimizing sets are uniformly rectifiable. We will define
quasiminimizing sets and prove a slight generalization of their theorem in Sec. 5.1,
then use this generalization to construct the desired decomposition in Sec. 5.2.
Throughout the rest of this paper, if E ⊂ RN , we will use |E| to denote its Hausdorff
d-measure.

5.1. Quasiminimizing sets. A quasiminimizing set, or quasiminimizer, is a set
whose volume cannot be reduced too much by a small deformation. David and
Semmes showed that the solutions to many minimization problems are uniformly
rectifiable by showing that quasiminimizers are uniformly rectifiable [DS00]. We
will state an abbreviated version of their results; their results also apply to sets
that are quasiminimizers with respect to deformations inside some set U , but we
will take U = RN throughout.

Definition 5.1. Let 0 < d < N be an integer. If ϕ : RN → RN is a Lipschitz map
such that ϕ(x) = x for all x outside some compact set, letW = {x ∈ Rn | ϕ(x) ̸= x}.
We say that ϕ is a deformation of RN supported on the set suppϕ = W ∪ ϕ(W ).

If k ≥ 1 and 0 < r ≤ ∞ and S ⊂ RN is a nonempty closed set with Hausdorff
dimension d, we say that S is a (k, r)-quasiminimizer if:

• |S ∩B| < ∞ for every ball B ⊂ RN , and
• if ϕ is a deformation supported on a set of diameter ≤ r and W is as above,
we have

|S ∩W | ≤ k|ϕ(S ∩W )|.

For example, a d-plane in RN is a minimal surface and thus a (1,∞)-quasimin-
imizer. The unit sphere in RN is not an (k, 3)-quasiminimizer for any k, since
the map that collapses the sphere to the origin can be extended to a deformation
supported on the ball of radius 1 + ϵ. It is, however, a (k, r)-quasiminimizer for
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sufficiently large k and sufficiently small r, since a deformation of a small piece of
the sphere cannot reduce its volume very much.

Recall that when S ⊂ RN is a set of Hausdorff dimension d,

S∗ = {x ∈ RN | |S ∩B(x, r)| > 0 for all r > 0}.
David and Semmes proved:

Theorem 5.2 ([DS00, Thm. 2.11]). Let S be a (k, r)-quasiminimizer. For each
x ∈ S∗ and each 0 < R < r, there is a uniformly rectifiable, Ahlfors regular set E
of dimension d such that

S∗ ∩B(x,R) ⊂ E ⊂ S∗ ∩B(x, 2R).

The uniform rectifiability constants of E can be taken to depend only on N and k.

Definition 5.3. If a set S ⊂ RN has S = S∗ and satisfies the conclusion of Theo-
rem 5.2, we say that it is locally uniformly rectifiable. That is, if for every x ∈ S
and R < r, there is a compact, Ahlfors regular set E of dimension d such that

S ∩B(x,R) ⊂ E ⊂ S ∩B(x, 2R)

and E is uniformly rectifiable with regularity and uniform rectifiability constants
bounded by ϵ, we say that S is (r, ϵ)-locally UR.

David and Semmes proved that this definition is equivalent to a local version of
the BPLI property.

Lemma 5.4 ([DS00, Chap. 10]). Let ϵ > 0. There is an ϵ′ > 0 such that if r > 0
and E is (r, ϵ)-locally UR, then E is locally Ahlfors regular and locally satisfies
BPLI. That is, for any x ∈ E and 0 < R < r,

ϵ′Rd ≤ |E ∩B(x,R)| ≤ Rd/ϵ′

and there is a (ϵ′)−1-Lipschitz map f : Bd(R) → Rn such that

|f(Bd(R)) ∩ E ∩B(x,R)| ≥ ϵ′Rd,

where Bd(r) is the ball of radius r in Rd.
Conversely, for any ϵ′ > 0, r > 0, and E ⊂ RN which satisfy the conditions

above, there is an ϵ > 0 depending on ϵ′ > 0 and N such that E is (r, ϵ)-locally UR.

Corollary 5.5. For every ϵ > 0, there is an ϵ′ > 0 such that a union of two
(r, ϵ)-locally UR sets is (r, ϵ′)-locally UR.

Corollary 5.6. For every ϵ > 0, there is an ϵ′ > 0 depending on ϵ and N such
that if S is (r, ϵ)-locally UR, then it is (2r, ϵ′)-locally UR.

The definition of quasiminimizer in Def. 5.1 is slightly too strong for our purposes.
The main problem is that if S is not a quasiminimizer, we know that there is a
deformation ϕ that decreases the measure of S, but we have no control over ϕ. We
thus define a slightly weaker notion.

Definition 5.7. Let k ≥ 1, r > 0, and ϵ > 0. Let S ⊂ RN be a set such that

(9) |B(x, r) ∩ S| < ∞ for every x ∈ S and r > 0

and S = S∗. We say that h : RN → RN is an ϵ-padded deformation on W if
W ⊂ RN is a bounded open set such that supph ⊂ coreϵ W , where

coreϵ W = {x ∈ W | d(x, ∂W ) ≥ ϵdiamW}.
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We say that S is a (k, ϵ, r)-weak quasiminimizer if for every W ⊂ RN with
diamW ≤ r and

|S ∩W | ≥ ϵ(diamW )d

and every ϵ-padded deformation h on W , we have

(10) |h(S ∩W )| ≥ |S ∩W |/k.

Note that if 0 < ϵ′ < ϵ, then any (k, ϵ′, r)-weak quasiminimizer is a (k, ϵ, r)-weak
quasiminimizer. If ϵ > 0 and S is a (k, r)-quasiminimizer, then it is a (k, ϵ, r)-weak
quasiminimizer. Indeed, if h is ϵ–padded on W , then it is supported on coreϵ W .
Letting a = |S ∩ (W ∖ coreϵ W )|, we have

|S ∩W |
|h(S ∩W )|

=
|S ∩ coreϵ W |+ a

|h(S ∩ coreϵ W )|+ a
≤ max

{
|S ∩ coreϵ W |

|h(S ∩ coreϵ W )|
,
a

a

}
≤ k.

The main difference between weak quasiminimizers and quasiminimizers is that
a weak quasiminimizer is only quasiminimizing with respect to deformations sup-
ported on “round” sets. When W is a ball or a cube, then coreϵ W contains all
but a small fraction of W , so the padding has a negligible effect on (10). On the
other hand, if W is a long, skinny set or a set with many holes, then coreϵ W can
be much smaller than |W |. In this case, if h is an ϵ–padded deformation on W , it
may be that |h(S ∩W )| is close to |S ∩W | but |h(S ∩ coreϵ W )| ≪ |S ∩ coreϵ W |.

Nevertheless, a version of Theorem 5.2 holds for small ϵ. We will follow the proof
of Theorem 5.2 to show the following result:

Proposition 5.8. For any k > 1, there are ϵ, ϵ′ > 0 such that for any r > 0, any
(k, ϵ, r)-weak quasiminimizer is (r, ϵ′)-locally UR.

David and Semmes use the quasiminimizing condition in three places in the proof
of Theorem 5.2: to ensure Ahlfors regularity, to construct a Lipschitz map from a
subset of S to Rd whose image has positive measure, and to show that the map is
in fact bilipschitz on part of S. We claim that if ϵ is sufficiently small, then in all
three cases, the deformations that they use can be chosen to be ϵ-padded, perhaps
with a slight loss in the constants.

First, we prove that a weak quasiminimizer is locally Ahlfors regular. This
is proved for quasiminimizers in Lemma 4.1 of [DS00]. David and Semmes use a
sequence of candidate deformations with smaller and smaller “buffer zones” in their
proof, so we need a slightly different argument to prove that weak quasiminimizers
are locally Ahlfors regular. In the rest of this section, all implicit constants will be
taken to depend on d, N , and k.

Lemma 5.9. For any k > 1, there is an ϵ > 0 such that for any r > 0, any
(k, ϵ, r)-weak quasiminimizer S is locally Ahlfors regular. That is,

|B(x,R) ∩ S| ∼ Rd

for all x ∈ S and 0 < R < r.

Proof. If x ∈ RN , R > 0, let B□(x,R) be the closed axis-aligned cube of side length
2R that is centered at x. If δ > 0, let δB□(x,R) = B□(x, δR). Any ball of radius ρ
can be covered by boundedly many cubes of side length ρ/2, so it suffices to show
that S is locally Ahlfors regular with respect to cubes, i.e., that for all R such that
0 < 4R

√
N < r, we have |S ∩B□(x,R)| ∼ Rd.
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The main idea of the proof is to construct deformations of the following type.
Let Q = B□(x,R) be a cube and let 0 < δ < 1. We subdivide δQ into an n×· · ·×n
grid called σ; if δ = n−2

n , we can take δ2Q to be the union of the interior cubes
of σ. By Lemma 2.6, there is a deformation ϕ supported inside δQ (i.e., a padded
deformation on Q) that sends S ∩ δ2Q into σ(d) and does not stretch the annulus
δQ∖ δ2Q too much. We will show that if S is not locally Ahlfors regular, then we
can choose Q so that S∩ (Q∖δ2Q) is small and ϕ substantially reduces the volume
of S ∩ δ2Q. Consequently, ϕ is a padded deformation that reduces the volume of
S ∩Q, so it contradicts the hypothesis that S is a weak quasiminimizer.

Let C = C(N) > 1 be a constant such that Lemma 2.6 is satisfied when X is the
cubical grid in RN . Let j0 be an integer large enough that (1+ 1

2Ck )
j0 > 2 ·4N . Let

n > 6 be an integer and let δ = n−2
n . Choose n large enough that δ−2d < 1 + 1

2Ck

and δ−2j0 < 2. Let

ϵ = min{(1− δ)(2
√
N)−1, C−1(2n)−d/32}.

We claim that for any r, if S is a (k, ϵ, r)-weak quasiminimizer, then S is locally
Ahlfors regular.

Let x ∈ S and let 0 < 4R
√
N < r. Let Q = B□(x,R). By the choice of ϵ, we

have δQ ⊂ coreϵ(Q). As above, let σ be the n×· · ·×n grid in δQ, so that σ divides
δ2Q into a lattice with n− 2 cubes on each side.

By Lemma 2.6 and Lemma 2.7, there is a Lipschitz deformation ϕ = q ◦p that is
supported on δQ and deforms S∩δ2Q into the d-skeleton of σ. That is, ϕ(S∩δ2Q)∗

is a union of d–cells of σ and

|ϕ(S ∩A)| ≤ C|S ∩A|(11)

|ϕ(S ∩ δ2Q)| ≤ C|S ∩ δ2Q|,(12)

where A = Q∖ δ2Q.
In fact, since ϕ(S ∩ δ2Q) lies in σ(d), we have

|ϕ(S ∩Q)| ≤ C|S ∩A|+ |σ(d)|

≤ C|S ∩A|+ 2nN(2R)d,

so
|S ∩Q|

k
≤ C|S ∩A|+ 2nN(2R)d.

Replacing Q by δ−2Q, we obtain

|S ∩ δ−2Q|
k

≤ C|S ∩ (δ−2Q∖Q)|+ 2nN(2δ−2R)d

so

(13)
|S ∩Q|

k
≤ C|S ∩ (δ−2Q∖Q)|+ 2nN(4R)d.

We will use this to prove an upper bound on |S ∩Q|.
Suppose that |S ∩Q| > 4knN(4R)d. Then, applying (13) to δ−2Q, we find that

|S ∩ (δ−2Q∖Q)| > |S ∩Q|
2Ck

,

|S ∩ δ−2Q| > (1 +
1

2Ck
)|S ∩Q|.
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By our choice of n,

|S ∩ δ−2Q| > 4knN(4δ−2R)d,

so we can apply this repeatedly to show

|S ∩ δ−2jQ| > (1 +
1

2Ck
)j |S ∩Q|

for all j ≤ j0. In particular,

|S ∩ 2Q| ≥ |S ∩ δ−2j0Q| > (1 +
1

2Ck
)j0 |S ∩Q| ≥ 2 · 4N |S ∩Q|.

The cube 2Q has side length 4R, so it can be decomposed into 4N cubes of side
length R, each of which intersects Q. One of these subcubes, say, D1, satisfies
|S ∩ D1| ≥ 2|S ∩ Q|. Repeating this process, we can construct cubes D2, D3, . . .
such that |S∩Dj | ≥ 2j |S∩Q|, Di∩Di+1 ̸= ∅, and the diameter of the Dj ’s shrinks
geometrically. All of these cubes lie in 4Q, so |S ∩ 4Q| = ∞, but since S is locally
finite, this is a contradiction.

To prove the lower bound, we consider the upper density of S. Define

Θ∗d(S, x) = lim sup
t→0

|S ∩B(x, t)|
ωdtd

,

where ωd is the volume of the unit ball in Rd. By Thm. 6.2 of [Mat95], if |E| < ∞,
then Θd∗(E, e) ≥ 2−d for almost every e ∈ E with respect to Hausdorff d-measure.
In particular, the set of points x ∈ S such that Θd∗(S, x) ≥ 2−d is dense in S.

Let c = C−1(2n)−d/16 and let x ∈ S be such that Θd∗(S, x) ≥ 2−d. We claim
that |S ∩B□(x, t)| ≥ ctd for all such x and all t < rN−1/2.

Since Θd∗(S, x) ≥ 2−d, there is an R0 < t such that |S ∩ B□(x,R0)| > Rd
0 >

16cRd
0. Let i0 > 0 be the minimal integer such that |S ∩ B□(x, δ

−i0R0)| <
2c(δ−i0R0)

d. Let R = δ−i0R0 and let Q = B□(x,R). We claim that R ≥ t.
If not, we have

ϵ(diamQ)d < cRd < |S ∩Q| < 2cRd

and (diamQ) < r, so we can apply (10).
Let ϕ be an ϵ-padded deformation on Q as above. The image ϕ(S ∩ δ2Q) is

made up of d–cells of σ. Each of these has volume at least Rd(2n)−d. Since
C|S∩Q| < Rd(2n)−d, we have |ϕ(S∩δ2Q)| = 0. Since ϕ is ϵ-padded on Q, we have

|ϕ(S ∩Q)| = |ϕ(S ∩A)| ≥ |S ∩Q|
k

,

where A = Q∖ δ2Q, and by (11), |S ∩A| ≥ |S∩Q|
Ck . Therefore,

(14) |S ∩ δ2Q| ≤ |S ∩Q|
(
1− 1

Ck

)
.

By our choice of n, we have δ2d > 1− 1
2Ck , so

|S ∩ δ2Q| < 2c(δ2R)d.

This contradicts the minimality of i0, so R > rN−1/2. Therefore, |S ∩B□(x, t)| ≥
ctd for all t < rN−1/2 and all x in a dense subset of S, so S is locally Ahlfors
regular. □
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The second place that the quasiminimizing condition arises in [DS00] is in the
proof of Proposition 5.1 of [DS00], which constructs Lipschitz maps from S to Rd

whose images have positive measure. We will show the corresponding proposition
for weak quasiminimizers:

Proposition 5.10 ([DS00, Prop. 5.1]). For any k > 1, there are ϵ, C > 0 that
depend only on k and N such that if S is a (k, ϵ, r)-weak quasiminimizer and Q is a
cube centered on S with diamQ < r, then there is a C-Lipschitz map h : RN → Rd

such that

|h(S ∩Q)| ≥ C−1(diamQ)d.

The proof closely follows the proof of Proposition 5.1 of [DS00].

Proof. By Lemma 5.9, if ϵ is sufficiently small, we may assume that S is locally
Ahlfors regular with regularity constant C0 = C0(k). Suppose that Q = B□(x,R)
for some x ∈ S. For any 0 < ϵ < 1/4, a pigeonhole argument implies that there is a
radius R/2 < R0 < R such that if Q0 = B□(x,R0), δ = 1− ϵ, and A = Q0 ∖ δ2Q0,
then

|S ∩A| ≤ 10ϵ|S ∩Q|.
Divide δQ0 into a grid of side length ϵδR0. As in the proof of Lemma 5.9,

Lemma 2.6 and Lemma 2.7 give us an ϵ-padded deformation ϕ on Q0 that pushes
S ∩ δ2Q0 into the d-skeleton of the grid and satisfies

|ϕ(S ∩A)| ≤ C|S ∩A|
|ϕ(S ∩ δ2Q0)| ≤ C|S ∩ δ2Q0|.

Furthermore, since S is locally Ahlfors regular, we can take g to be Lipschitz with
constant depending on k.

The Ahlfors regularity of S gives a lower bound on |S ∩Q0|, so (10) implies

|ϕ(S ∩Q0)| ≥ |S ∩Q0|/k ≳k Rd.

But

|ϕ(S ∩Q0)| ≤ |ϕ(S ∩ δ2Q0)|+ |ϕ(S ∩A)|
≤ |ϕ(S ∩ δ2Q0)|+ 10Cϵ|S ∩Q|

≲k |ϕ(S ∩ δ2Q0)|+ ϵRd.

so if ϵ is sufficiently small, then ϕ(S ∩ δ2Q0) must contain at least one full d-cell of
side length ϵR. If we compose ϕ with the projection to a plane parallel to this cell,
we get a Lipschitz map h : RN → Rd such that |h(S ∩Q)| ≥ (ϵR)d, as desired. □

Finally, David and Semmes use the quasiminimizing condition to show that S
has big pieces of bilipschitz images. They first use the map constructed in Propo-
sition 5.10 to transform S into a quasiminimizer S′ in Rd × RN such that the
projection to the Rd factor has a large image, then show that a quasiminimizer
with a large projection must have a big piece of a Lipschitz image.

Proof of Proposition 5.8. Let D ⊂ RN be a cube centered on S with diamD < r.
Let h : RN → Rd be the map constructed in Proposition 5.10, so that Lip(h) ≲ 1
and

|h(S ∩D)| ≳ (diamD)d.
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Let γ : RN → Rd × RN be the map γ(x) = (h(x), x) and let S′ = γ(S). Since
γ is bilipschitz on S, it follows that S′ is Ahlfors regular, and in fact, S′ is a
quasiminimizer. Let p1 and p2 be the projections to Rd and RN , respectively.

David and Semmes show that S∩D has a big piece of a Lipschitz image. Specif-
ically, there is a T ⊂ S ∩D such that p1 ◦ γ|T is bilipschitz and |T | ∼ |S ∩D|. To
prove this, they suppose that S′ is Ahlfors regular and has a big projection but no
such T exists, then construct a deformation ϕ that reduces the volume of S′; this
contradicts the fact that S′ is a quasiminimizer.

In fact, ϕ can be chosen to be an ϵ-padded deformation. Suppose that S and S′

are as above and that no such T exists. For any U ⊂ RN and r > 0, let

B(U, r) = {x ∈ Rn | d(x, U) ≤ r}.
In Prop. 9.6 and Sec. 9.2 of [DS00], David and Semmes show that there is a C ∼ 1
such that for any sufficiently large integer K (in [DS00], this is denoted N), there
are a cube P0 ⊂ Rd, a ball V0 ⊂ RN , and a set Q = P0 × V0 with diamQ ≤ r/2
such that S′ ∩Q is (very roughly) close to a strict subset of the graph of a function
P0 → V0. Consequently, there is a deformation ϕ that shrinks S′ ∩Q substantially.

To be specific, P0, V0, and ϕ satisfy the properties below. As in [DS00], we
will rescale distances so that P0 is a cube of side length 2K. (All references are to
[DS00], and all implicit constants depend only on d, N , and k.)

(1) diamV0 ∼ diamQ ∼ K (Lemma 9.74 of [DS00]).
(2) d(P0 × ∂V0, S

′) ≳ K (Lemma 9.74).
(3) Q contains a ball of radius ∼ K centered on a point of S′, so |S′ ∩Q| ≳ Kd

(9.63).
(4) There is a r0 ∼ 1 such that suppϕ ⊂ B(S′ ∩Q, r0) (9.10).
(5) IfD is a unit cube in Rd such thatD ⊂ B(P0,K/C), then |S′∩(D×V0)| ≲ 1

(Lemma 9.84).
If 1 < c ≪ K

Cr0
, then the region B(Q, cr0) ∖ Q can be broken up into

two regions, one in a neighborhood of P0 × ∂V0 and one in a neighborhood
of ∂P0 × V0. The second region can be covered by products of the form
D × V0, so by property 2, we have

|S′ ∩ (B(Q, cr0)∖Q)| ≲ cKd−1 (see 9.102).

(6) ϕ is C-Lipschitz on S′ ∖Q
In fact, (9.13) states that ϕ is C-Lipschitz except on P0 × Rn−d, and

property 2 implies that (S′ ∖Q) ∩ suppϕ is disjoint from P0 × Rn−d.
(7) ϕ(S′∩Q) has finite (d−1)-dimensional Hausdorff measure and thus |ϕ(S′∩

Q)| = 0 (9.12).

Let c ≥ 2. Then ϕ is supported on B(Q, r0) and is ∼ 1/K-padded on B(Q, cr0).
Furthermore, by properties 5, 6, and 7,

(15) |ϕ(S′ ∩B(Q, cr0))| ≤ Cd|S′ ∩ (B(Q, cr0)∖Q)| ≲ cKd−1.

when K is sufficiently large. By property 3 above, |S′ ∩Q| ≳ Kd, so

|ϕ(S′ ∩B(Q, cr0))| ≲ c|S′ ∩Q|/K.

Taking K ≫ ck, we see that if S′ has a big projection and is Ahlfors regular but
not uniformly rectifiable, then S′ is not a (k,∼1/K, r)-weak quasiminimizer.

Now we use ϕ to construct a padded deformation of S. Let ϕ′ : RN → RN be
the map ϕ′ = p2 ◦ ϕ ◦ γ, let U = p2(S

′ ∩Q), and let W = B(U, 2r0). We claim that
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there are ϵ,K > 0 depending on d, N , and k such that ϕ′ is ϵ-padded on W and
|ϕ′(S ∩W )| < |S ∩W |/k.

First, we claim that suppϕ′ ⊂ B(U, r0). Suppose that x ∈ RN and ϕ′(x) ̸= x.
Then, by property 4, we have

{γ(x), ϕ(γ(x))} ⊂ B(S′ ∩Q, r0).

If we project to RN , we get

{x, ϕ′(x)} = p2({γ(x), ϕ(γ(x))}) ⊂ B(U, r0).

Therefore, suppϕ′ ⊂ B(U, r0), and ϕ′ is ∼ 1/K-padded on W .
We thus consider |ϕ′(S ∩W )| and |S ∩W |. If x ∈ S′ ∩ Q, then p2(x) ∈ S ∩W

and γ(p2(x)) = x, so S′ ∩Q ⊂ γ(S ∩W ). Since γ is a bilipschitz map,

|S ∩W | ≳ |S′ ∩Q| ≳ Kd.

On the other hand,

γ(W ) ⊂ B(γ(U), 2r0 Lip(γ)) ⊂ B(Q, 2r0 Lip(γ)),

and by (15),

|ϕ′(S ∩W )| ≲ |ϕ(γ(S ∩W ))|
≲ |ϕ(S′ ∩B(Q, 2r0 Lip(γ))|

≲ 2Lip(γ)Kd−1

≲ |S ∩W |/K.

If K is sufficiently large and ϵ is sufficiently small, this implies that S is not a
(k, ϵ, r)-weak quasiminimizer. Therefore, if S is a weak quasiminimizer, then it is
locally uniformly rectifiable, as desired. □

5.2. Proof of Theorem 1.7. In this section, we will prove that a cellular cycle
A ∈ Cd(τ ;Zν) can be decomposed into a sum of finitely many cellular cycles Mi

supported on uniformly rectifiable sets Ei. We restrict the proposition to cellular
cycles to avoid infinite sums. It is possible that a similar proposition holds for
Lipschitz chains or for currents, but a Lipschitz chain or current might need to be
decomposed into infinitely many pieces.

A key tool in our construction is the following coarse version of the Whitney
decomposition.

Lemma 5.11. Suppose that W ⊂ RN is an open subset and let

w(x) = max{
√
N, d(x,RN ∖W )}.

There is a decomposition τW of RN into a cell complex such that:

(1) Each N -cell D of τW is a dyadic cube of side length ≥ 1.

(2) If D ∈ τ
(N)
W is a dyadic cube, then

w(x)

4
≤ diamD ≤ w(x)

for all x ∈ D. In particular, if D and D′ are neighboring dyadic cubes in

τ
(N)
W , then

(diamD)/4 ≤ diamD′ ≤ 4 diamD.

We call τW a coarse Whitney cubulation of RN . In particular, τ is a coarse
Whitney cubulation for the empty set.
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Proof. We construct τW from the Whitney decomposition τ0 of W . This decom-
position is a partition of W into dyadic cubes (of all sizes) that intersect only on
their boundaries and satisfy the property that

d(D,RN ∖W )

4
≤ diamD ≤ d(D,RN ∖W ).

Let T be the set of cubes of τ0 of side length ≥ 1. We partition the complement
of T into a set T ′ of unit dyadic cubes. If τW is the cubulation whose set of
top-dimensional cells is T ∪ T ′, then τW satisfies the conditions of the lemma. □

If a set S is not uniformly rectifiable, the results of the previous section imply that
there is a deformation of S that reduces its measure. We combine that deformation
with an approximation to produce a uniformly rectifiable set.

Lemma 5.12. Let 0 < δ < 1 and let ρ > 0. Suppose that S is a (ρ, δ)-locally
UR set. Let W ⊂ RN be a bounded open set and let h : RN → RN be a δ-padded

deformation on W . Let ϕ : RN → RN be a map that deforms h(S) into τ
(d)
W , as in

Lemmas 2.6 and 2.7, so that U = ϕ(h(S))∗ is a union of d-cells of τW . There is
an ϵ = ϵ(δ,N, d) > 0 such that E = S ∪ U is (ρ, ϵ)-locally UR.

Proof. First, we claim that there is a c > 0 depending on N and δ such that for all
x ∈ E,

d(x, S) ≤ cw(x).

It suffices to show this for all x ∈ U . If x ∈ U , then x is contained in a cell D ⊂ τW
that intersects h(S). Let s ∈ S be such that h(s) ∈ D.

If h(s) ∈ coreδ(W ), then s ∈ coreδ(W ), so d(x, s) ≤ diamW . By Lemma 5.11,
w(x) ∼ w(h(s)) ≥ δ diamW , so d(x, s) ≲ δ−1w(x) as desired.

If h(s) ̸∈ coreδ(W ), then h(s) = s, so d(x, s) ≤ diamD ≲ w(x).
Now, suppose that x ∈ E and R < ρ and let B = B(x,R). To show the uniform

rectifiability of E, we need to show two things: that B ∩ E contains a Lipschitz
image with volume on the order of Rd and that |B ∩E| ∼δ Rd. (For the rest of the
proof, implicit constants will depend on d, N , and δ.)

First, we show that B ∩E contains a Lipschitz image. This will also imply that
|B ∩ E| ≳ Rd. If x ∈ S, this follows from the uniform rectifiability of S, so we
consider the case that x ∈ U . Let D ⊂ U be a d-cell of τW that contains x. If
R < 2cw(x) and ωd is the volume of the unit ball in Rd, then |B ∩D| is a Lipschitz
image with volume

|B ∩D| ≥ ωd min{(w(x)/2)d, (R/2)d} ≥ ωd

(
R

4c

)d

.

If R ≥ 2cw(x), let s ∈ S be such that d(x, s) ≤ R/2. Then B(s,R/2) ⊂ B, and
B(s,R/2) ∩ S contains a Lipschitz image with volume on the order of Rd.

It remains to show that |B ∩ E| ≲ Rd. By the Ahlfors regularity of S, we have
|B ∩ S| ≲ Rd, so we need only show that |B ∩ U | ≲ Rd.

For X ⊂ RN , let nbhdW X be the closed set consisting of the union of every
cell of τW that intersects X. We write U as a union U = U1 ∪ U2 where U1 =
U ∩ nbhdW coreδ(W ) and U2 = U ∖ nbhdW coreδ(W ).

For the first set, we note that U1 ⊂ τ
(d)
W ∩ nbhdW coreδ(W ). If D is a dyadic

cube in τW that intersects coreδ(W ), then the side length of D is at least σ =
N−1/2δ diamW/4 ∼ diamW . If σ′ is the largest power of 2 such that σ′ < σ, then
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D(d) ⊂ τ
(d)
σ′ , where τσ′ is the grid of side length σ′. Therefore, U1 ⊂ τ

(d)
σ′ . The

d-skeleton of a cube is Ahlfors d-regular, and the number of dyadic cubes of τσ′

that intersect nbhdW coreδ(W ) is bounded, so |B ∩ U1| ≲ Rd.
For the second set, note that ϕ(coreδ(W )) ⊂ nbhdW coreδ(W ). Therefore,

U2 ⊂ ϕ(h(S)∖ coreδ(W ))∗ ⊂ ϕ(S)∗.

Let x ∈ U2. We consider two cases.
If w(x) ≥ 2R, then w(y) ≥ R for all y ∈ B, and each dyadic cube D of τW that

intersects B has side length at least N−1/2R/4. Therefore, the number of cubes of
τW that intersect B is bounded, and |B ∩ U2| ≲ Rd.

If w(x) ≤ 2R, then w(y) ≤ 3R for all y ∈ B, so nbhdW B ⊂ B(x, 4R). By
Lemma 2.6.5, we have

|U2 ∩B| ≤ |ϕ(S)∗ ∩B| ≲ |S ∩ nbhdW B| ≲ Rd.

□

We will use this lemma to prove Theorem 1.7.

Proof of Thm. 1.7. Let C be as in Lemma 2.6 and let k = 2C + 2. Let ϵ, ϵ′ > 0
be as in Prop. 5.8. Note that ϵ and ϵ′ depend only on N and d. Suppose that
α ̸= 0 ∈ Cd(τ ;Zν) is a cycle. We claim that there is a nonzero cycle α′ ∈ Cd(τ ;Zν)
and a uniformly rectifiable set E such that supp(α− α′) ⊂ E and

(16) | suppα| − | suppα′| ≳ |E|.
First, we construct α′. Let S = suppα. Let r be the maximal power of 2 such

that S is (r, ϵ′)-locally UR (some such r must exist because 0 < |S| < ∞). Then S
is not (2r, ϵ′)-locally UR, so, by Prop. 5.8, there is an ϵ-padded deformation h on
some W ⊂ RN such that diamW ≤ 2r,

(17) |S ∩W | ≥ ϵ(diamW )d,

and

(18) |h(S ∩W )| ≤ |S ∩W |/k.
By Lemma 2.6 and Lemma 2.7, there is a Lipschitz deformation ϕ = q ◦ p :

RN → RN that deforms h(S) into τ
(d)
W . Then (ϕ ◦ h)♯(α) is a cycle supported on

τ (d), so we may apply Lemma 2.1 to construct a cellular cycle α′ ∈ Cd(τ ;Zν) that
is flat-equivalent to (ϕ ◦ h)♯(α).

The support supp(α − α′) is contained in the set E0 = S ∪ ϕ(h(S))∗. In fact,
since h is supported inside W and since τW and τ agree outside of W , we have
supp(α − α′) ⊂ E0 ∩ nbhdτ W , where nbhdτ W consists of the union of the cubes
of τ that intersect W .

We claim that there is a uniformly rectifiable set E such that E0∩nbhdτ W ⊂ E
and diamE ∼ max{1, r}. If r ≤

√
N , we let E = nbhdτ W ∩τ (d). This is a union of

boundedly many unit d-cubes, so it is uniformly rectifiable. Otherwise, if r >
√
N ,

then
diam(nbhdτ W ) ≤ diamW + 2

√
N ≤ 4r.

Let x ∈ E0 ∩ nbhdτ W . Since E0 is (r, ϵ′′)-locally UR and r ∼ R, Cor. 5.6 implies
that there is an ϵ′′′ ∼ 1 such that E0 is (4r, ϵ′′′)-locally UR. By Def. 5.3, there is a
uniformly rectifiable set E such that

E0 ∩ nbhdτ W ⊂ E0 ∩B(x, 4r) ⊂ E ⊂ E0 ∩B(x, 8r).
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In either case, the Ahlfors regularity of E implies that |E| ∼ max{1, rd}.
It remains to prove (16). By Lemma 2.6.3 and Lemma 2.7.3, we have

| suppα′| ≤ |ϕ(h(S))| ≤ |h(S)|+ C|h(S)∖ τ
(d)
W |.

But S and h(S) coincide outside W , as do τ (d) and τ
(d)
W , so h(S) ∖ τ

(d)
W ⊂ W. We

thus write

| suppα′| ≤ |h(S)|+ C|h(S) ∩W |
≤ |S ∖W |+ (C + 1)|h(S) ∩W |

≤ |S ∖W |+ (C + 1)|S ∩W |
k

≤ |S ∖W |+ |S ∩W |
2

.

Consequently, by (17)

| suppα| − | suppα′| ≥ |S ∩W |
2

≳ rd.

If r > 1, then

|E| ≲ rd ≲ | suppα| − | suppα′|.
If r ≤ 1, then | suppα| − | suppα′| ≥ 1, because | suppα| and | suppα′| are both
integers. It follows that

| suppα| − | suppα′| ≥ 1 ∼ (diamE)d.

In both cases, α′ satisfies (16).
Finally, to prove the theorem, we define a sequence of cellular cycles inductively.

Let A0 = A. If we have defined Ai and if Ai ̸= 0, then, by applying the above
argument with α = Ai, we get a cycle Ai+1 ∈ Cd(τ ;Zν) and a uniformly rectifiable
set Ei such that supp(Ai −Ai+1) ⊂ Ei and

| suppAi| − | suppAi+1| ≳ |Ei|.

We repeat this process until An = 0. This is guaranteed to happen eventually
because | suppAi| is a decreasing sequence of non-negative integers. If Mi = Ai −
Ai−1, then A =

∑
i Mi, suppMi ⊂ Ei, and∑

i

|Ei| ≲
∑
i

| suppAi| − | suppAi+1| ≲ | suppA| = massA

as desired. □

6. Corona decompositions

In Sec. 4.1, we gave a definition of uniform rectifiability in terms of big pieces
of Lipschitz images. Another way of defining uniformly rectifiable sets uses cubical
patchworks and corona decompositions. These decompositions will be necessary for
the proof of Theorem 1.2 and we recall their definitions here. (One can find a full
exposition in [DS93].)

We say that a collection of sets Γ is a partition of E if the elements of Γ are
disjoint and their union is all of E. A cubical patchwork, also known as a set
of Christ cubes, for E is a collection of partitions of E into pseudocubes which
generalizes the usual decomposition of Rd into dyadic cubes.
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Definition 6.1. Let E be an Ahlfors d-regular set with 2k < diamE ≤ 2k+1 for
some k ∈ Z. A cubical patchwork for E is a collection {∆i}ki=−∞ of partitions of
E with the following properties:

(1) ∆k = {E}.
(2) Each Q ∈ ∆i satisfies diamQ ∼ 2i and |Q| ∼ 2di.
(3) If Q ∈ ∆i and Q′ ∈ ∆j , with i ≤ j then either Q and Q′ are disjoint or

Q ⊂ Q′.
(4) For any Q ∈ ∆i and any r > 0, let

∂Q(r) = {x ∈ Q | d(x,E ∖Q) ≤ r} ∪ {x ∈ E ∖Q | d(x,Q) ≤ r}.
There is a C > 1 independent of i such that for any 0 < t < 1,

(19) |∂Q(t2i)| ≤ Ct1/C2id

for each Q ∈ ∆i.

We call the elements of ∆i pseudocubes, and we let

∆ =
⋃
i

∆i.

If Q ∈ ∆i, we say that any set Q ∈ ∆i−1 with Q′ ⊂ Q is a child of Q and that
any set Q ∈ ∆j with Q′ ⊂ Q and j < i is a descendant of Q.

We call the constants in the definition the patchwork constants of ∆. David
[Dav88] showed that any Ahlfors d-regular set in Rn has a cubical patchwork whose
patchwork constants are functions of the regularity constant of the set. Christ
[Chr90] generalized this result to metric-measure spaces.

Condition 4 above is a little subtle. It implies that the boundary of a pseudocube
is small. One consequence is the following lemma ([DS93, Lemma I.3.5]):

Lemma 6.2. There is a C > 1 depending only on d, n, and the regularity constant
for E such that for each cube Q ∈ ∆ there is a center c(Q) ∈ Q such that

d(c(Q), E ∖Q) ≥ C−1 diamQ.

It does not, however, imply that the boundary of a pseudocube is very smooth.
In fact, the condition only guarantees that the Hausdorff dimension of the boundary
is strictly less than d:

Lemma 6.3. Let Q ∈ ∆i be a pseudocube in a cubical patchwork for an Ahlfors
d-regular set E and let ∂Q ⊂ E be the boundary of Q relative to E (i.e., the
intersection of the closures of Q and of E ∖Q). For any 1 > t > 0, we can cover
∂Q with ∼ Ct1/C−d balls of radius t2i, where C > 1 is as in Def. 6.1.

Proof. Consider S = ∂Q(t2i). This contains the t2i-neighborhood of ∂Q and has
|S| ≤ Ct1/C2id. Let M be a maximal set of points of ∂Q spaced a distance t2i

apart. Then the balls of radius t2i centered at the points of M cover ∂Q, and the
balls of radius t2i−1 are disjoint and contained in S. By Ahlfors regularity,

#(M)td2id ≲ |S| ≤ Ct1/C2id,

so #M ≲ Ct1/C−d as desired. □

This makes it difficult to construct chains supported on pseudocubes, because
the boundary of a pseudocube is generally unrectifiable. We will avoid this problem
by considering the case that E is a union of d-cells of the unit grid τ . When this
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is the case, we can find a patchwork such that the closure of any sufficiently large
pseudocube is a union of d-cells.

Lemma 6.4. If E is a Ahlfors d-regular set that is a union of d-cells of τ and
2k < diamE ≤ 2k+1 for some k ≥ 0, then there is a cubical patchwork {∆i} of E
such that if Q ∈ ∆i and i > 0, then closure(Q) is a union of d-cells of τ . (Indeed,
Q is a union of d-cells of τ , modulo parts of their boundary.) Furthermore, the
patchwork constants depend only on d,N , and the regularity constant of E.

Proof. In this proof, all our implicit constants will depend on d,N , and the Ahlfors
regularity constant of E.

Enumerate the d-cells of E as D1, . . . , Dm and let

D′
i = Di ∖

i−1⋃
j=1

Dj ,

so that the D′
i’s form a partition of E and closure(D′

i) = Di for all i. For each
i = 1, . . . ,m, let xi be the barycenter of Di, and if S ⊂ E, let

δS =
⋃

xi∈S

D′
i.

Let Γ = {Γi}ki=−∞ be a cubical patchwork for E. We can choose Γ so that its
patchwork constants depend only on d,N , and the Ahlfors regularity constant of
E. For each i = 0, . . . , k, let

∆i = {δQ | Q ∈ Γi, δQ ̸= ∅},

and for each i < 0, let ∆i be the partition of E that divides each d-cell of E into
2−id cubes of side length 2i. We claim that the ∆i’s satisfy Def. 6.1. Properties 1
and 3 are easy to check, and properties 2 and 4 clearly hold for ∆i when i < 0. It
remains to check that the ∆i satisfy properties 2 and 4 when i ≥ 0.

First, we check property 2. Suppose that i ≥ 0 and Q ∈ Γi is a pseudocube such
that δQ ̸= ∅. Let R = diamQ. Let x = c(Q) be the center of Q as in Lemma 6.2,
and let C > 1 be as in Lemma 6.2. Note that C depends only on d,N , and the
Ahlfors regularity constant of E. Suppose that R ≤ 2C

√
N ∼ 1. Since δQ ̸= ∅, it

contains at least one cell of τ , so |δQ| ≥ 1 and diam δQ ≥ 1. On the other hand,

(20) diam δQ ≤ R+
√
N ≲ 1,

so |δQ| ∼ Rd and diam δQ ∼ R, verifying property 2.

We thus assume that R > 2C
√
N and claim that

(21) B(x,C−1R/4) ∩ E ⊂ δQ ⊂ B(x, 2R) ∩ E.

If a d-cell of E intersects B(x,C−1R/4), then its center lies inside B(x,C−1R/2).
By Lemma 6.2, B(x,C−1R/2) ∩ E ⊂ Q, so

B(x,C−1R/4) ∩ E ⊂ δQ.

On the other hand, if a d-cell of E lies in δQ, its center lies in Q. Since Q ⊂ B(x,R),
we have δQ ⊂ B(x, 2R) as desired. Equation (21) implies property 2 by the Ahlfors
regularity of E.

Now we show property 4. Let i ≥ 0, Q ∈ Γi, and δQ ∈ ∆i. Recall that

∂Q(r) = {x ∈ E | d(x,E ∖Q) ≤ r and d(x,Q) ≤ r},
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and let

∂δQ(r) = {x ∈ E | d(x,E ∖ δQ) ≤ r and d(x, δQ) ≤ r}.
Let C ′ > 1 be a constant such that |∂Q(t2i)| ≤ Ct1/C2id for all 0 < t < 2

√
N ; this

is possible when t < 1 by (19) and when t ≥ 1 by the Ahlfors regularity of E.
If x ∈ ∂δQ(r), then there is some y ∈ δQ such that d(x, y) ≤ r. Since y is

contained in a d-cell D ⊂ δQ,

d(x, δQ) ≤ d(x, xD) ≤ d(x, y) +
√
N ≤ r +

√
N.

Likewise,

d(x,E ∖ δQ) ≤ r +
√
N,

so ∂δQ(r) ⊂ ∂Q(r +
√
N). In particular,

(22) |∂δQ(t2i)| ≤ C ′(t+ 2−i
√
N)1/C

′
2id,

and on one hand, if 2−i ≤ t < 1, then

|∂δQ(t2i)| ≲ C ′t1/C
′
2id.

On the other hand, when t ≤ 2−i, we can bound |∂δQ(t2i)| by counting the num-
ber of cells that intersect ∂δQ(1). Any cell of τ that intersects ∂δQ(1) is completely

contained in ∂Q(3
√
N), so if

K = #{D ∈ τ (d) | D ∩ ∂δQ(1) ̸= ∅},
then

K ≤ |∂Q(3
√
N)| ≲ 2id−i/C′

.

Consequently, if ϵ ≤ 1, then ∂δQ(ϵ) is a subset of the ϵ-neighborhood of the bound-
ary of at most K d-cells. This neighborhood has Hausdorff measure ≲ Kϵ, so if
τ ≤ 2−i, then

|∂δQ(τ2i)| ≲ τ2iK ≲ τ1/C2id

as desired. □

If E, k, and {∆i}ki=0 are as in the lemma, we will refer to ∆ =
⨆

i ∆i as a cellular
cubical patchwork for E.

David and Semmes used cubical patchworks in an alternative definition of uni-
form rectifiability. To state this definition, we first need to define coronizations.
Our definition is taken from [DS93].

Definition 6.5. Let E ⊂ RN be a d-dimensional Ahlfors regular set, equipped with
a cubical patchwork ∆. A coronization of E is a partition of ∆ into bad cubes and
stopping-time regions. More precisely, it is a triple (B,G,F) such that B (the set
of bad cubes) and G (the set of good cubes) partition ∆ into two disjoint sets and
F is a collection of subsets of G, called stopping-time regions. These sets have the
following properties:

(1) B satisfies a Carleson packing condition.
(2) The elements of F are disjoint and their union is G.
(3) Each S ∈ F is coherent. This entails three properties. First, every S has

a unique maximal element Q(S) ∈ S which contains every element of S.
Second, if Q ∈ S, then S contains every Q′ ∈ ∆ such that Q ⊂ Q′ ⊂ Q(S).
Third, if Q ∈ S, then either all the children of Q lie in S or none of them
do.
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(4) The set of maximal cubes Q(S), S ∈ F , satisfies a Carleson packing condi-
tion.

A Carleson packing condition bounds the density of a set of pseudocubes. Specif-
ically, we say that A ⊂ ∆ satisfies a Carleson packing condition if there is a c > 0
such that for every Q ∈ ∆, ∑

Q′∈A
Q′⊂Q

|Q′| ≤ c|Q|.

For example, for any i, ∆i ⊂ ∆ satisfies a Carleson packing condition, and if x ∈ E,
then

Ax = {Q ∈ ∆ | x ∈ Q}
satisfies a Carleson packing condition.

In our case, stopping-time regions will correspond to parts of E which are close
to a Lipschitz graph.

Definition 6.6. If V is a subspace in RN , V ⊥ is its orthogonal complement, and
h : V → V ⊥ is a Lipschitz function, we say that

{x+ h(x) | x ∈ V }
is the graph of h. We call sets of this form Lipschitz graphs.

Definition 6.7. Let E ⊂ RN be a d-dimensional Ahlfors regular set, equipped with
a cubical patchwork ∆. We say that E admits a corona decomposition if for every
η, θ > 0, there is a coronization (B,G,F) of E such that for each S ∈ F there exists
a Lipschitz graph Γ(S) with Lipschitz constant ≤ η such that

d(x,Γ(S)) ≤ θ diamQ

for every x ∈ E such that d(x,Q) ≤ diamQ and every Q ∈ S.

Note that the constants in Carleson packing condition may depend on η and θ.
David and Semmes proved that this property is equivalent to uniform rectifia-

bility:

Theorem 6.8 ([DS91]). Suppose E is a d-dimensional Ahlfors regular set in RN

with a cubical patchwork ∆. Then E is uniformly rectifiable if and only if it admits a
corona decomposition with respect to ∆. Furthermore, if E is uniformly rectifiable,
then the implicit constants of the corona decomposition depend only on η, θ, d, N ,
the patchwork constants of ∆, and the UR constant of E.

If the patchwork ∆ in Definition 6.5 or 6.7 is cellular, we call the resulting
corona decomposition or coronization a cellular corona decomposition or a cellular
coronization.

7. The uniformly rectifiable case

In this section, we complete the proof of Theorem 1.2 by proving Proposition 4.3.
Let A ∈ Cd(τ ;Zν) and let E be a uniformly rectifiable set E containing suppA, as
in Proposition 4.3. All the implicit constants in this section will depend on N , ν
and the uniform rectifiability constant of E.

We will follow the outline sketched in Section 4.2. Let Σ be the QC complex
subdividing RN × [1,∞) into dyadic cubes that was constructed in Section 2.1. Let
k be such that 2k < diamE ≤ 2k+1 and let ∆ = (∆i)

k
i=0 be a cellular cubical
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patchwork for E. If (B,G,F) is a coronization of E, then the patchwork and the
corona decomposition both correspond to partitions of E = E× [1, 2k+1] as follows.
Let Q = Q × [2i, 2i+1] for each Q ∈ ∆i, then the Q’s cover E and overlap only
on their boundaries. Let S =

⋃
Q∈S Q for all S ∈ F and let ∂Q and ∂S be the

boundaries of S as subsets of E. Then

E =
⋃
Q∈B

Q ∪
⋃
S∈F

S,

and, again, the sets in the union overlap only on their boundaries.
Let A = A × [1, 2k+1]. We decompose A according to (B,G,F). For each

pseudocube Q ∈ ∆, let AQ be the restriction of A to Q and let AQ be the restriction

of A to Q. For each stopping-time region S ∈ F , let

AS =
∑
Q∈S

AQ.

Then

A =
∑
Q∈B

AQ +
∑
S∈F

AS(23)

and

(24) ∂A = A× [2k+1]−A× [1] =
∑
Q∈B

∂AQ +
∑
S∈F

∂AS

We will approximate the terms in this equation by cellular chains in Σ to obtain
the following lemma. If Q ∈ ∆i, let s(Q) = 2i; this is the “side length” of Q. If
W ⊂ RN × [1,∞), let nbhdΣ W be the union of the (closed) cells of Σ that intersect

W and let nbhdkΣ W = nbhdΣ . . . nbhdΣ W be the k-times iterated neighborhood of
W .

Lemma 7.1. For any sufficiently small η, θ > 0, if (B,G,F) is a coronization
satisfying Definition 6.7, there are:

• C > 0 depending only on N , ν, and the uniform rectifiability constant of
E,

• a deformation operator P that approximates a family of chains in RN ×
[1,∞) by cellular chains in Σ as in Lemma 2.5, and

• chains D0 = P (A × [2k+1]) ∈ Cd(Σ;Zν); DQ = ∂P (AQ) ∈ Cd(Σ;Zν) for

all Q ∈ B; and DS = ∂P (AS) ∈ Cd(Σ;Zν) for all S ∈ F .

such that

(1) ∥D0∥1 ≤ C and suppD0 ⊂ RN × 2k+1.
(2) For each bad cube Q ∈ B, ∥DQ∥1 ≤ C and suppDQ ⊂ RN × [s(Q), 2s(Q)].
(3) For each stopping-time region S ∈ F , let Γ(S) be the corresponding Lip-

schitz graph and let Γ(S) = Γ(S) × [1,∞). There is a (d + 1)-chain

GS ∈ CLip
d+1(Γ(S);Z) such that:

• DS ≡ P (∂GS) (mod ν).
• supp ∂GS ⊂ nbhd2Σ ∂S.
• The density of GS is bounded above. That is, massB(x,r) GS ≲ rd+1

for all x ∈ RN × [1,∞), r > 0, where massB(x,r) GS is as in (3).
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We will prove the lemma in Section 7.2.
By Lemma 2.5, if D0, the DQ’s, and the DS ’s are as in the lemma, we have

P (∂A) = P (A× [2k+1])− P (A× [1]) = D0 −A× [1],

using the fact that A× [1] is cellular and thus P (A× [1]) = A× [1]. By (24),

D0 −A× [1] = P

(∑
Q∈B

∂AQ +
∑
S∈F

∂AS

)
=

∑
Q∈B

DQ +
∑
S∈F

DS .

Consequently,

NO(A) = NO(A× [1]) ≤ NO(D0) +
∑
Q∈B

NO(DQ) +
∑
S∈F

NO(DS).

We will thus prove Proposition 4.3 by bounding the nonorientability of D0, the DQ,
and the DS . The nonorientability of D0 and the DQ terms is straightforward to
bound:

Lemma 7.2. If D0 is as in Lemma 7.1, then NO(D0) ≲ 2kd. If Q ∈ B and DQ is
as in the lemma, then NO(DQ) ≲ s(Q)d.

Proof. The cellulation Σ divides RN×{2k+1} into a grid of side length 2k, and since
D0 ∈ Cd(RN × {2k+1};Zν) is a cycle, it is the boundary of some M ∈ Cd+1(RN ×
{2k+1};Zν). By the isoperimetric inequality, we can choose M such that ∥M∥1 is
bounded.

Let MZ ∈ Cd+1(RN × {2k+1}) be a chain with integer coefficients such that
M ≡ MZ (mod ν) and ∥MZ∥1 = ∥M∥1. Since ∂MZ ≡ ∂M = D0, the cycle ∂MZ is
a pseudo-orientation of D0. The cells that make up MZ are cubes with side length
2k, so

NO(D0) ≤ mass ∂MZ ≲ 2kd∥MZ∥1 ≲ 2kd.

Similarly, if DQ is as in the lemma, then DQ = ∂M for some M ∈ Cd+1(RN ×
[s(Q), 2s(Q)];Zν) such that ∥M∥1 ≲ 1. If MZ is a lift of M to a chain with integer
coefficients, then MZ is a sum of cubes with side length between s(Q) and 2s(Q),
and

NO(DQ) ≤ mass ∂MZ ≲ s(Q)d∥MZ∥1 ≲ s(Q)d.

□

The nonorientability of DS is a little harder to bound. Since DS ≡ P (∂GS)
(mod ν), the cycle P (∂GS) is a pseudo-orientation of DS , and we will prove the
following lemma in Section 7.3:

Lemma 7.3. If S ∈ F and DS and GS are as in Lemma 7.1, then

NO(DS) ≤ massP (∂GS) ≲ s(Q(S))d.

Given these lemmas, the proposition follows from the packing condition on
(B,G,F).

Proof of Proposition 4.3. Let η and θ be sufficiently small that Lemma 7.1 holds.
By Theorem 6.8, there is a coronization (B,G,F) satisfying Definition 6.7, and the
packing constants of the coronization depend only on the UR constant of E. That
is,

∑
Q∈B |Q| ≲ |E| and

∑
S∈F |Q(S)| ≲ |E|.
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By Lemma 7.1 and the lemmas above,

NO(A) ≤ NO(D0) +
∑
Q∈B

NO(DQ) +
∑
S∈F

NO(DS)

≲ 2dk +
∑
Q∈B

s(Q)d +
∑
S∈F

s(Q(S))d

∼ |E|+
∑
Q∈B

|Q|+
∑
S∈F

|Q(S)|

≲ |E|.
□

7.1. Preliminaries. The proof of Lemma 7.1 will use some lemmas about cover-
ings of pseudocubes and stopping-time regions. We collect these lemmas here. We
assume throughout that ∆ is a cellular cubical patchwork and that (B,G,F) is a
coronization with implicit constants bounded by the UR constant of E and the
ambient dimension N .

Lemma 7.4. For any k > 0, there is a ck depending on k and the UR constant
of E such that (nbhdkΣ Q)Q∈∆ and (nbhdkΣ S)S∈F are covers of E with multiplicity

at most ck. In fact, each cell σ ⊂ Σ intersects at most ck of the nbhdkΣ Q’s and

nbhdkΣ S’s.

Likewise, for any δ > 0 and any Q ∈ ∆, the set nbhdkΣ Q intersects only bound-
edly many cells of Σ.

Proof. First, we claim that the cover (Q)Q∈∆ has bounded multiplicity. Let σ ⊂ Σ

be a top-dimensional cell of Σ with side length 2i. If Q intersects σ, then Q ∈
∆i−1 ∪∆i ∪∆i+1 and Q intersects the projection of σ to RN . This projection is a
cube with side length 2i, and the number of pseudocubes in ∆i (resp. ∆i−1, ∆i+1)
that intersect such a cube is bounded in terms of the patchwork constants of ∆.

Since Σ has bounded degree, the covers (nbhdkΣ Q)Q∈∆ also have bounded mul-

tiplicity. The sets S are unions of the Q, so the covers (nbhdkΣ S)S∈F also have
bounded multiplicity.

Finally, if Q ∈ ∆, then Q is a subset of RN × [2i, 2i+1] with diamQ ∼ s(Q), so
it intersects only boundedly many cells of Σ. It follows that nbhdΣ Q contains only
boundedly many cells of Σ. Since Σ has bounded degree, nbhdkΣ Q also intersects
only boundedly many cells of Σ. □

Lemma 7.5. If (x, t) ∈ RN × [1,∞), then B(x, t/4) ⊂ nbhd2Σ(x, t).

Proof. The set nbhdΣ(x, t) contains a dyadic cube σ of side length 2i such that x ∈ σ
and t ≤ 2i+1. The set nbhdΣ σ contains all the neighbors of σ, so it contains every
y such that d(y, σ) ≤ 2i−1. It follows that B(x, t/4) ⊂ nbhdΣ σ ⊂ nbhd2Σ(x, t). □

For the last lemma, we define the r-covering number of a space U , denoted
covr(U), to be the minimum number of closed balls of radius r necessary to cover
U . Note that any 2r-ball can be covered by ∼ 1 balls of radius r, so

covr(U) ∼ cov2r(U).

Furthermore, coverings of U1 and U2 can be combined to get a covering of U1×U2,
so

(25) covr(U1 × U2) ≲ covr(U1) covr(U2).



42 ROBERT YOUNG

For any subset U ⊂ RN × [1,∞) and any 0 < δ < 1, let

(26) Nδ(U) =
⋃

(x,t)∈U

B((x, t), δt).

Lemma 7.6. If Q ∈ ∆ and C ′ > 1 is the constant in (19), then for all δ ∈ (0, 1),
we have

(27) HCd+1(Nδ(∂Q)) ≲ δ1/C
′
s(Q)d+1.

Proof. Let Q ∈ ∆i. We write ∂Q = U1 ∪ U2, where

U1 = ∂Q× [2i, 2i+1]

U2 = Q× {2i, 2i+1}.

Since Uj ⊂ RN × [2i, 2i+1], we can construct a covering of Nδ(Uj) by covering Uj

by balls of radius δ2i+1, then doubling the radius of each ball. That is,

covδ2i(Nδ(Uj)) ∼ covδ2i(Uj).

By Lemma 6.3, covδ2i(∂Q) ≲ δ1/C
′−d, so by (25),

covδ2i(U1) ≲ δ1/C
′−d · δ−1,

and

HCd+1(Nδ(U1)) ≲ (δ2i)d+1 · δ1/C
′−d−1

≲ δ1/C
′
2i(d+1).

The bound on U2 follows similarly. Indeed, by the Ahlfors regularity of E,

covδ2i(U2) ∼ covδ2i(Q) ≲ δ−d,

so

HCd+1(Nδ(U2)) ≲ (δ2i)d+1δ−d

≲ δ2i(d+1) ≤ δ1/C
′
2i(d+1).

This proves the desired bound. □

7.2. Proof of Lemma 7.1. Let 0 < η, θ < 1 be small constants to be chosen
later and let (B,G,F) be a cellular corona decomposition of E, based on ∆, with
constants η and θ.

First, we construct P . The deformation operator P will approximate a locally

finite set of chains T ⊂ CLip
∗ (RN × [1,∞); ∗) that we will construct in the course

of the proof. Specifically, T will consist of A× [1], A× [2k+1], AQ and ∂AQ for all

Q ∈ ∆, AS and ∂AS for all S ∈ F , and eight auxiliary chains for each S, consisting
of chains GS , Gν

S , WS , W ′
S and their boundaries. To avoid circularity, none of

these eight chains will depend on the choice of P . Their supports will all lie in
nbhd2Σ S = nbhdΣ nbhdΣ S, so by Lemma 7.4, the multiplicity of T is bounded.

Let P be a deformation operator approximating T . Since the multiplicity of T
is bounded by a constant depending on dimension and the UR constant of E, we
can choose C sufficiently large that Lemma 2.5 holds with the constant C.
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Let D0 = P (A× [2k+1]), DQ = ∂P (AQ) for all Q ∈ ∆ and DS = ∂P (AS) for all
S ∈ F . The desired properties of D0 and the DQ’s follow directly. Since D0 is a
chain in RN × 2k+1, it is a sum of d-cells of volume 2kd, and we have

∥D0∥1 ≲
massD0

2kd
≲

mass(A× [2k+1])

2kd
≲ 1.

Likewise, P (AQ) approximates a (d + 1)-chain in RN × [s(Q), 2s(Q)], so it is
supported in RN×[s(Q), 2s(Q)] and is a sum of cells of volume at least (s(Q)/2)d+1.
Thus

∥DQ∥1 ≲ ∥P (AQ)∥1 ≲
massAQ

s(Q)d+1
≲ 1.

Finally, we prove that DS satisfies the desired properties. Let S ∈ F be a
stopping-time region and let Γ = Γ(S) ⊂ RN be the corresponding Lipschitz graph.
Let Γ = Γ×[1,∞). Let V ⊂ RN and h : V → V ⊥ be the subspace and function such
that Γ = {v+h(v) | v ∈ V }, and let f : RN → Γ be the projection f(v+w) = v+h(v)
for all v ∈ V and w ∈ V ⊥. Let f : RN × [1,∞) be the map f(x, t) = (f(x), t).

We will first show that DS satisfies a mod-ν version of the desired property, then
replace the mod-ν chain with an integral one.

Lemma 7.7. If θ is sufficiently small and

Gν
S = f ♯(AS) ∈ CLip

d+1(Γ;Zν),

then DS = P (∂Gν
S) and supp ∂Gν

S ⊂ nbhd2Σ ∂S.

Proof. Suppose that Q ∈ S and that x ∈ Q. We claim that d(x, f(x)) ≤ 2d(x,Γ) ≤
2θs(Q). Let v ∈ V , w ∈ V ⊥ be such that x = v + w. Let y ∈ Γ be such
that d(x, y) = d(x,Γ); then there is a v′ ∈ V such that y = v′ + h(v′). Since
f(x) = v + h(v) and h is 1-Lipschitz, we have

d(x, f(x)) = d(w, h(v)) ≤ d(w, h(v′)) + d(h(v′), h(v)) ≤ d(x, y) + d(x, y).

By Definition 6.7, we have d(x, y) ≤ θs(Q).
Suppose that (x, t) ∈ S, so that x ∈ Q ∈ S for some cubeQ and t ∈ [s(Q), 2s(Q)].

By the above,

(28) d((x, t), f(x, t)) = d(x, f(x)) ≤ 2θσ(Q) ≤ 2θt.

If Nδ(U) is as in (26) and if θ < 1
4 , then

f(x, t) ∈ N2θ(∂S) ⊂ nbhd2Σ(x, t).

It follows that suppGν
S ⊂ nbhd2Σ S, so we may add Gν

S and ∂Gν
S to T without

affecting its bounded multiplicity. In fact, because A is a cycle, we have supp ∂AS ⊂
∂S, and

supp ∂Gν
S ⊂ f(∂S) ⊂ nbhd2Σ ∂S.

Let WS ∈ CLip
d+1(RN × [1,∞);Zν) be the straight-line homotopy between ∂AS

and ∂Gν
S = f ♯(∂AS). As above, suppWS ⊂ nbhd2Σ S, so adding WS and ∂WS to

T does not affect the bounded multiplicity of T .
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We claim that if θ is sufficiently small, then suppWS has small Hausdorff content
and P (WS) = 0. If σ ∈ Σ(d+1) is a (d+ 1)-cell of side length 2i, then

suppWS ∩ nbhdΣ σ ⊂ N2θ(∂S) ∩ nbhdΣ σ

⊂
⋃

Q∈∆

N2θ(∂Q) ∩ nbhdΣ σ

Since θ < 1
4 , there are only boundedly many Q ∈ ∆ such that N2θ(∂Q) intersects

nbhdΣ σ. All of these have s(Q) ∼ 2i, so by Lemma 7.6,

HCd+1(suppWS ∩ nbhdΣ σ) ≲ θ1/C
′
2i(d+1).

If θ is sufficiently small, then Lemma 2.5.(5) implies that

HCd+1(suppP (WS) ∩ σ) < HCd+1(σ),

so the support of P (WS) does not contain σ. But this argument applies to any
(d+ 1)-cell σ, so P (WS) = 0! It follows that

P (∂WS) = P (∂AS − ∂Gν
S) = 0

and thus that DS = P (∂AS) = P (∂Gν
S). □

Since Gν
S is a Lipschitz (d + 1)-chain in a (d + 1)-dimensional Lipschitz graph,

there is an integer (d + 1)-chain GS with nearly the same boundary. In fact, GS

will be a cellular approximation of Gν
S .

Lemma 7.8. For any ϵ > 0, there are chains GS ,W
′
S ∈ CLip

d+1(Γ;Z) such that:

• ∂W ′
S ≡ ∂GS − ∂Gν

S (mod ν)
• massW ′

S < ϵ

• suppW ′
S ⊂ nbhd2Σ ∂S

• massB(x,r) GS ≲ rd+1 for all x ∈ RN × [1,∞), r > 0.

Proof. The graph Γ is bilipschitz equivalent to Rd × [1,∞), so for any ϵ′ > 0,
we may give it the structure of a QC complex by letting κ be the image of a
grid in Rd × [1,∞) of side length ϵ′. By Theorem 2.4, there is a chain Hν =

Q̄(∂Gν
S) ∈ CLip

d+1(Γ;Zν) and a cellular chain P ν = P̄ (Gν
S −Hν) ∈ Cd+1(κ;Zν) that

approximates Gν
S and satisfies ∂P ν = P̄ (∂Gν

S), ∂H
ν = ∂Gν

S − ∂P ν ,

massHν ≲ ϵ′ mass ∂Gν
S

suppHν ⊂ nbhd2Σ ∂Gν
S ⊂ nbhd2Σ ∂S.

Choose ϵ′ sufficiently small that massHν < ϵ.
Fix an orientation on Γ; we will use this orientation to lift P ν to a chain with

integer coefficients that has the same boundary. (See also [Fed75].) We orient
the (d + 1)-cells of κ to match the orientation of Γ. This fixes signs for all of the
coefficients of (d+ 1)-chains, and we define GS ∈ Cd+1(κ) to be the unique integer
chain such that GS ≡ P ν (mod ν) and the coefficients of GS are all between 0
and ν − 1. If σ and σ′ are neighboring (d+ 1)-cells in σ, then they have the same
coefficient in GS if and only if they have the same coefficient in P ν , so supp ∂GS =
supp ∂P ν .

Let W ′
S ∈ CLip

d+1(Γ;Z) be a chain such that W ′
S ≡ −Hν (mod ν), suppW ′

S =
suppHν , and massW ′

S = massHν . Then W ′
S satisfies the first three conditions
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of the lemma. To prove the last condition, note that the coefficients of GS are
bounded, so

massB(x,r) GS ≤ ν|Γ ∩B(x, r)| ≲ rd+1.

□

Finally, if ϵ is sufficiently small, then P (W ′
S) = 0, so

P (∂GS) ≡ P (∂Gν
S + ∂W ′

S) = P (∂Gν
S) = DS ,

as desired.

7.3. Proof of Lemma 7.3. Finally, we bound NO(DS). Recall that

GS ∈ CLip
d+1(Γ(S))

is a chain with integer coefficients and an upper bound on its density and that
DS ∈ C(Σ;Zν) is congruent modulo ν to P (∂GS). The cycle P (∂GS) is a pseudo-
orientation of DS , so it suffices to show that

massP (∂GS) ≲ s(Q(S))d.

First, we note that the coefficients of P (GS) are bounded:

Lemma 7.9. If G ∈ CLip
d+1(RN × [1,∞)) is a chain such that massB(x,r) G ≲ rd+1

for all x ∈ RN × [1,∞) and r > 0, then the coefficients of P (G) are bounded.

Proof. Let σ be a (d+ 1)-cell of Σ and let xσ be the coefficient of P (G) on σ. By
Lemma 2.5.(4) and the bound on the density of G, we have

|xσ| =
massσ P (G)

Hd+1(σ)

≲
massnbhdΣ σ G

Hd+1(σ)

≲
(diamσ)d+1

Hd+1(σ)

≲ 1.

□

Since Σ has bounded degree, the coefficients of P (∂GS) = ∂P (GS) are also
bounded.

Next, we bound the support of P (∂GS). By Lemmas 7.1 and 2.5, we have

suppP (∂GS) ⊂ nbhd2Σ ∂S.

If L is a subcomplex of Σ, let

sized L =
∑

σ∈(nbhdΣ L)(d)

|σ|

be the total volume of the d-cells of nbhdΣ L.
Then:

Lemma 7.10. Suppose that U ⊂ X and Ui = U ∩RN × [2i, 2i+1] for i = 0, 1, 2, . . . .
Then

sized nbhd
2
Σ U ∼ sized nbhdΣ U ≲

k∑
i=0

2id cov2i Ui.
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Proof. The subcomplex nbhdΣ U is a union of dyadic cubes. For every dyadic cube
K, we have sized K ∼ sized nbhdΣ K, so sized nbhdΣ U ∼ sized nbhd

2
Σ U .

For any i, nbhdΣ Ui is a union of dyadic cubes with side length ∼ 2i. A covering
of Ui by balls of radius 2i can be made into a cover of nbhdΣ Ui by increasing
the radius of balls by a factor of

√
N . Each of the expanded balls intersects only

boundedly many cells of nbhdΣ Ui, so

sized nbhdΣ Ui ≲ 2id cov2i Ui

and

sized U ≲
k∑

i=0

2id cov2i Ui.

□

We claim that

Lemma 7.11. If S ∈ F is a stopping-time region and K = nbhd2Σ ∂S, then

sized K ≲ |Q(S)|.

Proof. For every pseudocube Q ∈ ∆, let

MQ =
⋃

Q′⊂Q

Q′

be the union of Q and all of its descendants and let

M ′
Q = MQ ∖Q.

Let Smin be the set of minimal pseudocubes in S. Since S is coherent, the ele-
ments of Smin partition Q(S). That is, they are all disjoint (since any two minimal
pseudocubes are disjoint) and their union is Q(S) (since if a pseudocube in S is
non-minimal, all its children are contained in S.) Note that we are using the fact
that ∆ is a cellular cubical patchwork and thus has a bottom level.

If Q ⊂ Q(S), but Q ̸∈ S, then Q is a descendant of one of the Smin. Therefore,

S =
⋃
Q∈S

Q = MQ(S) ∖
⋃

Q∈Smin

M ′
Q,

and

∂S ⊂ ∂MQ(S) ∪
⋃

Q∈Smin

∂M ′
Q

⊂ ∂MQ(S) ∪
⋃

Q∈S′
min

∂MQ,

where S′
min consists of the children of elements of Smin.

It follows that

(29) sized nbhd
2
Σ ∂S ≲

∑
sized nbhd

2
Σ ∂MQ(S) +

∑
Q∈S′

min

sized nbhd
2
Σ ∂MQ.

We claim that for all Q ∈ ∆,

sized nbhd
2
Σ ∂MQ ≲ |Q|.

Let s(Q) = 2i and write

∂MQ = Q× 2i ∪ ∂Q× [1, 2i].
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By Lemma 7.10, we have

sized nbhd
2
Σ ∂MQ ≲ 2id cov2i(Q) +

i−1∑
j=0

2jd cov2j (∂Q× [2j , 2j+1]).

Since diamQ ∼ 2i,

cov2i(Q× {2i}) ∼ 1.

If j < i and C ′ > 0 is as in Lemma 6.3, then

cov2j (∂Q× [2j , 2j+1]) ≲ 2(i−j)(d−1/C′),

so

sized nbhd
2
Σ ∂MQ ≲ 2id +

i∑
j=0

2id2−(i−j)/C′
≲ 2id ∼ |Q|.

Finally, by (29), we have

sized K ≲ |Q(S)|+
∑

Q∈S′
min

|Q|.

The children of the minimal pseudocubes of S are all disjoint, so sized K ≲ |Q(S)|.
□

Then, by Lemma 7.9, we have

massP (∂GS) ≲ | suppP (∂GS)| ≲ sized K ≲ |Q(S)|.

Since P (∂GS) is a pseudo-orientation of DS , this completes the proof of Lemma 7.3.

Appendix A. Proof of Lemma 2.5

In this section, we prove Lemma 2.5. None of the ideas here are original; our
proof follows similar lines to the argument of Federer and Fleming [FF60], White’s
deformation lemma [Whi99], the argument used by David and Semmes to prove
Proposition 3.1 in [DS00], and the proof of a cellular version of the Deformation
Theorem in Chapter 10 of [ECH+92].

We recall some notation. If D ⊂ Rd is a measurable set, d ≤ N , and α : D → B
is Lipschitz, then by the arguments in Section 2.1, the jacobian determinant Jα is
defined almost everywhere in D. We define

vold α =

∫
x∈D

|Jα(x)| dx.

Similarly, if Σ is a QC complex, B ⊂ Σ is a Borel set, and A is a Lipschitz chain in
Σ, we let massB A be the mass of the restriction of A to B. Let µ be the Lebesgue
measure on RN .

If Σ is a QC complex, then each cell of Σ is bilipschitz equivalent to a ball,
and if B is a ball, we can construct a map p that takes all but one point of B to
its boundary by choosing a random point y ∈ B, then projecting B ∖ {y} to its
boundary along straight lines. In the following lemma, we use Fubini’s Theorem
to bound the average amount that this random projection increases the mass of a
chain or the Hausdorff content or Hausdorff measure of a set. Note that we need
to smooth the projection on a ball of radius ϵ to make it a Lipschitz map defined
on all of B.
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Lemma A.1. Let B = B(0, r) be a ball in RN and let γB = B(0, γr) for any
γ > 0. For any y ∈ B/2 and any unit vector v ∈ SN−1, let t : B ∖ {y} → ∂B be
the projection of B ∖ {y} to its boundary. That is, t(x) is the endpoint of the ray
from y to x. Let 0 < ϵ < r/2 and let py : B → B be the map

py(x) =

{
y +min{1, ρ

ϵ }(t(x)− y) x ̸= y

y x = y
,

where ρ = d(x, y). This is a Lipschitz map that sends B(y, ϵ) surjectively to intB
and sends B ∖B(y, ϵ) to ∂B.

If D ⊂ Rd is a measurable set, α : D → B is Lipschitz, and U ⊂ B is a set with
HCd(U) < ∞, then for all ϵ ∈ (0, r/2), we have

1

µ(B/2)

∫
y∈B/2

vold(py ◦ α) dy ≲N vold α(30)

1

µ(B/2)

∫
y∈B/2

HCd(py(U)) dy ≲N HCd(U).(31)

David and Semmes prove an inequality similar to (31) in Chapter 3 of [DS00].

Proof. If ρ = d(x, y) and ∥Dpy(x)∥ is the operator norm of the derivative of py at
x, then

∥Dpy(x)∥ ≲
r

max{ρ, ϵ}
.

To prove (30) when d < N , we write∫
y∈B/2

vold(py ◦ α) dy =

∫
y∈B/2

∫
x∈D

|Jpy◦α(x)| dx dy

≲
∫
y∈B/2

∫
x∈D

∥Dpy(α(x))∥d|Jα(x)| dx dy

≲
∫
y∈B/2

∫
x∈D

(
r

max{ρ, ϵ}

)d

|Jα(x)| dx dy

= rd
∫
x∈D

|Jα(x)|
∫
y∈B/2

min{ρ−d, ϵ−d} dy dx

using Fubini’s Theorem in the last step. Since min{ρ−d, ϵ−d} = ϵ−d only when
ρ ≤ ϵ, we can bound the last integral by∫

y∈B/2

min{ρ−d, ϵ−d} dy ≲
∫
y∈B(x,2r)

ρ−d dy +

∫
y∈B(x,ϵ)

ϵ−d dy

≲
∫ 2r

0

ρN−1−d dρ+ ϵN−d(32)

≲ rN−d.

We thus have

1

µ(B/2)

∫
y∈B/2

vold(py ◦ α) dy ≲
rN

µ(B/2)

∫
x∈D

|Jα(x)| dx ≲ vold α,

so (30) holds when d < N .
If d = N , the integral in (32) diverges, so we need a different argument. In

this case, py sends B ∖ B(y, ϵ) to ∂B, which is (d− 1)-dimensional, so the part of
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α(∆) outside of B(y, ϵ) doesn’t contribute to vold(py ◦α). Therefore, using Fubini’s
Theorem as before,∫

y∈B/2

vold(py ◦ α) dy ≲ rN
∫
x∈D

|Jα(x)|
∫
y∈B(x,ϵ)

ϵ−N dy dx

≲ rN
∫
x∈D

|Jα(x)| dx ≲ µ(B) vold α.

This proves (30).
Next, consider (31). It suffices to show that for any ball B0 = B(x, r0) with

r0 ≤ r, we have

(33)
1

µ(B/2)

∫
y∈B/2

HCd(py(B0)) dy ≲ rd0 .

If d < N , then let ρ = d(x, y) as before. If ρ > 2r0, then d(y,B0) ≳ ρ, so
Lip(py|B0

) ≲ r
ρ , and

HCd(py(B0)) ≲

(
rr0
ρ

)d

.

On the other hand, if ρ ≤ 2r0, then

HCd(py(B0)) ≤ HCd(B) ∼ rd.

Therefore,∫
y∈B/2

HCd(py(B0)) dy ≲
∫
y∈B/2

(
rr0
ρ

)d

dy +

∫
y∈B(x,2r0)

rd dy

≲ rNrd0 + rN0 rd ≤ rNrd0 ,

using the fact proved above that
∫
y∈B/2

ρ−d dy ≲ rN−d.

If d = N , then py sends B ∖ B(y, ϵ) to ∂B, so HCN (py(B0)) = 0 unless y ∈
B(x, 2max{ϵ, r0}). Since Lip(py) ≤ r

ϵ , we know that

diam py(B0) ≲ min{r, rr0
ϵ

} =
rr0

max{r0, ϵ}
,

so ∫
y∈B/2

HCN (py(B0)) dy =

∫
y∈B(x,2max{ϵ,r0})

HCN (py(B0)) dy

≲ (max{ϵ, r0})N
(

2rr0
max{ϵ, r0}

)N

∼ rNrN0 .

This proves (33), which implies (31). □

We can use the lemma to construct a map Σ(k) → Σ(k) that sends most of the
k-skeleton of Σ into its (k − 1)-skeleton.

Lemma A.2. Suppose that Σ is a QC complex of dimension N and c > 0 is
such that each cell of Σ is c-bilipschitz to a ball. Suppose that k ≤ dimΣ and

S ⊂ CLip
∗ (Σ(k); ∗) is a set of Lipschitz chains that is closed under taking boundaries.

Suppose that n > 0 is a number such that for any k-cell K ⊂ Σ, no more than n
chains in S have support that intersects the interior of K. Then there is a locally
Lipschitz map pk : Σ → Σ such that

• pk fixes Σ(k−1) pointwise,



50 ROBERT YOUNG

• for each cell σ ⊂ Σ, the restriction pk|σ is a degree–1 map from σ to itself,
• for every T ∈ S such that dimT < k, we have pk(suppT ) ⊂ Σ(k−1),
• for each T ∈ S,

mass(pk)♯(T ) ≲c,n,N massT(34)

HCd(pk(suppT )) ≲c,n,N HCd(suppT ).(35)

Proof. We construct pk on each k-cell of Σ, then extend it to the higher-dimensional
simplices. Suppose that K is a k-cell and suppose that T1, . . . , Tn ∈ S are the only
chains in S whose supports intersect K. Since Σ is a QC complex, we may identify
K with a closed euclidean ball B of radius r. By Lemma A.1, there is a subset K0

of K (corresponding to B/2) such that for any sufficiently small ϵ > 0, there is a
family of maps py : K → K, y ∈ K0, such that py sends B(y, ϵ) surjectively onto
K and sends K ∖B(y, ϵ) to ∂K. Furthermore,

1

µ(K0)

∫
y∈K0

massK(py)♯(S) dy ≲c,N massK S

1

µ(K0)

∫
y∈K0

HCd(py(suppS ∩K)) dy ≲c,N HCd(suppS ∩K)

for every chain S of dimension ≤ k.
Choose ϵ > 0 so that the ϵ-neighborhood of the supports of the Ti’s is small.

That is, µ(Eϵ) < µ(K0)/2, where

Eϵ =
⋃

dimTi<k

{y ∈ K | d(y, suppTi) < ϵ}.

This is possible because suppTi is a finite union of Lipschitz images of simplices.
Let

Fi(γ) = {y ∈ K0 |massK(py)♯(Ti) > γmassK Ti or

HCd(py(suppTi ∩K)) dy > γHCd(suppTi ∩K)}
By Chebyshev’s inequality,

µ(Fi(γ)) ≲c,N γ−1µ(K0).

If γ is large enough, depending on c, N , and n, there is some y ∈ K0 such that
y ̸∈ Eϵ and y ̸∈ Fi(γ) for all i. Then for all i, we have

massK(py)♯(Ti) ≤ γmassK(Ti),

HCd(py(suppTi ∩K)) dy ≤ γHCd(suppTi ∩K).

Also, py fixes ∂K pointwise, and py(supp(Ti)) ⊂ ∂K if dimTi < k. Let pk be equal
to py on K.

We define pk on the k-skeleton of Σ by repeating this process for each k-cell.
Then, for each cell L ⊂ Σ with dimL > k, we have defined pk on ∂L so that pk|∂L
is a Lipschitz map, so we extend pk to L by radial extension. The result is Lipschitz
and sends L to itself, so the resulting pk satisfies the conditions of the lemma. □

This lets us prove Lemma 2.5.

Proof of Lemma 2.5. First, we construct p. Recall that T is a set of chains which
is closed under taking boundaries and that n > 0 is a number such that for any cell
D ∈ Σ, no more than n elements of T intersect D.
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We can use Lemma A.2 repeatedly to construct a sequence of Lipschitz maps
p1, . . . , pN : Σ → Σ such that for each k = 1, . . . , N ,

• pk fixes Σ(k−1) pointwise,
• pk(σ) ⊂ σ for each cell σ ⊂ Σ,
• for every T ∈ T such that dimT < k, we have

(pk ◦ pk+1 ◦ · · · ◦ pN )(suppT ) ⊂ Σ(k−1),

and
• for each T ∈ T ,

mass(pk ◦ pk+1 ◦ · · · ◦ pN )♯(T ) ≲c,n,N massT(36)

HCd(supp(pk ◦ pk+1 ◦ · · · ◦ pN )♯(T )) ≲c,n,N HCd(suppT ).(37)

We first construct pN by applying Lemma A.2 to TN = T , then construct pk
inductively by applying Lemma A.2 to

Tk = {(pk+1 ◦ · · · ◦ pN )♯(T ) | T ∈ T }.
By the local finiteness condition, no more than n elements of Tk intersect the interior
of any cell of Σ, so the implicit constants in (34) and (35) are uniformly bounded.
It follows that the implicit constants in (36) and (37) depend only on c, n, and N .
Let

p = p1 ◦ · · · ◦ pN .

Then, for any T ∈ T , we have p(suppT ) ⊂ Σ(d), mass p♯(T ) ≲c,n,N massT,

and HCd(supp p♯(T )) ≲c,n,N HCd(suppT ) as desired. Furthermore, if Y ⊂ Σ, then
p−1(Y ) ⊂ nbhdΣ Y , so it is straightforward to check part 4 of the lemma and to

bound HCd(suppP (T ) ∩ Y ). □
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