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Abstract

Let X = G/K be a symmetric space of noncompact type and rank k > 2. We prove
that horospheres in X are Lipschitz (k — 2)—connected if their centers are not contained
in a proper join factor of the spherical building of X at infinity. As a consequence, the
distortion dimension of an irreducible Q-rank-1 lattice I' in a linear, semisimple Lie
group G of R-rank k is kK — 1. That is, given m < k — 1, a Lipschitz m—sphere S in (a
polyhedral complex quasi-isometric to) I', and a (m + 1)-ball B in X (or G) filling S,
there is a (m + 1)-ball B’ in I filling S such that vol B” ~ vol B. In particular, such
arithmetic lattices satisfy Euclidean isoperimetric inequalities up to dimension k — 1.
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1 Introduction and main results

Let G be a Lie group equipped with a left invariant metric and I' C G a finitely generated
discrete subgroup equipped with a word metric. If I is cocompact, then I' is quasi-isometric
to G and thus both have the same large-scale geometry. If I' is not cocompact, the large-
scale geometric properties of G and I' can be very different. For instance, I' = SL(2,7Z) is
exponentially distorted in SL(2,R), see e.g. [[11, Ch. 3].
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The higher-dimensional geometry of I" can also be highly distorted. This was first seen in
a result of Epstein, Cannon, Holt, Levy, Paterson, and Thurston, who showed that SL(n, Z)
has an exponentially large (n — 1)—dimensional filling volume function [10, Ch. 10.4]. That
is, there is a ¢ > 0O such that for any sufficiently large r, there is a (n —2)—sphere S in SL(n, Z)
of volume 7"~% such that any (n — 1)-ball with boundary S has volume at least e". On
the other hand, Thurston famously conjectured that this distortion does not occur in lower
dimensions; that the 2—dimensional filling volume function FV%L(k’Z)(r) (the Dehn function)
should satisfy FV%L(k’Z)(r) ~ r* when k > 4. Gromov generalized this conjecture to arbitrary
lattices in semisimple groups; his conjecture posits that if I is a nonuniform lattice in G and
G has rank k, then the (kK — 1)—dimensional filling volume function of I" is exponential and
lower-dimensional filling volume functions are polynomial 11} 5.D].

This conjecture has been studied for many years, and many cases of the conjecture are

now known. To state a few:

e C. Drutu showed that the 2—dimensional filling volume function FV%(n) is at most n>*€

when G has rank at least 3 [[7, [8]].

e [euzinger and Pittet showed that if G has rank 2, then there is a ¢ > 0 such that
FVi(n) 2 e [17].

o Wortman showed that if I" is an arithmetic subgroup of relative Q—type A,,, B, C,,, D,,, E¢
or E7, then there is a ¢ > 0 such that FVE' (#72) > e, where k is the rank of G [23].

e Bux, Kohl, and Witzel recently showed that the finiteness length of an S —arithmetic
group is equal to its total rank minus 1 [S]. This is a nonquantitative version of Gromov

and Thurston’s conjecture.

More generally, we may consider a group G of the form G = [], G;(k;), where the k;
are locally compact, non-discrete fields and the G; are connected, absolutely almost simple
algebraic groups defined over ;. In [[6], Bux and Wortman formulated a version of Gromov
and Thurston’s conjecture in terms of the higher-dimensional distortion of such groups. Let
X be the product of irreducible symmetric spaces and Euclidean buildings on which G acts.
The total rank of G is then equal to the maximal dimension of an isometrically embedded
Euclidean space in X, which we call the geometric rank of X and denote by geo-rank(X).

Let I' be an irreducible lattice in G. For some point x € X and a real number r define the

the following thickening of the orbit I' - x in X

X(r):={yeX|dy,T-x) <r}.



Note that by the Milnor—Svarc lemma, the induced inner metric on X (r) is quasi-isometric
to (I', dr). Following [6] we define I" as being undistorted up to dimension m if: given any
r > 0, there exist real numbers ¥ > r,A > 1, and C > 0 such that for any k < m and any
Lipschitz k—sphere S C X(r), there is a Lipschitz (k + 1)-ball Br ¢ X(#') with dBr = S and

volume(Br) < A volume(By) + C

for all Lipschitz (k + 1)-balls By ¢ X with dBx = S. The distortion dimension of T is then
defined as
dis-dim(I') = max{m | I" is undistorted up to dimension m}.

Bux and Wortman posit that dis-dim(I") = geo-rank(X) — 1. This would imply the conjecture
of Gromov and Thurston.

In this paper, we will prove the Bux—Wortman conjecture for Q—rank 1 arithmetic groups
in linear, semisimple groups defined over number fields, i.e. finite extensions of Q. For
such lattices the space X above is a symmetric space of noncompact type; that is, there are
no building factors. Similar arguments hold for groups defined over general fields, but for
simplicity, we restrict ourselves to the case of symmetric spaces.

In our proof, it will be convenient to replace the subset X(r) by the complement of a
countable union of horoballs in X (see [[15)], Thm. 3.6). Like X(r), this is quasi-isometric to

(T', dr). A crucial fact is that for Q—rank 1 lattices these horospheres are disjoint.

Theorem A (Distortion dimension). The distortion dimension of an irreducible Q-rank 1
lattice in a linear, semisimple Lie group of R—rank k is k— 1. If k > 2, then such an arithmetic
lattice satisfies Euclidean isoperimetric inequalities up to dimension k—1 and an exponential
isoperimetric inequality in dimension k.

That is, there is a (k — 2)—connected complex Y that is equivariantly quasi-isometric to
I" such that for any m < k — 2 and any Lipschitz m—sphere S C Y, there is a Lipschitz
(m + 1)=ball B C Y such that 0B = S and

vol B < (vol §)" .

Conversely, for r > 1, there is a Lipschitz sphere S : S¥' — Y such that vol S ~ r*~! but
vol B > ¢” for any Lipschitz k—ball B C Y such that 0B = §.

Gromov showed that any nonuniform lattice I in a semisimple group G of R-rank 1 is
exponentially distorted and thus has distortion dimension 0 (see [11, 3.G]). Link recently



showed this theorem in the case that I" is an irreducible lattice acting on a product of rank—1
symmetric spaces [[18].

In many cases, the lower bound in Theorem A follows from a result of Wortman [23]]. If
I" has Q-rank 1, then its relative Q—type is either A; or BC;. In the former case, Wortman
showed that I" has an exponential isoperimetric inequality in dimension k. We will prove the
exponential isoperimetric inequality in the general case.

By work of Young [24], non-distortion for subsets of spaces with finite Assouad—Nagata
dimension is a consequence of Lipschitz connectivity. Recall that Z is Lipschitz n—connected
if for all d < n and any Lipschitz map a: S¢ — Z, there is an extension 8: D! — Z such
that Lip(8) < Lip(@). Theorem 1.3 of [24] (see also [25]) states the following:

Proposition 1.1 (Distortion and connectivity, [24, 1.3]). Let X be a metric space and let
Z C X be a nonempty closed subset with inner metric induced by the metric of X. Sup-
pose in addition that X is a geodesic metric space such that the Assouad—Nagata dimension
diman(X) of X is finite and one of the following is true:

e Z is Lipschitz n—connected.

e X is Lipschitz n—connected, and if X,, p € P are the connected components of X \ Z,
then the sets H, = 0X, are Lipschitz n—connected with uniformly bounded implicit

constant.
Then Z is undistorted up to dimension n + 1.

Thus, to prove the upper bounds in Theorem A, it suffices to show that horospheres in X
are highly Lipschitz connected:

Theorem B (Horospheres are highly Lipschitz connected). Let X = G/K be a symmetric
space of noncompact type and rank k. Then any horosphere in X whose center is not con-
tained in a proper join factor of the boundary of X at infinity is Lipschitz (k — 2)—connected

and thus undistorted up to dimension k — 1.

The key step in Theorem B is constructing flats E that face “away from” a chamber a in
the boundary at infinity of X (Sec.[3.3)). These flats are arranged so that if Z is a horosphere
whose center is in a, then £ N Z is roughly spherical. (In fact, spheres of the form E N Z
will provide the lower bound in Theorem A.) Similar constructions appear in [8, Sec. 3.3]
and [24, Sec 4.3] in the case that X is a building. In those cases, E is constructed using a
sequence of ramifications; here, we will show that flats like E are abundant and use their

abundance to prove the Lipschitz connectivity of Z.
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2 Sketch of proof

The core of this paper is the proof of Theorem B. This proof is structured similarly to the
proof of Theorem 4.1 in [24], which established Lipschitz connectivity for certain horo-
spheres in Euclidean buildings. The proof of Theorem 4.1 in [24] used a version of Morse
theory based on the downward link at infinity of a vertex in a Euclidean building. Let 8 be
such a building and let B, be its boundary at infinity. Then, if a horoball is centered at a
point 7 € B, the downward link at infinity of a point x € B is the subset of B, consisting
of the limit points of geodesic rays from x that point away from 7.

We start by constructing an analogue of the downward link for symmetric spaces. When
X is a symmetric space, we let X, be its (geodesic) boundary at infinity and equip X., with
the Tits metric associated to the angular metric Z. Then X, has the additional structure of a
spherical building, see [1], Appendix 5 and [3]], Ch. II.10. We use the building structure to
replace downward links by shadows. If H is a horoball and x € H, then each chamber in X,
is the limit set of a Weyl chamber based at x. The shadow of x consists of the limit sets of
Weyl chambers that “strongly point out of” H (Sec.[3.2). We denote the shadow of x by S,;
note that this is a set of chambers in X, viewed as a spherical building.

For x € H we denote the union of the chambers in S, by X,. This is a subset of the
geodesic boundary X... It is a collection of directions (or limits) of geodesic rays starting at
x that head toward Z = 0H quickly. In particular, there is a Lipschitz map i,: £, — Z that
takes each direction to the point where the corresponding ray intersects Z.

Next, we show that shadows are (k —2)—connected (Sections[3.3and [3.4) by constructing
many flats inside each shadow. For each shadow S,, we will find a chamber d C X, such
that for each chamber ¢ € S,, there is a flat E;,, C X that is spanned by d and ¢ and whose
boundary at infinity is contained in a larger shadow. The boundary at infinity of the union of
these flats is a union of apartments in the spherical building. This union has the homotopy

type of a wedge of (k — 1)—spheres, so Z, is (k — 2)—connected inside a larger shadow.



Finally, we use shadows to prove that Z is Lipschitz (k — 2)—connected (Section [3.5).
Let Az be the infinite-dimensional simplex with vertex set Z. It suffices to construct a map
Q: A; — Z with certain metric properties. Since shadows are (k — 2)—connected, we con-
struct a map Q. : Az — X such that the image of each face of A, lies in a shadow. We can

then use the map i, above to send these shadows to Z.

3 Proof of Theorem B

3.1 Preliminaries and standing assumptions

Let X = G/K be a symmetric space of noncompact type and rank k > 2. If g € G, let
[g] = gK € X be the corresponding coset of K. Let X, be the (geodesic) boundary of X at
infinity and equip X, with the Tits metric associated to the angular metric Z. Note that if X
is a Riemannian product of irreducible factors, X = X; X...X X,,, then its boundary X, is the
spherical join of the boundaries of the factors, X, = (X{)eo * - -+ % (X)) (see [3], IL.8.11.).

Let T € X, be a point that is not contained in a proper join factor of X, i.e., 7 is the limit
point of a geodesic ray that is not constant on any proper factor. Let H C X be a horoball
centered at 7 and let Z := 0H be the boundary horosphere. Let 2: X — R be the Busemann
function centered at 7, oriented so that H = h~'([0, o)) and Z = A~ '({0}). We define H., to
be the open ball B,/»(7) in X, so that (hor)’(¢) > O for any geodesic ray r that is asymptotic
to a point in H,. Since 7 is not contained in a proper join factor, there is a chamber ¢ C X,
such that 7 € ¢ and ¢ € H,, (see [13]], Section 3). This is the main reason for the assumption
that 7 is not contained in a proper join factor; the fact that ¢ C H,, is crucial to Lemma
We note that if X is irreducible, a Weyl chamber has diameter less than /2. Thus any 7 € X,
and the associated Busemann function also have the above properties.

The stabilizer of ¢ in G is a minimal parabolic subgroup P, and the set of (maximal)
chambers in X, can be identified with the homogeneous space G/P (see e.g. [22, Ch. 1.2],
or [20, Lemma 4.1]). We let P = NAM be its Levi decomposition. Thus N is nilpotent,
A abelian, and M is the centralizer of A in K and in particular compact. Note that, by the
Iwasawa decomposition G = NAK, P acts transitively on X.

For x € X there is a unique flat £, containing x and ¢. Let £y = E.x = [A] and let ¢*
be the chamber opposite to ¢ in Ey. More generally, let ¢} be the chamber opposite to ¢ in
E,. If x = [p] and p = nam for some n € N,a € A,m € M, then E, = nEy = pE, and

* * *
¢, = pd =nc".



Let X% (¢) be the set of chambers opposite to ¢, so that X% (¢c) = N - ¢*. Let X% (c) be the
corresponding subcomplex. If d € X% (¢), we define E, to be the flat asymptotic to both ¢ and
D.

The notation f < g means that there is some constant ¢ such that f < cg. We write f ~ g
if there is some ¢ > 0 such that c™'g < f < c¢g. When ¢ depends on x and y, we write f <, g
or f ~,, g All of our constants will depend implicitly on X and 7, so we will omit X and 7
from these subscripts.

3.2 Shadows

In this section, we define the shadow S, C XY (c¢) of a point x € X and prove some of
its properties. The shadow of a point in a symmetric space will play a similar role to the

downward link at infinity of a point in a Euclidean building in [24]].

Definition 3.1. Let g and n be the Lie algebras of G and N. The metric on X is induced by
an Ad(K)—invariant norm || - || on g (see [9], 2.7.1). For n € N, define dy(n) = ||log n||.
The r—shadow of x = [p] with respect to ¢ is the set of chambers

Su(r) == A, € X0 ()| neN,dyn) <r).

We set S, = S.(1). Note that S.(r) is well-defined, since by Ad(K)—invariance dy(mnm™") =
dy(n) forallm e M C K and n € N; moreover S, (r) = p - Sie1(r).

If > € X%(c) and x = [p] € X, then there is a g,(d) € N such that [pg(d)] € E;. In
fact, if n,,n € N and a € A are such that E, = [n,A] and x = [na], then we can write

g.(®) = a 'n"'nya. This is unique up to conjugation by some m € M. We set

px(®) = dy(g.(d)),

this is well-defined (i.e., independent of the choice of ¢,(d)). Further we have: d € S.(r)
if and only if p,(d) < r. Roughly, the function p, measures the angle at which the Weyl
chamber based at x and asymptotic to d meets the apartment E,. When p,(d) is small, then d
is close to E,, and when it is large, d deviates more sharply. We think of S, as the “shadow”

on XY (¢) cast by a light at ¢ shining on a ball around x with radius roughly 1.

Lemma 3.2. Ifx € X andd € S,(r), then d(x, E,) < r. Conversely, there is a c > 0 depending
on X such that if d(x, E,) < r, then d € S,(e").



Proof. First,if x = [p] € X and d € S,(r), then, as we have seen above, thereisann = ¢,(d) €
N such that [pn] € E, and dy(n) < r. It follows that d(x, Ey) < d([p], [pn]) < dy(n) <r.

Conversely, suppose that d(x,y) < r. Without loss of generality, we may take x = [e].
Letn € N and a € A be such that y = [na]. Then ¢ = cfn], so it suffices to show that dy(n) is
exponentially bounded in r.

The map [na] — a is a distance-decreasing map from X to A, so

d([el, [a]) < d([e], [na]) = d(x,y) <.

It follows that
d([e], [n]) < d([e], [na]) + d([na], [n]) < 2r.

By [19], n satisfies the inequality
logdy(n) < d([e], [n]) < 1 +logdy(n),
so dy(n) < e as desired. O
The shadow of x grows exponentially as x moves toward c.

Lemma 3.3. Let x € X and let y: [0,0) — X be a unit-speed geodesic ray starting at x and
pointing at a point o € int ¢ in the interior of ¢. There is a constant k > 0 depending on o
such that for all t > 0 and all d € X°(¢),

Pyn(®) S € p.(d).

Proof. Without loss of generality, we may assume that x = [e] and that x" = [exp ¢V] for a
regular unit vector V in the open Weyl chamber in 7, X corresponding to the chamber ¢ € X,
(see [1], appendix 5). Let X, be the corresponding set of positive roots. Let a(t) = exptV
and let

k :=mina(V) > 0.
a€x,

Let n = g.(d) so that p,(d) = dy(n) and g,(d) = a(-1t)na(t). The Lie algebra n of N can
be written as the sum of (positive) root spaces n = ) ,cs+ 8, Thus logn = s+ X, and
%y(d) = exp[Ad(a(-1) logn] = exp »_ X,
aext
Then
Pyin(®) = dn(gy (D) < e “dy(n).

as desired. m]



Let A, C A denote the Weyl chamber based at the identity that is asymptotic to ¢. For
p € Pand x =[p] € X, let C, := [pA,] be the Weyl chamber based at x and asymptotic to c.
Because shadows grow exponentially with height, we can expand S, greatly by replacing x
by a point in C,. Let
D, ={yeX|dy,C, < 1}.

The set D, is roughly the set of points whose shadows contain S,.
Lemma 3.4. There is a p > 0 such that for all x € X and all y € D,, S, C S,(p).

Proof. Without loss of generality, suppose that x = [e], so that C, = [A,], where A, is
the Weyl chamber in A corresponding to ¢. If we write y = [an] with a € A, n € N, then
d(a,A") <1 and dy(n) < 1. We write a = a,b, where a, € A* and || log b|| < 1.

Suppose that n” € N and dy(n") < 1, so that cE‘n,] € S,. Then

Ey = [n'A] = [ann™'(a”'n a)A]
and ¢, € S,(p) if and only if dy(n~'(a"'n’a)) < p. Butdy(n) < 1, and
dy(a™'n'a) = || Ad(a.b)logn’|| < 1

because the eigenvalues of Ad(a,) are all at most 1 and Ad(b) is bounded. It follows that

there is a p depending on X so that ¢, € S,(p) and S, C S,(p). O
The shadows of a collection of points can all be contained in a larger shadow.

Lemma 3.5. Let x € X and let y: [0,00) — X be a unit-speed geodesic ray starting at x and

pointing at a point o € intc in the interior of c. Let r > 0. There is a point X' = y(t) with

) scse

YEB,(x)

t Sy r+ 1 such that

and X' € (\yep,x) Dy-

Proof. Without loss of generality, we take x = [e], a(t) = exptV, and y(t) = [exptV] as in
the proof of Lemma[3.3]

Suppose that y € B,(x). We claim that there is a ¢ > 0 such that S, € S, and y(?) € D,
for all t > cr+c. First, we claim that S, C S, when ¢ is large. If d € S,, Lemmaimplies
that d(y, Ey) < 1, s0 d(x, Ey) < r + 1. If ¢ is as in Lemma[3.2} then d € S,(e©"*"), and by
Lemma there is a ¢; such that d € S, forall # > ¢;(r + 1).



Next, we claim that y(f) € D, when ¢ is large. Let n € N, a € A be such that y = [na]
and E, = [nA]. Let ¥(t) = ny(¢) so that ¥ is a geodesic ray toward o that lies in Ey. Then
d(y,7(0)) = d([a], [e]) < r, and since ¥ points toward the interior of ¢, there is a ¢, such that
¥() € Cy forall t > cyr.

If > max{c,r, c;(r + 1)}, then

d(y(1), Cy) < d(y(®), ¥(1)) < dn(a(=1)na(r)).
and, since c;‘, € Sy, we have
dy(a(=tna(t)) = py () < 1.
So y(t) € D, as desired. O
Finally, we can use shadows to define a map that projects directions in X, to points in Z.

Lemma 3.6. Let H, h, Z, 7, and ¢ be as in the standing assumptions.
For u € H such that h(u) > 1 and p > 0, let

(o) = U D C X

veS.(p)

be the point set in X., determined by the chambers in the shadow S,(p). We define i, : X° (¢c) —
Z so that i, (o) is the point where the geodesic ray from u toward o intersects Z. The distance

traveled before reaching Z is bounded in terms of h(u) and p:
d(iy(0),u) < h(u) + p.
The map i, is locally Lipschitz with
Lip(iuls, ) S (0 + D*d(u, 2).
Furthermore, if u;,u, € H are such that h(u;) > 1 and if o; € Z,,(p), then
(1) d(iy, (071), 14,(02)) Sp d(ur, u2) + min{h(uy ), h(uz)} - £(0y, 072).
Proof. We proceed similarly to the arguments in Section 4.5 of [24]]. Let

CXo = (X X [0,0))/(Xs X 0)

10



be the infinite cone over X.,. We equip CX,, with the Euclidean cone metric
d(o1,11), (02, 1)) = 1] + 15 — 21115 €08 (071, 072)

so that the cone over an apartment in X, is isometric to Euclidean space. For o € X, let
rvo: [0,00) — X be the unit-speed geodesic ray based at x that is asymptotic to o, and let

e;: CX. — X be the “exponential map”

e(o,t) =1y, (1).
Because X is a CAT(0) space, this is a distance-decreasing map and if x, x’ € X, then
(2) d(e,(0,1),ex(0, 1)) < d(x,x').

Since 7 is not in a proper join factor (by the standing assumptions), there is an € > 0 such
that ¢ C B,»_(7). Each point o € XY (¢) is opposite to a point in ¢, so Z(o, T) > 5 + € By the
concavity of 4, it follows that for each such o, the ray r,, intersects Z exactly once.

Our first task is to show that d(i,(0),u) < h(u) + p for all o € X,(0). Let T (o) =
d(u,i,(0)), so that

1u(0) = 1y, (Tu(0)).
Without loss of generality, we can take u to be the basepoint u = [¢]. By Lemma [3.2] we
have d(u, E;,) < p for all d € S,(p).

Suppose that o € Z,(p) and that d € S,(p) is a chamber containing 0. Let n € N be such

that E;, = [nA]; then A([n]) = h(u) > 1. The geodesic ry,) - is contained in the flat E;, so

h(rp (1)) = h(u) + tcos £(o, T) < h(u) — tsine.

Since rp,)» and r,, are asymptotic to the same point, the distance d(r, (1), r(s.»(2)) is a non-
increasing function of ¢, and

h(ru,(r(t)) < h(r[n],(f(t)) + d(rll,(f(t)’ r[n],(r(t))
< h(u) — tsin€ + p.

If £ > (h(u) + p)(sin€)~!, then h(r, (1)) < 0, so

T,(0) <

Wﬂ < h(u) + p.
Sin €

as desired. Let b := 22: then b < p+ 1 and T,(0) < bh(u) for all u such that h(u) > 1.

sine’

11



Next, we bound the Lipschitz constant of 7. If o7y, 0, € X,(p) and £(01,07) > ﬁ, then

o) =Tl _ bhtw) _
ooy~ apr UM

Otherwise, consider the case that Z(o, 0,) < ﬁ. Letr; = ry,, and T; = T,(0;). Without
loss of generality, suppose T < T, so that h(r;(Ty)) = 0 and h(r,(T,)) > 0. We will show
that h(r,(T)) is small and that (h o r,)(¢) is decreasing quickly at ¢ = T7.

Since X is CAT(0), we have

h
d(ry(Th), r2(Th)) < bh(w) Ly, o) < %

It follows that (h o r)(T) < bh(u)/(o 1, 0). Furthermore, since (& o r,)(t) is concave down,

we have hw) — (hor)Ty) _ hw) _ 1
, u) — (honr)T, u
~(hor)®> T = 2h) * b

for all t > T';. Consequently,

(hor)T)
—(hory)(Ty)
bh(u) (o1, 07)
ST
< b*h(u)L(oy, 02),

T, —-T; <

SO Llp TulZ,,(p) < bzh(u)
Thus, for all oy, 0, € £,(p), if r; and T; are as above, we have

d(i,(o1), i(02)) = d(ri(T1), r2(T2))
<d(ri(T1), r(T1)) + T2 — T
< bh(u) (o1, 02) + b*h(u) £(07y, 072)
S (o + D*h(u)L(oy, 072),

SO
3) Lip(iuls, ) < (0 + 1D*h(w) S, h(w).

Finally, we prove (I). First, we will show that if u;,u, € H are such that 4(x,;) > 1 and
oeX,(p)NZ,(p),then

4) d(iy, (0), 14,(0) S bd(u1, u2) <p d(uy, u).

12



Letr; = r,» and T; = T, (o) and suppose that 7| < T,. By the convexity of & o r;, we
know that (h o r;)’(t) < O for all r > T,. In fact,

ho T,)—(ho 0
(hory () < 22X 1>T1( r(0)

—h(u,) _ -l
= Bty =7

forallt > T;.
Since X is a CAT(0) space, we have d(r(¢), r»(t)) < d(uy, uy) for all t > 0. Then

hry(T2)) < h(ri(T2)) + d(uy, uy)
< (T, = T)b™ ' + d(uy, up).

But h(r,(T3)) = 0, s0 |T, — Ty| < bd(u,, u,). Therefore,
d(iy, (0), iy, () < d(uy, up) + [Ty — To| < bd(uy, us).

Now suppose that o; € Z,,.(p) for i = 1,2. Without loss of generality, suppose that p > 2
and h(u,) < h(u,). We consider the cases d(uy, u;) < p and d(uy, uy) > p.

Suppose that d(u;,u;) < p. Let d € S, be a chamber such that o, € d. By Lemma
we have d(u;, Ey) < p + d(uy, up) < 2p, so there is a ¢ > 0 such that o, € d C T, (e*®). Let

o =e**. By (3) and (@),
d(iul(o-l)’ iug(O-Z)) < d(iul(o-l)’ iul(O-Z)) + d(iul(O-Z)a iuz (0-2))
Sp W) L(o71, 02) + d(uy, uy).
Since p’ depends on p, this implies ().
If d(uy, u) > p, then by Lemmas [3.3] and [3.5] there is a u € H such that S,,(p) C S,/ for

i=1,2and
d(uj,u) < 1 +logp +d(uy, uy) < d(uy, u).

Then oy, 0, € S,, so by (3), (@), and the fact that /(o 0,) < 7,
d(iy,(01), Iy, (02)) < d(iy, (071), 1,(071) + d(iu(01), 1(02)) + d(iu(071), iu(072))
Sp d(uy, u) + h(w) (o, 02) + d(u, us)
S d(uy, up) + (h(uy) + d(uy, u2)) (01, 02)

S d(uy, up) + h(uy) L(o1, 02).
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3.3 Finding opposite flats

We will need to show that the shadows of points are highly connected. To that end we will
show in this section that shadows of points contain the boundaries of many flats. First, we
claim that X°, the complex of chambers opposite to ¢, contains many flats.

Definition 3.7. If X is a symmetric space of rank k and ¢ C X, is a chamber, and E C X is a
k—flat, then we say that E is opposite to ¢ if every chamber in the boundary of E at infinity,
E. C X, is opposite to c.

Lemma 3.8. If ¢ C X, is a chamber, then there is some k—flat E such that E is opposite to «.

Proof. Let the stabilizer of ¢ in G be the minimal parabolic subgroup P = NAM and identify
the set of (maximal) chambers in X, with the homogeneous space G/P. Recall that X (¢) C
X.. denotes the set of chambers opposite to ¢ and if ¢* is one such chamber, then X% (¢) = N-¢*.
Under the identification of the set of chambers in X,, with G/P, we find X¥° (¢c) = Nw*P,
where w* is the longest element in the Weyl group of X. This orbit is the big cell in the
Bruhat decomposition of G and its complement has measure zero. In fact, its complement
has codimension at least 1 (see [22], Prop. 1.2.4.9 or [12], Ch. IX, Cor. 1.8), so we can view
XY (¢) as an open submanifold of G/P whose complement has codimension at least 1.

Let F be a maximal flat in X. Its boundary at infinity F., C X, consists of finitely many
chambers, say ¢, ¢,...,¢,. The set X% (c;) of chambers that are opposite to ¢; is an open
submanifold whose complement has codimension at least 1 for all i = 1,...,m. Thus the
set of all chambers in X, simultaneously opposite to all chambers of F is the intersection
N, X2 (¢;). This is an open submanifold of G/P whose complement has codimension at least
1. In particular, there is a chamber ¢’ opposite to F. If we write the given chamber c as ¢ = g¢’

for some g € G, then E = gF satisfies the claim of the Lemma. |

Remark 3.9. The above proof shows that if a chamber ¢ is opposite to a fixed flat E, then so
are all chambers in an open neighborhood of ¢. Similarly, all flats of the form iZE for A in an
open neighborhood of e € G are opposite to a fixed c.

We use Lemma [3.8]to prove lower bounds on the filling invariants of horospheres.

Proposition 3.10. For some ¢ > 0 and for all sufficiently large r, there is a Lipschitz map
a: S*1 — Z with Lip(a) ~ r such that any Lipschitz extension B: D* — Z satisfies

volB > .
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Proof. Our bound is based on an estimate of the kth divergence of X due to Leuzinger [14].
Leuzinger showed that there are ¢p > 0 and R > 1 such that if F is a flat in X, x € F and
r > R, then the (k — 1)-sphere centered at x with radius r in F' has exponentially large %—
avoidant filling volume. That is, if ay: S k=1 F is the sphere of radius r centered at x,
then any extension 8y: D¥ — X whose image avoids the ball B,>(x) has exponentially large
volume, i.e., vol(By) > e“".

To use this result, we find a flat that intersects Z in a sphere. Let Fy be a flat opposite to
¢ and let xy be a point in F,. (We can take x, to be the point on Fy where % is maximized,
but this is not necessary.) The boundary of Fy at infinity, (F), consists of finitely many
chambers, so there is some p > 0 such that (Fj). C 2,,(p). Choose r so that r > R and let
x € X be such that i(x) = r. Let p € P be a group element such that px, = x and let F = pF|,.

We identify F,, with S¥~! and define a: S¥*! — Z by letting a(0") = i (o) forall o € F...
By Lemma [3.6] this is a Lipschitz map with Lip(e@) ~ r. The image of « is the intersection
F N Z, and we claim that « has exponentially large filling area in Z.

Let @y C F be the sphere centered at x with radius r, as in Leuzinger’s bound. The
spheres @y and « both lie in the flat F, and since d(x,Z) = r, ay is on the inside of a. If
B: D¥ — Z is an extension of «, then we can attach an annulus A of volume volA < ¥ to
[ to construct an extension Sy of ag. This extension lies outside B,>(x), so by Leuzinger’s
bound, volS, = e“". Then volf = volB, — vol A, and if r is sufficiently large, we have
vol B > e"/? as desired. O

In order to prove upper bounds, we will need a few more flats. As in Section for
x € X, let C, C X be the Weyl chamber in X based at x and asymptotic to c.

Lemma 3.11. If x € X and ¢ is a chamber of X, then there is some x' € C, such that
d(x,x") < 1 and some chamber d C S, such that for all ¢ € S,:

1. The chambers ¢ and d are opposite.
2. The flat E., is opposite to c.
3. The boundary at infinity of E. is contained in S,.

Proof. Without loss of generality we can assume that x = [e] and let E = E, = [A], and let
&=
The chambers in S, are all close to ¢*, so we first choose d so that the flat E; - spanned

by dy and ¢* is opposite to ¢. To that end let E, be a flat opposite to ¢, and let n € N be
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such that ¢* C (nEy)«. If Dy is the chamber opposite to ¢* in nEy, then nEy = E;, ~ and it is
opposite to nc = c.

By the above remark, there is an open neighborhood U of ¢* so that for any ¢’ € closure(U),
the flat E; - is also opposite to ¢. We will use Lemma 3.3]to find an element a € A such that
a sends S, into U.

Let 0 < r < 1 be such that S,(r) c U. Let a be the Lie algebra of A and let V € a be
a unit vector in the open Weyl chamber corresponding to ¢. By Lemma[3.3] thereisat > 0
such that < —logr and

Sexp-1v) = exp(=tV)S, C S,(n).

Let a := exp(—tV) and let d := a~'d,. Then for any ¢’ € S, we have ac’ € U and thus Eqon,
is opposite to c. It follows that a‘lEacf,Do = E. , 1s opposite to c.
Finally, we choose x’. The union

V={JEoe

eS8,

is contained in a compact set and consists of chambers opposite to ¢, so V € S,(#’) for some
r’. By Lemma 3.3 there is some x’ € C, such that d(x, x') < log(#’ + 1) and V C S,. m]

3.4 (k- 2)-connectivity at infinity

Next, we show that X (¢) is highly connected. First, we consider spheres that lie in a single
shadow. Let £, = (Jyes, @ C Xo be the subset of X, covered by the chambers in S, as in
Section The following lemma is an analogue of Lemma 4.17 of [24]. Recall that C, is
the Weyl chamber based at x and asymptotic to c.

Lemma 3.12. If x € X, then there is some x’ € C, such that d(x,x') <1, S, C Sy, and X, is
(k — 2)—connected inside Z,.

That is, ifa: S™ — X is Lipschitz and if m < k-2, then there is an extension 3: D™ —
X, such that Lipfs < Lipa + 1.

Proof. Let =™ be the m-skeleton of 3, given by the Tits building structure on X.,. Let
a: S™ — Z, be a Lipschitz map. There is a simplicial approximation ’: S — > and a
homotopy hy: S™ %[0, 1] — Z, from @ to o’ such that Lipe’ < Lipa and Lip hy < Lipa + 1.
(One can construct o’ by triangulating S™ into simplices of diameter €, Lip(e)~!, then letting
a’(v) be the closest vertex to a(v) for every vertex v € §™. If ¢ is sufficiently small, then o’

extends to a simplicial map and there is a straight-line homotopy 4, from a to a’.)
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We first contract @’. Let x’ and d € S, be as in Lemma [3.11]and let u be the barycenter
of . For any v € Z,, there is a flat E that contains u and v and whose boundary is contained
in Sy, so any Tits geodesic from u to v lies in X,.. Furthermore, if v € Zim), then u« and v are
not opposite to one another, so this geodesic is unique.

Lethy: $™x[0,1] — X, be the map which sends v X [0, 1] to the geodesic between a’(v)
and u. This is a null-homotopy of ', and

Liph, <1+ Lipd'.

The constant in the inequality depends on the distance between u and the m—skeleton of
X.. By concatenating hy and h; we obtain a disc 8: D™! — X, with boundary «, and
Lipp < Lipa + 1 as desired. O

Let Az be the infinite-dimensional simplex with vertex set labeled by Z and let (z, . . ., zx)
denote the k—simplex with vertices 2o, ..., 2. We will use Lemma to construct a map
Q. : Ay — X, that sends each vertex (v) to a direction in the shadow of v and sends each
simplex ¢ to a simplex in the shadow of some point xs. If ¢ is a simplex of Az, we denote its
set of vertex labels by V(6) C Z, so that V({zo, ..., 2x)) = {205 - - » %}

Lemma 3.13 (see [24} 4.16)). There is a cellular map
Q. Agc_l) - Xeo»

a constant ¢ > 0 depending on X, and a family of points xs € X, where ¢ ranges over the

simplices of Ag‘_l). This map is c—Lipschitz, and for every 6:
1. d(x5,V(9)) < diam V(9) + 1 (and consequently, h(xs) < diam V(d) + 1).
2. Q. (0) cZ,,.

3. If &’ C 6, then h(xs) > h(xy) and x5 € D,,,, where D, is a neighborhood of the chamber
C, as in Section[3.2]

4. h(xs) > 1.

Proof. We will construct Q,, one dimension at a time using Lemma [3.12] Let 7, be the
barycenter of ¢ and let 6 := /(1y, 7). By the standing assumptions, we have 6 < n/2. For

x € X, letr,: [0,00) — X be the geodesic ray based at x and asymptotic to 7y, so that

h(r (1)) = h(x) + tcos @
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for all ¢.
We start by defining €., on the vertices of Az. For z € Z, let b, be the barycenter of the
chamber ¢} and let
Qu((2)) = b,

and let x(;, = r;(sec 6). This satisfies all of the desired conditions.

Now, suppose by induction that 0 < m < k — 1, that we have defined Q. on A(Zm_l), and
that we have defined x5 for every simplex ¢” with dim¢” < m. Let § be an m—simplex and let
z € Z be one of its vertices.

By part[I]of the lemma, the points x, are contained in a ball B,(R) with R ~ diamV + 1.
By Lemma thereis at < R+ 1 such thatif xo = r,(f) and ¢” is a face of 6, then S,,, C S,
and xo € D,

By part[Z] and Lemma @, there is an x” € C,, such that Q.|ss s contractible in X,, and
d(xp,x") < 1. We let xs = x” and define the extension Q|s: § — X,/ using Lemma@ The

desired properties of xs and Q|5 are easy to check. O

3.5 Lipschitz connectivity of Z

Finally, we show that Z is Lipschitz (k — 2)—connected. Our main tool is a lemma similar to
Lemma 3.2 of [24]].

Lemma 3.14. Suppose that Z C X, that X is Lipschitz (k — 2)—connected and that for any r,
there is a Lipschitz retraction R,: N.(Z) — Z, where N.(Z) = {x € X | d(x,Z) < r}. Then, if
there is a map € A(Zk_l) — Z such that

1. forallz € Z, d(Q(z2)),2) < 1, and
2. for any simplex 6 C Az, we have

Lip Q5 < diam V() + 1

then Z is Lipschitz (k — 2)—connected.

Proof. The proof is very similar to the proof of Lemma 3.2 of [24], which constructs a
Lipschitz extension using a Whitney decomposition. The main difference is that we assume
that Lip Qs < diam V(9) + 1 rather than Lip Q|; < diam V(5). The weaker inequality means
that the Lipschitz constant of Q on small simplices can be unbounded, so we use the Lipschitz

connectivity of X to extend the map near the boundary.
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Let L > 0, let D¥"'(L) ¢ R¥! be the closed ball of radius L, and let S*~2(L) := 0D*'(L).
It suffices to show that for any L > 0 and any 1-Lipschitz map a: S*%(L) — Z, there is an
extension B: D¥"'(L) — Z such that Lip(8) < 1.

Let @ be such a map. By the Whitney covering lemma, we can decompose the interior
of D := D*!(L) into a countable union of dyadic cubes with disjoint interiors such that
diam C ~ d(C, D) for each cube C. The barycentric subdivision of this cover is a triangula-
tion 7 of the interior of D such that each simplex is bilipschitz equivalent to a scaling of the

standard simplex. Let ¢ > 1 be such that for each simplex o with dim o > 0, we have
¢'d(c,8D) < diam o < cd(c, OD).

Define h: T — 4D so that for all v € T, we have d(v, h(v)) = d(v, D). For each edge

e = (v,w), we have
d(h(v), h(w)) < d(v,0D) + d(v,w) + d(w, dD).

Since d(e, dD) < c diam e, this implies that d(h(v), h(w)) < d(v,w) and thus Lip(h) < 1.
Foreachv € T, let

B = {Q«Of(h(v»» if d(v,0D) > ¢!

a(h(v)) otherwise.

If e = (v,w) is an edge of T such that £(e) < ¢72/2, then d(v, D) < ¢~ and d(w,dD) < ¢™'.
Then
d(B(v), B(w)) = d(a(h(v)), a(h(w))) < Lip(a) Lip(h)d(v,w) < d(v,w).

If e = (v, w) is an edge of T such that £(e) > ¢~%/2, then Q may introduce bounded error:

d(Bv),Bw)) < d(a(h(v)), a(h(w))) + 1 < d(v,w).

It follows that Lip(8|70) ~ 1.

If o = (vy,...,v) is a simplex of T with diameter at least 1, then d(v;, D) > ¢!, so we
may extend S to o so that it sends o to Q({go(vo), - - ., &o(Vx))). This extension is Lipschitz
with bounded Lipschitz constant, and it remains to extend S to simplices with diameter less
than 1.

We work one dimension at a time. We have already defined 8 on the O—skeleton of 7" in a
Lipschitz fashion. Suppose that d < k — 2, that 3 has been defined on 7"V, and that there is
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acy-; > 0, independent of @, such that Lip S|r«-1» < ¢4-1. We claim that there is an extension
of B to T and a ¢, independent of « such that Lip 8|7« < cq.

Suppose that o is a d—simplex of 7' such that diamo < 1. Then S|y, : 0o — Z is a map
with Lip Sls- < c4-1. Since o is bilipschitz equivalent to a scaling of the standard simplex,
we can identify do- with a scaled version of S¢~! in a bilipschitz way and use the Lipschitz
connectivity of X to produce an extension f: o — X with Lipschitz constant Lip f < c4-1.
Then there is a r; such that f(o) C N,,(Z), and if 8|, = R,, o f, then

Llpﬁ|0’ S Cd—] Llp er9

as desired. Repeating this process for each small simplex in 7”, we obtain the desired

extension. O

We use Q. and the map i, constructed in Lemma to construct an € that satisfies

Lemmal[3.14]

Lemma 3.15. There is a map €. Agc_l) — Z satisfying the conditions of Lemma m Con-
sequently, Z is Lipschitz (k — 2)—connected.

Proof. For p > 0, let
Y(p) := {(0,x) € XL() X X | h(x) 2 1,0 € Z(p)}.
Letdy: Y(p) X Y(p) — R be the function
dy((o1, x1), (072, X2)) 1= d(x1, x2) + min{h(xy), h(x2)} - £(071, 072).

This does not satisfy the triangle inequality, but in Lemma [3.6) we showed that the map
I: Y(p) = X given by I(v, x) = i,(v) is “Lipschitz” in the sense that

dI(v,x), IV, x")) < Lidy((v, x), V', X))

for some L; depending on p. The map Q will be a composition Q = oW, where W : A(Zk_l) -
Y(p) is a map based on the map €2, and the points xs constructed in Lemma|3.13

To construct W, we use the exploded simplices used in [24]. If A is a simplex, the
exploded simplex E(A) is a cellular subdivision of a simplex A with the following properties
(see Figure[I):

1. E(A) contains a copy A’ of A at its center.
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“ B(A) Vo XA E(A)

Figure 1: Each cell of the “exploded simplex” E(¢) is a product of a cell of ¢ and a cell of
B(9).

2. E(A) subdivides each face of A into an exploded simplex of lower dimension.

3. Each cell of E(A) is of the form A; X A,, where A, is a face of A and A, is a face of the
barycentric subdivision B(A).

Specifically, recall that the vertex set of B(A) is the set of faces of A. If 9y, ..., are
faces of A that form a flag—that is, if 99 C - -+ C 6—then (Jy, ..., ) is a simplex of
B(A). Each cell of E(A) is of the form

0 X {0p,...,01)

for some flag 6y, . . ., 0, and some face 6 of J.

4. Since each cell of E(A) is a cell of A x B(A), we can define maps p;: E(A) — A
and p,: E(A) — B(A) (p; and p; in [24]) coming from the projections to the first and
second factors. These maps are Lipschitz. The map p; expands the central simplex
to cover A and shrinks the collar to the boundary. The map p, collapses the central
simplex to the barycenter of A, sends the central simplices of all the faces to the corre-

sponding barycenters, and sends the collar surjectively to A.

If Q is a simplicial complex, we can form a cellular subdivision E(Q) by exploding each
simplex. The maps p; and p, on each simplex agree on overlaps, so we combine them to
form maps p;: E(Q) — Q and p,: E(Q) — B(Q) defined on all of E(Q).
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By convention, we will write the vertices of a simplex of B(Q) in ascending order, so if
(o, . -.,04) 1s a simplex of B(Q), then the 9;’s are simplices of Q and 6y C - - - C d,.
Let Q = A(Zk_l) . For each simplex ¢ of Q, we define Q on ¢’ by

&) Q(0") = ix,(Qeo(6)),

where ¢’ is the central simplex of E(5). We will extend Q to the collars of the E(6)’s by using
the projections p; and p,.
Specifically, we will define a map F: B(Q) — X and let Q = I o W, where

W= (Qoo opl,FOPZ)-
The map F will satisfy:

1. The complex B(Q) has a vertex b; at the barycenter of each simplex ¢ of Q. For all ¢,
F(bs) = xs. (This ensures that the extension agrees with the map defined in equation

@)
2. If A = (5y,...,84) C B(Q), then Lip Fl < diam V(8,) + 1.

3. There is a p > 0 such that if

ye <6O’ s a6d> C B(Q)7
then SF(y)(,O) D SX‘SO'

We define F one dimension at a time. For each vertex v of Q, we define F'(v) = x,. If  is
a simplex of Q and we have already defined F on 09, we extend F on the rest of 6 by coning
it off to x;. That is, every point in ¢ is on a line segment between b; and a point y € 90.
We send b; to the point x; and we send each such segment to a geodesic segment from xs to
F(y).

This satisfies condition 1 by construction. Condition 2 follows from the fact that X
is CAT(0) and Lemma It only remains to check condition 3. Suppose that A =
(60,...,04) C B(Q) and that y € A. Fori = 0,...,d, let x;, = x5. Let Dy = D,, be a
neighborhood of C,, as in Section [3.2] By Lemma [3.13|3] for all i = 0,...,d, we have
x; € Dy. Since C,, is convex, Dy is convex. Since F(A) is contained in the convex hull of the
x;, we have F(y) € D,. By Lemma there is a p depending on X such that S, C Sr)(p),
as desired.
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It follows that the image of W lies in Y(p). Suppose that g € Q and let 6 X (o, . .., k) be
a cell of E(Q) containing g. Here, ¢ is a face of Q and 6 C 6y C - - - C 6. Then p,(g) € 6 and

p2(q) € (do, - .., ). By Lemma[3.13|2] we have
Qu(pi(@) €5y, CZ,,..
By property 3 of F, we have X, C Zp(p,¢)(0), 0
W(g) = (Qu(p1(9)), F(p2(9))) € Y(p).

We may thus define Q = 7o W.
Finally, we claim that Q satisfies the conditions in Lemma First,if z € Z, letv = (2)
be the corresponding vertex of Az. Then

Q) = 1(Qe(v), F(v)) = iy (0),
where o = Q.. (v) € X, (p), and

d(z, Q(v)) < d(z, x;) + d(x,, i, (0))
Sl+hx)+ps1

by Lemmas and This proves property 1 of Lemma|[3.14
If 6 € Az and if gy, ¢» € 6, properties 1 and 2 of F imply that

h(F(p2(g:))) < diamV(6) + 1.
It follows that

d(€2(q1),(q2)) < Lidy(W(q1), W(q2))
S d(F(pa(q1)), F(p2(q2))) + (diam V(S) + 1) - £(Qu(p1(q1)), QLo (p1(42)))
< (diam V(6) + 1)d(q1, q2),

implying property 2. O

Lemma [3.14]then implies that Z is Lipschitz (k—2)—connected. This concludes the proof.
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4 Proof of Theorem A

We use the following result proved in [15], Thm. 3.6 (see also [4], §13).

Proposition 4.1. Let I" be an arithmetic lattice of Q—rank 1 in a linear, semisimple Lie group
G and let X = G/K be the associated symmetric space. Then any orbit of I in X is quasi-

isometric to a set Y := X \ | J; B;, where the B; comprise a countable set of disjoint horoballs.

We can write X as a Riemannian product of irreducible symmetric spaces, X = [, X;
(corresponding to the decomposition G = []Z, G; of G into simple factors). The boundary
of X at infinity is the spherical join of the boundaries of the factors.

Assume now (as in Theorem A) that the lattice I' is irreducible. We claim that none of the
centers of the horoballs in the above proposition are contained in a proper join factor of X,,.
By way of contradiction, assume that m > 2 and that one of the horoballs, say B, is centered
in a join factor associated to, say, J = X; X - - - X X,,, for n < m. Then B is a sublevel set of the
Busemann function associated to a geodesic in X of the form (c(?), p,+1, ..., pm) and B has
the form B = H X [],,, X;, where H is a horoball in J. The projection of a I'-orbit to J then
avoids H, so the projection of I' to the factor G; X - - - X G, cannot be dense. This contradicts
irreducibility, see [21], Cor. 5.21 (5).

By Theorem B, the boundary of each horoball B; is Lipschitz (k — 2)—connected, where
k = rank X. By part 2 of Proposition [[.1] the subspace ¥ C X is undistorted up to dimension
k — 1. The claim on its isoperimetric inequalities is a consequence of [16]], which asserts that
a symmetric space X satisfies Euclidean isopermetric inequalites below the rank.

Finally, the lower bound in Theorem A follows from Proposition [3.10] By the proposi-
tion, for each i and for all sufficiently large r, there is a Lipschitz sphere a: $*~! — B; such
that Lip() ~ r and such that any Lipschitz extension 8: D* — dB; satisfies vol 8 > e".

Let p: Y — 0B; be the nearest-point projection; since B; is convex, this is a distance-
decreasing map. If #/: D¥ — Y is an extension of a, then p o f’: D* — 8B; is also an
extension, and

volB' > vol(po ') > €.
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