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ABSTRACT

We prove that the integrality gap of the Goemans-Linial semi-
definite programming relaxation for the Sparsest Cut Problem
is Q(+/logn) on inputs with n vertices, thus matching the previ-
ously best known upper bound (log n)%“’(l) up to lower-order
factors. This statement is a consequence of the following new
isoperimetric-type inequality. Consider the 8-regular graph whose
vertex set is the 5-dimensional integer grid Z> and where each ver-
tex (a,b,c,d,e) € 75 is connected to the 8 vertices (a+1,b,c,d,e),
(a,b+1,c,d,e), (a,b,c+1,d,e+a),(a,b,c,d+1,e=xb). This graph
is known as the Cayley graph of the 5-dimensional discrete Heisen-
berg group. Given Q C Z°, denote the size of its edge boundary in
this graph (a.k.a. the horizontal perimeter of Q) by |0,Q|. For t € N,
denote by |0 Q| the number of (a, b, c, d, e) € Z> such that exactly
one of the two vectors (a, b, c,d,e),(a,b,c,d,e + ¢t) is in Q. The

vertical perimeter of Q is defined to be |9, Q| = {/X52, [9{Q[?/12.

We show that every subset Q C Z° satisfies |0,Q| = O(|0,Q]).
This vertical-versus-horizontal isoperimetric inequality yields the
above-stated integrality gap for Sparsest Cut and answers several
geometric and analytic questions of independent interest.

The theorem stated above is the culmination of a program whose
aim is to understand the performance of the Goemans-Linial semi-
definite program through the embeddability properties of Heisen-
berg groups. These investigations have mathematical significance
even beyond their established relevance to approximation algo-
rithms and combinatorial optimization. In particular they contribute
to a range of mathematical disciplines including functional analy-
sis, geometric group theory, harmonic analysis, sub-Riemannian
geometry, geometric measure theory, ergodic theory, group rep-
resentations, and metric differentiation. This article builds on the
above cited works, with the “twist” that while those works were
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equally valid for any finite dimensional Heisenberg group, our re-
sult holds for the Heisenberg group of dimension 5 (or higher) but
fails for the 3-dimensional Heisenberg group. This insight leads
to our core contribution, which is a deduction of an endpoint L;-
boundedness of a certain singular integral on R> from the (local)
Ly-boundedness of the corresponding singular integral on R3. To do
this, we devise a corona-type decomposition of subsets of a Heisen-
berg group, in the spirit of the construction that David and Semmes
performed in R”, but with two main conceptual differences (in ad-
dition to more technical differences that arise from the peculiarities
of the geometry of Heisenberg group). Firstly, the“atoms” of our
decomposition are perturbations of intrinsic Lipschitz graphs in the
sense of Franchi, Serapioni, and Serra Cassano (plus the requisite
“wild” regions that satisfy a Carleson packing condition). Secondly,
we control the local overlap of our corona decomposition by using
quantitative monotonicity rather than Jones-type 3-numbers.
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1 INTRODUCTION

Fix n € N. The input of the Sparsest Cut Problem consists of two n
by n symmetric matrices with nonnegative entries C = (Cjj), D =
(Dij) € My([0,0)), which are commonly called capacities and
demands, respectively. The goal is to design a polynomial-time
algorithm to evaluate the quantity

OPT(C, D) et min Z(I’J)EAX({L'"’H}\A) el .
BCACL..on} 2(i, jeAx({1,....n}~A) Dij

In view of the extensive literature on the Sparsest Cut Prob-
lem, it would be needlessly repetitive to recount here the rich and
multifaceted impact of this optimization problem on computer
science and mathematics; see instead the articles [1, 59], the sur-
veys [16, 62, 73, 85], Chapter 10 of the monograph [32], Chapter 15
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of the monograph [68], Chapter 1 of the monograph [80], and the
references therein. It suffices to say that by tuning the choice of
matrices C, D to the problem at hand, the minimization in (1) finds
a partition of the “universe” {1, ..., n} into two parts, namely the
sets Aand {1,. .., n} \ A, whose appropriately weighted interface is
as small as possible, thus allowing for inductive solutions of various
algorithmic tasks, a procedure known as divide and conquer. (Not
all of the uses of the Sparsest Cut Problem fit into this framework.
A recent algorithmic application of a different nature can be found
in [66].)

It is NP-hard to compute OPT(C, D) in polynomial time [84].
By [25] there exists ¢g > 0 such that it is even NP-hard to com-
pute OPT(C, D) within a multiplicative factor of less than 1 + &.
If one assumes Khot’s Unique Games Conjecture [46, 47, 88] then
by [18, 49] there does not exist a polynomial-time algorithm that
can compute OPT(C, D) within any universal constant factor.

By the above hardness results, a much more realistic goal would
be to design a polynomial-time algorithm that takes as input the
capacity and demand matrices C,D € My([0, >)) and outputs a
number ALG(C, D) that is guaranteed to satisfy

ALG(C, D) < OPT(C, D) < p(n)ALG(C, D),

with (hopefully) the quantity p(n) growing to co slowly as n —
co. Determining the best possible asymptotic behaviour of p(n)
(assuming P # NP) is an open problem of major importance.

In [6, 64] an algorithm was designed, based on linear program-
ming (through the connection to multicommodity flows) and Bour-
gain’s embedding theorem [12], which yields p(n) = O(logn). An
algorithm based on semidefinite programming (to be described pre-
cisely below) was proposed by Goemans and Linial in the mid-1990s.
To the best of our knowledge this idea first appeared in the litera-
ture in [38, page 158], where it was speculated that it might yield a
constant factor approximation for Sparsest Cut (see also [62, 63]). In
what follows, we denote the approximation ratio of the Goemans—
Linial algorithm on inputs of size at most n by pgL(n). The hope
that pgL(n) = O(1) was dashed in the remarkable work [49], where
the lower bound pg| (n) 2 /loglog n was proven.! An improved
analysis of the ideas of [49] was conducted in [52], yielding the
estimate pgL(n) = loglog n. An entirely different approach based
on the geometry of the Heisenberg group was introduced in [56].
In combination with the important works [19, 20] it gives a dif-
ferent proof that lim,—,c pgL(n) = 0. In [21, 22] the previously
best-known bound pgy(n) 2 (log n)® was obtained for an effective
(but small) positive universal constant 0.

Despite these lower bounds, the Goemans—-Linial algorithm yields
an approximation ratio of o(log n), so it is asymptotically more ac-
curate than the linear program of [6, 64]. Specifically, in [17] it

was shown that pg(n) < (log n)%. This was improved in [3] to

pcL(n) < (log n)%“’(l). See Section 1.7 below for additional back-
ground on the results quoted above. No other polynomial-time
algorithm for the Sparsest Cut problem is known (or conjectured)
to have an approximation ratio that is asymptotically better than

!Here, and in what follows, we use the following (standard) asymptotic notation. Given
a, b > 0, the notations a 5 band b 2 a mean that a < Kb for some universal
constant K > 0. The notation a < b stands for (a < b) A (b < a). Thusa < b and
a 2 b are the same as a = O(b) and a = Q(b), respectively, and a = b is the same
as a = O(b).
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that of the Goemans-Linial algorithm. However, despite major
scrutiny by researchers in approximation algorithms, the asymp-
totic behavior of pgL(n) as n — oo remained unknown. Theorem 1.1
below resolves this question up to lower-order factors.

THEOREM 1.1. The approximation ratio of the Goemans—Linial
algorithm satisfies pgL(n) 2 /logn.

1.1 The SDP Relaxation

The Goemans-Linial algorithm is simple to describe. It takes as
input the symmetric matrices C, D € Mp([0, >)) and proceeds to
compute the following quantity.

nLSM L Cijlloi — )2
SDP(C, D) %f i i=1 21 2

1mn:
(v1,...,vn)ENEG, ;l:

1 272y Dijllvi = ;i3
where
def n\n
NEG, = {(v1,...vp) € (R :
2 2 2
loi —vjll; < llvi —vklls + ok = vjll;
foralli,j,k € {1,.. .,n}}.

Thus NEG,, is the set of n-tuples (v1, . . . vy) of vectors in R” such
that ({v1,...,vn}, Vy) is a semi-metric space, where v, : R" x
R™ — [0, c0) is defined by v,(x,y) = Z]'.’:l(x]- - yj)2 =||lx - y||§
for every x = (x1,...,%n),y = (Y1,...,Yn) € R". A semi-metric
space (X, dx) is said [32] to be of negative type if (X, Vdx) embeds
isometrically into a Hilbert space. So, NEG,, can be described as the
set of all (ordered) negative type semi-metrics of size n. It is simple
to check that the evaluation of the quantity SDP(C, D) can be cast as
a semidefinite program (SDP), so it can be achieved (up to o(1) preci-
sion) in polynomial time [39]. One has SDP(C, D) < OPT(C, D) for
all symmetric matrices C, D € M, ([0, c0)). See e.g. [69, Section 15.9]
or [73, Section 4.3] for an explanation of the above assertions about
SDP(C, D), as well as additional background and motivation. The
pertinent question is therefore to evaluate the asymptotic behavior
as n — oo of the sequence

wp  OPTCD)
u —_—.
€, DeMy([0,00)) SPP(C, D)

C,D symmetric

def
pgL(n) =

This is the quantity pgL(n) appearing in Theorem 1.1, also known
as the integrality gap of the Goemans-Linial semidefinite program-
ming relaxation for the Sparsest Cut Problem.

1.2 Bi-Lipschitz Embeddings

A duality argument of Rabinovich (see [73, Lemma 4.5] or [21,
Section 1]) establishes that pg| (n) is equal to the largest possible
Li-distortion of an n-point semi-metric of negative type. If d :
{1,..., n}2 — [0, 00) is a semi-metric, its L; distortion, denoted
c1({1,...,n},d), is the smallest D € [1, o) for which there are
integrable functions® fi, ..., fy : [0,1] — R such that fol |fi(t) -
fiHldt < d(i,j) < Dfol |fi(t) = fj(®)| dt for every i,j € {1,...,n}.
Rabinovich’s duality argument proves that pgy (n) is equal to the

2If one wishes to use finite-dimensional vectors rather than functions then by [89]
there exist vy, . . ., Uy € R /2 suchthat [ |fi(¢) - f;(£)dt = [[v; — v;l; =

Zn(n—l)/Z

o1 [vix — vjk|forevery i, j € {1, ..., n}.
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maximum of ¢1({1,...,n},d) over all possible semi-metrics d of
negative type on {1,...,n}. Hence, Theorem 1.1 is equivalent to
the assertion that for every n € N there exists a metric of negative

typed : {1,... ,n}2 — [0, o0) for which ¢;1({1,...,n},d) 2 /logn.

1.3 A Poorly-Embeddable Metric

The 5-dimensional discrete Heisenberg group, denoted ]H[%, is the
following group of 4 by 4 invertible matrices, equipped with the
usual matrix multiplication.

1 a b e
0 1 O

w3 0 o0 1 ;:a,b,c,d,eez CGLyR). (2)
0 0 0 1

This group is generated by the symmetric set

$ 9 (0L X7 X0, X5 v Y Y, Y )

where

110 0 101 0

def[0 1 0 0 def[0 1 0 0

Xi=10 01 0 X%]0o 0 1 of
0 0 0 1 0 0 0 1

3)

10 0 0 1.0 0 0
def|0O 1 0 1 def|O 1 0 O

=10 001 of 210 0 1 1|
0 0 0 1 0 0 0 1

For notational convenience we shall identify the matrix in (2)
with the vector (a, b, c,d,e) € 7°. This yields an identification of
H% with the 5-dimensional integer grid Z°. We view Z° as a (non-
commutative) group equipped with the product that is inherited
from matrix multiplication through the above identification, i.e.,
for every (a, b, c,d,e), (e, 3,v,0,€) € 75 we set

(a,b,c,d,e)(x, B,7v, 0, €)
e arabtBcty,d+detetay+bd). (@)
Note that under the above identification the identity element
of ]H[% is the zero vector 0 € Z°, the inverse of an element h =
(a,b,c,d,e) € 75 ish~! = (—a,—b,—c,—d, —e + ac + bd), and the
generators X1, X2, Y1, Y» in (3) are the first four standard basis ele-
ments of R5. Let Z denote the fifth standard basis element of R, i.e.,
Z =(0,0,0,0,1). We then have the relations [X1, Y1] = [X2, V2] = Z
and [X1, Xz] = [X1, Y2] = [X1,Z] = [Y1,X2] = [Y1, Y2] = [V1,Z] =
[X2,Z] = [Y2,Z] = 0, where we recall the standard commutator
notation [g, h] = ghg™'h~! for every two group elements g, h € H%
In other words, any two elements from {X1, X2, Y1, Y2, Z} other
than X1, Y7 or X, Yo commute, and the commutators of X7, Y; and
X3, Yy are both equal to Z. In particular, Z commutes with all of the
members of the generating set S, and therefore Z is in the center of
H%. It is worthwhile to mention that these commutation relations
could be used to define the group ]H[% abstractly using generators
and relations, but this fact will not be needed in what follows.
This group structure induces a graph Xs (]H[%) on Z3, called the
Cayley graph of H%. The edges of this graph are defined to be
the unordered pairs of the form {h, hs}, where h € 75 and s € S.
This is an 8-regular connected graph, and by the group law (4), the
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neighbors of each vertex (a, b, c, d, e) € 75 are (ax1,b,c,d,e),(a,bx
1,¢,d,e),(a,b,c+1,d,e+a),(a,b,c,d+1,exb). The shortest-path
metric on Z° that is induced by this graph structure will be denoted
below by dy : Z° x Z° — N U {0}. This metric is also known as
the left-invariant word metric on the Heisenberg group ]HI%. For
every R € [0, o) denote the (closed) ball of radius R centered at
the identity element by 8g = {h € Z° : dy(h,0) < R}. Itis
well-known (see e.g. [10]) that |Bg| < R® and dy (0, ZR) < VR for
every R € N. Our main result is the following theorem.

THEOREM 1.2. For all R > 2 we have c1(BRg, dw) < +/logR.

The new content of Theorem 1.2 is the bound c¢;(Bg,dw) 2
ylog R. The matching upper bound c¢;(8Bg,dw) < +/log R has sev-
eral proofs in the literature; see e.g. the discussion immediately
following Corollary 1.3 in [53] or Section 1.7.2 below. The previous
best known estimate [22] was that there exists a universal con-
stant & > 0 such that ¢1(8Bg, dw) = (log R)®. By [56, Theorem 2.2]
the metric dyy is bi-Lipschitz equivalent to a metric on ]H[% that
is of negative type. We remark that [56] makes this assertion for
a different metric on a larger continuous group that contains H%
as a discrete co-compact subgroup, but by a simple general result
(e.g. [14, Theorem 8.3.19]) the word metric dyy is bi-Lipschitz equiv-
alent to the metric considered in [56]. Since |Bg| =< RS, we have
ylog |BRr| = +/logR, so Theorem 1.2 implies Theorem 1.1 through
the duality result of Rabinovich that was recalled in Section 1.2.

The following precise theorem about L1 embeddings that need
not be bi-Lipschitz implies Theorem 1.2 by considering the special
case of the modulus w(t) =t/D for D > 1and t € [0, ).

THEOREM 1.3. There exists a universal constant ¢ € (0,1) with
the following property. Fix R > 2 and a nondecreasing function
w : [1,00) — [1, 00). Then there exists ¢ : Br — Ly for which every
distinct x,y € Bg satisfy

w(dw(x,y) S o) - dWlh < dw(x,y), ®)
if and only if w(t) < ¢ forallt € [1, ) and
cR
/ &:)2 ds < 1. (6)
1 N

The fact that the integrability requirement (6) implies the exis-
tence of the desired embedding ¢ is due to [87, Corollary 5]. The
new content of Theorem 1.3 is that the existence of the embedding
¢ implies (6). By letting R — oo in Theorem 1.3 we see that there

exists ¢ : Z° — L that satisfies
Vx,yeZ,  w(dwixy) < o) - d@)lh < dw(xy), ()

if and only if

00 2
/1 w(i) ds < 1. ®)

N

In [22] it was shown that if ¢ : Z°> — L satisfies (7), then there
must exist arbitrarily large ¢ > 2 for which w(t) < t/(log 19,
where & > 0 is a universal constant. This follows from (8) with
o= %, which is the largest possible constant for which this conclu-
sion holds true. This positively answers a question that was asked
in [22, Remark 1.7]. In fact, it provides an even better conclusion,
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because (8) implies that, say, there must exist arbitrarily large t > 4

for which ;

Jogt)loglogt

(The precise criterion is the integrability condition (8).) Finally, by
considering w(t) = t1=¢/Dfore e (0,1) and D > 1, we obtain the
following notable corollary.

w(t) S

COROLLARY 1.4 (L1 DISTORTION OF SNOWFLAKES). For every ¢ €
-y o 1

(0,1) we have c; (Zs,dévg) =

The fact that for every O(1)-doubling metric space (X, d) we
have ¢1(X,d'"¢) < 1/+/e follows from an argument of [55] (see
also [78, Theorem 5.2]). Corollary 1.4 shows that this is sharp. More
generally, it follows from Theorem 1.3 that for every R > 2 and
¢ € (0,1) we have

1
c1 (BR,d‘I/;g) = min {ﬁ’ \llogR} .

1.4 Vertical-versus-Horizontal Isoperimetry

Our new non-embeddability results are all consequences of an inde-
pendently interesting isoperimetric-type inequality which we shall
now describe. Roughly speaking, this inequality subtly quantifies
the fact that forany n € Zand any h € ]H[%, there are many paths in
the Cayley graph Xs (H%) of length roughly +/n that connect h to
hZ™. Consequently, if a finite subset Q C Z° has a small edge bound-
ary in the Cayley graph, then the number of pairs (x, y) € Z°> x Z°
for which |{x,y} N Q| = 1 yet x and y differ only in their fifth
(vertical) coordinate must also be small. It turns out that the proper
interpretation of the term “small” is this context is not at all obvious,
and it should be measured in a certain multi-scale fashion. Formally,
we consider the following quantities.

DEFINITION 1.5 (DISCRETE BOUNDARIES). For Q C Z°, the hori-
zontal boundary of Q is defined by

ohQ def {(x,y) € O x (ZS ~ Q) :x 'y esh 9)

Given alsot € N, the t-vertical boundary of Q is defined by

fie) def {(x,y)e Qx (Zs \Q) xTly e {Zt,Z_t}}. (10)
The horizontal perimeter of Q is defined to be the cardinality
|0hQ| of its horizontal boundary. The vertical perimeter of Q is
defined to be the quantity

0 tQZ L
ol 3 L) (1)

2
t=1 t

The horizontal perimeter of Q is nothing more than the size of its
edge boundary in the Cayley graph Xs (H%) The vertical perimeter
of Q is a more subtle concept that does not have such a simple
combinatorial description. The definition (11) was first published
in [53, Section 4], where the isoperimetric-type conjecture that
we resolve here as Theorem 1.6 below also appeared for the first
time. These were formulated by the first named author and were
circulating for several years before [53] appeared, intended as a
possible route towards the algorithmic application that we indeed
succeed to obtain here. That “vertical smallness” should be mea-
sured through the quantity |0, |, i.e., the {2 norm of the sequence
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{16t/ t};2,, was arrived at through trial and error, inspired by
functional inequalities that were obtained in [7, 53], as explained
in [53, Section 4].

THEOREM 1.6. Every Q C Z° satisfies |0,Q| < |0,Q].

The significance of Theorem 1.6 can only be fully appreciated
through an examination of the geometric and analytic reasons for its
validity. To facilitate this, we shall include in this extended abstract
an extensive overview of the ideas of the proof of Theorem 1.6;
see Section 1.6 below. Before doing so, we shall now demonstrate
the utility of Theorem 1.6 by using it to deduce Theorem 1.3. As
explained above, by doing so we shall conclude the proof of all of
our new results (modulo Theorem 1.6), including the lower bound
on the integrality gap for the Goemans-Linial SDP.

1.5 From Isoperimetry to Non-embeddability

An equivalent formulation of Theorem 1.6 is that every finitely
supported function ¢ : Z°> — L; satisfies the following Poincaré-
type inequality.

(32 (3 otez - ¢<h>ul)z);

t=1 heZ5
< D0 D Ibtho) - o), (12)

heZs o€S

Indeed, Theorem (1.6) is nothing more than the special case ¢ = 1
of (12). Conversely, the fact that (12) follows from Theorem (1.6)
is a straightforward application of the cut-cone representation of
L1 metrics (see e.g. [32, Proposition 4.2.2] or [73, Corollary 3.2]),
though our proof will yield the (seemingly) stronger statement (12)
directly. Next, Section 3.2 of [53] shows that (12) formally implies
its local counterpart, which asserts that there exists a universal
constant o« > 1 such that for every n € N and every ¢ : Z° — L;
we have

2 2

S1a( 3 otz - sonl,)

t=1 heB,
S D0 D lbthe) - b, (13)

heByn OE€S

To deduce Theorem 1.3, suppose that R > 2, that w : [0, ) —
[0, o0) is nondecreasing and that the mapping ¢ : Bgp — L; sat-
isfies (5). For notational convenience, fix two universal constants
3 € (0,1) and vy € (1, o) such that [5\/? <dw(Z%,0) < vVt for
every t € N. Note that (5) implies in particular that w(R) < R, so
for every ¢ € (0, 1) the left hand side of (6) is at most a universal
constant multiple of R2. Hence, it suffices to prove Theorem 1.3
when R > 1+ max{«,y}, where « is the universal constant in (13).
Denote n = [min{R/(1 +v),(R—1)/a}| € N.If t € {1,...,n%}
and h € B, then dy(hZ%,0) < n +y\/f < (1+vy);m < R, and



The integrality gap of the Goemans-Linial SDP

therefore we may apply (5) with x = hZ? and y = h to deduce that
I6(hZ*) = bRl Z w(dw(Z*,0)) > w(BVi). Consequently,

S & (Bl w
(3 otz o)) 2 3 EoEB
t=1 heB, t=1
n’ e 2 pVns1 2
e $ [ WOV, _ g [ wOF
t=1 z

BR
2max{1+vy, o} (,U(s)2

B(R/2)"

~ max{(1 +v)12, a2} J, s3

ds, (14)

where the second inequality in (14) uses the fact that w is non-
decreasing, the penultimate step of (14) uses the change of variable
s = B\/m and for the final step of (14) recall that f < 1 and
the definition of n. At the same time, by our choice of n we have
ho € Byn+1 C BR for every h € By, and 0 € S, and so by (5) we
have ||d(ho) — d(h)||1 < dw(ho, h) = 1. The right hand side of (13)
is therefore at most a universal constant multiple of |Bn| - |S| S
(an)® < R®. By contrasting (14) with (13) we obtain that the desired
estimate (6) indeed holds true.

1.6 Overview of the Proof of Theorem 1.6

Our proof of (12), and hence also of Theorem 1.6, is carried out in
a continuous setting that is equivalent to its discrete counterpart.
Such a passage from continuous to discrete is commonplace, and
in the present setting this was carried out in [7, 53]. The idea is to
consider a continuous group that contains ]HI% and to deduce the dis-
crete inequality (12) from its (appropriately formulated) continuous
counterpart via a partition of unity argument. There is an obvious
way to embed ]H[% in a continuous group, namely by considering the
same group of matrices as in (2), but with the entries a, b, ¢, d, e now
allowed to be arbitrary real numbers instead of integers. This is a
indeed a viable route and the ensuing discussion could be carried
out by considering the resulting continuous matrix group. Never-
theless, it is notationally advantageous to work with a different
(standard) realization of H% which is isomorphic to the one that we
considered thus far. We shall now introduce the relevant notation.

Fix an orthonormal basis {X1, X2, Y1, Y2, Z} of RO.Ifh = oy X1 +
o Xo+P1Y1+PB2Yo+vZ € R then denote xi(h) = o, y,(h) =B
for i € {1,2} and z(h) = v, ie., x1,%2,y1,y2,z : R> — R are
the coordinate functions corresponding to the above basis. The
continuous Heisenberg group H° is defined to be R>, equipped
with the following group law.

def
uv = u+ov

L X1@51©) = g1 @) + @) - y2Wx@)
2

The identity element of H® is 0 € R® and the inverse of h € R®
under the group law (15) is equal to —h. By directly computing
Jacobians, one checks that the Lebesgue measure on R> is invariant
under the group operation given in (15), i.e., it is a Haar measure of
H. In what follows, in order to avoid confusing multiplication by
scalars with the group law of H?, for every h € H> and t € R we
shall use the exponential notation h = (thy, ..., ths); this agrees
with the group law when t € Z. (This convention is not strictly

(15)
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necessary, but without it the ensuing discussion could become
somewhat notationally confusing.)

The subgroup of H” that is generated by {X1, Xz, Y1, Y2} is the
discrete Heisenberg group of dimension 5, denoted H%. The ap-
parent inconsistency with (2) is not an actual issue because it is
straightforward to check that the two groups in question are in
fact isomorphic. The linear span of {X1, Y1, Z} is a subgroup of H>
which is denoted H® (the 3-dimensional Heisenberg group).

There is a canonical left-invariant metric on H>, commonly called
the Carnot—Carathéodory metric, which we denote by d. We refer
to [15] for a precise definition of this metric. For the purpose of
the present discussion it suffices to know that d possesses the fol-
lowing properties. Firstly, for every g, h € H> and 8 € R we have
d(sg(g),s9(h)) = |0]d(g, h). Here, sg denotes the Heisenberg scaling
by 0, given by the formula

= (80,002, 01, 0B2,0%)
Secondly, the restriction of d to the subgroup ]HI5 is bi-Lipschitz to

sg(ou1, ot2, B1, B2,Y)

the word metric induced by its generating set {X = XL YEL YL

Thirdly, there exists C € (1, c0) such that every h € H> satisfies
Pea(B)] + [x2 ()] + [y (W] + ly2(h)] + 4¥|z(h)] <

d(h,0) < ga’(h, 0).

(16)
Given r € (0,0) we shall denote by B, C H> the open ball
in the metric d of radius r centered at the identity element, i.e.,
By ={h e H>: d(0,h) < r}. For Q C H° the Lipschitz constant of
a mapping f : Q@ — R relative to the metric d will be denoted by
| fllLip(c2)- For s € (0, 00), the notation H* will be used exclusively
to denote the s-dimensional Hausdorff measure that is induced by
the metric d (see e.g. [70]). One checks that H° is proportional to
the Lebesgue measure on R® and that the restriction of H* to the
subgroup H? is proportional to the Lebesgue measure on H> (under
the canonical identification of H? with R3). For two measurable
subsets E,U C H> define the normalized vertical perimeter of E in
U to be the function vy (E) : R — [0, oo] given by setting for every
s€eR,

def 1

Ty (E)(s) < 7-{6((E A (EZ2)) n U)

= —s/ ‘1E(u)— 1E(uZ_22S)‘d7{6(u)- (17)

where A A B (A N\ B) U (B \ A) is the symmetric difference. We
also denote V(E) de vHs(E).

The isoperimetric-type inequality of Theorem 1.7 below implies
Theorem 1.6. See [79] for an explanation of this (standard) deduc-
tion; the argument is a straightforward use of the co-area formula
(see e.g. [2, 65]) to pass from sets to functions, followed by the
partition of unity argument of [53, Section 3.3] to pass from the
continuous setting to the desired discrete inequality (12).

THEOREM 1.7. HV(E)”LZ(R) < HO(E) for all open E C H>.

We shall now explain the overall strategy and main ideas of our
proof of Theorem 1.7. Complete technical details are included in
[79]. A key new ingredient appears in Section 1.6.1 below, which is
the only place in our proof where we use the fact that we are dealing
with H° rather than H3. In fact, the analogue of Theorem 1.7 for
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H3 (i.e., with H>(AE) replaced by H>(9E) and V(E)(-) defined in
the same way as in (17) but with H® replaced by the restriction
of H* to H) is false (see Section 1.7.1 below). The crux of the
matter is the special case of Theorem 1.7 where the boundary
of E is (a piece of) an intrinsic Lipschitz graph. Such sets were
introduced by Franchi, Serapioni, and Serra Cassano [36]. These
sets can be quite complicated, and in particular they are not the
same as graphs of functions (in the usual sense) that are Lipschitz
with respect to the Carnot—Carathéodory metric. Our proof of
this special case relies crucially on an Ly-variant of (12) for H?
that was proven in [7] using representation theory and in [53]
using Littlewood-Paley theory. In essence, our argument “lifts” a
certain Ly inequality in lower dimensions to a formally stronger
endpoint L1 (or isoperimetric-type) inequality in higher dimensions.
Once the special case is established, we prove Theorem 1.7 in its
full generality by decomposing an open set E into parts whose
boundaries are close to pieces of intrinsic Lipschitz graphs and
applying the special case to each part of this decomposition. We
deduce the desired estimate by summing up all the inequalities
thus obtained. Such a “corona decomposition” is an important and
widely-used tool in harmonic analysis on R” that was formulated
by David and Semmes in [29]. For the present purpose we need
to devise an “intrinsic version” of a corona decomposition on the
Heisenberg group. This step uses a different “coercive quantity” to
control local overlaps, but for the most part it follows the lines of the
well-understood methodology of David and Semmes, as described
in the monographs [29, 30].

1.6.1 Intrinsic Lipschitz Graphs. Set V def {heH: x3(h) =0}.
For f : V. — R define

Iy < {ox[: vev)

Pfarecdocdejafaade): acdeer]
(18)

where (18) uses the identification of aX; +bX, +cY; +dYs +eZ € H?
with (a, b, c,d, e) € R> and the identification of (a,0,c,d,e) € V
with (a,c,d,e) € R* (thus we think of the domain of f as equal
to R*). The set Iy is a typical intrinsic graph in H. See [79] for
a discussion of the general case, which is equivalent to this case
via a symmetry of H (so the ensuing discussion has no loss of
generality). Suppose that A € (0, 00). We say that Iy is an intrinsic
A-Lipschitz graph over the vertical hyperplane V if

Ywi,wy €T, |x2(w1) — x2(w2)| < Ad(w1, wa). (19)

Due to (18) the condition (19) amounts to a point-wise inequality
for f that is somewhat complicated, and in particular it does not
imply that f must be Lipschitz with respect to the restriction of
the Carnot-Carathéodory metric to the hyperplane V, as explained
in [37, Remark 3.13].

Denote by I“; ={vX}: veV A t> f(v)} the half-space that

is bounded by the intrinsic graph I'r. Suppose that I+ is an intrinsic
A-Lipschitz graph with A € (0, 1). We claim that
5

Y r € (0, 00), [vB, (rf)”Lz(R) N 1A (20)
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When, say, A € (0, %), the estimate (20) is in essence the special case
of Theorem 1.7 for pieces of Lipschitz graphs. This is so because,
due to the isoperimetric inequality for the Heisenberg group [81],
the right-hand side of (20) is at most a universal constant multiple
of H>(0(B, N I“]f)) whenever H°(B, N F}f) > 1%, ie., provided that
I}f occupies a constant fraction of the volume of the ball B,.. The
estimate (20) will be used below only in such a non-degenerate
situation.

The advantage of working in H> rather than H? is that V C H>
can be sliced into copies of H3. We will bound VB, (F};L)HLZ(R) by

decomposing 1"; into a corresponding family of slices. Write

VueH, h, def Xiﬁ(u) + Ylyl(u) + 72 x(Wy2(u) ¢ 3. (21)

Recalling (15), one computes directly that u = YZyZ(u)th;z(u). Let
C € (1,00) be the universal constant in (16). A straightforward
computation using (16) shows that d(hy, 0) < Cd(u, 0). Also, (16)
implies that |y2(u)| < Cd(u, 0). These simple observations demon-
strate that

VueH, 1B, () < 1[_cr,cr](V2W)) 1B, (ha).  (22)

For every x € R define fy : H® — R by fxh) = f(YZXh) (recall
that H3 is the span of {X1, Y1, Z}, so szh € V is in the domain of
f). Under this notation u € Ff+ if and only if x2(u) > fiy,(w)(hu)-

Also, for every « € R we have uZ% € T} if and only if x2(u) >
Jyo(u)(huZ®), since hyz« = hyZ* by (21). Due to (17) and (22),
these observations imply that for every s € R we have

VB, (r; )(s)

<1
\25 H5

L@ >fnw®) ™ o fyyhaz)

X 11_cr,cr (42) 1snp,, (hu) dHO (). (23)

Recall that H® is proportional to the Lebesgue measure on H>.
Hence, if we continue to canonically identify aX; + bX3 + cY; +
dYs + eZ € H® with (a,b,c,d,e) € R’ and aX; + cY +eZ € H®
with (a, c,e) € R3 then, recalling (21), the integral in the right hand
side of (23) is proportional to

J.
-/

where for each fixed b,d € R we made the change of variable
(,7v,€) = (a,c,e + bd/2). Since the restriction of the Hausdorff
measure H* to H? is proportional to the Lebesgue measure on

1{b>fd(a,c,e+;bd)} - 1{b>fd(a,c,e+%bd—225)}|

1
X 1_cr.cr(d1zsap,, (a, ce+ 5lod) d(a,b,c,d,e)

Lib>fu(ov,€)} ~ Lib>fy(o v, e—225)}

X 1[—Cr,Cr] (d)1H3ﬂBcr(aa Y €) d(“? bv Y, d» €)’
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H3 = R3, we conclude from the above considerations that for every
s € R we have

Vs, (I7)(s)

Cr
sy /]
2% J_cr JEEnBe,

(/—oo Hexfw) = 1{a>fx(hz-2“)}| d‘(’) dH* () dx

1 Cr
2 /
—Cr JH*NBc,

Next, fix hy, hy € H® and x € R. Denote wy def szhlxgx(hl) and
def

wy = YZXhZXzfX(hZ), By design we have wy, wy € Iy and therefore
we may apply (20) to deduce that
[fx(h1) = fx(h2)] = lx2(w1) — x2(w2)| < Ad(wy, w2)
h h
= Ad( VX, Xy x X )

= Ad(0, iy Ty

fih) = fi (hz72)dHA () dx. (24)

< N(Cha,h) + [ fh) = fi(ha)l), (25)

where the first inequality in (25) uses (20) , the penultimate step
of (25) uses the left-invariance of the metric d and the fact that
X, commutes with all of the elements of H>, and the final step
of (25) uses (16) (twice). The estimate (25) simplifies to show that
[fx(h1) = fx(h2)| < d(h1, h2)/(1 =), ie., for every fixed X € R the
function f is Lipschitz on H> with || fx||Lip(H3) <1/(1=A).

In [7, Theorem 7.5] the following inequality was proved for a
Lipschitz function \ : H> — R and p € (0, ) as a consequence
of a continuous Ly-variant of (12). Due to its quadratic nature,
this variant can be proved using a decomposition into irreducible
representations (i.e., a spectral argument).

p2 g d
/0 /B - fo(h) = (hz™")[? dﬂ4<h>t—§5p4||¢||fip(ﬂa).

(26)
Consequently,
5
r
- 27
TESNC (27)
Cr p(Cr)? 2 . dt
Z/ / / |fxc(h) = fc (hZ7")[" dH (h)— dx
-Cr Jo Be,NH3 t
10g,(CT) 210g 2
:/_ 225

Fie(h) = fi (hZ72) L AHA(hydxds  (28)

(o]
.Cr .
e
—Cr JBe, N3

log,(Cr) 1
R / = (29)
—o0 r
1 Cr _92s 4 2
X (2—5/ / fx(h) = fx (RZ77)| dH*(h) dx) ds
—Cr J B¢, NH?
1 logZ(Cr)_ R
O (30)
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In (27) we applied (26) with 1 = fy for each x € [-Cr,Cr], while
using ||fX||Lip(IHI3) < 1/(1 = A). In (28) we made the change of
variable ¢t = 225, In (29) we used the Cauchy-Schwarz inequality
while noting that H*(Bc, N H3) < r*. Finally, (30) follows from an
application of (24). Now,

v, () ”iz(R)

log,(Cr) )
- / VB, (rf+)(s)2 ds +/
-0 log,(Cr)
10 0 6 2
<L ey,
(1-NM% " Jiogcr) 2%
10 [} 12 10
r / T ds= L (31)
1

= ——— + —ds x —,
TN Jogycn 2 (1-AP

VB, (I7)(s)? ds

where we estimated the second integral using the trivial bound
VB, (E)(s) < HO(B,)/25 = r%/25. By taking square roots of both
sides of (31) we obtain the desired estimate (20). It is important to
stress that this proof does not work for functions on H? because it
relies on slicing H® into copies of H>. There is no analogue of (26)
for 1-dimensional vertical slices of H°.

1.6.2  An Intrinsic Corona Decomposition. In Section 1.6.1 we
presented the complete details of the proof of a crucial new ingre-
dient that underlies the validity of Theorem 1.7. This ingredient is
the only step that relies on a property of H> that is not shared by
H3. We believe that it is important to fully explain this key ingre-
dient within this extended abstract, but this means that we must
defer the details of the formal derivation of Theorem 1.7 from its
special case (20) to the full version [79]. The complete derivation
requires additional terminology and notation, but the main idea
is to produce “intrinsic corona decompositions” in the Heisenberg
group. Corona decompositions are an established tool in analysis
for reducing the study of certain singular integrals on R” to the case
of Lipschitz graphs, starting with seminal works of David [26, 27]
and Jones [42, 43] on the Cauchy integral and culminating with the
David-Semmes theory of quantitative rectifiability [29, 30]. Our
adaptation of this technique is mostly technical, but it will also in-
volve a conceptually new ingredient, namely the use of quantitative
monotonicity for this purpose. We will now outline the remainder
of the proof of Theorem 1.7.

Our arguments hold for Heisenberg groups of any dimension
(including H3), but we avoid introducing new notation by contin-
uing to work with H> for now. The first step is to show that in
order to establish Theorem 1.7 it suffices to prove that for every
r € (0, 00) and every E C H>, we have VB, BllL,®) S r® under
the additional assumption that the sets E, H®> . E, and JE are r-
locally Ahlfors-regular, i.e., ‘H(’(qu NE) = p® < H° (vBp \E) and
(HS(prﬂc'iE) = p> forall p € (0, r)and (u, v, w) € Ex(H>~ E)xdE.
We prove this by first applying a Heisenberg scaling and an ap-
proximation argument to reduce Theorem 1.7 to the case that E
is a “cellular set,” i.e., it is a union of parallelepipeds of the form
h[—%, %]5 as h ranges over a subset of the discrete Heisenberg group
H% C H®. Any such set is Ahlfors-regular on sufficiently small balls.
We next argue that E can be decomposed into sets that satisfy the
desired local Ahlfors-regularity. The full construction of this de-
composition appears in [79], but we remark briefly that it amounts
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to the following natural “greedy” iterative procedure. If one of the
sets E, H° . E, 0E were not locally Ahlfors-regular then there would
be some smallest ball B such that the density of E, H5 \ E or E
is either too low or too high on B. By replacing E by either E U B
or E \ B, we cut off a piece of dE and decrease H>(JE). Since B
was the smallest ball where Ahlfors-regularity fails, E, H> \. E, 0E
are Ahlfors-regular on balls smaller than B. Repeating this process
eventually reduces E to the empty set, and we arrive at the con-
clusion of Theorem 1.7 for the initial set E by proving the (local
version of) the theorem for each piece of this decomposition, then
summing the resulting inequalities. We will therefore suppose from
now on that E, H> \ E and dE are all locally Ahlfors-regular.

The next step is the heart of the matter: approximating 0E by
intrinsic Lipschitz graphs so that we can use the fact that Theo-
rem 1.7 holds for (pieces of) such graphs. The natural way to do
this is to construct (an appropriate Heisenberg version of) a corona
decomposition in the sense of [29, 30]. Such a decomposition covers
OE by two types of sets, called stopping-time regions and bad cubes.
Stopping-time regions correspond to parts of 0E that are close to
intrinsic Lipschitz graphs, and bad cubes correspond to parts of
OE, like sharp corners, that are not. The multiplicity of this cover
depends on the shape of JE at different scales. For example, O
might look smooth on a large neighborhood of a point x, jagged
at a medium scale, then smooth again at a small scale. If so, then x
is contained in a large stopping-time region, a medium-sized bad
cube, and a second small stopping-time region. A cover like this is
a corona decomposition if it satisfies a Carleson packing condition
(see [79]) that bounds its average multiplicity on any ball.

We construct our cover following the well-established methods
of [29, 30]. We start by constructing a sequence of nested partitions
of JE into pieces called cubes; this is a standard construction due to
Christ [23] and David [28] and only uses the Ahlfors regularity of
OE. These partitions are analogues of the standard tilings of R” into
dyadic cubes. Next, we classify the cubes into good cubes, which
are close to a piece of a hyperplane, and bad cubes, which are not.
In order to produce a corona decomposition, there cannot be too
many bad cubes, i.e., they must satisfy a Carleson packing condition.
In [29, 30], this condition follows from quantitative rectifiability; the
surface in question is assumed to satisfy a condition that bounds
the sum of its (appropriately normalized) local deviations from hy-
perplanes. These local deviations are higher-dimensional versions
of Jones’ 3-numbers [42, 43], and the quantitative rectifiability
assumption leads to the desired packing condition. In the present
setting, the packing condition follows instead from quantitative non-
monotonicity. The concept of the quantitative non-monotonicity
of a set E C H° (see [79]) was first defined in [21, 22], where the
kinematic formula for the Heisenberg group was used to show that
the total non-monotonicity of all of the cubes is at most a constant
multiple of {3(9E). This means that there cannot be many cubes
that have large non-monotonicity. By a result of [21, 22], if a set has
small non-monotonicity, then its boundary is close to a hyperplane.
Consequently, most cubes are close to hyperplanes and are there-
fore good. (The result in [21, 22] is stronger than what we need for
this proof; it provides power-type bounds on how closely a nearly-
monotone surface approximates a hyperplane. For our purposes,
it is enough to have some bound (not necessarily power-type) on
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the shape of nearly-monotone surfaces, and we can deduce the
bound that we need by applying a quick compactness argument to
a result from [20] that states that if a set is precisely monotone (i.e.,
every line intersects its boundary in at most one point), then it is a
half-space.)

Next, we partition the good cubes into stopping-time regions
by using an iterative construction that corrects overpartitioning
that may have occurred when the Christ cubes were constructed.
If Q is a largest good cube that hasn’t been treated yet and if P is
its approximating half-space, we find all of the descendants of Q
with approximating half-spaces that are sufficiently close to P. If
we glue these half-spaces together using a partition of unity, the
result is an intrinsic Lipschitz half-space that approximates all of
these descendants. By repeating this procedure for each untreated
cube, we obtain a collection of stopping-time regions. These regions
satisfy a Carleson packing condition because if a point x € JE is
contained in many different stopping-time regions, then either x is
contained in many different bad cubes, or x is contained in good
cubes whose approximating hyperplanes point in many different
directions. In either case, these cubes generate non-monotonicity,
so there can only be a few points with large multiplicity.

The construction above leads to the proof of Theorem 1.7 as
follows. The vertical perimeter of E comes from three sources:
the bad cubes, the approximating Lipschitz graphs, and the error
incurred by approximating a stopping-time region by an intrinsic
Lipschitz graph. By the Carleson packing condition, there are few
bad cubes, and they contribute vertical perimeter on the order of
FH3(AE). By the result of Section 1.6.1, the intrinsic Lipschitz graphs
also contribute vertical perimeter on the order of H>(9E). Finally,
the vertical perimeter of the difference between a stopping-time
region and an intrinsic Lipschitz graph is bounded by the size of
the stopping-time region. The stopping-time regions also satisfy a
Carleson packing condition, so these errors also contribute vertical
perimeter on the order of H>(9E). Summing these contributions,
we obtain the desired bound.

1.7 Historical Overview and Directions for
Further Research

Among the well-established deep and multifaceted connections
between theoretical computer science and pure mathematics, the
Sparsest Cut Problem stands out for its profound and often un-
expected impact on a variety of areas. Indeed, previous research
on this question came hand-in-hand with the development of re-
markable mathematical and algorithmic ideas that spurred many
further works of importance in their own right. Because the present
work belongs to this tradition, we will try to put it into context
by elaborating further on the history of these investigations and
describing directions for further research and open problems. Some
of these directions will appear in forthcoming work.

The first polynomial-time algorithm for Sparsest Cut with ap-
proximation ratio O(log n) was obtained in the important work [59],
which studied the notable special case of Sparsest Cut with Uniform
Demands (see Section 1.7.3 below). This work introduced a lin-
ear programming relaxation and developed influential techniques
for its analysis, and it has led to a myriad of algorithmic applica-
tions. The seminal contributions [6, 64] obtained the upper bound
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pcL(n) < logn in full generality by incorporating a classical embed-
ding theorem of Bourgain [12], thus heralding the transformative
use of metric embeddings in algorithm design. The matching lower
bound on the integrality gap of this linear program was proven
in [59, 64]. This showed for the first time that Bourgain’s embedding
theorem is asymptotically sharp and was the first demonstration of
the power of expander graphs in the study of metric embeddings.

A O(y/log n) upper bound for the approximation ratio of the
Goemans-Linial algorithm in the case of uniform demands was
obtained in the important work [4]. This work relied on a clever
use of the concentration of measure phenomenon and introduced
influential techniques such as a “chaining argument” for metrics
of negative type and the use of expander flows. [4] also had direct
impact on results in pure mathematics, including combinatorics and
metric geometry; see e.g. the “edge replacement theorem” and the
estimates on the observable diameter of doubling metric measure
spaces in [77]. The best-known upper bound pg (n) < (log n)%“’(l)
of [3] built on the (then very recent) development of two techniques:
The chaining argument of [4] (through its refined analysis in [54])
and the measured descent embedding method of [51] (through its
statement as a gluing technique for Lipschitz maps in [54]). Another
important input to [3] was a re-weighting argument of [17] that
allowed for the construction of an appropriate “random zero set”
from the argument of [4, 54] (see [73, 75] for more on this notion
and its significance).

The impossibility result [49] that refuted the Goemans-Linial
conjecture relied on a striking link to complexity theory through
the Unique Games Conjecture (UGC), as well as an interesting use
of discrete harmonic analysis (through [13]) in this context; see
also [52] for an incorporation of a different tool from discrete har-
monic analysis (namely [44], following [48]) for the same purpose,
as well as [18, 24] for computational hardness. The best impossi-
bility result currently known [45] for Sparsest Cut with Uniform
Demands relies on the development of new pseudorandom genera-
tors.

The idea of using the geometry of the Heisenberg group to bound
pgL(n) from below originated in [56], where the relevant metric of
negative type was constructed through a complex-analytic argu-
ment, and initial (qualitative) impossibility results were presented
through the use of Pansu’s differentiation theorem [82] and the
Radon-Nikodym Property from functional analysis (see e.g. [11]).
In [19], it was shown that the Heisenberg group indeed provides a
proof that lim, e pgL(n) = 0. This proofintroduced a remarkable
new notion of differentiation for L;-valued mappings, which led to
the use of tools from geometric measure theory [34, 35] to study
the problem. A different proof that H> fails to admit a bi-Lipschitz
embedding into L; was found in [20], where a classical notion of
metric differentiation [50] was used in conjunction with the novel
idea to consider monotonicity of sets in this context, combined with
a sub-Riemannian-geometric argument that yielded a classification
of monotone subsets of H>. The main result of [22] finds a quan-
titative lower estimate for the scale at which this differentiation
argument can be applied, leading to a lower bound of (log )0
on pgL(n). This result relies on a mixture of the methods of [19]
and [20] and requires overcoming obstacles that are not present in
the original qualitative investigation. In particular, [22] introduced
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the quantitative measures of non-monotonicity that we use in the
present work to find crucial bounds in the construction of an intrin-
sic corona decomposition. The quantitative differentiation bound
of [22] remains the best bound currently known, and it would be
very interesting to discover the sharp behavior in this more subtle
question.

The desire to avoid the (often difficult) need to obtain sharp
bounds for quantitative differentiation motivated the investigations
in [7, 53]. In particular, [7] devised a method to prove sharp (up to
lower order factors) nonembeddability statements for the Heisen-
berg group based on a cohomological argument and a quantitative
ergodic theorem. For Hilbert-space valued mappings, [7] used a
cohomological argument in combination with representation the-
ory to prove the following quadratic inequality for every finitely
supported function ¢ : ]HISZ — Ly.

(34 3 otz - oo

t=1 heZs
S ( >3 ||¢(ho>—¢(h>||§)§~ (32)

heZ> 0€S

In [53] a different approach based on Littlewood-Paley theory was
devised, leading to the following generalization of (32) that holds
true for every p € (1, 2] and every finitely supported ¢ : H> — Lj.

(32 (3 lotez - ¢<h>||§)’2’)é

t=1 heZ?

< c<p)( >3 HCD(hU)—CI)(h)IIZ)E, (33)

heZ® 0€S

for some C(p) € (0, 0). See [53] for a strengthening of (33) that
holds for general uniformly convex targets (using the recently
established [67] vector-valued Littlewood-Paley—-Stein theory for
the Poisson semigroup). These functional inequalities yield sharp
non-embeddability estimates for balls in H% but the method of [53]
inherently yields a constant C(p) in (33) that satisfies limp 1 C(p) =
co. The estimate (13) that we prove here for L;-valued mappings is
an endpoint estimate corresponding to (33), showing that the best
possible C(p) actually remains bounded as p — 1. This confirms a
conjecture of [53] and is crucial for the results that we obtain here.

As explained in Section 1.6.1, our proof of (32) uses the H>-
analogue of (32). It should be mentioned at this juncture that the
proofs of (32) and (33) in [7, 53] were oblivious to the dimension
of the underlying Heisenberg group.? An unexpected aspect of the
present work is that the underlying dimension does play a role at the
endpoint p = 1, with the analogue of (13) (or Theorem 1.6) for H>
being in fact incorrect; see Section 1.7.1 below. In the full version [79]
of this paper we shall establish the H?**!-analogue of Theorem 1.6
forevery k € {2,3, ...}, in which case the implicit constant depends

3Thus far in this extended abstract we recalled the definitions of H> and H® but not
of higher-dimensional Heisenberg groups (since they are not needed for any of the
applications that are obtain here). Nevertheless, it is obvious how to generalize either
the matrix group or the group modelled on R® that we considered above to obtain the
Heisenberg group H2k+1 for any k € N,
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on k, and we shall also obtain the sharp asymptotic behavior as
k — oo.

As we recalled above, past progress on the Sparsest Cut Problem
came hand-in-hand with meaningful mathematical developments.
The present work is a culmination of a long-term project that is
rooted in mathematical phenomena that are interesting not just
for their relevance to approximation algorithms but also for their
connections to the broader mathematical world. In the ensuing
subsections we shall describe some further results and questions
related to this general direction.

1.7.1 The 3-dimensional Heisenberg Group. The investigation of
the possible validity of an appropriate analogue of Theorem 1.6 with
H% replaced by ]H[% remains an intriguing mystery and a subject of
ongoing research that will be published elsewhere. This ongoing
work shows that Theorem 1.6 fails for ]HI%, but that there exists

p € (2, 00) such that for every Q C ]H[% we have

) ('VQP 1
(Zu)” < 0nQl. (34)

P
= tl+ 7

A simple argument shows that sup,ey [05Q|/Vs < v]|9,Q| for

some universal constant y > 0. Hence, for every t € N we have
oyl _ 1aiQf? ( ] )H lovel®

< sup <

seN \/E t2
This implies that the left hand side of (34) is bounded from above by
a universal constant multiple of |8, Q|%/?|8,Q|~2/P . Therefore (34)
is weaker than the estimate |9, Q| < [0, Q| of Theorem 1.6. It would
be interesting to determine the infimum over those p for which (34)
holds true for every Q C H%, with our ongoing work showing that
it is at least 4. In fact, this work shows that for every R > 2 the L,
distortion of the ball of radius R in ]HI% is at most a constant multiple

of +/log R — asymptotically less than the distortion of the ball of
the same radius in H%. It would be interesting to determine the
correct asymptotics of this distortion, with the best-known lower
bound remaining that of [22], i.e., a constant multiple of (log R)®
for some universal constant & > 0. It should be stressed, however,
that the algorithmic application of Theorem 1.6 that is obtained
here uses Theorem (1.6) as stated for ]H[% and understanding the

(ylanQDP2.

Jgel T g2

case of H% would not yield any further improvement. So, while
the above questions are geometrically and analytically interesting
in their own right, they are not needed for applications that we
currently have in mind.

1.7.2 Metric Embeddings. Theorem 1.2 also yields a sharp re-
sult for the general problem of finding the asymptotically largest-
possible L; distortion of a finite doubling metric space with n points.
A metric space (X, dx) is said to be K-doubling for some K € N
if every ball in X (centered anywhere and of any radius) can be
covered by K balls of half its radius. By [51],

c1(X,dx) S V(logK)log [X]. (35)

As noted in [40], the dependence on |X] in (35), but with a worse
dependence on K, follows by combining results of [5] and [83] (the
dependence on K that follows from [5, 83] was improved signifi-
cantly in [40]). The metric space (Z°, dy ) is O(1)-doubling because
|Br| < R® for every R > 1. Theorem 1.2 shows that (35) is sharp
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when K = O(1), thus improving over the previously best-known
construction [58] of arbitrarily large O(1)-doubling finite metric
spaces {(X;,d;)};2, for which ¢1(X;,d;) 2 \/(log |Xi])/loglog | X;|.
Probably (35) is sharp for every K < |X]|; conceivably this could be
proven by incorporating Theorem 1.2 into the argument of [41],
but we shall not pursue this here. Theorem 1.2 establishes for the
first time the existence of a metric space that simultaneously has
several useful geometric properties and poor (indeed, worst possi-
ble) embeddability into L;. By virtue of being O(1)-doubling, the
metric space (Z°, dyy) also has Markov type 2 due to [33] (which
improves over [76], where the conclusion that it has Markov type p
for every p < 2 was obtained). For more on the bi-Lipschitz invari-
ant Markov type and its applications, see [8, 74]. The property of
having Markov type 2 is shared by the construction of [58], which
is also O(1)-doubling, but (Z>, dyy) has additional features that the
example of [58] fails to have. For one, it is a group; for another,
by [60, 61] we know that (Z°, dy) has Markov convexity 4 (and
no less). (See [57, 71] for background on the bi-Lipschitz invariant
Markov convexity and its consequences.) By [71, Section 3] the ex-
ample of [58] does not have Markov convexity p for any finite p. No
examples of arbitrarily large finite metric spaces {(X;,d;)};2; with
bounded Markov convexity (and Markov convexity constants uni-
formly bounded) such that ¢1(Xj,d;) 2 +/log |X;| were previously
known to exist. Analogous statements are known to be impossible
for Banach spaces [72], so it is natural in the context of the Ribe
program (see the surveys [9, 74] for more on this research program)
to ask whether there is a potential metric version of [72]; the above
discussion shows that there is not.

1.7.3  The Sparsest Cut Problem with Uniform Demands. An im-
portant special case of the Sparsest Cut Problem is when the demand
matrix D is the matrix 1(1__ 4)x(1,...,n) € Mn(R) all of whose en-
tries equal 1 and the capacity matrix C lies in M, ({0, 1}), i.e., all its
entries are either 0 or 1. This is known as the Sparsest Cut Problem
with Uniform Demands. In this case C can also be described as the
adjacency matrix of a graph G whose vertex set is {1,...,n} and
whose edge set consists of those unordered pairs {i, j} € {1,...,n}
for which C;; = 1. With this interpretation, given A C {1,...,n}
the numerator in (1) equals twice the number of edges that are inci-
dentto Ain G. And, since D = 1(1 . n)x{1,...,n}> the denominator
in (1) is equal to 2|A|(n— |A]) < nmin{|A|, [{1,...,n} \ A|}. So, the
Sparsest Cut Problem with Uniform Demands asks for an algorithm
that takes as input a finite graph and outputs a quantity which is
bounded above and below by universal constant multiples of its
conductance [86] divided by n. The Goemans-Linial integrality gap
corresponding to this special case is

unif

punif (46 OPT(C. 141, n}x{1,....,n})
ot cemy({0.1}) SPPC (1, nyx(1,...on})

C symmetric

The Goemans-Linial algorithm furnishes the best-known approxi-
mation ratio also in the case of uniform demands. By the important
work [4] we have p‘é"[‘_if(n) < y/log n, improving over the previous
bound p‘érff(n) < logn of [59]. As explained in [21], the present
approach based on (fixed dimensional) Heisenberg groups can-
not yield a lower bound on p‘énl_if(n) that tends to co with n. The

best-known lower bound [45] is p‘énl_if(n) > exp(cy/loglogn) for
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some universal constant ¢ > 0, improving over the previous bound

pgnl_if(n) 2 loglog n of [31]. Determining the asymptotic behavior

of p‘énl_if(n) remains an intriguing open problem.
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