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ABSTRACT
We prove that the integrality gap of the Goemans–Linial semi-

definite programming relaxation for the Sparsest Cut Problem

is Ω(
√
logn) on inputs with n vertices, thus matching the previ-

ously best known upper bound (logn)
1

2
+o(1)

up to lower-order

factors. This statement is a consequence of the following new

isoperimetric-type inequality. Consider the 8-regular graph whose

vertex set is the 5-dimensional integer grid Z5 and where each ver-

tex (a, b, c, d, e) ∈ Z5 is connected to the 8 vertices (a ± 1, b, c, d, e),
(a, b± 1, c, d, e), (a, b, c± 1, d, e± a), (a, b, c, d± 1, e± b). This graph
is known as the Cayley graph of the 5-dimensional discrete Heisen-

berg group. Given Ω ⊆ Z5, denote the size of its edge boundary in

this graph (a.k.a. the horizontal perimeter of Ω) by |∂hΩ |. For t ∈ N,
denote by |∂tvΩ | the number of (a, b, c, d, e) ∈ Z5 such that exactly

one of the two vectors (a, b, c, d, e), (a, b, c, d, e + t) is in Ω. The

vertical perimeter of Ω is defined to be |∂vΩ | =

√∑∞
t=1 |∂

t
vΩ |2/t2.

We show that every subset Ω ⊆ Z5 satisfies |∂vΩ | = O(|∂hΩ |).

This vertical-versus-horizontal isoperimetric inequality yields the

above-stated integrality gap for Sparsest Cut and answers several

geometric and analytic questions of independent interest.

The theorem stated above is the culmination of a program whose

aim is to understand the performance of the Goemans–Linial semi-

definite program through the embeddability properties of Heisen-

berg groups. These investigations have mathematical significance

even beyond their established relevance to approximation algo-

rithms and combinatorial optimization. In particular they contribute

to a range of mathematical disciplines including functional analy-

sis, geometric group theory, harmonic analysis, sub-Riemannian

geometry, geometric measure theory, ergodic theory, group rep-

resentations, and metric differentiation. This article builds on the

above cited works, with the “twist” that while those works were
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equally valid for any finite dimensional Heisenberg group, our re-

sult holds for the Heisenberg group of dimension 5 (or higher) but

fails for the 3-dimensional Heisenberg group. This insight leads

to our core contribution, which is a deduction of an endpoint L1-
boundedness of a certain singular integral on R5 from the (local)

L2-boundedness of the corresponding singular integral onR
3
. To do

this, we devise a corona-type decomposition of subsets of a Heisen-

berg group, in the spirit of the construction that David and Semmes

performed in Rn , but with two main conceptual differences (in ad-

dition to more technical differences that arise from the peculiarities

of the geometry of Heisenberg group). Firstly, the“atoms” of our

decomposition are perturbations of intrinsic Lipschitz graphs in the

sense of Franchi, Serapioni, and Serra Cassano (plus the requisite

“wild” regions that satisfy a Carleson packing condition). Secondly,

we control the local overlap of our corona decomposition by using

quantitative monotonicity rather than Jones-type β-numbers.
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1 INTRODUCTION
Fix n ∈ N. The input of the Sparsest Cut Problem consists of two n
by n symmetric matrices with nonnegative entries C = (Ci j ),D =
(Di j ) ∈ Mn ([0,∞)), which are commonly called capacities and

demands, respectively. The goal is to design a polynomial-time

algorithm to evaluate the quantity

OPT(C,D)
def

= min

∅⊊A⊊{1, ...,n }

∑
(i, j)∈A×({1, ...,n }∖A)Ci j∑
(i, j)∈A×({1, ...,n }∖A) Di j

. (1)

In view of the extensive literature on the Sparsest Cut Prob-

lem, it would be needlessly repetitive to recount here the rich and

multifaceted impact of this optimization problem on computer

science and mathematics; see instead the articles [1, 59], the sur-

veys [16, 62, 73, 85], Chapter 10 of the monograph [32], Chapter 15

https://arxiv.org/abs/1701.00620
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of the monograph [68], Chapter 1 of the monograph [80], and the

references therein. It suffices to say that by tuning the choice of

matrices C,D to the problem at hand, the minimization in (1) finds

a partition of the “universe” {1, . . . ,n} into two parts, namely the

setsA and {1, . . . ,n}∖A, whose appropriately weighted interface is
as small as possible, thus allowing for inductive solutions of various

algorithmic tasks, a procedure known as divide and conquer. (Not
all of the uses of the Sparsest Cut Problem fit into this framework.

A recent algorithmic application of a different nature can be found

in [66].)

It is NP-hard to compute OPT(C,D) in polynomial time [84].

By [25] there exists ε0 > 0 such that it is even NP-hard to com-

pute OPT(C,D) within a multiplicative factor of less than 1 + ε0.
If one assumes Khot’s Unique Games Conjecture [46, 47, 88] then

by [18, 49] there does not exist a polynomial-time algorithm that

can compute OPT(C,D) within any universal constant factor.

By the above hardness results, a much more realistic goal would

be to design a polynomial-time algorithm that takes as input the

capacity and demand matrices C,D ∈ Mn ([0,∞)) and outputs a

number ALG(C,D) that is guaranteed to satisfy

ALG(C,D) ⩽ OPT(C,D) ⩽ ρ(n)ALG(C,D),

with (hopefully) the quantity ρ(n) growing to ∞ slowly as n →

∞. Determining the best possible asymptotic behaviour of ρ(n)
(assuming P , NP ) is an open problem of major importance.

In [6, 64] an algorithm was designed, based on linear program-

ming (through the connection to multicommodity flows) and Bour-

gain’s embedding theorem [12], which yields ρ(n) = O(logn). An
algorithm based on semidefinite programming (to be described pre-

cisely below) was proposed by Goemans and Linial in the mid-1990s.

To the best of our knowledge this idea first appeared in the litera-

ture in [38, page 158], where it was speculated that it might yield a

constant factor approximation for Sparsest Cut (see also [62, 63]). In

what follows, we denote the approximation ratio of the Goemans–

Linial algorithm on inputs of size at most n by ρGL(n). The hope
that ρGL(n) = O(1) was dashed in the remarkable work [49], where

the lower bound ρGL(n) ≳
6

√
log logn was proven.

1
An improved

analysis of the ideas of [49] was conducted in [52], yielding the

estimate ρGL(n) ≳ log logn. An entirely different approach based

on the geometry of the Heisenberg group was introduced in [56].

In combination with the important works [19, 20] it gives a dif-

ferent proof that limn→∞ ρGL(n) = ∞. In [21, 22] the previously

best-known bound ρGL(n) ≳ (logn)δ was obtained for an effective

(but small) positive universal constant δ.

Despite these lower bounds, the Goemans–Linial algorithm yields

an approximation ratio of o(logn), so it is asymptotically more ac-

curate than the linear program of [6, 64]. Specifically, in [17] it

was shown that ρGL(n) ≲ (logn)
3

4 . This was improved in [3] to

ρGL(n) ≲ (logn)
1

2
+o(1)

. See Section 1.7 below for additional back-

ground on the results quoted above. No other polynomial-time

algorithm for the Sparsest Cut problem is known (or conjectured)

to have an approximation ratio that is asymptotically better than

1
Here, and in what follows, we use the following (standard) asymptotic notation. Given

a, b > 0, the notations a ≲ b and b ≳ a mean that a ⩽ Kb for some universal

constant K > 0. The notation a ≍ b stands for (a ≲ b) ∧ (b ≲ a). Thus a ≲ b and

a ≳ b are the same as a = O (b) and a = Ω(b), respectively, and a ≍ b is the same

as a = Θ(b).

that of the Goemans–Linial algorithm. However, despite major

scrutiny by researchers in approximation algorithms, the asymp-

totic behavior of ρGL(n) asn → ∞ remained unknown. Theorem 1.1

below resolves this question up to lower-order factors.

Theorem 1.1. The approximation ratio of the Goemans–Linial
algorithm satisfies ρGL(n) ≳

√
logn.

1.1 The SDP Relaxation
The Goemans–Linial algorithm is simple to describe. It takes as

input the symmetric matrices C,D ∈ Mn ([0,∞)) and proceeds to

compute the following quantity.

SDP(C,D)
def

= inf

(v1, ...,vn )∈NEGn

∑n
i=1

∑n
j=1Ci j ∥vi −vj ∥

2

2∑n
i=1

∑n
j=1 Di j ∥vi −vj ∥

2

2

,

where

NEGn
def

=
{
(v1, . . .vn ) ∈ (Rn )n :

∥vi −vj ∥
2

2
⩽ ∥vi −vk ∥

2

2
+ ∥vk −vj ∥

2

2

for all i, j,k ∈ {1, . . . ,n}
}
.

Thus NEGn is the set of n-tuples (v1, . . .vn ) of vectors in R
n
such

that ({v1, . . . ,vn },νn ) is a semi-metric space, where νn : Rn ×

Rn → [0,∞) is defined by νn (x ,y) =
∑n
j=1(x j − yj )

2 = ∥x − y∥2
2

for every x = (x1, . . . ,xn ),y = (y1, . . . ,yn ) ∈ R
n
. A semi-metric

space (X ,dX ) is said [32] to be of negative type if (X ,
√
dX ) embeds

isometrically into a Hilbert space. So, NEGn can be described as the

set of all (ordered) negative type semi-metrics of size n. It is simple

to check that the evaluation of the quantity SDP(C,D) can be cast as
a semidefinite program (SDP), so it can be achieved (up to o(1) preci-
sion) in polynomial time [39]. One has SDP(C,D) ⩽ OPT(C,D) for
all symmetric matricesC,D ∈ Mn ([0,∞)). See e.g. [69, Section 15.9]

or [73, Section 4.3] for an explanation of the above assertions about

SDP(C,D), as well as additional background and motivation. The

pertinent question is therefore to evaluate the asymptotic behavior

as n → ∞ of the sequence

ρGL(n)
def

= sup

C,D∈Mn ([0,∞))
C,D symmetric

OPT(C,D)
SDP(C,D)

.

This is the quantity ρGL(n) appearing in Theorem 1.1, also known

as the integrality gap of the Goemans–Linial semidefinite program-

ming relaxation for the Sparsest Cut Problem.

1.2 Bi-Lipschitz Embeddings
A duality argument of Rabinovich (see [73, Lemma 4.5] or [21,

Section 1]) establishes that ρGL(n) is equal to the largest possible
L1-distortion of an n-point semi-metric of negative type. If d :

{1, . . . ,n}2 → [0,∞) is a semi-metric, its L1 distortion, denoted
c1({1, . . . ,n},d), is the smallest D ∈ [1,∞) for which there are

integrable functions
2 f1, . . . , fn : [0, 1] → R such that

´
1

0
| fi (t) −

fj (t)| dt ⩽ d(i, j) ⩽ D
´
1

0
| fi (t) − fj (t)| dt for every i, j ∈ {1, . . . ,n}.

Rabinovich’s duality argument proves that ρGL(n) is equal to the

2
If one wishes to use finite-dimensional vectors rather than functions then by [89]

there exist v1, . . . , vn ∈ Rn(n−1)/2 such that

´
1

0
|fi (t ) − fj (t ) | dt = ∥vi − vj ∥1 =∑n(n−1)/2

k=1 |vik − vjk | for every i, j ∈ {1, . . . , n }.
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maximum of c1({1, . . . ,n},d) over all possible semi-metrics d of

negative type on {1, . . . ,n}. Hence, Theorem 1.1 is equivalent to

the assertion that for every n ∈ N there exists a metric of negative

type d : {1, . . . ,n}2 → [0,∞) for which c1({1, . . . ,n},d) ≳
√
logn.

1.3 A Poorly-Embeddable Metric
The 5-dimensional discrete Heisenberg group, denoted H5

Z
, is the

following group of 4 by 4 invertible matrices, equipped with the

usual matrix multiplication.

H5Z
def

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
©­­­«
1 a b e
0 1 0 c
0 0 1 d
0 0 0 1

ª®®®¬ : a, b, c, d, e ∈ Z

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ⊆ GL4(R). (2)

This group is generated by the symmetric set

S
def

= {X1,X
−1
1
,X2,X

−1
2
,Y1,Y

−1
1
,Y2,Y

−1
2

},

where

X1

def

=

©­­­«
1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ª®®®¬ , X2

def

=

©­­­«
1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1

ª®®®¬ ,
Y1

def

=

©­­­«
1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

ª®®®¬ , Y2
def

=

©­­­«
1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

ª®®®¬ .
(3)

For notational convenience we shall identify the matrix in (2)

with the vector (a, b, c, d, e) ∈ Z5. This yields an identification of

H5
Z
with the 5-dimensional integer grid Z5. We view Z5 as a (non-

commutative) group equipped with the product that is inherited

from matrix multiplication through the above identification, i.e.,

for every (a, b, c, d, e), (α,β,γ, δ, ϵ) ∈ Z5 we set

(a, b, c, d, e)(α,β,γ, δ, ϵ)

def

= (a + α, b + β, c + γ, d + δ, e + ϵ + aγ + bδ). (4)

Note that under the above identification the identity element

of H5
Z
is the zero vector 0 ∈ Z5, the inverse of an element h =

(a, b, c, d, e) ∈ Z5 is h−1 = (−a,−b,−c,−d,−e + ac + bd), and the

generators X1,X2,Y1,Y2 in (3) are the first four standard basis ele-

ments of R5. Let Z denote the fifth standard basis element of R5, i.e.,
Z = (0, 0, 0, 0, 1). We then have the relations [X1,Y1] = [X2,Y2] = Z
and [X1,X2] = [X1,Y2] = [X1,Z ] = [Y1,X2] = [Y1,Y2] = [Y1,Z ] =
[X2,Z ] = [Y2,Z ] = 0, where we recall the standard commutator

notation [д,h] = дhд−1h−1 for every two group elements д,h ∈ H5
Z
.

In other words, any two elements from {X1,X2,Y1,Y2,Z } other

than X1,Y1 or X2,Y2 commute, and the commutators of X1,Y1 and
X2,Y2 are both equal to Z . In particular, Z commutes with all of the

members of the generating set S , and therefore Z is in the center of
H5
Z
. It is worthwhile to mention that these commutation relations

could be used to define the group H5
Z
abstractly using generators

and relations, but this fact will not be needed in what follows.

This group structure induces a graph XS (H
5

Z
) on Z5, called the

Cayley graph of H5
Z
. The edges of this graph are defined to be

the unordered pairs of the form {h,hs}, where h ∈ Z5 and s ∈ S .
This is an 8-regular connected graph, and by the group law (4), the

neighbors of each vertex (a, b, c, d, e) ∈ Z5 are (a±1, b, c, d, e), (a, b±
1, c, d, e), (a, b, c± 1, d, e± a), (a, b, c, d± 1, e± b). The shortest-path
metric on Z5 that is induced by this graph structure will be denoted

below by dW : Z5 × Z5 → N ∪ {0}. This metric is also known as

the left-invariant word metric on the Heisenberg group H5
Z
. For

every R ∈ [0,∞) denote the (closed) ball of radius R centered at

the identity element by BR = {h ∈ Z5 : dW (h, 0) ⩽ R}. It is

well-known (see e.g. [10]) that |BR | ≍ R6 and dW (0,ZR ) ≍
√
R for

every R ∈ N. Our main result is the following theorem.

Theorem 1.2. For all R ⩾ 2 we have c1(BR ,dW ) ≍
√
logR.

The new content of Theorem 1.2 is the bound c1(BR ,dW ) ≳√
logR. The matching upper bound c1(BR ,dW ) ≲

√
logR has sev-

eral proofs in the literature; see e.g. the discussion immediately

following Corollary 1.3 in [53] or Section 1.7.2 below. The previous

best known estimate [22] was that there exists a universal con-

stant δ > 0 such that c1(BR ,dW ) ⩾ (logR)δ. By [56, Theorem 2.2]

the metric dW is bi-Lipschitz equivalent to a metric on H5
Z
that

is of negative type. We remark that [56] makes this assertion for

a different metric on a larger continuous group that contains H5
Z

as a discrete co-compact subgroup, but by a simple general result

(e.g. [14, Theorem 8.3.19]) the word metric dW is bi-Lipschitz equiv-

alent to the metric considered in [56]. Since |BR | ≍ R6, we have√
log |BR | ≍

√
logR, so Theorem 1.2 implies Theorem 1.1 through

the duality result of Rabinovich that was recalled in Section 1.2.

The following precise theorem about L1 embeddings that need

not be bi-Lipschitz implies Theorem 1.2 by considering the special

case of the modulusω(t) = t/D for D ⩾ 1 and t ∈ [0,∞).

Theorem 1.3. There exists a universal constant c ∈ (0, 1) with
the following property. Fix R ⩾ 2 and a nondecreasing function
ω : [1,∞) → [1,∞). Then there exists ϕ : BR → L1 for which every
distinct x ,y ∈ BR satisfy

ω
(
dW (x ,y)

)
≲ ∥ϕ(x) − ϕ(y)∥1 ⩽ dW (x ,y), (5)

if and only ifω(t) ≲ t for all t ∈ [1,∞) and
ˆ cR

1

ω(s)2

s3
ds ≲ 1. (6)

The fact that the integrability requirement (6) implies the exis-

tence of the desired embedding ϕ is due to [87, Corollary 5]. The

new content of Theorem 1.3 is that the existence of the embedding

ϕ implies (6). By letting R → ∞ in Theorem 1.3 we see that there

exists ϕ : Z5 → L1 that satisfies

∀x ,y ∈ Z5, ω
(
dW (x ,y)

)
≲ ∥ϕ(x) − ϕ(y)∥1 ⩽ dW (x ,y), (7)

if and only if ˆ ∞

1

ω(s)2

s3
ds ≲ 1. (8)

In [22] it was shown that if ϕ : Z5 → L1 satisfies (7), then there

must exist arbitrarily large t ⩾ 2 for which ω(t) ≲ t/(log t)δ,
where δ > 0 is a universal constant. This follows from (8) with

δ = 1

2
, which is the largest possible constant for which this conclu-

sion holds true. This positively answers a question that was asked

in [22, Remark 1.7]. In fact, it provides an even better conclusion,
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because (8) implies that, say, there must exist arbitrarily large t ⩾ 4

for which

ω(t) ≲
t√

(log t) log log t
.

(The precise criterion is the integrability condition (8).) Finally, by

consideringω(t) = t1−ε /D for ε ∈ (0, 1) and D ⩾ 1, we obtain the

following notable corollary.

Corollary 1.4 (L1 distortion of snowflakes). For every ε ∈
(0, 1) we have c1

(
Z5,d1−εW

)
≍ 1√

ε
.

The fact that for every O(1)-doubling metric space (X ,d) we
have c1(X ,d

1−ε ) ≲ 1/
√
ε follows from an argument of [55] (see

also [78, Theorem 5.2]). Corollary 1.4 shows that this is sharp. More

generally, it follows from Theorem 1.3 that for every R ⩾ 2 and

ε ∈ (0, 1) we have

c1
(
BR ,d

1−ε
W

)
≍ min

{
1

√
ε
,
√
logR

}
.

1.4 Vertical-versus-Horizontal Isoperimetry
Our new non-embeddability results are all consequences of an inde-

pendently interesting isoperimetric-type inequality which we shall

now describe. Roughly speaking, this inequality subtly quantifies

the fact that for any n ∈ Z and any h ∈ H5
Z
, there are many paths in

the Cayley graph XS (H
5

Z
) of length roughly

√
n that connect h to

hZn
. Consequently, if a finite subset Ω ⊆ Z5 has a small edge bound-

ary in the Cayley graph, then the number of pairs (x ,y) ∈ Z5 × Z5

for which |{x ,y} ∩ Ω | = 1 yet x and y differ only in their fifth

(vertical) coordinate must also be small. It turns out that the proper

interpretation of the term “small” is this context is not at all obvious,

and it should be measured in a certain multi-scale fashion. Formally,

we consider the following quantities.

Definition 1.5 (Discrete boundaries). For Ω ⊆ Z5, the hori-
zontal boundary of Ω is defined by

∂hΩ
def

=
{
(x ,y) ∈ Ω ×

(
Z5 ∖ Ω

)
: x−1y ∈ S

}
. (9)

Given also t ∈ N, the t-vertical boundary of Ω is defined by

∂tvΩ
def

=
{
(x ,y) ∈ Ω ×

(
Z5 ∖ Ω

)
: x−1y ∈

{
Z t ,Z−t } }

. (10)

The horizontal perimeter of Ω is defined to be the cardinality
|∂hΩ | of its horizontal boundary. The vertical perimeter of Ω is
defined to be the quantity

|∂vΩ |
def

=

( ∞∑
t=1

|∂tvΩ |2

t2

) 1

2

. (11)

The horizontal perimeter of Ω is nothing more than the size of its

edge boundary in the Cayley graph XS (H
5

Z
). The vertical perimeter

of Ω is a more subtle concept that does not have such a simple

combinatorial description. The definition (11) was first published

in [53, Section 4], where the isoperimetric-type conjecture that

we resolve here as Theorem 1.6 below also appeared for the first

time. These were formulated by the first named author and were

circulating for several years before [53] appeared, intended as a

possible route towards the algorithmic application that we indeed

succeed to obtain here. That “vertical smallness” should be mea-

sured through the quantity |∂vΩ |, i.e., the ℓ2 norm of the sequence

{|∂tvΩ |/t}∞t=1, was arrived at through trial and error, inspired by

functional inequalities that were obtained in [7, 53], as explained

in [53, Section 4].

Theorem 1.6. Every Ω ⊆ Z5 satisfies |∂vΩ | ≲ |∂hΩ |.

The significance of Theorem 1.6 can only be fully appreciated

through an examination of the geometric and analytic reasons for its

validity. To facilitate this, we shall include in this extended abstract

an extensive overview of the ideas of the proof of Theorem 1.6;

see Section 1.6 below. Before doing so, we shall now demonstrate

the utility of Theorem 1.6 by using it to deduce Theorem 1.3. As

explained above, by doing so we shall conclude the proof of all of

our new results (modulo Theorem 1.6), including the lower bound

on the integrality gap for the Goemans–Linial SDP.

1.5 From Isoperimetry to Non-embeddability
An equivalent formulation of Theorem 1.6 is that every finitely

supported function ϕ : Z5 → L1 satisfies the following Poincaré-
type inequality.

(
∞∑
t=1

1

t2

( ∑
h∈Z5



ϕ(
hZ t ) − ϕ(h)



1

)
2

) 1

2

≲
∑
h∈Z5

∑
σ∈S



ϕ(hσ) − ϕ(h)


1
. (12)

Indeed, Theorem (1.6) is nothing more than the special caseϕ = 1Ω
of (12). Conversely, the fact that (12) follows from Theorem (1.6)

is a straightforward application of the cut-cone representation of

L1 metrics (see e.g. [32, Proposition 4.2.2] or [73, Corollary 3.2]),

though our proof will yield the (seemingly) stronger statement (12)

directly. Next, Section 3.2 of [53] shows that (12) formally implies

its local counterpart, which asserts that there exists a universal

constant α ⩾ 1 such that for every n ∈ N and every ϕ : Z5 → L1
we have

©­«
n2∑
t=1

1

t2

( ∑
h∈Bn



ϕ(
hZ t ) − ϕ(h)



1

)
2ª®¬

1

2

≲
∑

h∈Bαn

∑
σ∈S



ϕ(hσ) − ϕ(h)


1
. (13)

To deduce Theorem 1.3, suppose that R ⩾ 2, thatω : [0,∞) →

[0,∞) is nondecreasing and that the mapping ϕ : BR → L1 sat-
isfies (5). For notational convenience, fix two universal constants

β ∈ (0, 1) and γ ∈ (1,∞) such that β
√
t ⩽ dW (Z t , 0) ⩽ γ

√
t for

every t ∈ N. Note that (5) implies in particular thatω(R) ≲ R, so
for every c ∈ (0, 1) the left hand side of (6) is at most a universal

constant multiple of R2. Hence, it suffices to prove Theorem 1.3

when R ⩾ 1+max{α,γ}, where α is the universal constant in (13).

Denote n = ⌊min{R/(1 + γ), (R − 1)/α}⌋ ∈ N. If t ∈ {1, . . . ,n2}
and h ∈ Bn then dW (hZ t , 0) ⩽ n + γ

√
t ⩽ (1 + γ)n ⩽ R, and
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therefore we may apply (5) with x = hZ t
and y = h to deduce that

∥ϕ(hZ t ) − ϕ(h)∥1 ≳ ω(dW (Z t , 0)) ⩾ ω(β
√
t). Consequently,

n2∑
t=1

1

t2

( ∑
h∈Bn



ϕ(
hZ t ) − ϕ(h)



1

)
2

≳
n2∑
t=1

|Bn |
2ω

(
β
√
t
)
2

t2

≳ n12
n2∑
t=1

ˆ t+1

t

ω
(
β
√
u/2

)
2

u2
du = β2n12

ˆ β
√
n2+1
√
2

β
√
2

ω(s)2

s3
ds

⩾
β2(R/2)12

max{(1 + γ)12,α12}

ˆ βR
2max{1+γ,α}

1

ω(s)2

s3
ds, (14)

where the second inequality in (14) uses the fact that ω is non-

decreasing, the penultimate step of (14) uses the change of variable

s = β
√
u/2, and for the final step of (14) recall that β < 1 and

the definition of n. At the same time, by our choice of n we have

hσ ∈ Bαn+1 ⊆ BR for every h ∈ Bαn and σ ∈ S , and so by (5) we

have ∥ϕ(hσ)−ϕ(h)∥1 ⩽ dW (hσ,h) = 1. The right hand side of (13)

is therefore at most a universal constant multiple of |Bαn | · |S | ≲
(αn)6 ≲ R6. By contrasting (14) with (13) we obtain that the desired
estimate (6) indeed holds true.

1.6 Overview of the Proof of Theorem 1.6
Our proof of (12), and hence also of Theorem 1.6, is carried out in

a continuous setting that is equivalent to its discrete counterpart.

Such a passage from continuous to discrete is commonplace, and

in the present setting this was carried out in [7, 53]. The idea is to

consider a continuous group that containsH5
Z
and to deduce the dis-

crete inequality (12) from its (appropriately formulated) continuous

counterpart via a partition of unity argument. There is an obvious

way to embedH5
Z
in a continuous group, namely by considering the

same group of matrices as in (2), but with the entries a, b, c, d, e now
allowed to be arbitrary real numbers instead of integers. This is a

indeed a viable route and the ensuing discussion could be carried

out by considering the resulting continuous matrix group. Never-

theless, it is notationally advantageous to work with a different

(standard) realization of H5
Z
which is isomorphic to the one that we

considered thus far. We shall now introduce the relevant notation.

Fix an orthonormal basis {X1,X2,Y1,Y2,Z } of R
5
. If h = α1X1 +

α2X2 +β1Y1 +β2Y2 +γZ ∈ R5 then denote xi (h) = αi , yi (h) = βi
for i ∈ {1, 2} and z(h) = γ, i.e., x1,x2,y1,y2, z : R5 → R are

the coordinate functions corresponding to the above basis. The

continuous Heisenberg group H5 is defined to be R5, equipped
with the following group law.

uv
def

= u +v

+
x1(u)y1(v) − y1(u)x1(v) + x2(u)y2(v) − y2(u)x2(v)

2

Z . (15)

The identity element of H5 is 0 ∈ R5 and the inverse of h ∈ R5

under the group law (15) is equal to −h. By directly computing

Jacobians, one checks that the Lebesgue measure on R5 is invariant
under the group operation given in (15), i.e., it is a Haar measure of

H5. In what follows, in order to avoid confusing multiplication by

scalars with the group law of H5, for every h ∈ H5 and t ∈ R we

shall use the exponential notation ht = (th1, . . . , th5); this agrees
with the group law when t ∈ Z. (This convention is not strictly

necessary, but without it the ensuing discussion could become

somewhat notationally confusing.)

The subgroup of H5 that is generated by {X1,X2,Y1,Y2} is the
discrete Heisenberg group of dimension 5, denoted H5

Z
. The ap-

parent inconsistency with (2) is not an actual issue because it is

straightforward to check that the two groups in question are in

fact isomorphic. The linear span of {X1,Y1,Z } is a subgroup of H5

which is denoted H3 (the 3-dimensional Heisenberg group).

There is a canonical left-invariant metric onH5, commonly called

the Carnot–Carathéodory metric, which we denote by d . We refer

to [15] for a precise definition of this metric. For the purpose of

the present discussion it suffices to know that d possesses the fol-

lowing properties. Firstly, for every д,h ∈ H5 and θ ∈ R we have

d(sθ(д), sθ(h)) = |θ|d(д,h). Here, sθ denotes the Heisenberg scaling
by θ, given by the formula

sθ(α1,α2,β1,β2,γ) = (θα1, θα2, θβ1, θβ2, θ
2γ)

Secondly, the restriction of d to the subgroup H5
Z
is bi-Lipschitz to

the word metric induced by its generating set {X±1
1
,X±1

2
,Y±1

1
,Y±1

2
}.

Thirdly, there exists C ∈ (1,∞) such that every h ∈ H5 satisfies

d(h, 0) ⩽ |x1(h)| + |x2(h)| + |y1(h)| + |y2(h)| + 4
√
|z(h)| ⩽

C

2

d(h, 0).
(16)

Given r ∈ (0,∞) we shall denote by Br ⊆ H5 the open ball

in the metric d of radius r centered at the identity element, i.e.,

Br = {h ∈ H5 : d(0,h) < r }. For Ω ⊆ H5 the Lipschitz constant of
a mapping f : Ω → R relative to the metric d will be denoted by

∥ f ∥
Lip(Ω). For s ∈ (0,∞), the notation Hs

will be used exclusively

to denote the s-dimensional Hausdorff measure that is induced by

the metric d (see e.g. [70]). One checks thatH6
is proportional to

the Lebesgue measure on R5 and that the restriction ofH4
to the

subgroup H3 is proportional to the Lebesgue measure on H3 (under
the canonical identification of H3 with R3). For two measurable

subsets E,U ⊆ H5 define the normalized vertical perimeter of E in

U to be the function vU (E) : R→ [0,∞] given by setting for every

s ∈ R,

vU (E)(s)
def

=
1

2
s H

6

( (
E △

(
EZ 2

2s ) )
∩U

)
=

1

2
s

ˆ
U

���1E (u) − 1E
(
uZ−22s ) ��� dH6(u). (17)

where A△ B
def

= (A∖ B) ∪ (B ∖A) is the symmetric difference. We

also denote v(E)
def

= vH5 (E).
The isoperimetric-type inequality of Theorem 1.7 below implies

Theorem 1.6. See [79] for an explanation of this (standard) deduc-

tion; the argument is a straightforward use of the co-area formula

(see e.g. [2, 65]) to pass from sets to functions, followed by the

partition of unity argument of [53, Section 3.3] to pass from the

continuous setting to the desired discrete inequality (12).

Theorem 1.7.



v(E)

L2(R) ≲ H5(∂E) for all open E ⊆ H5.

We shall now explain the overall strategy and main ideas of our

proof of Theorem 1.7. Complete technical details are included in

[79]. A key new ingredient appears in Section 1.6.1 below, which is

the only place in our proof where we use the fact that we are dealing
with H5 rather than H3. In fact, the analogue of Theorem 1.7 for
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H3 (i.e., with H5(∂E) replaced by H3(∂E) and v(E)(·) defined in

the same way as in (17) but with H6
replaced by the restriction

of H4
to H3) is false (see Section 1.7.1 below). The crux of the

matter is the special case of Theorem 1.7 where the boundary

of E is (a piece of) an intrinsic Lipschitz graph. Such sets were

introduced by Franchi, Serapioni, and Serra Cassano [36]. These

sets can be quite complicated, and in particular they are not the
same as graphs of functions (in the usual sense) that are Lipschitz

with respect to the Carnot–Carathéodory metric. Our proof of

this special case relies crucially on an L2-variant of (12) for H
3

that was proven in [7] using representation theory and in [53]

using Littlewood–Paley theory. In essence, our argument “lifts” a

certain L2 inequality in lower dimensions to a formally stronger

endpoint L1 (or isoperimetric-type) inequality in higher dimensions.

Once the special case is established, we prove Theorem 1.7 in its

full generality by decomposing an open set E into parts whose

boundaries are close to pieces of intrinsic Lipschitz graphs and

applying the special case to each part of this decomposition. We

deduce the desired estimate by summing up all the inequalities

thus obtained. Such a “corona decomposition” is an important and

widely-used tool in harmonic analysis on Rn that was formulated

by David and Semmes in [29]. For the present purpose we need

to devise an “intrinsic version” of a corona decomposition on the

Heisenberg group. This step uses a different “coercive quantity” to

control local overlaps, but for the most part it follows the lines of the

well-understood methodology of David and Semmes, as described

in the monographs [29, 30].

1.6.1 Intrinsic Lipschitz Graphs. Set V
def

= {h ∈ H5 : x2(h) = 0}.

For f : V → R define

Γf
def

=
{
vX

f (v)
2

: v ∈ V
}

(15)

=
{(
a, f (a, c, d, e), c, d, e −

1

2

df (a, c, d, e)
)
: a, c, d, e ∈ R

}
,

(18)

where (18) uses the identification of aX1+bX2+cY1+dY2+eZ ∈ H5

with (a, b, c, d, e) ∈ R5 and the identification of (a, 0, c, d, e) ∈ V
with (a, c, d, e) ∈ R4 (thus we think of the domain of f as equal

to R4). The set Γf is a typical intrinsic graph in H5. See [79] for

a discussion of the general case, which is equivalent to this case

via a symmetry of H5 (so the ensuing discussion has no loss of

generality). Suppose that λ ∈ (0,∞). We say that Γf is an intrinsic
λ-Lipschitz graph over the vertical hyperplane V if

∀w1,w2 ∈ Γf , |x2(w1) − x2(w2)| ⩽ λd(w1,w2). (19)

Due to (18) the condition (19) amounts to a point-wise inequality

for f that is somewhat complicated, and in particular it does not

imply that f must be Lipschitz with respect to the restriction of

the Carnot–Carathéodory metric to the hyperplaneV , as explained

in [37, Remark 3.13].

Denote by Γ+f = {vX t
2
: v ∈ V ∧ t > f (v)} the half-space that

is bounded by the intrinsic graph Γf . Suppose that Γf is an intrinsic

λ-Lipschitz graph with λ ∈ (0, 1). We claim that

∀ r ∈ (0,∞),


vBr (Γ+f )



L2(R)
≲

r5

1 − λ
. (20)

When, say, λ ∈ (0, 1
2
), the estimate (20) is in essence the special case

of Theorem 1.7 for pieces of Lipschitz graphs. This is so because,

due to the isoperimetric inequality for the Heisenberg group [81],

the right-hand side of (20) is at most a universal constant multiple

ofH5(∂(Br ∩ Γ+f )) wheneverH
6(Br ∩ Γ+f ) ≳ r6, i.e., provided that

Γ+f occupies a constant fraction of the volume of the ball Br . The

estimate (20) will be used below only in such a non-degenerate

situation.

The advantage of working in H5 rather than H3 is that V ⊆ H5

can be sliced into copies of H3. We will bound ∥vBr (Γ
+
f )∥L2(R) by

decomposing Γ+f into a corresponding family of slices. Write

∀u ∈ H5, hu
def

= X
x1(u)
1

+Y
y1(u)
1

+Zz(u)+ 1

2
x2(u)y2(u) ∈ H3. (21)

Recalling (15), one computes directly that u = Y
y2(u)
2

huX
x2(u)
2

. Let

C ∈ (1,∞) be the universal constant in (16). A straightforward

computation using (16) shows that d(hu , 0) ⩽ Cd(u, 0). Also, (16)
implies that |y2(u)| ⩽ Cd(u, 0). These simple observations demon-

strate that

∀u ∈ H5, 1Br (u) ⩽ 1[−Cr,Cr ]
(
y2(u)

)
1H3∩BCr (hu ). (22)

For every χ ∈ R define fχ : H3 → R by fχ(h) = f (Y
χ
2
h) (recall

that H3 is the span of {X1,Y1,Z }, so Y
χ
2
h ∈ V is in the domain of

f ). Under this notation u ∈ Γ+f if and only if x2(u) > fy2(u)(hu ).

Also, for every α ∈ R we have uZα ∈ Γ+f if and only if x2(u) >

fy2(u)(huZ
α), since huZα = huZ

α
by (21). Due to (17) and (22),

these observations imply that for every s ∈ R we have

vBr
(
Γ+f

)
(s)

⩽
1

2
s

ˆ
H5

���1{x2(u)>fy
2
(u)(hu )} − 1

{x2(u)>fy
2
(u)(huZ−22s )}

���
× 1[−Cr,Cr ]

(
y2(u)

)
1H3∩BCr (hu ) dH

6(u). (23)

Recall that H6
is proportional to the Lebesgue measure on H5.

Hence, if we continue to canonically identify aX1 + bX2 + cY1 +
dY2 + eZ ∈ H5 with (a, b, c, d, e) ∈ R5 and aX1 + cY1 + eZ ∈ H3

with (a, c, e) ∈ R3 then, recalling (21), the integral in the right hand

side of (23) is proportional to

ˆ
R5

���1{b>fd (a,c,e+ 1

2
bd

)} − 1{
b>fd

(
a,c,e+ 1

2
bd−22s

)} ���
× 1[−Cr,Cr ](d)1H3∩BCr

(
a, c, e +

1

2

bd
)
d(a, b, c, d, e)

=

ˆ
R5

���1{b>fd(α,γ,ϵ)} − 1{b>fd(α,γ,ϵ−22s )}

���
× 1[−Cr,Cr ](d)1H3∩BCr (α,γ, ϵ) d(α, b,γ, d, ϵ),

where for each fixed b, d ∈ R we made the change of variable

(α,γ, ϵ) = (a, c, e + bd/2). Since the restriction of the Hausdorff

measure H4
to H3 is proportional to the Lebesgue measure on
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H3 � R3, we conclude from the above considerations that for every

s ∈ R we have

vBr
(
Γ+f

)
(s)

≲
1

2
s

ˆ Cr

−Cr

ˆ
H3∩BCr( ˆ ∞

−∞

���1{ξ>fχ(h)} − 1
{ξ>fχ(hZ−22s )}

��� dξ) dH4(h) dχ

=
1

2
s

ˆ Cr

−Cr

ˆ
H3∩BCr

���fχ(h) − fχ
(
hZ−22s ) ��� dH4(h) dχ. (24)

Next, fix h1,h2 ∈ H3 and χ ∈ R. Denotew1

def

= Y
χ
2
h1X

fχ(h1)
2

and

w2

def

= Y
χ
2
h2X

fχ(h2)
2

. By design we havew1,w2 ∈ Γf and therefore

we may apply (20) to deduce that

| fχ(h1) − fχ(h2)| = |x2(w1) − x2(w2)| ⩽ λd(w1,w2)

= λd
(
Y
χ
2
h1X

fχ(h1)
2

,Y
χ
2
h2X

fχ(h2)
2

)
= λd

(
0,h−1

1
h2X

fχ(h2)−fχ(h1)
2

)
⩽ λ

(
Cd(h1,h2) + | fχ(h1) − fχ(h2)|

)
, (25)

where the first inequality in (25) uses (20) , the penultimate step

of (25) uses the left-invariance of the metric d and the fact that

X2 commutes with all of the elements of H3, and the final step

of (25) uses (16) (twice). The estimate (25) simplifies to show that

| fχ(h1) − fχ(h2)| ≲ d(h1,h2)/(1− λ), i.e., for every fixed χ ∈ R the

function fχ is Lipschitz on H3 with ∥ fχ∥Lip(H3) ≲ 1/(1 − λ).

In [7, Theorem 7.5] the following inequality was proved for a

Lipschitz function ψ : H3 → R and ρ ∈ (0,∞) as a consequence

of a continuous L2-variant of (12). Due to its quadratic nature,

this variant can be proved using a decomposition into irreducible

representations (i.e., a spectral argument).

ˆ ρ2

0

ˆ
Bρ∩H3

��ψ(h) −ψ(
hZ−t ) ��2

dH4(h)
dt

t2
≲ ρ4∥ψ∥2

Lip(H3)
.

(26)

Consequently,

r5

(1 − λ)2
(27)

≳
ˆ Cr

−Cr

ˆ (Cr )2

0

ˆ
BCr∩H3

��fχ(h) − fχ
(
hZ−t ) ��2

dH4(h)
dt

t2
dχ

=

ˆ
log

2
(Cr )

−∞

2 log 2

2
2s

×

ˆ Cr

−Cr

ˆ
BCr∩H3

���fχ(h) − fχ
(
hZ−22s ) ���2 dH4(h) dχ ds (28)

≳
ˆ

log
2
(Cr )

−∞

1

r5
(29)

×

(
1

2
s

ˆ Cr

−Cr

ˆ
BCr∩H3

���fχ(h) − fχ
(
hZ−22s ) ��� dH4(h) dχ

)
2

ds

≳
1

r5

ˆ
log

2
(Cr )

−∞

vBr
(
Γ+f

)
(s)2 ds, (30)

In (27) we applied (26) with ψ = fχ for each χ ∈ [−Cr ,Cr ], while
using ∥ fχ∥Lip(H3) ≲ 1/(1 − λ). In (28) we made the change of

variable t = 2
2s
. In (29) we used the Cauchy–Schwarz inequality

while noting thatH4(BCr ∩H
3) ≍ r4. Finally, (30) follows from an

application of (24). Now,

vBr (Γ+f )

2
L2(R)

=

ˆ
log

2
(Cr )

−∞

vBr
(
Γ+f

)
(s)2 ds +

ˆ ∞

log
2
(Cr )

vBr
(
Γ+f

)
(s)2 ds

≲
r10

(1 − λ)2
+

ˆ ∞

log
2
(Cr )

H6(Br )
2

2
2s ds

≍
r10

(1 − λ)2
+

ˆ ∞

log
2
(Cr )

r12

2
2s ds ≍

r10

(1 − λ)2
, (31)

where we estimated the second integral using the trivial bound

vBr (E)(s) ⩽ H6(Br )/2
s ≍ r6/2s . By taking square roots of both

sides of (31) we obtain the desired estimate (20). It is important to

stress that this proof does not work for functions on H3 because it
relies on slicing H5 into copies of H3. There is no analogue of (26)

for 1-dimensional vertical slices of H3.

1.6.2 An Intrinsic Corona Decomposition. In Section 1.6.1 we

presented the complete details of the proof of a crucial new ingre-

dient that underlies the validity of Theorem 1.7. This ingredient is

the only step that relies on a property of H5 that is not shared by

H3. We believe that it is important to fully explain this key ingre-

dient within this extended abstract, but this means that we must

defer the details of the formal derivation of Theorem 1.7 from its

special case (20) to the full version [79]. The complete derivation

requires additional terminology and notation, but the main idea

is to produce “intrinsic corona decompositions” in the Heisenberg

group. Corona decompositions are an established tool in analysis

for reducing the study of certain singular integrals onRn to the case

of Lipschitz graphs, starting with seminal works of David [26, 27]

and Jones [42, 43] on the Cauchy integral and culminating with the

David–Semmes theory of quantitative rectifiability [29, 30]. Our

adaptation of this technique is mostly technical, but it will also in-

volve a conceptually new ingredient, namely the use of quantitative

monotonicity for this purpose. We will now outline the remainder

of the proof of Theorem 1.7.

Our arguments hold for Heisenberg groups of any dimension

(including H3), but we avoid introducing new notation by contin-

uing to work with H5 for now. The first step is to show that in

order to establish Theorem 1.7 it suffices to prove that for every

r ∈ (0,∞) and every E ⊆ H5, we have ∥vBr (E)∥L2(R) ≲ r5 under

the additional assumption that the sets E, H5 ∖ E, and ∂E are r -
locally Ahlfors-regular, i.e.,H6(uBρ∩E) ≍ ρ6 ≍ H6(vBρ∖E) and

H5(wBρ∩∂E) ≍ ρ
5
for all ρ ∈ (0, r ) and (u,v,w) ∈ E×(H5∖E)×∂E.

We prove this by first applying a Heisenberg scaling and an ap-

proximation argument to reduce Theorem 1.7 to the case that E
is a “cellular set,” i.e., it is a union of parallelepipeds of the form

h[− 1

2
, 1
2
]5 ash ranges over a subset of the discrete Heisenberg group

H5
Z
⊆ H5. Any such set is Ahlfors-regular on sufficiently small balls.

We next argue that E can be decomposed into sets that satisfy the

desired local Ahlfors-regularity. The full construction of this de-

composition appears in [79], but we remark briefly that it amounts
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to the following natural “greedy” iterative procedure. If one of the

sets E,H5∖E, ∂E were not locally Ahlfors-regular then there would

be some smallest ball B such that the density of E, H5 ∖ E or ∂E
is either too low or too high on B. By replacing E by either E ∪ B
or E ∖ B, we cut off a piece of ∂E and decrease H5(∂E). Since B
was the smallest ball where Ahlfors-regularity fails, E,H5 ∖ E, ∂E
are Ahlfors-regular on balls smaller than B. Repeating this process

eventually reduces E to the empty set, and we arrive at the con-

clusion of Theorem 1.7 for the initial set E by proving the (local

version of) the theorem for each piece of this decomposition, then

summing the resulting inequalities. We will therefore suppose from

now on that E, H5 ∖ E and ∂E are all locally Ahlfors-regular.

The next step is the heart of the matter: approximating ∂E by

intrinsic Lipschitz graphs so that we can use the fact that Theo-

rem 1.7 holds for (pieces of) such graphs. The natural way to do

this is to construct (an appropriate Heisenberg version of) a corona

decomposition in the sense of [29, 30]. Such a decomposition covers

∂E by two types of sets, called stopping-time regions and bad cubes.
Stopping-time regions correspond to parts of ∂E that are close to

intrinsic Lipschitz graphs, and bad cubes correspond to parts of

∂E, like sharp corners, that are not. The multiplicity of this cover

depends on the shape of ∂E at different scales. For example, ∂E
might look smooth on a large neighborhood of a point x , jagged
at a medium scale, then smooth again at a small scale. If so, then x
is contained in a large stopping-time region, a medium-sized bad

cube, and a second small stopping-time region. A cover like this is

a corona decomposition if it satisfies a Carleson packing condition
(see [79]) that bounds its average multiplicity on any ball.

We construct our cover following the well-established methods

of [29, 30]. We start by constructing a sequence of nested partitions

of ∂E into pieces called cubes; this is a standard construction due to

Christ [23] and David [28] and only uses the Ahlfors regularity of

∂E. These partitions are analogues of the standard tilings of Rn into

dyadic cubes. Next, we classify the cubes into good cubes, which
are close to a piece of a hyperplane, and bad cubes, which are not.

In order to produce a corona decomposition, there cannot be too

many bad cubes, i.e., they must satisfy a Carleson packing condition.

In [29, 30], this condition follows from quantitative rectifiability; the
surface in question is assumed to satisfy a condition that bounds

the sum of its (appropriately normalized) local deviations from hy-

perplanes. These local deviations are higher-dimensional versions

of Jones’ β-numbers [42, 43], and the quantitative rectifiability

assumption leads to the desired packing condition. In the present

setting, the packing condition follows instead from quantitative non-
monotonicity. The concept of the quantitative non-monotonicity

of a set E ⊆ H5 (see [79]) was first defined in [21, 22], where the

kinematic formula for the Heisenberg group was used to show that

the total non-monotonicity of all of the cubes is at most a constant

multiple ofH5(∂E). This means that there cannot be many cubes

that have large non-monotonicity. By a result of [21, 22], if a set has

small non-monotonicity, then its boundary is close to a hyperplane.

Consequently, most cubes are close to hyperplanes and are there-

fore good. (The result in [21, 22] is stronger than what we need for

this proof; it provides power-type bounds on how closely a nearly-

monotone surface approximates a hyperplane. For our purposes,

it is enough to have some bound (not necessarily power-type) on

the shape of nearly-monotone surfaces, and we can deduce the

bound that we need by applying a quick compactness argument to

a result from [20] that states that if a set is precisely monotone (i.e.,
every line intersects its boundary in at most one point), then it is a

half-space.)

Next, we partition the good cubes into stopping-time regions

by using an iterative construction that corrects overpartitioning

that may have occurred when the Christ cubes were constructed.

If Q is a largest good cube that hasn’t been treated yet and if P is

its approximating half-space, we find all of the descendants of Q
with approximating half-spaces that are sufficiently close to P . If
we glue these half-spaces together using a partition of unity, the

result is an intrinsic Lipschitz half-space that approximates all of

these descendants. By repeating this procedure for each untreated

cube, we obtain a collection of stopping-time regions. These regions

satisfy a Carleson packing condition because if a point x ∈ ∂E is

contained in many different stopping-time regions, then either x is

contained in many different bad cubes, or x is contained in good

cubes whose approximating hyperplanes point in many different

directions. In either case, these cubes generate non-monotonicity,

so there can only be a few points with large multiplicity.

The construction above leads to the proof of Theorem 1.7 as

follows. The vertical perimeter of ∂E comes from three sources:

the bad cubes, the approximating Lipschitz graphs, and the error

incurred by approximating a stopping-time region by an intrinsic

Lipschitz graph. By the Carleson packing condition, there are few

bad cubes, and they contribute vertical perimeter on the order of

H5(∂E). By the result of Section 1.6.1, the intrinsic Lipschitz graphs

also contribute vertical perimeter on the order ofH5(∂E). Finally,
the vertical perimeter of the difference between a stopping-time

region and an intrinsic Lipschitz graph is bounded by the size of

the stopping-time region. The stopping-time regions also satisfy a

Carleson packing condition, so these errors also contribute vertical

perimeter on the order ofH5(∂E). Summing these contributions,

we obtain the desired bound.

1.7 Historical Overview and Directions for
Further Research

Among the well-established deep and multifaceted connections

between theoretical computer science and pure mathematics, the

Sparsest Cut Problem stands out for its profound and often un-

expected impact on a variety of areas. Indeed, previous research

on this question came hand-in-hand with the development of re-

markable mathematical and algorithmic ideas that spurred many

further works of importance in their own right. Because the present

work belongs to this tradition, we will try to put it into context

by elaborating further on the history of these investigations and

describing directions for further research and open problems. Some

of these directions will appear in forthcoming work.

The first polynomial-time algorithm for Sparsest Cut with ap-

proximation ratioO(logn)was obtained in the important work [59],

which studied the notable special case of Sparsest Cut with Uniform
Demands (see Section 1.7.3 below). This work introduced a lin-

ear programming relaxation and developed influential techniques

for its analysis, and it has led to a myriad of algorithmic applica-

tions. The seminal contributions [6, 64] obtained the upper bound
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ρGL(n) ≲ logn in full generality by incorporating a classical embed-

ding theorem of Bourgain [12], thus heralding the transformative

use of metric embeddings in algorithm design. The matching lower

bound on the integrality gap of this linear program was proven

in [59, 64]. This showed for the first time that Bourgain’s embedding

theorem is asymptotically sharp and was the first demonstration of

the power of expander graphs in the study of metric embeddings.

A O(
√
logn) upper bound for the approximation ratio of the

Goemans–Linial algorithm in the case of uniform demands was

obtained in the important work [4]. This work relied on a clever

use of the concentration of measure phenomenon and introduced

influential techniques such as a “chaining argument” for metrics

of negative type and the use of expander flows. [4] also had direct

impact on results in pure mathematics, including combinatorics and

metric geometry; see e.g. the “edge replacement theorem” and the

estimates on the observable diameter of doubling metric measure

spaces in [77]. The best-known upper bound ρGL(n) ≲ (logn)
1

2
+o(1)

of [3] built on the (then very recent) development of two techniques:

The chaining argument of [4] (through its refined analysis in [54])

and the measured descent embedding method of [51] (through its

statement as a gluing technique for Lipschitz maps in [54]). Another

important input to [3] was a re-weighting argument of [17] that

allowed for the construction of an appropriate “random zero set”

from the argument of [4, 54] (see [73, 75] for more on this notion

and its significance).

The impossibility result [49] that refuted the Goemans–Linial

conjecture relied on a striking link to complexity theory through

the Unique Games Conjecture (UGC), as well as an interesting use

of discrete harmonic analysis (through [13]) in this context; see

also [52] for an incorporation of a different tool from discrete har-

monic analysis (namely [44], following [48]) for the same purpose,

as well as [18, 24] for computational hardness. The best impossi-

bility result currently known [45] for Sparsest Cut with Uniform

Demands relies on the development of new pseudorandom genera-

tors.

The idea of using the geometry of the Heisenberg group to bound

ρGL(n) from below originated in [56], where the relevant metric of

negative type was constructed through a complex-analytic argu-

ment, and initial (qualitative) impossibility results were presented

through the use of Pansu’s differentiation theorem [82] and the

Radon–Nikodým Property from functional analysis (see e.g. [11]).

In [19], it was shown that the Heisenberg group indeed provides a

proof that limn→∞ ρGL(n) = ∞. This proof introduced a remarkable

new notion of differentiation for L1-valued mappings, which led to

the use of tools from geometric measure theory [34, 35] to study

the problem. A different proof that H3 fails to admit a bi-Lipschitz

embedding into L1 was found in [20], where a classical notion of

metric differentiation [50] was used in conjunction with the novel

idea to consider monotonicity of sets in this context, combined with

a sub-Riemannian-geometric argument that yielded a classification

of monotone subsets of H3. The main result of [22] finds a quan-

titative lower estimate for the scale at which this differentiation

argument can be applied, leading to a lower bound of (logn)Ω(1)

on ρGL(n). This result relies on a mixture of the methods of [19]

and [20] and requires overcoming obstacles that are not present in

the original qualitative investigation. In particular, [22] introduced

the quantitative measures of non-monotonicity that we use in the

present work to find crucial bounds in the construction of an intrin-

sic corona decomposition. The quantitative differentiation bound

of [22] remains the best bound currently known, and it would be

very interesting to discover the sharp behavior in this more subtle

question.

The desire to avoid the (often difficult) need to obtain sharp

bounds for quantitative differentiation motivated the investigations

in [7, 53]. In particular, [7] devised a method to prove sharp (up to

lower order factors) nonembeddability statements for the Heisen-

berg group based on a cohomological argument and a quantitative

ergodic theorem. For Hilbert-space valued mappings, [7] used a

cohomological argument in combination with representation the-

ory to prove the following quadratic inequality for every finitely

supported function ϕ : H5Z → L2.( ∞∑
t=1

1

t2

∑
h∈Z5



ϕ(
hZ t ) − ϕ(h)

2

2

) 1

2

≲

( ∑
h∈Z5

∑
σ∈S



ϕ(hσ) − ϕ(h)

2
2

) 1

2

. (32)

In [53] a different approach based on Littlewood–Paley theory was

devised, leading to the following generalization of (32) that holds

true for every p ∈ (1, 2] and every finitely supported ϕ : H5 → Lp .(
∞∑
t=1

1

t2

( ∑
h∈Z5



ϕ(
hZ t ) − ϕ(h)

pp ) 2

p
) 1

2

⩽ C(p)

( ∑
h∈Z5

∑
σ∈S



ϕ(hσ) − ϕ(h)

pp ) 1

p
, (33)

for some C(p) ∈ (0,∞). See [53] for a strengthening of (33) that

holds for general uniformly convex targets (using the recently

established [67] vector-valued Littlewood–Paley–Stein theory for

the Poisson semigroup). These functional inequalities yield sharp

non-embeddability estimates for balls inH5
Z
, but the method of [53]

inherently yields a constantC(p) in (33) that satisfies limp→1C(p) =
∞. The estimate (13) that we prove here for L1-valued mappings is

an endpoint estimate corresponding to (33), showing that the best

possible C(p) actually remains bounded as p → 1. This confirms a

conjecture of [53] and is crucial for the results that we obtain here.

As explained in Section 1.6.1, our proof of (32) uses the H3-
analogue of (32). It should be mentioned at this juncture that the

proofs of (32) and (33) in [7, 53] were oblivious to the dimension

of the underlying Heisenberg group.
3
An unexpected aspect of the

present work is that the underlying dimension does play a role at the

endpoint p = 1, with the analogue of (13) (or Theorem 1.6) for H3

being in fact incorrect; see Section 1.7.1 below. In the full version [79]
of this paper we shall establish the H2k+1-analogue of Theorem 1.6

for every k ∈ {2, 3, . . .}, in which case the implicit constant depends

3
Thus far in this extended abstract we recalled the definitions of H5

and H3
but not

of higher-dimensional Heisenberg groups (since they are not needed for any of the

applications that are obtain here). Nevertheless, it is obvious how to generalize either

the matrix group or the group modelled on R5 that we considered above to obtain the

Heisenberg group H2k+1
for any k ∈ N.
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on k , and we shall also obtain the sharp asymptotic behavior as

k → ∞.

As we recalled above, past progress on the Sparsest Cut Problem

came hand-in-hand with meaningful mathematical developments.

The present work is a culmination of a long-term project that is

rooted in mathematical phenomena that are interesting not just

for their relevance to approximation algorithms but also for their

connections to the broader mathematical world. In the ensuing

subsections we shall describe some further results and questions

related to this general direction.

1.7.1 The 3-dimensional Heisenberg Group. The investigation of

the possible validity of an appropriate analogue of Theorem 1.6 with

H5
Z
replaced by H3

Z
remains an intriguing mystery and a subject of

ongoing research that will be published elsewhere. This ongoing

work shows that Theorem 1.6 fails for H3
Z
, but that there exists

p ∈ (2,∞) such that for every Ω ⊆ H3
Z
we have( ∞∑

t=1

|∂tvΩ |p

t1+
p
2

) 1

p
≲ |∂hΩ |. (34)

A simple argument shows that sups ∈N |∂svΩ |/
√
s ⩽ γ|∂hΩ | for

some universal constant γ > 0. Hence, for every t ∈ N we have

|∂tvΩ |p

t1+
p
2

⩽
|∂tvΩ |2

t2
sup

s ∈N

(
|∂svΩ |
√
s

)p−2
⩽

|∂tvΩ |2

t2
(γ|∂hΩ |)p−2.

This implies that the left hand side of (34) is bounded from above by

a universal constant multiple of |∂vΩ |2/p |∂hΩ |1−2/p . Therefore (34)

is weaker than the estimate |∂vΩ | ≲ |∂hΩ | of Theorem 1.6. It would

be interesting to determine the infimum over those p for which (34)

holds true for every Ω ⊆ H3
Z
, with our ongoing work showing that

it is at least 4. In fact, this work shows that for every R ⩾ 2 the L1
distortion of the ball of radius R inH3

Z
is at most a constant multiple

of
4

√
logR — asymptotically less than the distortion of the ball of

the same radius in H5
Z
. It would be interesting to determine the

correct asymptotics of this distortion, with the best-known lower

bound remaining that of [22], i.e., a constant multiple of (logR)δ

for some universal constant δ > 0. It should be stressed, however,

that the algorithmic application of Theorem 1.6 that is obtained

here uses Theorem (1.6) as stated for H5
Z
, and understanding the

case of H3
Z
would not yield any further improvement. So, while

the above questions are geometrically and analytically interesting

in their own right, they are not needed for applications that we

currently have in mind.

1.7.2 Metric Embeddings. Theorem 1.2 also yields a sharp re-

sult for the general problem of finding the asymptotically largest-

possible L1 distortion of a finite doubling metric space withn points.

A metric space (X ,dX ) is said to be K-doubling for some K ∈ N
if every ball in X (centered anywhere and of any radius) can be

covered by K balls of half its radius. By [51],

c1(X ,dX ) ≲
√
(logK) log |X |. (35)

As noted in [40], the dependence on |X | in (35), but with a worse

dependence on K , follows by combining results of [5] and [83] (the

dependence on K that follows from [5, 83] was improved signifi-

cantly in [40]). The metric space (Z5,dW ) isO(1)-doubling because
|BR | ≍ R6 for every R ⩾ 1. Theorem 1.2 shows that (35) is sharp

when K = O(1), thus improving over the previously best-known

construction [58] of arbitrarily large O(1)-doubling finite metric

spaces {(Xi ,di )}
∞
i=1 for which c1(Xi ,di ) ≳

√
(log |Xi |)/log log |Xi |.

Probably (35) is sharp for every K ⩽ |X |; conceivably this could be

proven by incorporating Theorem 1.2 into the argument of [41],

but we shall not pursue this here. Theorem 1.2 establishes for the

first time the existence of a metric space that simultaneously has

several useful geometric properties and poor (indeed, worst possi-

ble) embeddability into L1. By virtue of being O(1)-doubling, the
metric space (Z5,dW ) also has Markov type 2 due to [33] (which

improves over [76], where the conclusion that it has Markov type p
for every p < 2 was obtained). For more on the bi-Lipschitz invari-

ant Markov type and its applications, see [8, 74]. The property of

having Markov type 2 is shared by the construction of [58], which

is also O(1)-doubling, but (Z5,dW ) has additional features that the

example of [58] fails to have. For one, it is a group; for another,

by [60, 61] we know that (Z5,dW ) has Markov convexity 4 (and

no less). (See [57, 71] for background on the bi-Lipschitz invariant

Markov convexity and its consequences.) By [71, Section 3] the ex-

ample of [58] does not have Markov convexity p for any finite p. No
examples of arbitrarily large finite metric spaces {(Xi ,di )}

∞
i=1 with

bounded Markov convexity (and Markov convexity constants uni-

formly bounded) such that c1(Xi ,di ) ≳
√
log |Xi | were previously

known to exist. Analogous statements are known to be impossible

for Banach spaces [72], so it is natural in the context of the Ribe

program (see the surveys [9, 74] for more on this research program)

to ask whether there is a potential metric version of [72]; the above

discussion shows that there is not.

1.7.3 The Sparsest Cut Problem with Uniform Demands. An im-

portant special case of the Sparsest Cut Problem is when the demand

matrix D is the matrix 1{1, ...,n }×{1, ...,n } ∈ Mn (R) all of whose en-
tries equal 1 and the capacity matrixC lies inMn ({0, 1}), i.e., all its

entries are either 0 or 1. This is known as the Sparsest Cut Problem
with Uniform Demands. In this case C can also be described as the

adjacency matrix of a graph G whose vertex set is {1, . . . ,n} and
whose edge set consists of those unordered pairs {i, j} ⊆ {1, . . . ,n}
for which Ci j = 1. With this interpretation, given A ⊆ {1, . . . ,n}
the numerator in (1) equals twice the number of edges that are inci-

dent to A inG . And, since D = 1{1, ...,n }×{1, ...,n } , the denominator

in (1) is equal to 2|A|(n− |A|) ≍ nmin{|A|, |{1, . . . ,n}∖A|}. So, the
Sparsest Cut Problem with Uniform Demands asks for an algorithm

that takes as input a finite graph and outputs a quantity which is

bounded above and below by universal constant multiples of its

conductance [86] divided by n. The Goemans–Linial integrality gap

corresponding to this special case is

ρunifGL (n)
def

= sup

C ∈Mn ({0,1})
C symmetric

OPT(C, 1{1, ...,n }×{1, ...,n })
SDP(C, 1{1, ...,n }×{1, ...,n })

.

The Goemans–Linial algorithm furnishes the best-known approxi-

mation ratio also in the case of uniform demands. By the important

work [4] we have ρunifGL (n) ≲
√
logn, improving over the previous

bound ρunifGL (n) ≲ logn of [59]. As explained in [21], the present

approach based on (fixed dimensional) Heisenberg groups can-

not yield a lower bound on ρunifGL (n) that tends to ∞ with n. The

best-known lower bound [45] is ρunifGL (n) ⩾ exp(c
√
log logn) for
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some universal constant c > 0, improving over the previous bound

ρunifGL (n) ≳ log logn of [31]. Determining the asymptotic behavior

of ρunifGL (n) remains an intriguing open problem.
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