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Unique molecular identifiers (MIDs) have been demonstrated to effectively improve 
immune repertoire sequencing (IR-seq) accuracy, especially to identify somatic hypermu-
tations in antibody repertoire sequencing. However, evaluating the sensitivity to detect 
rare T cells and the degree of clonal expansion in IR-seq has been difficult due to the lack 
of knowledge of T cell receptor (TCR) RNA molecule copy number and a generalized 
approach to estimate T cell clone size from TCR RNA molecule quantification. This lim-
ited the application of TCR repertoire sequencing (TCR-seq) in clinical settings, such as 
detecting minimal residual disease in lymphoid malignancies after treatment, evaluating 
effectiveness of vaccination and assessing degree of infection. Here, we describe using 
an MID Clustering-based IR-Seq (MIDCIRS) method to quantitatively study TCR RNA 
molecule copy number and clonality in T cells. First, we demonstrated the necessity of 
performing MID sub-clustering to eliminate erroneous sequences. Further, we showed 
that MIDCIRS enables a sensitive detection of a single cell in as many as one million 
naïve T cells and an accurate estimation of the degree of T cell clonal expression. The 
demonstrated accuracy, sensitivity, and wide dynamic range of MIDCIRS TCR-seq 
provide foundations for future applications in both basic research and clinical settings.

Keywords: MID clustering-based IR-Seq TCR repertoire sequencing, molecular identifiers, sub-clustering, naïve 
T cells, CMV-specific T cells

INTRODUCTION

Immune repertoire sequencing (IR-seq) has become a useful tool to quantify the composition of B 
or T cell antigen receptor repertoires in basic research, such as vaccination (1–3), immune repertoire 
development (4–9), and lymphocyte lineage tracking (2, 9), as well as in various clinical settings, such 
as minimal residual disease (MRD) monitoring (10), hematopoietic stem cell transplant recovery 
monitoring (11), and cancer patient prognosis (12, 13). However, early IR-seq experiments suf-
fered from high PCR and sequencing errors that limited their ability to perform accurate repertoire 
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diversity and abundance quantification. This bottleneck also 
limits the sensitivity of many IR-seq-based assays, such as MRD 
monitoring. Recently, we and others introduced molecular 
identifiers (MIDs) to IR-seq and DNA/RNA sequencing to 
reduce errors by tracking each RNA molecule through PCR and 
sequencing. This approach has significantly improved the accu-
racy of repertoire profiling (9, 14–19), especially to distinguish 
antibody somatic hypermutations from PCR and sequencing 
errors. However, several challenges remain regarding how to use 
MIDs correctly and how to use MIDs for cell clone size estimate. 
First, erroneous MIDs resulting from PCR or sequencing errors 
make accurate MID counting difficult. Second, there is a lack of 
general guidelines of required sequencing depth to saturate MID 
counts. Third, how to use RNA molecular counting to estimate 
T cell clone size has yet to be established.

These challenges become roadblocks to accurately quantify 
T cell receptor (TCR) or BCR RNA molecule copy number, which 
is important in estimating clonal expansion and identifying rare 
clones. Robins et al. developed QuanTILfy to attempt to address 
this problem by counting TILs and assessing T cell clonality in 
tissue samples through droplet digital PCR (dPCR) of rearranged 
TCRβ loci (20). However, by partitioning TCR Vβ into eight 
non-overlapping subgroups, this method lacks the sensitivity 
to identify unique CDR3 of each clonality, not to mention rare 
clones. Therefore, a more comprehensive method to quantify 
TCR or antibody transcripts with high sensitivity while retaining 
accurate clonal diversity is needed for both standardizing basic 
IR-seq studies and applying it in clinical decision-making, such 
as detecting MRD in lymphoid malignancies after treatment, 
evaluating effectiveness of vaccination, and assessing degree of 
infection.

We recently developed a more generalized approach with 
reduced MID length to identify each individual RNA molecule 
using a sequence-similarity-based clustering method to separate 
sequencing reads into sub-clusters within a group of sequencing 
reads that have the same MID. We applied this MID Clustering-
based IR-Seq (MIDCIRS) to study age-related antibody repertoire 
development and diversification during acute malaria (9). In this 
study, we applied MIDCIRS to TCR [MIDCIRS TCR repertoire 
sequencing (TCR-seq)] and used CD8+ T cells as a test bed to 
build a model to count TCR RNA molecule copy number based 
on input cell numbers, percentage of RNA input, and sequenc-
ing depth. We also demonstrated a significant improvement in 
detection sensitivity. A previous study using a different repertoire 
sequencing methodology reported the capacity to resolve one in 
10,000 cells (21). With MIDCIRS TCR-seq, we were able to detect 
one unique T cell clone in 1,000,000 T cells. In addition, we applied 
MIDCIRS TCR-seq to examine T cell clonal expansion in CMV 
infection and showed that sensitive and accurate quantification 
of the TCR RNA molecule copy number is essential to quantify a 
single-cell’s worth of TCR transcripts and to assess the degree of 
clonal expansion. In summary, we showed the significance of the 
sub-clustering step of MIDCIRS in preventing false MID group 
generation, which enabled highly accurate clonal type discovery. 
This study provides a framework for leveraging the sensitivity and 
accuracy of molecular barcoded IR-seq in MRD detection and 
assessing clonal expansion in infection and vaccination.

MATERIALS AND METHODS

Naïve CD8+ T Cell Sorting
Human leukocyte reduction system chambers were obtained 
from de-identified donors at We Are Blood (Austin, TX, USA) 
with strict adherence to guidelines from the Institutional 
Review Board of the University of Texas at Austin. CD8+ T cell 
enrichment was done following the protocol described previ-
ously (22) using RosetteSep CD8+ T Cell Enrichment Cocktail 
(STEMCELL) together with Ficoll-Paque (GE Healthcare). 
Then, RBCs were lysed using ACK Lysing Buffer (Lonza). After 
washing in phosphate-buffered saline with fetal bovine serum, 
the cell mixture was passed through a cell strainer (Corning) and 
ready for use. Naïve CD8+ T  cells were FACS-sorted into RLT 
Plus buffer (Qiagen) supplemented with 1% β-mercaptoethanol 
(Sigma) based on the phenotype of CD8+CD4-CCR7+CD45RA+ 
using BD FACSAria II cell sorter.

CMV CD8+ T Cell Enrichment and Sorting
CMVpp65:482-490 (NLVPMVATV) was used to prepare streptam-
ers as previously described (23). Miltenyi anti-phycoerythrin 
microbeads and magnetic column were used to bind and enrich 
CMVpp65-specific T cells (22). The flow-through was collected 
for background staining. The enriched fraction was eluted off the 
column and washed into cell buffer. The following antibody panel 
was used to stain both the enriched and flow-through fractions: 
CD4, CD14, CD16, CD19, CD32, and CD56 (BioLegend) as a 
dump channel to stain residual non-CD8 T cells, and CD45RA, 
CCR7, CD27, and IL7R (BioLegend). 7-aminoactinomycin D 
was used as a viability marker. Dump−Streptmer+CD45RA+C
CR7−CD27−IL7Rlo live T cells were sorted into RLT Plus buffer 
supplemented with 1% β-mercaptoethanol using BD FACSAria 
II cell sorter.

Bulk TCR Library Generation  
and Sequencing
Total RNA was purified using All Prep DNA/RNA kit (Qiagen) 
following the manufacturer’s protocol. Library preparation and 
QC were similar to protocols described previously (9) using TCR 
primers (Table S5 in Supplementary Material). Reads of the same 
library from all runs were combined and analyzed.

dPCR of TCR
Total RNA purified from sorted CD8+ T cells and cultured CMV-
specific CD8+ T  cell lines were reverse transcribed with polyT 
primers (Table S5 in Supplementary Material) using Superscript 
III in 20 µl reaction following the manufacturer’s protocol. 2 µl of 
cDNA was subsequently used on QuantStudio 3D dPCR system 
following manufacturer’s protocol.

Preliminary Read Processing
We followed the similar procedure as described previously to 
generate consensus sequences (9). First, only reads that have 
exact TCR constant sequences were kept for further analysis. 
These reads were then cut to 150 nt starting from constant region 
to eliminate high error-prone region at the end of reads. These 
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preprocessed reads were split into MID groups according to 12-nt 
barcodes.

MID Sub-Cluster Generating and Filtering
For each MID group, a quality threshold clustering was used to 
group reads derived from a common ancestor RNA molecule 
and separate reads derived from distinct RNAs as previously 
described (9). Briefly, a Levenshtein distance of 15% of the 
read length was used as the threshold (9). For each subgroup, a 
consensus sequence was built based on the average nucleotide at 
each position, weighted by the quality score. In the case that there 
were only two reads in an MID subgroup, we only considered 
them useful reads if both were identical. Each MID subgroup is 
equivalent to an RNA molecule. Next, we merged all of the identi-
cal consensus to form unique consensus sequences. Further, we 
applied filtering of unique consensus sequences after sub-cluster 
generation by (a) removing non-functional TCR sequences and 
(b) removing sequences with lower MID counts that are one 
Levenshtein distance away from the other. Then, for each unique 
consensus sequence, we removed MID sub-clusters if their reads 
are less than 20% of maximum read count based on the fitting of 
two negative binomial distribution (Figure S5 in Supplementary 
Material). Scripts for this section can be downloaded at https://
github.com/utjianglab/MIDCIRS.

Theoretical Percentage of MIDs  
That Need Sub-Clustering
We modeled the process of MID labeling as a Poisson distribu-
tion. Given the total number of MIDs being M and the number 
of target molecules being N, the probability that a unique MID 
will occur k time(s) is:

	
P

N
M
k

ek

k
N
M= ×

−
( )

!
.
	

(1)

Thus, P0 and P1 are the probability that a MID will be tagged 
0 and 1 time, respectively, and the percentage of MIDs that need 
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With over 16 million MID combinations from 12 random 
nucleotides, when the number of target molecules, N is less than 
5,000,000, Eq. 2 is an approximate linear function (Figure 1B).

Diversity Coverage and RNA  
Copy Number Simulation
The estimation of diversity will be affected by the initial RNA 
input (percentage of initial RNA used to construct the sequenc-
ing library). We used a statistical model to estimate the diversity 
coverage for the naïve T cells we sorted based on RNA sampling 
depth.

For N observed RNA molecules, there are K different RNA 
clones. The RNA molecule copy number of each clone is mi 

(i∈(1,K)), whose sum equals N. After fitting the data, mi follows 
a power law distribution (Figure S9 in Supplementary Material):

	 m m xi i= × 	 (3)

	 f x xi i( ) = −( ) >−α αα1 1,( ) 	 (4)

where, m is the RNA molecule copy number per cell, which is a 
constant across all T cells (see Figure 3C). xi represents the cell 
numbers of each clone, which follows a power law distribution 
(24), and the parameter α was fitted with an algorithm combining 
maximum-likelihood fitting and goodness-of-fit test based on 
Kolmogorov–Smirnov statistic (25) “fit_power_law” function in 
R package igraph was applied (26).

Specifically, we fitted the RNA molecule distribution (Figure 
S9 in Supplementary Material) with Eq. 5:
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Since “m” is a constant (see Figure 3C), the alpha in Eqs 4 and 
5 should be equal. We fitted across all libraries on log–log scale, 
and the average slope was taken as α in the above model.

When we sample n RNA molecules from this population, 
the expected detected diversity, E(D), can be calculated as the 
following:
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And xi can be sampled from the fitted power law distribution.
Then, the percentage of the RNA diversity coverage, P(D), can 

be estimated as:
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We scaled the diversity coverage of unique CDR3s to the 
estimated diversity coverage with 90% RNA input, Dobs. We then 
used Eq. 8 to get estimated m:
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Statistical Analysis
Mann–Whitney U test was used to calculate the significance of 
copy number difference between pairs in naïve, effector, effector 
memory, and central memory CD8+ T  cells and p values was 
adjusted with Benjamini–Hochberg procedure. Adjusted p-value 
that was less than 0.05 was considered significant.

RESULTS

MIDCIRS Sub-Clustering Improves 
Repertoire Diversity Estimation Accuracy
Molecular identifiers have been adopted in IR-seq and DNA/
RNA sequencing to reduce error rate. However, during reverse 
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FIGURE 1 | MID Clustering-based IR-Seq improves accuracy of T cell receptor (TCR) diversity estimation with sub-clustering. (A) The percentage of observed 
molecular identifiers (MIDs) containing sub-clusters is linearly dependent on RNA input, which is defined as cell number multiplied by percentage of RNA (e.g., 
20,000 cells with 10%RNA is equivalent to 2,000 RNA input). Line represents linear regression fit, F-test on the slope, p < 10−9. (B) The theoretical percentage of 
MIDs with sub-clusters is approximately linearly dependent on copies of target molecules when copies of target molecules are less than 5,000,000 (bottom right 
insert). The theoretical percentage of MIDs with sub-clusters was calculated by Eq. 2 in Section “Materials and Methods.” (C) Rarefaction curve of unique 
complementarity-determining regions 3 (CDR3s) with or without sub-clustering. Number of unique CDR3s in three libraries made with three different RNA inputs 
from sorted one million naïve CD8+ T cells are shown here. Data from other cell inputs are in Figure S2 in Supplementary Material. (D) Illustration of consensus TCR 
sequence building without (top) and with (bottom) sub-clustering. Top: without sub-clustering, chimera sequences are generated when different TCR RNA molecules 
are tagged with the same MID; bottom: TCR RNA molecules that are tagged with same MID are sub-clustered to reveal truly represented TCR sequences. Short 
vertical black lines indicate nucleotide differences between two TCR sequences.
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transcription, multiple transcripts could stochastically be tagged 
with same MID. Previous strategies relied on increasing the 
length of MID to reduce the probability of non-unique MID 
tagging when the total RNA molecule copy number was either 
unknown or very large (27). However, longer MID length could 
reduce the efficiency of reverse transcription (28, 29). Thus, we 
developed a more generalized approach (MIDCIRS) with reduced 
MID length. A sequence-similarity-based clustering method was 
implemented in MIDCIRS to separate sequencing reads into sub-
clusters within a group of sequencing reads that have the same 
MID (9). Here, we developed metrics to validate the accuracy 
of this sub-clustering method. In addition, we demonstrated the 
robust ability of MIDCIRS to faithfully represent the diversity 
and abundance of the TCR repertoire using a large range of RNA 
inputs.

We reasoned that in order to comprehensively quantify the 
overall diversity, a large portion of its RNA must be sampled. 
However, this will inevitably increase the number of TCR tran-
scripts that need to be tagged with MIDs, which increases the 
portion of MIDs tagging multiple TCR transcripts. We sought to 
closely examine the relationship between RNA input and mul-
tiple TCR RNA tagging by the same MID. The process of MID 
labeling can be modeled as a Poisson distribution (see Materials 
and Methods). The percentage of MIDs with sub-clusters follows 
an approximate linear trend when the copies of target RNA 
molecules are less than 5,000,000 (Figure 1B). To experimentally 
validate this, we applied MIDCIRS TCR-seq on a range of sorted 
naïve CD8+ T cells (from 20,000 to 1 million) with three differ-
ent RNA inputs (10, 30, and 50%) (Table S1 in Supplementary 
Material). We have previously used control template sequences 
and evaluated the clustering threshold that would separate TCR 
RNA molecules accidentally tagged with the same MID, which 
is 15% of the sequence length (9). As expected, we found that 
the observed percentage of MIDs that need sub-clustering is 
approximately linear with respect to copies of target RNA mol-
ecules used in this study (Figure 1A). With the highest amount of 
RNA molecules used in this study, approximately 8.5% of MIDs 
require further clustering, while previous method treated these 
sequences as ambiguous (17). Thus, MIDCIRS sub-clustering 
significantly improves repertoire diversity coverage.

To evaluate the accuracy of the sub-clustering step by an 
alternative means, we examined the TCR sequence lengths within 
MIDs that contain sub-clusters. We reasoned that if indeed 
each TCR RNA molecule was tagged with a unique MID, then 
the lengths of CDR3 for all reads would be identical under each 
MID. However, we showed that of the 8.5% of MIDs that contain 
sub-clusters, about 87% of MIDs contain TCR sequencing reads 
of different CDR3 lengths while only 13% have the same length 
for one million naïve CD8+ T cells (50% RNA input). After per-
forming sub-clustering, over 97% of sub-clusters have a uniform 
length (Figure S1 in Supplementary Material), demonstrating the 
accuracy of sub-clustering step in MIDCIRS.

More importantly, to our surprise, we found that, without 
performing sub-clustering, the number of unique consensus 
sequences (unique CDR3 sequences) was overestimated, espe-
cially in samples with one million cells (Figure  1C; Figure S2 
in Supplementary Material). This is because chimera sequences 

were generated in the consensus building step for two scenarios. 
In one scenario, multiple true TCR sequences could be tagged 
with the same MID and quality score weighted consensus 
building will generate chimera sequences (Figure  1D; Figure 
S3A in Supplementary Material). In the second scenario, PCR 
or sequencing errors on MIDs group multiple singletons (MIDs 
that contain only one read) under the new MID. If sub-clustering 
is applied, then these singletons will be separated and discarded 
under the singleton category. However, without sub-clustering, 
these singletons will be forced to generate a chimera sequence 
(Figure S3B in Supplementary Material). Taking together, 
these chimera sequences cause overestimation of the total TCR 
diversity. The percentage of chimera sequences can be as high as 
47% (Table S1 in Supplementary Material). Thus, compared with 
previous IR-seq with MID method (17), MIDCIRS not only can 
increase diversity coverage of CDR3 but improve the accuracy of 
diversity estimation.

MID Read-Distribution-Based Barcode 
Correction Improves Accuracy and 
Sensitivity of Counting TCR Transcripts
Besides correcting PCR and sequencing errors, MIDs have also 
been used for absolute quantification of RNA molecule copy 
number in single-cell studies to improve precision (30–33). Here, 
we demonstrated how to use MIDCIRS TCR-seq to digitally count 
TCR transcripts. The absolute quantification of TCR transcripts 
is fundamental for accurate clonal size estimation. We noticed 
that PCR and sequencing errors also affected MIDs, as seen in 
single-cell RNA sequencing studies (29, 34), leading to an inflated 
number of RNA molecules when libraries were sequenced exhaus-
tively with respective to the total TCR transcripts in the sample 
(Figure  2A; Figure S4 in Supplementary Material). To correct 
MID errors, we first removed singleton reads, which cannot be 
confidently used in generating MID groups due to sequencing 
errors. Then, we adopted a similar approach applied in single-
cell RNA-seq by fitting the distribution of reads under each MID 
subgroup into two negative binomial distributions (Figure S5 in 
Supplementary Material) (34). Erroneous MIDs generated due 
to PCR errors generally have distinctively lower read counts 
compared with true MIDs. These two negative binomial distribu-
tions distinctly separated true MIDs from erroneous MIDs. MIDs 
with low read counts were removed accordingly (see Materials 
and Methods). After MID correction, number of RNA molecules 
saturated across libraries (Figure 2A; Figure S4 in Supplementary 
Material).

We found that a shallower sequencing depth is required to 
saturate unique CDR3s than RNA molecules (Figure  2B). In 
addition, the amount of diversity covered increased with increas-
ing RNA input. Thus, to exhaustively measure the TCR repertoire 
diversity, with 30–50% of RNA input, a sequencing depth equiva-
lent to 10 times the cell number covers most of the CDR3 diver-
sity (Figure 1C; Figure S2 in Supplementary Material), while a 
sequencing depth equivalent to about 100 times the relative RNA 
input (defined as cell number multiplied by percentage of RNA 
input) is required to saturate the RNA molecules (Figure  2A; 
Figure S4 in Supplementary Material). For example, 30% RNA of 
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FIGURE 2 | MID Clustering-based IR-Seq is capable of accurate digital counting of T cell receptor (TCR) RNA molecules. (A) Rarefaction curve of detected TCR 
RNA molecules before and after error correction on molecular identifiers (MIDs) in 20,000 naïve CD8+ T cells for three RNA input amounts. Data from other cell 
inputs are in Figure S4 in Supplementary Material. (B) Comparison of rarefaction curve of detected RNA molecules and unique complementarity-determining regions 
3 (CDR3s) in 20,000 naïve CD8+ T cells for three RNA input amounts. (C) Rarefaction curve of number of unique CDR3s with single RNA copy in 20,000 naïve CD8+ 
T cells for three RNA input amounts. Sequencing reads were subsampled to different depth and unique CDR3s were tallied. Data from other cell inputs are in Figure 
S6A in Supplementary Material. (D) The percentage of overlapping clones with single RNA copy at different sequencing depths by sub-sampling in 20,000 naïve 
CD8+ T cells for three RNA input amounts. The overlapping clones were compared between two adjacent sub-samplings and overlap percentage was calculated by 
dividing the number of overlapping clones by the total number of clones observed in the deeper sub-sampling. Data from other cell input are in Figure S6B in 
Supplementary Material.
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20,000 cells is equivalent to 6,000 RNA input. Then, it takes about 
600,000 reads to saturate the RNA molecules but only 200,000 
reads to saturate the unique CDR3s (Figure 2A, middle panel).

After MID correction, with optimal sequencing depth, we 
stably detected TCR clones with a single TCR RNA molecule 
(single-copy clones with at least two identical sequencing reads). 

The number of single-copy clones saturates with adequate 
sequencing depth (Figure  2C; Figure S6A in Supplementary 
Material). Meanwhile, we compared the degree of overlapping 
clones within these single-copy clones at different sequencing 
depths. To do this, we subsampled each library to different frac-
tions of the total reads. The overlapping clones were compared 
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FIGURE 3 | T cell receptor (TCR) RNA copy number per cell estimation and experimental validation. (A) Diversity coverage of unique productive complementarity-
determining regions 3 with different RNA inputs and cell numbers (Line represents linear regression fit, F-test on the slope, R2 > 0.99 and p < 10−3 for all different 
RNA inputs). (B) Diversity coverages with different RNA inputs using 3 as a predicted TCR RNA molecule copy number per cell. Dashed line is the theoretical 
prediction (see Materials and Methods); red dots are diversity coverages observed in libraries with different RNA inputs as illustrated in panel (A), assuming diversity 
coverage at 90% RNA input is 1. (C) Digital PCR results of TCR RNA molecule copies per cell in different CD8+ T cell subset (N, naïve; CM, central memory; EM, 
effector memory; E, effector; NTC, no template control; n.s: p-value > 0.05 by Mann–Whitney U test).
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between two adjacent subsamples, and the overlap percentage 
was calculated by dividing the number of overlapping clones by 
the total number of clones observed in the deeper subsample. 
Thus, for total of 10 subsamples, 9 clonal overlap percentages 
were calculated and plotted with respect to sequencing depth 
(Figure 2D; Figure S6B in Supplementary Material). More than 
90% of single-copy clones were repeatedly detected between the 
full sequencing reads and the 0.9 subsample fraction. The overlap 
percentage was above 80% for the latter part of curve (Figure 2D; 
Figure S6B in Supplementary Material), which suggested that we 
have reached optimal sequencing depth to detect single-copy 
TCR clones.

Estimating TCR RNA Molecule Copy 
Number and Validation with dPCR
From early analysis, we know that the diversity coverage of unique 
CDR3s increased as RNA input increased. Here, we performed an 
in depth analysis on the relationship between these two param-
eters and found that the diversity coverage of unique CDR3s 
increased significantly as the RNA input increased initially, then 
reached a plateau, which resulted in a nonlinear increasing of the 
diversity coverage of unique CDR3s (Figures 3A,B). We assumed 
that total diversity for a sample is the diversity discovered when 
combining all sequencing reads from 10, 30, and 50% RNA input 
libraries into a pseudo-90% RNA input. With 50% RNA, we could 
recover about 60% of total diversity (Figure 3B).

Since the observed diversity is dependent on total TCR RNA 
molecules in a sample, which is a function of TCR RNA molecule 
copy number per cell and RNA input percentage, we next sought 
to use a probability model to predict TCR RNA molecule copy 
number per cell using the observed diversity coverage of unique 
CDR3s as a function of RNA input percentage (see Materials 
and Methods). We used the estimated diversity coverage of 
different RNA inputs, including 10, 30, and 50% RNA, as well 

as the computationally combined pseudo-40% (10 + 30%) and 
pseudo-90% RNA inputs as data points to fit the probability 
model. The best fit resulted in three copies of TCR RNA mol-
ecule per cell (Figure 3B). In another independent experiment, 
RNA from 20,000 and 100,000 naïve CD8+ T cells were evenly 
separated into five aliquots, respectively. Four of five aliquots were 
sequenced (Table S2 in Supplementary Material). Results showed 
that CDR3 diversity detected by MIDCIRS is very reproduc-
ible among the four aliquots and is also proportional to the cell 
input numbers. In addition, we bioinformatically combined the 
aliquots into pseudo-40, -60, and -80% of RNA inputs and fitted 
the diversity coverage using the probability model described in 
the Section “Materials and Methods.” As with previously, the best 
fit resulted in three copies of TCR RNA molecule per cell (Figure 
S7 in Supplementary Material).

However, in order to apply this TCR RNA molecule copy 
number in estimating T cell clone size, we need to validate it using 
a different method and also test to see if different phenotypes of 
T cells might have different TCR RNA molecule copy numbers, 
which would be similar to the differences seeing in naïve B cells 
and plasmablasts (35). Next, we validated TCR RNA molecule 
copy number using dPCR and found that various types of T cells 
have similar TCR RNA copies (8–12 copies per cell) (Figure 3C). 
Thus, with MIDCIRS TCR-seq, we could achieve about 30% 
efficiency in recovering the target TCR RNA molecules, which 
is expected given dPCR in a nanoliter volume is more efficient 
than bulk PCR in tubes (36). This ratio also establishes a reference 
point for rare T  cell clone frequency estimate using MIDCIRS 
method.

Detecting Single-Cell Worth of TCR  
RNA Using MIDCIRS
The lack of accurate and absolute quantitation of TCR clones 
limited the evaluation of the sensitivity of various IR-seq methods 
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FIGURE 4 | MID Clustering-based IR-Seq is sensitive to detect both low copy and highly clonal expanded T cell receptors (TCRs). (A) Number of RNA molecules 
detected by sequencing for each spike-in TCR control sequences (the numbers in the legend denote copies of each TCR spike-in control sequence added).  
(B) Comparison of clone size distribution in naïve CD8+ T cells and CMVpp65-specific effector CD8+ T cells (dashed line indicates TCR sequences with 20 copies of 
RNA molecules). (C) The percentage of RNA molecules that varying degree of clonally expanded complementarity-determining region 3 account for.
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(37), which slowed the application of detecting rare TCR clones 
in both basic research and clinical practice. To address the detec-
tion sensitivity using MIDCIRS, we spiked-in control TCR RNA 
with varying copy numbers into naïve T cells and validated the 
robustness of detecting spiked-in TCRs. 5, 20, and 5 copies of 
three spike-in cell lines with known TCR sequences were added 
into 20,000 and 100,000 naïve CD8+ T cells. 3, 13, and 3 copies of 
three spike-ins were reliably detected, respectively (Figure 4A).

We also analyzed the ability to detect a single T cell’s worth 
of control RNA in a larger number of other T cells. We digitally 
counted the concentration of TCR RNA molecule from the 
Jurkat cell line and spiked-in 10 copies of TCR RNA into 
20,000–1,000,000 naïve CD8+ T cells (Table S1 in Supplementary 
Material). In all 1,000,000 cells we sequenced, we were capable of 
detecting Jurkat TCR sequences (Table 1). This sensitivity was a 
significant improvement compared with previous method, which 
was demonstrated to be 1 in 10,000 (21). These results demon-
strated that MIDCIRS is highly sensitive, capable of detecting 
a single-cell’s amount of TCR transcripts, and rare clones could 
be readily and robustly detected. Those single-copy clones 
(minimum two identical reads) we discovered are thus likely to 
come from single cells (Figure 2C; Figure S6A in Supplementary 
Material).

Meanwhile, we compared the sensitivity of MIDCIRS and 
5′RACE protocol using the diversity coverage as the param-
eter. Briefly, the 5′RACE protocol that was used in Smart-seq2 
protocol was used for TCR-seq, which has been demonstrated 
to significantly improve RNA capture efficiency (38). Equal 
amount of RNA (20%) from same purification was used for both 
MIDCIRS and 5′RACE protocol. We then processed sequencing 
results with MIDCIRS-TCR pipeline and found that 5′RACE 
protocol only recovered about 44% of diversity compared to 
what MIDCIRS protocol obtained (Table S3 in Supplementary 
Material). With improved accuracy and sensitivity to detect rare 

clones, MIDCIRS is promising in being applied to detect MRD 
after treatment.

Quantifying T Cell Clonal Expansion in 
Infection Using MIDCIRS
It has been shown that the clonality and quantity of T cells are 
strongly correlated with efficacy of therapies, such as cancer 
chemotherapy and antiviral therapy (20, 39). Accurate quanti-
fication of diversity and abundance of T cell clones is important 
for application of TCR-seq in clinical settings, ranging from 
prognosis to treatment decision-making. However, there lacks 
an accurate approach to evaluate the degree of T  cell clonal 
expansion in humans. Therefore, we applied MIDCIRS TCR-
seq to examine T cell clonal expansion in infection. We sorted 
20,000 and 200,000 CMVpp65-specific effector CD8+ T  cells 
from CMV-infected patients and used 30% of RNA input to 
perform TCR-seq (Table S4 in Supplementary Material). CMV 
pp65 peptide has been shown to be the immunodominant target 
of CD8+ T cell response (40). TCR RNA molecules were digitally 
counted through MIDCIRS pipeline. We defined TCR sequences 
with over 20 copies of RNA molecules as expanded clones accord-
ing to TCR abundance distribution comparing between naïve 
CD8+ T cells and CMV tetramer positive effector CD8+ T cells 
(Figure 4B). Over 99% unique RNA molecules were from these 
expanded clones in CMVpp65-specific effector CD8+ T cells. On 
the other hand, although we observed uneven clonal distribution 
in naïve CD8+ T cells, these expanded clones only account for less 
than 1% unique RNA molecules (Figure 4C). Our data showed 
that in CMV infection, single CMV-specific TCR clone can have 
about 70,000 T cell progenies in 200,000 polyclonal CMV-specific 
effector CD8+ T cells (Table S4 in Supplementary Material). These 
polyclonal CMV-specific effector CD8+ T  cells represent about 
2.6% of total CD8+ T cells. In addition, our previous study showed 
that tetramer positive polyclonal CMV precursor cells existed at 
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TABLE 1 | Spike-in Jurkat T cell receptor (TCR) RNA detection in naïve CD8+ 
T cells.

Sample Jurkat TCR copies detected

20,000Tn_10%RNA 7
20,000Tn_30%RNA 0
20,000Tn_50%RNA 1
100,000Tn_10%RNA 5
100,000Tn_30%RNA 4
100,000Tn_50%RNA 1
200,000Tn_10%RNA 7
200,000Tn_30%RNA 3
200,000Tn_50%RNA 3
1,000,000Tn_10%RNA 4
1,000,000Tn_30%RNA 8
1,000,000Tn_50%RNA 17

10 TCR-copy worth of Jurkat RNA was added to each sample during the reverse 
transcription step. Number of molecular identifiers for RNA molecules that are  
tagged with jurkat TCR sequences were counted.
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a frequency of 1 in 100,000 CD8+ T cells in CMV seronegative 
individuals (22). Taking together, these results suggest that single 
T cell clone can have about 900-fold proliferation in infection in 
humans. Thus, MIDCIRS can be applied to evaluate clone size 
and degree of clonal expansion in viral infection.

DISCUSSION

In this study, we applied the MIDCIRS, recently developed by 
our group (9), in T cells to demonstrate (1) the necessity of MID 
sub-clustering to improve accuracy of repertoire diversity estima-
tion; (2) the accuracy of counting TCR RNA molecules via MID 
read-distribution based barcode correction; (3) the sensitivity of 
detecting a single cell in as many as one million naïve T cells; and 
(4) the ability to quantify T cell clonal expansion due to infection 
in CMV-seropositive patients.

Previous MID-based IR-seq methods, such as MIGEC, build 
TCR consensus sequences by grouping MIDs (17, 41). However, 
the number of target molecules could vary significantly with dif-
ferent sample inputs, which could be challenging for choosing the 
appropriate MID length to ensure that each target RNA molecule 
is uniquely tagged by MID. Longer MIDs are likely to decrease 
the reverse transcription efficiency (28, 29). Thus, the MIDCIRS 
method offers a flexible strategy for MID-barcoded IR-seq. In 
addition, MIGEC triages MIDs with high diversity as ambiguous. 
We compared TCR diversity discovered using MIDCIRS with 
that of MIGEC, using MID with at least two reads as the thresh-
old for both approaches (see Materials and Methods) and found 
that MIGEC led to an underestimated TCR diversity (Figure S8 
in Supplementary Material, p < 0.001, effect size r = 0.62). We 
demonstrated that using MID-based sub-clustering approach, 
MIDCIRS could identify new diversities, prevent chimera 
sequences from being built, and digitally count RNA molecules 
(Figure 1; Figures S2 and S3 in Supplementary Material). This 
corrected diversity is highly consistent with cell input numbers.

While MIDs are useful to correct for sequencing errors and 
PCR errors that occur on TCR sequences, such errors are also 
likely to show up on MID sequences. Although these errors do not 

affect TCR diversity estimation, they lead to an overestimation of 
transcript copies, thus misestimating TCR clone size (Figure 2; 
Figure S4 in Supplementary Material). We corrected MID errors 
based on the distribution of MID read counts under MID sub-
groups. With MID correction, we were able to accurately count 
TCR RNA molecule copy number, estimate MIDCIRS detection 
limit as well as detect T cell clonal expansion.

Noteworthy, we found uneven CDR3 clone size distribution 
in naïve CD8+ T cells (Figure 4B). The most expanded clone was 
enriched about 0.27% (Table S1 in Supplementary Material). This 
could be due to convergent recombination as has been previously 
noted (42, 43) or uneven clonal expansion during thymocyte 
maturation and selection in thymus (44, 45).

Furthermore, there is a lack of standard guidelines of how 
much RNA input to use for library preparation and sequencing. 
Also, the capacity to evaluate immune repertoire and gene expres-
sion profile simultaneously will facilitate clinical practice, such as 
cancer immunotherapies. Efforts have been made to reconstruct 
antibody and TCR repertoire from RNA-seq data. This, however, 
requires very deep sequencing to recover highly expanded T cell 
clones in the sample, and the exact degree of repertoire coverage is 
difficult to assess (46–48). Here, we demonstrated that 50% RNA 
is enough to cover about 60% of CDR3 diversity (Figure  3B), 
making it beneficial to take advantage of the rest of the RNA from 
the same sample for other applications, e.g., RNA-seq.

Based on the TCR diversity estimation and its dependency 
on RNA input, we built a probability model to estimate TCR 
RNA molecule copies, which resulted in three copies per cell 
(Figure  3B). We would like to point out that this does not 
mean that on average there are three copies of TCR RNA in a 
T cell. Because of the efficiency of RNA purification and reverse 
transcription, we expect our observed RNA molecule per cell to 
be lower than the true value. In Fact, dPCR results showed an 
average of 10 copies of TCR RNA molecule per cell (Figure 3C), 
suggesting the efficiency of MIDCIRS in TCR RNA molecule 
digital counting is about 30%, which is consistent with previous 
finding that nanoliter reaction volume significantly improved 
PCR efficiency. Thus, quantifying TCR RNA molecule per cell 
enables us to estimate the extent of T cell clonal expansion that 
was not possible until now.

We also used spike-in TCR RNA to validate the sensitivity 
of MIDCIRS. We showed that spiked-in TCR RNA at as few 
as five copies can be reliably detected across multiple libraries 
(Figure  4A). More importantly, we were also able to detect 
a single-cell worth of RNA in as many as one million cells 
(Table 1). With this demonstrated sensitivity, this method could 
be extremely useful in MRD detection.

Last, we applied MIDCIRS to evaluate T cell clonal expansion 
in CMV-infected patients. Through accurate digital counting of 
TCR RNA molecules and in combination of precursor T cell fre-
quency, we showed that CMV-specific effector CD8+ T cells can 
expand at least 900 times, and there could be more than 70,000 
effector CD8+ T cells derived from the same CMV-specific T cell 
clone in total of 7,700,000 of CD8+ T cell in infection. We also 
noticed that there is a potential of same TCR sequences tagged 
with same MID, which would under estimate the clonal size, 
especially in highly expanded clones. We calculated the expected 
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number of collisions where same MIDs tag same RNA molecules 
(Supplementary Methods in Supplementary Material). With 
MID length being 12, when there are 200,000 identical RNA 
molecules, the percentage of identical RNA molecules tagged 
with same MID is only 1%. While long MID decreases the 
percentage of identical RNA molecules tagged with same MID, 
it also decreases efficiency of reverse transcription. Our analysis 
revealed that MID with 12 nucleotides is appropriate. Therefore, 
MIDCIRS provides the foundation of accurate assessment of 
clone size and clonal expansion in infection and vaccination, 
which would be a useful technology to provide a comprehensive 
quantification of the T cell repertoire in various basic studies and 
clinical settings.
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Supplementary Methods 
  
Expected number of identical RNA molecules tagged with same MID. 
When there are N different MIDs, the probability of RNA molecule B’s MID shares RNA molecule A’s 
MID is 1/N. Let the number of identical RNA molecules be n, then the probability that RNA molecule 
A’s MID is shared is: 
 1− (1−

1
𝑁)

!!! (1) 

Based on equation (1), the expected number of identical RNA molecules tagged with same MID, E(n) is: 
 𝐸 𝑛 =  𝑛×(1− (1−

1
𝑁)

!!!) (2) 
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Supplementary Figures and Tables 

 

 

 

 

 

 

 

 

 

 
Supplementary Figure S1. CDR3 length differences within multi-RNA containing MIDs before and 

after sub-clustering. The number of different CDR3 lengths within multi-RNA containing MIDs from 

one million naïve CD8+ T cells (50% RNA input) was plotted before sub-clustering (orange) and within 

the sub-clusters (green).  
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Supplementary Figure S2. Rarefaction curve of unique CDR3s with or without sub-clustering. Number 

of unique CDR3s in libraries made using three different RNA inputs (10%, 30% and 50%) from sorted 

20,000, 100,000 and 200,000 naïve CD8+ T cells are shown here. 
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Supplementary Figure S3. Representative demonstration of chimera consensus sequences generated 

without sub-clustering (chimera TCR sequence in Figure 1C).  (A). Two different TCR RNAs (RNA2-

TCR1 and RNA2-TCR2) were tagged with the same MID (RNA2), while one of the TCRs (TCR1) has a 

sister RNA tagged by another MID (RNA1). After building consensus sequence weighted by quality 

score and number of reads at each nucleotide position, a chimera consensus sequence was generated 

from RNA2-tagged TCR sequences (Top box, TCR1 tagged with RNA1; bottom box, two TCR 

sequences tagged with same MID; *, sequencing or PCR errors that are removed in the consensus 

building; sequence outside the top box, true TCR1 consensus sequence; sequence outside the bottom 

box, chimera consensus sequence; arrow, chimera nucleotide base that differs from the rest of consensus 

sequence was generated by weighing read number and quality score at each nucleotide). (B) Multiple 

singleton TCR RNAs were tagged with the same MID (RNA1) that were generated by either sequencing 
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or PCR errors. Without sub-clustering, these singletons failed to be removed and a chimera consensus 

sequence was generated.  
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Supplementary Figure S4. Rarefaction curve of detected TCR RNA molecules before and after MID 

correction in 100,000, 200,000 and 1,000,000 naïve CD8+ T cells for three RNA input amounts. 
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Supplementary Figure S5. Distribution of reads under each MID sub-group. Top expressed unique 

CDR3 in eight naïve CD8+ T cell libraries were first separated into MID sub-groups, then the histograms 

of read numbers under each MID sub-group were plotted here (Blue line) (Green line is the final fitting 

of two negative binomial distributions of the blue line; red line is the fitting of individual negative 

binomial distributions). 
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Supplementary Figure S6. MIDCIRS is capable of accurate digital counting of TCR RNA molecules. 

(A) Rarefaction curve of number of unique CDR3s with single-copy RNA in 100,000, 200,000 and 

1,000,000 naïve CD8+ T cells for three RNA input amounts. (B) The percentage of overlapping clones 

with single-copy of transcript at different sequencing depths by sub-sampling in 100,000, 200,000 and 

1,000,000 naïve CD8+ T cells for three RNA input amounts. The overlapping clones were compared 

between two adjacent sub-samplings and the overlap percentage was calculated by dividing the number 

of overlapping clones by the total number of clones observed in the deeper sub-sampling.  
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Supplementary Fig. S7. Curve fitting of diversity coverages as a function of different RNA inputs 

using 3 as a predicted TCR RNA molecule copy number per cell. Dashed line is the theoretical 

prediction (See methods); red dots are diversity coverages observed in libraries with different RNA 

inputs (20%, pseudo-40%, pseudo-60% and pseudo-80%), assuming diversity coverage at pseudo-80% 

RNA input is 1. 
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Supplementary Fig. S8. Comparison of diversity coverage between MIDCIRS and MIGEC pipelines 

on the same set of data presented in this study. P-value was determined by paired Wilcoxon test. 
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Supplementary Fig. S9. CDR3 clone size distribution of 20,000, 100,000, 200,000 and 1,000,000 naïve 

CD8+ T cells. Red dashed line is the fitted power law distribution (See methods).  
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Supplementary Table S1. Metrics of sequencing results of first naïve CD8+ T cell experiment. 

Sample Raw 
reads 

Mappable 
reads 

Map 
percentage 

(%) 

Total 
RNA 

molecules 

Unique 
productive 

CDR3 

Percentage 
of MIDs 
with sub-
clusters 

(%) 

Percentage 
of chimera 
sequences 

(%) 

Top 
CDR3  

molecules 
* 

Top 
CDR3 

molecule 
fraction 

(%) 
20,000Tn 

_10%RNA 402975 254228 63.09 10171 4579 0.11 0.32 24 0.24 

20,000Tn 
_30%RNA 877556 698961 79.65 18670 7253 0.34 0.42 39 0.21 

20,000Tn 
_50%RNA 1188083 984951 82.90 18367 7495 0.32 0.70 30 0.16 

100,000Tn 
_10%RNA 922615 766441 83.07 36949 17632 0.28 0.33 89 0.24 

100,000Tn 
_30%RNA 2409732 2173270 90.19 72257 30428 0.70 1.58 245 0.34 

100,000Tn 
_50%RNA 1744861 1566048 89.75 55058 27280 0.52 0.99 171 0.31 

200,000Tn 
_10%RNA 1000937 788947 78.82 61525 34097 0.41 0.86 166 0.27 

200,000Tn 
_30%RNA 4224183 3902130 92.38 173224 66990 1.57 5.44 498 0.29 

200,000Tn 
_50%RNA 3147293 2889513 91.81 154666 67607 1.28 2.64 628 0.41 

1,000,000Tn 
_10%RNA 7695858 6975703 90.64 514916 237331 3.19 16.14 1430 0.28 

1,000,000Tn 
_30%RNA 9439612 8719649 92.37 942010 382743 5.18 17.02 2387 0.25 

1,000,000Tn 
_50%RNA 17021339 15979187 93.88 1606258 487295 8.52 47.45 4468 0.28 

 

• Top CDR3: CDR3 with highest MID. 
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Supplementary Table S2: Metrics of sequencing results of second naïve CD8+ T cell experiment. 

Sample Raw reads Mappable 
reads 

Map 
percentage 

(%) 

Total RNA 
molecules 

Unique  
productiv

eCDR3 
20,000Tn_20% 334713 293943 87.82 13411 7466 

20,000Tn_20% 310547 262774 84.62 13329 7464 

20,000Tn_20% 526435 434432 82.52 16873 8888 

20,000Tn_20% 447301 360520 80.60 18573 8750 

100,000Tn_20% 1962817 1853561 94.43 94536 46272 

100,000Tn_20% 1575993 1481210 93.99 87887 44296 

100,000Tn_20% 1911879 1776146 92.90 95167 46087 

100,000Tn_20% 1858400 1721522 92.63 114885 48601 
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Supplementary Table S3: Metrics of sequencing results of naïve CD8+ T cell with MIDICRS and 

5’RACE. 

Sample Protocol Raw 
reads 

Mappable 
reads 

Map 
percentage 

(%) 

Unique 
productive 

CDR3 

Ratio on unique CDR3 
discovered 

(MIDCIRS/5’RACE) 

20,000Tn_20%RNA_1 
MIDCIRS 56780 46809 82.44 4202 

2.77 
5’RACE 74603 55268 74.08 1516 

20,000Tn_20%RNA_2 
MIDCIRS 53322 42036 78.83 4284 

2.42 
5’RACE 77696 61074 78.61 1767 

100,000Tn_20%RNA 
MIDCIRS 432015 396472 91.77 28975 

2.15 
5’RACE 406533 336487 82.77 13497 

200,000Tn_20%RNA_1 
MIDCIRS 815238 758556 93.05 55052 

1.92 
5’RACE 885269 734108 82.92 28705 

200,000Tn_20%RNA_2 
MIDCIRS 812503 649791 79.97 51870 

2.03 
5’RACE 813019 674146 82.92 25548 
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Supplementary Table S4: Metrics of sequencing results of CMV-specific effector CD8+ T cell 

experiments. 

 

 (*): Assuming 3 copies of RNA are recovered per cell according to figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Mappable 
reads 

Total RNA 
molecules 

Unique 
productive 

CDR3 

Top CDR3 
molecules 

Top T cell clone 
size (*) 

200000 
Teffector_30%RNA 2655814 324238 423 216348 72116 

20000 
Teffector_30%RNA 293931 40815 88 40532 13510 
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Supplementary Table S5: MIDCIRS and digital PCR primers used in this paper. 

Reverse transcription primer: 
RT ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNNNNNNNN 

GACCTCGGGTGGGAACAC (N indicates random molecular barcode) 
1st PCR primers: 
1st PCR reverse ACACTCTTTCCCTACACGAC 
1st PCR forward:  
TRBV1 GACGTGTGCTCTTCCGATCTCTGACAGCTCTCGCTTATACCTTCA 
TRBV2 GACGTGTGCTCTTCCGATCTGCCTGATGGATCAAATTTCACTCTG 
TRBV3 GACGTGTGCTCTTCCGATCTAATGAAACAGTTCCAAATCGMTTCT 
TRBV4 GACGTGTGCTCTTCCGATCTCCAAGTCGCTTCTCACCTGAAT 
TRBV5-1 GACGTGTGCTCTTCCGATCTCGCCAGTTCTCTAACTCTCGCTCT 
TRBV5-2 GACGTGTGCTCTTCCGATCTTTACTGAGTCAAACACGGAGCTAGG 
TRBV5-3 GACGTGTGCTCTTCCGATCTCTCTGAGATGAATGTGAGTGCCTTG 
TRBV5-4/5/6/7/8 GACGTGTGCTCTTCCGATCTCTGAGCTGAATGTGAACGCCTTG 
TRBV6-1 GACGTGTGCTCTTCCGATCTTCTCCAGATTAAACAAACGGGAGTT 
TRBV6-2/3 GACGTGTGCTCTTCCGATCTCTGATGGCTACAATGTCTCCAGATT 
TRBV6-4 GACGTGTGCTCTTCCGATCTAGTGTCTCCAGAGCAAACACAGATG 
TRBV6-5/6/7 GACGTGTGCTCTTCCGATCTGTCTCCAGATCAAMCACAGAGGATT 
TRBV6-8/9 GACGTGTGCTCTTCCGATCTAAACACAGAGGATTTCCCRCTCAG 
TRBV7-1  GACGTGTGCTCTTCCGATCTGTCTGAGGGATCCATCTCCACTC 
TRBV7-2 GACGTGTGCTCTTCCGATCTTCGCTTCTCTGCAGAGAGGACTGG 
TRBV7-3 GACGTGTGCTCTTCCGATCTCTGAGGGATCCGTCTCTACTCTGAA 
TRBV7-4/8 GACGTGTGCTCTTCCGATCTCTGAGRGATCCGTCTCCACTCTG 
TRBV7-5 GACGTGTGCTCTTCCGATCTGGTCTGAGGATCTTTCTCCACCT 
TRBV7-6/7 GACGTGTGCTCTTCCGATCTGAGGGATCCATCTCCACTCTGAC 
TRBV7-9 GACGTGTGCTCTTCCGATCTCTGCAGAGAGGCCTAAGGGATCT 
TRBV8-1 GACGTGTGCTCTTCCGATCTAAGCTCAAGCATTTTCCCTCAAC 
TRBV8-2 GACGTGTGCTCTTCCGATCTATGTCACAGAGGGGTACTGTGTTTC 
TRBV9 GACGTGTGCTCTTCCGATCTACAGTTCCCTGACTTGCACTCTG 
TRBV10-1/3 GACGTGTGCTCTTCCGATCTACAAAGGAGAAGTCTCAGATGGCTA 
TRBV10-2 GACGTGTGCTCTTCCGATCTTGTCTCCAGATCCAAGACAGAGAA 
TRBV11 GACGTGTGCTCTTCCGATCTCTGCAGAGAGGCTCAAAGGAGTAG 
TRBV12-1/2 GACGTGTGCTCTTCCGATCTATCATTCTCYACTCTGAGGATCCAR 
TRVB12-3/4/5 GACGTGTGCTCTTCCGATCTACTCTGARGATCCAGCCCTCAGAAC 
TRBV13 GACGTGTGCTCTTCCGATCTCAGCTCAACAGTTCAGTGACTATCAT 
TRBV14  GACGTGTGCTCTTCCGATCTGAAAGGACTGGAGGGACGTATTCTA 
TRBV15 GACGTGTGCTCTTCCGATCTGCCGAACACTTCTTTCTGCTTTCT 
TRBV16 GACGTGTGCTCTTCCGATCTATTTTCAGCTAAGTGCCTCCCAAAT 
TRBV17 GACGTGTGCTCTTCCGATCTCACAGCTGAAAGACCTAACGGAAC 
TRBV18 GACGTGTGCTCTTCCGATCTATTTTCTGCTGAATTTCCCAAAGAG 
TRBV19 GACGTGTGCTCTTCCGATCTGTCTCTCGGGAGAAGAAGGAATC 
TRBV20-1 GACGTGTGCTCTTCCGATCTGACAAGTTTCTCATCAACCATGCAA 
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TRBV21-1 GACGTGTGCTCTTCCGATCTCAATGCTCCAAAAACTCATCCTGT 
TRBV22-1 GACGTGTGCTCTTCCGATCTAGGAGAAGGGGCTATTTCTTCTCAG 
TRBV23-1 GACGTGTGCTCTTCCGATCTATTCTCATCTCAATGCCCCAAGAAC 
TRBV24-1 GACGTGTGCTCTTCCGATCTGACAGGCACAGGCTAAATTCTCC 
TRBV25-1 GACGTGTGCTCTTCCGATCTAGTCTCCAGAATAAGGACGGAGCAT 
TRBV26 GACGTGTGCTCTTCCGATCTCTCTGAGGGGTATCATGTTTCTTGA 
TRBV27 GACGTGTGCTCTTCCGATCTCAAAGTCTCTCGAAAAGAGAAGAGGA 
TRBV28 GACGTGTGCTCTTCCGATCTAAGAAGGAGCGCTTCTCCCTGATT 
TRBV29-1 GACGTGTGCTCTTCCGATCTCGCCCAAACCTAACATTCTCAA 
TRBV30 GACGTGTGCTCTTCCGATCTCCAGAATCTCTCAGCCTCCAGAC 
2nd PCR primers 
2nd PCR reverse AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC 
2nd PCR forward CAAGCAGAAGACGGCATACGAGATAA XXXXXX 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT (X indicates fixed 
library index) 

Digital PCR primers: 
RT TTTTTTTTTTTTTTTTTTTTTTTTVN 
TRBC_F GAGCCATCAGAAGCAGAGATC 
TRBC_R CTCCTTCCCATTCACCCAC 
TRBC_Probe CCACACCCAAAAGGCCACACTG 
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