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Unigue molecular identifiers (MIDs) have been demonstrated to effectively improve
immune repertoire sequencing (IR-seq) accuracy, especially to identify somatic hypermu-
tations in antibody repertoire sequencing. However, evaluating the sensitivity to detect
rare T cells and the degree of clonal expansion in IR-seq has been difficult due to the lack
of knowledge of T cell receptor (TCR) RNA molecule copy number and a generalized
approach to estimate T cell clone size from TCR RNA molecule quantification. This lim-
ited the application of TCR repertoire sequencing (TCR-seq) in clinical settings, such as
detecting minimal residual disease in lymphoid malignancies after treatment, evaluating
effectiveness of vaccination and assessing degree of infection. Here, we describe using
an MID Clustering-based IR-Seq (MIDCIRS) method to quantitatively study TCR RNA
molecule copy number and clonality in T cells. First, we demonstrated the necessity of
performing MID sub-clustering to eliminate erroneous sequences. Further, we showed
that MIDCIRS enables a sensitive detection of a single cell in as many as one million
naive T cells and an accurate estimation of the degree of T cell clonal expression. The
demonstrated accuracy, sensitivity, and wide dynamic range of MIDCIRS TCR-seq
provide foundations for future applications in both basic research and clinical settings.

Keywords: MID clustering-based IR-Seq TCR repertoire sequencing, molecular identifiers, sub-clustering, naive
T cells, CMV-specific T cells

INTRODUCTION

Immune repertoire sequencing (IR-seq) has become a useful tool to quantify the composition of B
or T cell antigen receptor repertoires in basic research, such as vaccination (1-3), immune repertoire
development (4-9), and lymphocyte lineage tracking (2, 9), as well as in various clinical settings, such
as minimal residual disease (MRD) monitoring (10), hematopoietic stem cell transplant recovery
monitoring (11), and cancer patient prognosis (12, 13). However, early IR-seq experiments suf-
fered from high PCR and sequencing errors that limited their ability to perform accurate repertoire
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diversity and abundance quantification. This bottleneck also
limits the sensitivity of many IR-seq-based assays, such as MRD
monitoring. Recently, we and others introduced molecular
identifiers (MIDs) to IR-seq and DNA/RNA sequencing to
reduce errors by tracking each RNA molecule through PCR and
sequencing. This approach has significantly improved the accu-
racy of repertoire profiling (9, 14-19), especially to distinguish
antibody somatic hypermutations from PCR and sequencing
errors. However, several challenges remain regarding how to use
MIDs correctly and how to use MIDs for cell clone size estimate.
First, erroneous MIDs resulting from PCR or sequencing errors
make accurate MID counting difficult. Second, there is a lack of
general guidelines of required sequencing depth to saturate MID
counts. Third, how to use RNA molecular counting to estimate
T cell clone size has yet to be established.

These challenges become roadblocks to accurately quantify
T cell receptor (TCR) or BCR RNA molecule copy number, which
is important in estimating clonal expansion and identifying rare
clones. Robins et al. developed QuanTILfy to attempt to address
this problem by counting TILs and assessing T cell clonality in
tissue samples through droplet digital PCR (dPCR) of rearranged
TCRp loci (20). However, by partitioning TCR Vp into eight
non-overlapping subgroups, this method lacks the sensitivity
to identify unique CDR3 of each clonality, not to mention rare
clones. Therefore, a more comprehensive method to quantify
TCR or antibody transcripts with high sensitivity while retaining
accurate clonal diversity is needed for both standardizing basic
IR-seq studies and applying it in clinical decision-making, such
as detecting MRD in lymphoid malignancies after treatment,
evaluating effectiveness of vaccination, and assessing degree of
infection.

We recently developed a more generalized approach with
reduced MID length to identify each individual RNA molecule
using a sequence-similarity-based clustering method to separate
sequencing reads into sub-clusters within a group of sequencing
reads that have the same MID. We applied this MID Clustering-
based IR-Seq (MIDCIRS) to study age-related antibody repertoire
development and diversification during acute malaria (9). In this
study, we applied MIDCIRS to TCR [MIDCIRS TCR repertoire
sequencing (TCR-seq)] and used CD8* T cells as a test bed to
build a model to count TCR RNA molecule copy number based
on input cell numbers, percentage of RNA input, and sequenc-
ing depth. We also demonstrated a significant improvement in
detection sensitivity. A previous study using a different repertoire
sequencing methodology reported the capacity to resolve one in
10,000 cells (21). With MIDCIRS TCR-seq, we were able to detect
one unique T cell clone in 1,000,000 T cells. In addition, we applied
MIDCIRS TCR-seq to examine T cell clonal expansion in CMV
infection and showed that sensitive and accurate quantification
of the TCR RNA molecule copy number is essential to quantify a
single-cell's worth of TCR transcripts and to assess the degree of
clonal expansion. In summary, we showed the significance of the
sub-clustering step of MIDCIRS in preventing false MID group
generation, which enabled highly accurate clonal type discovery.
This study provides a framework for leveraging the sensitivity and
accuracy of molecular barcoded IR-seq in MRD detection and
assessing clonal expansion in infection and vaccination.

MATERIALS AND METHODS
Naive CD8* T Cell Sorting

Human leukocyte reduction system chambers were obtained
from de-identified donors at We Are Blood (Austin, TX, USA)
with strict adherence to guidelines from the Institutional
Review Board of the University of Texas at Austin. CD8* T cell
enrichment was done following the protocol described previ-
ously (22) using RosetteSep CD8" T Cell Enrichment Cocktail
(STEMCELL) together with Ficoll-Paque (GE Healthcare).
Then, RBCs were lysed using ACK Lysing Buffer (Lonza). After
washing in phosphate-buffered saline with fetal bovine serum,
the cell mixture was passed through a cell strainer (Corning) and
ready for use. Naive CD8* T cells were FACS-sorted into RLT
Plus buffer (Qiagen) supplemented with 1% p-mercaptoethanol
(Sigma) based on the phenotype of CD8*CD4 CCR7*CD45RA*
using BD FACSAria II cell sorter.

CMV CD8* T Cell Enrichment and Sorting
CMVpp65:482-490 (NLVPMVATYV) was used to prepare streptam-
ers as previously described (23). Miltenyi anti-phycoerythrin
microbeads and magnetic column were used to bind and enrich
CMVpp65-specific T cells (22). The flow-through was collected
for background staining. The enriched fraction was eluted off the
column and washed into cell buffer. The following antibody panel
was used to stain both the enriched and flow-through fractions:
CD4, CD14, CD16, CD19, CD32, and CD56 (BioLegend) as a
dump channel to stain residual non-CD8 T cells, and CD45RA,
CCR7, CD27, and IL7R (BioLegend). 7-aminoactinomycin D
was used as a viability marker. Dump~Streptmer*CD45RA*C
CR7-CD27-IL7R" live T cells were sorted into RLT Plus buffer
supplemented with 1% B-mercaptoethanol using BD FACSAria
II cell sorter.

Bulk TCR Library Generation

and Sequencing

Total RNA was purified using All Prep DNA/RNA kit (Qiagen)
following the manufacturer’s protocol. Library preparation and
QC were similar to protocols described previously (9) using TCR
primers (Table S5 in Supplementary Material). Reads of the same
library from all runs were combined and analyzed.

dPCR of TCR

Total RNA purified from sorted CD8* T cells and cultured CMV-
specific CD8* T cell lines were reverse transcribed with polyT
primers (Table S5 in Supplementary Material) using Superscript
III in 20 pl reaction following the manufacturer’s protocol. 2 pl of
cDNA was subsequently used on QuantStudio 3D dPCR system
following manufacturer’s protocol.

Preliminary Read Processing

We followed the similar procedure as described previously to
generate consensus sequences (9). First, only reads that have
exact TCR constant sequences were kept for further analysis.
These reads were then cut to 150 nt starting from constant region
to eliminate high error-prone region at the end of reads. These

Frontiers in Immunology | www.frontiersin.org

February 2018 | Volume 9 | Article 33


http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive

Ma et al.

TCR Clonality Quantification with MIDCIRS

preprocessed reads were split into MID groups according to 12-nt
barcodes.

MID Sub-Cluster Generating and Filtering
For each MID group, a quality threshold clustering was used to
group reads derived from a common ancestor RNA molecule
and separate reads derived from distinct RNAs as previously
described (9). Briefly, a Levenshtein distance of 15% of the
read length was used as the threshold (9). For each subgroup, a
consensus sequence was built based on the average nucleotide at
each position, weighted by the quality score. In the case that there
were only two reads in an MID subgroup, we only considered
them useful reads if both were identical. Each MID subgroup is
equivalent to an RNA molecule. Next, we merged all of the identi-
cal consensus to form unique consensus sequences. Further, we
applied filtering of unique consensus sequences after sub-cluster
generation by (a) removing non-functional TCR sequences and
(b) removing sequences with lower MID counts that are one
Levenshtein distance away from the other. Then, for each unique
consensus sequence, we removed MID sub-clusters if their reads
are less than 20% of maximum read count based on the fitting of
two negative binomial distribution (Figure S5 in Supplementary
Material). Scripts for this section can be downloaded at https://
github.com/utjianglab/MIDCIRS.

Theoretical Percentage of MIDs

That Need Sub-Clustering
We modeled the process of MID labeling as a Poisson distribu-
tion. Given the total number of MIDs being M and the number
of target molecules being N, the probability that a unique MID
will occur k time(s) is:

co)

_N
B=Me . (1)

Thus, P, and P, are the probability that a MID will be tagged
0 and 1 time, respectively, and the percentage of MIDs that need
sub-clustering, F(k > 1), is given by:

N : ()

With over 16 million MID combinations from 12 random
nucleotides, when the number of target molecules, N is less than
5,000,000, Eq. 2 is an approximate linear function (Figure 1B).

Diversity Coverage and RNA

Copy Number Simulation
The estimation of diversity will be affected by the initial RNA
input (percentage of initial RNA used to construct the sequenc-
ing library). We used a statistical model to estimate the diversity
coverage for the naive T cells we sorted based on RNA sampling
depth.

For N observed RNA molecules, there are K different RNA
clones. The RNA molecule copy number of each clone is m;

(ie(1,K)), whose sum equals N. After fitting the data, m; follows
a power law distribution (Figure S9 in Supplementary Material):

m,=mxx, (3)
f(x)=(a-1)x%@>1) 4)

where, m is the RNA molecule copy number per cell, which is a
constant across all T cells (see Figure 3C). x; represents the cell
numbers of each clone, which follows a power law distribution
(24), and the parameter o was fitted with an algorithm combining
maximum-likelihood fitting and goodness-of-fit test based on
Kolmogorov-Smirnov statistic (25) “fit_power_law” function in
R package igraph was applied (26).

Specifically, we fitted the RNA molecule distribution (Figure
S9 in Supplementary Material) with Eq. 5:

f (m){“—_lj(ml] (>, 5)

mmin ‘min

Since “m” is a constant (see Figure 3C), the alpha in Eqs 4 and
5 should be equal. We fitted across all libraries on log-log scale,
and the average slope was taken as o in the above model.

When we sample n RNA molecules from this population,
the expected detected diversity, E(D), can be calculated as the
following:

N—mxxi]

2

And x; can be sampled from the fitted power law distribution.
Then, the percentage of the RNA diversity coverage, P(D), can
be estimated as:

E(D|m,x,)=K -

_E(D|m,x,)

P(D|m,x.
(D|m,x,) e

?)

We scaled the diversity coverage of unique CDR3s to the
estimated diversity coverage with 90% RNA input, Doss. We then
used Eq. 8 to get estimated m:

minZ(P(Di |m,xi)—Dobs)z,me{1,2,...}. (8)

Statistical Analysis

Mann-Whitney U test was used to calculate the significance of
copy number difference between pairs in naive, effector, effector
memory, and central memory CD8* T cells and p values was
adjusted with Benjamini-Hochberg procedure. Adjusted p-value
that was less than 0.05 was considered significant.

RESULTS

MIDCIRS Sub-Clustering Improves

Repertoire Diversity Estimation Accuracy
Molecular identifiers have been adopted in IR-seq and DNA/
RNA sequencing to reduce error rate. However, during reverse
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transcription, multiple transcripts could stochastically be tagged
with same MID. Previous strategies relied on increasing the
length of MID to reduce the probability of non-unique MID
tagging when the total RNA molecule copy number was either
unknown or very large (27). However, longer MID length could
reduce the efficiency of reverse transcription (28, 29). Thus, we
developed a more generalized approach (MIDCIRS) with reduced
MID length. A sequence-similarity-based clustering method was
implemented in MIDCIRS to separate sequencing reads into sub-
clusters within a group of sequencing reads that have the same
MID (9). Here, we developed metrics to validate the accuracy
of this sub-clustering method. In addition, we demonstrated the
robust ability of MIDCIRS to faithfully represent the diversity
and abundance of the TCR repertoire using a large range of RNA
inputs.

We reasoned that in order to comprehensively quantify the
overall diversity, a large portion of its RNA must be sampled.
However, this will inevitably increase the number of TCR tran-
scripts that need to be tagged with MIDs, which increases the
portion of MIDs tagging multiple TCR transcripts. We sought to
closely examine the relationship between RNA input and mul-
tiple TCR RNA tagging by the same MID. The process of MID
labeling can be modeled as a Poisson distribution (see Materials
and Methods). The percentage of MIDs with sub-clusters follows
an approximate linear trend when the copies of target RNA
molecules are less than 5,000,000 (Figure 1B). To experimentally
validate this, we applied MIDCIRS TCR-seq on a range of sorted
naive CD8* T cells (from 20,000 to 1 million) with three differ-
ent RNA inputs (10, 30, and 50%) (Table S1 in Supplementary
Material). We have previously used control template sequences
and evaluated the clustering threshold that would separate TCR
RNA molecules accidentally tagged with the same MID, which
is 15% of the sequence length (9). As expected, we found that
the observed percentage of MIDs that need sub-clustering is
approximately linear with respect to copies of target RNA mol-
ecules used in this study (Figure 1A). With the highest amount of
RNA molecules used in this study, approximately 8.5% of MIDs
require further clustering, while previous method treated these
sequences as ambiguous (17). Thus, MIDCIRS sub-clustering
significantly improves repertoire diversity coverage.

To evaluate the accuracy of the sub-clustering step by an
alternative means, we examined the TCR sequence lengths within
MIDs that contain sub-clusters. We reasoned that if indeed
each TCR RNA molecule was tagged with a unique MID, then
the lengths of CDR3 for all reads would be identical under each
MID. However, we showed that of the 8.5% of MIDs that contain
sub-clusters, about 87% of MIDs contain TCR sequencing reads
of different CDR3 lengths while only 13% have the same length
for one million naive CD8" T cells (50% RNA input). After per-
forming sub-clustering, over 97% of sub-clusters have a uniform
length (Figure S1 in Supplementary Material), demonstrating the
accuracy of sub-clustering step in MIDCIRS.

More importantly, to our surprise, we found that, without
performing sub-clustering, the number of unique consensus
sequences (unique CDR3 sequences) was overestimated, espe-
cially in samples with one million cells (Figure 1C; Figure S2
in Supplementary Material). This is because chimera sequences

were generated in the consensus building step for two scenarios.
In one scenario, multiple true TCR sequences could be tagged
with the same MID and quality score weighted consensus
building will generate chimera sequences (Figure 1D; Figure
S3A in Supplementary Material). In the second scenario, PCR
or sequencing errors on MIDs group multiple singletons (MIDs
that contain only one read) under the new MID. If sub-clustering
is applied, then these singletons will be separated and discarded
under the singleton category. However, without sub-clustering,
these singletons will be forced to generate a chimera sequence
(Figure S3B in Supplementary Material). Taking together,
these chimera sequences cause overestimation of the total TCR
diversity. The percentage of chimera sequences can be as high as
47% (Table S1 in Supplementary Material). Thus, compared with
previous IR-seq with MID method (17), MIDCIRS not only can
increase diversity coverage of CDR3 but improve the accuracy of
diversity estimation.

MID Read-Distribution-Based Barcode
Correction Improves Accuracy and
Sensitivity of Counting TCR Transcripts

Besides correcting PCR and sequencing errors, MIDs have also
been used for absolute quantification of RNA molecule copy
number in single-cell studies to improve precision (30-33). Here,
we demonstrated how to use MIDCIRS TCR-seq to digitally count
TCR transcripts. The absolute quantification of TCR transcripts
is fundamental for accurate clonal size estimation. We noticed
that PCR and sequencing errors also affected MIDs, as seen in
single-cell RNA sequencing studies (29, 34), leading to an inflated
number of RNA molecules when libraries were sequenced exhaus-
tively with respective to the total TCR transcripts in the sample
(Figure 2A; Figure $4 in Supplementary Material). To correct
MID errors, we first removed singleton reads, which cannot be
confidently used in generating MID groups due to sequencing
errors. Then, we adopted a similar approach applied in single-
cell RNA-seq by fitting the distribution of reads under each MID
subgroup into two negative binomial distributions (Figure S5 in
Supplementary Material) (34). Erroneous MIDs generated due
to PCR errors generally have distinctively lower read counts
compared with true MIDs. These two negative binomial distribu-
tions distinctly separated true MIDs from erroneous MIDs. MIDs
with low read counts were removed accordingly (see Materials
and Methods). After MID correction, number of RNA molecules
saturated across libraries (Figure 2A; Figure S4 in Supplementary
Material).

We found that a shallower sequencing depth is required to
saturate unique CDR3s than RNA molecules (Figure 2B). In
addition, the amount of diversity covered increased with increas-
ing RNA input. Thus, to exhaustively measure the TCR repertoire
diversity, with 30-50% of RNA input, a sequencing depth equiva-
lent to 10 times the cell number covers most of the CDR3 diver-
sity (Figure 1C; Figure S2 in Supplementary Material), while a
sequencing depth equivalent to about 100 times the relative RNA
input (defined as cell number multiplied by percentage of RNA
input) is required to saturate the RNA molecules (Figure 2A;
Figure S4 in Supplementary Material). For example, 30% RNA of
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dividing the number of overlapping clones by the total number of clones observed in the deeper sub-sampling. Data from other cell input are in Figure S6B in
Supplementary Material.

20,000 cells is equivalent to 6,000 RNA input. Then, it takes about ~ The number of single-copy clones saturates with adequate
600,000 reads to saturate the RNA molecules but only 200,000  sequencing depth (Figure 2C; Figure S6A in Supplementary
reads to saturate the unique CDR3s (Figure 2A, middle panel). Material). Meanwhile, we compared the degree of overlapping

After MID correction, with optimal sequencing depth, we  clones within these single-copy clones at different sequencing
stably detected TCR clones with a single TCR RNA molecule  depths. To do this, we subsampled each library to different frac-
(single-copy clones with at least two identical sequencing reads).  tions of the total reads. The overlapping clones were compared
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between two adjacent subsamples, and the overlap percentage
was calculated by dividing the number of overlapping clones by
the total number of clones observed in the deeper subsample.
Thus, for total of 10 subsamples, 9 clonal overlap percentages
were calculated and plotted with respect to sequencing depth
(Figure 2D; Figure S6B in Supplementary Material). More than
90% of single-copy clones were repeatedly detected between the
full sequencing reads and the 0.9 subsample fraction. The overlap
percentage was above 80% for the latter part of curve (Figure 2D;
Figure S6B in Supplementary Material), which suggested that we
have reached optimal sequencing depth to detect single-copy
TCR clones.

Estimating TCR RNA Molecule Copy
Number and Validation with dPCR

From early analysis, we know that the diversity coverage of unique
CDR3s increased as RNA input increased. Here, we performed an
in depth analysis on the relationship between these two param-
eters and found that the diversity coverage of unique CDR3s
increased significantly as the RNA input increased initially, then
reached a plateau, which resulted in a nonlinear increasing of the
diversity coverage of unique CDR3s (Figures 3A,B). We assumed
that total diversity for a sample is the diversity discovered when
combining all sequencing reads from 10, 30, and 50% RNA input
libraries into a pseudo-90% RNA input. With 50% RNA, we could
recover about 60% of total diversity (Figure 3B).

Since the observed diversity is dependent on total TCR RNA
molecules in a sample, which is a function of TCR RNA molecule
copy number per cell and RNA input percentage, we next sought
to use a probability model to predict TCR RNA molecule copy
number per cell using the observed diversity coverage of unique
CDR3s as a function of RNA input percentage (see Materials
and Methods). We used the estimated diversity coverage of
different RNA inputs, including 10, 30, and 50% RNA, as well

as the computationally combined pseudo-40% (10 + 30%) and
pseudo-90% RNA inputs as data points to fit the probability
model. The best fit resulted in three copies of TCR RNA mol-
ecule per cell (Figure 3B). In another independent experiment,
RNA from 20,000 and 100,000 naive CD8* T cells were evenly
separated into five aliquots, respectively. Four of five aliquots were
sequenced (Table S2 in Supplementary Material). Results showed
that CDR3 diversity detected by MIDCIRS is very reproduc-
ible among the four aliquots and is also proportional to the cell
input numbers. In addition, we bioinformatically combined the
aliquots into pseudo-40, -60, and -80% of RNA inputs and fitted
the diversity coverage using the probability model described in
the Section “Materials and Methods” As with previously, the best
fit resulted in three copies of TCR RNA molecule per cell (Figure
S7 in Supplementary Material).

However, in order to apply this TCR RNA molecule copy
number in estimating T cell clone size, we need to validate it using
a different method and also test to see if different phenotypes of
T cells might have different TCR RNA molecule copy numbers,
which would be similar to the differences seeing in naive B cells
and plasmablasts (35). Next, we validated TCR RNA molecule
copy number using dPCR and found that various types of T cells
have similar TCR RNA copies (8-12 copies per cell) (Figure 3C).
Thus, with MIDCIRS TCR-seq, we could achieve about 30%
efficiency in recovering the target TCR RNA molecules, which
is expected given dPCR in a nanoliter volume is more efficient
than bulk PCR in tubes (36). This ratio also establishes a reference
point for rare T cell clone frequency estimate using MIDCIRS
method.

Detecting Single-Cell Worth of TCR
RNA Using MIDCIRS

The lack of accurate and absolute quantitation of TCR clones
limited the evaluation of the sensitivity of various IR-seq methods
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(37), which slowed the application of detecting rare TCR clones
in both basic research and clinical practice. To address the detec-
tion sensitivity using MIDCIRS, we spiked-in control TCR RNA
with varying copy numbers into naive T cells and validated the
robustness of detecting spiked-in TCRs. 5, 20, and 5 copies of
three spike-in cell lines with known TCR sequences were added
into 20,000 and 100,000 naive CD8* T cells. 3, 13, and 3 copies of
three spike-ins were reliably detected, respectively (Figure 4A).

We also analyzed the ability to detect a single T cell's worth
of control RNA in a larger number of other T cells. We digitally
counted the concentration of TCR RNA molecule from the
Jurkat cell line and spiked-in 10 copies of TCR RNA into
20,000-1,000,000 naive CD8" T cells (Table S1 in Supplementary
Material). In all 1,000,000 cells we sequenced, we were capable of
detecting Jurkat TCR sequences (Table 1). This sensitivity was a
significant improvement compared with previous method, which
was demonstrated to be 1 in 10,000 (21). These results demon-
strated that MIDCIRS is highly sensitive, capable of detecting
a single-cell’s amount of TCR transcripts, and rare clones could
be readily and robustly detected. Those single-copy clones
(minimum two identical reads) we discovered are thus likely to
come from single cells (Figure 2C; Figure S6A in Supplementary
Material).

Meanwhile, we compared the sensitivity of MIDCIRS and
5'RACE protocol using the diversity coverage as the param-
eter. Briefly, the 5’'RACE protocol that was used in Smart-seq2
protocol was used for TCR-seq, which has been demonstrated
to significantly improve RNA capture efficiency (38). Equal
amount of RNA (20%) from same purification was used for both
MIDCIRS and 5'RACE protocol. We then processed sequencing
results with MIDCIRS-TCR pipeline and found that 5’RACE
protocol only recovered about 44% of diversity compared to
what MIDCIRS protocol obtained (Table S3 in Supplementary
Material). With improved accuracy and sensitivity to detect rare

clones, MIDCIRS is promising in being applied to detect MRD
after treatment.

Quantifying T Cell Clonal Expansion in
Infection Using MIDCIRS

It has been shown that the clonality and quantity of T cells are
strongly correlated with efficacy of therapies, such as cancer
chemotherapy and antiviral therapy (20, 39). Accurate quanti-
fication of diversity and abundance of T cell clones is important
for application of TCR-seq in clinical settings, ranging from
prognosis to treatment decision-making. However, there lacks
an accurate approach to evaluate the degree of T cell clonal
expansion in humans. Therefore, we applied MIDCIRS TCR-
seq to examine T cell clonal expansion in infection. We sorted
20,000 and 200,000 CMVpp65-specific effector CD8" T cells
from CMV-infected patients and used 30% of RNA input to
perform TCR-seq (Table S4 in Supplementary Material). CMV
pp65 peptide has been shown to be the immunodominant target
of CD8* T cell response (40). TCR RNA molecules were digitally
counted through MIDCIRS pipeline. We defined TCR sequences
with over 20 copies of RNA molecules as expanded clones accord-
ing to TCR abundance distribution comparing between naive
CD8" T cells and CMV tetramer positive effector CD8* T cells
(Figure 4B). Over 99% unique RNA molecules were from these
expanded clones in CMVpp65-specific effector CD8* T cells. On
the other hand, although we observed uneven clonal distribution
in naive CD8* T cells, these expanded clones only account for less
than 1% unique RNA molecules (Figure 4C). Our data showed
that in CMV infection, single CMV-specific TCR clone can have
about 70,000 T cell progenies in 200,000 polyclonal CMV-specific
effector CD8* T cells (Table S4 in Supplementary Material). These
polyclonal CMV-specific effector CD8* T cells represent about
2.6% of total CD8* T cells. In addition, our previous study showed
that tetramer positive polyclonal CMV precursor cells existed at
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TABLE 1 | Spike-in Jurkat T cell receptor (TCR) RNA detection in naive CD8*
T cells.

Sample Jurkat TCR copies detected

20,000Tn_10%RNA
20,000Tn_30%RNA
20,000Tn_50%RNA
100,000Tn_10%RNA
100,000Tn_30%RNA
100,000Tn_50%RNA
200,000Tn_10%RNA
200,000Tn_30%RNA
200,000Tn_50%RNA
1,000,000Tn_10%RNA
1,000,000Tn_30%RNA
1,000,000Tn_50%RNA

N O WWN 2o 2O N

-

10 TCR-copy worth of Jurkat RNA was added to each sample during the reverse
transcription step. Number of molecular identifiers for RNA molecules that are
tagged with jurkat TCR sequences were counted.

a frequency of 1 in 100,000 CD8" T cells in CMV seronegative
individuals (22). Taking together, these results suggest that single
T cell clone can have about 900-fold proliferation in infection in
humans. Thus, MIDCIRS can be applied to evaluate clone size
and degree of clonal expansion in viral infection.

DISCUSSION

In this study, we applied the MIDCIRS, recently developed by
our group (9), in T cells to demonstrate (1) the necessity of MID
sub-clustering to improve accuracy of repertoire diversity estima-
tion; (2) the accuracy of counting TCR RNA molecules via MID
read-distribution based barcode correction; (3) the sensitivity of
detecting a single cell in as many as one million naive T cells; and
(4) the ability to quantify T cell clonal expansion due to infection
in CMV-seropositive patients.

Previous MID-based IR-seq methods, such as MIGEC, build
TCR consensus sequences by grouping MIDs (17, 41). However,
the number of target molecules could vary significantly with dif-
ferent sample inputs, which could be challenging for choosing the
appropriate MID length to ensure that each target RNA molecule
is uniquely tagged by MID. Longer MIDs are likely to decrease
the reverse transcription efficiency (28, 29). Thus, the MIDCIRS
method offers a flexible strategy for MID-barcoded IR-seq. In
addition, MIGEC triages MIDs with high diversity as ambiguous.
We compared TCR diversity discovered using MIDCIRS with
that of MIGEC, using MID with at least two reads as the thresh-
old for both approaches (see Materials and Methods) and found
that MIGEC led to an underestimated TCR diversity (Figure S8
in Supplementary Material, p < 0.001, effect size r = 0.62). We
demonstrated that using MID-based sub-clustering approach,
MIDCIRS could identify new diversities, prevent chimera
sequences from being built, and digitally count RNA molecules
(Figure 1; Figures S2 and S3 in Supplementary Material). This
corrected diversity is highly consistent with cell input numbers.

While MIDs are useful to correct for sequencing errors and
PCR errors that occur on TCR sequences, such errors are also
likely to show up on MID sequences. Although these errors do not

affect TCR diversity estimation, they lead to an overestimation of
transcript copies, thus misestimating TCR clone size (Figure 2;
Figure $4 in Supplementary Material). We corrected MID errors
based on the distribution of MID read counts under MID sub-
groups. With MID correction, we were able to accurately count
TCR RNA molecule copy number, estimate MIDCIRS detection
limit as well as detect T cell clonal expansion.

Noteworthy, we found uneven CDR3 clone size distribution
in naive CD8" T cells (Figure 4B). The most expanded clone was
enriched about 0.27% (Table S1 in Supplementary Material). This
could be due to convergent recombination as has been previously
noted (42, 43) or uneven clonal expansion during thymocyte
maturation and selection in thymus (44, 45).

Furthermore, there is a lack of standard guidelines of how
much RNA input to use for library preparation and sequencing.
Also, the capacity to evaluate immune repertoire and gene expres-
sion profile simultaneously will facilitate clinical practice, such as
cancer immunotherapies. Efforts have been made to reconstruct
antibody and TCR repertoire from RNA-seq data. This, however,
requires very deep sequencing to recover highly expanded T cell
clones in the sample, and the exact degree of repertoire coverage is
difficult to assess (46-48). Here, we demonstrated that 50% RNA
is enough to cover about 60% of CDR3 diversity (Figure 3B),
making it beneficial to take advantage of the rest of the RNA from
the same sample for other applications, e.g., RNA-seq.

Based on the TCR diversity estimation and its dependency
on RNA input, we built a probability model to estimate TCR
RNA molecule copies, which resulted in three copies per cell
(Figure 3B). We would like to point out that this does not
mean that on average there are three copies of TCR RNA in a
T cell. Because of the efficiency of RNA purification and reverse
transcription, we expect our observed RNA molecule per cell to
be lower than the true value. In Fact, dPCR results showed an
average of 10 copies of TCR RNA molecule per cell (Figure 3C),
suggesting the efficiency of MIDCIRS in TCR RNA molecule
digital counting is about 30%, which is consistent with previous
finding that nanoliter reaction volume significantly improved
PCR efficiency. Thus, quantifying TCR RNA molecule per cell
enables us to estimate the extent of T cell clonal expansion that
was not possible until now.

We also used spike-in TCR RNA to validate the sensitivity
of MIDCIRS. We showed that spiked-in TCR RNA at as few
as five copies can be reliably detected across multiple libraries
(Figure 4A). More importantly, we were also able to detect
a single-cell worth of RNA in as many as one million cells
(Table 1). With this demonstrated sensitivity, this method could
be extremely useful in MRD detection.

Last, we applied MIDCIRS to evaluate T cell clonal expansion
in CMV-infected patients. Through accurate digital counting of
TCR RNA molecules and in combination of precursor T cell fre-
quency, we showed that CMV-specific effector CD8* T cells can
expand at least 900 times, and there could be more than 70,000
effector CD8* T cells derived from the same CMV-specific T cell
clone in total of 7,700,000 of CD8* T cell in infection. We also
noticed that there is a potential of same TCR sequences tagged
with same MID, which would under estimate the clonal size,
especially in highly expanded clones. We calculated the expected
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number of collisions where same MIDs tag same RNA molecules
(Supplementary Methods in Supplementary Material). With
MID length being 12, when there are 200,000 identical RNA
molecules, the percentage of identical RNA molecules tagged
with same MID is only 1%. While long MID decreases the
percentage of identical RNA molecules tagged with same MID,
it also decreases efficiency of reverse transcription. Our analysis
revealed that MID with 12 nucleotides is appropriate. Therefore,
MIDCIRS provides the foundation of accurate assessment of
clone size and clonal expansion in infection and vaccination,
which would be a useful technology to provide a comprehensive
quantification of the T cell repertoire in various basic studies and
clinical settings.
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Supplementary Methods

Expected number of identical RNA molecules tagged with same MID.

When there are N different MIDs, the probability of RNA molecule B’s MID shares RNA molecule A’s
MID is I/N. Let the number of identical RNA molecules be n, then the probability that RNA molecule
A’s MID is shared is:

1
1-(-p (1)
Based on equation (1), the expected number of identical RNA molecules tagged with same MID, E(n) is:
1
E(m) = nx(1—-(1- N)n-l) (2)
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Supplementary Figure S1. CDR3 length differences within multi-RNA containing MIDs before and
after sub-clustering. The number of different CDR3 lengths within multi-RNA containing MIDs from
one million naive CD8" T cells (50% RNA input) was plotted before sub-clustering (orange) and within

the sub-clusters (green).
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Supplementary Figure S2. Rarefaction curve of unique CDR3s with or without sub-clustering. Number

of unique CDR3s in libraries made using three different RNA inputs (10%, 30% and 50%) from sorted
20,000, 100,000 and 200,000 naive CD8" T cells are shown here.
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Supplementary Figure S3. Representative demonstration of chimera consensus sequences generated
without sub-clustering (chimera TCR sequence in Figure 1C). (A). Two different TCR RNAs (RNA2-
TCR1 and RNA2-TCR2) were tagged with the same MID (RNA2), while one of the TCRs (TCR1) has a
sister RNA tagged by another MID (RNA1). After building consensus sequence weighted by quality
score and number of reads at each nucleotide position, a chimera consensus sequence was generated
from RNA2-tagged TCR sequences (Top box, TCRI tagged with RNAI1; bottom box, two TCR
sequences tagged with same MID; *, sequencing or PCR errors that are removed in the consensus
building; sequence outside the top box, true TCR1 consensus sequence; sequence outside the bottom
box, chimera consensus sequence; arrow, chimera nucleotide base that differs from the rest of consensus
sequence was generated by weighing read number and quality score at each nucleotide). (B) Multiple

singleton TCR RNAs were tagged with the same MID (RNAT1) that were generated by either sequencing



or PCR errors. Without sub-clustering, these singletons failed to be removed and a chimera consensus

sequence was generated.
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Supplementary Figure S6. MIDCIRS is capable of accurate digital counting of TCR RNA molecules.
(A) Rarefaction curve of number of unique CDR3s with single-copy RNA in 100,000, 200,000 and
1,000,000 naive CD8" T cells for three RNA input amounts. (B) The percentage of overlapping clones
with single-copy of transcript at different sequencing depths by sub-sampling in 100,000, 200,000 and
1,000,000 naive CD8" T cells for three RNA input amounts. The overlapping clones were compared
between two adjacent sub-samplings and the overlap percentage was calculated by dividing the number

of overlapping clones by the total number of clones observed in the deeper sub-sampling.



0 —

-
P |
4
o 08} »°
(o2}
o e
% 0.6 | ’
o $/
>
= 04 !
o ’
2 ,
o o2f,
L 4
]
0 02 04 06 08 1.0
RNA input
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Supplementary Fig. S9. CDR3 clone size distribution of 20,000, 100,000, 200,000 and 1,000,000 naive

CDS8" T cells. Red dashed line is the fitted power law distribution (See methods).
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Supplementary Table S1. Metrics of sequencing results of first naive CD8" T cell experiment.

Percentage Percentage To Top
Map Total Unique of MIDs ntag P CDR3
Raw Mappable . . of chimera CDR3
Sample percentage RNA productive | with sub- molecule
reads reads sequences | molecules .
(%) molecules CDR3 clusters (%) M fraction
(%) ’ (%)
20,000Tn
" 10%RNA 402975 254228 63.09 10171 4579 0.11 0.32 24 0.24
20,000Tn
30%RNA 877556 698961 79.65 18670 7253 0.34 0.42 39 0.21
20,000Tn
S0%RNA 1188083 984951 82.90 18367 7495 0.32 0.70 30 0.16
100,000Tn
10%RNA 922615 766441 83.07 36949 17632 0.28 0.33 89 0.24
100,000Tn
“30%RNA 2409732 2173270 90.19 72257 30428 0.70 1.58 245 0.34
100,000Tn
S0%RNA 1744861 1566048 89.75 55058 27280 0.52 0.99 171 0.31
200,000Tn
" 10%RNA 1000937 788947 78.82 61525 34097 0.41 0.86 166 0.27
200,000Tn
" 30%RNA 4224183 3902130 92.38 173224 66990 1.57 5.44 498 0.29
200,000Tn
S0%RNA 3147293 2889513 91.81 154666 67607 1.28 2.64 628 0.41
1,000,000Tn
10%RNA 7695858 6975703 90.64 514916 237331 3.19 16.14 1430 0.28
1,000,000Tn
“30%RNA 9439612 8719649 92.37 942010 382743 5.18 17.02 2387 0.25
1,000,000Tn
S0%RNA 17021339 15979187 93.88 1606258 487295 8.52 47.45 4468 0.28

* Top CDR3: CDR3 with highest MID.
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Supplementary Table S2: Metrics of sequencing results of second naive CD8" T cell experiment.

Sample Raw reads M:g;)gsble perlz/feilllt)age 1;:3?;:31;2: p?olzil:}ll:;v
(%) eCDR3
20,000Tn_20% 334713 293943 87.82 13411 7466
20,000Tn_20% 310547 262774 84.62 13329 7464
20,000Tn_20% 526435 434432 82.52 16873 8888
20,000Tn_20% 447301 360520 80.60 18573 8750
100,000Tn_20% 1962817 1853561 94.43 94536 46272
100,000Tn_20% 1575993 1481210 93.99 87887 44296
100,000Tn_20% 1911879 1776146 92.90 95167 46087
100,000Tn_20% 1858400 1721522 92.63 114885 48601
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Supplementary Table S3: Metrics of sequencing results of naive CD8" T cell with MIDICRS and

5’RACE.
Raw Mappable Map Umqu'e Ratio on unique CDR3
Sample Protocol reads reads percentage productive discovered
(%) CDR3 (MIDCIRS/5’RACE)

MIDCIRS 56780 46809 82.44 4202

20,000Tn_20%RNA 1 2.77
5’RACE 74603 55268 74.08 1516
MIDCIRS 53322 42036 78.83 4284

20,000Tn_20%RNA_2 2.42
5’RACE 77696 61074 78.61 1767
MIDCIRS 432015 396472 91.77 28975

100,000Tn_20%RNA 2.15
5’RACE 406533 336487 82.77 13497
MIDCIRS 815238 758556 93.05 55052

200,000Tn_20%RNA 1 1.92
5’RACE 885269 734108 82.92 28705
MIDCIRS 812503 649791 79.97 51870

200,000Tn_20%RNA 2 2.03
5’RACE 813019 674146 82.92 25548
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Supplementary Table S4: Metrics of sequencing results of CMV-specific effector CD8" T cell

experiments.
Mappable Total RNA Unique Top CDR3 Top T cell clone
Sample reads molecules productive molecules size (¥)
CDR3

200000

Teffector 30%RNA 2655814 324238 423 216348 72116
20000

Teffector 30%RNA 293931 40815 88 40532 13510

(*): Assuming 3 copies of RNA are recovered per cell according to figure 4.

16



Supplementary Table S5: MIDCIRS and digital PCR primers used in this paper.

Reverse transcription primer:
RT ACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNNNNNNNN
GACCTCGGGTGGGAACAC (N indicates random molecular barcode)
1st PCR primers:
Ist PCR reverse ACACTCTTTCCCTACACGAC
Ist PCR forward:
TRBV1 GACGTGTGCTCTTCCGATCTCTGACAGCTCTCGCTTATACCTTCA
TRBV2 GACGTGTGCTCTTCCGATCTGCCTGATGGATCAAATTTCACTCTG
TRBV3 GACGTGTGCTCTTCCGATCTAATGAAACAGTTCCAAATCGMTTCT
TRBV4 GACGTGTGCTCTTCCGATCTCCAAGTCGCTTCTCACCTGAAT
TRBV5-1 GACGTGTGCTCTTCCGATCTCGCCAGTTCTCTAACTCTCGCTCT
TRBVS-2 GACGTGTGCTCTTCCGATCTTTACTGAGTCAAACACGGAGCTAGG
TRBVS5-3 GACGTGTGCTCTTCCGATCTCTCTGAGATGAATGTGAGTGCCTTG
TRBV5-4/5/6/7/8 | GACGTGTGCTCTTCCGATCTCTGAGCTGAATGTGAACGCCTTG
TRBV6-1 GACGTGTGCTCTTCCGATCTTCTCCAGATTAAACAAACGGGAGTT
TRBV6-2/3 GACGTGTGCTCTTCCGATCTCTGATGGCTACAATGTCTCCAGATT
TRBV6-4 GACGTGTGCTCTTCCGATCTAGTGTCTCCAGAGCAAACACAGATG
TRBV6-5/6/7 GACGTGTGCTCTTCCGATCTGTCTCCAGATCAAMCACAGAGGATT
TRBV6-8/9 GACGTGTGCTCTTCCGATCTAAACACAGAGGATTTCCCRCTCAG
TRBV7-1 GACGTGTGCTCTTCCGATCTGTCTGAGGGATCCATCTCCACTC
TRBV7-2 GACGTGTGCTCTTCCGATCTTCGCTTCTCTGCAGAGAGGACTGG
TRBV7-3 GACGTGTGCTCTTCCGATCTCTGAGGGATCCGTCTCTACTCTGAA
TRBV7-4/8 GACGTGTGCTCTTCCGATCTCTGAGRGATCCGTCTCCACTCTG
TRBV7-5 GACGTGTGCTCTTCCGATCTGGTCTGAGGATCTTTCTCCACCT
TRBV7-6/7 GACGTGTGCTCTTCCGATCTGAGGGATCCATCTCCACTCTGAC
TRBV7-9 GACGTGTGCTCTTCCGATCTCTGCAGAGAGGCCTAAGGGATCT
TRBVS-1 GACGTGTGCTCTTCCGATCTAAGCTCAAGCATTTTCCCTCAAC
TRBVS-2 GACGTGTGCTCTTCCGATCTATGTCACAGAGGGGTACTGTGTTTC
TRBV9 GACGTGTGCTCTTCCGATCTACAGTTCCCTGACTTGCACTCTG
TRBV10-1/3 GACGTGTGCTCTTCCGATCTACAAAGGAGAAGTCTCAGATGGCTA
TRBV10-2 GACGTGTGCTCTTCCGATCTTGTCTCCAGATCCAAGACAGAGAA
TRBVI11 GACGTGTGCTCTTCCGATCTCTGCAGAGAGGCTCAAAGGAGTAG
TRBV12-1/2 GACGTGTGCTCTTCCGATCTATCATTCTCYACTCTGAGGATCCAR
TRVB12-3/4/5 GACGTGTGCTCTTCCGATCTACTCTGARGATCCAGCCCTCAGAAC
TRBV13 GACGTGTGCTCTTCCGATCTCAGCTCAACAGTTCAGTGACTATCAT
TRBV14 GACGTGTGCTCTTCCGATCTGAAAGGACTGGAGGGACGTATTCTA
TRBVIS5 GACGTGTGCTCTTCCGATCTGCCGAACACTTCTTTCTGCTTTCT
TRBV16 GACGTGTGCTCTTCCGATCTATTTTCAGCTAAGTGCCTCCCAAAT
TRBV17 GACGTGTGCTCTTCCGATCTCACAGCTGAAAGACCTAACGGAAC
TRBVIS8 GACGTGTGCTCTTCCGATCTATTTTCTGCTGAATTTCCCAAAGAG
TRBV19 GACGTGTGCTCTTCCGATCTGTCTCTCGGGAGAAGAAGGAATC
TRBV20-1 GACGTGTGCTCTTCCGATCTGACAAGTTTCTCATCAACCATGCAA
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TRBV2I-1

GACGTGTGCTCTTCCGATCTCAATGCTCCAAAAACTCATCCTGT

TRBV22-1 GACGTGTGCTCTTCCGATCTAGGAGAAGGGGCTATTTCTTCTCAG
TRBV23-1 GACGTGTGCTCTTCCGATCTATTCTCATCTCAATGCCCCAAGAAC
TRBV24-1 GACGTGTGCTCTTCCGATCTGACAGGCACAGGCTAAATTCTCC
TRBV25-1 GACGTGTGCTCTTCCGATCTAGTCTCCAGAATAAGGACGGAGCAT
TRBV26 GACGTGTGCTCTTCCGATCTCTCTGAGGGGTATCATGTTTCTTGA
TRBV27 GACGTGTGCTCTTCCGATCTCAAAGTCTCTCGAAAAGAGAAGAGGA
TRBV28 GACGTGTGCTCTTCCGATCTAAGAAGGAGCGCTTCTCCCTGATT
TRBV29-1 GACGTGTGCTCTTCCGATCTCGCCCAAACCTAACATTCTCAA
TRBV30 GACGTGTGCTCTTCCGATCTCCAGAATCTCTCAGCCTCCAGAC
2nd PCR primers

2nd PCR reverse | AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC
2nd PCR forward | CAAGCAGAAGACGGCATACGAGATAA XXXXXX

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT (X indicates fixed
library index)

Digital PCR primers:

RT ITTTTTTTTTTTTTTTTTTTTTTTVN
TRBC F GAGCCATCAGAAGCAGAGATC
TRBC R CTCCTTCCCATTCACCCAC

TRBC Probe

CCACACCCAAAAGGCCACACTG
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