
Identification of and correction for publication bias

By Isaiah Andrews and Maximilian Kasy∗

Some empirical results are more likely to be published than others.
Selective publication leads to biased estimates and distorted infer-
ence. We propose two approaches for identifying the conditional
probability of publication as a function of a study’s results, the first
based on systematic replication studies and the second on meta-
studies. For known conditional publication probabilities, we pro-
pose bias-corrected estimators and confidence sets. We apply our
methods to recent replication studies in experimental economics
and psychology, and to a meta-study on the effect of the minimum
wage. When replication and meta-study data are available, we find
similar results from both.
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Despite following the same protocols, replications of published experiments fre-
quently find effects of smaller magnitude or opposite sign than those in the initial
studies (cf. Open Science Collaboration, 2015; Camerer et al., 2016). A leading
explanation for replication failure is publication bias (cf. Ioannidis, 2005, 2008;
McCrary et al., 2016; Christensen and Miguel, 2016). Journal editors and referees
may be more likely to publish results that are statistically significant, that con-
firm some prior belief or, conversely, that are surprising. Researchers in turn face
strong incentives to select which findings to write up and submit to journals based
on the likelihood of ultimate publication, leading to what is sometimes called the
file drawer problem (Rosenthal, 1979). We refer to these behaviors collectively as
selective publication or publication bias. Left unaddressed, such selectivity can
lead to biased estimates and misleading confidence sets in published studies.

We first show how bias from selective publication can be corrected if the con-
ditional publication probability (i.e. the probability of publication as a function
of a study’s results) is known. We then show how the conditional publication
probability can be nonparametrically identified. Finally, we apply the proposed
methods to several empirical literatures.
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Correcting for publication bias After introducing our setup, Section I
discusses the consequences of selective publication for statistical inference. When
selectivity is known we propose median unbiased estimators and valid confidence
sets for scalar parameters.1

Identification of publication bias Section II considers two approaches to
identification. The first uses data from systematic replications of a collection of
original studies. Following e.g. Camerer et al. (2016), by a replication we mean
a study that applies the same experimental protocol to a new sample from the
same population as the corresponding original study.2 When there is no selectiv-
ity and the original and replication studies have the same sample size, the joint
distribution of initial and replication estimates is symmetric, in the sense that it is
unchanged when we reverse the roles of the original and replication results. Under
the assumption that publication decisions depend only on the original estimates,
asymmetries in this joint distribution nonparametrically identify conditional pub-
lication probabilities. While replication sample sizes often differ from those in the
initial study, we show that nonparametric identification extends to this case as
well.

Our second identification approach uses data from meta-studies, by which we
mean studies that collect estimates and standard errors from multiple published
studies. Under an independence assumption common in the meta-studies litera-
ture, if there is no selectivity then we can write the distribution of estimates for
high variance studies as the distribution for low variance studies plus noise. De-
viations from this prediction again identify conditional publication probabilities.

In applications where we can apply both approaches, which rely on different
sources of identification, we find that they yield very similar conclusions. This
finding adds to the credibility of our widely applicable meta-studies based method.

Both approaches identify conditional publication probabilities up to scale. Mul-
tiplying publication probabilities by a constant factor does not change the distri-
bution of published results, and so does not affect the behavior of estimators and
confidence sets. Hence, identification up to scale is sufficient to apply our bias
corrections.

Applications Section III applies the theory developed in this paper to three
empirical literatures. Our first two applications use data from the experimental
economics and psychology replication studies of Camerer et al. (2016) and Open
Science Collaboration (2015), respectively. Estimates based on our replication

1While our corrections eliminate bias due to selective publication, they cannot correct for problems
with the underlying studies. If a study suffers from omitted variables bias (cf. Bruns and Ioannidis,
2016; Bruns, 2017), for instance, our corrections provide median unbiased estimates for the sum of the
parameter of interest and the omitted variables bias. See Section IV.E below.

2Clemens (2017) terms such studies “reproductions,” to distinguish them from “verifications” (cf.
Chang and Li, 2018; Gertler et al., 2018) which try to reproduce the same results as the original paper
based on the original sample.
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approach suggest that results significant at the 5% level are over 30 times more
likely to be published than are insignificant results, providing strong evidence of
selectivity. Estimation based on our meta-study approach, which uses only the
originally published results, yields similar conclusions.

Our third application considers the literature on the impact of minimum wages
on employment, where no replication estimates are available. Estimates based on
data from the meta-study Wolfson and Belman (2015) suggest that results corre-
sponding to a negative and significant effect of minimum wages on employment
are about 3 times more likely to be published than are insignificant results. Our
point estimates suggest that results showing a positive and significant effect of
minimum wages on employment are less likely to be published than negative and
significant results, consistent with prior work by Card and Krueger (1995) and
Wolfson and Belman (2015), but we cannot reject that selection depends only on
significance and not on sign. In the supplement we discuss two additional appli-
cations of our methods, using data from Croke et al. (2016) and Camerer et al.
(2018).

Alternative approaches There is a large prior literature on publication bias.
Section IV discusses some of the alternatives from this literature, including meta-
regression and approaches based on the distribution of p-values or z-statistics,
and relates them to our framework. We further discuss the implications of “p-
hacking” as studied by e.g. Simonsohn et al. (2014) and Bruns and Ioannidis
(2016) for our results.

Supplement A variety of supporting materials and extensions of our results
are provided in the online supplement. Section A contains proofs for all results
discussed in the main text. Section B provides additional discussion of the data
and methods used in our empirical applications, as well as a range of robustness
checks. Section C contains further empirical results, including estimates based on
alternative GMM estimation approaches and results for the Croke et al. (2016)
and Camerer et al. (2018) applications. Finally, Section D discusses additional
theoretical results, including on inference with multidimensional selection and the
impact of selection on Bayesian inference.

Notation Throughout the paper, upper case letters denote random variables
and lower case letters denote realizations. We observe normally distributed es-
timates X with mean Θ and standard error Σ, where Θ and Σ may vary across
studies.3 We condition on Θ and Σ whenever frequentist objects are considered,
while unconditional expectations, probabilities, and densities integrate over the
population distribution of Θ and Σ. Estimates normalized by their standard er-
ror Σ are denoted by Z, and parameters Θ normalized by Σ are denoted by Ω.

3Note that we use Σ to denote the (scalar) standard error rather than a variance matrix.
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Latent studies (published or unpublished) are marked by a superscript ∗, while
published studies have no superscript.

I. Setting

Throughout this paper we consider variants of the following data generating
process. Within an empirical literature of interest, there is a population of latent
studies i. The true effect Θ∗i in study i is drawn from distribution µΘ. Thus,
different latent studies may estimate different true parameters.4 Conditional on
the true effect Θ∗i and the standard error Σ∗i (which may also vary across studies),
the result X∗i in latent study i is drawn from the normal distribution N(Θ∗i ,Σ

∗2
i ).

For simplicity of notation we suppress the subscript i when possible.
Studies are published if D = 1, which occurs with probability p(Z∗), where

Z∗ = X∗/Σ∗. We observe the truncated sample of published studies (that is, we
observe draws from the conditional distribution of (X∗,Σ∗) given D = 1 ) and
denote observations in this sample by (X,Σ). Publication decisions reflect both
researcher and journal decisions; we do not attempt to disentangle the two. We
obtain the following model:

DEFINITION 1 (Truncated sampling process): (Θ∗,Σ∗, X∗, D) are jointly i.i.d.
across latent studies, with

(Θ∗,Σ∗) ∼ µΘ,Σ

X∗|Θ∗,Σ∗ ∼ N(Θ∗,Σ∗2)

D|X∗,Θ∗,Σ∗ ∼ Ber(p(Z∗)),

where Z∗ = X∗/Σ∗. We observe i.i.d. draws (X,Σ) from the conditional distri-
bution of (X∗,Σ∗) given D = 1. Define Z = X/Σ, Ω∗ = Θ∗/Σ∗, Ω = Θ/Σ, and
denote the marginal distribution of Θ∗ by µΘ.

As we discuss in the proofs, many of our results can be extended to the case
where X∗ is non-normal. Our focus on the normal case is motivated by the
fact that that X∗ represents the estimate in each study. Such estimates are ap-
proximately normal with a consistently estimable variance under mild conditions.
Moreover, approximate normality of estimates is widely assumed in practice (for
example to justify reporting standard errors), including in all the papers discussed
in our applications.

The truncated sampling process of Definition 1 implies the likelihood.

(1) fZ|Ω,Σ (z|ω, σ) = fZ∗|Ω∗,Σ∗,D(z|ω, σ, 1) =
p (z)

E [p (Z∗) |Ω∗ = ω]
ϕ(z − ω),

4The case where all latent studies estimate the same parameter is nested by taking the distribution
µΘ to be degenerate.
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for ϕ(·) the standard normal density. Note that fZ|Ω,Σ (z|ω, σ) = fZ|Ω (z|ω).
Moreover, the scale of the publication probability does not affect the distribution
of published results, since for c > 0, p(·) and c · p(·) imply the same fZ|Ω (z|ω).

A. Illustrative example: Selection on statistical significance

To illustrate our setting we consider a simple example to which we will return
throughout the paper. A journal receives a stream of studies reporting experimen-
tal estimates X∗ ∼ N(Θ∗,Σ∗2) of treatment effects Θ∗, where each experiment
examines a different treatment. The journal publishes studies with Z∗ in the
interval [−1.96, 1.96] with probability p(Z∗) = .1, while results outside this inter-
val are published with probability p(Z∗) = 1. This publication policy reflects a
preference for “significant results,” where a two-sided z-test rejects the null hy-
pothesis Θ∗ = 0 (or equivalently, Ω∗ = 0) at the 5% level. This journal is ten
times more likely to publish significant results than insignificant ones. Conse-
quently, published results tend to over-estimate the magnitude of the treatment
effect.5 Published confidence intervals also under-cover the true parameter value
for small values of Ω and over-cover for somewhat larger values. This is demon-
strated by Figure 1, which plots the median bias, med(Ω̂|Ω = ω)−ω, of the usual

estimator Ω̂ = Z, as well as the coverage of the conventional 95% confidence
interval [Z − 1.96, Z + 1.96].6 While we have described this example in terms of
selection by the journal, it could equivalently be interpreted as reflecting selection
by researchers, or by both researchers and journals.

B. Corrected inference

If we know the form of selectivity we can correct the bias from selective pub-
lication. This section derives median unbiased estimators and valid confidence
sets for Ω, which can immediately be turned into estimators and confidence sets
for Θ via multiplication by Σ. These results ensure unbiasedness and correct
coverage conditional on (Θ,Σ) for all (Θ,Σ), rather than just on average across
the distribution of (Θ,Σ). For now we assume p(·) is known up to scale; correc-
tions accounting for estimation error in p(·) are discussed in Section B.1 of the
supplement.

Selective publication reweights the distribution of Z by p(·). To obtain valid
estimators and confidence sets, we need to correct for this reweighting. To define
these corrections, denote the distribution function for published results Z given
true effect Ω by FZ|Ω =

∫ z
−∞ fZ|Ω (z̃|ω) dz̃, for fZ|Ω(z|ω) as in Equation (1). Recall

that fZ|Ω is the same for p(·) and c ·p(·), so we only need to know p(·) up to scale
to calculate FZ|Ω. We adapt an approach previously applied by, among others,
D. Andrews (1993) and Stock and Watson (1998), and invert the distribution

5See Ioannidis (2008) and Gelman (2018) for more discussion of this point.
6Note that med(Ω̂|Ω = ω) − ω = (med(Θ̂|Θ = θ,Σ = σ) − θ)/σ so the median bias of Ω̂ can be

interpreted as the median bias of X for θ, scaled by the standard error.
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Figure 1. Bias and coverage conditional on publication

Note: The left panel plots the median bias of the conventional estimator Θ̂j = Zj , while the right panel
plots the true coverage of the conventional 95% confidence interval, both for p(z) = .1+ .9 ·1(|Z| > 1.96).

function as a function of ω to construct a quantile-unbiased estimator. Let us
define ω̂α (z) as the solution to

(2) FZ|Ω (z|ω̂α (z)) = α ∈ (0, 1),

so z lies at the α-quantile of the distribution implied by ω̂α (z). Using the mono-
tonicity properties of FZ|Ω, we prove that ω̂α (Z) is an α-quantile unbiased esti-
mator for Ω.

PROPOSITION 1: Suppose that p(z) > 0 for all z, and p(·) is almost everywhere
continuous. Then ω̂α(z) as defined in (2) exists, is unique, and is continuous and
strictly increasing for all z. Furthermore, ω̂α(Z) is α-quantile unbiased for Ω
under the truncated sampling setup of Definition 1,

P (ω̂α (Z) ≤ ω|Ω = ω,Σ = σ) = α for all ω.

These results allow straightforward frequentist inference that corrects for selec-
tive publication. In particular, using Proposition 1 we can consider the median-
unbiased estimator ω̂ 1

2
(z) for ω, as well as the equal-tailed level 1−α confidence

interval
[
ω̂α

2
(Z) , ω̂1−α

2
(Z)
]
. This estimator and confidence set fully correct the

bias and coverage distortions induced by selective publication. In the special case
where insignificant results are published with probability zero while significant
results are published with probability one, our corrected confidence sets exclude
zero if and only if the test of McCrary et al. (2016) rejects.
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Figure 2. Bias correction

Note: This figure plots 95% confidence bounds and the median unbiased estimator for the normal model
where results that are significant at the 5% level are ten times more likely to be published than are
insignificant results. The usual (uncorrected) estimator and confidence bounds are plotted in grey for
comparison.

Illustrative example (continued) To illustrate these results, we return to
the treatment effect example discussed above. Figure 2 plots the median unbiased
estimator, as well as upper and lower 95% confidence bounds, as a function of Z,
again for the case with p(Z∗) = 1 when |Z∗| > 1.96 and p(Z∗) = .1 otherwise.
We see that the median unbiased estimator lies below the usual estimator ω̂ = Z
for small positive Z but that the difference is eventually decreasing in Z. The
truncation-corrected confidence interval shown in Figure 2 has exactly correct
coverage, is smaller than the usual interval for small Z, wider for moderate values
Z, and essentially the same for Z ≥ 5.

II. Identifying selection

This section proposes two approaches for identifying p(·). The first uses sys-
tematic replication studies, while the second uses meta-studies.

A. Systematic replication studies

The following proposition extends the model in Definition 1 above to incorpo-
rate a conditionally independent replication draw Xr∗ which is observed whenever
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X∗ is. The key assumption for this proposition is that selectivity of publication
operates only on X∗ and not on Xr∗. This assumption is plausible for system-
atic replication studies such as Open Science Collaboration (2015) and Camerer
et al. (2016), but may fail in non-systematic replication settings, for instance if
replication studies are published only when they “debunk” prior published results.

PROPOSITION 2 (Nonparametric identification using replication experiments):
Consider the data generating process of Definition 1. Assume that for each latent
study there exist a replication estimate and standard error (Xr∗,Σr∗) with

Xr∗|Θ∗,Σr∗,Σ∗, D,X∗ ∼ N(Θ∗,Σ∗r2),

where we again observe the replication estimate and standard error only for pub-
lished studies. Then p(·) is identified up to scale, and µΘ is identified as well.

Intuition Consider the setup of Proposition 2, and define Zr = Xr/Σ, that is
as the replication estimate normalized by the original standard error. Assume
for the moment that Σr∗ = Σ∗, so that the replication estimate Xr∗ has the same
variance as X∗. Under these assumptions, the marginal density of (Z,Zr) is

(3) fZ,Zr(z, z
r) =

p(z)

E[p(Z∗)]

∫
ϕ(z − ω)ϕ(zr − ω)dµΩ(ω).

This expression immediately implies that any asymmetries in the joint distribu-
tion of (Z,Zr) must be due to the publication probability p(·). In particular,

fZ,Zr(b, a)

fZ,Zr(a, b)
=
p(b)

p(a)
,

whenever the denominators on either side are non-zero. Proposition 2 uses this
identity to show that p(·) is nonparametrically identified up to scale.7 That p(·) is
only identified up to scale is intuitive: Equation (1) above shows that the scale of
p(·) does not affect the distribution of published results, and Equation (3) shows
that the same remains true once we add replication results. Hence, the scale of
p(·) is both unnecessary for bias corrections and unidentified without data on
unpublished results.

In general the replication standard error Σr∗ will differ from the original variance
Σ∗, which takes us out of the symmetric framework. Additionally, the distribution
of Σr∗ might depend on Z∗. Such dependence is present if power calculations are
used to determine replication sample sizes, as in both Open Science Collaboration
(2015) and Camerer et al. (2016). In that case, Σr∗ is positively related to the
magnitude of Z∗, but conditionally unrelated to Θ∗. The proof of Proposition

7Note that this argument does not use normality of Z and Zr, and thus generalizes to other estimator
distributions.
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Figure 3. Identification using systematic replication studies

Note: This figure illustrates the effect of selective publication in the replication experiments setting using
simulated data, where selection is on statistical significance, as described in the text. The left panel shows
the joint distribution of a random sample of latent estimates and replications; the right panel shows the
subset which are published. Results where the original estimates are significantly different from zero at
the 5% level are plotted in blue, while insignificant results are plotted in grey.

2 shows that identification carries over to this setting, since we can recover the
symmetric setting by (de)convolution of Zr with normal noise.

Illustrative example (continued) To illustrate our identification approach
using replication studies, we return to the illustrative example introduced in Sec-
tion I. In this setting, suppose that the normalized true effect Ω∗ is distributed
N(1, 1) across latent studies. As before, assume that p(Z∗) = 1 when |Z∗| > 1.96,
and that p(Z∗) = .1 otherwise. Assume finally that Σr∗ = Σ∗ = 1, so original
and replication estimates both have variance one.

This setting is illustrated in Figure 3. The left panel of this figure shows 100
random draws (Z∗, Zr∗); draws where |Z∗| ≤ 1.96 are marked in grey, while draws
where |Z∗| > 1.96 are marked in blue. The right panel shows the subset of draws
(Z,Zr) that are published. These are the same draws as (Z∗, Zr∗), except that
90% of the draws for which Z∗ is statistically insignificant are deleted.

Our identification argument in this case proceeds by considering deviations
from symmetry around the diagonal Z = Zr. Let us compare what happens in
the regions marked A and B. In A, Z is statistically significant but Zr is not; in B
it is the other way around. By symmetry of the data generating process, the latent
(Z∗, Zr∗) fall in either area with equal probability. The fact that the observed
(Z,Zr) lie in region A substantially more often than in region B thus provides
evidence of selective publication, and the exact deviation of the distribution of
(Z,Zr) from symmetry identifies p(·) up to scale.
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B. Meta-studies

Our approach using meta-studies restricts the model in Definition 1 by assuming
that Θ∗ is statistically independent of Σ∗ across latent studies, so studies with
smaller standard errors do not have systematically different estimands. This is
a strong assumption, but is imposed by many popular meta-analysis techniques
including in meta-regression (see Section IV.B) and the “trim and fill” method
(Duval and Tweedie, 2000). This assumption holds trivially if Θ∗ is constant
across latent studies. In our applications with replication data, estimates for p(·)
based on this assumption are similar to those based on our replication approach,
lending further support to this method.

PROPOSITION 3 (Nonparametric identification using meta-studies): Consider
the data generating process of Definition 1. Assume additionally that Σ∗ and Θ∗

are independent, and that the support of Σ contains an open interval. Then p(·)
is identified up to scale, and µΘ is identified as well.

Intuition Consider the setup of Proposition 3. The conditional density of Z
given Σ is

fZ|Σ(z|σ) =
p(z)

E[p(Z∗)|Σ∗ = σ]

∫
ϕ(z − θ/σ)dµΘ(θ).

This implies that, for σ2 > σ1,

(4)
fZ|Σ(z|σ2)

fZ|Σ(z|σ1)
=
E[p(Z∗)|Σ∗ = σ1]

E[p(Z∗)|Σ∗ = σ2]
·
∫
ϕ(z − θ/σ2)dµΘ(θ)∫
ϕ(z − θ/σ1)dµΘ(θ)

,

where the first term on the right hand side does not depend on z. Since fZ|Σ(z|σ2)/fZ|Σ(z|σ1)
is identified, this suggests we might be able to invert this equality to recover µΘ,
which would then allow us to identify p(·). The proof of Proposition 3 builds on
this idea.

Illustrative example (continued) As before, assume that Θ∗ is N(1, 1)
distributed, that p(Z∗) = 1 when |Z∗| > 1.96, and that p(Z∗) = .1 otherwise.
Suppose further that Σ∗ is independent of Θ∗ across latent studies. This set-
ting is illustrated in Figure 4. The left panel of this figure shows 100 random
draws (X∗,Σ∗); draws where |X∗/Σ∗| ≤ 1.96 are marked in grey, while draws
where |X∗/Σ∗| > 1.96 are marked in blue. The right panel shows the subset of
draws (X,Σ) that are published, where 90% of statistically insignificant draws
are deleted.

Compare what happens for two different values of the standard error Σ, marked
by A and B in Figure 4. By the independence of Σ∗ and Θ∗, the distribution of
X∗ for larger values of Σ∗ is a noised up version of the distribution for smaller
values of Σ∗. To the extent that the same does not hold for the distribution of
published X given Σ, this must be due to selectivity in the publication process.
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In this example, statistically insignificant observations are “missing” for larger
values Σ. Since publication is more likely when |X∗/Σ∗| > 1.96, the estimated
values X tend to be larger on average for larger values of Σ, and the details of
how the conditional distribution of X given Σ varies with Σ will again allow us
to identify p(·) up to scale.
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Figure 4. Identifcation using meta-studies

Note: This figure illustrates the effect of selective publication in the meta-studies setting using simulated
data, where selection is on statistical significance, as described in the text. The left panel shows a random
sample of latent estimates; the right panel shows the subset of estimates which are published. Results
which are significantly different from zero at the 5% level are plotted in blue, while insignificant results
are plotted in grey.

C. Estimation

The sample sizes in our applications are limited, which makes fully nonparam-
eteric estimation impractical. In the supplement we build on our identification
arguments to derive GMM estimators that assume a functional form for the con-
ditional publication probability p(·) but are nonparametric in the distribution µ
of true effects. For simplicity and ease of exposition, however, in the main text
we specify parsimonious parametric models for both p(·) and µ which we fit by
maximum likelihood, similar to Hedges (1992). Our nonparametric identifica-
tion results suggest that there is hope for estimation robust to functional form
assumptions, and this is borne out by the similarity of the maximum likelihood
estimates reported here to the GMM results reported in the supplement.

We consider step function models for p(·), with jumps at conventional critical
values, and possibly at zero. Since p(·) is only identified up to scale, we impose
the normalization p(z) = 1 for z > 1.96 throughout. This is without loss of
generality, since p(·) is allowed to be larger than 1 for other cells. We assume
different parametric models for the distribution of latent effects Θ∗, discussed
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case-by-case below. In our first two applications the sign of the original estimates
is normalized to be positive.8 We denote these normalized estimates by W = |Z|,
and in these settings we impose that p(·) is symmetric.

III. Applications

This section applies the results developed above to estimate the degree of se-
lectivity in three empirical literatures. We first consider data from the large scale
replication studies Camerer et al. (2016) and Open Science Collaboration (2015),
which examine experimental studies in economics and psychology, respectively.
We then turn to the meta-study Wolfson and Belman (2015) on the effect of the
minimum wage on employment. We consider two additional applications in the
supplement, using replication data from Camerer et al. (2018) on social-science
experiments and meta-study data from Croke et al. (2016) on the effect of de-
worming.

Plausibility of identifying assumptions The results of Section II imply
nonparametric identification of both p(·) and µΘ. Our approach using replication
data is based on the assumption that selection for publication depends only on
the original estimates and not on the replication estimates. This assumption is
highly plausible by design in the two replication settings we consider, which use
data from systematic replication studies. These studies pre-specify and replicate
a large number of results published in a given time period and set of journals,
and report all replication results together.

Our approach using meta-studies is based on the assumption that studies on
a given topic with different standard errors do not have systematically different
estimands. While we cannot guarantee validity of this assumption by design, its
plausibility is enhanced by our finding that it yields estimates very similar to the
approach based on replication studies in all our applications where both apply
(Camerer et al. (2016), Open Science Collaboration (2015), and Camerer et al.
(2018)). Variants of this assumption (or the strictly stronger assumption that Θ
is constant) are common in existing meta-studies.

Finally, for both approaches we assume that conditional on (Θ∗,Σ∗) estimates
are approximately normal, consistent with the inference methods used in the
underlying studies.

A. Economics laboratory experiments

Our first application uses data from a recent large-scale replication of exper-
imental economics papers by Camerer et al. (2016). The authors replicated all

8The studies in these datasets consider different outcomes, so the relative signs of effects across studies
are arbitrary. Setting the sign of the initial estimate in each study to be positive ensures invariance to
the sign normalization chosen by the authors of each study.
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18 between-subject laboratory experiment papers published in the American Eco-
nomic Review and Quarterly Journal of Economics between 2011 and 2014.9 Fur-
ther details on the selection and replication of results can be found in Camerer
et al. (2016), while details on our handling of the data are discussed in the sup-
plement.

A strength of this dataset for our purposes, beyond the availability of replica-
tion estimates, is the fact that it replicates results from all papers in a particular
subfield published in two leading economics journals over a fixed period of time.
This mitigates concerns about the selection of which studies to replicate. More-
over, since the authors replicate 18 such studies, it seems likely that they would
have published their results regardless of what they found, consistent with our
assumption that selection operates only on the initial studies and not on the
replications.

A caveat to the interpretation of our results is that Camerer et al. (2016)
select the most important statistically significant finding from each paper, as
emphasized by the original authors, for replication. This selection changes the
interpretation of p(·), which has to be interpreted as the probability that a result
was published and selected for replication. In this setting, our corrected estimates
and confidence intervals provide guidance for interpreting the headline results
of published studies. For consistency with the rest of the paper, however, we
continue to shorthand p(·) as the publication probability.

Histogram Before we discuss our formal estimation results, consider the distri-
bution of originally published estimates W = |Z|, shown by the histogram in the
left panel of Figure 5. This histogram suggests a large jump in the density fW (·)
at the cutoff 1.96, and thus a corresponding jump in the publication probability
p(·) at the same cutoff; see Section IV.C below. Such a jump is confirmed by
both our replication and meta-study approaches.

Results from replication specifications The middle panel of Figure 5
plots the joint distribution of (W,W r) = sign(Z) · (Z,Zr) in the replication data
of Camerer et al. (2016). To estimate the degree of selection in these data we
consider the model

|Ω∗| ∼ Γ(κ, λ), p(Z) ∝

{
βp |Z| < 1.96

1 |Z| ≥ 1.96.

This assumes that the absolute value of the normalized true effect Ω∗ follows a
gamma distribution with shape parameter κ and scale parameter λ. This nests

9In their supplementary materials, Camerer et al. (2016) state that “To be part of the study a
published paper needed to report at least one significant between subject treatment effect that was
referred to as statistically significant in the paper.” However, we have reviewed the issues of the American
Economic Review and Quarterly Journal of Economics from the relevant period, and confirmed that no
studies were excluded due to this restriction.
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Figure 5. Camerer et al. (2016) data

Note: The left panel shows a binned density plot for the normalized z-statistics W = |X|/Σ using data
from Camerer et al. (2016). The grey line marks W = 1.96. The middle panel plots the z-statistics W
from the initial study against the estimate W r from the replication study. The grey lines mark W and
W r = 1.96, as well as W = W r. The right panel plots the initial estimate |X| = W · Σ against its
standard error Σ. The grey line marks |X|/Σ = 1.96.

Table 1—Selection estimates for Open Science Collaboration (2015)

Replication

κ λ βp
0.337 2.411 0.029

(0.236) (1.074) (0.028)

Meta-study

κ̃ λ̃ βp
1.343 0.157 0.038

(1.299) (0.076) (0.051)
Note: Selection estimates from lab experiments in economics, with robust standard errors in parentheses.
The left panel reports estimates from replication specifications, while the right panel reports results from
meta-study specifications. Publication probability βp is measured relative to the omitted category of
studies significant at 5% level, so an estimate of 0.029 implies that results which are insignificant at the

5% level are 2.9% as likely to be published as significant results. The parameters (κ, λ) and (κ̃, λ̃) are
not comparable.

a wide range of cases, including χ2 and exponential distributions, while keeping
the number of parameters low. Our model for p(·) allows a discontinuity in the
publication probability at |Z| = 1.96, the critical value for a 5% two-sided z-test.
Fitting this model by maximum likelihood yields the estimates reported in the
left panel of Table 1. Recall that βp in this model can be interpreted as the
publication probability for a result that is insignificant at the 5% level based on
a two-sided z-test, relative to a result that is significant at the 5% level. These
estimates therefore imply that significant results are more than thirty times more
likely to be published than insignificant results. Moreover, we strongly reject the
hypothesis of no selectivity, H0 : βp = 1.

Results from meta-study specifications While the Camerer et al. (2016)
data include replication estimates, we can also apply our meta-study approach
using just the initial estimates and standard errors. Since this approach relies on
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additional independence assumptions, comparing these results to those based on
replication studies provides a useful check of the reliability of our meta-analysis
estimates.

We begin by plotting the data used by our meta-analysis estimates in the right
panel of Figure 5. We consider the model

|Θ∗| ∼ Γ(κ̃, λ̃), p(Z) ∝

{
βp |Z| < 1.96

1 |Z| ≥ 1.96.

noting that Θ∗ is the mean of X∗, rather than Z∗, and thus that the interpretation
of (κ̃, λ̃) differs from that of (κ, λ) in our replication specifications. Fitting this
model by maximum likelihood yields the estimates reported in the right panel
of Table 1. Comparing these estimates to those in the left panel, we see that
the estimates from the two approaches are similar, though the metastudy esti-
mates suggest a somewhat smaller degree of selection. Hence, we find that in
the Camerer et al. (2016) data we obtain similar results from our replication and
meta-study specifications.

Bias correction To interpret our estimates, we calculate our median-unbiased
estimator and confidence sets based on our replication estimate βp = .029. Fig-
ure 6 plots the median unbiased estimator, as well as the original and adjusted
confidence sets, for the 18 studies included in Camerer et al. (2016). Considering
the first panel, which plots the median unbiased estimator along with the original
and replication estimates, we see that the adjusted estimates track the replication
estimates fairly well but are smaller than the original estimates in many cases.10

The second panel plots the original estimate and conventional 95% confidence set
in blue, and the adjusted estimate and 95% confidence set in black. As we see
from this figure, twelve of the adjusted confidence sets include zero, compared to
just two of the original confidence sets. Hence, adjusting for the estimated degree
of selection substantially changes the number of significant results in this setting.

B. Psychology laboratory experiments

Our second application is to data from Open Science Collaboration (2015), who
conducted a large-scale replication of experiments in psychology. The authors
considered studies published in three leading psychology journals, Psychological
Science, Journal of Personality and Social Psychology, and Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition, in 2008. They assigned papers
to replication teams on a rolling basis, with the set of available papers determined
by publication date. Ultimately, 158 articles were made available for replication,

10Note, however, that even for p(·) known it is not the case that the conditional median of Zr given
Z is equal to the adjusted estimate. Indeed, the conditional distribution of Zr given Z does not depend
on p(·).
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Figure 6. Adjusted estimates for Camerer et al. (2016)

Note: The top panel plots the estimates W and W r from the original and replication studies in Camerer

et al. (2016), along with the median unbiased estimate θ̂ 1
2

based on the estimated selection model and

the original estimate. The bottom panel plots the original estimate and 95% confidence interval, as well

as the median unbiased estimate and adjusted 95% confidence interval
[
θ̂0.025 (W ) , θ̂0.975 (W )

]
based

on the estimated selection model. Adjusted intervals not accounting for estimation error in the selection
model are plotted with solid lines, while endpoints for intervals accounting for estimation error are marked
with “p” – see Section B.1 of the supplement.
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111 were assigned, and 100 of those replications were completed in time for inclu-
sion in Open Science Collaboration (2015). Replication teams were instructed to
replicate the final result in each article as a default, though deviations from this
default were made based on feasibility and the recommendation of the authors of
the original study. Ultimately, 84 of the 100 completed replications consider the
final result of the original paper.

As with the economics replications above, the systematic selection of results
for replication in Open Science Collaboration (2015) is an advantage from our
perspective. A complication in this setting, however, is that not all of the test
statistics used in the original and replication studies are well-approximated by z-
statistics (for example, some of the studies use χ2 test statistics with two or more
degrees of freedom). To address this, we limit attention to the subset of studies
which use z-statistics or close analogs thereof, leaving us with a sample of 73
studies. Specifically, we limit attention to studies using z- and t-statistics, or χ2

and F-statistics with one degree of freedom (for the numerator, in the case of F-
statistics), which can be viewed as the squares of z- and t-statistics, respectively.
To explore sensitivity of our results to denominator degrees of freedom for t- and
F-statistics, in the supplement we limit attention to the 52 observations with
denominator degrees of freedom of at least 30 in the original study and find quite
similar results.

Histogram The distribution of originally published estimates W is shown by
the histogram in the left panel of Figure 7. This histogram suggests a large jump
in the density fW (·) at the cutoff 1.96, as well as possibly a jump at the cutoff
1.64, and thus of corresponding jumps of the publication probability p(·) at the
same cutoffs. Such jumps are again confirmed by the estimates from both our
replication and meta-study approaches.

Results from replication specifications The middle panel of Figure 7
plots the joint distribution of W, W r in the replication data of Open Science
Collaboration (2015). Relative to the plot for Camerer et al. (2016), we see a
larger fraction of studies where W > 1.96 for the original study while W r < 1.96
in the replication study (8 of the 18 of studies in Open Science Collaboration
(2015), compared to 43 of the 73 studies in Camerer et al. (2016)).11 This could
be due to differences in selection or to differences in the distribution of effects.
To disentangle these issues, we fit the model

|Ω∗| ∼ Γ(κ, λ), p(Z) ∝


βp,1 |Z| < 1.64

βp,2 1.64 ≤ |Z| < 1.96

1 |Z| ≥ 1.96.

11Indeed 12 of the 73 studies in Open Science Collaboration (2015) have W > 3 and W r < 1.96, while
none of those in Camerer et al. (2016) do.
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Figure 7. Open Science Collaboration (2015) data

Note: The left panel shows a binned density plot for the normalized z-statistics W = |X|/Σ using data
from Open Science Collaboration (2015). The grey line marks W = 1.96. The middle panel plots the
z-statistics W from the initial study against the estimate W r from the replication study. The grey lines
mark |W | and |W r| = 1.96, as well as W = W r. The right panel plots the initial estimate |X| = W · Σ
against its standard error Σ. The grey line marks |X|/Σ = 1.96.

Table 2—Selection estimates for Open Science Collaboration (2015)

Replication

κ λ βp,1 βp,2
0.311 1.314 0.009 0.205

(0.118) (0.296) (0.005) (0.087)

Meta-study

κ̃ λ̃ βp,1 βp,2
0.974 0.153 0.017 0.306

(0.549) (0.053) (0.009) (0.135)
Note: Selection estimates from lab experiments in psychology, with robust standard errors in parentheses.
The left panel reports estimates from replication specifications, while the right panel reports results from
meta-study specifications. Publication probabilities βp are measured relative to the omitted category of

studies significant at 5% level. The parameters (κ, λ) and (κ̃, λ̃) are not comparable.

This model again assumes that the absolute value of the normalized true effect |Ω∗|
follows a gamma distribution across latent studies. Given the larger sample size,
we consider a slightly more flexible model than before and allow discontinuities in
the publication probability at the critical values for both 5% and 10% two-sided
z-tests.

Fitting this model by maximum likelihood yields the estimates reported in the
left panel of Table 2. These estimates imply that results that are significantly
different from zero at the 5% level are over a hundred times more likely to be
published than results that are insignificant at the 10% level, and nearly five
times more likely to be published than results that are significant at the 10%
level but insignificant at the 5% level. We strongly reject the hypothesis of no
selectivity.

These results do not indicate a large difference in the degree of selection relative
to the Camerer et al. (2016) data.12 They suggest, however that the distribution

12If we instead estimate the model only with a discontinuity at the 5% level (as in the Camerer et al.
(2016) data), we estimate βp = 0.024 with standard error of 0.009.
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of |Ω∗| may be substantially smaller, with E[|Ω∗|] = 0.41 (standard error 0.1) in
the Open Science Collaboration (2015) data compared to E[|Ω∗|] = 0.81 (standard
error 0.39) in the Camerer et al. (2016) data. These estimates for E[|Ω∗|] are noisy
but suggest that the larger number of studies with W > 1.96 and W r < 1.96 in
Open Science Collaboration (2015) may be due to differences in the distribution
of true effects, rather than to differences in the degree of selection.

Our results for this setting are roughly consistent with those of Johnson et al.
(2017), who independently consider the Open Science Collaboration (2015) data
and likewise estimate a step function model for p(·), but allow a discontinuity
only at the 5% significance level. Johnson et al. (2017) estimate that insignificant
results are only about 0.5% as likely to be published as are significant results. The
Johnson et al. specifications for µΩ allow the possibility that Pr {Ω∗ = 0} > 0
and they estimate that Ω∗ = 0 about 90% of the time. Similarly, our estimated
gamma distribution has mode equal to zero.

Results from meta-study specifications As before, we re-estimate our
model using our meta-study specifications, and plot the joint distribution of esti-
mates and standard errors in the right panel of Figure 7. Fitting the model yields
the estimates reported in the right panel of Table 2. As in the last section, we
find that the meta-study and replication estimates are broadly similar, though the
meta-study estimates again suggest a somewhat more limited degree of selection

Approved replications Gilbert et al. (2016) argue that the protocols in some
of the Open Science Collaboration (2015) replications differed substantially from
the initial studies. These arguments were disputed by many of the Open Science
Collaboration (2015) authors in Anderson et al. (2016), who note that many of the
replications used protocols approved in advance by the authors of the underlying
papers. In Section B.6.2 of the supplement we report results based on the subset
of approved replications and find roughly similar estimates, though the estimated
degree of selection is smaller.

Bias corrections To interpret our results, we plot our median-unbiased esti-
mates based on the Open Science Collaboration (2015) data in Figure 8. We see
that our adjusted estimates track the replication estimates fairly well for studies
with small original z-statistics, though unlike in Figure 6 differences are larger for
studies with larger original z-statistics.13

Our adjustments again dramatically change the number of significant results,
with 62 of the 73 original 95% confidence sets excluding zero, and only 28 of the
adjusted confidence sets (not displayed) doing the same.

13Since we have sorted on the original estimates, patterns of this sort can arise from mean reversion.
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Figure 8. Adjusted estimates for Open Science Collaboration (2015)

Note: This figure plots the estimates W and W r from the original and replication studies in Open Science

Collaboration (2015), along with the median unbiased estimate θ̂ 1
2

based on the estimated selection model

and the original estimate.

C. Effect of minimum wage on employment

Our final application uses data from Wolfson and Belman (2015), who conduct
a meta-analysis of studies on the elasticity of employment with respect to the
minimum wage. In particular, Wolfson and Belman (2015) collect analyses of the
effect of minimum wages on employment that use US data and were published or
circulated as working papers after the year 2000. They collect estimates from all
studies fitting their criteria that report both estimated elasticities of employment
with respect to the minimum wage and standard errors, resulting in a sample
of a thousand estimates drawn from 37 studies, and we use these estimates as
the basis of our analysis. For further discussion of these data, see Wolfson and
Belman (2015).

Since the Wolfson and Belman (2015) sample includes both published and un-
published papers, we evaluate our estimators based on both the full sample and
the sub-sample of published estimates. We find qualitatively similar answers for
the two samples, so we report results based on the full sample here and discuss
results based on the subsample of published estimates in the supplement. We
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Figure 9. Wolfson and Belman (2015) data

Note: The left panel shows a binned density plot for the z-statistics X/Σ in the Wolfson and Belman
(2015) data. The solid grey lines mark |X|/Σ = 1.96, while the dash-dotted grey line marks X/Σ = 0.
The right panel plots the estimate X against its standard error Σ. The grey lines mark |X|/Σ = 1.96.

define X so that X > 0 indicates a negative effect of the minimum wage on
employment.

Histogram Consider first the distribution of the normalized estimates Z, shown
by the histogram in the left panel of Figure 9. This histogram is somewhat sugges-
tive of jumps in the density fZ(·) around the cutoffs −1.96, 0, and 1.96, and thus
of corresponding jumps in the publication probability p(·) at the same cutoffs;
these jumps seem less pronounced than in our previous applications, however.

Results from meta-study specifications For this application we do not
have any replication estimates, and so move directly to our meta-study specifica-
tions. The right panel of Figure 9 plots the joint distribution of X, the estimated
elasticity of employment with respect to decreases in the minimum wage, and the
standard error Σ in the Wolfson and Belman (2015) data.

We consider the model

Θ∗ ∼ θ̄ + t(ν) · τ̃ , p(Z) ∝


βp,1 Z < −1.96

βp,2 −1.96 ≤ Z < 0

βp,3 0 ≤ Z < 1.96

1 Z ≥ 1.96.

Since the data are not sign-normalized, we model Θ∗ using a t distribution with
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degrees of freedom ν̃ and location and scale parameters θ̄ and τ̃ , respectively.
Unlike in our previous applications, we allow the probability of publication to
depend on the sign of the z-statistic Z rather than just on its absolute value.
This is important, since it seems plausible that the publication prospects for a
study could differ depending on whether it found a positive (X < 0) or negative
(X > 0) effect of the minimum wage on employment.

Our estimates based on these data are reported in Table 3, where we find
that results which are insignificant at the 5% level are about 30% as likely to be
published as are significant estimates finding a negative effect of the minimum
wage on employment. Our point estimates also suggest that studies finding a
positive and significant effect of the minimum wage on employment may be less
likely to be published, but this estimate is quite noisy and we cannot reject the
hypothesis that selection depends only on significance and not on sign. Unlike
our other results, this is sensitive to the details of the specification: if we instead
restrict the distribution of true effects Θ∗ to be normal, our estimate for βp,1 drops
to 0.225 with a standard error of 0.118. On the other hand, our GMM approach
discussed in Section C.1 of the supplement returns a βp,1 estimate of 1.174 with
a standard error of 0.417.

Table 3—Selection estimates for Wolfson and Belman (2015)

θ̄ τ̃ ν̃ βp,1 βp,2 βp,3
0.018 0.019 1.303 0.697 0.270 0.323

(0.009) (0.011) (0.279) (0.350) (0.111) (0.094)
Note: Meta-study estimates from minimum wage data, with standard errors clustered by study in paren-
theses. Publication probabilities βp measured relative to omitted category of estimates positive and
significant at 5% level.

Since the studies in this application estimate related parameters, it is interesting
to consider the estimate θ̄ for the mean effect in the population of latent estimates.
The point estimate is small but significantly different from zero at the 5% level,
and suggests that the average latent study finds a small negative effect of the
minimum wage on employment. This effect is about half as large as the “naive”
average effect θ̄ we would estimate by ignoring selectivity, .041 with a standard
error of 0.011.

These results are consistent with the meta-analysis estimates of Wolfson and
Belman (2015), who found evidence of some publication bias towards a negative
employment effect, as well as the results of Card and Krueger (1995), who focused
on an earlier, non-overlapping set of studies.

Multiple estimates A complication arises in this application, relative to those
considered so far, due to the presence of multiple estimates per study. Since it
is difficult to argue that a given estimate in each of these studies constitutes
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the “main” result, restricting attention to a single estimate per study would be
arbitrary. This somewhat complicates inference and identification.

For inference, it is implausible that estimate standard-error pairs (X,Σ) are
independent within study. To address this, we cluster our standard errors by
study.

For identification, the problem is somewhat more subtle. Our model assumes
that the latent parameters Θ∗i and Σ∗i are statistically independent across esti-
mates i, and that Di is independent of (Θ∗i ,Σ

∗
i ) conditional on Z∗i . It is straight-

forward to relax the assumption of independence across i, provided the marginal
distribution of (Θ∗i ,Σ

∗
i , X

∗
i , Di) is such that Di remains independent of (Θ∗i ,Σ

∗
i )

conditional on Z∗i . This conditional independence assumption is justified if we
believe that both researchers and referees consider the merits of each estimate
on a case-by-case basis, and so decide whether or not to publish each estimate
separately. Alternatively, it can also be justified if the estimands Θ∗ within each
study are statistically independent (relative to the population of estimands in the
literature under consideration).

IV. Alternative approaches

Many approaches to detecting selectivity and publication bias have been pro-
posed in the literature. Good reviews are provided by Rothstein et al. (2006)
and Christensen and Miguel (2016). In this section we analyze some of these
approaches through the lens of our framework and relate them to our results.

A. Should results “replicate?”

The findings of recent systematic replication studies such as Open Science Col-
laboration (2015) and Camerer et al. (2016) are sometimes interpreted as indicat-
ing an inability to “replicate the results” of published research. In this setting, a
“result” is understood to “replicate” if both the original study and its replication
find a statistically significant effect in the same direction. The share of results
which replicate in this sense is prominently discussed in Camerer et al. (2016).
Our framework shows that the probability of replication in this sense might be
low even without selective publication or other sources of bias.

Consider the setup for replication experiments of Proposition 2, with constant
publication probability p(·), so that publication is not selective and fZ,Zr =
fZ∗,Zr∗ . For illustration, assume further that Σ∗ = Σr∗ with probability 1. For Φ
the standard normal distribution function, the probability that a result replicates
in the sense described above is

P (Zr∗·sign{Z∗} > 1.96||Z∗| > 1.96) =

∫ [
Φ(−1.96− ω)2 + Φ(−1.96 + ω)2

]
dµΩ(ω)∫

[Φ(−1.96− ω) + Φ(−1.96 + ω)] dµΩ(ω)
.

If the true effect is zero in all studies then this probability is 0.025. If the true
effect in all studies is instead large, so that |Ω∗| > M with probability one for
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some large M , then the probability of replication is approximately one. Thus,
any replication probability between 0.025 and one is consistent with no selection,
and low replication frequencies are not necessarily indicative of selective publica-
tion, but could instead be due to a large share of small true effects. Strengths
and weaknesses of alternative measures of replication are discussed in Simonsohn
(2015) and Patil and Peng (2016).

B. Meta-regressions

A popular test for publication bias in meta-studies (cf. Card and Krueger, 1995;
Egger et al., 1997) is based on meta-regression, which uses regressions of either
of the following forms:

E∗[X|1,Σ] = γ0 + γ1 · Σ, E∗
[
Z|1, 1

Σ

]
= β0 + β1 · 1

Σ ,

where we use E∗ to denote best linear predictors. Under the assumptions of
Proposition 3, if p(·) is constant then it follows immediately that

E∗[X|1,Σ] = E[Θ∗], E∗
[
Z|1, 1

Σ

]
= E[Θ∗] · 1

Σ .

Hence, testing that either γ1 = 0 or β0 = 0 delivers a valid test for the null
hypothesis of no selectivity, though there are some forms of selectivity against
which such tests have no power.

For our minimum wage application, a regression of X on Σ yields an intercept
of 0.006 (standard error 0.038) and a slope of 0.408 (standard error 0.372).14 A
regression of Z on 1/Σ yields an intercept of 0.343 (standard error 0.283) and a
slope of 0.018 (standard error 0.009). In particular, neither of these regressions
allows to reject the null of no selectivity at a 5% level, in contrast to the estimates
discussed in Section III.C.

Absent publication bias, γ0 and β1 recover the average of Θ∗ in the population
of latent studies. Our estimates of γ0 and β1 are 0.006 and 0.018. These co-
efficients are sometimes interpreted as selection-corrected estimates of the mean
effect across studies (cf. Doucouliagos and Stanley, 2009; Christensen and Miguel,
2016), but this interpretation is potentially misleading in the presence of publica-
tion bias. In particular, the conditional expectation E[X|1,Σ] is nonlinear in both
Σ and 1/Σ, which implies that β0, γ1 are generally biased as estimates of E[Θ∗].15

We discuss a simple example with one-sided significance testing in Section D.1 of
the supplement.

A variety of generalizations to meta-regression have been proposed in the liter-
ature, including by Stanley and Doucouliagos (2014), who propose to use power-

14The sign normalization in our economics and psychology lab experiment applications means that
meta-regression does not apply in these settings.

15Stanley (2008) and Doucouliagos and Stanley (2009) note this bias but suggest that one can still
use H0 : γ1 = 0 to test the hypothesis of zero true effect if there is no heterogeneity in the true effect Θ∗

across latent studies.
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weighted meta-regressions to increase robustness to selective publication, and
Stanley et al. (2017) who consider non-linear meta-regressions. Meta-regressions
have also been widely used in applications, including by Carter et al. (2017),
Havránek (2015), and Ioannidis et al. (2017).16

C. The distribution of p-values and z-statistics

Another approach in the literature considers the distribution of p-values, or
the corresponding z-statistics, across published studies (cf. De Long and Lang,
1992; Schuemie et al., 2014; Simonsohn et al., 2014; Brodeur et al., 2016, 2018).
Assuming normality, there is a one-to-one mapping between the distribution of
p-values P and the distribution of z-statistics Z, since P = 1− Φ(Z) for 1-sided
tests of the null hypothesis θ = 0 or, equivalently, ω = 0.17 Under our model,
absent selectivity in the publication process the distribution fZ is equal to fZ∗ .
For Z∗|Ω∗ ∼ N(Ω∗, 1) and Ω∗ ∼ µΩ, this implies that

fZ(z) = fZ∗(z) = (µΩ ∗ ϕ)(z) =

∫
ϕ(z − ω)dµΩ(ω).

This model implies that the density fZ∗ is infinitely differentiable. If selectivity

is present, by contrast, then fZ(z) = p(z)
E[p(Z∗)] · fZ∗(z). Any discontinuity of fZ(z)

(for instance at critical values such as z = 1.96) thus identifies a corresponding
discontinuity of the conditional publication probability p(z):

(5)
limz↓z0 fZ(z)

limz↑z0 fZ(z)
=

limz↓z0 p(z)

limz↑z0 p(z)
.

If we impose that p(·) is a step function, this identifies p(·) up to scale.
In the context of our applications, we estimate the size of this discontinuity

by considering the ratio of histogram bars above and below the threshold, where
we use the same bins as in Figures 5 and 7. For the application to economics
laboratory experiments, we find a jump in the publication probability at 1.96
equal to 4. A two-sided test of the null of equal mass above and below the
threshold gives a p-value of 0.0215. For the application to psychology laboratory
experiments, we find a jump in the publication probability at 1.64 equal to 7, with
a corresponding p-value of 0.0078, and a jump in the the publication probability
at 1.96 equal to 2.3, with a corresponding p-value of 0.0347.

The model without selectivity, fZ(z) = fZ∗(z) = (µΩ ∗ ϕ)(z), has testable im-
plications beyond smoothness. In particular, the density fZ∗ precludes excessive
bunching, since for all k ≥ 0 and all z, ∂kz fZ∗(z) ≤ supz ∂

k
zϕ(z) and ∂kz fZ∗(z) ≥

infz ∂
k
zϕ(z) so for example fZ∗(z) ≤ ϕ(0) and f ′′Z∗(z) ≥ ϕ′′(0) = −ϕ(0) for all z.

16Other recent work examining selective publication in economics and finance using non meta-
regression approaches includes Chen and Zimmermann (2017) and Hou et al. (2017).

17For two-sided tests, the mapping is between p-values and absolute z-statistics |Z|.
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Spikes in the distribution of Z thus likewise indicate the presence of selectivity
or inflation.

D. Observability

The setup of Definition 1 assumes that we only observe the draws (X∗,Σ∗) for
which D = 1. In some cases, however, additional information may be available.
First, we might know of the existence of unpublished studies, for example from
experimental preregistrations, without observing their results X∗. In this case,
called censoring, we observe i.i.d. draws of (Y,D), where Y = D · Z∗.18 The
corresponding censored likelihood is

fY,D|Ω∗(y, d|ω∗) = d · p(y) · ϕ(y − ω) + (1− d) · (1− E[p(Z∗)|Ω∗ = ω∗]).

Second, we might additionally observe the results Z∗ from unpublished working
papers as in Franco et al. (2014). The likelihood in this case is

fZ∗,D|Ω∗(z, d|ω) = p(z)d(1− p(z))1−d · ϕ(z − ω).

Even under these alternative observability assumptions, the truncated likelihood
(1) arises as a limited information likelihood that conditions on publication deci-
sions and/or unpublished results. Our identification and inference results there-
fore continue to apply.

That said, additional information allows identification of p(·) under weaker
assumptions. With full observability of unpublished results Z∗, for example, p(·)
is identified by simply regressing D on Z∗, cf. Franco et al. (2014).

E. Bias and Pseudo-True Values

Bruns and Ioannidis (2016) and Bruns (2017) discuss an additional way in which
selectivity may increase bias in observational studies. To cast their concern into
our framework, recall that we assume throughout that the distribution of X∗ in
latent studies is normal and centered on Θ∗. There are different ways this model
can be interpreted.

A first interpretation is that Θ∗i is the “true” parameter of interest in study
i. This would for example be the case for randomized experiments where we
have no reason to doubt the internal validity of each study. In this case any
variation of Θ∗i across studies i considering the same question is due to issues of
external validity, for instance to different populations of experimental subjects, or
to effects changing over time. In this setting our corrections yield valid estimates
and confidence sets for the parameters of interest.

A second interpretation of our model is that researchers consider different es-
timates X∗ of the same parameter. These estimates might for instance be based

18We could also observe the standard error Σ for published studies, but suppress this for simplicity.
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on different controls, different outcome variables, different estimation methods,
and so on. These estimates have expectations Θ∗ that vary across specifications,
so not all Θ∗ correspond to the “true” effect of interest. Put differently, variation
of Θ∗ across studies might be due to violations of internal validity, in addition to
issues of external validity.19 Under this second interpretation, we have additional
sources of bias. First, E[Θ] 6= E[Θ∗] in general, so selection can lead to different
average biases among published and latent studies. This effect can persist even
as sampling noise goes to zero.20 Second, even if we avoid this bias by using our
approach to identify µΘ and therefore E[Θ∗], there is no guarantee that E[Θ∗]
corresponds to the parameter of interest. Hence, while our corrections can undo
selection bias and allow inference on either the parameter Θ in a given study or
the distribution µΘ of Θ∗ in the population of latent studies, we cannot correct
deficiencies in the underlying studies.

F. Manipulation and P-hacking

Some authors consider the possibility that researchers manipulate their results
(Brodeur et al., 2016; Furukawa, 2017), while others consider the selection of
results within papers, which Simonsohn et al. (2014) term “p-hacking.” Our
primary focus in this paper is on researchers decisions whether or not to submit
findings, and journal decisions whether or not to publish submissions, rather than
on manipulation or p-hacking. Nonetheless, depending on the form manipulation
or p-hacking takes, it may still be consistent with our baseline model.

To illustrate, consider an experimental setting where researchers run two inde-
pendent versions of an experiment, or estimate two regression specifications for
the same estimand. Suppose first that they decide whether to report an estimate
for each experiment or specification separately. In this case our baseline model
applies, save that Θ∗i is no longer i.i.d. Suppose now alternatively that the re-
searcher decides to always report only the more significant of the two estimates.
In this case, the probability of publication of the first estimate depends on the
underlying parameter via the second estimate, so publication probabilities are of
the form p(Z∗i ,Ω

∗
i ).

To accommodate such violations of our baseline model, we discuss the extension
of our approach to settings where the selection probability may depend on both
Z and Ω in Section D.3 of the supplement. Given normal replication estimates
Xr, we show that in this setting we can still identify enough features of the model
to apply selection-corrections. We also develop specification tests for our baseline
model against this more general alternative, however, and in no case do we reject
our baseline model where p(·) does not depend on Ω given Z.

19If some studies are viewed as more credible than others, this highlights the value of conducting
inference on Θ for individual studies, rather than merely on the distribution µΘ.

20Consider for instance the case where E[Θ∗] = 0 and positive results are more likely to be published.
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V. Conclusion

This paper makes three contributions relative to the existing literature on se-
lective publication. First, we provide methods to calculate bias-corrected esti-
mators and confidence sets when the form of selectivity is known. Second, we
provide nonparametric identification results for selectivity based on replications
and meta-studies. Third, we apply the proposed methods to several literatures,
documenting the varying scale and kind of selectivity. In cases where both our
replication and meta-study approaches apply, they yield similar conclusions.

Implications for empirical research What can researchers and readers of
empirical research take away from this paper? First, when conducting a meta-
analysis of the findings of some literature, researchers may wish to apply our
methods to assess the degree of selectivity, and to apply appropriate corrections to
individual estimates, tests, and confidence sets. We provide code on our webpages
which implements the proposed methods for a flexible family of selection models.21

Second, our results provide guidance for how to interpret published empirical
findings. In particular, if a reader has a view about how the selection process
operates in a given literature, they can adjust published estimates and confidence
sets as discussed in Section 4. Even if one is concerned that the selection model
does not capture all sources of bias, these corrections aid interpretation by show-
ing how much selection, considered in isolation, changes the interpretation of
published results. A positive message from our results is that published estimates
remain informative even when publication is quite selective.

It should be emphasized that we do not advocate adjusting publication stan-
dards to reflect our corrected critical values. If these cutoffs were to be system-
atically used in the publication process, this would simply entail an “arms race”
of selectivity, rendering the more stringent critical values invalid again.

Optimal publication rules One might take the findings in this paper, and
the debate surrounding publication bias more generally, to indicate that the publi-
cation process should be non-selective with respect to findings. Selective reporting
by researchers might be eliminated by pre-analysis plans, cf. Olken (2015). Going
one step further, selective publication by journals might be eliminated by result-
blind review, cf. American Society of Health Economists (2015). The Journal of
Development Economics now offers authors the option of pre-results review. The
hope would be that non-selectivity of the publication process might restore the
validity (unbiasedness, size control) of standard inferential methods.

Note, however, that optimal publication rules may depend on results. This
can for instance be the case in models where policy decisions are made based on
published findings. Section D.6 in the supplement provides a stylized example of

21We have also implemented out meta-study approach in a web app:
https://maxkasy.github.io/home/metastudy/
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such a setting. Alternatively, given evidence that experts can forecast experimen-
tal results quite well (cf. DellaVigna and Pope, 2018), excessively surprising find-
ings might be interpreted as evidence of implementation problems and so weigh
against publication. A broader study of the question of optimal publication from
a journal’s perspective can be found in Frankel and Kasy (2018).

Supplement The supplement contains a wide variety of results to complement
those discussed in the main text. Section A provides proofs, while Section B
gives additional details for our empirical applications and considers a range of
robustness checks, including allowing publication probabilities to depend on co-
variates such as the journal or the year in which a paper was initially circulated.
Section C derives novel GMM estimation approaches that leave the distribution
of true effects unrestricted, and reports results for our applications. Section C
also reports ML estimates for the Croke et al. (2016) and Camerer et al. (2018)
applications. Finally, Section D reports additional theoretical results, including
extensions of our identification results to allow publication probabilities to depend
on Σ (to reflect a preference for precise estimates) and on Ω (to nest violations of
our baseline model). This section also extends our inference results to cases where
selection is driven by multiple variables, and discusses the effect of selection on
Bayesian inference.
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