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a b s t r a c t

The modelling community has identified challenges for the integration and assessment of lake models

due to the diversity of modelling approaches and lakes. In this study, we develop and assess a one-

dimensional lake model and apply it to 32 lakes from a global observatory network. The data set

included lakes over broad ranges in latitude, climatic zones, size, residence time, mixing regime and

trophic level. Model performance was evaluated using several error assessment metrics, and a sensitivity

analysis was conducted for nine parameters that governed the surface heat exchange and mixing effi-

ciency. There was low correlation between input data uncertainty and model performance and pre-

dictions of temperature were less sensitive to model parameters than prediction of thermocline depth

and Schmidt stability. The study provides guidance to where the general model approach and associated

assumptions work, and cases where adjustments to model parameterisations and/or structure are

required.

© 2017 Published by Elsevier Ltd.

1. Introduction

V€or€osmarty et al. (2000) urged the international “water sciences

community” to work together in the collation and dissemination of

hydrological data and modelling techniques to improve our un-

derstanding of freshwater ecosystems and “secure amore complete

picture of future water vulnerabilities”. Lakes, in particular, are

highly valued ecosystems as they provide important water and food

resources, and numerous other ecosystem services (Wilson and

Carpenter, 1999). Human activities such as fresh water diversion

and increased nutrient loading, in addition to indirect pressures

from climate change, have led to an increased vulnerability of lakes

on a global scale (Folke et al., 2004). These challenges have given

rise to international networks of scientists such as the Global Lake

Ecological Observatory Network (GLEON: gleon.org). Collaborative

networks can take advantage of shared data, techniques, and

expertise to enable scientists to address the ecological challenges

facing lakes globally (Eigenbrode et al., 2007; Adams, 2012; Goring

et al., 2014). GLEON was initiated in 2005 as a grassroots science

community with a vision to observe, understand and predict

freshwater systems at a global scale (Weathers et al., 2013).

Collaboration between scientists and synthesis of data collected

through international networks has led to advances in our under-

standing of how lake ecosystems respond to external changes and

contribute to effective lake management on a local (Gal et al. 2009),

regional (Read et al., 2014; Trolle et al., 2015) and global scale

(O'Reilly et al., 2015). Analyses based on data from a broad spec-

trum of lakes across the globe have provided insight into meta-

bolism and carbon cycling in lakes (Hanson et al., 2011; Solomon

et al., 2013), the role of wind and heat exchange in lake physics

(Read et al., 2012), the impact of climate change (Adrian et al.,

2009), response and recovery of lakes to extreme events

(Jennings et al., 2012; Klug et al., 2012), incorporation of high fre-

quency data for model validation (Hamilton et al., 2015) and

assisted in development of models (Staehr et al., 2010; Read et al.,

2011; Kara et al., 2012; Hipsey et al., 2017). Further interrogation

of the emerging multi-lake datasets offers the potential to advance

our understanding of how lakes respond to pressures such as

climate or land use change from the individual to global scales.

The collaborative network also creates opportunities for devel-

oping and testing modelling tools. Aquatic ecosystem models are

recognized as essential instruments to improve understanding of

processes, analyse relationships, test hypotheses andpredict the state

of a system (Trolle et al., 2012). These models have evolved since the

first attempts in the early 1920s, with a recent review of aquatic

ecosystem models revealing the diversity of existing models from

simple 0-D to complex 3-D coupled hydrodynamic-biogeochemical

models (Janssen et al., 2015). This diversity creates challenges for

integration and synthesis of model approaches (Mooij et al., 2010).

The Aquatic Ecosystem Modelling Network (AEMON: https://sites.

google.com/site/aquaticmodelling/home) originated to foster collab-

oration and improve model development, predictability, trans-

parency and reliability. One of the major challenges facing modellers

is how to develop generic models that can capture the diversity of

ecosystems while allowing prediction with confidence of the pro-

cesses of each system. In order to undertake analytical synthesis

acrossmultiple sites, there is a need to assess the transferability of the

underlying model and standardise its structure, parameterisation,

development and examination. While the need to develop a set of

standards for model assessment and reporting is widely recognized

(Bennett et al., 2013; Grimm et al., 2014), the ability to test these

standards across multiple systems and highlight both strengths and

limitations of a particular model remains a challenge.

For lakes and reservoirs in particular, one-dimensional (1-D)

models that resolve vertical profiles of temperature and density have

found widespread use due to their computational efficiency and

minimal calibration requirements. The reduced complexity of 1-D

models is advantageous whenever greater computational efficiency

is needed, e.g., in ensemble modelling (Trolle et al., 2014), model

inter-comparison projects such as LakeMIP (http://www.unige.ch/

climate/lakemip) (Stepanenko et al., 2010; Thiery et al., 2014),

probabilistic studies (Schlabing et al. 2014), long-term scenario

analysis (Gilboa et al., 2014) or when linking lake models to global

climate models (Balsamo et al., 2012) or catchment models (Hipsey
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et al., 2015). Moreover, lake managers and reservoir operators prefer

models having a simpler application and often rely on 1-Dmodels for

this reason (Kerimoglu and Rinke, 2013; Weber et al., 2017).

Here we introduce the Multi-Lake Comparison Project (MLCP)

undertaken within AEMON. The MLCP is a community driven

project, where teams of modellers simulate lakes using common

approaches for model setup, assessment and analysis. The under-

lying purpose of the project was to bring together an international

network of scientists and modellers with diverse experience in

order to improve our ability to predict how lake ecosystems

respond to external drivers. In the first stage, the MLCP took

advantage of GLEON and AEMON member data from numerous,

diverse lakes to stress test the recently developed General Lake

Model (GLM) (Hipsey et al., 2017). GLM is a 1-D hydrodynamic

model for use in a broad spectrum of enclosed aquatic ecosystems

such as lakes, reservoirs and wetlands. The model is simple in na-

ture and is based on assumptions that are common to previous

model applications (Imberger and Patterson, 1989; Hamilton and

Schladow, 1997; Coats et al., 2006). The model conducts a lake

mass and energy balance to compute vertical profiles of tempera-

ture, salinity and density while accounting for the effect of inflows

and outflows, surface heating and cooling, mixing and ice cover on

the lake. GLM can be coupled with biogeochemical models to

explore the impact of temperature, stratification, and vertical

mixing on the dynamics of lake ecology (e.g. Snortheim et al., 2017).

This paper summarises the first phase of theMLCP to develop and

stress-test GLM. The stress-test involved applying a single stand-

ardised procedure for model set-up, simulation, performance testing

and analysis to 32 lakes from across the global network. The main

objective of this study was to undertake comparative analysis of

model performance using an unprecedented diversity of lake types

in order to advance our understanding of limnology and contem-

porary modelling practices. The specific aims of the study were to:

1. Ascertain levels of model performance and relate it to model

input uncertainty;

2. Identify lake attributes (e.g. depth, inflows, and climate) that

correspond with high (or low) prediction accuracy;

3. Relate sensitivity of model output variables to changes in sur-

face exchange, heating and mixing parameters that characterise

1-D lake models;

4. Document the transferability of the model without recalibration

of individual parameters among lakes, even where these lakes

may strongly differ in their properties; and

5. Provide guidance to lake modellers as to how to focus data

collation and model application efforts to improve predictions

for lake ecosystems.

To ease readability, this main section of the paper includes all

text as well as tables and figures relevant to the major methodology

and results from the study. Additional data have been provided in

the following four appendices as supplementary material to the

main study:

A Describing uncertainty error associated with the model set up;

B Extended results describing model performance;

C Extended results of the sensitivity analysis; and

D A summary of acknowledgements for each lake.

2. Methods

2.1. Study site selection

Lakes were not chosen a priori based on their attributes, but

rather AEMON and GLEON members were invited to participate in

the MLCP by volunteering details of their candidate lake to the

group (shared via open access spreadsheet). The requirement for

inclusion of a lake was based on the following three conditions:

1. Sufficient temperature data were available for validation (at

least 2 years of monthly/regular thermistor chain and/or profile

data);

2. High-resolution meteorological forcing data from an on-lake

buoy or local terrestrial based station were available; and

3. Gauged or well-estimated inflows and outflows were available

over the simulation period to form a reliable lake water balance.

Participants were also required to have a basic knowledge of

lake modelling. Instructions as to how to set-up the GLM test cases,

and a common binary executable (GLM v2.2.0) weremade available

for download from the Aquatic EcoDynamics (AED) website

(https://github.com/AquaticEcoDynamics/GLM). Pre- and post-

processing MATLAB scripts were provided to all participants to

ensure a common model setup and assessment approach (https://

github.com/AquaticEcoDynamics/GLMm), and all GLM lake setups

were available to other members via a cloud-based, shared folder.

A total of 32 lakes was chosen for the analysis, with an alpha-

betic listing of the lakes and their physical characteristics in Table 1.

Each lake is associated with a two letter abbreviated code, and for

brevity when presenting model results, the lakes are frequently

referred to by this code. To illustrate the range of sizes in the lakes

included in this study, lake outlines have been drawn to scale in

Fig. 1. With the exception of lakes Geneva and Kinneret, all lake

simulations were run for two years, with the start year and date

indicated in Table A3. For Lake Geneva and Lake Kinneret, analyses

were performed separately for two alternative 2-year time periods

with significant differences in climate and inflows. For Lake Geneva,

2003 to 2004 had higher than average summer air temperatures,

precipitation and inflows as well as an uncharacteristically high

winter inflow in early 2004. In contrast, 2001 to 2002 experienced

closer to the “normal” seasonal cycles of climate and inflows

(Anneville et al., 2010). These simulations are referred to as

Geneva03 and Geneva01 respectively. For Lake Kinneret, 1997 to

1998 had generally average climatic conditions (Bruce et al., 2006).

In contrast, 2003 to 2004 had a rainy winter (Feb-Mar 2003, Jan-

Feb 2004), large changes to lake level and lower than normal wa-

ter temperatures (Berger and Telzch, 2005). These simulations are

referred to as Kinneret97 and Kinneret03, respectively.

Lake depths ranged from 2.4 to 440 m, and lake surface areas

from104,000m2 to 579,000,000m2 (Table 1). A comparative plot of

the hypsographic curves for each of the 32 lakes shows diversity in

lake size and bed slope (Fig. A1). Annual average inflows ranged

from 0 to 3.3 � 107 m3 d�1 and residence times from 1 month to 67

years (Table A3). Lake elevation ranged from 209 m below to

4718 m above sea level (Table 1). Annual average air temperature

ranged from below freezing (�9.1 �C) to 22.4 �C (Table A3). While

the majority of the lakes in the MLCP are mid-latitude (both

northern and southern hemisphere), two lakes are located in the

Arctic (Emaiksoun and Toolik).

2.2. GLM set-up

GLM has several configuration options for simulating surface

heating, mixing and inflow and outflow (Hipsey et al., 2017). For

this assessment, model set-ups were configured based on the site-

specific conditions (e.g., hypsographic curve and number of inflows

and outflows), but all simulations adopted the same model algo-

rithms and parameters for mixing, surface heat fluxes, and ice

cover. Default parameters adopted are summarised in Table 2.
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All simulations were run for 2 years or 730 days starting with

initial conditions in the winter or when the lake was most nearly

well mixed. For the northern hemisphere lakes the start date was

the 1st of January and for lakes located in the southern hemisphere

the start date was set at 1st July. The initial conditions were taken

from the closest field profile measurements to the start date. The

standardised start date was chosen to simplify cross lake compar-

isons. For the majority of the lakes in the MLCP, mid-winter is also

associated with complete mixing thus reducing error associated

with uncertainty in initial profiles. A spin up period of 28 days was

eliminated from model analysis to further reduce error associated

with uncertainty in initial conditions.

Box plots are used to present monthly means and range of input

data across all 34 simulations (Fig. 2). For input data for each lake,

refer to references listed in Table 1 and/or the institutions listed in

Table D1. Inflows and outflows are also plotted as monthly averages

based on time from the beginning of the simulation (Fig. 3a&b).

There are no seasonal patterns apparent in themonthly inflows and

outflows averaged over the MLCP lakes due to the large variation in

peak flow months.

While an effort was made to use lakes with high quality input

data, lakes where input data had to be estimated were still selected

for the MLCP in order to ensure a sufficient variation in lake char-

acteristics. For seven lakes either inflow, outflow or both were

estimated (Bourget, Emaiksoun, Feeagh, Mendota, NamCo, Stechlin

and Woods) and the parameter of light attenuation (Kw) was

estimated for three lakes (Alexandrina, Muggelsee and Woods).

Meteorological data for short wave radiation, air temperature,

relative humidity, wind speed and precipitation were supplied

either from an on lake station or the closest meteorological station

to the lake. Long wave radiation was either measured directly (net

or incident) or calculated by GLM using cloud cover data.

In an attempt to assess the errors associated with input data

limitations, a qualitative weighting systemwas used to assess each

input variable or constant, where a minimum score is associated

with the best available input or observation data (Table A1).

Table A2a lists the method of determining the hypsographic curve,

distance from lake and frequency of meteorological data and

observed data and method of determining inflow, outflow and

extinction coefficient for each lake in the MLCP. This information is

used to determine the relative error scale associated with boundary

forcing and observed data for each lake (Table A2b), where low

refers to low uncertainty in forcing data and high indicates a higher

level of error associated with model input. Input error associated

with the determination of long wave radiation was not included in

the error scaling method.

2.3. Model assessment approach

Measures of model fit used to evaluate model performance

included five alternatives listed below. This set of measures of

model fit enabled us to standardise comparisons among lakes, track

Table 1

Lakes included in the Multi-Lake Comparison Project Stage 1, abbreviation, maximum depth, surface area at maximum depth, crest elevation latitude (�N) and longitude (�E).

Lake Name Abv. Maximum Depth

(m)

Surface Area at Crest

(m2)

Crest Elevation

(m)

Latitude Longitude Reference

Lake Alexandrina AL 9.4 655,755,315 3.4 �35.4 139.1 (Hipsey et al., 2014b)

Ammersee AM 83.7 47,250,000 533.5 48.0 11.1 (Weinberger and Vetter, 2014; Bueche et al., 2017)

Blelham BL 14.5 104,000 14.0 54.4 �3.0 (Woolway et al., 2015)

Lake Bourget BO 146.0 42,575,000 230.5 45.4 5.9 (Vinçon-Leite et al., 1989, 2014; Kerimoglu et al., 2016)

Cannonsville

Reservoir

CA 52.0 19,000,000 351.0 42.1 �75.3 (Samal et al., 2012)

Lake Como CO 440.0 147,012,649 410.0 46.0 9.3 (Laborde et al., 2010; Copetti et al., 2013; Guyennon et al.,

2014)

Lake Constance CN 253.3 472,650,000 395.0 47.6 9.4 (Wessels, 1998; Frassl et al., 2014)

El Gergal EG 55.0 4,732,669 50.0 37.0 �2.5 (Rigosi et al., 2011)

Emaiksoun EM 2.4 1,860,000 2.4 71.2 �156.8 (Potter, 2011)

Esthwaite ES 15.5 1,000,000 15.5 54.4 �3.0 (Woolway et al., 2015)

Feeagh FE 43.0 3,942,266 9.0 53.4 �9.6 (Dalton et al., 2014)

Lake Geneva 2001-2 G1 309.0 578,560,865 371.4 46.4 6.1 (Anneville et al., 2010)

Lake Geneva 2003-4 G3 309.0 578,560,865 371.4 46.4 6.1 (Anneville et al., 2015)

Grosse Dhuenn GD 48.5 3,750,100 177.5 51.1 7.2 (Weber et al., 2017)

Harp Lake HA 37.5 713,800 327.0 45.4 �79.1 (Yao et al., 2014)

Lake Iseo IS 256.0 60,880,350 185.2 45.7 10.1 (Pilotti et al., 2013, 2014; Valerio et al., 2015)

Lake Kinneret 2003-

4

K3 44.0 173,000,000 �208.9 32.0 35.6 (Gal et al. 2009)

Lake Kinneret 1997-

8

K7 44.0 173,000,000 �208.9 32.0 35.6 (Bruce et al., 2006)

Lake Mendota ME 25.0 39,581,170 259.0 43.0 �89.4 (Magnuson et al., 2006)

Mount Bold

Reservoir

MB 45.4 3,080,000 246.9 �35.1 138.7 (van der Linden and Burch, 2016) Rigosi et al., 2011

Muggelsee MG 8.0 7,318,000 32.4 52.0 13.6 (Huber et al., 2008)

Lake Nam Co NM 98.9 2,018,230,000 4718.0 30.7 90.6 (Wang et al., 2009)

Oneida ON 17.0 207,100,000 112.0 43.0 �75.9 (Hetherington et al., 2015)

Lake Pusiano PU 30.9 8,123,699 27.0 45.8 9.3 (Copetti et al., 2006, 2013; Carraro et al., 2012)

Rappbode RP 85.6 4,344,724 423.6 51.7 10.9 (Bocaniov et al., 2014)

Rassnitzersee RS 40.0 3,033,057 85.0 51.3 12.0 (B€ohrer et al., 1998; Boehrer et al., 2014)

Ravn RV 33.0 1,820,000 33.0 56.0 4.8 (Trolle et al., 2008a; b)

Rotorua RO 22.0 79,722,140 280.0 �38.0 176.3 (Burger et al., 2008)

Stechlin ST 69.5 4,231,549 60.0 53.2 13.0 (Kirillin et al., 2013)

Tarawera TA 88.0 40,996,000 297.8 �38.2 176.4 (Hamilton et al., 2006, 2010)

Toolik TO 24.0 940,119 740.0 68.6 �149.6 (MacIntyre et al., 2009)

Windermere WI 66.8 14,779,600 66.8 54.4 �3.0 (Woolway et al., 2015)

Woods Lake WO 10.4 15,000,000 738.2 �42.0 147.0 (Tasmania, 2003)

Lower Lake Zurich ZU 136.0 66,600,000 406.0 47.3 8.8 (Peeters et al., 2002; Schmid and K€oster, 2016)
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trends in deviations fromobserved data (Bennett et al., 2013) and to

compare with similar lake modelling studies previously published

(e.g. Rigosi et al., 2010).

Measures of model fit were calculated as:

1) Root mean square error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1ðPi � OiÞ

2

N

s

(2-1)

2) Model Efficiency (MEFF; Murphy, 1988; Nash and Sutcliffe,

1970):

MEFF ¼ 1�

PN
i¼1ðPi � OiÞ

2

PN
i¼1

�

Oi � O
�2

(2-2)

3) Correlation coefficient (r):

r ¼

PN
i¼1

�

Pi � P
�

�

Oi � O
�

�

PN
i¼1

�

Pi � P
�2PN

i¼1

�

Oi � O
�2

�
1 =

2
(2-3)

Fig. 1. Lake outlines to scale for all lakes in the current MLCP GLM assessment.
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Table 2

Description, symbols and initial values of the parameters used in the sensitivity analysis.

Symbol Description Reference Initial value

Surface Heat Exchange

Ch Bulk aerodynamic coefficient for sensible heat transfer (Fischer et al., 1979) 0.0013

Ce Bulk aerodynamic coefficient for latent heat transfer (Fischer et al., 1979) 0.0013

Cd Bulk aerodynamic momentum transfer coefficient (Fischer et al., 1979) 0.0013

Mixing

Cc Mixing efficiency - convective overturn (Yeates and Imberger, 2003) 0.2

Cw Mixing efficiency - wind stirring (Spigel et al., 1986) 0.23

Ct Mixing efficiency - unsteady turbulence (acceleration) (Sherman et al., 1978) 0.3

Cs Mixing efficiency - shear production (Sherman et al., 1978) 0.51

CKH Mixing efficiency - Kelvin-Helmholtz turbulent billows (Sherman et al., 1978) 0.3

Chyp Mixing efficiency of hypolimnetic turbulence (Weinstock, 1981) 0.5

Fig. 2. Time series of monthly mean values across all lakes for (a) short wave radiation, (b) relative humidity, (c) net longwave radiation, (d) wind speed, (e) air temperature and (f)

precipitation. For each box, horizontal lines represent median, 25th and 75th percentile, whiskers <1.5 times the interquartile, and outliers (+) values > 1.5 times the interquartile

range. Note that lakes from the Southern Hemisphere start with a shift of 6 months relative to the Northern Hemisphere lakes.
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4) Percent relative error (PRE):

PRE ¼

PN
i¼1ðPi � OiÞ=Oi

N
*100 (2-4)

5) Normalised mean absolute error (NMAE):

NMAE ¼

PN
i¼1jðPi � OiÞ=Oij

N
(2-5)

whereN is the number of observations, Oi and Pi, the “ith” observed
and model predicted data and O and P the mean observed and

model predicted data, respectively.

A further advantage of calculating alternative measures of

model fit is that different methods of model evaluation highlight

different aspects of model performance (Bennett et al., 2013). RMSE
is a standard measure of the average deviation of simulated values

from observations with values near zero indicating a close match

and units that correspond to those of the variable. MEFF is the

square of the deviation of simulated values from observations,

normalised to the standard deviation of the observed data, such

that one indicates perfect fit and zero indicates that the model

provides equal predictive skill as the mean of the observed data.

The correlation coefficient r gives an indication of the linear rela-

tionship between observed and predicted data and is the most

common measure for assessing aquatic models (Arhonditsis and

Brett, 2004). PRE is a measure of the relative deviation of simu-

lated from observed values and can be used to determine the bias in

predictions (Bennett et al., 2013). Finally, NMAE is both normalised

to the mean, enabling like comparisons between variables and is

absolute so that under and over estimations do not cancel each

other out.

Initial manual calibration focused on refining input data by

adjusting the wind scaling factor and river inflow slope parameters

for each lake (the river slope is indicated as finf in Hipsey et al.

(2017), and they are denoted as wind_factor and strmbd_slope in

the configuration file, respectively). Wind factor adjustment was

required where wind stations were located some distance from the

lake and/or to account for wind sheltering effects (Markfort et al.,

2010). River inflow slope was adjusted to correct the magnitude

of momentum and entrainment associated with plunging inflows.

For lakes where few or no light attenuation or Secchi depth read-

ings were available, Kw was also adjusted until simulated thermo-

cline depth matched that of observed data. Initial calibration was

carried out until an RMSE (calculated for all observed temperature

data over the simulation period) of less than 2�C was achieved.

We chose a range of thermal metrics to assess model perfor-

mance at each site: observed full profile temperature data;

epilimnion temperature; hypolimnion temperature; thermocline

depth and Schmidt Stability (Idso, 1973). Schmidt Stability (ST) and
thermocline depth (thermD) were calculated for both model output

and observed thermistor data using Lake Analyzer (http://

lakeanalyzer.gleon.org/), an open source software tool that com-

putes indices of mixing and stratification for lakes and reservoirs

(Read et al., 2011). The comparison of thermD calculations was

included in the analysis as it is a simple, widely-used metric of

mixed layer depth, while acknowledging the calculation of thermD
can be challenging for weakly stratified and polymictic lakes. Also,

the approach used in Lake Analyzer identifies the strongest thermal

gradient, and may miss important thermal structure. ST represents
resistance to mechanical mixing due to the potential energy

inherent in the stratification of the water column, calculated as:

ST ¼
g
AS

Z

zD

0

ðz� zvÞrzAzdz (2-6)

where g is the acceleration due to gravity, As is the surface area of

the lake, Az is the area of the lake at depth z, zD is the maximum

depth of the lake, and zv is the depth to the centre of volume of the

lake, and rz is the water density at depth z. While not used as a

direct gauge of model performance, the daily Lake Number (LN)
output as a GLM diagnostic parameter was also used in the cross

lake comparison analysis as a measure of the validity of the one-

dimensional assumption of the model. LN balances the strength of

stratification to wind induced mixing across the thermocline and is

a measure of the potential for mixing across the thermocline

(Imberger and Patterson, 1989).

LN ¼
STðze þ zhÞ

2rhu
2
*
A
1 =

2
s zv

(2-7)

where ze and zh are the depths to the top and bottom of the met-

alimnion, respectively, rh is the average density of the hypolimnion

and u* is the surface friction velocity.

2.4. Sensitivity analysis

Sensitivity of model output to nine parameters of mixing and

heat exchange was evaluated for each lake. Three of the parameters

influence surface heat and momentum exchange: bulk aero-

dynamic coefficient for sensible heat transfer (CH), bulk

Fig. 3. Time series of monthly mean values across all lakes for (a) inflows and (b) outflows. For each box, horizontal lines represent median, 25th and 75th percentile, whiskers <1.5

times the interquartile, and outliers (+) values > 1.5 times the interquartile range.
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aerodynamic coefficient for latent heat transfer (CE) and coefficient

of wind drag (CD). The remaining six parameters control surface

and hypolimneticmixing: mixing efficiency for convective overturn

(CC), mixing efficiency of wind stirring (CW), mixing efficiency of

shear production (CS), mixing efficiency of unsteady turbulence

(CT), mixing efficiency of Kelvin-Helmholtz turbulent billows (CKH),
and mixing efficiency of hypolimnetic turbulence (CHYP), (Table 2).

To gauge a response to parameter change, the one-at-a-time (OAT)

method (Bruce et al., 2008) was adopted for the first stage of the

MLCP, where the model was first run with the model default value

to each parameter and then run again increasing and decreasing

parameter values by 20%.

Sensitivity to changes in parameter values for each of the five

lake variables used in the model assessment described above

(temperature of the full water column, epilimnion, hypolimnion,

thermD and ST) was analysed. Normalised sensitivity coefficients

(Sij) to assess the relative sensitivity of variable i to parameter jwere

calculated according to:

Sij ¼
DCi=Cis
Dbj

.

bjs

(2-8)

where DCi is the change in output variable i, averaged over the

simulation period, from the standard or reference value Cis (Table 2)
and Dbjs is the change in parameter j from the reference value bj
(Fasham et al., 1990).

Sensitivity coefficients were then compared relative to ten

characteristics describing the morphometry, climatic conditions

and trophic state of the lakes. These properties were the maximum

depth, lake volume, ratio of area to maximum depth, ratio of length

to width, annual average inflow, residence time, mean air tem-

perature, mean short wave radiation, mean wind speed and

extinction coefficient (Table A3).

3. Results

3.1. Model performance

Using the simulated results from running GLM with the stan-

dard set of parameters, five model fit metrics (RMSE, MEFF, r, PRE
and NMAE) were calculated for five data sets (full profile, epilim-

nion, hypolimnion temperature, thermD and ST) for each lake. The

full set of results is provided in Appendix B (Table B1) with NMAE
results given in Table 3. A comprehensive description of model

performance for each lake can be found in the plots of modelled

versus observed temperature data included in Appendix B.

An analysis of model performance in the prediction of temper-

ature profiles (full profile) demonstrated a robust fit for GLM across

the selected metrics, with an average RMSE of 1.34 �C,MEFF of 0.88,
r of 0.96, PRE of �0.16% and NMAE of 0.11 (Table B1). The lakes with

the lowest RMSE included Feagh, Tarawera and Emaiksoun. The

highest RMSE values were calculated for Ravn, Ammersee and

Woods. Ammersee also recorded the lowest values for MEFF along
with NamCo and Toolik. All values of r were >0.9, with the excep-

tion of Toolik. The PRE values ranged fromþ18% for NamCo to�15%

Table 3

NMAE for base simulations using standard parameter set against full profile temperature (Full Prof. Temp.) [�C], epilimnion temperature (Epi. Temp.) [�C], Hypolimnion

temperature (Hyp. Temp.) [�C], thermocline depth (thermD) [m] and Schmidt Stability (St). Note that for fully mixed lakes or for lakes where temperature profiles were

shallower than the thermocline depth, NMAE values are listed as not applicable (N/A). N refers to the number of profiles used in the calculation of model performance.

Lake Full Prof. Temp. (�C) Epi. Temp. (�C) Hyp. Temp. (�C) thermD (m) ST

Alexandrina 0.07 0.07 N/A N/A N/A

Ammersee 0.19 0.20 0.13 0.40 0.17

Blelham 0.12 0.13 0.31 0.18 0.45

Bourget 0.08 0.11 0.07 0.32 0.09

Cannonsville 0.10 0.05 0.15 0.39 0.12

Como 0.10 0.17 0.06 0.64 0.19

Constance 0.08 0.09 0.07 0.11 0.16

ElGergal 0.08 0.06 0.07 0.30 0.27

Emaiksoun 0.08 0.08 N/A N/A N/A

Esthwaite 0.13 0.11 0.35 0.15 0.24

Feeagh 0.06 0.04 0.09 0.14 0.30

Geneva01 0.09 0.11 0.04 0.41 0.22

Geneva03 0.08 0.05 0.04 0.52 0.20

GrosseDhunn 0.07 0.05 0.09 0.37 0.09

Harp 0.18 0.12 0.27 0.68 0.19

Iseo 0.08 0.10 0.07 0.76 0.16

Kinneret03 0.07 0.07 0.07 0.28 0.20

Kinneret97 0.05 0.06 0.05 0.15 0.21

Mendota 0.11 0.10 0.11 0.30 0.23

MtBold 0.08 0.08 0.06 0.25 0.43

Muggelsee 0.07 0.06 N/A N/A N/A

NamCo 0.23 0.17 0.22 0.28 0.35

Oneida 0.04 0.03 0.06 0.19 0.86

Pusiano 0.14 0.11 0.26 0.24 0.19

Rappbode 0.14 0.08 0.12 0.23 0.16

Rassnitzersee 0.17 0.15 0.23 0.15 0.17

Ravn 0.19 0.14 0.21 0.27 0.34

Rotorua 0.07 0.08 0.08 0.09 0.43

Stechlin 0.13 0.11 0.11 0.33 0.14

Tarawera 0.04 0.04 0.03 0.27 0.10

Toolik 0.25 0.26 0.25 0.61 0.43

Windermere 0.14 0.23 0.26 0.22 0.21

Woods 0.17 0.17 N/A N/A N/A

Zurich 0.12 0.09 0.16 0.42 0.17

Mean 0.11 0.10 0.14 0.32 0.25

Median 0.09 0.09 0.10 0.28 0.20
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for Rassnitzersee. Because lakes had both positive and negative PRE
(representing a temperature bias, warm and cold respectively) the

mean PRE was �0.16%. The lowest absolute PRE was for GrosseD-

huenn (0.33%) which also performed well on all five measures of

model fit.

In general, the model performance predicting the epilimnion

temperatures was of similar magnitude to the full-profile temper-

atures (RMSE mean ¼ 1.62 �C). By analysing the PRE, it is clear that
the GLM tended to produce bothwarm and cold temperature biases

in the epilimnion, slightly favouring a cold bias (mean

PRE ¼ �0.84%). For most lakes, model performance metrics were

similar for the epilimnion as the full profile with the exception of

Windermere and Zurich which performedworse and Oneidawhich

performed better in the computation of epilimnion temperatures.

For the hypolimnetic temperature simulations, average RMSE
and NMAE values were relatively low, 1.31 �C and 0.14 respectively.

Typically small seasonal variation across all lakes led to greater

percentage error between model and simulated data with both

warm and cold temperature biases and a tendency to a warm bias

(mean PRE ¼ 1.97%). The mean r value of 0.73 was the lowest of the

three temperature-associated properties. Lakes with the highest

model performance for hypolimnion temperature included

Geneva01, Geneva03 and Como with the lowest being Rassnit-

zersee, Esthwaite and Blelham. Model efficiency values for the

calculation of hypolimnion temperatures were poor with less than

a third greater than 0.5 and 44% of lakes recording a value of less

than zero.

Thermocline depth (thermD) was a difficult parameter to model

with the poorest PRE and NMAE values (Table 3 & Table B1). Mea-

sures of model performance comparing calculations of observed

and simulated thermD ranged in value across the lakes with PRE
values from �16% to þ52% and NMAE ranging from 0.10 to 0.76

(Table 3 & Table B1). The PRE values indicate a bias towards over

prediction of thermD by the model compared to the observed data.

This was most apparent in Lake Geneva over the winter months

when GLM predicted full mixing (i.e. thermD ¼ lake depth) and the

field data recorded a shallow thermD (<5 m). As the lake depth was

>300 m this resulted in large relative error of greater than 6000%,

leading to unfavourable mean measures of fit.

The NMAE values for calculation of ST were generally low. The

higher values of NMAE were associated with lakes such as

Ammersee, Oneida and Pusiano which all had relatively low ST
during the simulated period. The meanMEFF and rwere both quite

high (0.83 and 0.96, respectively) indicating that the general sea-

sonal patterns for ST prediction across the majority of lakes were

well simulated by the model.

Analysis of the relationship between indices of model fit and

input quality showed some correlation for the prediction of full

profile, epilimnion and hypolimnion temperatures and thermD

(Table B2). Analysis of measures of PRE indicated a cold bias in

prediction of both full profile and hypolimnion temperatures when

input uncertainty is greatest (Fig. 4b). In addition, for lakes where

the meteorological measurement station was near or at the lake

edge, there was a warm bias and for lakes where meteorological

input was sourced from further away, therewas a cold bias (Fig. 4a).

Similarly, there was a warm bias for the prediction of hypolimnetic

temperatures for lakes with high frequency meteorological data

and a cold bias for lakes with daily meteorological data (Fig. 4c).

Lakes with lowest input uncertainty associated with the estimation

of Kw corresponded with lowest values of r with respect to the

prediction of full-profile temperatures (Fig. 4d) and similarly lakes

that had close to ideal ranking of overall input uncertainty scored

the lowest values of r for epilimnion temperatures (Fig. 4e). This

would be attributed to the use of Kw as a calibration parameter for

Fig. 4. Correlation between GLM model performance metrics PRE (aec), r (dee) and NMAE (f) for prediction of full profile temperatures (a, b & d), epilimnion temperatures (e) and

hypolimnion temperatures (c & f) against rankings of input data uncertainty where 0-ideal, 1-low, 2-medium and 3-high level of uncertainty. Refer to Table 1 for lake acronyms and

Table A1 for details of input uncertainty ranking system.
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lakes where there were no measurements for light attenuation.

High frequency observed data also correlated with high NMAE
scores for the prediction of hypolimnion temperatures (Fig. 4f).

Analysis of model performance revealed a number of significant

correlations linking model performance to lake characteristics

(Table B3). For comparison of absolute model performance, the

RMSE metric was used for temperatures and MEFF for thermD and

ST. Whilst measurements of PRE can be a deceptive measure of

model performance for lake variables where under and over-

prediction occurs in equal measure, they are useful to observe

patterns of bias in model prediction. A number of significant cor-

relations between lake characteristics and model error are illus-

trated in Fig. 5 and Fig. 6 and described below.

The RMSE error associated with the prediction of both full pro-

file and hypolimnion temperatures was generally higher for lakes

with high light extinction (Kw > 0.8 m-1) and lower for clear lakes

(Kw < 0.3 m-1) (Fig. 5a&b). A correlation was observed between the

RMSE associated with the prediction of hypolimnion temperatures

and lake depth (Fig. 5c), with deep lakes (>100 m) having the

lowest values of RMSE (<1 �C). In terms of relative measures of

model performance, for lakes with both low inflows (<105 m3s�1)

and low levels of incident short wave radiation averaged over the

entire simulation period (<120 Wm-2) there was a cold bias in

prediction of full profile and epilimnion temperatures, respectively

(Fig. 5c&d). Whilst correlation was relatively low, there was some

indication that for lakes with low residence time there was a cold

bias in the GLM-predicted hypolimnetic temperatures (Fig. 5f).

For prediction of ST, the lake depth, residence time and extinc-

tion coefficient all had a significant impact on model performance

(Fig. 6a, b& c). Generally, clear deep lakes (>100 m), with residence

times > 2 years recorded the lowest values of NMAE. A reverse

pattern of correlation was observed for the prediction of thermD,

with deep lakes having the highest values of NMAE and shallow

lakes (<40m) showing highest levels of thermD predictive accuracy

(Fig. 6d). There was a small but significant trend where GLM over

estimated ST in lakes with high incident short wave radiation (>200

Wm-2) (Fig. 6e). For prediction of thermD, GLM tended towards

over-prediction which was more pronounced in colder lakes (air

temperature < 10 �C) (Fig. 6f).

Model performance for the prediction of thermD and ST was

better for lakes when mean LN > 10, while these lakes tended to

record reduced measures of model fit for the prediction of

epilimnion and hypolimnion temperatures (Fig. 7a,c,e,g).

Conversely, for the small number of lakes with a significant pro-

portion of the stratification period under a regime of LN < 1, pre-

diction of epilimnion and hypolimnion temperatures improved but

thermD and ST decreased (Fig. 7b,d,f,h).

3.2. Sensitivity analysis

The sensitivity analysis (SA) on each of the nine surface ex-

change and mixing parameters highlighted differences both be-

tween lakes and thermal properties (Fig. 8aee). For all three

temperature metrics (full profile, epilimnion or hypolimnion) there

was little sensitivity to perturbations in physical parameters, when

the SA was averaged over the 2 year simulation period. There was

some degree of sensitivity to changes in Cd in the calculation of

hypolimnion temperatures and to Ce in the calculation of epilim-

nion temperatures. Sensitivity index (SI) for prediction of both

thermD and ST, were significant (>1) across a broader range of lakes

(Fig. 8dee). While there was some variability across the lakes and

parameters, model output for both thermD and ST had greatest

sensitivity to perturbations of Cd. Additionally, for ST there was a

consistent level of sensitivity to perturbations of Ce.

Fig. 5. GLM model performance metrics for prediction of full profile temperature (a&d), epilimnion temperature (e) and hypolimnion temperature (b,c&f) against lake charac-

teristics. Refer to Table 1 for lake acronyms.
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The sensitivity of each parameter was compared to a gradient of

physical and climate lake properties (Table C1-5) and a number of

significant correlations were observed. For each thermal metric, the

three most significant correlations to lake characteristics were

compared (Fig. 9). A common significant (p < 0.05) trend was

recorded for maximum lake depth (Fig. 9e,m). For the prediction of

full profile and epilimnion temperatures, deeper and larger lakes

were more sensitive to changes in CKH than small, shallow lakes

(Fig. 9e). Similarly, for the prediction of thermD, deeper lakes were

more sensitive to changes in Cc, Cw and CKH than shallow lakes

(Fig. 9).

A significant correlation with air temperature indicated that

lakes with low air temperatures were more sensitive to changes in

Ch, Cs and CKH than lakes in warm climates (mean air

temperature > 10 �C) for the prediction of full-profile temperature

(Fig. 9c), epilimnion (Fig. 9d) and hypolimnion temperatures

(Fig. 9g). Lakes with low inflows were more sensitive to changes in

Ch for the prediction of hypolimnion temperatures than those with

larger inflows (Fig. 9i). Finally, lakes with highest wind speed

recorded greatest SI to Ce in the prediction of ST (Fig. 9m).

4. Discussion

Historically, lake modellers have adopted simple methods to

justify model performance and suitability, rarely reporting statis-

tical measures of model fit (Arhonditsis and Brett, 2004;

Arhonditsis et al., 2006). For individual lake applications, these

have been adequate to undertake scenario simulations and further

our understanding of site specific dynamics. However, a common

approach tomodel assessment, both in terms ofmetrics that should

be applied and identification of a commonly agreed level of model

performance, is necessary to further enhance model development

(Bennett et al., 2013). Undertaking a standardised method of

assessment of the community lake model, GLM, over a diversity of

lakes has led to an improved level of understanding of the strengths

and weaknesses in the predictive capacity of simple 1-D lake

models. By first ascertaining an acceptable model error, we were

able to elucidate the relation betweenmodel performance and data

input uncertainty or lake characteristics (Fig. 4; Fig. 5).

The quality of input data was not as significantly related to

model performance as expected. Lakes modelled using daily

meteorological input, rather than hourly, did have the largest

values of NMAE in the prediction of full profile temperature and

thermD (Fig. 4), which is not surprising given the importance of

diurnal forcing in 1-D model predictive capability. The greater the

meteorological observation distance to the lake tended to result in

both cold-biased temperatures and under prediction of ST (Fig. 4).
The cause of warm-biased temperatures and over-prediction of

lake stability when meteorological observations were obtained

near or on-lake requires further investigation (Fig. 4). The strong

correlation between accuracy of Kw measurements and model

performance in the prediction of both full profile temperature and

thermD (Fig. 4) emphasises both the importance of light extinction

in the determination of thermocline depth and the need to include

measurements of Kw in routine lake monitoring. The GLM can be

coupled to water quality models such as the Aquatic EcoDynamics

Model (AED: Hipsey et al., 2013) such that seasonal changes in Kw
would feedback in the model to potentially improve model pre-

diction particularly in relation to thermD; this link is expected to

further improve model accuracy in most circumstances.

The 1-D nature of the model implicitly assumes that the mixing

within the lake can be constrained by processes acting in the ver-

tical and that processes which vary in the horizontal, such as the

degree of upwelling of the thermocline, have minimal impact on

vertical transport. This assumption is quantified by computation of

the Lake Number (Imberger and Patterson,1989, eq. (2.7)). As the LN
is a relative measure of the strength of stratification to surface wind

energy, the 1-D model assumption is said to hold true for LN >> 1

Fig. 6. GLM model performance metrics for prediction of thermocline depth (d,f) and Schmidt stability (a,b,c&e) against lake characteristics. Refer to Table 1 for lake acronyms.
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(Imberger and Patterson, 1989; Yeates and Imberger, 2003). Over

the past three decades, the 1-Dmodel approach has been applied to

awide diversity of sites due to its simplicity and tractability relative

to 3-D models. However, given that LN can be highly variable, it has

remained unclear what significance the 1-D assumption has on

model prediction error for various lake attributes and under what

conditions this assumption would no longer hold. The strong cor-

relation (r2¼ [0.70,0.82]) between the percent of time LN< 1 during

Fig. 7. GLM model performance metrics for prediction of epilimnion temperature (a,b), hypolimnion temperature (c,d), thermocline depth (e,f) and Schmidt stability (gh) against

Lake Number and %LN < 1. Refer to Table 1 for lake acronyms.
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the stratified period and the model performance of both thermD
and ST endorses the use of LN as an indicator of the validity of the 1-

D model assumption, and should be considered when modellers

are deciding on model suitability.

A comparison of PRE against LN for the calculation of simulated

versus observed ST indicated that lakes with mean LN < 1 tended to

underestimate ST. For these lakes, the 1-D assumption as defined by

LN does not hold. One would expect mixing to be underestimated

and ST to be higher, unless the resulting warmer near surface

temperatures led to greater heat losses by evaporation. Yeates and

Imberger (2003) demonstrated that for lakes where deep mixing is

important, a 1-D lake model mixing scheme similar to that used in

Fig. 8. Sensitivity indices for a) full profile temperature, b) epilimnion temperature, c) hypolimnion temperature, d) thermocline depth and e) Schmidt stability. The colour bar has

been limited to a value of 1 so that any sensitivity index (SI) greater than one (indicating the percent response in thermodynamic metric is greater than the change in physical

parameter) has been highlighted. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Significant correlation between sensitivity indices of GLM physical parameters for the prediction of: full profile temperatures and (a) surface area, (b) lake depth and (c) air

temperature; epilimnion temperature and (d) air temperature, (e) lake depth and (f) residence time; hypolimnion temperatures and (g) air temperature, (h) short wave radiation

and (i) inflow; thermocline depth as a function of lake depth (jel); and Schmidt stability as a function of wind speed (m).
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GLM tended to overmix the water column and thus underestimate

lake stability and therefore ST. A solution put forward by Yeates and

Imberger (2003) included a pseudo two-dimensional algorithm in

the 1-D model DYRESM to parameterise internal and boundary

fluxes. Similarly Gaudard et al. (2016) proposed a method of adding

a seasonal component in the parameterisation of internal seiches

that led to improved accuracy in the prediction of deep mixing in

the 1-D model SIMSTRAT. Whilst compromising computational

efficiency, lake modellers could consider a similar approach when

conditions for improved deep mixing accuracy are necessary. For

example, this approach could be valuable where upwelling or in-

ternal nutrient loading is deemed important or when specific dis-

tribution phenomena such as deep chlorophyll maxima are the

focus of the modelling study.

Further exploration of how individual lake properties relate to

measures of model performance indicated the strongest correla-

tions against Kw and lake depth (Fig. 5; Fig. 6). Lakes with high Kw

(>0.5), recorded greatest error in the prediction of lake tempera-

tures particularly in the hypolimnion. While there was no signifi-

cant correlation between the accuracy in prediction of epilimnion

temperatures and lake depth, there was a strong positive correla-

tion for measures of model performance in prediction of hypo-

limnion temperatures and depth (Fig. 5). That is, for deeper lakes

(>40 m) where surface mixing dynamics have less influence on

hypolimnion temperatures, GLM predicts hypolimnion tempera-

tures with greater accuracy. This suggests that while the surface

thermodynamics are better represented by themodel, prediction of

rates of mixing across the metalimnion requires attention and

further development to enable more confident prediction across

the diversity of lake types. Relatively shallow, well-mixed lakes,

such as Feeagh and Emaiksuon, had the highest overall model

performance. These lakes are dominated by surface exchange with

no thermocline and associated deepening.

The prediction of the lake thermocline depth proved harder to

achieve than the lake temperatures. Particularly in moderately

deep lakes, small relative deviations in predictions can result in

large changes to error magnitude. As the GLM-predicted thermD
was both deeper and shallower than the observed thermD in

different lakes, there does not appear to be a consistent bias in the

mixing algorithms, and rather, it may be driven by high sensitivity

to input parameter uncertainty and require site specific calibration.

The positive correlation between NMAE of thermocline prediction

and lake depth was significant with best fit occurring for lakes less

than 50e80m deep (Fig. 6). A tendency to over-predict thermocline

depth in the majority of lakes could be attributed to an over-

prediction of penetrative heat and may be related to both the

application of a standard minimum layer thickness for all lakes and

the use of a single average Kw value over 2 annual seasonal cycles.

The positive correlation with Kw indicates that a single Kw for all

seasonal conditions is not appropriate, particularly for lakes with

high mean or seasonally variable Kw values. A consideration for

using a Kw weighted towards the summer stratified period could be

a solution or coupling to a water quality model with explicit light

extinction feedback properties could improve thermocline predic-

tion particularly in lakes with high light extinction (Kw > 0.5)

(Shatwell et al., 2016).

The absence of strong sensitivity to parameterisation of surface

exchange and mixing algorithms in the prediction of temperature

profiles (Fig. 8) is indicative of the dominance of surface boundary

conditions in the thermal budget of individual lakes and negative

feedbacks in the surface heating sub-model. In contrast, the pre-

diction of thermocline depth and Schmidt Stability were more

sensitive to changes in parameterisation. In particular, the model

was sensitive to the shear mixing efficiency and wind drag coeffi-

cient parameters. Both parameters are directly related to the

transfer of wind energy to mixing. The errors in computing these

terms again points to the need for more effort in parameterizing the

processes operative when LN is low and shear increases across the

thermocline. Additionally, wind increases in magnitude as it flows

across a lake. This effect is important for small and large lakes and is

not included when wind is modelled with bulk drag coefficients.

Care should be taken in both the accuracy of wind speed mea-

surements as well as the parameterisation and classification of

these parameters in relation to lake characteristics to improve

model performance across a wide variety of lake properties.

In general, simulations of deep lakes with large volumes and

residence times weremost sensitive to changes inmixing efficiency

parameters (as measured by changes in thermD and ST) (Fig. 9),

which was expected since larger lakes require greater efficiency in

transfer of surface momentum input to thermocline deepening and

subsequent mixing. Lakes with low Kw were most sensitive to

changes in surface exchange parameters. This sensitivity is logical

given that in lakes with low Kw, light will penetrate deeper causing

a deeper thermocline. Processes which moderate depth of mixing

in the epilimnion, such as convection, become important. Being

able to model changing dynamics of lakes as Kw changes with

modified hydrology and altered loading of chromophoric dissolved

organic matter is critical for quantifying the changes associated

with climate variability (Snucins and Gunn, 2000).

An appealing alternative to the minimal calibration presented

here (i.e., input data refinement, wind factor and river inflow slope

adjustment) will be the relaxation of the assumption of globally

common parameter values for the core hydrodynamic parameters

and the adoption of a Bayesian hierarchical calibration framework

that reflects the more realistic notion that each lake (or group of

lakes) is peculiar but shares some commonality of behavior with

other lakes (Zhang and Arhonditsis, 2009; Cheng et al., 2010;

Shimoda and Arhonditsis, 2015). The proposed approach repre-

sents a pragmatic compromise between system- or group-specific

and globally common parameter estimates and may be a concep-

tually sound strategy to accommodate within- and among-lake

variability in the context of model application within the global

observatory network (Fig. 10). Recent work has shown that the

delineation of more homogeneous subsets of lakes with respect to

their morphological characteristics/hydraulic regimes and their

subsequent integration with hierarchical frameworks may give

models with better predictive capacity (Cheng et al., 2010; Shimoda

and Arhonditsis, 2015). In particular, sensitivity analysis patterns

identified in this study could be used to identify groups with sim-

ilarities in behavior (e.g., deep versus shallow lakes, high versus low

water transparency) as well as to identify the candidate parameters

for the calibration exercise. The prior distributions of the hyper-

parameters (or global priors) can be easily formulated on the ba-

sis of existing knowledge (e.g., field observations, laboratory

studies, and information from the modelling literature) of the

relative plausibility of their values. Moreover, the proposed incor-

poration of mathematical models into Bayesian hierarchical

frameworks can also assist the effective modelling of systems with

limited knowledge by enabling the transfer of information across

systems. With the hierarchical model configuration, we can

potentially overcome problems of insufficient local data by

“borrowing strength” from well-studied lakes on the basis of dis-

tributions that connect systems in space (Zhang and Arhonditsis,

2009). Another advantage of a Bayesian calibration configuration

will be the ability to express the input uncertainty in the form of

probability density functions which can then be propagated

through the model structure and may ultimately shape the mo-

ments of the posterior predictive distributions.

Through international collaboration, this work allowed us to

test and to improve the process and performance of a 1-D open
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source model by simulating thermal structure in lakes with

varying physical and climatic characteristics. Initial efforts in

setting up a collaborative network of lake modellers were

rewarded with improved user support and feedback, refinements

and testing to the development team. From its initiation as v1.0 in

the MLCP, using feedback and re-coding by network members, the

GLM evolved through numerous improvements to the current

v2.2 described in this study. The study also identified the most

sensitive parameters related to surface exchange and mixing that

affect model prediction and therefore performance for each in-

dividual lake. These sensitivities could then be correlated to lake

characteristics such as residence time, meteorological conditions

and trophic status. Additionally, this work opens a new challenge

for the community of limnologists involved in ecosystem

modelling. Indeed the next step would be cross lake comparison

projects including biogeochemical processes simulation using a

similar open source community biogeochemical model such as

the Framework for Aquatic Biogeochemical Models (FABM:

Bruggeman and Bolding, 2014) and/or AED (Hipsey et al., 2013).

The establishment of well-defined standards for modelling tech-

niques (set up, output analysis), and a diversity of lakes and sci-

entists provides enormous opportunity for further advances by

aquatic ecosystemmodellers. The significance of the MLCP resides

in a common and collaborative approach to answering globally

relevant lake science questions, and providing a benchmark for

model performance and an associated parameter set that future

applications can refer to.
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