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The modelling community has identified challenges for the integration and assessment of lake models
due to the diversity of modelling approaches and lakes. In this study, we develop and assess a one-
dimensional lake model and apply it to 32 lakes from a global observatory network. The data set
included lakes over broad ranges in latitude, climatic zones, size, residence time, mixing regime and
trophic level. Model performance was evaluated using several error assessment metrics, and a sensitivity

analysis was conducted for nine parameters that governed the surface heat exchange and mixing effi-
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ciency. There was low correlation between input data uncertainty and model performance and pre-
dictions of temperature were less sensitive to model parameters than prediction of thermocline depth
and Schmidt stability. The study provides guidance to where the general model approach and associated

GLM assumptions work, and cases where adjustments to model parameterisations and/or structure are

Model assessment required.
Global observatory data

Network science

© 2017 Published by Elsevier Ltd.

1. Introduction

Vorosmarty et al. (2000) urged the international “water sciences
community” to work together in the collation and dissemination of
hydrological data and modelling techniques to improve our un-
derstanding of freshwater ecosystems and “secure a more complete
picture of future water vulnerabilities”. Lakes, in particular, are
highly valued ecosystems as they provide important water and food
resources, and numerous other ecosystem services (Wilson and
Carpenter, 1999). Human activities such as fresh water diversion
and increased nutrient loading, in addition to indirect pressures
from climate change, have led to an increased vulnerability of lakes
on a global scale (Folke et al., 2004). These challenges have given
rise to international networks of scientists such as the Global Lake
Ecological Observatory Network (GLEON: gleon.org). Collaborative
networks can take advantage of shared data, techniques, and
expertise to enable scientists to address the ecological challenges
facing lakes globally (Eigenbrode et al., 2007; Adams, 2012; Goring
et al., 2014). GLEON was initiated in 2005 as a grassroots science
community with a vision to observe, understand and predict
freshwater systems at a global scale (Weathers et al., 2013).

Collaboration between scientists and synthesis of data collected
through international networks has led to advances in our under-
standing of how lake ecosystems respond to external changes and
contribute to effective lake management on a local (Gal et al. 2009),
regional (Read et al., 2014; Trolle et al.,, 2015) and global scale
(O'Reilly et al., 2015). Analyses based on data from a broad spec-
trum of lakes across the globe have provided insight into meta-
bolism and carbon cycling in lakes (Hanson et al., 2011; Solomon
et al., 2013), the role of wind and heat exchange in lake physics
(Read et al., 2012), the impact of climate change (Adrian et al.,
2009), response and recovery of lakes to extreme events
(Jennings et al., 2012; Klug et al., 2012), incorporation of high fre-
quency data for model validation (Hamilton et al., 2015) and
assisted in development of models (Staehr et al., 2010; Read et al.,
2011; Kara et al., 2012; Hipsey et al., 2017). Further interrogation
of the emerging multi-lake datasets offers the potential to advance

our understanding of how lakes respond to pressures such as
climate or land use change from the individual to global scales.

The collaborative network also creates opportunities for devel-
oping and testing modelling tools. Aquatic ecosystem models are
recognized as essential instruments to improve understanding of
processes, analyse relationships, test hypotheses and predict the state
of a system (Trolle et al., 2012). These models have evolved since the
first attempts in the early 1920s, with a recent review of aquatic
ecosystem models revealing the diversity of existing models from
simple 0-D to complex 3-D coupled hydrodynamic-biogeochemical
models (Janssen et al., 2015). This diversity creates challenges for
integration and synthesis of model approaches (Mooij et al., 2010).
The Aquatic Ecosystem Modelling Network (AEMON: https://sites.
google.com/site/aquaticmodelling/home) originated to foster collab-
oration and improve model development, predictability, trans-
parency and reliability. One of the major challenges facing modellers
is how to develop generic models that can capture the diversity of
ecosystems while allowing prediction with confidence of the pro-
cesses of each system. In order to undertake analytical synthesis
across multiple sites, there is a need to assess the transferability of the
underlying model and standardise its structure, parameterisation,
development and examination. While the need to develop a set of
standards for model assessment and reporting is widely recognized
(Bennett et al,, 2013; Grimm et al., 2014), the ability to test these
standards across multiple systems and highlight both strengths and
limitations of a particular model remains a challenge.

For lakes and reservoirs in particular, one-dimensional (1-D)
models that resolve vertical profiles of temperature and density have
found widespread use due to their computational efficiency and
minimal calibration requirements. The reduced complexity of 1-D
models is advantageous whenever greater computational efficiency
is needed, e.g., in ensemble modelling (Trolle et al., 2014), model
inter-comparison projects such as LakeMIP (http://www.unige.ch/
climate/lakemip) (Stepanenko et al., 2010; Thiery et al., 2014),
probabilistic studies (Schlabing et al. 2014), long-term scenario
analysis (Gilboa et al., 2014) or when linking lake models to global
climate models (Balsamo et al., 2012) or catchment models (Hipsey
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et al., 2015). Moreover, lake managers and reservoir operators prefer
models having a simpler application and often rely on 1-D models for
this reason (Kerimoglu and Rinke, 2013; Weber et al., 2017).

Here we introduce the Multi-Lake Comparison Project (MLCP)
undertaken within AEMON. The MLCP is a community driven
project, where teams of modellers simulate lakes using common
approaches for model setup, assessment and analysis. The under-
lying purpose of the project was to bring together an international
network of scientists and modellers with diverse experience in
order to improve our ability to predict how lake ecosystems
respond to external drivers. In the first stage, the MLCP took
advantage of GLEON and AEMON member data from numerous,
diverse lakes to stress test the recently developed General Lake
Model (GLM) (Hipsey et al., 2017). GLM is a 1-D hydrodynamic
model for use in a broad spectrum of enclosed aquatic ecosystems
such as lakes, reservoirs and wetlands. The model is simple in na-
ture and is based on assumptions that are common to previous
model applications (Imberger and Patterson, 1989; Hamilton and
Schladow, 1997; Coats et al., 2006). The model conducts a lake
mass and energy balance to compute vertical profiles of tempera-
ture, salinity and density while accounting for the effect of inflows
and outflows, surface heating and cooling, mixing and ice cover on
the lake. GLM can be coupled with biogeochemical models to
explore the impact of temperature, stratification, and vertical
mixing on the dynamics of lake ecology (e.g. Snortheim et al., 2017).

This paper summarises the first phase of the MLCP to develop and
stress-test GLM. The stress-test involved applying a single stand-
ardised procedure for model set-up, simulation, performance testing
and analysis to 32 lakes from across the global network. The main
objective of this study was to undertake comparative analysis of
model performance using an unprecedented diversity of lake types
in order to advance our understanding of limnology and contem-
porary modelling practices. The specific aims of the study were to:

1. Ascertain levels of model performance and relate it to model
input uncertainty;

2. Identify lake attributes (e.g. depth, inflows, and climate) that
correspond with high (or low) prediction accuracy;

3. Relate sensitivity of model output variables to changes in sur-
face exchange, heating and mixing parameters that characterise
1-D lake models;

4. Document the transferability of the model without recalibration
of individual parameters among lakes, even where these lakes
may strongly differ in their properties; and

5. Provide guidance to lake modellers as to how to focus data
collation and model application efforts to improve predictions
for lake ecosystems.

To ease readability, this main section of the paper includes all
text as well as tables and figures relevant to the major methodology
and results from the study. Additional data have been provided in
the following four appendices as supplementary material to the
main study:

A Describing uncertainty error associated with the model set up;
B Extended results describing model performance;

C Extended results of the sensitivity analysis; and

D A summary of acknowledgements for each lake.
2. Methods

2.1. Study site selection

Lakes were not chosen a priori based on their attributes, but

rather AEMON and GLEON members were invited to participate in
the MLCP by volunteering details of their candidate lake to the
group (shared via open access spreadsheet). The requirement for
inclusion of a lake was based on the following three conditions:

1. Sufficient temperature data were available for validation (at
least 2 years of monthly/regular thermistor chain and/or profile
data);

2. High-resolution meteorological forcing data from an on-lake
buoy or local terrestrial based station were available; and

3. Gauged or well-estimated inflows and outflows were available
over the simulation period to form a reliable lake water balance.

Participants were also required to have a basic knowledge of
lake modelling. Instructions as to how to set-up the GLM test cases,
and a common binary executable (GLM v2.2.0) were made available
for download from the Aquatic EcoDynamics (AED) website
(https://github.com/AquaticEcoDynamics/GLM). Pre- and post-
processing MATLAB scripts were provided to all participants to
ensure a common model setup and assessment approach (https://
github.com/AquaticEcoDynamics/GLMm), and all GLM lake setups
were available to other members via a cloud-based, shared folder.

A total of 32 lakes was chosen for the analysis, with an alpha-
betic listing of the lakes and their physical characteristics in Table 1.
Each lake is associated with a two letter abbreviated code, and for
brevity when presenting model results, the lakes are frequently
referred to by this code. To illustrate the range of sizes in the lakes
included in this study, lake outlines have been drawn to scale in
Fig. 1. With the exception of lakes Geneva and Kinneret, all lake
simulations were run for two years, with the start year and date
indicated in Table A3. For Lake Geneva and Lake Kinneret, analyses
were performed separately for two alternative 2-year time periods
with significant differences in climate and inflows. For Lake Geneva,
2003 to 2004 had higher than average summer air temperatures,
precipitation and inflows as well as an uncharacteristically high
winter inflow in early 2004. In contrast, 2001 to 2002 experienced
closer to the “normal” seasonal cycles of climate and inflows
(Anneville et al, 2010). These simulations are referred to as
Geneva03 and GenevaOl respectively. For Lake Kinneret, 1997 to
1998 had generally average climatic conditions (Bruce et al., 2006).
In contrast, 2003 to 2004 had a rainy winter (Feb-Mar 2003, Jan-
Feb 2004), large changes to lake level and lower than normal wa-
ter temperatures (Berger and Telzch, 2005). These simulations are
referred to as Kinneret97 and Kinneret03, respectively.

Lake depths ranged from 2.4 to 440 m, and lake surface areas
from 104,000 m? to 579,000,000 m? (Table 1). A comparative plot of
the hypsographic curves for each of the 32 lakes shows diversity in
lake size and bed slope (Fig. A1). Annual average inflows ranged
from 0 to 3.3 x 10’ m> d ! and residence times from 1 month to 67
years (Table A3). Lake elevation ranged from 209 m below to
4718 m above sea level (Table 1). Annual average air temperature
ranged from below freezing (—9.1 °C) to 22.4 °C (Table A3). While
the majority of the lakes in the MLCP are mid-latitude (both
northern and southern hemisphere), two lakes are located in the
Arctic (Emaiksoun and Toolik).

2.2. GLM set-up

GLM has several configuration options for simulating surface
heating, mixing and inflow and outflow (Hipsey et al., 2017). For
this assessment, model set-ups were configured based on the site-
specific conditions (e.g., hypsographic curve and number of inflows
and outflows), but all simulations adopted the same model algo-
rithms and parameters for mixing, surface heat fluxes, and ice
cover. Default parameters adopted are summarised in Table 2.
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Table 1

Lakes included in the Multi-Lake Comparison Project Stage 1, abbreviation, maximum depth, surface area at maximum depth, crest elevation latitude (°N) and longitude (°E).

Latitude Longitude Reference

Lake Name Abv. Maximum Depth  Surface Area at Crest  Crest Elevation
(m) (m?) (m)
Lake Alexandrina AL 94 655,755,315 34
Ammersee AM 83.7 47,250,000 533.5
Blelham BL 145 104,000 14.0
Lake Bourget BO 146.0 42,575,000 230.5
Cannonsville CA 52.0 19,000,000 351.0
Reservoir
Lake Como CO 440.0 147,012,649 410.0
Lake Constance CN 2533 472,650,000 395.0
El Gergal EG 55.0 4,732,669 50.0
Emaiksoun EM 24 1,860,000 24
Esthwaite ES 155 1,000,000 15.5
Feeagh FE 43.0 3,942,266 9.0
Lake Geneva 2001-2 G1 309.0 578,560,865 3714
Lake Geneva 2003-4 G3 309.0 578,560,865 3714
Grosse Dhuenn GD 485 3,750,100 177.5
Harp Lake HA 375 713,800 327.0
Lake Iseo IS 256.0 60,880,350 185.2
Lake Kinneret 2003- K3 44.0 173,000,000 —208.9
4
Lake Kinneret 1997- K7 44.0 173,000,000 —208.9
8
Lake Mendota ME 25.0 39,581,170 259.0
Mount Bold MB 454 3,080,000 246.9
Reservoir
Muggelsee MG 8.0 7,318,000 324
Lake Nam Co NM 98.9 2,018,230,000 4718.0
Oneida ON 17.0 207,100,000 112.0
Lake Pusiano PU 309 8,123,699 27.0
Rappbode RP 85.6 4,344,724 423.6
Rassnitzersee RS 40.0 3,033,057 85.0
Ravn RV 33.0 1,820,000 33.0
Rotorua RO 220 79,722,140 280.0
Stechlin ST 69.5 4,231,549 60.0
Tarawera TA 88.0 40,996,000 297.8
Toolik TO 24.0 940,119 740.0
Windermere WI 66.8 14,779,600 66.8
Woods Lake WO 104 15,000,000 738.2
Lower Lake Zurich ZU 136.0 66,600,000 406.0

-354 139.1 (Hipsey et al., 2014b)

48.0 111 (Weinberger and Vetter, 2014; Bueche et al., 2017)

54.4 -3.0 (Woolway et al., 2015)

454 5.9 (Vingon-Leite et al., 1989, 2014; Kerimoglu et al., 2016)

42.1 -75.3 (Samal et al., 2012)

46.0 9.3 (Laborde et al., 2010; Copetti et al., 2013; Guyennon et al.,
2014)

47.6 9.4 (Wessels, 1998; Frassl et al., 2014)

37.0 -25 (Rigosi et al., 2011)

71.2 -156.8  (Potter, 2011)

54.4 -3.0 (Woolway et al., 2015)

534 -9.6 (Dalton et al., 2014)

46.4 6.1 (Anneville et al., 2010)

46.4 6.1 (Anneville et al., 2015)

51.1 7.2 (Weber et al., 2017)

454 -79.1 (Yao et al., 2014)

45.7 10.1 (Pilotti et al., 2013, 2014; Valerio et al., 2015)

32.0 35.6 (Gal et al. 2009)

32.0 35.6 (Bruce et al., 2006)

43.0 —89.4 (Magnuson et al., 2006)

-35.1 1387 (van der Linden and Burch, 2016) Rigosi et al., 2011

52.0 13.6 (Huber et al., 2008)

30.7 90.6 (Wang et al., 2009)

43.0 -75.9 (Hetherington et al., 2015)

45.8 9.3 (Copetti et al., 2006, 2013; Carraro et al., 2012)

51.7 109 (Bocaniov et al., 2014)

51.3 12.0 (Bohrer et al., 1998; Boehrer et al., 2014)

56.0 4.8 (Trolle et al., 2008a; b)

—-38.0 1763 (Burger et al., 2008)

53.2 13.0 (Kirillin et al., 2013)

-382 1764 (Hamilton et al., 2006, 2010)

68.6 —149.6  (Maclntyre et al., 2009)

544 -3.0 (Woolway et al., 2015)

—-42.0 147.0 (Tasmania, 2003)

47.3 8.8 (Peeters et al., 2002; Schmid and Koster, 2016)

All simulations were run for 2 years or 730 days starting with
initial conditions in the winter or when the lake was most nearly
well mixed. For the northern hemisphere lakes the start date was
the 1st of January and for lakes located in the southern hemisphere
the start date was set at 1st July. The initial conditions were taken
from the closest field profile measurements to the start date. The
standardised start date was chosen to simplify cross lake compar-
isons. For the majority of the lakes in the MLCP, mid-winter is also
associated with complete mixing thus reducing error associated
with uncertainty in initial profiles. A spin up period of 28 days was
eliminated from model analysis to further reduce error associated
with uncertainty in initial conditions.

Box plots are used to present monthly means and range of input
data across all 34 simulations (Fig. 2). For input data for each lake,
refer to references listed in Table 1 and/or the institutions listed in
Table D1. Inflows and outflows are also plotted as monthly averages
based on time from the beginning of the simulation (Fig. 3a&b).
There are no seasonal patterns apparent in the monthly inflows and
outflows averaged over the MLCP lakes due to the large variation in
peak flow months.

While an effort was made to use lakes with high quality input
data, lakes where input data had to be estimated were still selected
for the MLCP in order to ensure a sufficient variation in lake char-
acteristics. For seven lakes either inflow, outflow or both were
estimated (Bourget, Emaiksoun, Feeagh, Mendota, NamCo, Stechlin
and Woods) and the parameter of light attenuation (K,) was

estimated for three lakes (Alexandrina, Muggelsee and Woods).
Meteorological data for short wave radiation, air temperature,
relative humidity, wind speed and precipitation were supplied
either from an on lake station or the closest meteorological station
to the lake. Long wave radiation was either measured directly (net
or incident) or calculated by GLM using cloud cover data.

In an attempt to assess the errors associated with input data
limitations, a qualitative weighting system was used to assess each
input variable or constant, where a minimum score is associated
with the best available input or observation data (Table Al).
Table A2a lists the method of determining the hypsographic curve,
distance from lake and frequency of meteorological data and
observed data and method of determining inflow, outflow and
extinction coefficient for each lake in the MLCP. This information is
used to determine the relative error scale associated with boundary
forcing and observed data for each lake (Table A2b), where low
refers to low uncertainty in forcing data and high indicates a higher
level of error associated with model input. Input error associated
with the determination of long wave radiation was not included in
the error scaling method.

2.3. Model assessment approach

Measures of model fit used to evaluate model performance
included five alternatives listed below. This set of measures of
model fit enabled us to standardise comparisons among lakes, track
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Fig. 1. Lake outlines to scale for all lakes in the current MLCP GLM assessment.

trends in deviations from observed data (Bennett et al., 2013) and to
compare with similar lake modelling studies previously published N 2
(e.g. Rigosi et al., 2010). MEFF = 1 — iz (P = 0)”

Measures of model fit were calculated as: SN, (Oi _ 6)2

1) Root mean square error (RMSE):

RMSE =

SN (P — 0y)?
+ (2-1)

3) Correlation coefficient (r):

I (- P) (0 - 0)

r=

15
N B\ 2N =\2
2) Model Efficiency (MEFF, Murphy, 1988; Nash and Sutcliffe, >iz1 (Pi *P) 2oi (Oi*()) }

(2-2)

(2-3)
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Description, symbols and initial values of the parameters used in the sensitivity analysis.
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Symbol

Description

Reference

Initial value

Surface Heat Exchange
Ch

CE

Ca
Mixing
CC

CW

Ce

CS

Ckn
Chyp

Bulk aerodynamic coefficient for sensible heat transfer
Bulk aerodynamic coefficient for latent heat transfer
Bulk aerodynamic momentum transfer coefficient

Mixing efficiency - convective overturn

Mixing efficiency - wind stirring

Mixing efficiency - unsteady turbulence (acceleration)
Mixing efficiency - shear production

Mixing efficiency - Kelvin-Helmholtz turbulent billows
Mixing efficiency of hypolimnetic turbulence

(Fischer et al., 1979)
(Fischer et al., 1979)
(Fischer et al., 1979)

(Yeates and Imberger, 2003)
(Spigel et al., 1986)
(Sherman et al., 1978)
(Sherman et al., 1978)
(Sherman et al., 1978)
(Weinstock, 1981)

0.0013
0.0013
0.0013

0.2
0.23
03
0.51
0.3
0.5

Net Longwave Radiation (W/m?) Shortwave Radiation (W/m?)

Air Temperature (°C)
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Fig. 2. Time series of monthly mean values across all lakes for (a) short wave radiation, (b) relative humidity, (c) net longwave radiation, (d) wind speed, (e) air temperature and (f)
precipitation. For each box, horizontal lines represent median, 25th and 75th percentile, whiskers <1.5 times the interquartile, and outliers () values > 1.5 times the interquartile
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4) Percent relative error (PRE):

N FR— . .
PRE = 2121 (PIN Ol)/ol*-loo (2_4)
5) Normalised mean absolute error (NMAE):
_ NP - 0)/04 )
NMAE = N (2-5)

where N is the number of observations, O; and P;, the “ith” observed
and model predicted data and O and P the mean observed and
model predicted data, respectively.

A further advantage of calculating alternative measures of
model fit is that different methods of model evaluation highlight
different aspects of model performance (Bennett et al., 2013). RMSE
is a standard measure of the average deviation of simulated values
from observations with values near zero indicating a close match
and units that correspond to those of the variable. MEFF is the
square of the deviation of simulated values from observations,
normalised to the standard deviation of the observed data, such
that one indicates perfect fit and zero indicates that the model
provides equal predictive skill as the mean of the observed data.
The correlation coefficient r gives an indication of the linear rela-
tionship between observed and predicted data and is the most
common measure for assessing aquatic models (Arhonditsis and
Brett, 2004). PRE is a measure of the relative deviation of simu-
lated from observed values and can be used to determine the bias in
predictions (Bennett et al., 2013). Finally, NMAE is both normalised
to the mean, enabling like comparisons between variables and is
absolute so that under and over estimations do not cancel each
other out.

Initial manual calibration focused on refining input data by
adjusting the wind scaling factor and river inflow slope parameters
for each lake (the river slope is indicated as ¢, in Hipsey et al.
(2017), and they are denoted as wind_factor and strmbd_slope in
the configuration file, respectively). Wind factor adjustment was
required where wind stations were located some distance from the
lake and/or to account for wind sheltering effects (Markfort et al.,
2010). River inflow slope was adjusted to correct the magnitude
of momentum and entrainment associated with plunging inflows.
For lakes where few or no light attenuation or Secchi depth read-
ings were available, K,, was also adjusted until simulated thermo-
cline depth matched that of observed data. Initial calibration was
carried out until an RMSE (calculated for all observed temperature
data over the simulation period) of less than 2°C was achieved.

We chose a range of thermal metrics to assess model perfor-
mance at each site: observed full profile temperature data;
epilimnion temperature; hypolimnion temperature; thermocline
depth and Schmidt Stability (Idso, 1973). Schmidt Stability (St) and
thermocline depth (thermD) were calculated for both model output
and observed thermistor data using Lake Analyzer (http://
lakeanalyzer.gleon.org/), an open source software tool that com-
putes indices of mixing and stratification for lakes and reservoirs
(Read et al., 2011). The comparison of thermD calculations was
included in the analysis as it is a simple, widely-used metric of
mixed layer depth, while acknowledging the calculation of thermD
can be challenging for weakly stratified and polymictic lakes. Also,
the approach used in Lake Analyzer identifies the strongest thermal
gradient, and may miss important thermal structure. St represents
resistance to mechanical mixing due to the potential energy
inherent in the stratification of the water column, calculated as:

Zp

S :A% / (z - 2,)p,Azdz (2-6)

where g is the acceleration due to gravity, A is the surface area of
the lake, A; is the area of the lake at depth z, zp is the maximum
depth of the lake, and z, is the depth to the centre of volume of the
lake, and p, is the water density at depth z. While not used as a
direct gauge of model performance, the daily Lake Number (Ly)
output as a GLM diagnostic parameter was also used in the cross
lake comparison analysis as a measure of the validity of the one-
dimensional assumption of the model. Ly balances the strength of
stratification to wind induced mixing across the thermocline and is
a measure of the potential for mixing across the thermocline
(Imberger and Patterson, 1989).

St(ze +2
_ Si( e2 %h) (2-7)
2phu*As Zy
where z, and zj, are the depths to the top and bottom of the met-
alimnion, respectively, pp, is the average density of the hypolimnion
and u- is the surface friction velocity.

2.4. Sensitivity analysis

Sensitivity of model output to nine parameters of mixing and
heat exchange was evaluated for each lake. Three of the parameters
influence surface heat and momentum exchange: bulk aero-
dynamic coefficient for sensible heat transfer (Cy), bulk
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aerodynamic coefficient for latent heat transfer (Cg) and coefficient
of wind drag (Cp). The remaining six parameters control surface
and hypolimnetic mixing: mixing efficiency for convective overturn
(Cc), mixing efficiency of wind stirring (Cy), mixing efficiency of
shear production (Cs), mixing efficiency of unsteady turbulence
(Cr), mixing efficiency of Kelvin-Helmholtz turbulent billows (Cgy),
and mixing efficiency of hypolimnetic turbulence (Cyyp), (Table 2).
To gauge a response to parameter change, the one-at-a-time (OAT)
method (Bruce et al., 2008) was adopted for the first stage of the
MLCP, where the model was first run with the model default value
to each parameter and then run again increasing and decreasing
parameter values by 20%.

Sensitivity to changes in parameter values for each of the five
lake variables used in the model assessment described above
(temperature of the full water column, epilimnion, hypolimnion,
thermD and St) was analysed. Normalised sensitivity coefficients
(Sij) to assess the relative sensitivity of variable i to parameter j were
calculated according to:

o Aci/cis
= s
J Aﬂj/ﬁjs

where 4C; is the change in output variable i, averaged over the
simulation period, from the standard or reference value Cjs (Table 2)
and 4pj; is the change in parameter j from the reference value §;
(Fasham et al., 1990).

Sensitivity coefficients were then compared relative to ten

S (2-8)

Table 3

characteristics describing the morphometry, climatic conditions
and trophic state of the lakes. These properties were the maximum
depth, lake volume, ratio of area to maximum depth, ratio of length
to width, annual average inflow, residence time, mean air tem-
perature, mean short wave radiation, mean wind speed and
extinction coefficient (Table A3).

3. Results
3.1. Model performance

Using the simulated results from running GLM with the stan-
dard set of parameters, five model fit metrics (RMSE, MEFF, r, PRE
and NMAE) were calculated for five data sets (full profile, epilim-
nion, hypolimnion temperature, thermD and St) for each lake. The
full set of results is provided in Appendix B (Table B1) with NMAE
results given in Table 3. A comprehensive description of model
performance for each lake can be found in the plots of modelled
versus observed temperature data included in Appendix B.

An analysis of model performance in the prediction of temper-
ature profiles (full profile) demonstrated a robust fit for GLM across
the selected metrics, with an average RMSE of 1.34 °C, MEFF of 0.88,
rof 0.96, PRE of —0.16% and NMAE of 0.11 (Table B1). The lakes with
the lowest RMSE included Feagh, Tarawera and Emaiksoun. The
highest RMSE values were calculated for Ravn, Ammersee and
Woods. Ammersee also recorded the lowest values for MEFF along
with NamCo and Toolik. All values of r were >0.9, with the excep-
tion of Toolik. The PRE values ranged from +18% for NamCo to —15%

NMAE for base simulations using standard parameter set against full profile temperature (Full Prof. Temp.) [°C], epilimnion temperature (Epi. Temp.) [°C], Hypolimnion
temperature (Hyp. Temp.) [°C], thermocline depth (thermD) [m] and Schmidt Stability (S;). Note that for fully mixed lakes or for lakes where temperature profiles were
shallower than the thermocline depth, NMAE values are listed as not applicable (N/A). N refers to the number of profiles used in the calculation of model performance.

Lake Full Prof. Temp. (°C) Epi. Temp. (°C) Hyp. Temp. (°C) thermD (m) ST

Alexandrina 0.07 0.07 N/A N/A N/A
Ammersee 0.19 0.20 0.13 0.40 0.17
Blelham 0.12 0.13 0.31 0.18 0.45
Bourget 0.08 0.11 0.07 0.32 0.09
Cannonsville 0.10 0.05 0.15 0.39 0.12
Como 0.10 0.17 0.06 0.64 0.19
Constance 0.08 0.09 0.07 0.11 0.16
ElGergal 0.08 0.06 0.07 0.30 0.27
Emaiksoun 0.08 0.08 N/A N/A N/A
Esthwaite 0.13 0.11 0.35 0.15 0.24
Feeagh 0.06 0.04 0.09 0.14 0.30
Geneva01l 0.09 0.11 0.04 0.41 0.22
Geneva03 0.08 0.05 0.04 0.52 0.20
GrosseDhunn 0.07 0.05 0.09 0.37 0.09
Harp 0.18 0.12 0.27 0.68 0.19
Iseo 0.08 0.10 0.07 0.76 0.16
Kinneret03 0.07 0.07 0.07 0.28 0.20
Kinneret97 0.05 0.06 0.05 0.15 0.21
Mendota 0.11 0.10 0.11 0.30 0.23
MtBold 0.08 0.08 0.06 0.25 0.43
Muggelsee 0.07 0.06 N/A N/A N/A
NamCo 0.23 0.17 0.22 0.28 035
Oneida 0.04 0.03 0.06 0.19 0.86
Pusiano 0.14 0.11 0.26 0.24 0.19
Rappbode 0.14 0.08 0.12 0.23 0.16
Rassnitzersee 0.17 0.15 0.23 0.15 0.17
Ravn 0.19 0.14 0.21 0.27 0.34
Rotorua 0.07 0.08 0.08 0.09 0.43
Stechlin 0.13 0.11 0.11 0.33 0.14
Tarawera 0.04 0.04 0.03 0.27 0.10
Toolik 0.25 0.26 0.25 0.61 0.43
Windermere 0.14 0.23 0.26 0.22 0.21
Woods 0.17 0.17 N/A N/A N/A
Zurich 0.12 0.09 0.16 0.42 0.17
Mean 0.11 0.10 0.14 0.32 0.25
Median 0.09 0.09 0.10 0.28 0.20
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for Rassnitzersee. Because lakes had both positive and negative PRE
(representing a temperature bias, warm and cold respectively) the
mean PRE was —0.16%. The lowest absolute PRE was for GrosseD-
huenn (0.33%) which also performed well on all five measures of
model fit.

In general, the model performance predicting the epilimnion
temperatures was of similar magnitude to the full-profile temper-
atures (RMSE mean = 1.62 °C). By analysing the PRE, it is clear that
the GLM tended to produce both warm and cold temperature biases
in the epilimnion, slightly favouring a cold bias (mean
PRE = —0.84%). For most lakes, model performance metrics were
similar for the epilimnion as the full profile with the exception of
Windermere and Zurich which performed worse and Oneida which
performed better in the computation of epilimnion temperatures.

For the hypolimnetic temperature simulations, average RMSE
and NMAE values were relatively low, 1.31 °C and 0.14 respectively.
Typically small seasonal variation across all lakes led to greater
percentage error between model and simulated data with both
warm and cold temperature biases and a tendency to a warm bias
(mean PRE = 1.97%). The mean r value of 0.73 was the lowest of the
three temperature-associated properties. Lakes with the highest
model performance for hypolimnion temperature included
GenevaO1l, Geneva03 and Como with the lowest being Rassnit-
zersee, Esthwaite and Blelham. Model efficiency values for the
calculation of hypolimnion temperatures were poor with less than
a third greater than 0.5 and 44% of lakes recording a value of less
than zero.

Thermocline depth (thermD) was a difficult parameter to model
with the poorest PRE and NMAE values (Table 3 & Table B1). Mea-
sures of model performance comparing calculations of observed
and simulated thermD ranged in value across the lakes with PRE
values from —16% to +52% and NMAE ranging from 0.10 to 0.76
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(Table 3 & Table B1). The PRE values indicate a bias towards over
prediction of thermD by the model compared to the observed data.
This was most apparent in Lake Geneva over the winter months
when GLM predicted full mixing (i.e. thermD = lake depth) and the
field data recorded a shallow thermD (<5 m). As the lake depth was
>300 m this resulted in large relative error of greater than 6000%,
leading to unfavourable mean measures of fit.

The NMAE values for calculation of St were generally low. The
higher values of NMAE were associated with lakes such as
Ammersee, Oneida and Pusiano which all had relatively low St
during the simulated period. The mean MEFF and r were both quite
high (0.83 and 0.96, respectively) indicating that the general sea-
sonal patterns for St prediction across the majority of lakes were
well simulated by the model.

Analysis of the relationship between indices of model fit and
input quality showed some correlation for the prediction of full
profile, epilimnion and hypolimnion temperatures and thermD
(Table B2). Analysis of measures of PRE indicated a cold bias in
prediction of both full profile and hypolimnion temperatures when
input uncertainty is greatest (Fig. 4b). In addition, for lakes where
the meteorological measurement station was near or at the lake
edge, there was a warm bias and for lakes where meteorological
input was sourced from further away, there was a cold bias (Fig. 4a).
Similarly, there was a warm bias for the prediction of hypolimnetic
temperatures for lakes with high frequency meteorological data
and a cold bias for lakes with daily meteorological data (Fig. 4c).
Lakes with lowest input uncertainty associated with the estimation
of K, corresponded with lowest values of r with respect to the
prediction of full-profile temperatures (Fig. 4d) and similarly lakes
that had close to ideal ranking of overall input uncertainty scored
the lowest values of r for epilimnion temperatures (Fig. 4e). This
would be attributed to the use of Kw as a calibration parameter for
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Table A1 for details of input uncertainty ranking system.



L.C. Bruce et al. / Environmental Modelling & Software 102 (2018) 274—291

lakes where there were no measurements for light attenuation.
High frequency observed data also correlated with high NMAE
scores for the prediction of hypolimnion temperatures (Fig. 4f).

Analysis of model performance revealed a number of significant
correlations linking model performance to lake characteristics
(Table B3). For comparison of absolute model performance, the
RMSE metric was used for temperatures and MEFF for thermD and
St. Whilst measurements of PRE can be a deceptive measure of
model performance for lake variables where under and over-
prediction occurs in equal measure, they are useful to observe
patterns of bias in model prediction. A number of significant cor-
relations between lake characteristics and model error are illus-
trated in Fig. 5 and Fig. 6 and described below.

The RMSE error associated with the prediction of both full pro-
file and hypolimnion temperatures was generally higher for lakes
with high light extinction (K, > 0.8 m™') and lower for clear lakes
(Kw < 0.3 m™") (Fig. 5a&b). A correlation was observed between the
RMSE associated with the prediction of hypolimnion temperatures
and lake depth (Fig. 5c), with deep lakes (>100 m) having the
lowest values of RMSE (<1 °C). In terms of relative measures of
model performance, for lakes with both low inflows (<10° m3s~1)
and low levels of incident short wave radiation averaged over the
entire simulation period (<120 Wm™) there was a cold bias in
prediction of full profile and epilimnion temperatures, respectively
(Fig. 5c&d). Whilst correlation was relatively low, there was some
indication that for lakes with low residence time there was a cold
bias in the GLM-predicted hypolimnetic temperatures (Fig. 5f).

For prediction of Sy, the lake depth, residence time and extinc-
tion coefficient all had a significant impact on model performance
(Fig. 6a, b & ¢). Generally, clear deep lakes (>100 m), with residence
times > 2 years recorded the lowest values of NMAE. A reverse
pattern of correlation was observed for the prediction of thermD,
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with deep lakes having the highest values of NMAE and shallow
lakes (<40 m) showing highest levels of thermD predictive accuracy
(Fig. 6d). There was a small but significant trend where GLM over
estimated St in lakes with high incident short wave radiation (>200
Wm2) (Fig. 6e). For prediction of thermD, GLM tended towards
over-prediction which was more pronounced in colder lakes (air
temperature < 10 °C) (Fig. 6f).

Model performance for the prediction of thermD and St was
better for lakes when mean Ly > 10, while these lakes tended to
record reduced measures of model fit for the prediction of
epilimnion and hypolimnion temperatures (Fig. 7a,ce,g).
Conversely, for the small number of lakes with a significant pro-
portion of the stratification period under a regime of Ly < 1, pre-
diction of epilimnion and hypolimnion temperatures improved but
thermD and St decreased (Fig. 7b,d,f,h).

3.2. Sensitivity analysis

The sensitivity analysis (SA) on each of the nine surface ex-
change and mixing parameters highlighted differences both be-
tween lakes and thermal properties (Fig. 8a—e). For all three
temperature metrics (full profile, epilimnion or hypolimnion) there
was little sensitivity to perturbations in physical parameters, when
the SA was averaged over the 2 year simulation period. There was
some degree of sensitivity to changes in C; in the calculation of
hypolimnion temperatures and to C, in the calculation of epilim-
nion temperatures. Sensitivity index (SI) for prediction of both
thermD and S, were significant (>1) across a broader range of lakes
(Fig. 8d—e). While there was some variability across the lakes and
parameters, model output for both thermD and St had greatest
sensitivity to perturbations of Cy. Additionally, for Sy there was a
consistent level of sensitivity to perturbations of C.
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The sensitivity of each parameter was compared to a gradient of
physical and climate lake properties (Table C1-5) and a number of
significant correlations were observed. For each thermal metric, the
three most significant correlations to lake characteristics were
compared (Fig. 9). A common significant (p < 0.05) trend was
recorded for maximum lake depth (Fig. 9e,m). For the prediction of
full profile and epilimnion temperatures, deeper and larger lakes
were more sensitive to changes in Cgy than small, shallow lakes
(Fig. 9e). Similarly, for the prediction of thermD, deeper lakes were
more sensitive to changes in C., C, and Cky than shallow lakes
(Fig. 9).

A significant correlation with air temperature indicated that
lakes with low air temperatures were more sensitive to changes in
Cy, G and Cgy than lakes in warm climates (mean air
temperature > 10 °C) for the prediction of full-profile temperature
(Fig. 9c), epilimnion (Fig. 9d) and hypolimnion temperatures
(Fig. 9g). Lakes with low inflows were more sensitive to changes in
Cp, for the prediction of hypolimnion temperatures than those with
larger inflows (Fig. 9i). Finally, lakes with highest wind speed
recorded greatest SI to Ce in the prediction of St (Fig. 9m).

4. Discussion

Historically, lake modellers have adopted simple methods to
justify model performance and suitability, rarely reporting statis-
tical measures of model fit (Arhonditsis and Brett, 2004;
Arhonditsis et al., 2006). For individual lake applications, these
have been adequate to undertake scenario simulations and further
our understanding of site specific dynamics. However, a common
approach to model assessment, both in terms of metrics that should
be applied and identification of a commonly agreed level of model
performance, is necessary to further enhance model development
(Bennett et al., 2013). Undertaking a standardised method of
assessment of the community lake model, GLM, over a diversity of

lakes has led to an improved level of understanding of the strengths
and weaknesses in the predictive capacity of simple 1-D lake
models. By first ascertaining an acceptable model error, we were
able to elucidate the relation between model performance and data
input uncertainty or lake characteristics (Fig. 4; Fig. 5).

The quality of input data was not as significantly related to
model performance as expected. Lakes modelled using daily
meteorological input, rather than hourly, did have the largest
values of NMAE in the prediction of full profile temperature and
thermD (Fig. 4), which is not surprising given the importance of
diurnal forcing in 1-D model predictive capability. The greater the
meteorological observation distance to the lake tended to result in
both cold-biased temperatures and under prediction of St (Fig. 4).
The cause of warm-biased temperatures and over-prediction of
lake stability when meteorological observations were obtained
near or on-lake requires further investigation (Fig. 4). The strong
correlation between accuracy of Kw measurements and model
performance in the prediction of both full profile temperature and
thermD (Fig. 4) emphasises both the importance of light extinction
in the determination of thermocline depth and the need to include
measurements of Kw in routine lake monitoring. The GLM can be
coupled to water quality models such as the Aquatic EcoDynamics
Model (AED: Hipsey et al., 2013) such that seasonal changes in Kw
would feedback in the model to potentially improve model pre-
diction particularly in relation to thermD; this link is expected to
further improve model accuracy in most circumstances.

The 1-D nature of the model implicitly assumes that the mixing
within the lake can be constrained by processes acting in the ver-
tical and that processes which vary in the horizontal, such as the
degree of upwelling of the thermocline, have minimal impact on
vertical transport. This assumption is quantified by computation of
the Lake Number (Imberger and Patterson, 1989, eq. (2.7)). As the Ly
is arelative measure of the strength of stratification to surface wind
energy, the 1-D model assumption is said to hold true for Ly >> 1
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Fig. 7. GLM model performance metrics for prediction of epilimnion temperature (a,b), hypolimnion temperature (c,d), thermocline depth (e,f) and Schmidt stability (gh) against

Lake Number and %LN < 1. Refer to Table 1 for lake acronyms.

(Imberger and Patterson, 1989; Yeates and Imberger, 2003). Over
the past three decades, the 1-D model approach has been applied to
awide diversity of sites due to its simplicity and tractability relative
to 3-D models. However, given that Ly can be highly variable, it has

remained unclear what significance the 1-D assumption has on
model prediction error for various lake attributes and under what
conditions this assumption would no longer hold. The strong cor-
relation (r? = [0.70,0.82]) between the percent of time Ly < 1 during
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the stratified period and the model performance of both thermD
and Stendorses the use of Ly as an indicator of the validity of the 1-
D model assumption, and should be considered when modellers
are deciding on model suitability.

A comparison of PRE against Ly for the calculation of simulated
versus observed Stindicated that lakes with mean Ly < 1 tended to

underestimate St. For these lakes, the 1-D assumption as defined by
Ly does not hold. One would expect mixing to be underestimated
and St to be higher, unless the resulting warmer near surface
temperatures led to greater heat losses by evaporation. Yeates and
Imberger (2003) demonstrated that for lakes where deep mixing is
important, a 1-D lake model mixing scheme similar to that used in
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GLM tended to overmix the water column and thus underestimate
lake stability and therefore St. A solution put forward by Yeates and
Imberger (2003) included a pseudo two-dimensional algorithm in
the 1-D model DYRESM to parameterise internal and boundary
fluxes. Similarly Gaudard et al. (2016) proposed a method of adding
a seasonal component in the parameterisation of internal seiches
that led to improved accuracy in the prediction of deep mixing in
the 1-D model SIMSTRAT. Whilst compromising computational
efficiency, lake modellers could consider a similar approach when
conditions for improved deep mixing accuracy are necessary. For
example, this approach could be valuable where upwelling or in-
ternal nutrient loading is deemed important or when specific dis-
tribution phenomena such as deep chlorophyll maxima are the
focus of the modelling study.

Further exploration of how individual lake properties relate to
measures of model performance indicated the strongest correla-
tions against K, and lake depth (Fig. 5; Fig. 6). Lakes with high K,
(>0.5), recorded greatest error in the prediction of lake tempera-
tures particularly in the hypolimnion. While there was no signifi-
cant correlation between the accuracy in prediction of epilimnion
temperatures and lake depth, there was a strong positive correla-
tion for measures of model performance in prediction of hypo-
limnion temperatures and depth (Fig. 5). That is, for deeper lakes
(>40 m) where surface mixing dynamics have less influence on
hypolimnion temperatures, GLM predicts hypolimnion tempera-
tures with greater accuracy. This suggests that while the surface
thermodynamics are better represented by the model, prediction of
rates of mixing across the metalimnion requires attention and
further development to enable more confident prediction across
the diversity of lake types. Relatively shallow, well-mixed lakes,
such as Feeagh and Emaiksuon, had the highest overall model
performance. These lakes are dominated by surface exchange with
no thermocline and associated deepening.

The prediction of the lake thermocline depth proved harder to
achieve than the lake temperatures. Particularly in moderately
deep lakes, small relative deviations in predictions can result in
large changes to error magnitude. As the GLM-predicted thermD
was both deeper and shallower than the observed thermD in
different lakes, there does not appear to be a consistent bias in the
mixing algorithms, and rather, it may be driven by high sensitivity
to input parameter uncertainty and require site specific calibration.
The positive correlation between NMAE of thermocline prediction
and lake depth was significant with best fit occurring for lakes less
than 50—80 m deep (Fig. 6). A tendency to over-predict thermocline
depth in the majority of lakes could be attributed to an over-
prediction of penetrative heat and may be related to both the
application of a standard minimum layer thickness for all lakes and
the use of a single average K,, value over 2 annual seasonal cycles.
The positive correlation with K, indicates that a single K, for all
seasonal conditions is not appropriate, particularly for lakes with
high mean or seasonally variable K, values. A consideration for
using a K, weighted towards the summer stratified period could be
a solution or coupling to a water quality model with explicit light
extinction feedback properties could improve thermocline predic-
tion particularly in lakes with high light extinction (K,, > 0.5)
(Shatwell et al., 2016).

The absence of strong sensitivity to parameterisation of surface
exchange and mixing algorithms in the prediction of temperature
profiles (Fig. 8) is indicative of the dominance of surface boundary
conditions in the thermal budget of individual lakes and negative
feedbacks in the surface heating sub-model. In contrast, the pre-
diction of thermocline depth and Schmidt Stability were more
sensitive to changes in parameterisation. In particular, the model
was sensitive to the shear mixing efficiency and wind drag coeffi-
cient parameters. Both parameters are directly related to the

transfer of wind energy to mixing. The errors in computing these
terms again points to the need for more effort in parameterizing the
processes operative when Ly is low and shear increases across the
thermocline. Additionally, wind increases in magnitude as it flows
across a lake. This effect is important for small and large lakes and is
not included when wind is modelled with bulk drag coefficients.
Care should be taken in both the accuracy of wind speed mea-
surements as well as the parameterisation and classification of
these parameters in relation to lake characteristics to improve
model performance across a wide variety of lake properties.

In general, simulations of deep lakes with large volumes and
residence times were most sensitive to changes in mixing efficiency
parameters (as measured by changes in thermD and Sr) (Fig. 9),
which was expected since larger lakes require greater efficiency in
transfer of surface momentum input to thermocline deepening and
subsequent mixing. Lakes with low K, were most sensitive to
changes in surface exchange parameters. This sensitivity is logical
given that in lakes with low K, light will penetrate deeper causing
a deeper thermocline. Processes which moderate depth of mixing
in the epilimnion, such as convection, become important. Being
able to model changing dynamics of lakes as K, changes with
modified hydrology and altered loading of chromophoric dissolved
organic matter is critical for quantifying the changes associated
with climate variability (Snucins and Gunn, 2000).

An appealing alternative to the minimal calibration presented
here (i.e., input data refinement, wind factor and river inflow slope
adjustment) will be the relaxation of the assumption of globally
common parameter values for the core hydrodynamic parameters
and the adoption of a Bayesian hierarchical calibration framework
that reflects the more realistic notion that each lake (or group of
lakes) is peculiar but shares some commonality of behavior with
other lakes (Zhang and Arhonditsis, 2009; Cheng et al., 2010;
Shimoda and Arhonditsis, 2015). The proposed approach repre-
sents a pragmatic compromise between system- or group-specific
and globally common parameter estimates and may be a concep-
tually sound strategy to accommodate within- and among-lake
variability in the context of model application within the global
observatory network (Fig. 10). Recent work has shown that the
delineation of more homogeneous subsets of lakes with respect to
their morphological characteristics/hydraulic regimes and their
subsequent integration with hierarchical frameworks may give
models with better predictive capacity (Cheng et al., 2010; Shimoda
and Arhonditsis, 2015). In particular, sensitivity analysis patterns
identified in this study could be used to identify groups with sim-
ilarities in behavior (e.g., deep versus shallow lakes, high versus low
water transparency) as well as to identify the candidate parameters
for the calibration exercise. The prior distributions of the hyper-
parameters (or global priors) can be easily formulated on the ba-
sis of existing knowledge (e.g., field observations, laboratory
studies, and information from the modelling literature) of the
relative plausibility of their values. Moreover, the proposed incor-
poration of mathematical models into Bayesian hierarchical
frameworks can also assist the effective modelling of systems with
limited knowledge by enabling the transfer of information across
systems. With the hierarchical model configuration, we can
potentially overcome problems of insufficient local data by
“borrowing strength” from well-studied lakes on the basis of dis-
tributions that connect systems in space (Zhang and Arhonditsis,
2009). Another advantage of a Bayesian calibration configuration
will be the ability to express the input uncertainty in the form of
probability density functions which can then be propagated
through the model structure and may ultimately shape the mo-
ments of the posterior predictive distributions.

Through international collaboration, this work allowed us to
test and to improve the process and performance of a 1-D open
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source model by simulating thermal structure in lakes with
varying physical and climatic characteristics. Initial efforts in
setting up a collaborative network of lake modellers were
rewarded with improved user support and feedback, refinements
and testing to the development team. From its initiation as v1.0 in
the MLCP, using feedback and re-coding by network members, the
GLM evolved through numerous improvements to the current
v2.2 described in this study. The study also identified the most
sensitive parameters related to surface exchange and mixing that
affect model prediction and therefore performance for each in-
dividual lake. These sensitivities could then be correlated to lake
characteristics such as residence time, meteorological conditions
and trophic status. Additionally, this work opens a new challenge
for the community of limnologists involved in ecosystem
modelling. Indeed the next step would be cross lake comparison
projects including biogeochemical processes simulation using a
similar open source community biogeochemical model such as
the Framework for Aquatic Biogeochemical Models (FABM:
Bruggeman and Bolding, 2014) and/or AED (Hipsey et al., 2013).
The establishment of well-defined standards for modelling tech-
niques (set up, output analysis), and a diversity of lakes and sci-
entists provides enormous opportunity for further advances by
aquatic ecosystem modellers. The significance of the MLCP resides
in a common and collaborative approach to answering globally
relevant lake science questions, and providing a benchmark for
model performance and an associated parameter set that future
applications can refer to.
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