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The Stochastic Linear Quadratic Control Problem with Singular
Estimates

Cavit Hafizoglu* Irena Lasiecka! Tijana Levajkovi¢!¥ Hermann Menal Amjad Tuffahal

Tuesday 7" March, 2017

Abstract

We study an infinite dimensional finite horizon stochastic linear quadratic control problem in an
abstract setting. We assume that the dynamics of the problem are generated by a strongly continuous
semigroup, while the control operator is unbounded and the multiplicative noise operators for the
state and the control are bounded. We prove an optimal feedback synthesis along with well-posedness
of the Riccati equation for the finite horizon case. Our results extend the ones proposed in [H] to the
case in which disturbance in the control is considered and a final time penalization term is included
in the quadratic cost functional.

1 Introduction

We consider the stochastic linear quadratic problem in infinite dimensions with state and control depen-
dent noise for the so-called singular estimate control systems. These systems involve dynamics driven
by Cp-semigroups and unbounded control actions, with the control to state kernel satisfying a singular
estimate. Such situation is typical in boundary or point control problems where the action of the control
operator B is either only densely defined on a control space or its range is outside the state space. In order
to quantify the “unboundedness” of control action-singular estimates play a pivotal role. Such estimate
describes the amount of blow up of the “transfer function”. The latter is necessary for a rigorous analysis
of control problems and the associated feedback synthesis -be it deterministic or stochastic.

For deterministic systems, the infinite dimensional LQR problem has been studied extensively in the
literature [BK, BDDM, LT2]. The purpose of the theoretical framework is to address optimal control
of systems of partial differential equations. For most systems, the controlling mechanism can only be
applied from the interface of the system or at finitely many points or curves [BSW] which necessitates
developing a framework for studying boundary/point control. Such control actions can be captured
mathematically using maps which are not bounded with respect to the state space, but take values
in a larger dual space. The most natural class of problems where such description has been used are
dynamics driven by analytic semigroups. The analyticity property quantifies naturally the blow up of the
“transfer function” when acted upon by an unbounded operator (compatible with fractional powers of

the generator). The linear quadratic problem for systems driven by analytic semigroups with these type
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of control actions were studied by [F2, AT, DI, BDDM, LT2|. The situation is much more complicated in
the non-analytic case, where there is no natural characterization of singularity other than technical -often
brute force- PDE estimates. However, for some classes of control systems which combine hyperbolic and
parabolic dynamics, it has been observed that the control-to-state kernel satisfies a singular estimate
which generalizes the case of analytic semigroup dynamics [AL, ABL, L1, LT1, LTul]. Examples of
systems which manifest this type of singular estimate arise frequently in thermo-elastic plate models
[BLT, BL, LTu2|, acoustic-structure interaction equation [AL, BSS, LTu2], and fluid-structure interaction
models [LTu3]. In view of the above, a deterministic theory of feedback control has been developed for
these classes of problems (singular estimate)- see the references given in [L2]. However, in the stochastic
case the only results available in the literature covering unbounded control actions are the ones dealing
with analytic semigroups [D, GT1, F1]. The main goal of the present work is to develop a stochastic
treatment of unbounded control action problems arising in a general class of dynamical systems which
exhibit singular estimates, bul are not necessarily analytic. One of the main challenges is to develop
an approximation framework which would provide rigorous justification of stochastic estimates. In the
analytic case, such framework is very natural and based on the instant regularizing effect of the dynamics.
In the non-anaytic case, a development of regularizing procedures lies at the heart of the problem. This
will be accomplished by expanding and building on the results presented in an unpublished reference [H].

The stochastic linear quadratic regulator problem in finite dimensions has been first studied by Kush-
ner (1962) [K] using dynamic programming. The feedback characterization of the optimal control and the
derivation of a matrix Riccati equation satisfied by the gain matrix is due to Wonham (1968) [W1, W2].
A complete theory for the stochastic linear quadratic optimal control problem in finite dimensions can
be found in [YZ, DMS, FS]. It is notable that the associated Riccati differential equation in the stochas-
tic linear quadratic problem is a deterministic differential equation, and thus the relation between the
optimal control and the optimal state which are random variables is purely deterministic. The linear
quadratic problem with random coefficients in finite dimension has also been investigated in [CLZ]. In
this case, the associated Riccati equation is a backward stochastic equation.

Several early works in the literature have addressed stochastic optimization in infinite dimensions and
the application of a semigroup framework to the stochastic setting with bounded inputs [B2, B3, C1].
The infinite dimensional analog for the stochastic linear quadratic problem and the Riccati equation
was treated by Ichikawa [I] via a dynamic programming approach, where he considered dynamics driven
by Cy semigroups and bounded control and noise operators. In an another early work, Curtain [C2]
provides a semigroup framework for studying the infinite dimensional linear quadratic Gaussian along
with several examples and applications. A complete Riccati feedback synthesis of the infinite dimensional
problem with disturbance in the state has been addressed by Da Prato [D] for systems with analytic
dynamics and a particular unbounded noise operator which captures the first derivative of the state in a
parabolic equation. The analysis was extended to boundary controls by Flandoli [F1] and in particular
for analytic systems with Neumann type controls. In [GRS], the authors consider a more general cost
functional and a semi linear state equation driven by analytic dynamics, and proceed to solve the problem
using a Hamilton-Jacobi-Bellman approach. For systems with singular estimates, which is our primary
consideration, the stochastic linear quadratic problem has been studied by one of the authors in [H], but
with no disturbance in the control (D = 0) and without finite time penalization in the cost functional
(G=0). In [U], the time varying problem has been also addressed for systems driven by strongly continuous

evolutions with bounded control and noise operators. In [D1, D2], the author investigates stochastic linear



quadratic differential games involving a stochastic differential equation with fractional Brownian motion
with dynamics generated by analytic semigroups. Some recent interesting work has also treated the
linear quadratic problem with random coefficients along with the associated backward stochastic Riccati
equation [GT1, GT2].

In view of the above the main novel contributions distinguishing this work from other publications are:
(1) this is the first treatment of stochastic unbounded control systems in the non-analytic setting, (2) the
framework allows for consideration of terminal penalization as well as control action perturbed by noise.
Indeed, in the present paper, we consider a more general setting including disturbance in the control,
and we also consider the case of the Bolza problem which allows for a finite time penalization in the
objective functional whose expected value is to be minimized. This latter aspect of Bolza-Meyer problem
is particularly challenging in the unbounded control case. As shown [F1], the solution to optimal control
problem may not exist, unless a certain closeability hypothesis is introduced. Under such necessary
hypothesis, we provide an optimal feedback synthesis and a Riccati equation for the stochastic linear
quadratic optimal control in the context of singular estimate control systems with noise dependence in
both state and control.

In the deterministic setting, variational analysis is used to obtain explicit formulas for the optimal
control before proceeding to derive the associated Riccati equations [LT1, D]. However, such explicit
formulas are not available in the stochastic setting -thus preventing applicability of a method of pivotal
importance in the deterministic and singular case. Moreover, in our setting, the lack of smoothing does
not allow for the application of the stochastic maximum principle or a solution via the Hamilton-Jacobi-
Bellman equation unlike the case of analytic dynamics [GRS]. In particular, the state trajectories are
mild solutions of the state equations and not necessarily differentiable in the classical sense.

Therefore, in our approach, we derive a differential Riccati equation associated with the optimal
stochastic linear quadratic control problem, by first showing the existence of a solution to an expanded
system in the integral form of the Riccati equation via a specially crafted fixed point argument. Here we
generalize the arguments given in [H]. We then proceed to derive the differential Riccati equation which
requires making sense of the weak derivative of the evolution generated by deterministic dynamics with
respect to initial time. Here, the obstacle, as in the deterministic case, lies in the fact that the terms of
the Riccati equation may not be well defined due to the unboundedness of the control operator. There
has been counter examples in the literature where the Riccati equation is not well posed in the case of
unbounded control operators [BLT]. Another difficulty is the finite state penalization which gives rise
to possible singularities at the final time and require choosing appropriate spaces to make sense of the
quadratic term in the differential Riccati equation [LTul]. Finally, we then use a dynamic programming
argument to show that the minimum of the quadratic functional is realized when the control is expressed
in feedback form via the solution to the differential Riccati equation. Here, we proceed with the dynamic
programming argument on a regularized version of the problem since the It6 formula only applies to C?
functions, while the state and control trajectories are not differentiable in the classical sense. For this
reason, a forward approach via a maximum principle or a variational method to solve for the optimal
control before proceeding to derive the differential Riccati equation is not applicable in this setting.

We first formulate the optimal control problem. Let the abstract stochastic differential equation

dy(t) = (Ay + Bu) dt + (Cy + Du) dW; (1.1)
y(s) =



be defined on a Hilbert state space H, where A and C are operators on H while B and D are operators
acting from the control Hilbert space U to the state space H. We take C' and D to be bounded operators
but A and B are typically unbounded.

Let (2, F,P) be a complete probability space, and W; a one dimensional real valued stochastic
Brownian motion on (€2, F, P) and F; the sigma algebra generated by {W, : 7 < t}. We assume that
all function spaces are adapted to the filteration ;. We denote by L2 ([s,T]; H) all stochastic processes
X(t,w) : [s,T] x Q — H such that

L [TIX@)|% dt < oo ae. in Q.
2. X(t,-) is Fi-measurable V¢ € [s,T].

We also denote by M2([s,T]; H), the space of all strongly measurable square integrable stochastic
processes X : [s,T] x Q@ — H such that fSTIE (I X (£)|I3) dt < oo, and by L*(S%; H*([s, T];U)) all strongly
measurable square integrable stochastic processes u : [s,7] x @ — U such that ngIE ([[u(®)||) dt +
fsT E (|lue(t)||?) dt < oo. The objective is to minimize the quadratic cost functional

T
J(s,2,u) =E (/ IRyl + llullz) dt + IGy(T)||2z> (1.2)

over all uw € M2([s,T];U) where R and G are bounded linear observation operators taking values in

Hilbert spaces W and Z respectively. The assumptions we consider are the following
Assumptions 1.1. 1. Operator A is linear and generates a Cy-semigroup et on H.
2. The linear operator B acts from U — [D(A*)]" or equivalently A='B is bounded from U — H.
3. The notse operator D : U — H is a bounded linear operator.

4. There exists a number v € (0,1/2) such that the control to state map kernel e*B satisfies the
singular estimate
¢
le? Bullir < o lullu (1.3)

for everyu e U and 0 <t < 1.
5. The operators R: H —- W, G :H — Z and C : H — H are all bounded linear operators.

Remark 1.2. Our framework also allows for H-valued Brownian motion W, where (Cy + Du) dW, is
interpreted as a Wick product (C'y+ Du)odW, of generalized random variables on White Gaussian prob-
ability spaces. See [LMT2] for chaos expansion treatment of the abstract stochastic differential equation

and the linear quadratic control problem in Hilbert spaces.

Remark 1.3. The singular estimate (1.3) should be interpreted in the following precise sense:
c
(AT Bu, A9)| < llullulléll,  for allé € H.
Remark 1.4. The results can also be extended to the case when D is unbounded operator satisfying a
similar singular estimate condition to that satisfied by B in Assumption 1.1 (4). This condition allows
the inclusion of systems with noise in the boundary control into the theoretical framework developed below,
as illustrated by the example included in the last section. However, to spare the reader further technical

details, we will just assume D is bounded throughout the paper.



Remark 1.5. In the case when there is no final state penalization i.e. (G=0), the value of v in (1.3)
could be pushed up to 1 -as in the deterministic case [LTul]. However, the majority of “non analytic”

examples exhibit singularity of the type assumed in (1.3). For this reason, we focus on this class only.

In sections 2 and 3, we state our main results and provide some preliminary results on mild solutions
to the stochastic abstract differential equation (1.1). In section 4, we prove the existence of local-in-time
solution to the integral Riccati equation via a fixed point argument and we investigate the regularity
properties of the Riccati operator. In section 5, we derive the differential Riccati equation from the integral
form. In section 6, we show the relation between the solution to the Riccati equation and the optimal
control or minimizer of the cost functional (1.2) via dynamic programming, and then extend the result
globally in time and show uniqueness of solution to the Riccati equation in sections 7 and 8 respectively.
We then return to complete the proof of the main results Theorems 2.1 and 2.2 in section 9. We conclude
the paper in section 10 with two examples to illustrate the theory: 1) a hinged thermoelastic plate
model with noise and control through Neumann boundary condition and 2) a linearized fluid-structure

interaction model with boundary control which we briefly discuss in the next section.

1.1 Motivating Example-Fluid Structure Interaction

In order to draw the attention of the reader to the significance of the assumptions imposed above on the
control problem we provide an example of a fluid-structure interaction control problem with noise which
became a motivation for our abstract framework [LTu3]. In the domain €2, we consider a partition into an
interior region €2 and an exterior region €2y where s is occupied by a fluid while €2, is occupied by a solid
body. The interaction between the solid and the fluid takes place on the boundary I'y which separates
both regions. The dynamics of the fluid are captured by a linear Stokes equation with multiplicative
noise satisfied by fluid velocity u and fluid pressure p
du— Audt + Vpdt = ciudW; in  Qf x [0,7] (1.4)
divu=0 in Qpx][0,T]. (1.5)

The dynamics of the solid are modeled by a linear second order equation with multiplicative noise
dw; —divo(w)dt = cowdW; in Qg x[0,7] (1.6)
in the solid displacement variable w, where o is the stress tensor defined by
oij(w) = Aj; divw + 2pue;;(w)

for i,5 = 1,2,3 and constants A\, u > 0, and where € is the strain tensor defined by

( )_} 3wi+8wj
=9\ 0x; oz )

Here, W; is a real Brownian motion on a complete probability space (X, F, P).

The interaction between the two bodies at the common interface I'y is captured by the following

transmission boundary conditions matching velocities and stresses

u=w; on s x [0,7] (1.7)
e(w)v —pr=c(w)v+g+gW(t) on s x [0,7] (1.8)



where v is the outward unit normal and ¢ is a control function acting as a force. On the outer part of

the boundary I'¢, we prescribe the no slip boundary condition
u=0 on I'y x[0,T]. (1.9)

Given initial conditions in the finite energy space ug € H = {L*() : div u = 0,u - v|p, = 0} and
(wo,wy) € HY () x L?(Qy), the problem is to find a control g € L?(X; L2([0,T]; L?(T's))) to minimize

the energy functional

T
J(u,w,we, g) = E </o (Jlu(t) - UT(t)H%Q(Qf) + gz r,) dt + [lu(T) - UD||%2(Qf) + [Jw(T) - wDi(m)) :

(1.10)
where up € Lo(Qy),wp € La(Qy), ur € Lao(Qy x [0,T]) are given tracking targets.

2 Main Results

We first state the result pertaining to existence, regularity and uniqueness of solution to the optimal

control problem.

Theorem 2.1. Under the assumptions 1.1, there exists a positive self-adjoint operator P(t) € C([0,T]; L(H))

satisfying the Riccati equation

(Pz,y) + (PAz,y) + (A*Pz,y) + (C*PCx,y) + (R* Rz, y)

—((B*P + D*PC)*(I + D*PD)"Y(B*P + D*PC)z,y) =0, (2.1)
I+ D*P(t)D >0, (2.2)
P(T)x = G*Gu. (2.3)

for every x,y € D(A). Moreover, the following holds
(i) The minimum of the functional (1.2) is given by

i f J b ) = P b
uEMwlﬁs,T];U) (5 . U) < (5)-'17 37>

(#i) The solution P(t) is unique in the class of positive self adjoint operators in C([0,T]; L(H)).
(iii) The solution P(t) satisfies the estimate

IP@ylle <cllyla  Viel0,T), yeH. (24)
(iv) The operator B*P(t) satisfies the estimate

|B*Pyllar < vie[0,T), ye H. (2.5)

C
WHZ/”H

We next state the result on the feedback form of the optimal control and the associated differential

Riccati equation satisfied by the gain operator.

Theorem 2.2. Under assumptions 1.1, the optimal control problem of minimizing (1.2) subject to the dif-
ferential equation (1.1) with initial condition x € H has a unique solution u°(s,-;z) € L*(Q;C([s,T);U))



and a corresponding optimal state y°(s,-;x) € L*(Q;C([s,T); H)). Moreover,
(i) The optimal control u® satisfies the estimate
c

E(|u’(s,t;2)|I5) < m\\fﬂﬂ VielsT). (2.6)
(ii) The optimal control y° satisfies the estimate
E(lly°(s, t;2)|%) < cllzllfy Yt e [s,T). (2.7)

(iii) The optimal control u® has the feedback characterization in terms of the optimal state
u(t,s;2) = —(I + D*P(7)D)"Y(B*P(t) + D*P(t)C)y"(t)
where P(t) is the unique solution to the DRE (2.1)-(2.3).

Specific examples motivating the theory presented above include coupled PDE systems with boundary
or point control where hyperbolic and parabolic dynamics are interwined. These, in particular include

thermoelasticity, fluid structure interactions and models arising in structural acoustics [L2, ALJ.

Remark 2.3. The analysis and result above easily extends to the case 1/2 < v < 1 when G = 0. However,

for nonzero G, this case 1/2 <~ < 1 is more challenging since operator
T
GLr =G / eAT-T Bdr
0

is mo longer bounded C(L?(Q); L*([s,T);U)) — Z. In fact, the existence of an optimal control in this
case requires closability of GLp [LT1]. Such condition is trivially satisfied when G is bounded invertible
H— Z.

3 Preliminaries

Following [DZ1], we say y(t, s; x) is a mild solution of the stochastic differential equation (1.1) if
1. y(t,s;z) = eM=9)p + f; A=) Bu(r) dr + f: A=) Cy() dW, + f: eAt=7) Du(r) dW,,
2. y(t, s; x) takes values in D(C),

3.

T

P (/ ly(r) o dr < oo> _1
T

P (/ ICy(I dr < oo> 1

4. Bu and Du are F; measurable Bochner integrable H valued functions.

and

Results on the existence of mild solutions to (1.1) for a general forcing can be found in [DZ1, HO].
By strong continuity of the semigroup, we know there exists numbers a, M > 0 such that |e4z||y <
Me“||z|| g, for all z € H and t € [s,T]. We start with the existence of milld solution to (1.1), for which

the proof is a standard argument, [H].

Theorem 3.1. Let v < 1. Given a function u € M2([s,T};U) and an initial condition y(s) = = € H,
there exists a unique mild solution y € M2([s,T|; H) to the abstract differential equation (1.1). Moreover,
if v < 1/2 then y € L*(Q;C([s,T); H)).



4 Integral Riccati Equation

In this section, we establish the existence of a solution to an integral form of the Riccati equation. The
Riccati equation is, by itself, deterministic. However, its form is generated by the underlying stochastic
process. This results in several additional terms (with respect to deterministic processes) which require
subtle treatment. In fact, the relevant integral form of the differential Riccati equation is

T T
P(t) = / A0 R R (7, ) dr + / A OO P(r)CB(r 1) dr
t

t
— / : A" TN C*P*(1)D(I + D*P(1)D) " (B*P(7) + D*P(7)C)®(7,t) dr
+ e‘t‘”T‘t)G*G@(T, t) (4.1)
subject to the condition
(I+D*P(t)D)z,z) >0 Vr#0andzxeU

where ®(¢, s) is the solution to the equation
t
B(t, s)x = ey — / AT B(I + D*P*(7)D)"Y(B*P(r) + D*P(1)C)®(, s)x dr. (4.2)

Our main result in this section is the existence of local-in-time solutions to the above integral equations.

Theorem 4.1. The integral equations (4.1) and (4.2) have unique local-in-time solutions P(t) € C([s,T]; H)
and ®(-,s) € C([s,T); H) for s = Tyaw < T chosen such that T — Tyay is sufficiently small. Moreover,

the solution P(t) is a positive self-adjoint operator on the space H and satisfies the estimate

|B*P(t)alln < j@llu, Vo€ HtelsT). (4.3)

c
a5

The solutions will be extended to a global solution on the whole interval [s,T] in section 7. One
notices that the integral equation (4.1) depends on composition operators B*P and PB which a priori
are not defined at all. Tt is not even clear that B*P can be densely defined (due to the unboundedness
of B). However, the validity of the singular estimate will enable a rigorous analysis of this equation. We
also notice that in the deterministic case one will only have the first and the last term in (4.1). Instead,
in the present stochastic case the appearance of the third term provides quadratic dependence on the
composition PB and P. Classical deterministic methods (either variational or direct) are no longer
applicable. In order to tackle the problem of existence, we shall formulate a rather special iteration
scheme which enables us to “unscramble” the convoluted dependence on the troublesome operator B* P
which a priori has no reason to be even densely defined. After few preliminaries in section 4.1, the proof
will proceed in steps.

Step 1: In section 4.2, we first prove existence of a solution (P, <i>) to the linear integral equation
T . r o, N
P(t) = / e O RF RO (7, t) dr + / e TTQH(T)Q(T) (7, t) dr
t t
T * ~ ~ A A~
+/ eV TOCH (Y P(T)C (1) D(7, t) dT
t

T
,/ A" TG (1) B P ()@ (1, t) dr + eV TG GI(T t),

t

t
(t, s)x = e g — / A2 By (2)D(z, s)x dz,

S



where Q(t), C(t) and t)(t) are given bounded operators satisfying the singular estimate (4.6).

Remark 4.2. Note these integral equations formally correspond to the system of linear equations

%?(t) = —R'R—Q*(t)Q(t) — A*P(t) — P(t)A — C*(t)P(t)C(t) + ¢*(t) B*P(t),
%cﬁ(t,s) = (A — Bi(1)®(t, s)

P(T) = G*G, ®(s,s)=1.

Step 2: In section 4.3, we next show that the solution Pisa positive self-adjoint operator in
C([s,T); £L(H)) and ®(t,s) is an evolution while B*P(t) satisfies the estimate (4.3).
Step 3: We now define the initial variables

Py(t) = eA*(T—t)G*GeA(T—t)7

Qo(7) = (I + D*Py(1)D) " (B*Py(7) + D*Py(7)C),

Co(1) = C — D(I + D*Py(7)D)"Y(B*Py(7) + D*Py(7)C),
Yo = (I + D*Py(7)D) " (B*Py(7) + D*Py(7)C).

This choice of the positive operator Py guarantees that B*Py(t) is bounded H — U for t € [s,T') and
satisfies (4.3), and that (I + D*PyD)~! is well defined and bounded on U.
Step 4: We next set up the following iteration scheme on the equation from step 1

T T
Pi(t) = / A" TTORYRG, (1, 1) dr + / A TN ()Qy (1) D (7, ) dr
t t

T
[ NG P (G )it dr
t

T
- / A TG () B Py (1) (7, ) dr + e TDG*Gd,(T 1)

t

where ®;(t, s)z = eAt=9) g — fst eAt=2) By (2)®; (2, s)x dz and

Qi(t) = (I + D*Py(t)D) " (B*P,(1) + D*P,(1)C),
2i(1) = C — D(I + D*Py(1)D)"Y(B*P,(7) + D*P,(1)C),
¥ = (I + D*P,(1)D)~ (B*P;(1) + D* P;(1)C).

Step 1 guarantees the existence of solution (P, ®;) at each step of the iteration, and that P;;; is a
positive self adjoint operator, such that B*P;;1 is bounded for ¢ € [s,T") and satisfies (4.3). This in turn
gives sense to the operator (I + D*P;1(7)D)~* in £(U) which is needed in the next step of the iteration.

Step 5: Passing through the limit, we finally show that the sequence P; converges to the solution P
of the original integral equation (4.1) in C([s,T]; L(H)).

4.1 Preliminaries

We first introduce the space C([s,T]; L(H)) of the continuous family P(.) of bounded operators on the
space H, where

|Plles,ry,ccmyy = sup [Pz
s<t<T



Following [H], we also introduce the space C(7s; L(H)) where
To={(t,T)eR?:s<7<t<T}
This space C(T5; L(H)) is a Banach space equipped with the norm

I fllerscay = sap (&) e
(t,7)ET;

s

We also introduce the Banach space C.,([s, T];Y) (following [BDDM]) of continuous functions on [s,T’)
into a Banach space Y, which is equipped with norm

| flle, (s, 71v) = S[up ](T — )| f(t)|ly < oo.

c€ls,

The space accounts for possible singularities at time 7' of order v. We start with the following useful
lemmas [L1, L2, LTul].

Lemma 4.3. (i) The map Ls; = fst AT Bdr is continuous from C-([s,T);U) to C([s,T); H) for
v <1/2.

(i) The adjoint map L = ftT B*eA (71 dr s continuous from C.,([s, T); H) to C([s,T];U) for~y < 1/2.

4.2 Linear Integral Equation

We first consider the linear integral equations
~ T A T .
P(t) = / e T R*RO(r,t) dr + / e QN (T)Q(7)®(T, t) dr
t t
T * ~ ~ A A~
+ / A0 (1) B(r) G ()b, 1) dr
t

T
- / e TGN (1) B P(1) (1, t) dr + e TG GH(T 1) (44)
t

and

t
(t, s)a = A g — / A=A B (2)D(z, s)x dz. (4.5)

S

In the next Lemma, we prove existence of solutions P and ®(¢, s) to integral equations (4.4) and (4.5).

Lemma 4.4. Assume Q(t), C’(t), 1[)(15) are given bounded operators for every t € [s,T) satisfying the
conditions

rllzla

1Rz, C Ol 1)l < T—ty

Vee H it e€ls,T) (4.6)
for some suitably chosen r > 0. Then, there exists a unique local-in-time solution P € C([Ty, T); L(H))
and ®(-,-) € C(Tz,; L(H)) to the set of integral equations (4.4) and (4.5) such that

1B*P(t)al|n < (4.7)

C
me”H-

To prove existence of a solution P and CTD, we use a fixed point argument on the map A defined by

f A11(g)(t) + A12(g)(t) + Aws(f, 9)(t) + Ara(g, h)(t) + Ais(g)(t)
Al g | @)= Aa(9)(t)
h Az1(9)(t) + As2(9)(t) + Azs(f, 9)(t) + Aza(g, h)(t) + Ass(9) (1)

10



for t € [s,T] on the space X = C([s,T]; L(H)) x C(Ts; L(H)) x Cy([s,T); L(H,U)) where

T
A11(g E/ e O R Ry (7, t) dr
t
T
Aws(g)(t) = / (1)Q(r)g(r, 1) dr
T A~
Aus(fog)(t) = / A =0 (1) f(7)C(7)g (1) dr
t
Avalg.B)(t) = — / A TG () () g 1) dr
Ai5(9)(t) = AT GeAT—t) _ A (T Gy /T eA(T_T)Biﬁ(T)g(T, t)dr
t
and
A2(fagv h) = eA(t_s) - LsB'l/A}()g(v )(t)
while
T
As1(g)(t) E/ B*e* ") R*Rg(T, t) dr
tT *
Asa(g)(t) = / B -0 Q ()Q(r)g(r 1) dr
T * N N
Ass(f.9)(1) = / B 0 (1) f(r)C(r)g(r. ) dr
Asqs(g,h ——/ Bred (T t ( YR (T)g(T,t) dr

T
Naslg)(0) = B (T0G GeAT0 = e 061G [ AT Bt
t

In order to deal with unboundedness of control operator B we look at a fixed point of the system of
three equations defined by three variables (operators) which are, f = P, g = ® and h = B*P. All these
three quantities will be defined on the space X. Clearly we will have h = B* f-which then will lead to
“hidden” regularity results obtained for the gain operator B*P. The fixed point f, g, h here represent the
operators P(t), ®(t,s) and B* P respectively.

Lemma 4.5. The map A maps the ball B,.(0) C X into itself continuously, and is a contraction on B,.(0)
for suitably chosen r > 0 and s = Ty such that T — Ty is sufficiently small.

Proof. Let [f, g, h] be an element in the ball B,.(0). We estimate the norm of A[f, g, h] in X, by considering
every component. We spare the reader the technical details of the estimates. Defining ¢s by

(T —s)1=7 (T —3s)1=» }

cszmax{c(T—s),c T ,C 2,

and based on these estimates we impose the condition 6¢M2e2(T=%) 4 6, MeT=5) (4 493 402 1) < 1,

or equivalently

M2 T=9) e Me®T=9) (r* 413 492 4 1) —1/6 <0 (4.8)

11



Let 7 = 12cM?e?*T and choose s such that (7' — s) is sufficiently small and so that

- eMe®T
c _
S U324y

This gauarantees that A acts from B, (0) into B,(0) in X for our choice of s and r. The contraction
property can be shown by estimating the norm of the difference of A[f1,g1,h1]T and A[fa, g, ho]”.
Choosing s = Tp so that T'— Ty is sufficiently small we have that A is a contraction on B, (X) and hence
has a unique fixed point (f,g,h) € X.

O

From the above lemma, the fixed point ( f, g, h) represent solutions (P(t), P
and (4.5). Estimate (4.7) follows from the membership of B*P in Cy([s, T, U

(t,s), B*P(t)) € X to (4.4)
). This proves Lemma 4.4.

4.3 Positivity and Self-Adjointness of P

Let s = Ty. In the following lemma, we prove that the solution P to (4.4) is positive, self-adjoint in
addition to the evolution property of ®(t, s)on the space C(Ts; L(H)).

Lemma 4.6. (i) The operator é(t,s), defined by (4.5), is an evolution operator on C([s,T); L(H)).
(ii) The operator P solving the integral equation (4.4) is self-adjoint.
(iii) The operator P solving the integral equation (4.4) is positive.

Proof. (i) This follows from a standard argument using the evolution property of the semigroup.
(ii) Taking the inner product of (4.4) with y € H and substituting the expression
ATy — &(r,t)y + / eA(T_Z)Bz/AJ(z)@)(z, t)yydz
t

from (4.5) into the equation, we have

(Bt)z.y) = / (R

K>

(1,t)x, R‘i’(T, t)y) dr

+
=~

(R*R®(r, 1)z, / ’ AT B (2)®(z, t)y dz) dr
t

!

<Q(T)‘i)(7', t)x, Q(T)(i)(T, t)y) dr

_|_

+
~

(@ (NQ(N)(r, 1)z, / " AT Bi()b(z, )y dz) dr

t

(C*(7')P(7')CA'(7')(i>(7'7 t)x, <i>(7', t)xz) dr

!

(1) P(r)C (1) (7, t)z, / ’ eAT A By (2)D(z, t)y dz) dr

t

+
[}
*

_|_
NNNF\%NF\N

=

*(T)B*ﬁ(T)(i)(T, t)z, <i>(T, t)y) dr

ﬂ —
<

<

(p* (1) B* P(1)® (7, t)z, / . AT B (2)® (2, 1)y dz) dr

t

+(GO(T, t)x, GO(T, t)y) + (G*GH(T, t)x, /T eAT=2) Bi(2)® (2, 1)y dz).
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Changing the order of integration, the second, fourth, sixth and eighth term combine into
T T X . o
/ / (B*e AR RO(7, t)x, h(2)D (2, 1)y ) dT dz
t z

*ATLT@?J“T@QwﬂQv>

(=
0
~
~—
&
<
N
—
K>
o
~
~—
<
QU
)
IS8
I

T
+/ (B*eV" T=2)G*GO(T, t)x, ) (2)® (2, t)y )d=
t

T ~ A ~ A
:/t (B*P(2)®(z, t)x, ) (2) (2, t)y )dz

which cancels with the fifth term. Therefore we have

(P(t)z,y) :/t (RO(r, t)z, RO(7, t)y) dT+/t (Q(N)®(r, 1)z, Q1) (7 t)y) dr

T
+/t <é*(T)P(T)é(T)‘i)(T, )z, &(r, t)y) dr + <G<i>(T, ), GO(T, t)y)

On the other hand, we have

~ T ~ A T A
(P*(t)z,y) :/t (RO(T, 1)z, RO(7, t)y) dTJr/t (Q(T)®(7, 1)z, Q(T)R(7, t)y) dT

+/f (C*(T)ﬁ*(r)é(r)@(r,t)a:,<i>(7'7t)y> dT—&—(Gi)(T,t)x,G(i)(T,t)y}.

Taking the difference of the two last equations, we get

T
([P = P)()z,y) =/t (C* (NP = P(7)C(r)&(r, t)a, B(r,1)y) dr

(4.9)

Estimating the left side, and taking the supremum over all x of unit norm and all ¥ in H, we obtain

~ ~ T~ ~
W@*V®Mm§M[HHﬂ=VMMmW

Using Gronwall’s inequality we conclude that the left hand side is zero and hence P(t) = P*(¢) for all

tels,T].

(ii) To prove positivity, we appeal to (4.9). The operator P is then the unique fixed point of the map S

on C([s,T); L(H)) defined by

T R . T . R
(S(P)(t)z, y) :/t (RO(T, 1)z, R (T, t)y) dTJr/t (Q(T)®(7, )z, Q(T)R(7, t)y) dr

+/t <C*<T)P(T>C(T)(i)(7’,t>$,(i)(T,t)y> dT—&—(G(i)(T,t)x,G(i)(T,t)y}.

The map S clearly maps positive operators to positive operators. The set of positive operators denoted

by ¥4 in L(H) is a convex set, and the existence of a unique fixed point for S on C([Ty,T]; ¥4 ) follows

by the contraction mapping theorem, for 7T chosen so that T"— T} is sufficiently small.
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4.4  Step 4: Proof of Theorem 4.1

Proof. To derive the integral equation (4.1), we use the following iteration scheme

T T
Pia(t) = / et "D R*R®; (7, t) dT+/ N TTIQH(T)Q) (1) (T ) dT

T |
)

(T)Pia (1) Ci(r)i(7, 1) dr

AT =00, (7) B* Py (1) i (7, t) dr + eV T GGy (T 1), (4.10)
where
Qi(r) = (I + D*P,(1)D)~ (B*Pi(7) + D" P,(1)C),
Ci(r) = C = D(I + D*Pi(1)D) " (B*P,(r) + D*P;(7)C),
i = (I + D*Py(r)D) " (B*Pi(r) + D*P,(7)C),
Po(t) = e TG GeA T,

and ®; solves

By(t,s)x = eA(t_S)x—/ Al=2) By (2)®4 (2, s)x dz. (4.11)

Using the results of Lemma 4.1 and Lemma 4.6 from previous sections, each iteration P; is well defined,

positive self adjoint and bounded with

| Pillc(s,myiccmy) <7

. r
|B*Pi(t)x|lm < m”ﬂcHH

Vo € H and Vi € N, while ®;, € C(T;; L(H)) such that
[@illeT ) <7

and this guarantees that the inverse (I + D*P;(t)D)~! is well defined and bounded on H at each step.
Using standard estimates, it is not difficult to show that the sequence {P;, ®;, B*P;} is Cauchy in X for s =
Tinaz > To chosen such that T'—T,,4, is sufficiently small, and thus converging to some (P(t), ®, h(t)) € X
with h(t) = B*P(t). Passing through the limit in (4.10) and (4.11), we obtain (4.1) and (4.2).

U

5 The Differential Riccati Equation

In this section, we derive the differential Riccati equation from the integral Riccati equation (4.1). Our

main result is then

Theorem 5.1. The Riccati operator P(t) solving the integral Riccati equation (4.1) is a solution to the

differential Riccati equation

(P(t)z,y) = —(Rz, Ry) — (Az, P(t)y) — (A*P(t)z,y) — (C* P(t)Cz,y))
+ (I + D*P(t)D)"Y(B*P(t) + D*P(t)C)z, (B*P(t) + D*P(t)C)y) (5.1)

for all x,y € D(A).
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A critical step in this process is to establish a “singular estimate” on the transfer function correspond-
ing to the controlled dynamics. This amounts to the estimate of singularity on the composition operator
®(t,s)B. To accomplish this we need several preliminary results. To carry out the derivation, we shall
need to make sense of the derivative of the evolution ®(¢, s) with respect to the initial time s (in the weak

sense).

5.1 Preliminaries

We first define the operator M.
Definition 5.1. Denote by M = [ eAt=7)B(I + D*P(7)D)~"(B*P(r) + D*P(7)C) dr.
We also define the space ,C([s, T]; H) following [BDDM].

Definition 5.2. ,C([s,T);H)={f € C((s,T);H) : tsEupT](t =) f()||a < oo}
€ls,

which is indeed a Banach space with the norm

Ifll,c = sup (t—s)"[If()lln,
te[s, T

for v < 1/2. In the following Lemma, we establish some of the properties of the operator M.

Lemma 5.2. (i) The operator e*t=)Bx € ,C([s,T]; H) Va € U and satisfies the estimate
e Ba||_ ooy < cllzllu. (5.2)
(i1) The operator M is bounded on C([s,T); H) and satisfies the estimate
Myl cqsmm < (T =) gl o(s,r)m (5.3)
for every g € ,C([s,T|; H).
(i11) The operator (I + M) is invertible on ,C([s,T]; H) and the inverse satisfies the estimate
1T+ M) gl cqsaym < o(T = $)lgll. s -
(iv) The evolution ®(t,s) satisfies
B(,8)r=T+M) ez VeeH. (5.4)

Proof. The proofs are similar to the deterministic case in which C'= D = 0, see [LTul, Tu]. O

5.2 Regularity of the “Transfer Function”

We now make sense of the transfer function ®(¢, s) B and the derivative of the evolution ®(t, s) with respect
to initial time in an appropriate singular space, which is crucial in the derivation of the differential Riccati

equation.
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Proposition 5.3. (i) For all z € U and v < 1/2, we have ®(t,s)Bx € ,C([s,T]; H) and

&
[®(t,s)Bz||n < —75)7”33"(]’ vz e U (5.5)

(t

(i) For all x € D(A), the derivative of the evolution ®(t,s)x with respect to initial time in the weak
sense 18

0

ds

and satisfies the estimate

®(,s)e = ~B(-,5)(A — B(I + D*P(s)D)""(B*P(s) + D*P(s)0))a € ,C([s,T]; H)

0
H&s@(t7s)Bx

C
< clalp) + — |||l
" W =)

Proof. The proof follows from Lemma 5.2, see [LT1, Tul. O

5.3 Proof of Theorem 5.1

Proof. Let x,y € D(A) and consider the integral Riccati equation satisfied by P(t) in (4.1). Taking the
derivative with respect to t, we have
(P(t)z,y) = —(R*Ra,y) — (C"P(t)Ca,y) + (C*P(t)D(I + D*P(1)D) " (B*P(t) + D*P(t)C)a, y)
- <A*P(t){L'7y>

T . ) T 0
n / A TR RSB (7, )2,y ) + / e P(T)C = B (7, )2,y
. ot t ot

— < / ' A" "D C*P(r)D(I + D*P(r)D) " (B*P(7) + D*P(T)C)%@(T, t)z, y>

We now appeal to Proposition 5.3 (ii), where the expression for %(I)(T, t) was derived so that we obtain

(P(t)z,y) = —(R*Rx,y) — (C*P(t)Cz,y) + (C*P(t)D(I + D*P(t)D)"Y(B*P(t) + D*P(t)C)z, y)
— (A*P(t)z,y)
— (P(t)(A — B(I + D*P(t)D)""(B*P(t) + D*P(t)C)z, y)

where the last term is well defined by boundedness of P(t)B and its adjoint. Rearranging terms, we

obtain the differential Riccati equation

(P(t)z,y) = —(R*Rax,y) — (A"P(t)z,y) — (P(t)Az,y) — (C*P(t)Cz,y)
+ ((P(t)B + C*P(t)D)(I + D*P(t)D)~ (B*P(t) + D*P(t)C)z, y).

Remark 5.4. The differential form of the Riccati equation holds for any elements x,y € D(A). This
form will be used for elements x,y resulting from a stochastic process. Since stochastic equations do not
posses strong solutions, the applicability of DRE in the stochastic context is questionable. To resolve this
issue, we shall introduce an approximation procedure which consists of two steps. Step one: Regularity
Lemma page 48 [H] allows one to define the derivative of P on a stochastic process which originates in
the domain of A, with twice differentiable controls and smooth observations C, D. In the second step we

shall regularize the state y by changing variable to v,. This will allow the application of Ité’s formula.
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Here we state a regularity Lemma and justify the form of DRE when acting on a stochastic process,
-page 48 in [H].

Lemma 5.5. If we have the additional assumptions that the operators AC,AD € L(H), and u €
L2(Q; HE([s,T);U)) then given x € D(A) we have

E((P()X (1), AX(t)) ) < o0
for allt € [s,T) where X(t) is a solution of the stochastic differential equation

dX = (AX + Bu) dt + (CX + Du) dW,
X(s) =z € D(A).

Proof. We first write the form of the mild solution to the abstract differential equation as

t t t
X(t) = ez 4 / eA=7) Bu(r) dr + / A CX (1) dW, + / A7) Du(r) dW,.

S S S

We apply operator A to each side and then split the term AX (¢) into two parts AX (t) = Y7 + Yo where

¢ t
Yi(t) = e Ay —|—/ AT ACK (1) dW, —I—/ A7) ADu(7) dW,.

and Ya(t) = f; eA=7) ABu(t) dr.
We then estimate the norm of Y7 in L?(Q;C([s,T]; H)) to obtain

t
E(|[YA(1)[I) < 3M2e** (T | Az +3M262a(T*S)||ACII%(H)/ E(|X(T)|7) dr

t
+3M262a<T_s>||ADH§:(UVH)/ E(||u(r)|3) dr

where we used the It isometry to estimate the stochastic integrals. Since X (t) is the solution to the
abstract differential equation, by Theorem 3.1, its norm in M2 ([s,T]; H) is bounded and satisfies

||X(t)||?\4,g,([s,T];H) < dlzlf + C||U|\§\45([3,T};U)~

Hence, we have that E(||Y1(t)[1%,) < cQ(|AC|| ¢z, |AD|| £y, lwll L2 (;m2 (1, 1150))» | A2 || ) where @ is a

polynomial in the indicated norms. We next express Y, as
t
Ya(t) = —Bu(t) + / AT By (1) dr = —Bu(t) + I(t) (5.7)

via integration by parts in time where we used the fact u(s) = 0 since u € H}([s,T];U)). The second

term can be estimated via the singular estimate condition and Holder’s inequality as

We are now ready to estimate the term E((P(¢)X (¢), AX (t))m as

2

H) =F (/: (t fT)w [’ ()l d7>2

< o(T = ) T E(lull B o my.0)-

t
/ AT BY (1) dr

E((P()X(t), AX(t) g < [E(P@)X (1), Yi(t))m)| + [E(P@)X (), 1(t))n)| + [E(P)X (L), Bu(t))n)|
S NPl ENX O a)EAWYL (@) 2) + PO e EAX @ 2)EL @) 2)
B Pl ca,onE(u(@) o) ENX @)l )
< QUIAC c(ay, IAD|| oy 1PNl ey 1B* POl vy 1wll 2 o 15,7350y 142 1),

(
(
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where we used the continuous embedding H{ ([s,T];U) C C([s,T];U) in the last step and where Q is a
polynomial in the indicated norms. The right hand side is finite which yields the desired result.
U

6 Dynamic Programming: The Riccati Equation and the Opti-
mal Control

In the following lemma, we relate the optimization problem to the solution of the differential Riccati
equation via a dynamic programing argument. This technique is paramount to a completion of squares
technique which furnishes an expression for the cost functional in which the minimizer and minimum
value of the cost functional can be immediately deduced. However, the use of It6’s formula in this
argument requires C? trajectories, which means that the argument has to be performed on an approximate

regularized version of the abstract SDE, before passing through the limit.

Lemma 6.1. The quadratic cost functional (1.2) has the form

J(t,z,u) =E (/tT |(I + D*P(7)D)Y?u(r) + (I + D*P(7)D)~Y*(B*P(7) + D*P(7)C)y(7)||? d7>
+ (P(t)z, x) (6.1)

for s <t <T and s = Tyax, where P(t) is a solution to the differential Riccati equation (5.1) and y is
the solution to (1.1) corresponding to w € M2([s,T];U).

Proof. In order to apply Ito’s formula, we must use an appropriate approximate problem satisfied by a
sufficiently regular random variable, and in particular a strong solution of an SDE. We follow [H] closely

and consider the following stochastic differential equation
dyn = (Ayn + Bu) dt + (Cpyn + Dnu) dWi,

where R(n, A) = (nI — A)~! is the resolvent of A, and C,, is defined by C,, = nR(n, A)C while D,, =
nR(n, A)D. Taking u € L?(; H}([s,T];U)) , we set

Un =yn + A"'Bu

Now, let P(t) € C([s,T]; L(H)) be a self adjoint positive operator satisfying the differential Riccati
equation (5.1) such that B*P(-) € C,([s,T]; L(H,U)). We rewrite (P(t)yn(t), y(t)) in terms of v,, as

Y(t,vn,u) = (P(t)v, (1), v,(t)) — 2(P(t)v, (1), A~ Bu(t)) + (P(t) A~ Bu(t), A~* Bu(t)). (6.2)
We next observe that v, is a strong solution of the equation
dv, = (Av, + A Bu') dt + (Cpyn + Dypu) dWs, (6.3)

where u denotes 4 u. In particular, taking y(s) = = € D(A), and by the variation of parameters formula

we get

t t t
yn(t) = eAlt=5) g +/ eA(t_T)Bu(T) dr —|—/ eA(t_T)Cnyn(T) AW, —|—/ eA(t_T)Dnu(T) dW-.

S
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Integrating by parts in time in the first integral, we get

t t
yn(t) = eA(tfs)x—AflBu(t)—|—eA(t75)A71Bu(s)+/ A=) A7 BY/ (1) dT+/ A=) (Cyn+Dpu) dW,.

S S

Adding A~ Bu(t) to both sides, we have
t t t
Un(t) = e (2 4 A7 Bu(s)) +/ e A1 BY/ (1) dT—I—/ AT Ly AW +/ AT D dW,,

which shows that v, is a solution to (6.3). Now, we can verify that v, (t) € D(A). Indeed, applying A to
the right hand side, we have

t t t
e =) (Az + Bu(s)) + / A BY/ (1) dr + / A AC, Y, AW, + / A AD, u dWy,

(note v < 1/2) where we used the singular estimate condition and Holder’s inequality in the last step.

and © € D(A) while

2

H) =F </St (t —07)7 [’ (7) | d7’>

< PE(|ullF s 10)) s

2

t
/ AT BY (1) dr

Moreover, we have by boundedness of AC,, and using Itd’s isometry that

t t
E(| / eA<“>Aonyn<r>dWT%{) <1 [ Bllua(rli) dr < oo

where we used Theorem 3.1 in the last step. Moreover,

t t
B (I [ e anuaw i) <o [ BlumIR) dr <l oo

Hence, v,, € D(A) which means it is a strong solution of equation (6.3).
We now can differentiate the expression for (¢, v, (¢), u(t)) in (6.2) using It6’s formula [DZ1] to obtain
dip(r, v (1), u(7)) = (P'(T)0n(7), va (7)) dT + 2(P(T)vn(7), Ava (1) + A7 Bu' (7)) dr
+ 2(P(1)vn (1), Cpyn(7) + Dpu(r)) AW, 4+ (P(7)(Cpyn(7) + Dpu(7)), Coyn (1) + Dyu(T)) dr
— 2(P'(T)vn (1), A"  Bu(r)) dr — 2{P(7)(Av,(7) + A~ Bu/(7)), A~* Bu(7)) dr
— 2P(7)(Cryn () + Dpu(r)), A" Bu(7)) dW, — 2(P(1)v, (1), A~ Bu/ (1)) dr
+ (P (1)A™'Bu(r), A"  Bu(7)) dr + 2(P(1) A~ Bu/ (1), A~* Bu(7)) dr.
Substituting v, (7) back to eliminate v, (7) using self adjointness of P’(7), we obtain
d(P(T)yn(7), yn(7)) = (P(T)yn(7), yn (7)) d7 + 2(P(7)yn (1), Ayn(7) + Bu(7)) dr
+ 2(P(7)yn(7), Crayn(T) + Dpu(r)) dWr + (P(7)(Cryn(7) + Dnu(r)), Coyn(7) + Dpu(T)) dr
We now recall that P(7) solves the differential Riccati equation and hence, we have
d{P(T)yn(7),yn(7)) = =(A"P(T)yn(7), yn(7)) d7 — (P(7) Ayn(7), yn (7)) dT = (R* Ryn(7), yn(7)) d7
— (C*P(7)Cyn(7), yn (7)) d7 + ((B*P(7) + D*P(1)C)yn(7), (I + D*P(1) D)~ (B*P(7) + D*P(7)C)y, (7)) dr
+ 2(P(7)yn(T), Ayn(7)) dr + 2(P(T)yn (1), Bu(T)) dT + 2(P(7)yn(T), Cnyn(7) + Dpu(7)) dW-
+ (P(1)(Cpyn + D), Cpyn + Dyu) dr

)
(
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which simplifies to

d(P(T)yn(7), yn (7)) = || Ryn(7)||% d7 — ((C* P(7)C — C1 P(1)Cr)yn(7), yu(7)) dr
+ (I + D*P(r)D)"*(B*P(r) + D* P(r)C)yn(7) ||t dr
+ 2(B*P(T)yn (1), u(7)) dT + 2(D} P(7)Cpryn (1), u(r)) dr
+(D; P(1)Dpu(r),u(r)) dr 4+ 2(P(T)Yn(7), Cryn(T) + Dypu(r)) dW,,

where (I 4+ D*P(1)D)~'/? is well defined since I + D* P(7)D is a positive operator.
Adding ||u(7)||# dr to both sides and adding and subtracting the term

2(D*P(7)Du(7),u(r)) dr + 2({D*P(7)Cyy (1), u(T)) dT
to the right hand side, we get

a1 dr + d{P(T)yn(7), yn (7)) = = Ryn (7)1 d7(—{(C* P(1)C = CLP(T)Cr)yn(7), yn (7)) dr
+ (I + D*P(r)D)~2(B*P(7) + D* P(r)C)yn(7)||f; d
+2((B*P(r) + D" P(7)C)yn(7), u(7)) dT + 2((D;, P(7)Cp — D" P(7)C)yn(7), u(7)) dr
+ (L + D" P(7)D)u(r), u(r)) dr + (I + Dy P(T) Dp — D*P(7)D)u(7), u(7)) dr
+ 2(P(7)yn(7), Cryn(T) + Dypu(r)) dW-.

This simplifies to

lu(r)lEr ds + d(P(T)ya(7), yn (7)) = =l Ryn (1) |7 dr — (C*P(7)C = CLP(7)Cr)yn(7), yn(7)) dT
+ (I +D*P(r)D)"*(B*P(r) + D*P(7)C)yn(r) — (I + D" P(r) D) ul|f; dr
+2((DP(1)Cn = D™ P(7)C)yn(7), u(r)) dr
+ (I + D P(1)Dyp = D*P(1) D)u(r), u(T)) d7 + 2(P(7)yn(T), Cryn(T) + Dpu(7)) dW-.

Integrating from ¢ to T' and using the condition P(T) = G*G and y,(t) = x, we have
T T T
/ [[u(7) ||2UdT+/ [Ryn (7|3 d7 + [|Gyn(T) % = (P(t)z, z) —/ (C*P(1)C = CLP(T)Cn)yn(T), yn(T)) dT
t
/ I(I + D*P(r)D)~"*(B*P(r) + D*P(1)C)yn(7) — (I + D*P(7)D)"*ul}; dr
#2 [ (DLPEICL — D PO u(r) i
t
T T
+ [+ D@D, ~ DPED)(r).ulr)) dr +2 [ (P(r)ua(r), Cutilr) + Da() dVr.
t t
Since (P(7)yn(7), Cryyn(7) + Dypu(r)) is not L?(Q; L%([0,T],R)), we can not simply apply the expected

value to the equation above. However, we appeal to Proposition 7.10 in [D2], from which it suffices that
all the integrands are L' (Q; L' ([0, T],R)) to conclude that (P(T)y,(T),y,(T)) or ||Gyn(T)||% is L' (Q; R)
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which means E(||Gy, (T)||%) < oo and that the expected value is
T
E(|Gyn(T)|%) = (P(t)z,z) — E (/t lu(T)IE dT)
T T
“E ( | IRl dr = [ (€ PEIC = CPEICn(r)0(7) dr>
T
+E (/t |(I + D*P(7)D)~Y2(B*P(r) + D*P(7)C)yn (1) — (I + D* P(7)D)*?u|? d7>
T
+ 2E </t ((DLP(1)C, — D*P(1)C)yn (1), u(r)) dT)

+E (/t (I 4+ D;P(t)D,, — D*P(7)D)u(7),u(T)) dT) )

Rearranging, we have
T
Jn = J(t,x,u) = (P(t)x,z) — E (/t ((C*P(1)C = CrP(1)Cp)yn(7), yn (7)) d7'>
T
i (/t I(I + D*P(7)D)~"*(B*P(r) + D*P(7)C)yn(r) — (I + D*P (1) D) *ull}; dT>
T
+ 2E </f ((DLP(1)C, — D*P(1)C)yn (1), u(r)) dT)

+E (/t ((D;P(1)D,, — D*P(7)D)u(r), u(T)) dT> ) (6.4)

We next must show that y,, — y € M2([s,T]; H) while the second and the last two terms in (6.4) go
to zero as n — oo.

6.1 Passing through the limit as n — oo

Estimating the norm of the difference E(||y,, — y/|%) we have

2 2

t t
Elyn(t) — y(®)|%) < E ( / ||eA<“><onyn0y>|HdWT> +E< / |eA<“><DnuDu>||HdWT>

t t
< C/ 1Cn —CII%(H)E(II?JH%)dTﬂLC/ I1Cull 2 Elyn — yllF) dr

t
te / 1D = DI2 .y E(lul3) dr.
Applying Gronwall’s inequality, we obtain
E(llyn(®) — y(0)13) < e (100 = Il 1911z o) + 1P = DU ez o 2100 ) 1 Gl

Integrating in time and noting that the sequence C,, is uniformly bounded by a constant M in norm

(since C,, — (), then choosing n sufficiently large we finally get

T2

T
/ E([lyn(t) —y(0)|1F) dt < (C€||Z/H?\43([S,T];H) + 6”””?\45([5,T];U)) M-
S

21



This shows that y, — y in M2([s,T); H).
Using standard arguments we can easily show that E (LT«C*P(T)C — CrP(1)Cp)yn (1), yn (1)) dT) —

0 as n — oco. Similarly,

T
2E </t (D P(1)C, — D*P(7)C)yn (1), u(r)) d7> -0

and .
E </t (D P(1)D,, — D*P(7)D)u(r), u(T)) dT) -0

as n — oQ.

As for the second term in (6.4), we have

E </tT |(I + D*P(7)D)~Y*(B*P(r) + D*P(7)C)yn (1) — (I + D*P(1)D)"?u|/? m)

T
—E </ |(I + D*P(r)D)~Y*(B*P(r) + D*P(1)C)y(t) — (I + D* P(7)D)"?u|? dT> :
t
Therefore, the functional J,, given in (6.4) converges to

J(t,z,u) = (Pt)z,x) + E </f |(I + D*P(t)D)~Y2(B*P(r) + D*P(7)C)y(r) — (I + D*P(T)D)1/2u|2UdT> .

6.2 Extending (6.1) for all u € M2([s,T);U)

By density of L?(Q; H([s,T);U)) € M2([s,T];U), we approximate u € M2([s,T];U) by a sequence
un, € L2(Q; HY([s,T);U)), and pass through the limit. It is easy to show show that y(u,) — y(u) in
M?2([s,T); H) (continuous dependence of y on the control u). Hence, passing through the limit in u,, — u,
we have y,, — y(u) and (6.1) is valid for u € M2([s,T];U). Since the argument in passing through the
limit in J is similar, it will not be repeated.

U

7 Extension of Theorem 5.1 to a Global Solution on any time
interval [s, T

We now extend the solution of the Riccati equation from [T},44, T] to any time interval [s, T']. We establish

a global bound on P(t) since

T
(P(t)z,x) < J(t,2;u=0) =E (/ IRy(r)|1* dr + IIGy(T)II%>
t
< eMPTe* ||z + eM?e® 2|l = Orllal

for all ¢t € [Timax, T] and thus ||P(t)| 2y < ||P1/2(t)||%(H) < C7. This bound can be used to reiterate
the proofs of Lemma 4.4 and Theorem 4.1 on new interval [T}, Ty,q.] with G = Pl/Q(Tmax). The bound
insures that the choice of the constant ¢ (which depends on G) in (4.8) is global and all the estimates
are uniform and that » and the time step 1), — 11 are the same. Hence, the results can be extended

by repeated iteration on equal time steps to any initial time s > 0.
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8 Uniqueness of Solution to the Differential Riccati Equation

Theorem 8.1. The solution to the differential Riccati equation is unique in the class of self-adjoint
operators in C([0,T]; L(H)) satisfying B*P € Cy([s,T]; L(H,U)).

Proof. Assume there is another solution P (t) to the Riccati equation in this class, then the same dynamic

programming argument from the previous section leads to

min J (¢, z,u) = (P(t)z,z) = (P(t)z, x)

for all x € H. Hence, we have for any x,y € H that

0=((P(t) = Pt)(z +y),(z+y))
= ((P(t) = P(t))w, @) + ((P(t) = P())a,y) + (P(t) = P(t))y, z) + (P(t) = P(t))y, y)
= 2((P(t) - P(t))z,y)
by self-adjointness of P and P. Thus, P(t) = P(t). O

9 Proof of Main Theorems 2.1 and 2.2

We finally obtain our main results in this paper stated in Theorems 2.1 and 2.2. We start with Theorem
2.1.

Proof. (i) From equation (6.1) in Lemma 6.1, the functional J satisfies

inf J(s,z;u) = (P(s)x,
uGMwl(I%s,T];U) (s,z;u) = (P(s)x,x)

where P(t) is the solution to the differential Riccati equation.

(ii) The existence of solution to the Differential Riccati equation in C([s,T]; L(H) follows from Theorem
5.1, and the uniqueness was established in section 8.

(iii), (iv) The regularity properties of P(t) and B*P(t) were established in Theorem 4.1. O

Finally, we prove Theorem 2.2.

Proof. (i), (ili) To show that the minimum of J is realized in (6.1), we can establish the existence of a

unique solution u® € M2 ([s, T];U) to the equation

u’(t,s;2) = —(I + D*P(t)D)"Y(B*P(t) + D*P(t)C)y(t, s,u’; x)
via a fixed point argument on M2 ([s,T);U). Thus,

u’(s,t;2) = —(I + D*P(t)D)"Y(B*P(t) + D*P(t)C)y°(t, s; ),

so that J(s,x;u’) = (P(s)z, ).

(ii) If follows from Theorem 3.1 that the corresponding optimal state y° € L%(Q; C([s, T]; H)).
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(iv) It then follows by regularity properties of B*P in (4.3) that

C
[u®(t, 832)|| L2 (0) < WHJTHH-

10 Applications to Control of PDEs

This section is devoted to an illustration of the theory presented to concrete PDE systems with unbounded

control actions.

10.1 Theremoelastic plates with boundary control

We consider a stochastic model for a Hinged Thermoelastic plate with Neumann thermal boundary
control. Let W; be a one dimensional Wiener process on a complete probability space (3, F,P). The
system consists of a heat equation and a plate equation

[I — pAldw; + A?wdt + AO dt = (Vw + bw;) AW, Qx1[0,T] }

df — Afdt — Awy dt = (Cz1Aw + C32Vwy + C330) AW, Q x [0,T] (10.1)

where w(w,x,t) is the transversal displacement and 6(w,z,t) is the temperature of the plate which

occupies the open domain €2 in R? or R?, subject to the hinged boundary conditions
w=Aw=0, 9002 x]0,T] (10.2)

and thermal control u on the boundary

00 .
B + b0 = u(x,t) +ulz, t)W(t), 0QxI[0,T]. (10.3)
The problem is defined for the random variables y(w,z,t) = (w(w, z,t), w(w, x,t),0(w, z,t)) which take
values in the finite energy space H defined by H = H?(Q) N HE(Q) x HL(Q) x L*(Q).
We are particularly interested in a Bolza type optimal control of this system with the objective of

minimizing an energy functional
T
J(u, w, wy, 0) = E(/o [u- 17200y + 1w O F2@) + lwe (- )1 Fn ) + 10C, D720 dt

+ 1w, T) 72 () + IIWt('aT)%rl(Q)), (10.4)

over all boundary controls u € M2([0,T]; L?(09)), given initial data in the (wg,w1,6p) € H the finite
energy space. This problem can be adapted to the abstract setting of the stochastic linear quadratic
regulator, since the deterministic uncontrolled system is driven by a Cp-semigroup e while a control
operator B from the boundary to interior satisfies the singular estimate [BL].

Following [LT1, BL], we introduce the self adjoint operator A on L?(Q2) defined by

Ah = A?h (10.5)

with domain 5
D(A) = {h € H*Q) : hloa = 5hlm =0}. (10.6)
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The fractional power A'/2 of this operator has a domain which can be identified with the space H? (Q) x
HL(Q). We also introduce the self-adjoint operator Ay on L?(Q)

Anh = —Ah (10.7)

with domain 5
D(Ay) = {h € H*(Q) : ahjt h =0 on 0Q}. (10.8)
The operator —Ay is well known to generate an analytic semigroup e~4~* on the space L?().

We also follow [BL] in introducing the operator M on L?(f2) given by
M= (I +pAy) (10.9)

with the well defined bounded inverse M~!. Additionally, we also introduce the Neumann map N :
L?(09)) — L?(2) defined by

Ng=nh < Ah=0in Q
oh

g—i—h:gon o0

It is well known that A3/4=¢N is bounded L?(9S2) — L?(Q)). The system can then be expressed in
abstract form as
dy(t) = (Ay + Bu)dt + (Cy + Du) dWr,

where
w
y(t) = we (10.10)
0
and
0 1 0
A= M4 0 M 1'Ayx (10.11)
0 —An —An
and with domain
D(A) = D(A**) x D(AY?) x D(An). (10.12)
Moreover, the control operators B, D are
0
B=D= 0 (10.13)
ANN
and the noise operator C' is
0 0 0
C= v b 0 ,

C31A O3V Css

for real parameters C3;, C32, C33,b. Note here that the adjoint B* : D(A*) — L2(99) is defined by
B*[x1,x2, 23] = N*Anz3 = 3|a0

which is the restriction to the boundary 9. As for the observation operators in (10.4), we take R = I
and G = [I,1,0] on the state space H.
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It was shown in [BL] that the set of Assumptions 1.1 are indeed satisfied. In particular, the critical

singular estimate does hold with any v > 1/4

c
A
le** Bully < 727 1wl 2200

for every u € L?(09), and A~ B is bounded from L?(99) to H. Thus, we are in a position to apply the

conclusions of Theorems 2.1 and 2.2. Thus we have the following theorem:

Theorem 10.1. Given initial data (6o, wo,w1) € H, there exists a unique optimal control u® € M2 ([s, T]; L*(092))
to the stochastic Thermoelastic plate system (10.1) with Hinged boundary conditions (10.2) and Neumann

thermal boundary control (10.3), which minimizes the cost functional (10.4). Moreover,

1. The optimal control u® € C([s,T); L*(X,09)) and
0 2 c 2
E(Ju (8)l32(00)) < (777 (lwoll @) + ol o + 160 2e) )
2. The corresponding optimal state (0°(t), w°(t),w?(t)) € C([s, T); L*(Z,H)) and
E([|w® ()32 (0) + Elw? ()31 0y) + EI0°0)172(0)) < elllwollFrzq) + lwillFn gy + 100ll72(0))-
3. The optimal control is given in feedback form
u’(t) = —(I + D*P(t)D)~ 1 (D*P(t)C + B*P(t))[w’(t), wy (), 6°(#)]"

for B, D and C defined above and where P(t) is a self-adjoint positive operator on H satisfying the

differential Riccati equation

<A1/2P1t,«41/2y1> + <M1/2P2t,/\/11/2y2> + (3t y3) = _<A1/2P17~Al/2y2> + (p2, Ay1) — (p2, Anys)

+ (Anps, y2) + (Anps,ys) — (A 22, AV2pr) + (Awy, o) — (Anws, Do) + (Anwa, Pa) + (Anas, Ps)
— (P(t)Cxz,Cy) + (I + D*P(t)D)"*(B*P(t) + D*PC)x, (B*P(t) + D*PC)y)sq,

[p1(T), p2(T), p3(T)] = [21, %2, 0],

for all x = (x1,29,23) and y = (y1,y2,y3) in D(A), where we denote P(t)x = [p1(t),p2(t), p3(t)]
and P(t)y = [p1(t), p2(t), p3(t)], and by {-,-) the L? inner product on Q.

10.2 Fluid Structure Interaction

Here we shall revisit the motivating example introduced in the section 1.1. In particular, the system
(1.4)-(1.6) with boundary conditions (1.7)-(1.9) can be expressed in the abstract form

dY = ApgY dt + Bgdt + CY dW, + Dg dW,

with
AN ANNCT 0
Aps = 0 0 I (10.14)
0 div(e) 0

where Ay : V — V' is defined by (An¢p,v") = —(e(¢),e(v)) and V is the space

V={veH (Q):dive=0,v|r, =0}
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while N : H=Y/2(T'y) — V is the map defined by

Ng:h S <ANh7U> = <g7'U>Fs
hlr, =0

for every v € V which is well defined by the Lax-Milgram Theorem [LTu3]. Denoting the finite energy
space H x H'(Q;) x L*(Q) by H, the operator Agp generates a Cp-semigroup on the space H. The
control operators B and D are defined by

ANN

B=D= 0 . (10.15)
0

and B : L*(I'y) — [D(A% )]’ is the control operator [LTu3] which satisfies an incrementally weaker form
of the singular estimate [LTu3]

C
€457 Bflgg-a < WWHL?(FS)

for o > 0, where H® is the lower topology space H® = H x H'=%(Q) x H~%(Qy).
However, this estimate is sufficient in order to address the control functional (1.10) with o = 1,
cf. [LTu3]. In particular, we take our operator R = [I,0,0] and G = [I,1,0] and take the observation

space W = H and Z = H~'. Moreover, we determine the noise operator C' as

C1 0 0
C=10 0 0 (10.16)
0 (&) 0

which is a bounded operator on the state space H. Note here that the adjoint B* : D(A*) — L*(Ty) is
defined by

* *
B*[x1,x0, 23] = N*Anx1 = 1|,

Now that the assumptions of 1.1 are all satisfied by the system, we can specialize theorems 2.1 and

2.2 to this system to obtain the following optimal control result:

Theorem 10.2. Given initial data (ug, wo, w1) € H, there exists a unique optimal control g° € M2 ([s, T|; L*(Ts))
to the stochastic Fluid-Structure Interaction system (1.4)-(1.6) with boundary conditions (1.7)-(1.9),

which minimizes the cost functional (1.10). Moreover,

1. The optimal control ¢° € C([s,T); L*(%,T)) and
012 ¢ 2
E(lg* Ol22(r)) < (57 (oll 2y + lwollzagen + lenllzza,y))

2. The corresponding optimal state (0°(t), w°(t),wd(t)) € L*([s,T); L*(Z,H)) N C([s,T); L*(%,H_1))

and
E([[u® (D172 ) FEN® (0720, FENW] (017 -1 0,) < ellluollZz @, +lwollzn o) HlwilZ2,)-
3. The optimal control is given in feedback form
9°(t) = —(I + D*P(t)D)"H(D*P(t)C + B*P(1))[u’(t), w’(t), wy ()]
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for B, D and C defined above and where P(t) is a self-adjoint positive operator on H satisfying the

differential Riccati equation

(P16, Y1) 5 + (VD2r, Vya)s + (pat, y3)s = —(Anw1,p1)p — (ANNo(z2),p1)r — (Vas, Via)s

— (divo(xa),ps)s — (P1, ANy1)§ — (P1, ANNo(y2)) 5 — (Vp2, Vyz)s — (ps,divo(y2))s

— (e1p1, exn) § — (caps, caya)s — (x1,91) 7 + (I + D*P()D) " (1 + c)palr,, (1 + c1)palr.)r.,
[p1(T), p2(T), p3(T)] = [z1,22,0].

for every © = (x1,22,23) and y = (y1,y2,v3) € D(Apg), where P(t)x = [p1(t), p2(t),ps(t)] and
P(t)yy = [p1(t),p2(t),ps(t)], while (-,-)¢ and (-,-)s denote the L? inner product on Q2 and Qs

respectively.

Remark 10.3. The results of this theorem require extending the results to a generalized singular estimate
condition on the observation spaces |[Re*Bf|lw < &||fllv and |Ge**Bf|lz < £l flu, Yf €U for

some v € (0,1/2), ¢f. [Tu]. This leads to the continuity in time property to be satisfied by the observed

optimal state space Ry only on the observation space W as stated in (2).
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