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1. Introduction

The famous Four Color Theorem states that every planar graph G admits a partition 

of its vertex set into four sets X1, X2, X3, X4 such that for 1 ≤ i ≤ 4, every component 

of the subgraph G[Xi] induced on Xi has at most one vertex. Certainly there are planar 

graphs whose vertex set cannot be partitioned into three such sets. However, Esperet and 

Joret [9] proved that the number of sets can be reduced to three, if we relax each Xi to 

induce a subgraph having no component of size larger than a function of the maximum 

degree of G.

Theorem 1.1 (Esperet and Joret [9]). Let Σ be a surface of Euler genus g. If a graph G

is embeddable on Σ and has maximum degree at most Δ, then V (G) can be partitioned 

into three sets X1, X2, X3 such that for 1 ≤ i ≤ 3, every component of G[Xi] has at most 

(5Δ)2g−1(15Δ)(32Δ+8)2g

vertices.

The number of sets in Theorem 1.1 is best possible, since a k × k triangular grid 

has maximum degree six but its vertex set cannot be partitioned into two sets such 

that each set induces a subgraph with no component of size less than k by the famous 

HEX lemma [10]. In contrast, Alon, Ding, Oporowski, and Vertigan [1] showed that for 

graphs of bounded tree-width and bounded maximum degree, it is possible to partition 

the vertex set into two sets inducing subgraphs having no large components.

Theorem 1.2 (Alon et al. [1, Theorem 2.2]3). Let w ≥ 3 and Δ be positive integers. If 

a graph G has maximum degree at most Δ and tree-width at most w, then V (G) can be 

partitioned into X1, X2 such that for 1 ≤ i ≤ 2, every component of G[Xi] has at most 

24wΔ vertices.

It was pointed out by Esperet and Joret [private communication, 2015] that the condi-

tion of maximum degree mentioned in Theorem 1.2 cannot be removed. See Theorem 4.1

for details.

Though it is impossible to partition all planar graphs of bounded maximum degree 

into two induced subgraphs with components of bounded size, it is possible to partition 

them such that the tree-width of every component is small. More precisely, DeVos, Ding, 

Oporowski, Sanders, Reed, Seymour, and Vertigan [3] proved the following result, which 

was conjectured by Thomas [19]. A graph H is a minor of a graph G if a graph isomorphic 

to H can be obtained from a subgraph of G by contracting edges.

Theorem 1.3 (DeVos et al. [3]). For every graph H, there exists an integer N such that 

if H is not a minor of G, then V (G) can be partitioned into two sets X1, X2 such that 

the tree-width of G[Xi] is at most N for 1 ≤ i ≤ 2.

3 In [1], Theorem 1.2 is stated without requiring w ≥ 3. However, [1] cites [5, (3.7)], which requires w ≥ 3. 
However, Theorem 1.2 is true even if w < 3, because a stronger statement was proved by Wood [20].
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Alon, Ding, Oporowski, and Vertigan [1] combined Theorems 1.2 and 1.3 to prove the 

following theorem.

Theorem 1.4 (Alon et al. [1, Theorem 6.7]). For every graph H and every positive integer 

Δ, there exists an integer N such that if H is not a minor of a graph G of the maximum 

degree at most Δ, then V (G) can be partitioned into four sets X1, X2, X3, X4 such that 

for 1 ≤ i ≤ 4, every component of G[Xi] has at most N vertices.

In this paper, we prove the following strengthening of Theorems 1.1 and 1.4 and 

answer a question of Esperet and Joret [9, Question 5.1].

Theorem 1.5. For every graph H and every positive integer Δ, there exists an integer N

such that if H is not a minor of a graph G of the maximum degree at most Δ, then V (G)

can be partitioned into three sets X1, X2, X3 such that for 1 ≤ i ≤ 3, every component 

of G[Xi] has at most N vertices.

Strengthening to odd minors. Indeed, we prove a stronger theorem in terms of odd mi-

nors as follows. A graph H is an odd minor of a graph G if there exists a set {(Tv)}v∈V (H)

of vertex-disjoint subgraphs of G that are trees such that each tree Tv is properly colored 

by colors 1 and 2 and for each edge uw of H, there exists an edge joining Tu and Tw

whose ends have the same color.

Theorem 1.6. For every graph H and every positive integer Δ, there exists an integer 

N such that if H is not an odd minor of a graph G of the maximum degree at most Δ, 

then V (G) can be partitioned into three sets X1, X2, X3 such that for 1 ≤ i ≤ 3, every 

component of G[Xi] has at most N vertices.

Since every odd minor of a graph G is also a minor of G, Theorem 1.6 trivially implies 

Theorem 1.5.

Interestingly Demaine, Hajiaghayi, and Kawarabayashi [2] proved a result analogous 

to Theorem 1.3 for odd minors, claiming that graphs with no odd H-minor can be 

partitioned into two induced subgraphs of bounded tree-width. This with Theorem 1.2

would imply that graphs with no odd H-minor having bounded maximum degree can 

be partitioned into 4 induced subgraphs each having no large components. Theorem 1.6

reduces the number of induced subgraphs from four to three.

Applications to a weaker version of Hadwiger’s conjecture. As an application of The-

orem 1.5, we investigate the following relaxation of Hadwiger’s conjecture: what is the 

minimum k as a function of t such that for some N , every graph G with no Kt+1 mi-

nor admits a partition of V (G) into k sets X1, X2, . . . , Xk with the property that each 

G[Xi] has no component on more than N vertices? Hadwiger’s conjecture [12], if true, 

would imply that k = t (with N = 1). Kawarabayashi and Mohar [13] proved that 
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k ≤ �15.5(t + 1)�, and Wood [21] proved that k ≤ �3.5t + 2�. We improve these results 

by using a recent result of Edwards, Kang, Kim, Oum, and Seymour [7].

Theorem 1.7 ([7]). For every positive integer t, there exists s such that if Kt+1 is not a 

minor of a graph G, then V (G) can be partitioned into t sets X1, X2, . . . , Xt such that 

for 1 ≤ i ≤ t, G[Xi] has maximum degree at most s.

Theorem 1.8. For every positive integer t, there exists N such that if Kt+1 is not a minor 

of a graph G, then V (G) can be partitioned into 3t sets X1, X2, . . . , X3t such that for 

1 ≤ i ≤ 3t, every component of G[Xi] has at most N vertices.

Proof. By Theorem 1.7, there exists an integer s such that V (G) can be partitioned into 

t sets V1, V2, . . . , Vt such that the maximum degree of G[Vi] is at most s for 1 ≤ i ≤ t. 

By Theorem 1.5, there exists an integer N depending only on t such that for 1 ≤ i ≤ t, 

Vi can be partitioned into three sets Vi1, Vi2, Vi3 and each of G[Vi1], G[Vi2], G[Vi3] has 

no component having size larger than N vertices. �

In this paper, graphs are simple. A k-coloring of a graph G is a function mapping the 

vertices of G into the set {1, 2, . . . , k}. A monochromatic component is a component of 

the subgraph induced by the vertices of the same color in a given k-coloring. The size of a 

component is the number of its vertices. For a graph G and a set X of vertices, let NG(X)

be the set of vertices not in X but adjacent to some vertex in X and NG[X] = NG(X) ∪X. 

For a vertex v of a graph G, let NG(v) = NG({v}).

The proof of Theorem 1.6 uses the machinery in the Graph Minors series of Robertson 

and Seymour and the structure theorem of graphs with no odd minors by Geelen, Ger-

ards, Reed, Seymour, and Vetta [11]. A theorem by Robertson and Seymour [18] states 

that every graph that excludes a fixed graph as a minor can be “decomposed” into 

pieces satisfying certain structure properties. We will review some tools in the Graph 

Minors series and modify the aforementioned pieces such that they are relatively easier 

to be 3-colored with small monochromatic components in Section 2. In Section 3, we 

complete the proof of Theorem 1.6 by first 3-coloring the aforementioned pieces and 

then extending the coloring to the whole graph. Finally, we will make some remarks in 

Section 4.

2. Structure theorems

In this section, we review some notions in the Graph Minors series of Robertson and 

Seymour and derive a structure for graphs without a fixed graph as a minor.

A tree-decomposition of a graph G is a pair (T, X ) such that T is a tree and X =

{Xt : t ∈ V (T )} is a collection of subsets of V (G) with the following properties.

•
⋃

t∈V (T ) Xt = V (G).
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• For every e ∈ E(G), there exists t ∈ V (T ) such that Xt contains both ends of e.

• For every v ∈ V (G), the subgraph of T induced by {t ∈ V (T ) : v ∈ Xt} is connected.

For every t ∈ V (T ), Xt is called the bag of t. The width of (T, X ) is max{|Xt| : t ∈
V (T )} −1. The adhesion of (T, X ) is max{|Xt ∩Xt′ | : tt′ ∈ E(T )}. A tree-decomposition 

(T, X ) is a path-decomposition if T is a path. The tree-width of G is the minimum width 

of a tree-decomposi tion of G.

A separation of a graph G is an ordered pair (A, B) of subgraphs with A ∪ B = G

and E(A ∩ B) = ∅, and the order of a separation (A, B) is |V (A) ∩ V (B)|. A tangle T
in G of order θ is a set of separations of G, each of order less than θ such that

(T1) for every separation (A, B) of G of order less than θ, either (A, B) ∈ T or (B, A) ∈
T ;

(T2) if (A1, B1), (A2, B2), (A3, B3) ∈ T , then A1 ∪ A2 ∪ A3 
= G;

(T3) if (A, B) ∈ T , then V (A) 
= V (G).

Tangles were first introduced by Roberson and Seymour [16]. We call (T1), (T2) and 

(T3) the first, second and third tangle axiom, respectively. For a subset Z of V (G) with 

|Z| < θ, we define T − Z to be the set of all separations (A′, B′) of G − Z of order less 

than θ − |Z| such that there exists (A, B) ∈ T with Z ⊆ V (A) ∩ V (B), A′ = A − Z

and B′ = B − Z. We remark that T − Z is a tangle in G − Z of order θ − |Z| by [16, 

Theorem 8.5].

Given a graph H, an H-minor of a graph G is a map α with domain V (H) ∪ E(H)

such that the following hold.

• For every h ∈ V (H), α(h) is a nonempty connected subgraph of G.

• If h1 and h2 are different vertices of H, then α(h1) and α(h2) are disjoint.

• For each edge e of H with ends h1, h2, α(e) is an edge of G with one end in α(h1)

and one end in α(h2); furthermore, if h1 = h2, then α(e) ∈ E(G) − E(α(h1)).

• If e1, e2 are two different edges of H, then α(e1) 
= α(e2).

We say that G contains an H-minor if such a function α exists. A tangle T in G controls

an H-minor α if T has no (A, B) of order less than |V (H)| such that V (α(h)) ⊆ V (A)

for some h ∈ V (H).

A society is a pair (S, Ω), where S is a graph and Ω is a cyclic permutation of a subset 

Ω̄ of V (S). For a nonnegative integer ρ, a society (S, Ω) is a ρ-vortex if for all distinct 

u, v ∈ Ω̄, there do not exist ρ +1 mutually disjoint paths of S between I ∪{u} and J ∪{v}, 

where I is the set of vertices in Ω̄ after u and before v in the order Ω, and J is the set 

of vertices in Ω̄ after v and before u. For a society (S, Ω) with Ω̄ = {v1, v2, . . . , v|Ω̄|} in 

order, a vortical decomposition of (S, Ω) is a path-decomposition (t1t2 · · · t|Ω̄|, X ) such 

that the i-th bag of X contains the i-th vertex vi for each i.
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Theorem 2.1 (Robertson and Seymour [15, (8.1)]). Every ρ-vortex has a vortical decom-

position with adhesion at most ρ.

A segregation of a graph G is a set S of societies such that

• S is a subgraph of G for every (S, Ω) ∈ S, and 
⋃{S : (S, Ω) ∈ S} = G,

• for every distinct (S, Ω) and (S′, Ω′) ∈ S, V (S ∩ S′) ⊆ Ω̄ ∩ Ω′ and E(S ∩ S′) = ∅.

We write V (S) =
⋃{Ω̄ : (S, Ω) ∈ S}. For a tangle T in G, a segregation S of G is 

T -central if for every (S, Ω) ∈ S, there is no (A, B) ∈ T with B ⊆ S.

A surface is a nonnull compact connected 2-manifold without boundary. Let Σ be a 

surface. For every subset Δ of Σ, we denote the closure of Δ by Δ̄ and the boundary 

of Δ by ∂Δ. An arrangement of a segregation S = {(S1, Ω1), . . . , (Sk, Ωk)} in Σ is a 

function α with domain S ∪ V (S), such that the following hold.

• For 1 ≤ i ≤ k, α(Si, Ωi) is a closed disk Δi ⊆ Σ, and α(x) ∈ ∂Δi for each x ∈ Ωi.

• For 1 ≤ i ≤ k, if x ∈ Δi ∩ Δj , then x = α(v) for some v ∈ Ωi ∩ Ωj .

• For all distinct x, y ∈ V (S), α(x) 
= α(y).

• For 1 ≤ i ≤ k, Ωi is mapped by α to the natural order of α(Ωi) determined by ∂Δi.

An arrangement is proper if Δi ∩ Δj = ∅ whenever |Ωi|, |Ωj | > 3, for all 1 ≤ i < j ≤ k.

An O-arc is a subset homeomorphic to a circle, and a line is a subset homeomorphic 

to [0, 1]. A drawing Γ in a surface Σ is a pair (U, V ), where V ⊆ U ⊆ Σ, U is closed, V

is finite, U − V has only finitely many arc-wise connected components, called edges, and 

for every edge e, either ē is a line with set of ends ē ∩ V , or ē is an O-arc and |ē ∩ V | = 1. 

The components of Σ − U are called regions. The members of V are called vertices. If v

is a vertex of a drawing Γ and e is an edge or a region of Γ, we say that e is incident with

v if v is contained in the closure of e. Note that the incidence relation between vertices 

and edges of Γ defines a multigraph, and we say that Γ is a drawing of a multigraph G

in Σ if G is defined by this incident relation. In this case, we say that G is embeddable

in Σ, or G can be drawn in Σ. A drawing is 2-cell if Σ is connected and every region is 

an open disk.

A drawing Γ = (U, V ) in Σ is the skeleton of a proper arrangement α of a segregation 

S in Σ if V =
⋃

v∈V (S) α(v) and U consists of the boundary of α(S, Ω) for each (S, Ω) ∈ S
with |Ω̄| = 3, and a line in α(S′, Ω′) with ends Ω′ for each (S′, Ω′) ∈ S with |Ω′| = 2. 

Note that we do not add any edges into the skeleton for (S, Ω) with |Ω̄| ≤ 1 or |Ω̄| > 3.

A segregation S of G is maximal if there exists no segregation S ′ such that {(S, Ω) ∈
S : |Ω̄| > 3} = {(S′, Ω′) ∈ S ′ : |Ω′| > 3} and for every (S, Ω) ∈ S with |Ω̄| ≤ 3, there 

exists (S′, Ω′) ∈ S ′ with |Ω′| ≤ 3 such that S′ ⊆ S, and the containment is strict for at 

least one society. Note that if S is maximal, then for every (S, Ω) ∈ S with |Ω̄| ≤ 3 and 

every v ∈ Ω̄, there exist |Ω̄| − 1 paths in S from v to Ω̄ − {v} intersecting only in v. In 
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particular, the maximum degree of the skeleton of a proper arrangement of a maximal 

segregation of G is at most the maximum degree of G.

By taking advantage of a theorem by Robertson and Seymour [17, Theorem (9.2)], 

the following statement is an easy corollary of a theorem in Dvořák [6, Theorem 7] by 

choosing the function φ in [6, Theorem 7] to be the constant function 4d + 5. (We omit 

the statements of [17, Theorem (9.2)] and [6, Theorem 7] as they require a couple of 

definitions to be formally stated but will not be further used in the rest of the paper.)

Corollary 2.2. For every graph L, there exists an integer κ such that for every positive 

integer d, there exist integers θ, ξ, ρ with the following property. If a graph G has a 

tangle T of order at least θ controlling no L-minor of G, then there exist Z ⊆ V (G) with 

|Z| ≤ ξ, a maximal (T − Z)-central segregation S = S1 ∪ S2 of G − Z with |S2| ≤ κ and 

a proper arrangement α of S in some surface Σ in which L cannot be drawn, such that 

|Ω̄| ≤ 3 for all (S, Ω) ∈ S1, every member in S2 is a ρ-vortex, and the skeleton G′ of α

of S in Σ satisfies the following.

1. G′ is 2-cell embedded in Σ.

2. For every (S, Ω) ∈ S2, there exists a closed disk DS in Σ containing α(S) and disjoint 

from 
⋃

(S′,Ω′)∈S2−{(S,Ω)} DS′ such that DS contains every vertex of G′ that can be 

connected by a path in G′ of length at most d from a vertex in Ω̄.

3. For distinct (S, Ω), (S′, Ω′) ∈ S2, there exists no path of length at most 2d + 2 in G′

from Ω to Ω′.

Let G0 be a drawing in a surface Σ with k pairwise disjoint closed disks D1, D2, . . ., 

Dk such that each disk intersects G0 only in vertices of G0 and contains no vertex of G0

in its interior. For 1 ≤ i ≤ k, let vi,1, vi,2, . . . , vi,ni
be the vertices of G0 ∩ ∂Di appearing 

on ∂Di in order. For a positive integer w, a graph G is an outgrowth by k w-rings of a 

graph G0 in Σ [18] if

• there exist k societies (S1, Ω1), (S2, Ω2), . . ., (Sk, Ωk) such that G = G0 ∪ ⋃k
i=1 Si

and Ωi = {vi,1, vi,2, . . . , vi,ni
} in order and Si ∩ G0 = Ωi for 1 ≤ i ≤ k,

• for 1 ≤ i ≤ k, Si has a path-decomposition (ti,1ti,2 · · · ti,ni
, Xi) of width at most w

such that vi,j ∈ Xi,j for 1 ≤ j ≤ ni, where Xi,j is the bag at ti,j .

In addition, for d ≥ 0, we say that G is d-local if G0 satisfies the following.

• For 1 ≤ i ≤ k, there exists a closed disk D in Σ containing Di and disjoint from 
⋃

j �=i Dj such that D contains every vertex of G0 that can be connected by a path 

in G0 of length at most d from a vertex in V (G0) ∩ ∂Di.

• For 1 ≤ i < j ≤ k, G0 has no path of length at most 2d + 2 from a vertex in 

V (G0) ∩ ∂Di to a vertex in V (G0) ∩ ∂Dj .
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Let S be a segregation of a graph G. Assume that for every (S, Ω) ∈ S with |Ω̄| >
3, there exists a path-decomposition (PS = t1t2 · · · t|Ω̄|, XS) such that the bag at ti, 

denoted by XS,i, contains the i-th vertex vS,i in Ω̄, for every 1 ≤ i ≤ |Ω̄|. For every 

(S, Ω) ∈ S with |Ω̄| > 3, let GS be the graph obtained from the subgraph of S induced 

by Ω̄ ∪ ⋃|Ω̄|−1
i=1 (XS,i ∩ XS,i+1) by adding three new vertices xS,i,1, xS,i,2, xS,i,3 for each 

i ∈ {1, 2, . . . , |Ω̄|} with the same set of neighbors

NG(XS,i − ({vS,i} ∪ XS,i−1 ∪ XS,i+1)) ∩ ({vS,i} ∪ XS,i−1 ∪ XS,i+1),

where XS,0 = XS,|Ω̄|+1 = ∅.

Let G0 be the skeleton of a proper arrangement α of S in a surface Σ. We define the 

extended skeleton of α of S in Σ with respect to {(PS, XS) : (S, Ω) ∈ S, |Ω̄| > 3} to be the 

graph obtained from the disjoint union of G0 and GS for every (S, Ω) ∈ S with |Ω̄| > 3

by identifying the copies of the i-th vertex of Ω̄ in G0 and GS for each (S, Ω) ∈ S with 

|Ω̄| > 3 and for every 1 ≤ i ≤ |Ω̄|. Note that if there are at most κ members (S, Ω) of S
with |Ω̄| > 3 and the adhesion of each (PS, XS) is at most ρ, then the extended skeleton 

of α of S is an outgrowth by κ (2ρ + 3)-rings of G0 in Σ. Furthermore, if S is a maximal 

segregation, then the maximum degree of the extended skeleton of α of S in Σ is at most 

max{3Δ, 2ρ + 1}, where Δ is the maximum degree of G.

Theorem 2.3. For every graph L and positive integer d, there exist integers κ, θ, ξ, ρ with 

the following property.

If a graph G has a tangle T of order at least θ controlling no L-minor of G, then there 

exist Z ⊆ V (G) with |Z| ≤ ξ and a maximal (T − Z)-central segregation S of G − Z

with a proper arrangement α in a surface Σ in which L cannot be drawn, such that if 

S1 = {(S, Ω) ∈ S : |Ω̄| ≤ 3} and S2 = S − S1, then

1. |S2| ≤ κ and every (S, Ω) ∈ S2 is a ρ-vortex with a vortical decomposition (PS , XS)

of adhesion at most ρ,

2. the extended skeleton of α of S in Σ with respect to {(PS, XS) : (S, Ω) ∈ S2} is a 

d-local outgrowth by κ (2ρ + 3)-rings of the skeleton of α of S in Σ, whose maximum 

degree is at most max{3Δ, 2ρ + 1}, where Δ is the maximum degree of G.

Proof. Let κ, θ, ξ, ρ be the numbers, S = S1 ∪ S2 the segregation of G, Σ the surface, α

the arrangement of S in Σ obtained by applying Corollary 2.2. By Theorem 2.1, for every 

(S, Ω) ∈ S2, S has a vortical decomposition (PS , XS) of adhesion at most ρ. Therefore, 

the extended skeleton of α of S in Σ with respect to {(PS , XS) : (S, Ω) ∈ S2} is a d-local 

outgrowth by κ (2ρ + 3)-rings of the skeleton of α of S in Σ. Since S is maximal, the 

maximum degree of the extended skeleton of α of S is at most max{3Δ, 2ρ + 1}. �
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3. Monochromatic components

For an integer q > 0, a q-necklace with chain v1v2 . . . vn is a multigraph G with 

V (G) = {v1, v2, . . . , vn} such that

• v1v2 · · · vnv1 is a cycle C,

• G contains pairwise edge-disjoint complete subgraphs M1, M2, . . . , Mk each having 

at most q vertices such that E(G) − E(C) =
⋃k

i=1 E(Mi), and

• there exist no integers i, j, a, b, c, d with i 
= j and a < b < c < d such that {va, vc} ⊆
V (Mi) and {vb, vd} ⊆ V (Mj).

Note that every 2-connected outerplanar multigraph is a 2-necklace.

Lemma 3.1. Every q-necklace has tree-width at most max{q − 1, 2}.

Proof. Let G be a q-necklace with n vertices v1, v2, . . . , vn and k complete subgraphs 

M1, M2, . . . , Mk each having at most q vertices. Since outerplanar multigraphs have 

tree-width at most 2, we may assume that q ≥ 3 and k ≥ 1.

We claim that there is a tree-decomposition (T, X ) of width at most q−1. We proceed 

by induction on k. If k = 1, then it is trivial to find such a tree-decomposition (T, X ), 

as the graph G is isomorphic to a graph obtained from M1 by adding many paths. In 

(T, X ), one bag is M1 and other bags have at most three vertices.

Now suppose that k > 1. We may assume that V (M1) = {vi1
, vi2

, . . . , viq
} with 

1 ≤ i1 < i2 < · · · < iq ≤ n. We may assume that i1 = 1 by rotating labels. Let 

iq+1 = n + 1 and vn+1 = v1. For j ∈ {1, 2, . . . , q}, let Wj = {vij
, vij+1, . . . , vij+1

}. It 

is easy to see that G[Wj ] is a q-necklace and so it has a tree-decomposition (Tj , Xi) of 

width at most q − 1. Since vij
is adjacent to vij+1

, Tj has a node tj whose bag contains 

vij
and vij+1

.

Let T be the tree obtained from the disjoint union of all Tj by adding a node t adjacent 

to all tj . Let M1 be the bag corresponding to t and we assign bags to all other nodes 

of T according to Xj for some j. It is easy to see that this is a tree-decomposition of 

width at most q − 1. �

We use the same idea of the proof of [4, Lemma 8.1] to prove the following general-

ization.

Lemma 3.2. For an integer q ≥ 3, let H be a q-necklace with chain u1u2 · · · un. Let 

(S, Ω) be a society with a vortical decomposition (t1t2 · · · tn, X ) of width w. If G is the 

multigraph obtained from the disjoint union of S and H by identifying ui with the i-th 

vertex of Ω for each 1 ≤ i ≤ n, then G has tree-width at most q(w + 1) − 1.

Proof. Let Xi be the i-th bag of X . By Lemma 3.1, H has a tree-decomposition (T, X ′)

of width at most q − 1. We denote X ′ by {X ′
t : t ∈ V (T )}. For every t ∈ V (T ), define 
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X ′′
t = X ′

t ∪ ⋃{Xi : ui ∈ X ′
t, 1 ≤ i ≤ n} and X ′′ = {X ′′

t : t ∈ V (T )}. Since there exists a 

path in H passing through u1, u2, . . ., un in order, (T, X ′′) is a tree-decomposition of G

and

|X ′′
t | ≤ (w + 1)|X ′

t| ≤ q(w + 1).

So the width of (T, X ′′) is at most q(w + 1) − 1. �

For a positive integer k and a graph G, we say that a k-coloring c of a subgraph H of 

G can be extended to a k-coloring of G or can be extended to G if G has a k-coloring c′

such that c′(v) = c(v) for every v ∈ V (H).

Lemma 3.3. Let Δ, k, w and g be positive integers. Let Σ be a surface of Euler genus g, 

and let d = (5Δ)2g−1(15Δ)(32Δ+8)2g

. If G is a d-local outgrowth by k w-rings of a graph 

G0 in Σ and G has maximum degree Δ, then G can be 3-colored in such a way that every 

monochromatic component has at most 48d4wΔ5 vertices.

Proof. We may assume that Δ ≥ 3. Let D1, D2, . . . , Dk be the closed disks and 

(S1, Ω1), . . . , (Sk, Ωk) the societies mentioned in the definition of an outgrowth G by 

k w-rings of G0 in Σ.

By Theorem 1.1, there exists a 3-coloring c of G − ⋃k
i=1 V (Si) such that every 

monochromatic component has at most d vertices. Let Li be the set of vertices of 

G − ⋃k
k=1 V (Si) that has a monochromatic path to a vertex in NG(V (Si)) with respect 

to c. Since G is d-local, Li ∩ Lj = ∅ for 1 ≤ i < j ≤ k. Let Gi = G[Li ∪ V (Si)]. To prove 

this lemma, it suffices to show that for every 1 ≤ i ≤ k, the 3-coloring on Gi − V (Si)

can be extended to a 3-coloring of Gi such that every monochromatic component of Gi

has at most 48d4wΔ5 vertices.

For 1 ≤ i ≤ k, define Hi to be the multigraph obtained from G[V (Si)] by first adding 

a cycle passing through Ωi in order and adding a complete graph on NG(V (C)) ∩ V (Si)

for each monochromatic component C of Gi − V (Si). Since each C contains at most d

vertices, each of added complete subgraphs has at most dΔ vertices. Since G is d-local, 

Hi[Ωi] is a dΔ-necklace. Hence, the tree-width of Hi is at most dΔ(w + 1) − 1 by 

Lemma 3.2, and the maximum degree of Hi is at most (dΔ − 1)Δ + 2 ≤ dΔ2, as Δ ≥ 3. 

By Theorem 1.2, there exists a 3-coloring of Hi (in fact, a 2-coloring) such that every 

monochromatic component of Hi contains at most 24 · dΔ(w + 1) · dΔ2 vertices.

Now, we extend the 3-coloring c of Gi − V (Si) to the 3-coloring c′ of Gi by taking 

the 3-coloring of Hi on V (Si). Let Q be a monochromatic component of Gi with respect 

to c′. We know that |V (Q) ∩ V (Si)| ≤ 24 · dΔ(w + 1) · dΔ2. Since Hi has maximum 

degree at most dΔ2, each vertex of Hi may join at most dΔ2 distinct monochromatic 

components of Hi − V (Si), each having at most d vertices. Thus, Q contains at most

(24 · dΔ(w + 1) · dΔ2) · dΔ2 · d ≤ 48d4wΔ5

vertices. This completes the proof. �
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The following simple lemma is a stronger statement of [9, Observation 3.9]. This 

lemma is obvious, so we omit the proof.

Lemma 3.4. Let G be a graph of maximum degree Δ and Z a subset of V (G). Assume 

that G has a coloring such that every monochromatic component has size at most an 

integer k. If we recolor some vertices in Z, then the union of the monochromatic compo-

nents intersecting in Z in the new coloring has at most |Z|(Δk + 1) vertices, and every 

monochromatic component disjoint from Z in the new coloring has at most k vertices.

We use the following theorem of Geelen et al. [11] on odd minors.

Theorem 3.5 (Geelen et al. [11, Theorem 13]). There is a constant c such that if G

contains a Kt-minor α where t = �c	
√

log 12	�, then either G contains an odd K�-minor, 

or there exists a set X of vertices with |X| < 8	 such that the (unique) block U of G − X

that intersects all branch vertices of α disjoint from X is bipartite.

Our main theorem, Theorem 1.6, is an immediate corollary of the following stronger 

theorem by taking Y = ∅.

Theorem 3.6. For every graph W and positive integer Δ, there exists an integer η such 

that if W is not an odd minor of a graph G of maximum degree at most Δ, then for 

every subset Y of V (G) with |Y | ≤ η, every 3-coloring of Y can be extended to that of 

G satisfying the following.

(i) The union of all monochromatic components of G meeting Y contains at most |Y |2Δ

vertices.

(ii) Every monochromatic component of G contains at most η2Δ vertices.

Proof. We may assume that Δ > 1. Since G does not have an odd W -minor, by Theo-

rem 3.5, there exist sufficiently large integers c and t = �c|V (W )|
√

log 12|V (W )|� such 

that if G has a Kt-minor α, then it has a set X of vertices such that |X| < 8|V (W )|
and the (unique) block U of G − X intersecting all branch vertices of α is bipartite. Let 

L = Kt.

Let d = (5Δ)2g−1(15Δ)(32Δ+8)2g

, where g is the maximum genus of a surface in 

which L cannot be drawn. (If L is planar, then let g = 0.) Let κ, ξ, θ and ρ be given by 

Theorem 2.3 for L and d. We may assume that θ > 8|V (W )| + 1. Let M = 48d4(2ρ +

3)(3Δ + 2ρ)5 and η = 2000ρθ3MΔ6.

We proceed by induction on |V (G)|. It is trivial if |V (G)| ≤ 1, because η ≥ 1 and 

Δ > 0. Thus we may assume that |V (G)| ≥ 2. Let Y be a subset of V (G) with at most η

vertices. We may assume that Y is nonempty, because otherwise we can add one vertex 

to Y . Let cY : Y → {1, 2, 3} be a given 3-coloring of Y . We say that a 3-coloring c of 

G is Y -good with respect to cY if it extends cY and satisfies the conditions 1 and 2 of 
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the theorem. Suppose that G has no Y -good 3-coloring with respect to cY . Note that 

for the condition 2, it is unnecessary to consider monochromatic components meeting Y

because it follows from the condition 1.

For a subset X of V (G), we write 1X to denote a 3-coloring of X coloring all vertices 

of X by 1. Similarly we define 2X and 3X .

Claim 1. |Y | > η
Δ2 .

Proof of Claim 1. Let Y1 = NG(Y ) and Y2 = NG(Y ∪ Y1). Note that |Y2| ≤ |Y |Δ(Δ −
1) ≤ η. By permuting colors, we may assume that 3 ∈ cY (Y ). We apply the induction 

hypothesis to G − (Y ∪ Y1) with the 3-coloring 1Y2
of Y2 to obtain a Y2-good 3-coloring 

c of G − (Y ∪ Y1). Let c′ be a 3-coloring of G such that

c′(v) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

cY (v) if v ∈ Y,

2 if v ∈ Y1,

c(v) if v /∈ Y ∪ Y1.

No monochromatic component of G with respect to c′ can meet both Y ∪ Y1 and Y2

because Y1 and Y2 are colored differently. Since c is Y2-good, every monochromatic 

component of G disjoint from Y ∪ Y1 contains at most η2Δ vertices. The union of the 

monochromatic components of G meeting Y ∪ Y1 contains at most |Y ∪ Y1| ≤ (Δ + 1)|Y |
vertices. If (Δ + 1)|Y | ≤ |Y |2Δ, then it implies the condition 1 and condition 2 for 

monochromatic components meeting Y ∪Y1. If |Y | ≥ 2, then |Y ∪Y1| ≤ |Y |2Δ; if |Y | = 1, 

then the monochromatic component of G meeting Y contains exactly one vertex of color 

3. Therefore c′ is Y -good, contradicting our assumption. �

Claim 2. There exists no separation (A, B) of G of order less than θ such that |(V (A) −
V (B)) ∩ Y | ≥ 3θ and |(V (B) − V (A)) ∩ Y | ≥ 3θ.

Proof of Claim 2. Suppose that G has a separation (A, B) of order less than θ such 

that a = |(V (A) − V (B)) ∩ Y | ≥ 3θ and b = |(V (B) − V (A)) ∩ Y | ≥ 3θ. Let YA =

(Y ∪ V (B)) ∩ V (A) and YB = (Y ∪ V (A)) ∩ V (B). Then,

|Y |2 − (|YA|2 + |YB |2) ≥ (a + b)2 − (a + θ)2 − (b + θ)2

=
2ab

3
+

2ab

3
+

2ab

3
− 2(a + b)θ − 2θ2

≥ 2aθ + 2bθ + 6θ2 − 2(a + b)θ − 2θ2 = 4θ2 > 0.

Now we shall construct a desired 3-coloring of G. We first color vertices in YA −
Y (= YB − Y ) arbitrary. Since |V (A)| ≤ |V (G)| − 3θ and |YA| ≤ |Y | − 2θ, we can 

apply the induction hypothesis to the graph A with YA precolored. Similarly, we can 

further apply the induction hypothesis to the graph B with YB precolored. So by merging 
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the 3-colorings of A and B, we obtain a 3-coloring of G. Let U be the union of the 

monochromatic components of G either meeting Y , or meeting both A and B. Note 

that every component of U meets YA ∪ YB . By the induction hypothesis, U contains at 

most (|YA|2 + |YB |2)Δ ≤ |Y |2Δ vertices. On the other hand, the induction hypothesis 

implies that every monochromatic component of G disjoint from Y contains at most η2Δ

vertices. Therefore, G has a Y -good 3-coloring, contradicting our assumption. �

We define T to be the set of all separations (A, B) of G of order less than θ such that 

|(V (B) − V (A)) ∩ Y | ≥ 3θ.

Claim 3. T is a tangle in G of order θ.

Proof of Claim 3. Observe that there exists no separation (A, B) of order less than θ

such that |(V (A) − V (B)) ∩ Y | < 3θ and |(V (B) − V (A)) ∩ Y | < 3θ, since otherwise 

|Y | < 7θ ≤ η
Δ2 , contradicting Claim 1. So T satisfies the first tangle axiom.

Suppose that there exist (Aj, Bj) ∈ T for 1 ≤ j ≤ 3 such that A1 ∪ A2 ∪ A3 = G. By 

Claim 2, |(V (Aj) − V (Bj)) ∩ Y | < 3θ for 1 ≤ j ≤ 3. So |V (Aj) ∩ Y | < 4θ for 1 ≤ j ≤ 3. 

As a result, |Y | ≤ ∑3
j=1|Y ∩ V (Aj)| < 12θ ≤ η

Δ2 , a contradiction. Hence the second 

tangle axiom holds.

If V (A) = V (G) for some (A, B) ∈ T , then |Y | < 4θ ≤ η
Δ2 by Claim 2, a contradiction. 

Therefore, T is a tangle of order θ. �

Claim 4. T controls no L-minor.

Proof of Claim 4. Suppose that T controls an L-minor α. Since α is an L-minor in G, 

by Theorem 3.5, there exists a set X of vertices such that |X| ≤ 8|V (W )| such that the 

unique block U of G −X intersecting all branch vertices of α disjoint from X is bipartite.

Let C1, C2, . . . , Cm be the list of induced subgraphs of G − X − V (U) such that 

G − X − V (U) is the disjoint union of C1, C2, . . . , Cm, each component of Ci has the 

same set of neighbors in U , and for i 
= j, the set of neighbors of Ci in U is not equal to 

that of Cj in U .

As U is a block of G − X, each Ci has at most one neighbor in U . For each i ∈
{1, 2, . . . , m}, Let Ai be the subgraph of G induced by the union of X, V (Ci), and 

the set of all neighbors of V (Ci) in U . Let Bi be the subgraph of G − E(Ai) induced 

on V (G) − V (Ci). Note that (Ai, Bi) is a separation of G such that |V (Ai) ∩ V (Bi)| ≤
|X| +1 ≤ 8|V (W )| +1 < θ. As T is a tangle of G of order θ, (Ai, Bi) ∈ T or (Bi, Ai) ∈ T . 

Since T controls an L-minor α and all branch vertices of α disjoint from X intersect U , 

(Ai, Bi) ∈ T . By the definition of T , we deduce that

|(V (Bi) − V (Ai)) ∩ Y | ≥ 3θ.

By Claim 2, |(V (Ai) − V (Bi)) ∩ Y | < 3θ.
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First we properly color U by colors 1 and 2 and color all vertices in X by color 3. 

This coloring of G[V (U) ∪X] has the property that each monochromatic component has 

at most |X| < θ vertices. Then we recolor vertices in Y ∩ (V (U) ∪ X) by its given color. 

By Lemma 3.4, this new coloring of G[V (U) ∪ X] has the property that the union of all 

monochromatic components intersecting Y ∩ (V (U) ∪ X) has at most η(Δθ + 1) ≤ 2ηΔθ

vertices.

For each i ∈ {1, 2, . . . , m}, let Y ′
i = (Y ∩V (Ai)) ∪(V (Ai) ∩V (Bi)). Note that |Y ′

i | < 4θ. 

By the induction hypothesis, there exists a Y ′
i -good coloring fi of Ai extending the color-

ing of G[V (U) ∪ X] given in the previous step such that the union of all monochromatic 

components of Ai in fi intersecting Y ′
i has at most (4θ)2Δ vertices and every monochro-

matic component of Ai in fi has at most η2Δ vertices.

Let f be a 3-coloring of G obtained by combining the coloring of G[V (U) ∪X] and the 

coloring fi for each i ∈ {1, 2, . . . , m}. This coloring f is well-defined and furthermore the 

union of all monochromatic components in G intersecting Y ∪X∪⋃m
i=1(V (Ai) ∩V (U)) has 

at most (2ηΔθ)(4θ)2Δ2 ≤ |Y |2Δ vertices. In addition, each monochromatic component 

in G not intersecting Y ∪ X ∪ ⋃m
i=1(V (Ai) ∩ V (U)) has at most η2Δ vertices. This 

completes the proof. �

Now we may assume that T controls no L-minor. By Theorem 2.3, there exist Z ⊆
V (G) with |Z| ≤ ξ and a maximal (T − Z)-central segregation S = S1 ∪ S2 of G − Z

properly arranged by an arrangement α in a surface Σ in which L cannot be drawn, 

where every (S, Ω) ∈ S1 has the property that |Ω̄| ≤ 3, and |S2| ≤ κ and every member 

(S, Ω) in S2 is a ρ-vortex with a vortical decomposition (PS, XS) of adhesion at most ρ

such that the extended skeleton of α of S in Σ with respect to {(PS , XS) : (S, Ω) ∈ S2}, 

denoted by G′, is a d-local outgrowth by κ (2ρ + 3)-rings of the skeleton of α of S in Σ

and the maximum degree of G′ is at most max{3Δ, 2ρ + 1} ≤ 3Δ + 2ρ.

Let c′ be a 3-coloring of G′ given by Lemma 3.3 such that every monochromatic 

component of G′ with respect to c′ contains at most M vertices. Let G′′ be the graph 

obtained from the disjoint union of G′ and G[Z] by adding the edges of G between 

Z and V (G′) ∩ V (G). Then we extend c′ to a 3-coloring c′′ of G′′ by coloring every 

vertex in Z by color 1. Then each monochromatic component in G′′ contains at most 

max(|Z|, 1)(MΔ + 1) vertices. Since |Z| < θ, we know that max(|Z|, 1)(MΔ + 1) ≤
2θMΔ. Note that the maximum degree of G′′ is still at most 3Δ + 2ρ.

For each (S, Ω) ∈ S1, let QS = G[V (S) ∪ Z] and

YS = Ω̄ ∪ Z ∪ (Y ∩ V (S))).

Since |Ω̄ ∪ Z| ≤ |Z| + 3 < θ, (QS , G − (V (S) − Ω̄) − E(QS)) is a separation of G having 

order less than θ. Since S is (T − Z)-central, (QS , G − (V (S) − Ω̄) − E(QS)) ∈ T and 

therefore |Y ∩ V (S)| < 4θ. So |YS | ≤ |Z| + 3 + |Y ∩ V (S)| < ξ + 3 + 4θ ≤ 6θΔ ≤ η.
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For each (S, Ω) ∈ S2 and 1 ≤ i ≤ |Ω̄|, let XS,i be the i-th bag of XS , which contains the 

i-th vertex vS,i in Ω̄; let QS,i = G[XS,i ∪Z], BS,i = Z ∪(XS,i ∩(XS,i−1 ∪XS,i+1 ∪{vS,i}))

where XS,0 = XS,|Ω̄|+1 = ∅; let

YS,i = BS,i ∪ (NG(BS,i) ∩ XS,i) ∪ (Y ∩ XS,i).

Note that there exists (A, B) ∈ T with V (A) ∩ V (B) = BS,i and G[XS,i] ⊆ A, since 

|BS,i| ≤ 2ρ + 1 + ξ < θ and S is (T − Z)-central. Thus, |Y ∩ XS,i| < 4θ and therefore 

|YS,i| ≤ |BS,i ∪ NG(BS,i) ∪ (Y ∩ XS,i)| < θ(Δ + 1) + 4θ ≤ 6θΔ ≤ η.

For (S, Ω) ∈ S2 and 1 ≤ i ≤ |Ω̄|, let xS,i,1, xS,i,2, xS,i,3 be the vertices of G′ mentioned 

in the definition of the extended skeleton, and let WS,Ω be a minimum set with WS,Ω ⊆
{xS,i,1, xS,i,2, xS,i,3} and |WS,Ω| ≤ min{|Y ∩ XS,i ∩ NG(BS,i)|, 3}.

Now we define a new 3-coloring c′′′ of G′′ by the following rule.

• c′′′(v) = cY (v) if v ∈ Y ∩ V (G′′).

• For (S, Ω) ∈ S2 and 1 ≤ i ≤ |Ω̄|, define c′′′ on {xS,i,1, xS,i,2, xS,i,3} such that 

c′′′({xS,i,1, xS,i,2, xS,i,3}) ⊇ cY (Y ∩ XS,i ∩ NG(BS,i)) and c′′′(v) = c′′(v) for every 

v ∈ {xS,i,1, xS,i,2, xS,i,3} − WS,Ω.

• c′′′(v) = c′′(v) for other vertices of G′′.

Let

Y ′ = {v ∈ V (G′′) : c′′′(v) 
= c′′(v)} ∪ (Y ∩ V (G′′)) ∪ Z

∪
⋃

(S,Ω)∈S1,Y ∩V (S)−Ω̄�=∅

Ω̄,

Y1 = {v ∈ Y : v ∈ V (S) − Ω̄ for some (S, Ω) ∈ S1}

∪ {v ∈ Y : v ∈ XS,i − (BS,i ∪ NG(BS,i)) for some (S, Ω) ∈ S2, 1 ≤ i ≤ |Ω̄|},

and Y2 = Y − Y1. Since XS,i ∩ NG(BS,i) are pairwise disjoint for different pairs 

of (S, Ω) ∈ S2 and i, |Y ′| ≤ |Y2| + θ + 3|Y1| ≤ 4|Y |. Hence, the union of the 

monochromatic components in G′′ with respect to c′′′ intersecting Y ′ contains at most 

4|Y |((3Δ + 2ρ)(2θMΔ) + 1) ≤ 48ρθM |Y |Δ2 by Lemma 3.4. And every monochromatic 

component in G′′ with respect to c′′′ disjoint from Y ′ has at most 2θMΔ vertices.

For (S, Ω) ∈ S1, let cS be a 3-coloring of YS such that

cS(v) =

{

cY (v) if v ∈ Y,

c′′′(v) if v ∈ Ω̄ ∪ Z,

for v ∈ YS . As |YS | ≤ η, we can apply the induction hypothesis to QS with the 3-coloring 

cS to obtain a YS-good 3-coloring c′
S of QS .



C.-H. Liu, S. Oum / Journal of Combinatorial Theory, Series B 128 (2018) 114–133 129

For (S, Ω) ∈ S2 and 1 ≤ i ≤ |Ω̄|, let cS,i be a 3-coloring of YS,i such that

cS,i(v) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

cY (v) if v ∈ Y,

c′′′(v) if v ∈ Ω̄ ∪ Z ∪ (XS,i ∩ (XS,i−1 ∪ XS,i+1)),

c′′′(xS,i,1) if v ∈ (NG(BS,i) ∩ XS,i) − Y,

for v ∈ YS,i. As |YS,i| ≤ η, we can apply the induction hypothesis to QS,i with the 

3-coloring cS,i to obtain a YS,i-good 3-coloring c′
S,i of QS,i.

Let c be a 3-coloring of G such that

c(v) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

c′′′(v) if v ∈ V (G′′),

c′
S(v) if v ∈ V (S) − Ω̄ for some (S, Ω) ∈ S1,

c′
S,i(v) if v ∈ XS,i − BS,i

for some (S, Ω) ∈ S2 and 1 ≤ i ≤ |Ω̄|

for v ∈ V (G).

We now claim that c is a Y -good 3-coloring of G. We say that a subgraph R of G

is hiding if either there exists (S, Ω) ∈ S1 such that V (R) ⊆ V (S) − Ω̄, or there exists 

(S, Ω) ∈ S2 and 1 ≤ i ≤ |Ω̄| such that V (R) ⊆ XS,i − (BS,i ∪ NG(BS,i)).

Let U be the union of monochromatic components of G meeting Y . For the condition 

1, we need to show that |V (U)| ≤ |Y |2Δ.

Firstly let us count the vertices of U that are in hiding components. For each hiding 

monochromatic component R, R contains a vertex in Y1 and has at most 25θ2Δ3 vertices 

by the properties of c′
S and c′

S,i. Thus, U has at most 25θ2Δ3|Y1| vertices in hiding 

components.

Secondly let us count vertices of U in non-hiding components. Let U ′ be the graph 

obtained from U by deleting V (U) ∩ V (S) − Ω̄ and adding edges on V (U) ∩ Ω̄ such 

that U ′[Ω̄] is a complete subgraph for every (S, Ω) ∈ S1, and identifying the vertices in 

V (U) ∩(XS,i −BS,i) of color j in the 3-coloring c into a vertex uS,i,j for each (S, Ω) ∈ S2, 

1 ≤ i ≤ |Ω̄| and 1 ≤ j ≤ 3. Note that U ′ is isomorphic to a subgraph of G′′. Furthermore, 

for every (S, Ω) ∈ S2, 1 ≤ i ≤ |Ω̄| and 1 ≤ j ≤ 3, whenever uS,i,j exists, there exists k

with 1 ≤ k ≤ 3 such that c′′′(xS,i,k) = j, by the definition of c′′′. So we may assume that 

U ′ is a subgraph of G′′ with the coloring c′′′. Every component of U ′ meets Y ′, since 

every non-hiding component of U either meets (Y ∩ V (G′′)) ∪ Z, or meets Ω̄ for some 

(S, Ω) ∈ S1 with Y ∩ V (S) − Ω̄ 
= ∅, or meets both Y ∩ XS,i and XS,i ∩ NG(BS,i) for 

some (S, Ω) ∈ S2 and 1 ≤ i ≤ |Ω̄|. Therefore, U ′ contains at most 48ρθM |Y |Δ2 vertices.

For each vertex v in a non-hiding component of U but not in U ′, v is either

• contained in a monochromatic component of QS meeting YS ∩ V (U ′) with respect 

to c′
S for some (S, Ω) ∈ S1, or
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• contained in a monochromatic component of QS,i meeting XS,i ∩ NG(BS,i) with 

respect to c′
S,i for some (S, Ω) ∈ S2 and 1 ≤ i ≤ |Ω̄| such that {xS,i,1, xS,i,2, xS,i,3} ∩

V (U ′) 
= ∅.

Since S is maximal, for every vertex v of G −Z, there exist at most Δ societies (S, Ω) ∈ S1

such that v ∈ V (S), so there are at most |U ′|Δ such societies in S1 mentioned in the 

former case; since |⋃(S,Ω)∈S2

⋃

1≤i≤|Ω̄|{xS,i,1, xS,i,2, xS,i,3} ∩V (U ′)| ≤ |U ′|, so there are at 

most |U ′| such QS,i mentioned in the latter case. By the properties of c′
S , the union of all 

monochromatic components mentioned in the former case contains at most (5θΔ)2 ·|U ′|Δ
vertices; by the properties of c′

S,i, the union of all monochromatic components mentioned 

in the latter case contains at most (5θΔ)2 · |U ′| vertices. Hence, the number of vertices in 

some non-hiding components of U but not in U ′ contains at most 25θ2|U ′|Δ2(Δ + 1) ≤
1200ρθ3M |Y |Δ4(Δ + 1) vertices.

Consequently, U contains at most 25θ2Δ3|Y1| + 1200ρθ3M |Y |Δ4(Δ + 1) ≤ 2000ρ ×
θ3M |Y |Δ5 ≤ |Y |2Δ vertices, by Claim 1 and the assumption Δ ≥ 2. This proves that c

satisfies condition 1.

Let R be a monochromatic component of G not meeting Y with respect to c. For 

condition 2, it suffices to show that R contains at most ηΔ2 vertices. It is clear that R

contains at most max{25θ2Δ3, ηΔ2} ≤ ηΔ2 vertices if R is hiding by the properties of 

cS and cS,i. So we may assume that R is not hiding.

Construct R′ from R as we constructed U ′ from U . That is, let R′ be the graph 

obtained from R by deleting V (R) ∩ V (S) − Ω̄ and adding edges on V (R) ∩ Ω̄ such 

that R′[Ω̄] is a complete subgraph for every (S, Ω) ∈ S1, and identifying the vertices 

in V (R) ∩ XS,i ∩ NG(BS,i) of color j in the 3-coloring c into a vertex uS,i,j for each 

(S, Ω) ∈ S2, 1 ≤ i ≤ |Ω̄| and 1 ≤ j ≤ 3. We may again assume that R′ is a subgraph of G′′

with the coloring c′′′. Since R is connected, R′ is connected. Hence, R′ is a monochromatic 

component of G′′ with respect to c′′′ and contains at most 48ρθM |Y |Δ2 vertices.

For each vertex v in R but not in R′, v is either

• contained in a monochromatic component of QS meeting YS ∩ V (R′) with respect to 

c′
S for some (S, Ω) ∈ S1, or

• contained in a monochromatic component of QS,i meeting XS,i ∩ NG(BS,i) with 

respect to c′
S,i for some (S, Ω) ∈ S2 and 1 ≤ i ≤ |Ω̄| such that {xS,i,1, xS,i,2, xS,i,3} ∩

V (R′) 
= ∅.

Therefore, the same argument shows that the number of vertices of R but not in R′ is at 

most 25θ2|R′|Δ2(Δ +1) vertices. As a result, R contains at most |R′|(1 +25θ2Δ2(Δ +1)) ≤
2000ρθ3M |Y2|Δ5 ≤ ηΔ2. This shows that c satisfies condition 2 and completes the 

proof. �
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4. Concluding remarks

We remark that Theorems 1.2 and 1.5 are best possible in the sense that it is impos-

sible to partition the vertex set into three sets such that each set induces a subgraph of 

bounded diameter. The following observation is due to Esperet and Joret. Recall that 

every graph with bounded tree-width does not contain a large grid as a minor.

Theorem 4.1 (Esperet and Joret [private communication, 2015]). For every positive in-

tegers w, d, there exists a graph G of tree-width at most w such that for every w-coloring 

of G, there exists a monochromatic component of G with diameter greater than d.

Proof. We shall construct graphs Gi of tree-width at most i for every i ≥ 1 such that 

every i-coloring of G has a monochromatic component of diameter greater than d recur-

sively. Define G1 to be the path on d vertices. Clearly, G1 has tree-width one and every 

1-coloring of G1 contains a monochromatic component of diameter greater than d.

Assume that we have constructed the graph Gi−1 of tree-width at most i −1 such that 

every (i − 1)-coloring of G has a monochromatic component of diameter greater than d. 

Let n = |V (Gi−1)|. Let T be the rooted n-ary tree with root r such that every internal 

node of T has degree n, and the distance between r and any leaf of T is d. For every node 

t of T , we create a copy Ht of Gi−1, and we denote the vertices of Ht by ut,1, . . . , ut,n. 

For every internal node t of T , we denote the children of t by ct,1, ct,2, . . . , ct,n. Then we 

construct Gi from the disjoint union of Ht for all nodes t of T by adding a new vertex 

v adjacent to all vertices of Hr for the root r of T and adding edges ut,ju′ for every 

non-leaf t of T , 1 ≤ j ≤ n and u′ ∈ V (Hct,j
).

Now we prove that Gi has the desired property. Suppose that f is a i-coloring of Gi

such that every monochromatic component has diameter at most d. As Gi−1 has the 

desired property, V (Ht) receives exactly i colors by f for every vertex t of T . In particular, 

each Ht contains a vertex xt with f(xt) = f(v). Since T contains a path rt1t2 · · · td of 

length d, vxrxt1
xt2

· · · xtd
is a monochromatic path of length d + 1, a contradiction.

In addition, every block of Gi is obtained from a copy of Gi−1 by adding a vertex. So 

the tree-width of Gi is at most the one more than the tree-width of Gi−1. This completes 

the proof. �

Note that the graphs G2 and G3 mentioned in the proof of Theorem 4.1 are outerplanar 

and planar, respectively. So Theorem 1.1 cannot be improved in the same direction, 

either. On the other hand, it is well known that every graph of tree-width at most w

contains a vertex of degree at most w and hence can be properly colored by w +1 colors. 

So Theorem 4.1 is the best possible.

Esperet and Joret [private communication, 2015] also point out that the construction 

of G3 disproves the following conjecture of Nešetřil and Ossona de Mendez [14], since 

long paths have large tree-depth.
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Conjecture 4.2 ([14, Conjecture 7.1]). There exists a constant t such that one can color 

the vertices of every planar graph by 3 colors in such a way that no monochromatic 

component will have tree-depth greater than t.

We also remark that Theorem 1.5 cannot be generalized to graphs with no 

H-topological minor in general. The following is proved by using an idea of Alon et 

al. [1].

Theorem 4.3. For positive integers k, N , there exists a (4k −2)-regular graph G such that 

for every partition of V (G) into k sets X1, X2, ..., Xk, there exists i with 1 ≤ i ≤ k such 

that some component of G[Xi] contains at least N vertices.

Proof. It was proved by Erdős and Sachs [8] that there exists a 2k-regular graph R with 

girth at least N . Since R contains k|V (R)| edges, for any partition of E(R) into k sets, 

some set contains at least |V (R)| edges and hence induces a subgraph W of R having a 

cycle. Since the girth of R is at least N , some component of W contains at least N edges. 

Therefore, for every partition of E(R) into k sets, there exists a set in the partition such 

that some component induced by this set contains at least N edges.

Define G to be the line graph of R. So G is (4k − 2)-regular. Furthermore, every 

partition of V (G) into k sets X1, X2, ..., Xk corresponds to a partition of E(R) into k

sets, so there exists i with 1 ≤ i ≤ k such that G[Xi] has a component with at least N

vertices. �

Since every graph of maximum degree at most 4k − 2 does not contain any graph 

with maximum degree at least 4k − 1 as a topological minor, Theorem 4.3 shows that 

Theorem 1.5 cannot be generalized to topological minor-free graphs in general.
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