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1. Introduction

The famous Four Color Theorem states that every planar graph G admits a partition
of its vertex set into four sets X7, Xo, X3, X4 such that for 1 < i < 4, every component
of the subgraph G[X;] induced on X; has at most one vertex. Certainly there are planar
graphs whose vertex set cannot be partitioned into three such sets. However, Esperet and
Joret [9] proved that the number of sets can be reduced to three, if we relax each X; to
induce a subgraph having no component of size larger than a function of the maximum
degree of G.

Theorem 1.1 (Esperet and Joret [9]). Let 3 be a surface of Euler genus g. If a graph G
is embeddable on ¥ and has maximum degree at most A, then V(G) can be partitioned
into three sets X1, X2, X3 such that for 1 <i < 3, every component of G[X;] has at most
(5A)% = 1(15A)B2A+8)2% yertices.

The number of sets in Theorem 1.1 is best possible, since a k x k triangular grid
has maximum degree six but its vertex set cannot be partitioned into two sets such
that each set induces a subgraph with no component of size less than k£ by the famous
HEX lemma [10]. In contrast, Alon, Ding, Oporowski, and Vertigan [1] showed that for
graphs of bounded tree-width and bounded maximum degree, it is possible to partition
the vertex set into two sets inducing subgraphs having no large components.

Theorem 1.2 (Alon et al. [1, Theorem 2.2]). Let w > 3 and A be positive integers. If
a graph G has mazimum degree at most A and tree-width at most w, then V(G) can be
partitioned into X1, Xo such that for 1 <i < 2, every component of G|X;] has at most
24wA wvertices.

It was pointed out by Esperet and Joret [private communication, 2015] that the condi-
tion of maximum degree mentioned in Theorem 1.2 cannot be removed. See Theorem 4.1
for details.

Though it is impossible to partition all planar graphs of bounded maximum degree
into two induced subgraphs with components of bounded size, it is possible to partition
them such that the tree-width of every component is small. More precisely, DeVos, Ding,
Oporowski, Sanders, Reed, Seymour, and Vertigan [3] proved the following result, which
was conjectured by Thomas [19]. A graph H is a minor of a graph G if a graph isomorphic
to H can be obtained from a subgraph of G by contracting edges.

Theorem 1.3 (DeVos et al. [3]). For every graph H, there exists an integer N such that
if H is not a minor of G, then V(G) can be partitioned into two sets X1, Xo such that
the tree-width of G[X;] is at most N for 1 <4 < 2.

3 In [1], Theorem 1.2 is stated without requiring w > 3. However, [1] cites [5, (3.7)], which requires w > 3.
However, Theorem 1.2 is true even if w < 3, because a stronger statement was proved by Wood [20].
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Alon, Ding, Oporowski, and Vertigan [1] combined Theorems 1.2 and 1.3 to prove the
following theorem.

Theorem 1.4 (Alon et al. [1, Theorem 6.7]). For every graph H and every positive integer
A, there exists an integer N such that if H is not a minor of a graph G of the mazximum
degree at most A, then V(G) can be partitioned into four sets X1, Xo, X3, X4 such that
for 1 <i <4, every component of G[X;] has at most N vertices.

In this paper, we prove the following strengthening of Theorems 1.1 and 1.4 and
answer a question of Esperet and Joret [9, Question 5.1].

Theorem 1.5. For every graph H and every positive integer A, there exists an integer N
such that if H is not a minor of a graph G of the mazimum degree at most A, then V(Q)
can be partitioned into three sets X1, Xo, X3 such that for 1 <1 < 3, every component
of G[X;] has at most N wvertices.

Strengthening to odd minors. Indeed, we prove a stronger theorem in terms of odd mi-
nors as follows. A graph H is an odd minor of a graph G if there exists a set {(T%) }vev (a)
of vertex-disjoint subgraphs of G that are trees such that each tree T, is properly colored
by colors 1 and 2 and for each edge uw of H, there exists an edge joining T3, and T,
whose ends have the same color.

Theorem 1.6. For every graph H and every positive integer A, there exists an integer
N such that if H is not an odd minor of a graph G of the mazimum degree at most A,
then V(G) can be partitioned into three sets X1, Xo, X5 such that for 1 < i < 3, every
component of G[X;] has at most N wvertices.

Since every odd minor of a graph G is also a minor of G, Theorem 1.6 trivially implies
Theorem 1.5.

Interestingly Demaine, Hajiaghayi, and Kawarabayashi [2] proved a result analogous
to Theorem 1.3 for odd minors, claiming that graphs with no odd H-minor can be
partitioned into two induced subgraphs of bounded tree-width. This with Theorem 1.2
would imply that graphs with no odd H-minor having bounded maximum degree can
be partitioned into 4 induced subgraphs each having no large components. Theorem 1.6
reduces the number of induced subgraphs from four to three.

Applications to a weaker version of Hadwiger’s conjecture. As an application of The-
orem 1.5, we investigate the following relaxation of Hadwiger’s conjecture: what is the
minimum k£ as a function of ¢ such that for some N, every graph G with no K;i; mi-
nor admits a partition of V(G) into k sets X1, Xo,..., X with the property that each
G[X;] has no component on more than N vertices? Hadwiger’s conjecture [12], if true,
would imply that & = ¢ (with N = 1). Kawarabayashi and Mohar [13] proved that
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k < [15.5(t+ 1)], and Wood [21] proved that k < [3.5¢ + 2]. We improve these results
by using a recent result of Edwards, Kang, Kim, Oum, and Seymour [7].

Theorem 1.7 ([7]). For every positive integer t, there exists s such that if Kii11 is not a
minor of a graph G, then V(G) can be partitioned into t sets X1, Xa,...,X; such that
for 1 <i<t, G[X;] has mazimum degree at most s.

Theorem 1.8. For every positive integer t, there exists N such that if Kyy1 is not a minor
of a graph G, then V(G) can be partitioned into 3t sets X1, Xa, ..., X3t such that for
1 < < 3t, every component of G[X;] has at most N vertices.

Proof. By Theorem 1.7, there exists an integer s such that V(G) can be partitioned into
t sets V1, Va, ..., V; such that the maximum degree of G[V;] is at most s for 1 < i < ¢.
By Theorem 1.5, there exists an integer N depending only on ¢ such that for 1 <i <,
V; can be partitioned into three sets V1, Via, Vis and each of G[V;1], G[Vi2], G[V;3] has
no component having size larger than N vertices. 0O

In this paper, graphs are simple. A k-coloring of a graph G is a function mapping the
vertices of G into the set {1,2,...,k}. A monochromatic component is a component of
the subgraph induced by the vertices of the same color in a given k-coloring. The size of a
component is the number of its vertices. For a graph G and a set X of vertices, let Ng(X)
be the set of vertices not in X but adjacent to some vertex in X and Ng[X] = Ng(X)UX.
For a vertex v of a graph G, let Ng(v) = Ng({v}).

The proof of Theorem 1.6 uses the machinery in the Graph Minors series of Robertson
and Seymour and the structure theorem of graphs with no odd minors by Geelen, Ger-
ards, Reed, Seymour, and Vetta [11]. A theorem by Robertson and Seymour [18] states
that every graph that excludes a fixed graph as a minor can be “decomposed” into
pieces satisfying certain structure properties. We will review some tools in the Graph
Minors series and modify the aforementioned pieces such that they are relatively easier
to be 3-colored with small monochromatic components in Section 2. In Section 3, we
complete the proof of Theorem 1.6 by first 3-coloring the aforementioned pieces and
then extending the coloring to the whole graph. Finally, we will make some remarks in
Section 4.

2. Structure theorems
In this section, we review some notions in the Graph Minors series of Robertson and
Seymour and derive a structure for graphs without a fixed graph as a minor.

A tree-decomposition of a graph G is a pair (T, X) such that T is a tree and X =
{X::t €V (T)} is a collection of subsets of V(G) with the following properties.

* UteV(T) X; =V(G).
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o For every e € E(G), there exists t € V(T') such that X; contains both ends of e.
o For every v € V(G), the subgraph of T induced by {t € V(T) : v € X;} is connected.

For every t € V(T), X; is called the bag of t. The width of (T, X) is max{|X;| : t €
V(T)} —1. The adhesion of (T, X) is max{|X;NXy| : tt’ € E(T)}. A tree-decomposition
(T, X) is a path-decomposition if T is a path. The tree-width of G is the minimum width
of a tree-decomposi tion of G.

A separation of a graph G is an ordered pair (A, B) of subgraphs with AUB = G
and E(AN B) = ), and the order of a separation (A, B) is |[V(A) NV (B)|. A tangle T
in G of order 6 is a set of separations of G, each of order less than 6 such that

(T1) for every separation (A, B) of G of order less than 6, either (4, B) € T or (B, A) €
T;

(T2) if (Al, Bl), (AQ, BQ), (Ag, B3) €T, then A1 U Ay U A3 # G,

(T3) if (A,B) € T, then V(A) # V(G).

Tangles were first introduced by Roberson and Seymour [16]. We call (T1), (T2) and
(T3) the first, second and third tangle axiom, respectively. For a subset Z of V(G) with
|Z] < 0, we define T — Z to be the set of all separations (A’, B') of G — Z of order less
than 6 — |Z| such that there exists (A,B) € T with Z C V(A)NV(B), A’ =A—-Z
and B’ = B — Z. We remark that 7 — Z is a tangle in G — Z of order 6 — |Z] by [16,
Theorem 8.5].

Given a graph H, an H-minor of a graph G is a map « with domain V(H) U E(H)
such that the following hold.

e For every h € V(H), a(h) is a nonempty connected subgraph of G.

e If hy and hy are different vertices of H, then «(h1) and a(hy) are disjoint.

o For each edge e of H with ends hq, ha, a(e) is an edge of G with one end in a(hq)
and one end in a(hsg); furthermore, if hy = ho, then a(e) € E(G) — E(a(hy)).

o If e1,e9 are two different edges of H, then a(e1) # af(es).

We say that G contains an H-minor if such a function « exists. A tangle 7 in G controls
an H-minor « if 7 has no (A, B) of order less than |V (H)| such that V(a(h)) C V(A)
for some h € V(H).

A society is a pair (S, ), where S is a graph and €2 is a cyclic permutation of a subset
Q of V(S). For a nonnegative integer p, a society (S,Q) is a p-vortex if for all distinct
u,v € €, there do not exist p+1 mutually disjoint paths of S between TU{u} and JU{v},
where I is the set of vertices in Q after u and before v in the order 2, and J is the set
of vertices in Q after v and before u. For a society (S, Q) with Q = {v1,vs,... 7U|Q\} in
order, a vortical decomposition of (S,€) is a path-decomposition (tits---tq, X) such
that the i-th bag of X contains the i-th vertex v; for each 1.
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Theorem 2.1 (Robertson and Seymour [15, (8.1)]). Every p-vortex has a vortical decom-
position with adhesion at most p.

A segregation of a graph G is a set S of societies such that

o S is a subgraph of G for every (S5,Q) € S, and {5 : (5,Q) € S} =G,
o for every distinct (S,9Q) and (S/,Q) €S, V(SNS) C QAN and E(SNS’) = 0.

We write V(S) = U{Q : (S,Q) € S}. For a tangle T in G, a segregation S of G is
T -central if for every (S,Q) € S, there is no (A, B) € T with B C S.

A surface is a nonnull compact connected 2-manifold without boundary. Let 3 be a
surface. For every subset A of ¥, we denote the closure of A by A and the boundary
of A by OA. An arrangement of a segregation S = {(S1,Q1),...,(Sk, Q) } in ¥ is a
function o with domain S U V/(S), such that the following hold.

o For1<i<k, afS;)is a closed disk A; C ¥, and a(z) € dA; for each x € Q;.

o For1l<i<k ifz € AjNAj, then x = a(v) for some v EQ_iﬁQ_j.

o For all distinct =,y € V(S), a(z) # a(y).

e For 1 <i <k, € is mapped by a to the natural order of a(£;) determined by 9A,.

An arrangement is proper if A; N A; = () whenever €], |Q;| > 3, forall 1 <i < j <k.

An O-arc is a subset homeomorphic to a circle, and a line is a subset homeomorphic

0 [0,1]. A drawing T in a surface ¥ is a pair (U, V), where V C U C X, U is closed, V
is finite, U — V" has only finitely many arc-wise connected components, called edges, and
for every edge e, either € is a line with set of ends €NV, or € is an O-arc and |eNV| = 1.
The components of ¥ — U are called regions. The members of V' are called vertices. If v
is a vertex of a drawing I" and e is an edge or a region of I', we say that e is incident with
v if v is contained in the closure of e. Note that the incidence relation between vertices
and edges of I" defines a multigraph, and we say that ' is a drawing of a multigraph G
in ¥ if G is defined by this incident relation. In this case, we say that G is embeddable
in 3, or G can be drawn in X. A drawing is 2-cell if ¥ is connected and every region is
an open disk.

A drawing T' = (U, V) in X is the skeleton of a proper arrangement « of a segregation
Sin Ejf V = U,ev(s)@(v) and U consists of the E)undary of a(S5, Q) for each (S,_Q) €S
with || = 3, and a line in (S, Q') with ends € for each (5',Q) € § with || = 2.
Note that we do not add any edges into the skeleton for (S, ) with |Q| < 1 or || > 3.

A segregation S of G is mazimal if there exists no segregation S’ such that {(5,Q) €
S:|Q >3} ={(5,) €S : |V >3} and for every (S,Q) € S with |Q < 3, there
exists (S7,Q') € &’ with || < 3 such that S’ C S, and the containment is strict for at
least one society. Note that if S is maximal, then for every (S,Q) € S with |Q| < 3 and
every v € Q, there exist |Q| — 1 paths in S from v to Q — {v} intersecting only in v. In
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particular, the maximum degree of the skeleton of a proper arrangement of a maximal
segregation of G is at most the maximum degree of G.

By taking advantage of a theorem by Robertson and Seymour [17, Theorem (9.2)],
the following statement is an easy corollary of a theorem in Dvordk [6, Theorem 7] by
choosing the function ¢ in [6, Theorem 7] to be the constant function 4d 4+ 5. (We omit
the statements of [17, Theorem (9.2)] and [6, Theorem 7] as they require a couple of
definitions to be formally stated but will not be further used in the rest of the paper.)

Corollary 2.2. For every graph L, there exists an integer k such that for every positive
integer d, there exist integers 0,&,p with the following property. If a graph G has a
tangle T of order at least 6 controlling no L-minor of G, then there exist Z C V(G) with
|Z] <&, a mazimal (T — Z)-central segregation S = S USy of G — Z with |Sa| < k and
a proper arrangement o of S in some surface ¥ in which L cannot be drawn, such that
Q| < 3 for all (S,Q) € S1, every member in Sy is a p-vortex, and the skeleton G’ of «
of § in X satisfies the following.

1. G’ is 2-cell embedded in 3.

2. For every (S,Q) € Sa, there exists a closed disk Dg in Y. containing a(S) and disjoint
from U(S',Q')ESQ—{(S7Q)} Dgr such that Dg contains every vert?x of G’ that can be
connected by a path in G’ of length at most d from a vertez in €.

3. For distinct (S,Q),(S", Q) € Sa, there exists no path of length at most 2d + 2 in G’
from Q to Q.

Let Gy be a drawing in a surface ¥ with k pairwise disjoint closed disks Dy, Do, ...,
Dy, such that each disk intersects G only in vertices of Gy and contains no vertex of Gy
in its interior. For 1 <7 <k, let v; 1,v;2,...,V;n; be the vertices of Gy N dD; appearing
on 0D; in order. For a positive integer w, a graph G is an outgrowth by k w-rings of a
graph Gg in ¥ [18] if

¢ there exist k societies (S1,€1), (S2,Q2), ..., (Sk, Q) such that G = Go U Ule S;
and Q; = {v; 1,i2,...,Vin,} in order and S; NGy = Q; for 1 <i <k,

o for 1 <i <k, S; has a path-decomposition (t; 1t;2 - -t;n,,X;) of width at most w
such that v; ; € X; ; for 1 < j < n;, where X, ; is the bag at ¢; ;.

In addition, for d > 0, we say that G is d-local if G satisfies the following.

e For 1 < ¢ < k, there exists a closed disk D in ¥ containing D; and disjoint from
U i D; such that D contains every vertex of Gy that can be connected by a path
in Gy of length at most d from a vertex in V(Go) N 9D;.

e For 1 < i < j <k, Gy has no path of length at most 2d + 2 from a vertex in
V(Go) NOD,; to a vertex in V(Go) N OD;.
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Let S be a segregation of a graph G. Assume that for every (S,Q) € S with |Q| >
3, there exists a path-decomposition (Ps = tits - ~t‘Q|,XS) such that the bag at t;,
denoted by Xg;, contains the i-th vertex vg; in Q, for every 1 < i < |Q|. For every
(S,9) € S with || > 3, let Gg be the graph obtained from the subgraph of S induced
by QU Ugfl(XS,i N Xg+1) by adding three new vertices zg;1, Zs,2, £33 for each
i€{1,2,...,|Q|} with the same set of neighbors

Ng(Xs,i — ({vsi} U Xsi-1U Xsi+1)) N ({vs,i} U Xsi1 U Xgit1),

where X5 = Xg 511 =0

Let Gy be the skeleton of a proper arrangement « of S in a surface ¥. We define the
extended skeleton of o of S in & with respect to {(Ps, Xs) : (S,Q) € S, |Q| > 3} to be the
graph obtained from the disjoint union of Gy and Gy for every (S,Q) € S with |Q] > 3
by identifying the copies of the i-th vertex of Q in Gy and G5 for each (S,Q) € S with
|Q| > 3 and for every 1 <i < |Q|. Note that if there are at most # members (S, Q) of S
with |Q| > 3 and the adhesion of each (Ps, Xs) is at most p, then the extended skeleton
of a of § is an outgrowth by k (2p + 3)-rings of Gy in X. Furthermore, if S is a maximal
segregation, then the maximum degree of the extended skeleton of @ of S in ¥ is at most
max{3A,2p + 1}, where A is the maximum degree of G.

Theorem 2.3. For every graph L and positive integer d, there exist integers k,0,&, p with
the following property.

If a graph G has a tangle T of order at least 6 controlling no L-minor of G, then there
exist Z C V(GQ) with |Z| < & and a mazimal (T — Z)-central segregation S of G — Z
with a proper arrangement « in a surface ¥ in which L cannot be drawn, such that if

S1={(5,92)€S8:1Q <3} and S, =S — S, then

1. |S2| < k and every (S,) € Sz is a p-vortex with a vortical decomposition (Pg, Xs)
of adhesion at most p,

2. the extended skeleton of o of S in ¥ with respect to {(Ps,Xs) : (S,Q) € Sa2} is a
d-local outgrowth by k (2p+ 3)-rings of the skeleton of a of S in X, whose maximum
degree is at most max{3A,2p + 1}, where A is the mazimum degree of G.

Proof. Let k,0,&, p be the numbers, S = §; U S, the segregation of G, X the surface, o
the arrangement of S in ¥ obtained by applying Corollary 2.2. By Theorem 2.1, for every
(5,9Q) € Sy, S has a vortical decomposition (Ps, Xg) of adhesion at most p. Therefore,
the extended skeleton of « of S in ¥ with respect to {(Ps, Xs) : (S,€2) € Sa} is a d-local
outgrowth by k (2p + 3)-rings of the skeleton of o of S in ¥. Since S is maximal, the
maximum degree of the extended skeleton of @ of S is at most max{3A,2p+1}. O
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3. Monochromatic components

For an integer ¢ > 0, a g-necklace with chain vivs...v, is a multigraph G with
V(G) = {v1,va,...,v,} such that

e VU2 V,Y IS a cycle C

e (G contains pairwise edge-disjoint complete subgraphs M, Ms, ..., M} each having
at most ¢ vertices such that F(G) — E(C) = Ule E(M;), and

o there exist no integers i, j, a, b, ¢,d with i # j and a < b < ¢ < d such that {v,,v.} C
V(M;) and {wvy,va} C V(DM).

Note that every 2-connected outerplanar multigraph is a 2-necklace.
Lemma 3.1. Every q-necklace has tree-width at most max{q — 1,2}.

Proof. Let G be a g-necklace with n vertices vy, vs,...,v, and k complete subgraphs
My, Ms, ..., My each having at most ¢ vertices. Since outerplanar multigraphs have
tree-width at most 2, we may assume that ¢ > 3 and k > 1.

We claim that there is a tree-decomposition (7', X) of width at most ¢ — 1. We proceed
by induction on k. If £ = 1, then it is trivial to find such a tree-decomposition (7', X),
as the graph G is isomorphic to a graph obtained from M; by adding many paths. In
(T, X), one bag is M7 and other bags have at most three vertices.

Now suppose that k& > 1. We may assume that V(Mi) = {vi,vi,,...,v,} with
1 <41 <idg < -+ < ig < n. We may assume that i; = 1 by rotating labels. Let
igy1 = n+ 1 and v,41 = v1. For j € {1,2,...,q}, let W; = {v;,,vi,41,..., 05, }. It
is easy to see that G[W)] is a ¢g-necklace and so it has a tree-decomposition (T}, X;) of

width at most ¢ — 1. Since v;; is adjacent to v; T; has a node t; whose bag contains

J410
vi; and vy, ;.

Let T be the tree obtained from the disjoint union of all 7; by adding a node ¢ adjacent
to all ¢;. Let M; be the bag corresponding to ¢ and we assign bags to all other nodes
of T" according to A for some j. It is easy to see that this is a tree-decomposition of

width at most ¢ — 1. O

We use the same idea of the proof of [4, Lemma 8.1] to prove the following general-
ization.

Lemma 3.2. For an integer ¢ > 3, let H be a g-necklace with chain uius---u,. Let
(S,9) be a society with a vortical decomposition (tite---t,, X) of width w. If G is the
multigraph obtained from the disjoint union of S and H by identifying u; with the i-th
vertex of Q for each 1 <i < n, then G has tree-width at most q(w +1) — 1.

Proof. Let X; be the i-th bag of X. By Lemma 3.1, H has a tree-decomposition (T, X’)
of width at most ¢ — 1. We denote X’ by {X{ : t € V(T)}. For every t € V(T), define
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X! =X{UU{X; uw € X[,1<i<n}and X" ={X/ :t € V(T)}. Since there exists a
path in H passing through uq, ug, ..., uy in order, (T, X") is a tree-decomposition of G
and

X0 < (w+ DIX] < gw+ 1),
So the width of (T, X") is at most ¢(w +1) —1. O

For a positive integer k and a graph G, we say that a k-coloring c of a subgraph H of
G can be extended to a k-coloring of G or can be extended to G if G has a k-coloring ¢/
such that ¢/'(v) = ¢(v) for every v € V(H).

Lemma 3.3. Let A, k,w and g be positive integers. Let ¥ be a surface of Euler genus g,
and let d = (5A)%"~1(15A)B2A+8)2° ' [f G is a d-local outgrowth by k w-rings of a graph
Go in X and G has mazimum degree A\, then G can be 3-colored in such a way that every
monochromatic component has at most 48d*wA® vertices.

Proof. We may assume that A > 3. Let Di,Ds,..., Dy be the closed disks and
(S1,),...,(Sk, Q) the societies mentioned in the definition of an outgrowth G by
k w-rings of Gg in X.

By Theorem 1.1, there exists a 3-coloring ¢ of G — Ule V(S;) such that every
monochromatic component has at most d vertices. Let L; be the set of vertices of
G- U’,zzl V(S;) that has a monochromatic path to a vertex in Ng(V(S;)) with respect
to ¢. Since G is d-local, L; N L; = 0 for 1 <i < j < k. Let G; = G[L; UV (S;)]. To prove
this lemma, it suffices to show that for every 1 < i < k, the 3-coloring on G; — V(.5;)
can be extended to a 3-coloring of G; such that every monochromatic component of G;
has at most 48d*wA® vertices.

For 1 < i < k, define H; to be the multigraph obtained from G[V(S;)] by first adding
a cycle passing through €; in order and adding a complete graph on Ng(V (C)) NV (S;)
for each monochromatic component C' of G; — V(.S;). Since each C' contains at most d
vertices, each of added complete subgraphs has at most dA vertices. Since G is d-local,
H;[Q;] is a dA-necklace. Hence, the tree-width of H; is at most dA(w + 1) — 1 by
Lemma 3.2, and the maximum degree of H; is at most (dA — 1)A +2 < dA?% as A > 3.
By Theorem 1.2, there exists a 3-coloring of H; (in fact, a 2-coloring) such that every
monochromatic component of H; contains at most 24 - dA(w + 1) - dA? vertices.

Now, we extend the 3-coloring ¢ of G; — V(.S;) to the 3-coloring ¢’ of G; by taking
the 3-coloring of H; on V (S;). Let @ be a monochromatic component of G; with respect
to /. We know that [V(Q) NV (S;)] < 24 -dA(w + 1) - dA®. Since H; has maximum
degree at most dAZ?, each vertex of H; may join at most dA? distinct monochromatic
components of H; — V(5;), each having at most d vertices. Thus, @} contains at most

(24 - dA(w + 1) - dA?) - dA? - d < 48d*wAS

vertices. This completes the proof. O
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The following simple lemma is a stronger statement of [9, Observation 3.9]. This
lemma is obvious, so we omit the proof.

Lemma 3.4. Let G be a graph of maximum degree A and Z a subset of V(G). Assume
that G has a coloring such that every monochromatic component has size at most an
integer k. If we recolor some vertices in Z, then the union of the monochromatic compo-
nents intersecting in Z in the new coloring has at most |Z|(Ak + 1) vertices, and every
monochromatic component disjoint from Z in the new coloring has at most k vertices.

We use the following theorem of Geelen et al. [11] on odd minors.

Theorem 3.5 (Geelen et al. [11, Theorem 13]). There is a constant ¢ such that if G
contains a Ky-minor a where t = [cl/log 120], then either G contains an odd Ky-minor,
or there exists a set X of vertices with | X| < 8¢ such that the (unique) block U of G — X
that intersects all branch vertices of o disjoint from X is bipartite.

Our main theorem, Theorem 1.6, is an immediate corollary of the following stronger
theorem by taking Y = §).

Theorem 3.6. For every graph W and positive integer A, there exists an integer n such
that if W is not an odd minor of a graph G of mazimum degree at most A, then for
every subset Y of V(G) with |Y| <, every 3-coloring of Y can be extended to that of
G satisfying the following.

(i) The union of all monochromatic components of G meeting Y contains at most |Y|?A
vertices.
(ii) Every monochromatic component of G contains at most A vertices.

Proof. We may assume that A > 1. Since G does not have an odd W-minor, by Theo-
rem 3.5, there exist sufficiently large integers ¢ and ¢t = [¢|V (W)|y/log 12|V (W)]|] such
that if G has a Ki;-minor «, then it has a set X of vertices such that |X| < 8|V(W)]
and the (unique) block U of G — X intersecting all branch vertices of « is bipartite. Let
L =K;.

Let d = (5A)%~1(15A)(3224+8)2° " where g is the maximum genus of a surface in
which L cannot be drawn. (If L is planar, then let g = 0.) Let s, ¢, 0 and p be given by
Theorem 2.3 for L and d. We may assume that 6 > 8|V(W)| + 1. Let M = 48d*(2p +
3)(3A + 2p)5 and 1 = 2000063 M AS.

We proceed by induction on |V(G)|. It is trivial if |V(G)| < 1, because n > 1 and
A > 0. Thus we may assume that |[V(G)| > 2. Let Y be a subset of V(G) with at most 7
vertices. We may assume that Y is nonempty, because otherwise we can add one vertex
toY. Let ¢y : Y — {1,2,3} be a given 3-coloring of Y. We say that a 3-coloring ¢ of
G is Y -good with respect to cy if it extends cy and satisfies the conditions 1 and 2 of
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the theorem. Suppose that G has no Y-good 3-coloring with respect to cy. Note that
for the condition 2, it is unnecessary to consider monochromatic components meeting Y
because it follows from the condition 1.

For a subset X of V(G), we write 1x to denote a 3-coloring of X coloring all vertices
of X by 1. Similarly we define 2x and 3x.

Claim 1. [Y| > £&.

Proof of Claim 1. Let Y1 = Ng(Y) and Y2 = Ng(Y UY1). Note that |Ya| < |V |A(A —
1) < 5. By permuting colors, we may assume that 3 € ¢y (Y). We apply the induction
hypothesis to G — (Y UY}) with the 3-coloring 1y, of Y5 to obtain a Y3-good 3-coloring
cof G— (Y UY7). Let ¢ be a 3-coloring of G such that

cy(v) ifv ey,
dv) =142 ifvey,
clv) ifvgYUY.

No monochromatic component of G with respect to ¢’ can meet both Y UY; and Y,
because Y7 and Y, are colored differently. Since ¢ is Ys-good, every monochromatic
component of G disjoint from Y UY] contains at most n?A vertices. The union of the
monochromatic components of G meeting Y UY7 contains at most |[Y UY7| < (A+1)[|Y]
vertices. If (A + 1)|Y] < |Y|?A, then it implies the condition 1 and condition 2 for
monochromatic components meeting Y UY;. If |[Y| > 2, then |[YUY;| < |[Y[?A;if |YV]| =1,
then the monochromatic component of G meeting Y contains exactly one vertex of color
3. Therefore ¢ is Y-good, contradicting our assumption. 0O

Claim 2. There exists no separation (A, B) of G of order less than 6 such that |(V(A) —
V(B))NY| > 30 and |(V(B) = V(A)NY]| > 36.

Proof of Claim 2. Suppose that G has a separation (A, B) of order less than 6 such
that a = [(V(A) = V(B))NY| >30and b = [(V(B) = V(A)NY| > 30. Let Y4 =
YuV(B))NV(A) and Yp = (Y UV (A)) NV (B). Then,

Y2 = ([Yal®> + Y8*) > (a+0)* = (a+0)* = (b+0)*
2ab  2ab  2ab
=4 7T 9 — 92¢?
3 + 3 + 3 (a+b)0 0

> 2a6 + 2b0 + 60* — 2(a + b)f — 20* = 46* > 0.

Now we shall construct a desired 3-coloring of G. We first color vertices in Y4 —
Y(= Yp — Y) arbitrary. Since |[V(A)| < |V(G)| — 360 and |[Ya| < |Y] — 260, we can
apply the induction hypothesis to the graph A with Y, precolored. Similarly, we can
further apply the induction hypothesis to the graph B with Yp precolored. So by merging
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the 3-colorings of A and B, we obtain a 3-coloring of GG. Let U be the union of the
monochromatic components of G either meeting Y, or meeting both A and B. Note
that every component of U meets Y4 U Yg. By the induction hypothesis, U contains at
most (|Yal? + |YB[?)A < |Y|?2A vertices. On the other hand, the induction hypothesis
implies that every monochromatic component of G disjoint from Y contains at most n2A
vertices. Therefore, G has a Y-good 3-coloring, contradicting our assumption. 0O

We define T to be the set of all separations (A, B) of G of order less than 6 such that
[(V(B)—=V(A)NY]| > 36.

Claim 3. T is a tangle in G of order 0.

Proof of Claim 3. Observe that there exists no separation (4, B) of order less than 6
such that |(V(A) = V(B))NY| < 30 and |(V(B) — V(A)) NY]| < 36, since otherwise
Y] < 76 < £, contradicting Claim 1. So T satisfies the first tangle axiom.

Suppose that there exist (A;, B;) € T for 1 < j < 3 such that A; U A, U A3 = G. By
Claim 2, [(V(A4,) = V(B;))NY| <30 for 1 <j<3. So|V(4;)NY| <46 forl1<j<3.
As a result, |Y| < Z§:1|Y NV (A4;)] < 120 < Z&, a contradiction. Hence the second
tangle axiom holds.

If V(A) = V(G) for some (A, B) € T, then |Y| < 40 < z& by Claim 2, a contradiction.
Therefore, T is a tangle of order §. O

Claim 4. 7 controls no L-minor.

Proof of Claim 4. Suppose that 7 controls an L-minor «. Since « is an L-minor in G,
by Theorem 3.5, there exists a set X of vertices such that |X| < 8|V (W)]| such that the
unique block U of G — X intersecting all branch vertices of « disjoint from X is bipartite.

Let C1,Cs,...,Cy, be the list of induced subgraphs of G — X — V(U) such that
G — X — V(U) is the disjoint union of Cy,Cy,...,Cy,, each component of C; has the
same set of neighbors in U, and for i # j, the set of neighbors of C; in U is not equal to
that of C; in U.

As U is a block of G — X, each C; has at most one neighbor in U. For each i €
{1,2,...,m}, Let A; be the subgraph of G induced by the union of X, V(C;), and
the set of all neighbors of V(C;) in U. Let B; be the subgraph of G — E(A;) induced
on V(G) — V(C;). Note that (A;, B;) is a separation of G such that |V (A4;) NV (B;)| <
| X|+1 <8|V(W)|+1< 6. As T is a tangle of G of order 0, (A;, B;) € T or (B;, A;) € T.
Since 7T controls an L-minor « and all branch vertices of a disjoint from X intersect U,
(4;, B;) € T. By the definition of 7, we deduce that

|(V(Bi) = V(A;))NY]| > 30.

By Claim 2, |(V(A;) — V(B;))NY]| < 36.
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First we properly color U by colors 1 and 2 and color all vertices in X by color 3.
This coloring of G[V (U)U X] has the property that each monochromatic component has
at most | X| < @ vertices. Then we recolor vertices in Y N (V(U) U X) by its given color.
By Lemma 3.4, this new coloring of G[V (U) U X] has the property that the union of all
monochromatic components intersecting Y N (V' (U) U X) has at most n(A0+1) < 2nAd
vertices.

Foreachi € {1,2,...,m},let Y/ = (YNV(A;))U(V(A;)NV (B;)). Note that |Y/| < 46.
By the induction hypothesis, there exists a Y;-good coloring f; of A; extending the color-
ing of G[V(U)U X] given in the previous step such that the union of all monochromatic
components of A; in f; intersecting Y, has at most (46)?A vertices and every monochro-
matic component of A; in f; has at most n?A vertices.

Let f be a 3-coloring of G obtained by combining the coloring of G[V(U)U X] and the
coloring f; for each i € {1,2,...,m}. This coloring f is well-defined and furthermore the
union of all monochromatic components in G intersecting Y UX U™, (V (A4;)NV (U)) has
at most (2nA0)(460)?A? < |Y|?A vertices. In addition, each monochromatic component
in G not intersecting Y U X U ;" ,(V(A;) N V(U)) has at most n?A vertices. This
completes the proof. O

Now we may assume that 7 controls no L-minor. By Theorem 2.3, there exist Z C
V(G) with |Z] < £ and a maximal (T — Z)-central segregation S = S; USz of G — Z
properly arranged by an arrangement « in a surface ¥ in which L cannot be drawn,
where every (S,Q) € S; has the property that || < 3, and |S;| < k and every member
(5,9Q) in Sy is a p-vortex with a vortical decomposition (Pg, Xs) of adhesion at most p
such that the extended skeleton of « of S in ¥ with respect to {(Ps, Xs) : (S,9) € Sa},
denoted by G’, is a d-local outgrowth by x (2p + 3)-rings of the skeleton of @ of S in &
and the maximum degree of G’ is at most max{3A,2p + 1} < 3A + 2p.

Let ¢’ be a 3-coloring of G’ given by Lemma 3.3 such that every monochromatic
component of G’ with respect to ¢’ contains at most M vertices. Let G' be the graph
obtained from the disjoint union of G’ and G[Z] by adding the edges of G between
Z and V(G') N V(G). Then we extend ¢’ to a 3-coloring ¢” of G” by coloring every
vertex in Z by color 1. Then each monochromatic component in G” contains at most
max(|Z],1)(MA + 1) vertices. Since |Z| < 0, we know that max(|Z],1)(MA + 1) <
20M A. Note that the maximum degree of G” is still at most 3A + 2p.

For each (5,9Q) € 81, let Qs = G[V(S)U Z] and

Ys=QUZU (Y NV(S))).

Since QU Z| < |Z|+3 <0, (Qs,G — (V(S) — Q) — E(Qs)) is a separation of G having
order less than 6. Since S is (T — Z)-central, (Qs,G — (V(S) — Q) — E(Qs)) € T and
therefore |[Y NV(S)| < 46. So |Ys| < |Z|+3+|Y NV(S)] <&+ 3+ 40 <60A <.
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For each (S,Q) € Sy and 1 <4 < |Q], let Xg; be the i-th bag of X5, which contains the
i-th vertex V3, in Q; let QS,Z‘ = G[Xs’i UZ], BS,i =7U (XS,i N (XS,ifl UXS’iJrl U {’USJ'}))
where Xs0 = Xg q141 = 0; let

YS,Z’ = BS,i U (Ng(Bsyi) n XS,Z‘) U (Y n XS,i)o

Note that there exists (A4, B) € T with V(A) N V(B) = Bg,; and G[Xg;] C A, since
|Bsi| <2p+1+¢ < 6and Sis (T — Z)-central. Thus, |Y N Xg,;| < 46 and therefore
[Ysi| <[Bs,i UNg(Bs,i) U (Y NXg;)| <O(A+1)+40 <60A <.

For (S,Q) € Sy and 1 < i < [Q], let xs,i1,%8,,2,2s,,3 be the vertices of G’ mentioned
in the definition of the extended skeleton, and let Wg o be a minimum set with Wg o C
{xsyi,l, TSi2, xswi’g,} and |Wsyg| < min{|Y N XsiN Ng(Bsyi)L 3}.

Now we define a new 3-coloring ¢’’’ of G” by the following rule.

o M) =cy(v)ifveY NV(G").

e For (S5,Q) € Sy and 1 < i < |Q)], define ¢” on {si1,%s,i2,Csi3} such that
"{xsi1,%s,2,25i3}) 2 cy(Y N Xg; N Ng(Bs,;)) and ”(v) = ¢’ (v) for every
vE{T541,2542, 53} — Ws.q.

o "(v) = " (v) for other vertices of G”.

Let
YV ={veV(G"):"w)#)}u¥ NV(G)HUZ

U U Q,

(S,Q2)E€S1,YNV(S)—Q#£D

Yi={veY:veV(S)—Q for some (S,Q) € S;}
U{veY :ve Xg; — (Bs;UNg(Bs;)) for some (S,Q) € S2,1 <i < [Q},

and Yo = Y — V3. Since Xg; N Ng(Bs;) are pairwise disjoint for different pairs
of (5,Q) € & and i, |Y'| < |Ya] + 0 + 3|Y1| < 4]Y|. Hence, the union of the
monochromatic components in G with respect to ¢’ intersecting Y’ contains at most
4Y|((3A +2p)(20MA) + 1) < 48p0 M |Y |A? by Lemma 3.4. And every monochromatic
component in G” with respect to ¢’ disjoint from Y’ has at most 20 M A vertices.

For (S,Q) € 8y, let ¢g be a 3-coloring of Yg such that

() cy(v) ifvey,
cs(v) = _
° d"wv) ifveQUZ,

for v € Ys. As |Ys| < n, we can apply the induction hypothesis to Qg with the 3-coloring
cg to obtain a Yg-good 3-coloring ¢ of Qs.
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For (5,Q) € Sy and 1 <i < |Q], let ¢s,i be a 3-coloring of Ys; such that

cy (v) ifvey,
CS’J(”) = CW(U) ifveQuUZU (XS,i N (XS,i—l @] Xs7i+1)),
c’”(xs,i’l) ifve (N(;(Bs’i) N Xs’i) -Y,

for v € Yg,. As |Ys;| < 7, we can apply the induction hypothesis to Qg,; with the
3-coloring cg; to obtain a Yg ;-good 3-coloring ClS,i of Qg
Let ¢ be a 3-coloring of G such that

W) ifveV(G"),
cs(v) if v € V(S) — Q for some (5,9) € Sy,
c’S,i(v) iftve Xg,; — Bs,

for some (5,Q) € S; and 1 <i < |Q|

c(v) =

for v € V(G).

We now claim that ¢ is a Y-good 3-coloring of G. We say that a subgraph R of G
is hiding if either there exists (S,) € S; such that V(R) C V(S) — Q, or there exists
(S,9) € Sy and 1 <4 < |Q| such that V(R) C Xs,; — (Bs,; U Ng(Bs.:))-

Let U be the union of monochromatic components of G meeting Y. For the condition
1, we need to show that |V (U)| < |[Y]?A.

Firstly let us count the vertices of U that are in hiding components. For each hiding
monochromatic component R, R contains a vertex in Y; and has at most 2502A3 vertices
by the properties of cg and ¢ ;. Thus, U has at most 2502A3|Y1| vertices in hiding
components.

Secondly let us count vertices of U in non-hiding components. Let U’ be the graph
obtained from U by deleting V(U) N V(S) — Q and adding edges on V(U) N Q such
that U’[Q)] is a complete subgraph for every (S,Q) € S;, and identifying the vertices in
V(U)N(Xs,; — Bg,;) of color j in the 3-coloring ¢ into a vertex ug; ; for each (S, Q) € S,
1<i<|Qand 1 < j < 3. Note that U’ is isomorphic to a subgraph of G”. Furthermore,
for every (9,Q) € Sp, 1 <i < |Q] and 1 < j < 3, whenever us,;,; exists, there exists k
with 1 <k < 3 such that ¢”/(zg,k) = j, by the definition of ¢”’. So we may assume that

""" Every component of U’ meets Y, since

U’ is a subgraph of G' with the coloring ¢
every non-hiding component of U either meets (Y NV (G”)) U Z, or meets Q for some
(5,Q) € S; with Y N V(S) — Q # 0, or meets both Y N Xg,i and Xg,;, N Ng(Bs,;) for
some (5,) € Sy and 1 < i < [Q]. Therefore, U’ contains at most 48p0M|Y|A? vertices.

For each vertex v in a non-hiding component of U but not in U’, v is either

o contained in a monochromatic component of Qg meeting Ys N V(U’) with respect
to ¢ for some (5,Q) € Sy, or
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o contained in a monochromatic component of Qg; meeting Xg; N Ng(Bs;) with
respect to Cls,i for some (S,Q) € Sy and 1 < i < |Q| such that {rsi1,%s,2, 503} N
V(U # 0.

Since S is maximal, for every vertex v of G—Z, there exist at most A societies (S,) € §;
such that v € V(95), so there are at most |U’|A such societies in S; mentioned in the
former case; since [ s 0)es, Ur<i<ja {511, @s.i,2, 256,33V (U')] < [U’|, so there are at
most |U’| such Qg,; mentioned in the latter case. By the properties of ¢, the union of all
monochromatic components mentioned in the former case contains at most (56A)2-|U’|A
vertices; by the properties of c’s’i, the union of all monochromatic components mentioned
in the latter case contains at most (56 A)2-|U’| vertices. Hence, the number of vertices in
some non-hiding components of U but not in U’ contains at most 2502|U’|A%(A + 1) <
1200p03 M |Y |A*(A + 1) vertices.

Consequently, U contains at most 2502A3|Y7| + 1200p02 M|Y|A4(A + 1) < 2000p x
03 M|Y |A® < |Y]2A vertices, by Claim 1 and the assumption A > 2. This proves that c
satisfies condition 1.

Let R be a monochromatic component of G not meeting ¥ with respect to c. For
condition 2, it suffices to show that R contains at most nA? vertices. It is clear that R
contains at most max{2502A3,nA2%} < nA? vertices if R is hiding by the properties of
cs and cg;. So we may assume that R is not hiding.

Construct R’ from R as we constructed U’ from U. That is, let R’ be the graph
obtained from R by deleting V(R) N V(S) — Q and adding edges on V(R) N Q such
that R'[Q] is a complete subgraph for every (S,Q) € Si, and identifying the vertices
in V(R) N Xg; N Ng(Bg,;) of color j in the 3-coloring ¢ into a vertex ug; ; for each
(5,2) €8,,1<i< \Q| and 1 < j < 3. We may again assume that R’ is a subgraph of G”

" Since R is connected, R’ is connected. Hence, R’ is a monochromatic

with the coloring ¢
component of G” with respect to ¢’ and contains at most 48p0M|Y|A? vertices.

For each vertex v in R but not in R’, v is either

« contained in a monochromatic component of Qg meeting Ys NV (R’) with respect to
s for some (5,Q) € Sy, or

o contained in a monochromatic component of g, meeting Xg; N Ng(Bg,;) with
respect to cg ; for some (5,€2) € Sy and 1 <4 < |Q| such that {zsi1,%s,2,Tsi3}N
V(R') # 0.

Therefore, the same argument shows that the number of vertices of R but not in R’ is at
most 250%| R'|A?(A+1) vertices. As a result, R contains at most | R'|(1+2502A%(A+1)) <
2000003 M|Y2|A5 < nAZ2. This shows that ¢ satisfies condition 2 and completes the
proof. O
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4. Concluding remarks

We remark that Theorems 1.2 and 1.5 are best possible in the sense that it is impos-
sible to partition the vertex set into three sets such that each set induces a subgraph of
bounded diameter. The following observation is due to Esperet and Joret. Recall that
every graph with bounded tree-width does not contain a large grid as a minor.

Theorem 4.1 (Esperet and Joret [private communication, 2015]). For every positive in-
tegers w, d, there exists a graph G of tree-width at most w such that for every w-coloring
of G, there exists a monochromatic component of G with diameter greater than d.

Proof. We shall construct graphs G; of tree-width at most ¢ for every ¢ > 1 such that
every i-coloring of G has a monochromatic component of diameter greater than d recur-
sively. Define G; to be the path on d vertices. Clearly, G; has tree-width one and every
1-coloring of (G; contains a monochromatic component of diameter greater than d.

Assume that we have constructed the graph G;_; of tree-width at most i — 1 such that
every (i — 1)-coloring of G has a monochromatic component of diameter greater than d.
Let n = |[V(G;-1)|- Let T be the rooted n-ary tree with root r such that every internal
node of T" has degree n, and the distance between r and any leaf of T is d. For every node
t of T', we create a copy H; of G;_1, and we denote the vertices of H; by us 1,..., U n.
For every internal node ¢ of T, we denote the children of ¢ by c; 1,¢t2,...,¢tn. Then we
construct G; from the disjoint union of H; for all nodes t of T' by adding a new vertex
v adjacent to all vertices of H, for the root r of T and adding edges u; ju’ for every
non-leaf ¢ of 7', 1 < j < n and v’ € V(H,, ).

Now we prove that G; has the desired property. Suppose that f is a i-coloring of G;
such that every monochromatic component has diameter at most d. As G;_; has the
desired property, V (H;) receives exactly i colors by f for every vertex t of T'. In particular,
each H; contains a vertex x; with f(z;) = f(v). Since T contains a path rtity-- -ty of
length d, v, x¢, 2, - - - ¢, is a monochromatic path of length d + 1, a contradiction.

In addition, every block of G; is obtained from a copy of G;_1 by adding a vertex. So
the tree-width of GG; is at most the one more than the tree-width of G;_1. This completes
the proof. O

Note that the graphs G5 and G3 mentioned in the proof of Theorem 4.1 are outerplanar
and planar, respectively. So Theorem 1.1 cannot be improved in the same direction,
either. On the other hand, it is well known that every graph of tree-width at most w
contains a vertex of degree at most w and hence can be properly colored by w+ 1 colors.
So Theorem 4.1 is the best possible.

Esperet and Joret [private communication, 2015] also point out that the construction
of G disproves the following conjecture of NeSetil and Ossona de Mendez [14], since
long paths have large tree-depth.
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Conjecture 4.2 ([1/, Conjecture 7.1]). There exists a constant t such that one can color
the vertices of every planar graph by 8 colors in such a way that no monochromatic
component will have tree-depth greater than t.

We also remark that Theorem 1.5 cannot be generalized to graphs with no
H-topological minor in general. The following is proved by using an idea of Alon et
al. [1].

Theorem 4.3. For positive integers k, N, there exists a (4k — 2)-regular graph G such that
for every partition of V(G) into k sets X1, Xa, ..., Xj, there exists i with 1 < i < k such
that some component of G[X;] contains at least N vertices.

Proof. It was proved by Erdds and Sachs [8] that there exists a 2k-regular graph R with
girth at least V. Since R contains k|V(R)| edges, for any partition of E(R) into k sets,
some set contains at least |V (R)| edges and hence induces a subgraph W of R having a
cycle. Since the girth of R is at least N, some component of W contains at least N edges.
Therefore, for every partition of E(R) into k sets, there exists a set in the partition such
that some component induced by this set contains at least N edges.

Define G to be the line graph of R. So G is (4k — 2)-regular. Furthermore, every
partition of V(G) into k sets Xi, Xs,..., X} corresponds to a partition of E(R) into k
sets, so there exists ¢ with 1 < ¢ < k such that G[X;] has a component with at least N
vertices. 0O

Since every graph of maximum degree at most 4k — 2 does not contain any graph
with maximum degree at least 4k — 1 as a topological minor, Theorem 4.3 shows that
Theorem 1.5 cannot be generalized to topological minor-free graphs in general.
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