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We investigate the following conjecture of Hehui Wu: for every 
tournament S, the class of S-free tournaments has bounded 
domination number. We show that the conjecture is false in 
general, but true when S is 2-colourable (that is, its vertex 
set can be partitioned into two transitive sets); the latter 
follows by a direct application of VC-dimension. Our goal is 
to go beyond this; we give a non-2-colourable tournament S
that satisfies the conjecture. The key ingredient here (perhaps 
more interesting than the result itself) is that we overcome the 
unboundedness of the VC-dimension by showing that the set 
of shattered sets is sparse.
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1. Introduction

If there is an edge of a digraph G with head v and tail u, we say that “v is adjacent 

from u” and “u is adjacent to v”. If T is a tournament and X, Y ⊆ V (T ), we say that X
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dominates Y if every vertex in Y \X is adjacent from some vertex in X. The domination 

number of T is the smallest cardinality of a set that dominates V (T ). A class C of 

tournaments has bounded domination if there exists c such that every tournament in C
has domination number at most c. If S, T are tournaments, we say that T is S-free if 

no subtournament of T is isomorphic to S. A tournament S is a rebel if the class of all 

S-free tournaments has bounded domination. In this paper we investigate the following 

conjecture, recently proposed by Hehui Wu (private communication):

1.1. Conjecture: Every tournament is a rebel.

We will disprove this; and that leads to the question, which tournaments are rebels? 

We will give a partial answer:

• all 2-colourable tournaments are rebels, and so is at least one more;

• all rebels are poset tournaments.

This needs some definitions. A k-colouring of a tournament T is a partition of V (T )

into k transitive sets, and if T admits such a partition it is k-colourable. The chromatic 

number of a tournament T is the minimum k such that T is k-colourable. We will 

prove below that all 2-colourable tournaments are rebels, using VC-dimension; and since 

not all tournaments are rebels, one might anticipate the converse, that all rebels are 

2-colourable. The main goal of this paper is to give a counterexample to this. The 

tournament on seven vertices, obtained by substituting a cyclic triangle for two of the 

three vertices of a cyclic triangle, is not 2-colourable, but we will show it is a rebel. This 

is proved in sections 5 and 6. Again the proof uses VC-dimension, using an extension of 

a theorem of Haussler and Welzl [5], proved in section 4, that permits large shattered 

sets provided they are sparse.

Let us say a tournament is a poset tournament if its vertex set can be ordered 

{v1, . . . , vn} such that for all i < j < k, if vj is adjacent from vi and adjacent to vk

then vi is adjacent to vk; that is, the “forward” edges under this linear order form the 

comparability graph of a partial order. In section 2 we prove that every rebel is a poset 

tournament, and consequently disprove 1.1.

Domination in tournaments is an old and much-studied question [6]. For instance, 

let us say a tournament T is k-majority if there are 2k − 1 linear orders on V (T )

such that for all distinct u, v ∈ V (T ), if u is adjacent to v then u is before v in 

at least k of the 2k − 1 orders. Alon, Brightwell, Kierstead, Kostochka and Winkler 

showed in [1] that k-majority tournaments have bounded domination number, and in-

deed this paper is where the idea of using VC-dimension for tournament domination 

was introduced. Their result follows from the fact that 2-colourable tournaments are 

rebels, since it is easy to see (by estimating the number of n-vertex tournaments in 

each class) that some 2-colourable tournament S is not k-majority; and since S is a 

rebel and the class of k-majority tournaments is S-free, the latter has bounded dom-
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ination. But this proof of the result of [1] is basically the same as one of the proofs 

in [1], and indeed, 3.6 and its proof are only slight extensions of ideas in that pa-

per.

A tournament is k-transitive if its edge set can be partitioned into k sets each of 

which is transitively oriented; and Gyárfás proposed the conjecture that k-transitive 

tournaments have bounded domination number (see [7] for a discussion). Not every 

tournament is k-transitive (for instance, by theorem 4 of [7]), so let S be a tournament 

that is not k-transitive; then no k-transitive tournament contains S, and so if we could 

show that some such S is a rebel, this would imply Gyárfás’ conjecture, which remains 

open. We mention also the well-known conjecture of Sands, Sauer and Woodrow [8], that 

for all k there exists f(k) such that if the edges of a tournament are coloured with k

colours, then there is a set of at most f(k) vertices such that every other vertex can be 

reached from some vertex in the set by a monochromatic path.

Conjecture 2.6 of [2] states that for all k there exists f(k) such that for every tour-

nament T , if for every vertex v the set of out-neighbours of v has chromatic number at 

most k, then T has chromatic number at most f(k). If some rebel is not k-colourable, 

then this conjecture is true for that value of k. To see this, let S be a rebel that is not 

k-colourable, and let T be a tournament satisfying the condition above on out-neighbour 

sets. If T contains a copy of S with vertex set X say, then X is not a subset of the out-

neighbour set of any vertex of T , from the hypothesis, and so X is dominating; and if 

not, then since S is a rebel, it follows that the domination number of T is bounded. Thus 

in either case there exists a dominating set X ⊆ V (T ) with |X| at most some function 

of k. Since the set of out-neighbours of each vertex in X is k-colourable, it follows that 

T is k|X|-colourable. In particular, 5.1 implies that some rebel is not 2-colourable, and 

so conjecture 2.6 of [2] is true when k = 2. (This was previously open.)

2. Poset tournaments

In this section we show that not all tournaments are rebels, disproving 1.1. First, 

let us observe that not every tournament is a poset tournament. Let T be a poset 

tournament with n vertices. From Dilworth’s theorem applied to the poset, there is 

a chain or antichain in the poset with cardinality at least n1/2; and hence there is a 

transitively oriented subset of V (T ) with cardinality at least n1/2. But in a random 

n-vertex tournament, the largest transitively oriented subset has cardinality O(log(n))

with high probability; so if n is large enough then not every n-vertex tournament is a 

poset tournament. It follows that not every tournament is a rebel, because we will show 

that:

2.1. Every rebel is a poset tournament.

Proof. Let S be a rebel, and choose c such that every tournament not containing S has 

domination number at most c. Let k = c + 1.
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Let V be a set defined as follows. Let V0 be a set of cardinality kk, and define V1, . . . , Vk

inductively by: having defined Vi−1 where i ≤ k, let Vi be the set of all subsets X ⊆ Vi−1

with |X| = k. In particular, it follows that |Vi| ≥ kk for all i. Let V = V0 ∪ · · · ∪ Vk. 

Choose a linear order of V , say {v1, . . . , vn}, where for 0 ≤ i < j ≤ k, if vs ∈ Vi and 

vt ∈ Vj then s > t.

Let H1 be the digraph with vertex set V , where if X ∈ Vi where i > 0, then X is 

adjacent in H1 to every Y ∈ Vi−1 with Y ∈ X. Let H2 be the transitive closure of H1.

Let T be the tournament with vertex set V , in which for 1 ≤ s < t ≤ n, vs is adjacent 

to vt in T if and only if vs is adjacent to vt in H2. We see that T is a poset tournament.

Suppose that the domination number of T is at most c, and choose X ⊆ V dominating 

T with |X| ≤ c. Since |X| ≤ k − 1, there exists i with 1 ≤ i ≤ k such that X ∩ Vi = ∅. 

Let Y = X ∩ (V0 ∪ · · · ∪ Vi−1) and Z = X ∩ (Vi+1 ∪ · · · ∪ Vk). For each y ∈ Y , choose 

p(y) ∈ Vi−1 such that there is a directed path of H1 from p(y) to y (possibly p(y) = y). 

Let P = {p(y) : y ∈ Y }. Thus |P | ≤ |Y | ≤ c; choose a subset Q of Vi−1 of cardinality 

c = k−1 including P . Now there are |Vi−1| −k+1 k-subsets of Vi−1 including Q, and each 

is a member of Vi; and so there are |Vi−1| −k+1 members of Vi that are adjacent to every 

member of Q in H1. These vertices are therefore adjacent in H2 to every vertex in Y , and 

so not dominated in T by Y . Consequently they are all dominated by Z. But each vertex 

in Z dominates at most kk−1 vertices in Vi, since k − i ≤ k − 1; and since |Z| ≤ k − 1, 

it follows that |Vi−1| − k + 1 ≤ (k − 1)kk−1, and so |Vi−1| ≤ (k − 1)(kk−1 + 1) < kk, 

a contradiction.

This proves that the domination number of T is more than c, and from the definition 

of c, it follows that T contains S. Consequently S is a poset tournament. This proves 

2.1. �

Is every poset tournament a rebel? As a first step, is the seven-vertex Paley tournament 

a rebel? We have not been able to answer this.

3. 2-colourable tournaments and VC-dimension

In this section we prove that all 2-colourable tournaments are rebels. Let H be a 

hypergraph. (A hypergraph consists of a set V (H) of vertices and a set E(H) of subsets 

of V (H) called edges.) We say that X ⊆ V (H) is shattered by H if for every Y ⊆ X, 

there exists A ∈ E(H) with A ∩ X = Y . The largest cardinality of a shattered set is 

called the Vapnik–Chervonenkis dimension or VC-dimension of H, after [12].

If T is a tournament and X ⊆ V (T ), T [X] denotes the subtournament induced on X. 

If {A, B} is a 2-colouring of a tournament T , and A′, B′ are disjoint subsets of the vertex 

set of a tournament T ′, an isomorphism from T to a subtournament of T ′ mapping A to a 

subset of A′ and B to a subset of B′ is called an embedding of (T, A, B) into (T ′, A′, B′); 

and if in addition the isomorphism maps T to T ′ (and hence A to A′ and B to B′) 

we call it an isomorphism from (T, A, B) to (T ′, A′, B′). If S, T are tournaments and 
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V (S) ⊆ V (T ), then T ← S denotes the tournament obtained from T by replacing the 

edges of T with both ends in V (S) by the edges of S.

3.1. For every 2-colourable tournament S, there exists d ≥ 0 with the following property. 

Let {C, D} be a 2-colouring of S. Let T be a tournament, and let A, B ⊆ V (T ) be 

disjoint. For each v ∈ B, let N(v) denote the set of all u ∈ A adjacent to v. Let H be 

the hypergraph with vertex set A and edge set {N(v) : v ∈ B}. Let X ⊆ A be shattered 

by H with |X| ≥ d. Then there is an embedding of (S, C, D) into (T, X, B).

Proof. By adding vertices to D, we may assume that no two vertices in C are adjacent 

to exactly the same subset of vertices in D. Let |C| = m and |D| = n. We claim first 

that:

(1) There is a tournament R with a 2-colouring {C, I}, with |I| = m!n, such that for 

every transitive tournament M with vertex set C, there is an embedding of (S, C, D)

into (R ← M, C, I). Moreover, no two vertices in C are adjacent to exactly the same 

vertices in I.

There are m! transitive tournaments M1, . . . , Mm! with vertex set C; one of them is 

S[C]. For each such tournament Mi, extend it to a tournament S′
i by adding a set Di of 

n new vertices, in such a way that there is an isomorphism from (S, C, D) to (S′
i, C, Di). 

For each i, let Si = S′
i ← S[C]. Thus the union of all the tournaments S1, . . . , Sm! is a 

digraph, although not a tournament; extend it to a tournament R by making the set I

of all the m!n new vertices transitive. This proves (1).

Let R, I be as in (1). Let c = 2|I| and d = 22c

; we claim that d satisfies the theorem. 

For let T, A, B, H, X be as in the theorem. By a theorem of [11], there is a subset X1 ⊆ X

with |X1| = 2c such that T [X1] is transitive. Since |X1| = 2c, we can number the members 

of X1 as X1 = {xP : P ⊆ {1, . . . , c}}. Since H shatters X1, for each p ∈ {1, . . . , c} there 

exists yp ∈ B such that for each P ⊆ {1, . . . , c}, xP is adjacent to yp if and only if p ∈ P . 

Let Y1 = {yp : 1 ≤ p ≤ c}; then for every Z ⊆ Y1, there exists x ∈ X1 such that x is 

adjacent to every vertex in Z and adjacent from every vertex in Y1 \Z, namely the vertex 

x = xP , where P = {p ∈ {1, . . . , c} : yp ∈ Z}. By [11] again, since c = 2|I|, there exists 

Y2 ⊆ Y1 with |Y2| = |I| such that T [Y2] is transitive. Since for every Z ⊆ Y2, there exists 

x ∈ X1 such that x is adjacent to every vertex in Z and adjacent from every vertex in 

Y2 \ Z, and since no two vertices of R in C have the same out-neighbours in I, it follows 

that there is a subset X2 ⊆ X1 with |X2| = |C|, and a transitive tournament M with 

V (M) = C, and an isomorphism from (R ← M, C, I) to (T [X2 ∪ Y2], X2, Y2). From (1) 

there is an embedding of (S, C, D) into (R ← M, C, I); and so there is an embedding of 

(S, C, D) into (T [X2 ∪ Y2], X2, Y2). This proves 3.1. �
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Let T be a tournament, and for each vertex v let N−
T (v) denote the set of all vertices 

of T that are either adjacent to v or equal to v. Thus {N−
T (v) : v ∈ V (T )} is the edge set 

of a hypergraph with vertex set V (T ), called the hypergraph of in-neighbourhoods of T .

3.2. For every 2-colourable tournament S, there is a number d such that for every S-free 

tournament T , its hypergraph of in-neighbourhoods has VC-dimension at most d.

Proof. Let d′ satisfy 3.1 with d replaced by d′, and let d be an integer with d > d′ +

log2(d′). We claim that d satisfies the theorem. Let T be a tournament, and suppose that 

X ⊆ V (T ) is shattered by the hypergraph of in-neighbourhoods of T , where |X| > d. 

For each Y ⊆ X, there exists v ∈ V (T ) such that N−
T (v) ∩ X = Y ; let us write vY = v. 

Choose X ′ ⊆ X with |X ′| = d′. Then for each Y ′ ⊆ X ′, there are at least d′ + 1 subsets 

Y of X with Y ∩ X ′ = Y ′, and so vY /∈ X ′ for at least one such set Y . But then 3.1

implies that T is not S-free. This proves 3.2. �

A similar, simpler proof (which we omit) shows:

3.3. For every 2-colourable tournament S and every 2-colouring {C, D} of S, there is a 

number d with the following property. Let T be a tournament, let A ⊆ V (T ), let H be 

the hypergraph with vertex set V (T ) and edge set {N−
T (v) : v ∈ A}, and suppose that 

X ⊆ V (T ) is shattered by H, with |X| ≥ d. Then there is an embedding of (S, C, D) into 

(T, A \ X, X).

If H is a hypergraph, τH denotes the minimum cardinality of a set which has nonempty 

intersection with every edge of H, and τ∗
H is a fractional relaxation of this: the minimum 

of 
∑

v∈V (H) f(v) over all functions f from V (H) to the nonnegative real numbers such 

that 
∑

v∈A f(v) ≥ 1 for every edge A of H.

We need the following theorem of [3], a slight refinement of earlier work of Haussler 

and Welzl [5]. (Logarithms are to base two.)

3.4. Let d ≥ 1, and let H be a hypergraph with VC-dimension at most d. Then

τH ≤ 2dτ∗
H log(11τ∗

H).

3.5. Let T be a tournament, let d ≥ 1, and let the VC-dimension of its hypergraph of 

in-neighbourhoods be at most d. Then the domination number of T is at most 18d.

Proof. Let H be the hypergraph of in-neighbourhoods of T . Then τ∗
H ≤ 2 (by corollary 

6 of [1]), so τH ≤ 4d log(22) ≤ 18d by 3.4. This proves 3.5. �

Finally we deduce:

3.6. Every 2-colourable tournament is a rebel.
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Proof. Let S be a 2-colourable tournament, let {C, D} be a 2-colouring, and let d be as 

3.2. If T is an S-free tournament, its hypergraph of in-neighbourhoods has VC-dimension 

at most d by 3.2, and so its domination number is at most 18d by 3.5. This proves 3.6. �

4. Sparse shattered sets

When we are excluding a tournament S that is not 2-colourable, we find that the S-free 

tournaments do not necessarily have hypergraphs of in-neighbourhoods with bounded 

VC-dimension; but for our application we can prove that large shattered sets are sparse, 

and this turns out to be enough to carry over the proof of 3.6. We will need the Sauer–

Shelah lemma [9,10], the following.

4.1. Let H be a hypergraph, and let X ⊆ V (H) with |X| = n, such that no d + 1-subset 

of X is shattered by H. Then there are at most 
∑

0≤i≤d

(

n
i

)

distinct sets A ∩ X where 

A ∈ E(H).

In this section we prove our main lemma, a version of 3.4 which permits large shattered 

sets provided they are sparse. Its proof is a modification of the proof of 3.4 in [3] and of 

the original proof of Haussler and Welzl [5].

4.2. Let H be a hypergraph with n vertices, and let 0 < ε ≤ 1, such that |f | ≥ εn for every 

edge f . Let d ≥ 1 be an integer, and let 0 ≤ c ≤ 1, such that at most c
(

n
d

)

d-subsets of 

V (H) are shattered by H. If t ≥ d is an integer such that 2−εt(2t)d( 1
5(e/d)d +c22t(2t)!) <

1/4, then τH ≤ t.

Proof. Suppose that τH > t. Let T be the set of all sequences (x1, . . . , x2t), where 

x1, . . . , x2t ∈ V (T ), not necessarily distinct. For each f ∈ E(H), let Af be the set of 

all (x1, . . . , x2t) ∈ T such that x1, . . . , xt /∈ f , and xi ∈ f for at least εt − 1 values of 

i ∈ {t + 1, . . . , 2t}. Let A = ∪f∈E(H)Af .

(1) Let x1, . . . , xt ∈ V (H), and let f ∈ E(H) with x1, . . . , xt /∈ f . Then there are at least 

nt/2 sequences (xt+1, . . . , x2t) such that (x1, . . . , x2t) ∈ Af .

Since |f | ≥ εt, if we choose xt+1, . . . , x2t independently at random from V (H), the 

expected number of i ∈ {t + 1, . . . , 2t} with xi ∈ f is at least εt; and since the median 

of a binomial distribution is within 1 of its mean, it follows that at least half of all the 

choices of (xt+1, . . . , x2t) have at least εt − 1 terms in f . This proves (1).

(2) |A| ≥ n2t/2.

There are nt choices of (x1, . . . , xt), and for each one, there exists f ∈ E(H) with 

x1, . . . , xt /∈ f , since t < τH from our assumption. Consequently, for each choice of 
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(x1, . . . , xt), (1) implies that there are at least nt/2 sequences (xt+1, . . . , x2t) such that 

(x1, . . . , x2t) ∈ Af ⊆ A; and this proves (2).

For each (x1, . . . , x2t) ∈ T , its support is the function μ with domain V (H) where 

μ(v) is the number of values of i ∈ {1, . . . , 2t} with xi = v; and a function μ that is 

the support of some member of T is called a supporter. For the moment, let us fix some 

supporter μ. Let Sμ be the set of all (x1, . . . , x2t) ∈ T with support μ, and for each 

f ∈ E(H), let Sμ
f be the set of members of Af with support μ, that is, Sμ

f = Sμ ∩ Af .

(3) |Sμ
f | ≤ 21−εt|Sμ| for each f ∈ E(H).

Let f ∈ E(H) and let k =
∑

v∈f μ(v). If k > t or k < εt − 1 then Sμ
f = ∅ and the claim 

holds; so we may assume that εt −1 ≤ k ≤ t. It follows that a sequence (x1, . . . , x2t) ∈ Sμ

belongs to Sμ
f if and only if x1, . . . , xt /∈ f . Let P (x1, . . . , x2t) = {i ∈ {1, . . . , 2t} : xi ∈ f}. 

Thus |P (x1, . . . , x2t)| = k; for each k-subset Q of {1, . . . , 2t} there is the same number 

of sequences (x1, . . . , x2t) ∈ Sμ with P (x1, . . . , x2t) = Q; and for each such Q, either 

all these sequences belong to Sμ
f or none do, depending whether Q ⊆ {t + 1, . . . , 2t} or 

not. Thus |Sμ
f |/|Sμ| equals the proportion of k-subsets of {1, . . . , 2t} that are included 

in {t + 1, . . . , 2t}, that is,

|Sμ
f |

|Sμ| =

(

t
k

)

(

2t
k

) =
∏

0≤i≤k−1

t − i

2t − i
≤ 2−k ≤ 21−εt.

This proves (3).

Let V (μ) = {v : μ(v) > 0}. Thus |V (μ)| ≤ 2t.

(4) If V (μ) includes no d-set that is shattered by H then

| ∪f∈E(H) Sμ
f | ≤ 1

5
(2et/d)d21−εt|Sμ|.

Let there be r distinct sets of the form f ∩ V (μ) where f ∈ E(H). By 4.1,

r ≤
∑

0≤i<d

(

2t

i

)

≤ (2t)d−1

(d − 1)!

∑

0≤i<d

xi ≤ (2t)d−1

(d − 1)!
(1 − x)−1,

where x = (d − 1)/(2t); and since t ≥ d, (1 − x)−1 ≤ 2t
d+1 . Consequently,

r ≤ (2t)d−1

(d − 1)!

2t

d + 1
=

d

d + 1

(2t)d

d!
.
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By a form of Stirling’s approximation,

d! ≥
√

2π dd+ 1

2 e−d ≥ 5

2
(d/e)dd1/2 ≥ 5(d/e)d d

d + 1
.

It follows that

r ≤ d

d + 1

(2t)d

d!
≤ 1

5
(2et/d)d.

For f, f ′ ∈ E(H), if f ∩ V (μ) = f ′ ∩ V (μ) then Sμ
f = Sμ

f ′ ; and so there are at most r

distinct sets Sμ
f (f ∈ E(H)). By (3),

| ∪f∈E(H) Sμ
f | ≤ 1

5
(2et/d)d21−εt|Sμ|.

This proves (4).

(5) There are at most c
(

2t
d

)

n2t supporters μ for which V (μ) includes a d-subset that is 

shattered by H.

If (x1, . . . , x2t) ∈ T and Y ⊆ V (H), we say that (x1, . . . , x2t) covers Y if Y ⊆
{x1, . . . , x2t}. There are n2t members of T , and each covers at most 

(

2t
d

)

d-subsets of 

V (H). Moreover, each d-subset X of V (H) is covered by the same number of members 

of T . It follows that each d-subset of V (H) is covered by at most n2t
(

2t
d

)

/
(

n
d

)

members 

of T . Since there are at most c
(

n
d

)

d-subsets of V (H) that are shattered by H, it follows 

that there are at most cn2t
(

2t
d

)

members of T that cover a d-set that is shattered by H. 

Consequently there are at most that many supporters that do so. This proves (5).

(6) |A| ≤ n2t21−εt(2t)d( 1
5 (e/d)d + c22t(2t)!).

Every member of A belongs to ∪f∈E(H)Sμ
f for some supporter μ. There are two kinds 

of supporters μ, those such that V (μ) includes no shattered d-set and those that do. We 

call these the “first” and “second” kinds. By (4), the union of all the sets ∪f∈E(H)Sμ
f

over all μ of the first kind has cardinality at most 1
5 (2et/d)d21−εt times the sum of 

the cardinalities of the sets Sμ over all such μ, and since these sets Sμ are pairwise 

disjoint subsets of T , the sum of their cardinalities is at most |T | = n2t. Thus, the 

union of the sets ∪f∈E(H)Sμ
f over all supporters μ of the first kind has cardinality at 

most 1
5 (2et/d)d21−εtn2t. For each supporter μ of the second kind, the set ∪f∈E(H)Sμ

f has 

cardinality at most 22t21−εt|Sμ|, since there are only 22t distinct sets Sμ
f , and each has 

cardinality at most 21−εt|Sμ| by (3). Since |Sμ| ≤ (2t)!, and there are at most c(2t)dn2t

such supporters μ by (5), it follows that the union of the sets ∪f∈E(H)Sμ
f over all μ of 

the second kind has cardinality at most

c(2t)dn2t22t21−εt(2t)!.
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Adding, the result follows.

From (2) and (6), we deduce that 2−εt(2t)d( 1
5(e/d)d + c22t(2t)!) ≥ 1/4, contradicting 

the choice of t. Thus τH ≤ t. This proves 4.2. �

We deduce (logarithms are to base two):

4.3. For all ε with 0 < ε ≤ 1, and all integers d ≥ 1, there exists c > 0 with the 

following property. Let H be a hypergraph with n vertices, such that |f | ≥ εn for every 

edge f , and such that at most c
(

n
d

)

d-subsets of V (H) are shattered by H. Then τH ≤
�2dε−1 log(6ε−1)�.

Proof. Let t = �2dε−1 log(6ε−1)�, and choose p ≥ 6 such that t = 2dε−1 log(pε−1). Then

2−εt(2t)d(e/d)d ≤ 2−2d log(pε−1)(2t)d(e/d)d = (2etp−2ε2/d)d.

Now

2etp−2ε2/d = 4ep−2ε log(pε−1);

but

log(pε−1)

pε−1
<

log p

p

since p ≥ 6 > e, and so

2etp−2ε2/d ≤ 4e log p

p2
< 1

since p ≥ 6. Consequently 2−εt(2t)d(e/d)d < 1. Choose c satisfying c22t(2t)! = 1
20 (e/d)d; 

then

2−εt(2t)d(
1

5
(e/d)d + c22t(2t)!) = 2−εt(2t)d(

1

4
(e/d)d) < 1/4,

and the result follows from 4.2. This proves 4.3. �

5. Odd girth

By analogy with graphs, let us say the odd girth of a tournament T is the minimum 

k such that some k-vertex subtournament is not 2-colourable (and it is undefined if T is 

2-colourable).

If X, Y ⊆ V (T ), we say that X is complete to Y and Y is complete from X if X∩Y = ∅
and every vertex in Y is adjacent from every vertex in X. For v ∈ V (T ), we say v is 
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complete to X if {v} is complete to X, and so on. Let C3 denote the three-vertex 

tournament which is a cyclic triangle; and let S∗ be the tournament obtained from C3

by substituting a copy of C3 for two of its three vertices. (In other words, V (S∗) is the 

disjoint union of three sets X, Y, Z, where |Z| = 1, the subtournaments induced on X

and on Y are both cyclic triangles, and X is complete to Y , Y is complete to Z, and Z

is complete to X.) It is easy to see that S∗ is not 2-colourable. Our main theorem is

5.1. S∗ is a rebel.

To prove this we must show that the class of all S∗-free tournaments has bounded 

domination. Certainly all tournaments with odd girth at least 8 are S∗-free; thus, the 

following assertion appears much weaker than 5.1, but as we show below, the two state-

ments are in fact equivalent. More precisely, 5.2 contains infinitely many assertions, one 

for each value of k ≥ 8; they all evidently are implied by 5.1, and we will show that any 

one of them implies 5.1.

5.2. For k ≥ 8, the class of tournaments with odd girth at least k has bounded domination.

Proof of 5.1, assuming 5.2 for some k. Let k ≥ 0, and suppose that c is such that every 

tournament with odd girth at least k has domination number at most c. We will show 

that every S∗-free tournament has domination number at most c + k − 1. Let T be an 

S∗-free tournament. Let us say a brick of T is a subset X ⊆ V (T ) with |X| < k such 

that T [X] is not 2-colourable. If there is no brick in T then its odd girth is at least k, so 

its domination number is at most c as required; and so we may assume there is a brick in 

T . Consequently we may choose a sequence X1, . . . , Xn of bricks of T , pairwise disjoint, 

such that Xi is complete to Xi+1 for 1 ≤ i ≤ n, and with n ≥ 1 maximum.

(1) There is no vertex in X2 ∪ · · · ∪ Xn that is complete to X1.

Let v ∈ Xm say, where 2 ≤ m ≤ n, and suppose that v is complete to X1. Then v is 

complete to the vertex set of a cyclic triangle in X1 (because T [X1] is not transitive); 

choose i < m maximum such that v is complete to the vertex set of a cyclic triangle in 

Xi. Let Y1 be the vertex set of such a triangle. Now i ≤ m − 2, since Xm is complete 

from Xm−1. From the maximality of i, the set of out-neighbours of v in Xi+1 does not 

include a cyclic triangle and hence is transitive; and since G[Xi+1] is not 2-colourable, 

the set of in-neighbours of v in Xi+1 is not transitive, and so includes a cyclic triangle 

Y2 say. But then T [Y1 ∪ Y2 ∪ {v}] is isomorphic to S∗, a contradiction. This proves (1).

Let C be the set of vertices of T that are complete to X1. By (1), C∩(X1∪· · ·∪Xn) = ∅. 

From the maximality of n, there is no brick included in C; and so T [C] has odd girth at 

least k, and hence has domination number at most c. But X1 dominates V (T ) \ C, and 

so the domination number of T is at most c + |X1| < c + k. This proves 5.1. �
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Thus, henceforth we may confine ourselves to tournaments with odd girth at least 

any constant that we choose. Incidentally, it seems that there is a fundamental differ-

ence between tournaments and graphs: graphs of large girth can be transformed into 

tournaments with large odd girth (via the use of an enumeration with which we inter-

pret edges as backward directed edges), but graphs with large odd girth (such as Borsuk 

graphs) do not seem suitable for transformation into tournaments with large odd girth. 

Let us turn this into a problem.

A tournament is a forest if one can enumerate its vertices so that its backward edges 

form a forest. The girth of a tournament T is the smallest k for which there exists a 

subtournament S of T with k vertices which is not a forest. The following problem is 

not very well-posed, but nonetheless interesting:

5.3. Problem: Find constructions of tournaments with large odd girth and large chromatic 

number which are not based on tournaments with large girth and large chromatic number.

6. Domination in tournaments with large odd girth

We will prove the following, which therefore implies 5.1 and 5.2.

6.1. The class of tournaments with odd girth at least 74 has bounded domination.

It is helpful first to prove the following somewhat weaker statement.

6.2. The class of tournaments T with odd girth at least 74 and such that |N−
T (v)| ≥

|V (T )|/6 for every vertex v has bounded domination.

Proof. The seven-vertex Paley tournament has vertex set {v0, . . . , v6}, and for 0 ≤ i, j ≤
6, we say vi is adjacent to vj if j = i + 1, i + 2 or i + 4 modulo 7. Let P ∗ denote the 

tournament obtained by reversing any one of its edges, say v4v1 (its automorphism 

group is transitive on edges, so it makes no difference which edge we reverse). Then 

{v1, v2, v3, v4} is the only 4-vertex transitive set in P ∗ (we leave checking this to the 

reader), and in particular there is a unique 2-colouring, say {C, D}, where |C| = 4. 

Choose d to satisfy 3.3, taking P ∗ for S. Choose c to satisfy 4.3, taking ε = 1/6, and let 

t = �12d log(36)�. Now choose δ such that 1
6δ2d322t(2t)! = 1. We will prove that every 

tournament with odd girth at least 74 and such that |N−
T (v)| ≥ |V (T )|/6 for every vertex 

v has domination number at most t + 2δ−1.

Let T be such a tournament. Let us say a domino in T is a 7-vertex subtournament 

of T isomorphic to P ∗. Let G be the graph with vertex set V (T ), in which two vertices 

are adjacent if some domino contains them both. For each edge uv of G, there may 

be more than one domino that contains both u, v; but since the union of any two such 

dominoes induces a 2-colourable tournament (since T has odd girth at least 74) and both 

dominoes are uniquely 2-colourable, it follows that either u, v have the same colour in 
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the 2-colouring of every domino containing them both, or they have different colours in 

the 2-colouring of every domino containing them both. Edges uv of the latter kind we 

call odd edges.

For each v ∈ V (T ) and i ≥ 0, let N i
G(v) denote the set of all vertices in V (T ) with 

distance (in G) from v at most i. It turns out that the set of vertices v such that |N2
G(v)|

is large (linear in |V (T )|) can be dominated by a bounded subset for one reason, and the 

set of v with |N2
G(v)| not so large can be dominated by a bounded subset for another 

reason. Proving these statements will take several steps.

(1) For each v ∈ V (T ), T [N4
G(v)] is 2-colourable.

For every u ∈ N4
G(v), there is a path of G of length at most four between u, v; let A be 

the set of all such u such that some such path contains an even number of odd edges, 

and B the set such that some such path has an odd number of odd edges. We claim that 

{A, B} is a 2-colouring of T [N4
G(v)]. To show this we must show that A ∩ B = ∅, and 

T [A], T [B] are both transitive. For the first, suppose that u ∈ A ∩ B, and take two paths 

of G between u, v, one with an odd number of odd edges and one with an even number. 

The union of these two paths has at most eight edges; for each of these edges, choose 

a domino containing both its ends. The union of these dominoes contains at most 48 

vertices, and thus induces a 2-colourable subtournament, contradicting that each of the 

dominoes is uniquely 2-colourable. Thus A ∩ B = ∅.

Suppose that T [A] is not transitive; then there is a cyclic triangle in T [A] with vertices 

u1, u2, u3 say. For each of u1, u2, u3 take a path of G of length at most four between it 

and v (necessarily containing an even number of odd edges); then the union of these 

paths has at most twelve edges. For each of these edges, choose a domino containing 

both ends of the edge; then the union of these dominoes has at most 73 vertices and so 

is 2-colourable, again a contradiction. Similarly T [B] is transitive. This proves (1).

Let n = |V (T )|, and let S be the set of vertices v of T such that |N2
G(v)| ≥ δn.

(2) There is a set dominating S of cardinality at most 2δ−1.

Choose S0 in S maximal such that every two members of S0 have distance at least five 

in G. It follows that the sets N2
G(v) (v ∈ S0) are pairwise disjoint, and since they all have 

cardinality at least δn, there are at most 1/δ of them, that is, |S0| ≤ δ−1. Now from the 

maximality of S0, every vertex in S has distance at most four in G from some member 

of S0, and hence there are at most δ−1 2-colourable subtournaments of T with union 

including S, by (1). But every 2-colourable tournament has domination number at most 

two, and so there is a set of at most 2δ−1 vertices dominating S. This proves (2).

In view of (2), it remains to find a t-set that dominates V (T ) \ S. We may therefore 

assume that n ≥ d. Let H be the hypergraph with vertex set V (T ) and edge set all edges 
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N−(v) (v ∈ V (T ) \ S). We need to show that τH ≤ t. To do so we will apply 4.3, and 

for the latter we need to show that the d-subsets of V (T ) shattered by H are sparse. 

We prove that as follows. A domino has a unique 2-colouring {A, B}, and one of A, B

has cardinality three, say A; we call A the outside of the domino, and B its inside. A 

domino is normal if its inside is disjoint from S. Let G′ be the graph with vertex set 

V (T ) in which u, v are adjacent if there is a normal domino such that u, v both belong 

to its outside. We see that G′ is a subgraph of the graph G defined earlier.

(3) Every vertex v ∈ V (T ) has degree at most δn in G′.

For we may assume that v has degree at least one in G′, and therefore belongs to the 

outside of some normal domino; and so v is adjacent in G to a vertex u ∈ V (T ) \ S. 

Since u /∈ S, |N2
G(u)| < δn; but every neighbour of v in G′ belongs to N2

G(u), and so v

has at most δn neighbours in G′ (in fact fewer). This proves (3).

(4) The number of d-subsets of V (T ) shattered by H is at most 1
6δ2d3

(

n
d

)

.

Let K be the set of all outsides of normal dominoes. (We remark that K is a set, not 

a multiset; two normal dominoes with the same outside contribute only one member to 

K.) Every member of K is a triangle of G′, and it is an easy exercise to check that 

an n-vertex graph with maximum degree at most k has at most nk(k − 1)/6 triangles. 

Consequently it follows from (3) that |K| ≤ 1
6δ2n3. Each set in K is a subset of 

(

n−3
d−3

)

d-subsets of V (T ), and so, since n ≥ d, there are at most

1

6
δ2n3

(

n − 3

d − 3

)

=
1

6
dδ2 (d − 1)(d − 2)

(n − 1)(n − 2)
n2

(

n

d

)

≤ 1

6
δ2d3

(

n

d

)

d-subsets of V (T ) that include members of K. But from 3.3, every d-set shattered by H

includes a member of K. This proves (4).

From 4.3, taking ε = 1/6, we deduce that τH ≤ t. Consequently there is a set of 

cardinality at most t dominating V (T ) \S; and from (2), we deduce that T has domination 

number at most t + 2δ−1. This proves 6.2. �

Proof of 6.1. Let c be as in 6.2; we claim every tournament T with odd girth at least 

74 has domination number at most c. We may assume that every vertex of T has an 

in-neighbour; and so, by the theorem of [4], for each vertex v there is a rational number 

f(v) with 0 ≤ f(v) ≤ 1/3, summing to 1, such that for each v, the sum of f(u) over all 

in-neighbours u of v is at least 1/2 − f(v)/2, and in particular is at least 1/3.

Let n = |V (T )|, and choose an integer M ≥ n such that Mf(v) is an integer for 

each vertex v. For each v with f(v) > 0, substitute a transitive tournament Tv say with 

Mf(v) vertices for v (vertices v with f(v) = 0 are not deleted). Let the tournament 

just constructed be T ′. Then for every vertex v of T with f(v) = 0, v has at least M/2
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in-neighbours in T ′; and for each v ∈ V (T ) with f(v) > 0, every vertex of Tv has at least 

M/3 in-neighbours in T ′. Since |V (T ′)| ≤ M + n ≤ 2M , it follows that every vertex of 

T ′ has at least |V (T ′)|/6 in-neighbours in T ′. Moreover, the domination number of T is 

at most that of T ′, and the odd girth of T ′ is at least 74. The result follows from 6.2. 

This proves 6.1. �

7. Growth rates

Finally, let us mention a curiosity, not connected to domination, but lending credence 

to the false conjecture that all rebels are 2-colourable. There is a dramatic difference 

between excluding a 2-colourable tournament and excluding one that is not 2-colourable, 

because of the following.

7.1. Let S be a tournament, let V be a set of size n say, where n is even, and let f(n)

be the number of S-free tournaments with vertex set V .

• If S is not 2-colourable then f(n) ≥ 2n2/4;

• If S is 2-colourable then for all ε > 0, f(n) ≤ 2εn2

if n is sufficiently large in terms 

of ε.

Proof. (Sketch) If S is not 2-colourable, then no 2-colourable tournament contains it, and 

there are at least 2n2/4 2-colourable tournaments on V . Now we assume S is 2-colourable, 

and let 0 < ε ≤ 1. We claim that there is a constant c such that every S-free tournament 

on n vertices (with n sufficiently large) can be obtained from a tournament with some 

d vertices, where ε−1 
 d < c, by first replacing each vertex by a transitive set of size 

�n/d� or �n/d� (and directing the edges within each transitive set according to some 

fixed ordering of V ) and then reversing the direction of at most 1
2εn2 edges. To see this 

we use the regularity lemma. Let T be an S-free tournament with vertex set V . Choose 

δ > 0 much smaller than ε, and take a δ-regular partition of V into say d sets all of size 

�n/d� or �n/d�, where ε−1 
 d, and d is at most a constant depending on ε. Since the 

VC-dimension of the in-neighbourhood hypergraph of T is bounded (by 3.2), it follows 

that for each δ-regular pair (X, Y ) of sets in this partition, either there are at most 

δ|X||Y | edges from X to Y , or at most δ|X||Y | from Y to X. Consequently T can be 

obtained from a d-vertex tournament as described earlier; and so the number of such T

is at most 2εn2

. This proves 7.1. �
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