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1. Introduction

If there is an edge of a digraph G with head v and tail u, we say that “v is adjacent
from »” and “u is adjacent to v”. If T is a tournament and X,Y C V(T'), we say that X
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dominates Y if every vertex in Y \ X is adjacent from some vertex in X. The domination
number of T is the smallest cardinality of a set that dominates V(T'). A class C of
tournaments has bounded domination if there exists ¢ such that every tournament in C
has domination number at most c. If S, T are tournaments, we say that T is S-free if
no subtournament of T is isomorphic to S. A tournament S is a rebel if the class of all
S-free tournaments has bounded domination. In this paper we investigate the following
conjecture, recently proposed by Hehui Wu (private communication):

1.1. Conjecture: Every tournament is a rebel.

We will disprove this; and that leads to the question, which tournaments are rebels?
We will give a partial answer:

e all 2-colourable tournaments are rebels, and so is at least one more;
e all rebels are poset tournaments.

This needs some definitions. A k-colouring of a tournament T is a partition of V(T
into k transitive sets, and if 7" admits such a partition it is k-colourable. The chromatic
number of a tournament 7T is the minimum k such that T is k-colourable. We will
prove below that all 2-colourable tournaments are rebels, using VC-dimension; and since
not all tournaments are rebels, one might anticipate the converse, that all rebels are
2-colourable. The main goal of this paper is to give a counterexample to this. The
tournament on seven vertices, obtained by substituting a cyclic triangle for two of the
three vertices of a cyclic triangle, is not 2-colourable, but we will show it is a rebel. This
is proved in sections 5 and 6. Again the proof uses VC-dimension, using an extension of
a theorem of Haussler and Welzl [5], proved in section 4, that permits large shattered
sets provided they are sparse.

Let us say a tournament is a poset tournament if its vertex set can be ordered
{v1,...,v,} such that for all i < j < k, if v; is adjacent from v; and adjacent to vy
then v; is adjacent to vg; that is, the “forward” edges under this linear order form the
comparability graph of a partial order. In section 2 we prove that every rebel is a poset
tournament, and consequently disprove 1.1.

Domination in tournaments is an old and much-studied question [6]. For instance,
let us say a tournament T is k-majority if there are 2k — 1 linear orders on V(7))
such that for all distinct u,v € V(T), if u is adjacent to v then w is before v in
at least k of the 2k — 1 orders. Alon, Brightwell, Kierstead, Kostochka and Winkler
showed in [1] that k-majority tournaments have bounded domination number, and in-
deed this paper is where the idea of using VC-dimension for tournament domination
was introduced. Their result follows from the fact that 2-colourable tournaments are
rebels, since it is easy to see (by estimating the number of n-vertex tournaments in
each class) that some 2-colourable tournament S is not k-majority; and since S is a
rebel and the class of k-majority tournaments is S-free, the latter has bounded dom-
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ination. But this proof of the result of [1] is basically the same as one of the proofs
in [1], and indeed, 3.6 and its proof are only slight extensions of ideas in that pa-
per.

A tournament is k-transitive if its edge set can be partitioned into k sets each of
which is transitively oriented; and Gyarfas proposed the conjecture that k-transitive
tournaments have bounded domination number (see [7] for a discussion). Not every
tournament is k-transitive (for instance, by theorem 4 of [7]), so let S be a tournament
that is not k-transitive; then no k-transitive tournament contains S, and so if we could
show that some such S is a rebel, this would imply Gyérfas’ conjecture, which remains
open. We mention also the well-known conjecture of Sands, Sauer and Woodrow [8], that
for all k there exists f(k) such that if the edges of a tournament are coloured with &
colours, then there is a set of at most f(k) vertices such that every other vertex can be
reached from some vertex in the set by a monochromatic path.

Conjecture 2.6 of [2] states that for all k there exists f(k) such that for every tour-
nament 7', if for every vertex v the set of out-neighbours of v has chromatic number at
most k, then T has chromatic number at most f(k). If some rebel is not k-colourable,
then this conjecture is true for that value of k. To see this, let S be a rebel that is not
k-colourable, and let T" be a tournament satisfying the condition above on out-neighbour
sets. If T' contains a copy of S with vertex set X say, then X is not a subset of the out-
neighbour set of any vertex of T', from the hypothesis, and so X is dominating; and if
not, then since S is a rebel, it follows that the domination number of T is bounded. Thus
in either case there exists a dominating set X C V(T') with |X| at most some function
of k. Since the set of out-neighbours of each vertex in X is k-colourable, it follows that
T is k|X|-colourable. In particular, 5.1 implies that some rebel is not 2-colourable, and
so conjecture 2.6 of [2] is true when k = 2. (This was previously open.)

2. Poset tournaments

In this section we show that not all tournaments are rebels, disproving 1.1. First,
let us observe that not every tournament is a poset tournament. Let T be a poset
tournament with n vertices. From Dilworth’s theorem applied to the poset, there is

a chain or antichain in the poset with cardinality at least n'/2; and hence there is a

/2 But in a random

transitively oriented subset of V(T') with cardinality at least n
n-vertex tournament, the largest transitively oriented subset has cardinality O(log(n))
with high probability; so if n is large enough then not every n-vertex tournament is a
poset tournament. It follows that not every tournament is a rebel, because we will show

that:
2.1. Every rebel is a poset tournament.

Proof. Let S be a rebel, and choose ¢ such that every tournament not containing .S has
domination number at most c. Let k = c+ 1.
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Let V be a set defined as follows. Let Vj be a set of cardinality k¥, and define V,...,V;
inductively by: having defined V;_; where i < k, let V; be the set of all subsets X C V;_;
with |X| = k. In particular, it follows that |V;| > k¥ for all 4. Let V = Vo U --- U Vj.
Choose a linear order of V, say {v1,...,v,}, where for 0 < i < j < k, if v; € V; and
vy € Vj then s > ¢.

Let H; be the digraph with vertex set V, where if X € V; where ¢ > 0, then X is
adjacent in Hq to every Y € V;_; with Y € X. Let H> be the transitive closure of H;.

Let T be the tournament with vertex set V', in which for 1 < s < t < n, v is adjacent
to vy in T if and only if v, is adjacent to vy in Hy. We see that T is a poset tournament.

Suppose that the domination number of T is at most ¢, and choose X C V dominating
T with | X| < c. Since | X| < k — 1, there exists ¢ with 1 < i < k such that X N V; = 0.
Let Y =XN(VoU---UV,_1)and Z = X N (Vi1 U---UVg). For each y € Y, choose
p(y) € V;_1 such that there is a directed path of Hy from p(y) to y (possibly p(y) = v).
Let P = {p(y) : y € Y}. Thus |P| < |Y] < ¢; choose a subset @ of V;_; of cardinality
¢ = k—1including P. Now there are |V;_1|—k+1 k-subsets of V;_; including @, and each
is a member of V;; and so there are |V;_1| —k+1 members of V; that are adjacent to every
member of () in H;. These vertices are therefore adjacent in Hs to every vertex in Y, and
so not dominated in T" by Y. Consequently they are all dominated by Z. But each vertex
in Z dominates at most k*~1 vertices in V;, since k —i < k — 1; and since |Z| < k — 1,
it follows that |V;_1| —k +1 < (k— 1)kF~1 and so |Vi_1| < (k — 1)(kK*=! + 1) < k*,
a contradiction.

This proves that the domination number of 7" is more than ¢, and from the definition
of ¢, it follows that T' contains S. Consequently S is a poset tournament. This proves
2.1. O

Is every poset tournament a rebel? As a first step, is the seven-vertex Paley tournament
a rebel? We have not been able to answer this.

3. 2-colourable tournaments and VC-dimension

In this section we prove that all 2-colourable tournaments are rebels. Let H be a
hypergraph. (A hypergraph consists of a set V(H) of vertices and a set E(H) of subsets
of V(H) called edges.) We say that X C V(H) is shattered by H if for every Y C X,
there exists A € E(H) with AN X =Y. The largest cardinality of a shattered set is
called the Vapnik—Chervonenkis dimension or VC-dimension of H, after [12].

If T is a tournament and X C V(T), T[X] denotes the subtournament induced on X.
If {A, B} is a 2-colouring of a tournament 7', and A’ B’ are disjoint subsets of the vertex
set of a tournament 7", an isomorphism from T to a subtournament of 77 mapping A to a
subset of A’ and B to a subset of B’ is called an embedding of (T, A, B) into (T", A’, B');
and if in addition the isomorphism maps T to 7’ (and hence A to A’ and B to B’)
we call it an isomorphism from (T, A, B) to (T', A, B'). If S,T are tournaments and
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V(S) C V(T), then T «+ S denotes the tournament obtained from T by replacing the
edges of T' with both ends in V' (S) by the edges of S.

3.1. For every 2-colourable tournament S, there exists d > 0 with the following property.
Let {C,D} be a 2-colouring of S. Let T be a tournament, and let A,B C V(T) be
disjoint. For each v € B, let N(v) denote the set of all u € A adjacent to v. Let H be
the hypergraph with vertex set A and edge set {N(v) : v € B}. Let X C A be shattered
by H with |X| > d. Then there is an embedding of (S,C, D) into (T, X, B).

Proof. By adding vertices to D, we may assume that no two vertices in C' are adjacent
to exactly the same subset of vertices in D. Let |C| = m and |D| = n. We claim first
that:

(1) There is a tournament R with a 2-colouring {C, I}, with |I| = m!n, such that for
every transitive tournament M with vertex set C, there is an embedding of (S, C, D)
into (R < M,C,I). Moreover, no two vertices in C are adjacent to exactly the same
vertices in I.

There are m! transitive tournaments M, ..., M,,; with vertex set C; one of them is
S[C]. For each such tournament M;, extend it to a tournament S! by adding a set D; of
n new vertices, in such a way that there is an isomorphism from (S, C, D) to (S, C, D;).
For each i, let S; = S, < S[C]. Thus the union of all the tournaments Si, ..., Sy, is a
digraph, although not a tournament; extend it to a tournament R by making the set I
of all the m!n new vertices transitive. This proves (1).

Let R, I be as in (1). Let ¢ = 2/l and d = 22°; we claim that d satisfies the theorem.
Forlet T, A, B, H, X be as in the theorem. By a theorem of [11], there is a subset X; C X
with | X | = 2¢ such that T[X1] is transitive. Since | X1| = 2°, we can number the members
of X; as Xy ={ap: P C{l,...,c}}. Since H shatters Xy, for each p € {1,...,c} there
exists y, € B such that for each P C {1,...,c}, zp is adjacent to y, if and only if p € P.
Let Y1 = {y, : 1 < p < ¢}; then for every Z C Y7, there exists x € X; such that x is
adjacent to every vertex in Z and adjacent from every vertex in Y7 \ Z, namely the vertex
x =uxp, where P={p e {l,...,¢c} : y, € Z}. By [11] again, since ¢ = 211 there exists
Y2 C Yy with |Ya| = |I] such that T'[Y3] is transitive. Since for every Z C Ya, there exists
x € X7 such that z is adjacent to every vertex in Z and adjacent from every vertex in
Y2\ Z, and since no two vertices of R in C' have the same out-neighbours in I, it follows
that there is a subset Xy C X3 with |X3| = |C], and a transitive tournament M with
V(M) = C, and an isomorphism from (R < M,C,I) to (T[X2 U Y], X2, Y>3). From (1)
there is an embedding of (S, C, D) into (R <+ M, C,I); and so there is an embedding of
(S,C, D) into (T[X2 UYs], X2,Y3). This proves 3.1. O
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Let T be a tournament, and for each vertex v let N, (v) denote the set of all vertices
of T' that are either adjacent to v or equal to v. Thus { N (v) : v € V(T)} is the edge set
of a hypergraph with vertex set V(T'), called the hypergraph of in-neighbourhoods of T'.

3.2. For every 2-colourable tournament S, there is a number d such that for every S-free
tournament T, its hypergraph of in-neighbourhoods has VC-dimension at most d.

Proof. Let d’ satisfy 3.1 with d replaced by d’, and let d be an integer with d > d’ +
log,(d’). We claim that d satisfies the theorem. Let T' be a tournament, and suppose that
X C V(T) is shattered by the hypergraph of in-neighbourhoods of T, where |X| > d.
For each Y C X, there exists v € V(T') such that N (v) N X =Y let us write vy = v.
Choose X’ C X with |X’| = d'. Then for each Y’ C X', there are at least d’ + 1 subsets
Y of X with Y N X’ =Y’ and so vy ¢ X’ for at least one such set Y. But then 3.1
implies that T is not S-free. This proves 3.2. O

A similar, simpler proof (which we omit) shows:

3.3. For every 2-colourable tournament S and every 2-colouring {C, D} of S, there is a
number d with the following property. Let T be a tournament, let A C V(T), let H be
the hypergraph with vertex set V(T') and edge set {N; (v) :v € A}, and suppose that
X CV(T) is shattered by H, with | X| > d. Then there is an embedding of (S, C, D) into
(T, A\ X, X).

If H is a hypergraph, 7 denotes the minimum cardinality of a set which has nonempty
intersection with every edge of H, and 7}, is a fractional relaxation of this: the minimum
of > ev(m) f(v) over all functions f from V(H) to the nonnegative real numbers such
that > ., f(v) > 1 for every edge A of H.

We need the following theorem of [3], a slight refinement of earlier work of Haussler
and Welzl [5]. (Logarithms are to base two.)

3.4. Let d > 1, and let H be a hypergraph with VC-dimension at most d. Then
T < 2d7; log(117f).

3.5. Let T be a tournament, let d > 1, and let the VC-dimension of its hypergraph of
in-neighbourhoods be at most d. Then the domination number of T is at most 18d.

Proof. Let H be the hypergraph of in-neighbourhoods of T'. Then 77; < 2 (by corollary
6 of [1]), so 7y < 4dlog(22) < 18d by 3.4. This proves 3.5. O

Finally we deduce:

3.6. Every 2-colourable tournament is a rebel.
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Proof. Let S be a 2-colourable tournament, let {C, D} be a 2-colouring, and let d be as
3.2. If T is an S-free tournament, its hypergraph of in-neighbourhoods has VC-dimension
at most d by 3.2, and so its domination number is at most 18d by 3.5. This proves 3.6. O

4. Sparse shattered sets

When we are excluding a tournament S that is not 2-colourable, we find that the S-free
tournaments do not necessarily have hypergraphs of in-neighbourhoods with bounded
VC-dimension; but for our application we can prove that large shattered sets are sparse,
and this turns out to be enough to carry over the proof of 3.6. We will need the Sauer—
Shelah lemma [9,10], the following.

4.1. Let H be a hypergraph, and let X C V(H) with |X| = n, such that no d + 1-subset
of X is shattered by H. Then there are at most Zogigd (7;) distinct sets AN X where
A€ E(H).

In this section we prove our main lemma, a version of 3.4 which permits large shattered
sets provided they are sparse. Its proof is a modification of the proof of 3.4 in [3] and of
the original proof of Haussler and Welzl [5].

4.2. Let H be a hypergraph with n vertices, and let 0 < € < 1, such that | f| > en for every
edge f. Let d > 1 be an integer, and let 0 < ¢ < 1, such that at most c(g) d-subsets of
V(H) are shattered by H. If t > d is an integer such that 2= (2t)% (L (e/d)?+c2% (2t)!) <
1/4, then 7y < t.

Proof. Suppose that 7y > t. Let T be the set of all sequences (x1,...,2s:), where
Z1,...,22 € V(T), not necessarily distinct. For each f € E(H), let Ay be the set of
all (z1,...,x9) € T such that xq,...,2¢ ¢ f, and z; € f for at least et — 1 values of
te{t+1,...,2t}. Let A= UfeE(H)Af~

(1) Letaxy,...,xzs € V(H), and let f € E(H) with x1,...,x¢+ ¢ f. Then there are at least

n'/2 sequences (Tyi1,...,T2) such that (z1,...,z9) € Ay.
Since |f| > et, if we choose xii1,...,29; independently at random from V(H), the
expected number of ¢ € {t + 1,...,2t} with x; € f is at least et; and since the median

of a binomial distribution is within 1 of its mean, it follows that at least half of all the
choices of (2¢11,...,x) have at least et — 1 terms in f. This proves (1).

(2) Al > n?)2.

There are n' choices of (x1,...,7;), and for each one, there exists f € FE(H) with
Z1,...,x¢ & f, since t < 7y from our assumption. Consequently, for each choice of
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(x1,...,2¢), (1) implies that there are at least n'/2 sequences (z;41,...,Ta;) such that
(1,...,22) € Ay C A; and this proves (2).

For each (x1,...,29:) € T, its support is the function p with domain V(H) where
w(v) is the number of values of ¢ € {1,...,2t} with z; = v; and a function p that is
the support of some member of T is called a supporter. For the moment, let us fix some
supporter p. Let S* be the set of all (x1,...,29;) € T with support p, and for each
f € E(H),let S}L be the set of members of Ay with support p, that is, SJ’} =StNAy.

(3) [SF| < 2'=[S¥] for each f € E(H).

Let f € E(H) and let k=37, p(v). If k >t or k < et — 1 then S} = ) and the claim
holds; so we may assume that et —1 < k < ¢. It follows that a sequence (z1,...,29:) € S*
belongs to S§ if and only if 1, ...,z ¢ f. Let P(x1,...,29) = {i € {1,...,2t} : w; € f}.
Thus |P(x1,...,x9t)| = k; for each k-subset @ of {1,...,2t} there is the same number
of sequences (z1,...,x9:) € S* with P(z1,...,z9) = @; and for each such @, either
all these sequences belong to S}L or none do, depending whether @ C {t+1,...,2¢} or
not. Thus |S%|/|S*| equals the proportion of k-subsets of {1,...,2t} that are included
in {t+1,...,2t}, that is,

Sl _ Q) _ b=i gk gret,

0<i

This proves (3).
Let V(u) = {v: u(v) > 0}. Thus |V (u)| < 2t.

(4) If V(p) includes no d-set that is shattered by H then

1
| Uper S| < < (2et/d) 21|,
Let there be r distinct sets of the form f NV (u) where f € E(H). By 4.1,

2td1

rs 2 <2t> R ]

0<i<d

(1—.%) 1a

where x = (d — 1)/(2t); and since t > d, (1 — )t < ditl Consequently,

(204t 2t d (2t)¢
T (d-1ld+1 d+1 d

r
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By a form of Stirling’s approximation,

(d/e) d 2 > 5(djeyi——,

d! > V2r ditied >
d+1

N | Ot

It follows that

d
o4 e

“d+1 d (2et/d)".

<

ot =

For f,f' € E(H), if fNV(u) = f' NV(y) then S;f = S;f,; and so there are at most r
distinct sets S} (f € E(H)). By (3),

(2et/d)?21 =<t SH.

(S

| Urern SFl <
This proves (4).

(5) There are at most C(Zdt)nzt supporters p for which V(u) includes a d-subset that is
shattered by H.

If (x1,...,29t) € T and Y C V(H), we say that (z1,...,x2:) covers Y if ¥ C
{z1,...,22:}. There are n?* members of T, and each covers at most (%) d-subsets of
V(H). Moreover, each d-subset X of V(H) is covered by the same number of members
of T. It follows that each d-subset of V(H) is covered by at most n?! (2;) /() members
of T. Since there are at most ¢(’;) d-subsets of V/(H) that are shattered by H, it follows
that there are at most cn? () members of 7 that cover a d-set that is shattered by H.
Consequently there are at most that many supporters that do so. This proves (5).

(6) Al < n221=t(26)2(L(e/d)? + c22(2t))).

Every member of A belongs to Uycp( H)S}‘ for some supporter p. There are two kinds
of supporters p, those such that V(i) includes no shattered d-set and those that do. We
call these the “first” and “second” kinds. By (4), the union of all the sets UfeE(H)SJ’f
over all y of the first kind has cardinality at most £(2et/d)?2'~ times the sum of
the cardinalities of the sets S* over all such p, and since these sets S* are pairwise
disjoint subsets of T, the sum of their cardinalities is at most |7| = n?". Thus, the
union of the sets Usep( H)S}‘ over all supporters p of the first kind has cardinality at
most £ (2et/d)?2!~n? . For each supporter x of the second kind, the set Urer(m)S§ has
cardinality at most 22¢21¢*|S¥|, since there are only 2% distinct sets S}, and each has
cardinality at most 21 ~<|S*| by (3). Since |S*| < (2t)!, and there are at most c(2t)n?
such supporters p by (5), it follows that the union of the sets UfeE(H)S;f over all p of
the second kind has cardinality at most

c(2t)In2t22021 =<t (21)1.
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Adding, the result follows.

From (2) and (6), we deduce that 27<(2¢)%(%(e/d)? 4 ¢2%(2t)!) > 1/4, contradicting
the choice of t. Thus 7 < t. This proves 4.2. O

We deduce (logarithms are to base two):

4.3. For all € with 0 < € < 1, and all integers d > 1, there exists ¢ > 0 with the
following property. Let H be a hypergraph with n vertices, such that |f| > en for every
edge f, and such that at most c(g) d-subsets of V(H) are shattered by H. Then 1y <
[2de~ ! log(6e¢71)].

Proof. Let t = [2de ! log(6¢1)], and choose p > 6 such that ¢ = 2de~! log(pe~!). Then
27 (2t)(e/d)? < 2724020 (21) (e /d)? = (2etp~2e?/d)".
Now
detp~2€2d = dep~elog(pe )

but

log(pe™!)  logp
- <
pe p

since p > 6 > e, and so

4delogp
P2

2etp7262/d < <1

since p > 6. Consequently 27 (2t)%(e/d)? < 1. Choose c satisfying c2?*(2t)! = 5 (e/d)%;
then

1 1
2*ft(2t)d(5(e/d)d + 2% (2t)) = 2*“(2t)d(1(e/d)d) < 1/4,
and the result follows from 4.2. This proves 4.3. 0O
5. Odd girth

By analogy with graphs, let us say the odd girth of a tournament 7' is the minimum
k such that some k-vertex subtournament is not 2-colourable (and it is undefined if 7" is
2-colourable).

If X, Y C V(T), we say that X is complete to Y and Y is complete from X if XNY = ()
and every vertex in Y is adjacent from every vertex in X. For v € V(T'), we say v is
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complete to X if {v} is complete to X, and so on. Let C5 denote the three-vertex
tournament which is a cyclic triangle; and let S* be the tournament obtained from Cjs
by substituting a copy of C5 for two of its three vertices. (In other words, V(S*) is the
disjoint union of three sets X,Y, Z, where |Z| = 1, the subtournaments induced on X
and on Y are both cyclic triangles, and X is complete to Y, Y is complete to Z, and Z
is complete to X.) It is easy to see that S* is not 2-colourable. Our main theorem is

5.1. 5* is a rebel.

To prove this we must show that the class of all S*-free tournaments has bounded
domination. Certainly all tournaments with odd girth at least 8 are S*-free; thus, the
following assertion appears much weaker than 5.1, but as we show below, the two state-
ments are in fact equivalent. More precisely, 5.2 contains infinitely many assertions, one
for each value of k > 8; they all evidently are implied by 5.1, and we will show that any
one of them implies 5.1.

5.2. Fork > 8, the class of tournaments with odd girth at least k has bounded domination.

Proof of 5.1, assuming 5.2 for some k. Let £ > 0, and suppose that c is such that every
tournament with odd girth at least k£ has domination number at most c. We will show
that every S*-free tournament has domination number at most ¢+ k — 1. Let T be an
S*-free tournament. Let us say a brick of T is a subset X C V(T) with |X| < k such
that T'[X] is not 2-colourable. If there is no brick in T then its odd girth is at least k, so
its domination number is at most c¢ as required; and so we may assume there is a brick in
T. Consequently we may choose a sequence X1, ..., X, of bricks of T, pairwise disjoint,
such that X; is complete to X;11 for 1 <i < n, and with n > 1 maximum.

(1) There is no vertex in XoU---U X, that is complete to X;.

Let v € X,, say, where 2 < m < n, and suppose that v is complete to X;. Then v is
complete to the vertex set of a cyclic triangle in X; (because T[X;] is not transitive);
choose ¢ < m maximum such that v is complete to the vertex set of a cyclic triangle in
X;. Let Y7 be the vertex set of such a triangle. Now i < m — 2, since X,,, is complete
from X,,_;. From the maximality of i, the set of out-neighbours of v in X;;; does not
include a cyclic triangle and hence is transitive; and since G[X;41] is not 2-colourable,
the set of in-neighbours of v in X, is not transitive, and so includes a cyclic triangle
Ys say. But then T[Y; U Y2 U {v}] is isomorphic to S*, a contradiction. This proves (1).

Let C be the set of vertices of T that are complete to X;. By (1), CN(X U- - -UX,,) = 0.
From the maximality of n, there is no brick included in C; and so T[C] has odd girth at
least k, and hence has domination number at most ¢. But X; dominates V(T') \ C, and
so the domination number of T' is at most ¢ + |X;| < ¢+ k. This proves 5.1. O
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Thus, henceforth we may confine ourselves to tournaments with odd girth at least
any constant that we choose. Incidentally, it seems that there is a fundamental differ-
ence between tournaments and graphs: graphs of large girth can be transformed into
tournaments with large odd girth (via the use of an enumeration with which we inter-
pret edges as backward directed edges), but graphs with large odd girth (such as Borsuk
graphs) do not seem suitable for transformation into tournaments with large odd girth.
Let us turn this into a problem.

A tournament is a forest if one can enumerate its vertices so that its backward edges
form a forest. The girth of a tournament 7' is the smallest k for which there exists a
subtournament S of T with k vertices which is not a forest. The following problem is
not very well-posed, but nonetheless interesting:

5.3. Problem: Find constructions of tournaments with large odd girth and large chromatic
number which are not based on tournaments with large girth and large chromatic number.

6. Domination in tournaments with large odd girth
We will prove the following, which therefore implies 5.1 and 5.2.

6.1. The class of tournaments with odd girth at least 74 has bounded domination.
It is helpful first to prove the following somewhat weaker statement.

6.2. The class of tournaments T with odd girth at least 74 and such that |Nz (v)] >
[V(T)|/6 for every vertex v has bounded domination.

Proof. The seven-vertex Paley tournament has vertex set {vg,...,vs}, and for 0 < 4,5 <
6, we say v; is adjacent to v; if j =44+ 1,74+ 2 or 7 + 4 modulo 7. Let P* denote the
tournament obtained by reversing any one of its edges, say vqv; (its automorphism
group is transitive on edges, so it makes no difference which edge we reverse). Then
{v1,v2,v3,v4} is the only 4-vertex transitive set in P* (we leave checking this to the
reader), and in particular there is a unique 2-colouring, say {C, D}, where |C] = 4.
Choose d to satisfy 3.3, taking P* for S. Choose ¢ to satisfy 4.3, taking € = 1/6, and let
t = [12d1og(36)]. Now choose § such that $42d®2%(2t)! = 1. We will prove that every
tournament with odd girth at least 74 and such that | N, (v)| > |V(T')|/6 for every vertex
v has domination number at most ¢ 4+ 2571,

Let T be such a tournament. Let us say a domino in T is a 7-vertex subtournament
of T isomorphic to P*. Let G be the graph with vertex set V(T'), in which two vertices
are adjacent if some domino contains them both. For each edge uv of G, there may
be more than one domino that contains both u,v; but since the union of any two such
dominoes induces a 2-colourable tournament (since T has odd girth at least 74) and both
dominoes are uniquely 2-colourable, it follows that either u,v have the same colour in
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the 2-colouring of every domino containing them both, or they have different colours in
the 2-colouring of every domino containing them both. Edges uv of the latter kind we
call odd edges.

For each v € V(T) and i > 0, let N (v) denote the set of all vertices in V(T') with
distance (in G) from v at most 7. It turns out that the set of vertices v such that |[NZ(v)|
is large (linear in |V (T)|) can be dominated by a bounded subset for one reason, and the
set of v with |[NZ(v)| not so large can be dominated by a bounded subset for another
reason. Proving these statements will take several steps.

(1) For each v € V(T), T[N&(v)] is 2-colourable.

For every u € N2 (v), there is a path of G of length at most four between u, v; let A be
the set of all such u such that some such path contains an even number of odd edges,
and B the set such that some such path has an odd number of odd edges. We claim that
{A, B} is a 2-colouring of T[N (v)]. To show this we must show that AN B = (), and
T[A], T[B] are both transitive. For the first, suppose that u € AN B, and take two paths
of G between u, v, one with an odd number of odd edges and one with an even number.
The union of these two paths has at most eight edges; for each of these edges, choose
a domino containing both its ends. The union of these dominoes contains at most 48
vertices, and thus induces a 2-colourable subtournament, contradicting that each of the
dominoes is uniquely 2-colourable. Thus AN B = ().

Suppose that T'[A] is not transitive; then there is a cyclic triangle in T[A] with vertices
U1, ug, ug say. For each of uy,us,us take a path of G of length at most four between it
and v (necessarily containing an even number of odd edges); then the union of these
paths has at most twelve edges. For each of these edges, choose a domino containing
both ends of the edge; then the union of these dominoes has at most 73 vertices and so
is 2-colourable, again a contradiction. Similarly T'[B] is transitive. This proves (1).

Let n = |V(T)|, and let S be the set of vertices v of T such that |NZ(v)| > on.
(2) There is a set dominating S of cardinality at most 20~ 1.

Choose Sy in S maximal such that every two members of Sy have distance at least five
in G. It follows that the sets NZ(v) (v € Sp) are pairwise disjoint, and since they all have
cardinality at least dn, there are at most 1/§ of them, that is, |Sp| < 6~1. Now from the
maximality of Sy, every vertex in S has distance at most four in G from some member
of Sy, and hence there are at most §~! 2-colourable subtournaments of 7 with union
including S, by (1). But every 2-colourable tournament has domination number at most
two, and so there is a set of at most 26! vertices dominating S. This proves (2).

In view of (2), it remains to find a t-set that dominates V(T') \ S. We may therefore
assume that n > d. Let H be the hypergraph with vertex set V(T') and edge set all edges
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N=(v) (v e V(T)\S). We need to show that 7y < ¢. To do so we will apply 4.3, and
for the latter we need to show that the d-subsets of V(T') shattered by H are sparse.
We prove that as follows. A domino has a unique 2-colouring {4, B}, and one of A, B
has cardinality three, say A; we call A the outside of the domino, and B its inside. A
domino is normal if its inside is disjoint from S. Let G’ be the graph with vertex set
V(T) in which u, v are adjacent if there is a normal domino such that u,v both belong
to its outside. We see that G’ is a subgraph of the graph G defined earlier.

(3) Every vertex v € V(T') has degree at most on in G'.

For we may assume that v has degree at least one in G’, and therefore belongs to the
outside of some normal domino; and so v is adjacent in G to a vertex u € V(T) \ S.
Since u ¢ S, |[NZ(u)| < dn; but every neighbour of v in G’ belongs to NZ(u), and so v
has at most dn neighbours in G’ (in fact fewer). This proves (3).

(4) The number of d-subsets of V(T shattered by H is at most $6%d>(%).

Let K be the set of all outsides of normal dominoes. (We remark that K is a set, not
a multiset; two normal dominoes with the same outside contribute only one member to
K.) Every member of K is a triangle of G’, and it is an easy exercise to check that
an n-vertex graph with maximum degree at most k has at most nk(k — 1)/6 triangles.
Consequently it follows from (3) that [K| < 16%n®. Each set in K is a subset of (/}~3)
d-subsets of V(T'), and so, since n > d, there are at most

1.5 2(n—3 1 5(d—-1)(d—2) n 1.5 a(n

752 3 :*d(SQ 2 <*52d5

6 "(d—3) 6 n—1)(n-2)" \d) =6 d
d-subsets of V(T that include members of K. But from 3.3, every d-set shattered by H
includes a member of K. This proves (4).

From 4.3, taking ¢ = 1/6, we deduce that 74 < t. Consequently there is a set of
cardinality at most ¢ dominating V' (T")\'S; and from (2), we deduce that T has domination
number at most ¢ + 26~ 1. This proves 6.2. O

Proof of 6.1. Let ¢ be as in 6.2; we claim every tournament 7" with odd girth at least
74 has domination number at most ¢. We may assume that every vertex of T" has an
in-neighbour; and so, by the theorem of [4], for each vertex v there is a rational number
f(v) with 0 < f(v) < 1/3, summing to 1, such that for each v, the sum of f(u) over all
in-neighbours u of v is at least 1/2 — f(v)/2, and in particular is at least 1/3.

Let n = |V(T)|, and choose an integer M > n such that M f(v) is an integer for
each vertex v. For each v with f(v) > 0, substitute a transitive tournament 7T, say with
M f(v) vertices for v (vertices v with f(v) = 0 are not deleted). Let the tournament
just constructed be T”. Then for every vertex v of T with f(v) = 0, v has at least M/2
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in-neighbours in 7”; and for each v € V/(T') with f(v) > 0, every vertex of T, has at least
M /3 in-neighbours in 7”. Since |V(T")] < M +n < 2M, it follows that every vertex of
T’ has at least |V (T")]/6 in-neighbours in 7”. Moreover, the domination number of T is
at most that of T7”, and the odd girth of T” is at least 74. The result follows from 6.2.
This proves 6.1. O

7. Growth rates

Finally, let us mention a curiosity, not connected to domination, but lending credence
to the false conjecture that all rebels are 2-colourable. There is a dramatic difference
between excluding a 2-colourable tournament and excluding one that is not 2-colourable,
because of the following.

7.1. Let S be a tournament, let V be a set of size n say, where n is even, and let f(n)
be the number of S-free tournaments with vertex set V.

o If S is not 2-colourable then f(n) > on’/4.
o If S is 2-colourable then for all e > 0, f(n) < gen’ if n is sufficiently large in terms

of €.

Proof. (Sketch) If S is not 2-colourable, then no 2-colourable tournament contains it, and
there are at least 2"°/4 2-colourable tournaments on V. Now we assume S is 2-colourable,
and let 0 < € < 1. We claim that there is a constant ¢ such that every S-free tournament
on n vertices (with n sufficiently large) can be obtained from a tournament with some
d vertices, where e ™' < d < ¢, by first replacing each vertex by a transitive set of size
[n/d] or [n/d] (and directing the edges within each transitive set according to some
fixed ordering of V') and then reversing the direction of at most %enQ edges. To see this
we use the regularity lemma. Let T" be an S-free tournament with vertex set V. Choose
6 > 0 much smaller than ¢, and take a d-regular partition of V into say d sets all of size
|n/d] or [n/d], where e~! < d, and d is at most a constant depending on e. Since the
VC-dimension of the in-neighbourhood hypergraph of T is bounded (by 3.2), it follows
that for each d-regular pair (X,Y) of sets in this partition, either there are at most
3| X||Y] edges from X to Y, or at most 6| X||Y] from Y to X. Consequently T" can be
obtained from a d-vertex tournament as described earlier; and so the number of such T
is at most 2¢°. This proves 7.1. O
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