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1. INTRODUCTION

FAMILIES IN MANY LARGE URBAN DISTRICTS CAN APPLY for seats at any public school in
their district. The fact that some schools are more popular than others and the need to
distinguish between students who have different priorities at a given school generate a
matching problem. Introduced by Gale and Shapley (1962) and Shapley and Scarf (1974),
matchmaking via market design allocates scarce resources, such as seats in public schools,
in markets where prices cannot be used for this purpose. The market-design approach
to school choice, pioneered by Abdulkadiroglu and S6nmez (2003), is used in a long and
growing list of public school districts in America, Europe, and Asia. Most of these cities
match students to schools using a mechanism known as deferred acceptance (DA).

Two benefits of centralized matching schemes like DA are efficiency and fairness: the
resulting match improves welfare and transparency relative to ad hoc alternatives, while
lotteries ensure that students with the same preferences and priorities have the same
chance of obtaining highly-sought-after seats. The latter is sometimes called the “equal
treatment of equals” (ETE) property. DA and related algorithms also have the virtue
of narrowing the scope for strategic behavior that would otherwise give sophisticated
families the opportunity to manipulate an assignment system at the expense of less-
sophisticated participants (Abdulkadiroglu, Pathak, Roth, and S6nmez (2006), Pathak
and Sonmez (2008)). In addition to these economic considerations, centralized assign-
ment generates valuable data for empirical research on schools. In particular, when
schools are oversubscribed, lottery-based rationing induces quasi-experimental variation
in school assignment that can be used for credible evaluation of individual schools and of
school reform models like charters.

Previous research using the lotteries embedded in centralized assignment schemes in-
clude studies of schools in Boston (Abdulkadiroglu, Angrist, Dynarski, Kane, and Pathak
(2011)), Charlotte-Mecklenburg (Hastings, Kane, and Staiger (2009), Deming (2011),
Deming, Hastings, Kane, and Staiger (2014)) and New York (Bloom and Unterman
(2014), Abdulkadiroglu, Hu, and Pathak (2013)). Causal effects in these studies are con-
vincingly identified by quasi-experimental variation, but the research designs deployed in
this work fail to exploit the full power of the random assignment embedded in centralized
assignment schemes. A major stumbling block is the multi-stage nature of market-design
matching. Market design weaves random assignment into an elaborate tapestry of infor-
mation on student preferences and school priorities. In principle, all features of student
preferences and school priorities can shape the probability of assignment to each school.
Families tend to prefer schools located in their neighborhoods, for example, while schools
may grant priority to children poor enough to qualify for a subsidized lunch. Conditional
on preferences and priorities, however, centralized assignments are independent of po-
tential outcomes.

This paper explains how to recover the full range of quasi-experimental variation em-
bedded in centralized assignment. Specifically, we show how mechanisms that satisfy ETE
map information on preferences, priorities, and school capacities into a conditional prob-
ability of random assignment, often referred to as the propensity score. As in other strat-
ified randomized research designs, conditioning on the propensity score eliminates se-
lection bias arising from the association between conditioning variables and potential
outcomes (Rosenbaum and Rubin (1983)). The payoff to propensity-score conditioning
turns out to be substantial in our application: full stratification on preferences and prior-
ities reduces degrees of freedom markedly, eliminating many schools and students from
consideration, while score-based stratification leaves our research sample largely intact.
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The propensity score does more for us than reduce the dimensionality of preference
and priority conditioning. Because all applicants with score values strictly between zero
and one contribute variation that can be used for evaluation, the propensity score iden-
tifies the maximal set of applicants for whom we have a randomized school-assignment
experiment. The nature of this sample is not easily seen otherwise. We show, for example,
that the quasi-experimental sample includes many schools that are undersubscribed, that
is, schools that have fewer applicants than seats. Intuitively, applicants are randomly as-
signed to undersubscribed schools when they are rejected by oversubscribed schools that
they have ranked more highly. As we show here, random assignment of this sort occurs
frequently.

The propensity score for any mechanism that satisfies ETE is easily estimated by simu-
lation, that is, by repeatedly drawing lottery numbers and computing the resulting average
assignment rates across draws. This amounts to sampling from the relevant permutation
distribution, a natural and highly general solution to the problem of score estimation. At
the same time, while any stochastic mechanism can be simulated, simulation fails to illu-
minate the path producing random assignment. For example, the simulated score for a
given school does not reveal the proportion of applicants randomly assigned due to over-
subscription of that school and the proportion randomly assigned due to oversubscrip-
tion of other schools that this school’s applicants have ranked more highly. We therefore
develop an analytic formula for the propensity score for a broad class of DA-type mech-
anisms. This formula explains how and why random assignment emerges. Our formula
also provides a natural smoother for estimated scores. Because the relevant covariates
are discrete, unsmoothed simulated scores fail to provide the sort of dimension reduction
that gives the propensity score its practical appeal (Hirano, Imbens, and Ridder (2003)).

The propensity score generated by DA-type mechanisms does not typically have a gen-
eral closed-form solution. As a result, our analytic framework uses an asymptotic “large
market” approximation to derive a simple formula for the score. The resulting DA propen-
sity score is a function of a few easily-estimated parameters. Both the simulated and
DA (analyt1c) propensity scores work well as far as covariate balance goes, a result that
emerges in our empirical application. Importantly, however, the DA score highlights spe-
cific sources of randomness and confounding in DA-based assignment schemes. In other
words, the DA propensity score reveals the nature of the stratified experimental design
embedded in a particular match. The DA score is also quickly and easily computed, and
can be used without the rounding or functional form restrictions (such as linear controls)
required when using a simulated score.

Our test bed for the DA propensity score is an empirical analysis of charter school ef-
fects in the Denver Public School (DPS) district, a new and interesting setting for charter
school impact evaluation.! Because DPS assigns seats at traditional and charter schools
in a unified match, the population attending DPS charters is less positively selected than
in large urban districts with decentralized charter lotteries. As far as we know, ours is the

!Charter schools operate with considerably more independence than traditional public schools. Among
other differences, many charters fit more instructional hours into a year by running longer school days and
providing instruction on weekends and during the summer. Because few charter schools are unionized, they
hire and fire teachers and administrative staff without regard to the collectively bargained seniority and tenure
provisions that constrain such decisions in many public schools. About half of Denver charters implement
versions of the No Excuses model of urban education. No Excuses charters run a long school day and year,
emphasize discipline and comportment and traditional reading and math skills, and rely heavily on data and
teacher feedback to improve instruction. See Abdulkadiroglu et al. (2011) and Angrist, Pathak, and Walters
(2013) for related evidence on charter effects.
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first charter evaluation to exploit an assignment scheme that simultaneously randomizes
seats in both the charter and traditional public school sectors.

The next section details the class of assignment mechanisms of interest to us and de-
scribes the central role of the propensity score for impact evaluation. Following this con-
text, Section 3 uses the theory of market design to characterize the propensity score for
DA-generated offers in large markets. Section 4 uses these results to estimate charter ef-
fects. Specifically, our empirical evaluation strategy uses an indicator for DA-generated
charter offers as an instrument for charter school attendance in a two-stage least squares
(2SLS) setup. This 2SLS procedure eliminates bias from non-random variation in prefer-
ences and priorities by controlling for the DA propensity score. This section also shows
how to estimate effects for multiple sectors, an important extension when school effects
are potentially heterogeneous. Finally, Section 5 summarizes our theoretical and empiri-
cal findings and outlines an agenda for further work.

2. CENTRALIZED ASSIGNMENT IN GENERAL AND IN DENVER
2.1. Conditional Independence and ETE

A school choice problem is an economy defined by a set of applicants, schools, and
school capacities. Applicants have strict preferences over schools while schools have pri-

orities over applicants. Let I denote a set of applicants, indexed by i,andlets =0, 1, ..., S
index schools, where s = 0 represents an outside option. Let n be the number of appli-
cants. Seats at schools are constrained by a capacity vector, q = (qo, g1, G2, - - - » 4s); W€

assume g > 7.
Applicant i’s preferences over schools constitute a partial ordering of schools, denoted
>,;, where a >; b means that i prefers school a to school b. Each applicant is also granted
a priority at every school. Let p;; € {1, ..., K, oo} denote applicant i’s priority at school s,
where p;; < p;, means school s prioritizes i over j. For instance, p;; = 1 might encode the
fact that applicant i has sibling priority at school s, while p;; = 2 encodes neighborhood
priority, and p;; = 3 for everyone else. We use p;; = oo to indicate that i is ineligible for
school s. Many applicants share priorities at a given school, in which case p;, = p;, for
some i # j. Let p, = (pi, . - ., pis) be the vector of applicant i’s priorities for each school.
Applicant type is defined as 0; = (>, p,), that is, the combination of an individual ap-
plicant’s preference and priorities at all schools. We say that an applicant of type 6 has
preferences >, and priorities p,. The symbol @ denotes the set of possible types.

An assignment for applicant i, denoted u;, specifies her assigned school or assignment
to the outside option. u denotes the vector of assignments for all i € I. School s is as-
signed at most g, applicants. A mechanism is a set of rules determining p as a function
of preferences, priorities, and a possible tie-breaking variable that might be randomly as-
signed. The mechanism known as serial dictatorship, for example, orders applicants by the
tie-breaker, assigning the first in line his or her top choice, the second in line his or her
top choice among schools with seats remaining, and so on.

Many mechanisms use randomization to break ties, inducing a distribution of assign-
ments. Such mechanisms are said to be stochastic. When applicants in a serial dictatorship
are ordered randomly, for example, the mechanism is called random serial dictatorship
(RSD). Randomizers that are drawn independently from a uniform distribution for each
applicant are called lottery numbers. The distribution of assignments induced by RSD is
the permutation distribution generated by all possible lottery draws.

Formally, any stochastic mechanism maps economies characterized by (1, S, q, ®) into
a distribution of possible assignments. This distribution is described by a matrix with
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generic element p;, satisfying (i) 0 < p;; <1 for all i and s, (ii) ), p;; = 1 for all i, and
(iii) Y, pis < g, for all 5. The value of p;, is the probability that applicant i is assigned to
school s. These are collected in a vector p; = (p., pit» - - -, Pis) recording the probabilities
i finds a seat for all schools. This notation covers deterministic mechanisms in which p;,
equals either 0 or 1 and, for each i, p;, =1 for at most one s.

We say mechanism ¢ satisfies the equal treatment of equals (ETE) property when ap-
plicants with the same preferences and priorities at all schools have the same assignment
probability at each school.? That is, for any school choice problem and any applicants i
and j with 6; = 6;, ETE means that p, = p,.

ETE allows us to use stochastic mechanisms to estimate causal effects. Specifically, we
would like to estimate the causal effect of attendance at a particular school or group of
schools relative to one or more alternative schools. This task is complicated by the fact
that school assignment reflects preferences and priorities and these variables in turn are
related to outcomes like test scores. ETE solves this problem: the distribution of offers
generated by a stochastic assignment mechanism is viewed here as a stratified randomized
trial, where the “strata” are defined by type.

As the notion of a stratified randomized trial suggests, ETE makes offers conditionally
independent of all possible confounding variables that might otherwise generate omit-
ted variables bias in econometric analyses of school attendance effects. To see this, pick
any school s as a treatment school and let D;(s) be a dummy variable indicating when
applicant i is assigned to school s by stochastic mechanism ¢. For any random variable
or vector of characteristics W;, which can include covariates like race or outcome vari-
ables like test scores, let W, be the potential value of W; that is revealed when D;(s) =0
and let W}; be the potential value revealed when D;(s) = 1. These two potential values
might be the same, as for covariates (race is unchanged by school assignment) or for test
scores when assignment has no effect on achievement. But in cases where they differ, as
for outcomes affected by treatment, only one is seen in a given assignment realization.
Potential variables are attributes and therefore non-stochastic in a fixed applicant popu-
lation, that is, they are unchanged by school assignments (see, e.g., Rosenbaum (2002),
Imbens and Rubin (2015)). We therefore say that the observed characteristic W, is fixed
under re-randomization if Wy; = W, for all i.

Although assignment probabilities almost certainly vary with applicant characteristics,
ETE restricts this variation to be independent of characteristics conditional on type:

PROPOSITION 1: Consider the conditional assignment probability P[D;(s) = 1|W; = w,
0; = 6] for all applicants i with W; = w and 6; = 0. The probability P is the assignment rate to
school s induced by stochastic mechanism ¢ and w is a particular value of W,. If ¢ satisfies
ETE and W, is fixed under re-randomization, we have that

P[Di(s) =1|W;=w, 6; = 0] = P[Di(s) = 16, = 6]
for any w.
PROOF: Since W, is fixed under re-randomization,

P[Di(s) =1|W;=w, ;= 0] = P[D:(s) = 1|Wy; = w, 6; = 6].

2ETE is widely studied in allocation problems; see, for example, Moulin (2003). Shapley’s (1953) axiomati-
zation of the Shapley value appears to be the first formal statement of this concept.
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Moreover, since knowledge of an individual applicant’s identity implies knowledge of his
type and of W, the law of iterated expectations implies

P[Di(s) =1Wyi=w, 6; = 9] = E[ps|Woi =w, 0; = 0] = E[p;s|0; = 0],

where the second equality follows from ETE: p;, is the same for applicants of the same
type. We have therefore shown

P[Di(s) =1|W;=w, §; = 6] = P[D:(s) =116, = 6]. Q.E.D.

Although elementary, Proposition 1 is the foundation of our analysis, showing how cen-
tralized assignment schemes induce a stratified randomized trial. In particular, this propo-
sition defines the conditional independence assumption that provides the foundation for
causal analysis of DA-generated assignments.

Conditional Independence for DA

Many U.S. school districts implement versions of DA with a single tie-breaking lottery
number, though some districts use other schemes. As we discuss below, however, the most
widely-used centralized assignment mechanisms can be cast as a version of DA. Single tie-
breaking DA for school assignment works like this:

Draw an independently and identically distributed lottery number for each applicant.

Each applicant applies to his most preferred school. Each school ranks these applicants first by priority,
then by random number within priority groups, and provisionally admits the highest-ranked applicants
in this order up to its capacity. Other applicants are rejected.

Each rejected applicant applies to his next most preferred school. Each school ranks these new appli-
cants together with applicants that it admitted provisionally in the previous round, first by priority and then
by random number. From this pool, the school provisionally admits those it ranks highest up to capacity,
rejecting the rest.

The algorithm terminates when there are no new applications (some applicants may re-
main unassigned).?

DA with single tie-breaking is easily seen to satisfy ETE. Stochastic assignments in
this case are determined by the type distribution, which is fixed, and a particular lottery
draw. Assignment differences from one realization to the next are therefore generated
solely by differences in lottery draws. In particular, if we swap the lottery numbers for two
applicants with the same type, DA swaps their assignments, leaving other assignments un-
changed. Since all draws are equally likely for all applicants, the probability of assignment
must be equal for two applicants of the same type, satisfying ETE. This argument is made
formally in Appendix A.1, which also shows that the class of mechanisms satisfying ETE
includes:

e DA with multiple tie-breakers (i.e., different lottery numbers at different schools)

e the immediate acceptance (“Boston”) mechanism with single or multiple tie-
breakers

SDA produces a stable allocation in the following sense: any applicant who prefers another school to the
one he has been assigned must be outranked at that school, either because everyone assigned there has higher
priority, or because those who share the applicant’s priority at that school have higher lottery numbers. DA is
also strategy-proof, meaning that families do as well as possible by submitting a truthful preference list (e.g.,
there is nothing to be gained by ranking undersubscribed schools highly just because they are likely to yield
seats). See Roth and Sotomayor (1990) for a review of these and related theoretical results.
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e random serial dictatorship

o top trading cycles with single or multiple tie-breakers.

Where does ETE fail? Some English towns use DA with distance-based tie-breaking
(Burgess, Greaves, Vignoles, and Wilson (2014)). In this case, distance plays the role
otherwise played by lottery numbers. DA with distance-based tie-breaking fails to satisfy
ETE because applicants of the same type (as defined above) need not face the same
assignment probability.

2.2. Propensity Score Pooling

Proposition 1 implies that for applicant i of type 6 and for any variable W, that is fixed
under re-randomization,

P[Di(s) = 1|W; = w, 6, = 8] = P[Di(s) = 116, = 6].

In other words for any mechanism that treats equals equally, conditioning on 6; eliminates
selection bias arising from the association between type and potential outcomes. Since 6;
takes on many values, however, full-type conditioning reduces the sample available for
impact evaluation. We therefore consider schemes that compare applicants while pooling
types.

Rosenbaum and Rubin’s (1983) propensity score theorem tells us how this pooling can
be accomplished while still eliminating omitted variables bias. The propensity score for a
market of any size, denoted p,(8), is the scalar function of type defined by

ps(e) = PI'[D,-(S) = 1|6, = 0]

Rosenbaum and Rubin (1983) showed that propensity score conditioning is enough to
ensure that offers are independent of ;. In other words,

P[D;(s) =1|W; =w, p,(6;) = p] = P[Di(s) = 1| p,(6;) = p] = p. (1)

Equation (1) implies that propensity score conditioning eliminates omitted variables
bias due to the dependence of offers on type.* The following simple example illustrates
propensity score pooling in a matching market.

EXAMPLE 1: Five applicants {1,2, 3,4, 5} apply to three schools {a, b, c}, each with
one seat. Applicant 5 has the highest priority at ¢ and applicant 2 has the highest priority
at b; otherwise the applicants have the same priority at all schools. We are interested in
measuring the effect of an offer at school a. Applicant preferences are

l:a>0b,
2:a>Db,
3:a,
4:c>a,
S5:c.

Applicants 3 and 5 rank only one school.

“Rosenbaum and Rubin (1983) also showed that the propensity score is the coarsest balancing score, which
in this case means that no coarser function of type ensures conditional independence of D;(s) and ;. Hahn
(1998), Hirano, Imbens, and Ridder (2003), and Angrist and Hahn (2004) discussed the efficiency conse-
quences of conditioning on the score.
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Note that no two applicants here have the same preferences and priorities. Conse-
quently, full-type conditioning puts each applicant into a different stratum. This rules out
research strategies that rely on full-type conditioning to eliminate selection bias. But full-
type conditioning is unnecessary in this case because DA assigns each of applicants 1, 2,
3, and 4 to school a with probability 0.25. This calculation reflects the fact that 5 beats
4 at c by virtue of his priority there, leaving 1, 2, 3, and 4 all applying to a with no one
advantaged there. The impact of assignment to a can therefore be analyzed in a single
stratum containing four applicants with a common propensity score value of 0.25.

The propensity score for this simple example is readily determined. In real assignment
problems, the score is not easily computed, but can be simulated by repeatedly drawing
lottery numbers and running DA for each draw. By a conventional law of large numbers,
the average offer rate across draws converges to the actual finite-market score as the
number of draws increases. We illustrate this approach to score estimation by using data
from the Denver Public School (DPS) district to construct a simulated propensity score
for offers of a charter school seat.

2.3. DPS Data and Descriptive Statistics

Since the 2011 school year, DPS has used DA to assign applicants to most schools in
the district, a process known as SchoolChoice. Denver school assignment involves two
rounds, but only the first round uses DA. Our analysis therefore focuses on the initial
round.

In the first round of SchoolChoice, parents rank up to five schools of any type, in-
cluding traditional public schools, magnet schools, innovation schools, and most charters.
A neighborhood school is also ranked automatically (if need be, the district inserts a
neighborhood school in applicant rankings as the last choice). Schools ration seats using
a mix of priorities and a single lottery number. Priorities vary across schools and typi-
cally involve siblings and neighborhoods. Seats may be reserved for a certain number of
subsidized-lunch applicants and for children of school staff. Reserved seats are allocated
by splitting schools and assigning the highest priority status to applicants in the reserved
group at one of the sub-schools created by a split.” Seats grouped together in this way
within a school are said to be in a “bucket.”

Buckets are created when schools are split to accommodate reserved seating, but
they’re created for programmatic reasons as well. DPS converts applicants’ preferences
over schools into preferences over buckets, depending on qualification for reserved seat-
ing and/or programmatic interests. The upshot for our purposes is that DPS’s version of
DA assigns seats at buckets rather than schools, while the relevant propensity score cap-
tures the probability of offers at buckets. The discussion that follows nevertheless refers
to propensity scores for schools, with the understanding that the fundamental unit of as-
signment is a bucket, from which assignment rates to schools are constructed.®

The data analyzed here come from files containing the information used for first-round
assignment of students applying in the 2011-2012 and 2012-2013 school years for seats
the following years (this information includes preference lists, priorities, random num-

SFor more on reserve implementation via school splitting, see Dur, Kominers, Pathak, and Sonmez (2014)
and Dur, Pathak, and S6nmez (2016).

*DPS modifies DA by recoding the lottery numbers of all siblings applying to the same school to be the
best random number held by any of them. This modification (known as “family link”) changes the allocation
of only about 0.6% of applicants from that generated by standard DA. Our analysis incorporates family link by
defining distinct types for linked applicants.
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bers, assignment status, and school capacities). We use a spring dating convention, la-
beling these years “2013” and “2014,” and focus on applicants for grades 4-10, who are
in grades 3-9 in the application year. Most of our applicants are applying for a (middle
school) grade 6 seat or a (high school) grade 9 seat. School-level scores were constructed
by summing scores for all component buckets. Our empirical work also uses files with in-
formation on October enrollment and standardized scores from the Colorado School As-
sessment Program (CSAP) and the Transitional Colorado Assessment Program (TCAP)
tests, given annually in grades 3-10. The Supplemental Material (Abdulkadiroglu, An-
grist, Narita, and Pathak (2017)) describes these files and the extract we created from
them. For our purposes, “Charter schools” are schools identified as “charter” in DPS
2012-2013 and 2013-2014 SchoolChoice Enrollment Guide brochures and not identified
as “intensive pathways” schools, which serve applicants who are much older than is typical
for their grade.

The DPS population enrolled in grades 3-9 is roughly 60% Hispanic, a fact reported
in Table I, along with other descriptive statistics. The outcome scores of applicants in
grades 3-9 come from TCAP tests taken in grades 4-10 in the spring of the following
year.” The high Hispanic proportion of its student body makes DPS an especially inter-
esting and unusual urban district. Not surprisingly in view of this, almost 30 percent of
DPS students have limited English proficiency. Consistent with the high poverty rates
seen in many urban districts, three quarters of DPS students are poor enough to qual-
ify for a subsidized lunch. Roughly 20% of the DPS students in our data are identified
as gifted, a designation that qualifies them for differentiated instruction and other pro-
grams.

In the two years covered in Table I, roughly 22,000 of the students enrolled in grades 3—
9 sought to change their school for the following year by participating in SchoolChoice in
the spring. We drop applicants for 2014 seats who also participated in the previous year’s
match. The sample participating in the assignment, described in column 2 of Table I,
contains fewer charter school students than appear in the total DPS population, but is
otherwise similar. It is also worth noting that our analysis is limited to students enrolled
in DPS in the years that provide baseline (that is, pre-assignment) test scores. The sample
described in column 2 is therefore a subset of that described in column 1.

Column 3 of Table I shows that of the 22,000 DPS-at-baseline applicants participating
in SchoolChoice, about 10,000 ranked at least one charter school. We refer to these stu-
dents as charter applicants; the estimated charter attendance effects that follow are for
subsets of this applicant group. DPS charter applicants have baseline achievement lev-
els and demographic characteristics broadly similar to those seen district-wide. The most
noteworthy feature of the charter applicant sample is a reduced proportion white, from
about 18% among SchoolChoice applicants to a little over 12% among charter applicants.
It is also worth noting that charter applicants have baseline test scores close to the DPS
average. This contrasts with the modest positive selection of charter applicants seen in
Boston (reported in Abdulkadiroglu et al. (2011)).

We computed simulated scores by running DA for one million lottery draws for each
year. Simulated scores are the proportion these of draws in which applicants of a given
type were seated at each school. The propensity score for charter offers is the sum of the
scores for each individual charter school (a consequence of the fact that SchoolChoice
produces a single offer for each applicant).® Applicants subject to random charter assign-

"Grade 3 is omitted from our outcome sample because third-graders have no baseline test to gauge balance.
8Calsamiglia, Fu, and Giiell (2014) and Agarwal and Somaini (2015) simulate variants of the Boston mech-
anism as part of research estimating preferences over schools.
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TABLE I
DPS APPLICANT CHARACTERISTICS?

Simulated Score in (0, 1)

Denver SchoolChoice Charter Charter Charter
Students Applicants Applicants Applicants Students
(€] 2 3 ()] (6]

Origin school is charter 0.151 0.088 0.144 0.192 0.273
Female 0.494 0.495 0.505 0.500 0.495
Race

Hispanic 0.594 0.600 0.640 0.645 0.698

Black 0.140 0.143 0.167 0.186 0.161

White 0.193 0.184 0.126 0.102 0.082

Asian 0.034 0.033 0.028 0.027 0.029
Applied in 2013 0.490 0.488 0.487 0.445 0.445
Gifted 0.180 0.214 0.203 0.180 0.175
Bilingual 0.040 0.030 0.038 0.037 0.038
Subsidized lunch 0.752 0.763 0.804 0.815 0.827
Limited English proficient 0.297 0.301 0.344 0.364 0.419
Special education 0.119 0.122 0.091 0.087 0.084
Baseline scores

Math 0.000 —0.003 0.008 —0.009 0.043

Reading 0.000 —0.003 —0.009 —0.032 —0.022

Writing 0.000 —0.008 —0.005 —0.012 0.019
N 51,325 22,311 10,203 3,466 1,769

4This table describes the population of Denver 3rd-9th graders in 2011-2012 and 2012-2013, the baseline years. Statistics in
column 1 are for charter and non-charter students. Column 2 describes the subset that submitted an application to the SchoolChoice
system for a seat in grades 4-10 at another DPS school in 2013 or 2014. Column 3 reports values for applicants ranking any charter
school. Column 4 shows statistics for charter applicants with simulated score values strictly between zero and one. The simulated
score is rounded to 0.001. Column 5 tabulates statistics for applicants in column 4 who matriculate at a charter school. Test scores are
standardized to the population described in column 1.

ment are those with charter propensity scores (probabilities of assignment) between zero
and one. Column 4 of Table I shows that nearly 3,500 charter applicants are subject to
random assignment. This group looks like the full charter applicant pool on most dimen-
sions, though randomized applicants are more likely to have already been enrolled at a
charter at the time they entered the match. Column 5 reports statistics for the subset of
the randomized group that enrolls in a charter school; these show slightly higher baseline
scores among charter students.

2.4. DPS Schools Randomized

Table II lists charter schools in our sample, along with the number of applicants, ca-
pacities, offers, and counts of applicants subject to random assignment for each school in
2013. Three charter management organizations (CMOs), the Denver School of Science
and Technology (DSST), STRIVE Preparatory Schools, and the Knowledge is Power Pro-
gram (KIPP), contribute 16 of the 31 charters listed.

The proportion of applicants subject to random assignment varies markedly from
school to school. This can be seen by comparing the count of applicants subject to random
assignment in column 5 with the total applicant count in column 2. Column 5 documents
the presence of applicants subject to random assignment at every charter in 2013, except
for the Denver Language School, which offered no seats. With the exception of Venture
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TABLE II
DPS CHARTER SCHOOLS (2013 APPLICANTS)?

Simulated Score in (0, 1)

School Applicants First Choice
CMO  Applicants  Capacity  Offered Seats ~ Applicants ~ Applicants
School M (@) 3 4 ®) )

Elementary and middle schools

Cesar Chavez Academy Denver 62 72 9 8 3
Denver Language School 4 100 0 0 0
DSST: Cole Yes 281 150 129 45 0
DSST: College View Yes 299 310 130 69 0
DSST: Green Valley Ranch Yes 1,014 146 146 358 291
DSST: Stapleton Yes 849 156 156 231 137
Girls Athletic Leadership School 221 143 86 51 0
Highline Academy Charter School 159 93 26 84 50
KIPP Montbello College Prep Yes 211 125 39 56 21
KIPP Sunshine Peak Academy Yes 389 120 83 46 36
Odyssey Charter Elementary 215 32 6 22 14
Omar D. Blair Charter School 385 193 114 182 99
Pioneer Charter School 25 152 5 2 0
SIMS Fayola International

Academy Denver 86 120 37 21 0
SOAR at Green Valley Ranch 85 114 9 44 37
SOAR Oakland 40 117 4 7 2
STRIVE Prep—Federal Yes 621 138 138 193 131
STRIVE Prep—GVR Yes 324 147 112 119 0
STRIVE Prep—Highland Yes 263 147 112 19 0
STRIVE Prep—Lake Yes 320 147 126 26 0
STRIVE Prep—Montbello Yes 188 147 37 36 0
STRIVE Prep—Westwood Yes 535 141 141 239 141
Venture Prep 100 114 50 18 0
Wyatt Edison Charter Elementary 48 300 4 2 0

High schools

DSST: Green Valley Ranch Yes 806 186 173 332 263
DSST: Stapleton Yes 522 27 27 143 96
KIPP Denver Collegiate High School  Yes 268 100 60 41 24
SIMS Fayola International

Academy Denver 71 130 15 23 0
Southwest Early College 265 235 76 58 0
STRIVE Prep—SMART Yes 383 160 160 175 175
Venture Prep 140 246 39 49 0

aThis table describes DPS charter applications for the 2012-2013 school year. Column 1 indicates CMO schools belonging to the
DSST, STRIVE, and KIPP networks. Column 2 reports the number of applicants ranking each school. Column 3 reports each school’s
capacity. Column 4 counts the number of applicants offered a seat. Column 5 counts applicants with simulated score values strictly
between zero and one. The simulated score is rounded to 0.001. Column 6 shows the number of applicants from column 5 who rank
each school first.

Prep, this was also true in 2014 (see Supplemental Material Table B.V for a version of
Table II for 2014 applicants).

DA randomizes seats for applicants ranking charters first for a smaller set of schools.
This can be seen in the last column of Table II, which reports the number of applicants
with a simulated charter score strictly between zero and one who also ranked each school
first. The reduced scope of first-choice randomization is important for our comparison
of strategies using the DA propensity score with previously-employed IV strategies us-
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ing first-choice instruments. First-choice instruments applied to the DPS charter sector
necessarily ignore many schools (in 2013, 15 schools had no first-choice random assign-
ment).

A broad picture of DPS random assignment appears in Figure 1. Panel (a) summarizes
the information in columns 5 and 6 of Table II by plotting the number of first-choice
applicants subject to randomization as dots, with the total number randomized at each
school plotted as an arrow pointing up from these (schools are indexed on the x-axis by
their capacities). This representation highlights the empirical payoff to our score-based
approach to the DA research design. These benefits are not limited to the charter sector,
a fact documented in panel (b) of the figure, which presents the same comparisons for
non-charter schools in the DPS match.

Table II reports a few surprising features of the assignment distribution. We see, for
example, that only 112 applicants were offered seats at STRIVE Prep-GVR, a school
with a capacity of 147. In spite of the fact that this school was undersubscribed, many
of the seats there were randomly assigned. The simulated score shows that this happens,
without explaining why. We therefore introduce a large-market approximation to p;(6)
that reveals the sources of random assignment in a large class of mechanisms satisfying
equal treatment of equals. The large-market score also provides a natural smoother for
the raw simulated score.

3. SCORE THEORY
3.1. A Large-Market Approximation

Our analysis of single tie-breaking DA provides a theoretical foundation for the deriva-
tion of propensity scores for a wide class of mechanisms. Extensions to the most important
of these other mechanisms (DA with multiple tie-breakers and immediate acceptance) are
discussed at the end of the Appendix.

The probability of assignment to school a under DA is determined both by an appli-
cant’s failure to win a seat at schools he ranks more highly than a and by the odds he
wins a seat at a in competition with those who have also ranked a and similarly failed
to find seats at schools they have ranked more highly. This structure leads to a simple
formula quantifying these two types of risk.” The following example illustrates this struc-
ture:

EXAMPLE 2: Four applicants {1, 2, 3, 4} apply to three schools {a, b, c}, each with one
seat. There are no school priorities and applicant preferences are

1:c,
2:¢c>b>a,
3:b>a,
4:a.

As in Example 1, each applicant is of a different type.

Other applications of large-market approximations include Abdulkadiroglu, Che, and Yasuda (2015),
Azevedo and Leshno (2016), Budish (2011), Che and Kojima (2010), Kesten and Unver (2015).
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FIGURE 1.—Sample size gains from the propensity-score strategy. Notes: These figures compare the sample
size subject to random assignment to the number of applicants randomized at their first choice school. An
applicant is said to be subject to randomization at a school if the applicant has a simulated probability of
assignment to that school that is neither 0 nor 1.

Let p,(0) denote the probability that type i is assigned to school a for 6 =1, 2,3, 4.
With four applicants, p,(6) comes from 4! = 24 possible orders of lottery draws, all
equally likely. Given this modest number of possibilities, p,(6) is easily calculated by
enumeration:

e Not having ranked a, type 1 is never assigned there, so p,(1) =0.

e Type 2 is seated at a when schools he has ranked ahead of a, schools b and c, are
filled by others, and when he also beats type 4 in competition for a seat at a. This occurs
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for the two realizations of the form (s, ¢, 2, 4) for s, t = 1, 3, where the notation (s, ¢, u, v)
means a draw with lottery number s assigned to applicant 1, lottery number t assigned to
applicant 2, and so on. Therefore, p,(2) =2/24 =1/12.

e Type 3isseated at a when the schools he has ranked ahead of a—in this case, only b—
are filled by others, while he also beats type 4 in competition for a seat at a. b can be filled
by type 2 only when 2 loses to 1 in the lottery at c. Consequently, type 3 is seated at a only
in a sequence of the form (1, 2, 3, 4), which occurs only once. Therefore, p,(3) =1/24.

e Finally, since type 4 gets the seat at a if and only if the seat does not go to type 2 or
type 3, so p,(4) =21/24.

In this example, the propensity score differs for each applicant. But in larger markets
with the same distribution of types, the score is smoother. To see this, consider a market
that replicates the structure of this example n times, so that n applicants of each type
apply to up to three schools, each with 7 seats.

The relationship between simulated probabilities of assignment and market size for
Example 2, plotted in Figure 2, reveals that as the market grows, the distinction between
types 2 and 3 disappears. In particular, Figure 2 shows that, for large enough n,

pa(z):pa(3):1/1za Pa(l):(), pa(4):5/6,

with the probability of assignment at a for types 2 and 3 converging quickly. This conver-
gence is a consequence of a result established in the next subsection, which shows that
the large-market probabilities that types 2 and 3 are seated at a are both determined by
failure to win a seat at b. The fact that applicant 2 ranks ¢ ahead of b is irrelevant.

Why is the difference in preferences between applicants 2 and 3 ultimately irrelevant?
Among schools that an applicant prefers to a, large-market risk is determined solely by
failure to qualify—that is, by having a lottery number above the cutoff—at the school

090 Type4
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FIGURE 2.—Propensity scores and market size in Example 2. Notes: This figure plots finite-market propen-
sity scores for expansions of Example 2. For each value on the x axis, we consider an expansion with x ap-
plicants of each type. The propensity scores plotted here were computed by drawing lottery numbers 100,000
times and rerunning the DA algorithm for each draw.
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at which it is easiest to qualify. In general, this most informative disqualification (MID)
determines how distributions of lottery numbers for applicants of differing types are trun-
cated before entering the competition for seats at a. As we show below, the fact that the
large-market score depends on type only through a set of parameters like MID allows us
to replace full-type conditioning with something much smoother.

As a formal matter, the large-market model is built on the notion of a continuum of
applicants. A continuum economy sets I = [0, 1], with school capacities, g;, defined as
the proportion of I that can be seated at school s. Applicant i’s lottery number, r;, is
drawn from a standard uniform distribution over [0, 1], independently for all applicants.
In particular, lottery draws are independent of type. With single tie-breaking, all schools
look at the same lottery number. Extension to the less-common multiple tie-breaking
case, in which applicants have different lottery numbers for each school, is discussed in
the Appendix.

For any set of applicant types @, C @ and for any number r, € [0, 1], define the set of
applicants in @, with lottery number less than r, to be

1(Oy,ry) ={icl]| ;€O <r}.

‘We use the shorthand notation Iy = I (0, ry).
In a finite economy with n applicants, denote the fraction of applicants in /, by

1
F(ly) = %

F (1) for a finite economy depends on the realized lottery draw. In a continuum economy,
F(l,) is defined as

F(ly) =E[1{95 € @0}] X Fo,

where E[1{6; € ©}] is the proportion of types in set @,. Either way, the applicant side
of an economy is fully characterized by the distribution of types and lottery numbers, for
which we sometimes use the shorthand notation, F.

Defining DA

We define DA using the notation above, nesting the finite-market and continuum cases.
First, combine priority status and lottery realization into a single number for each appli-
cant and school, called applicant rank:

Tis = Pis + T

Since the difference between any two priorities is at least one and random numbers are
between zero and one, rank is lexicographic in priority and lottery numbers.

DA proceeds in a series of rounds, indexed here by ¢. Denote the evolving vector of
admissions cutoffs in round ¢ by ¢’ = (i, ..., ¢;). The demand for seats at school s condi-
tional on ¢’ is defined as

O,(¢)={iel|my<cl ands>;3forall § € S such that m; < c{}.

In other words, school s is demanded by applicants with rank below the school-s cutoff,
who prefer school s to any other school for which they are also below the relevant cutoff.
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The largest possible value of an eligible applicant’s rank is K + 1, so we can start with
¢! = K + 1 for all 5. Cutoffs then evolve as follows:
s [K+1 if F(0,(¢)) < s,
s max{x € [0, K + 1] | F({i € O,(c') such that m;; < x}) < ¢,} otherwise;

where, because the quantities involving F can be written in the form F({i € I|0; € O, r; <
ro}), the expression is well-defined. This formalizes the idea that when the demand for
seats at s falls below capacity at s, the cutoff is K + 1. Otherwise, the cutoff at s is the
largest value such that demand for seats at s is less than or equal to capacity at s.

The final admissions cutoffs determined by DA for each school s are given by

¢ = tlim ci.
The set of applicants that are assigned school s under DA is the demand for seats at
the limiting cutoffs: {i € Q,(¢)} where ¢ = (cy, ..., cs).)? Since ¢, < K + 1, an ineligible
applicant (who has priority co) is never assigned to school s.

We write the final DA cutoffs as a limiting outcome to accommodate the continuum
economy; in real markets, DA converges in a finite number of rounds. Appendix A.2
shows that the characterization of DA in this section is valid in the sense that: (a) the
necessary limits exist for every economy, finite or continuum; (b) for every finite economy,
the allocation upon convergence matches that produced by DA as usually described (e.g.,
by Gale and Shapley (1962) and the many studies building on their work).

3.2. Characterizing the DA Propensity Score

A key component of our large-market characterization of p;(#) is the notion of a
marginal priority group at school s. The marginal priority group consists of applicants for
whom seats are allocated by lottery when a school is oversubscribed. Formally, marginal
priority, p;, is the integer part of the cutoff, c¢,. Conditional on being rejected by all more
preferred schools and applying for school s, an applicant is assigned s with certainty if
pis < ps, that is, if he clears marginal priority. Applicants with p;; > p, have no chance of
finding a seat at s. Applicants for whom p;; = p, are marginal: these applicants are seated
at s when their lottery numbers fall below a school-specific lottery cutoff. The lottery cutoff
at school s, denoted 7y, is the decimal part of the cutoff at s, that is, 7, = ¢, — p;.

These observations motivate a partition determined by marginal priorities at s. Let O
denote the set of applicant types who rank s and partition @, according to

(1) O ={0€ O, | pys > p} (never seated),
(ii) O ={0¢€ O;| py, < p;} (always seated),
(iii) O¢={6 € O | py, = p,} (conditionally seated).
The set @ contains applicant types who have worse-than-marginal priority at s. No one
in this never seated group is assigned to s. @¢ contains applicant types that clear marginal
priority at s. Some of these always seated applicants may end up seated at a school they
prefer to s, but they are assigned s for sure if they fail to find a seat at any school they

0The characterization of DA via cutoffs has proven valuable in other studies of matching markets. See, for
example, Abdulkadiroglu, Che, and Yasuda (2015), Azevedo and Leshno (2016), and Agarwal and Somaini
(2015).
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have ranked more highly. Finally, @¢ is the subset of ®, that has marginal priority at s.
These conditionally seated applicants are assigned s when they are not assigned a higher
choice and have a lottery number that clears the lottery cutoff at s.

A second key component of our score formulation reflects the fact that qualification at
schools other than s may truncate the distribution of lottery numbers in the marginal pri-
ority group for s. To characterize the distribution of lottery numbers among those at risk
of assignment to s, we introduce notation for the set of schools ranked above s. Specifi-
cally, applicants of type 6 view the following set of schools as better than s:

By ={s' €8s >4s}.
Type 6’s MID at school s is defined as a function of the cutoffs at schools in By,:
0 if Pos > Ps forall s e B()x = @,
1 if pg; < ps for some § € By,

max{t; | § € Byg; and pg; = p;} if pgz = p; for some § € By,
and pg; > p; otherwise.

MIDy, =

MIDy; describes lottery number truncation among applicants to s disqualified at schools
they prefer to s. MIDy, is zero when type-6 applicants have worse-than-marginal priority
at all higher ranked schools: when no applicants for s can be seated at a more preferred
school, there is no lottery number truncation among those at risk of assignment to s.
On the other hand, when at least one school in By, is undersubscribed, no one of type 6
competes for a seat at s. Truncation in this case is complete, and MID,, = 1.

The definition of MIDy; also reflects the fact that, among applicants for whom pg; = p;
for some § € By, anyone who fails to clear ; is surely disqualified at schools with lower
(less forgiving) cutoffs. For example, applicants who fail to qualify at a school with a cutoff
of 0.5 fail to qualify at schools with cutoffs below 0.5. Consequently, to keep track of the
truncation induced by qualification at all schools an applicant prefers to s, we need to
record only the most forgiving cutoff that an applicant fails to clear.

The following theorem uses the marginal priority and MID concepts to define an easily-
computed DA propensity score, which coincides with the true propensity score p,(6) in any
continuum economy:

THEOREM 1: Consider a continuum economy populated by applicants of type 6 € O, to be
assigned to schools indexed by s € S. For all s and 0 in this economy, we have:

0 ifoe0!,
ps(0) = ¢,(0) = (1=MIDo:) 7, — MID, yo<0r, )
(1—MID65) XmaX{O, IS—THDBS} if@E@?,

where we also set ¢,(8) =0when MIDy, =1and 6 € 6¢.

The proof appears in Appendix A.3.

School choice without priorities offers a revealing simplification of this result. Without
priorities, DA is the same as a random serial dictatorship (RSD), that is, a serial dicta-
torship with applicants ordered by lottery number (see, e.g., Abdulkadiroglu and S6nmez
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(1998), Svensson (1999), Pathak and Sethuraman (2011))." Theorem 1 therefore implies
the following corollary, which gives the RSD propensity score:

COROLLARY 1: Consider a continuum economy with no priorities populated by applicants
of type 6 € O, to be assigned to schools indexed by s € S. For all s and 0 in this economy, we
have:

7, — MIDy,

(0) = 0,(0) = (1 — MID,, 0, —rmm
pb(e) 905(0) ( 03) Xmax{ ’ 1—MID95

} =max{0, 7, — MIDy,}.

Without priorities, @ and ©¢ are empty. The probability of assignment at s is there-
fore determined solely by draws from the truncated distribution of lottery numbers re-
maining after eliminating applicants seated at schools they have ranked more highly. Ap-
plicants whose most informative disqualification exceeds the cutoff at school s cannot be
seated at s because disqualification at a more preferred school implies disqualification at
s. Abdulkadiroglu, Angrist, Narita, Pathak, and Zarate (2017) derive the propensity score
for simple RSD with a single non-random tie-breaker.

In a match with priorities, the DA propensity score also accounts for the fact that ran-
dom assignment at s occurs partly as a consequence of not being seated at a school pre-
ferred to s. Using the language and notation introduced in this section, we can explain the
DA propensity score as follows:

(i) Type O applicants have a DA score of zero because these applicants have worse-
than-marginal priority at s.

(ii) The probability of assignment at s is 1 — MID,, for applicants in ¢ because these
applicants clear marginal priority at s, and applicants who clear marginal priority at s are
guaranteed a seat there if they do not do better. Not doing better means failing to clear
MIDy;, the most forgiving cutoff to which they are exposed in the set of schools preferred
to s. Since lottery numbers are uniform, this occurs with probability 1 — MIDy;.

(iii) Applicants in @¢ are marginal at s and so are seated at s when they fail to be
seated at a higher-ranked choice and win the competition for seats at s. As for applicants
in @¢, the proportion in @¢ given consideration at s is 1 — MIDy,. Because applicants in
O°¢ are marginal at s, their status at s is also determined by the lottery cutoff at s. If the
cutoff at s, 7, falls below the truncation point, MID,, no one in this partition finds a
seat at s. On the other hand, when 7, exceeds MIDy,, seats are awarded by drawing from
a continuous uniform distribution on [MIDy,, 1]. The resulting assignment probability is
therefore (7, — MIDy,)/(1 — MIDy,).

The DA propensity score is a simple function of a small number of market parameters,
specifically, MIDy;, 7, and marginal priority status at s and elsewhere. Because priorites
are usually coarse and MIDy; is drawn from the set of school-specific cutoffs, we expect
many different types to share marginal priority status and MIDy,, coarsening the score
in a manner that facilitates empirical work. In stylized examples, we can easily compute
continuum values for these parameters.!? In real markets with elaborate preferences and

Seats for selective exam schools are sometimes assigned by a serial dictatorship based on admission test
scores instead of random numbers (see, e.g., Abdulkadiroglu, Angrist, and Pathak (2014), Dobbie and Fryer
(2014)). A generalization of RSD, multi-category serial dictatorship, is used for Turkish college admissions
(Balinski and S6nmez (1999)).

12 Appendix A.4 uses Theorem 1 to explain the convergence of type 2 and type 3 propensity scores seen in
Figure 2.



RESEARCH DESIGN MEETS MARKET DESIGN 1391

priorities, it is natural to use sample analogs for score estimation. As we show below, this
generates consistent estimators of the propensity score for finite markets."

3.3. Estimating the DA Propensity Score

We are interested in the asymptotic behavior of propensity score estimates based on
Theorem 1. In particular, we show here that a sample analog of the DA score converges
(almost surely) uniformly as market size grows to the propensity score for the limiting
economy. Convergence in overall market size explains in part why we expect conditioning
on the sample analog of the DA score to produce ignorable offers in real markets with
few applicants per type. Our empirical application validates this conjectured good perfor-
mance: applicant characteristics are balanced conditional on sample analogs of the DA
propensity score. Other factors contributing to the empirical success of Theorem 1 are
discussed briefly after documenting this balance.

The asymptotic sequence for the estimated score works as follows: randomly sample #
applicants and their lottery numbers from a continuum economy, described by distribu-
tion F and school capacities, q. Call the distribution of types and lottery numbers in this
sample F,. Fix the proportion of seats at school s in the sampled economy to be g, and
run DA with these applicants and schools. Compute MIDy,, 7,, and partition @, using
observed cutoffs ¢, and assignments in this single realization, then plug these quantities
into equation (2). This generates an estimated propensity score, p,(6), constructed by
treating a size-n sample economy like its continuum analog. The actual propensity score
for this finite economy, computed by repeatedly drawing lottery numbers for the sam-
ple of applicants described by F, and the set of schools with proportional capacities q, is
denoted p,(6). We consider the gap between p,,(0) and p,(6) as n grows.

The analysis here makes use of a regularity condition:

ASSUMPTION 1—Rich Support: Forany s € S and priority p € {1, ..., K} with F({i € I :
pis=p}) >0,we have F({i €I : p;; = p, i ranks s first}) > 0.

This says that in the continuum economy, every school is ranked first by at least some
applicants in every non-empty priority group defined for that school.

In this setup, the propensity score estimated by applying Theorem 1 to data drawn
from a single sample and lottery realization converges almost surely to the propensity
score generated by repeatedly drawing lottery numbers. This result is presented as a the-
orem:

THEOREM 2: In the asymptotic sequence described by F, with proportional school capac-
ities fixed at q and maintaining Assumption 1, the DA propensity score p,,(6) computed by
applying Theorem 1 to F, is a strongly consistent estimator of p,;(0) in the following sense:
Forall e @ and s S,

| Pus(8) — Das(0)| 3 0.

Moreover, since 0 has finite support, this convergence is uniform in 6.

13 Appendices A.9 and A.10 extend Theorem 1 to DA using school-specific tie-breaking and the Boston
mechanism. Theorem 1 also applies to first preference first mechanisms (discussed by Pathak and Sénmez
(2013)), Chinese parallel mechanisms (discussed by Chen and Kesten (2017)), and deduction point mecha-
nisms (discussed by Pathak, Song, and S6nmez (2016)).
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PROOF: The proof uses intermediate results given as lemmas in Appendix A.5. The
first lemma establishes that the vector of cutoffs computed for the sampled economy, ¢,
converges to the vector of cutoffs in the continuum economy. That is,

a.s.

¢, — ¢,

where ¢ denotes the continuum economy cutoffs. This result, together with the continuous
mapping theorem, implies

Pus(0) 23 ,(6).

In other words, the propensity score estimated by applying Theorem 1 to a sampled finite
economy converges to the DA propensity score for the corresponding continuum econ-
omy.

A second lemma establishes that for all € @ and s € S,

Pus(0) =3 0,(6).

That is, the actual (re-randomization-based) propensity score in the sampled finite econ-
omy also converges to the propensity score in the continuum economy.'
Combining these two results shows that forall # € @ and s € S,

| Pus(0) — Pus(O)]| <> |,(0) — @,(6)| =0,

completing the proof. Since both ® and § are finite, this also implies uniform conver-
gence, that is, Sup, g ,cs | Pus(0) — pus(0)] 0. Q.E.D.

Theorem 2 justifies our use of the formula in Theorem 1 to control for applicant type
in empirical work estimating school attendance effects. This theoretical result is used for
propensity score estimation in two ways. The first, which we label a “formula” calculation,
applies equation (2) directly to the DPS data. Specifically, for each applicant type, school,
and entry grade, we identify marginal priorities and applicants are allocated by priority
status to either 7, O¢, or <. The DA score is then estimated by computing the sample
analog of MIDy, and 7, in the DPS assignment data and plugging these into equation (2).

Much of our empirical work uses a second application of Theorem 1, which also starts
with marginal priorities, MIDs, and cutoffs in the DPS data. This score estimate takes
cells defined by constant values of MID, @°¢, ®¢, and @" estimated as in the formula cal-
culation and tabulates the empirical offer rate in these cells. This score estimate, which we
refer to as a “frequency” calculation, is closer to an estimated score of the sort discussed
by Abadie and Imbens (2016) than is the formula score. The large-sample distribution
theory in Abadie and Imbens (2016) suggests that conditioning on an estimated score
may increase the efficiency of score-based estimates of average treatment effects.!

14See also Azevedo and Leshno (2016), who provided convergence results for the cutoffs and conditional-
on-type probabilities of assignment generated by a sequence of stable matchings, showing that the empirical
assignment rates for types in a finite market converge to the continuum probability of assignment. The two
lemmas in Appendix A.5 differ from Azevedo and Leshno’s (2016) results in that they use Assumption 1 and
are proved using the Extended Continuous Mapping Theorem. The characterization of the DA propensity
score in Theorem 1 does not appear to have an analog in the Azevedo and Leshno (2016) framework.
5Section 2.3 of Rosenbaum (1987) makes a similar argument.
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TABLE II1
DA SCORE ANATOMY AT STRIVE PREP SCHOOLS (2013 APPLICANTS)?

on oc 04

s s s

Eligible 0<MID<1 MID>rg MID < 75 MID =1 0<MID <1 MID =0
Applicants  Capacity Offers ps(6)=0 ps()=0 0<ps(0) <1 ps()=0 0<ps(0) <1 ps6)=1
Campus 1) (2 (3 4 ®) (6) 7 ®) ©)

GVR 324 147 112 0 0 0 159 116 49
Lake 274 147 126 0 0 0 132 26 116
Highland 244 147 112 0 0 0 121 21 102
Montbello 188 147 37 0 0 0 128 31 29
Federal 574 138 138 78 284 171 3 1 37
Westwood 494 141 141 53 181 238 4 0 18

aThis table shows how formula scores are determined for STRIVE applicants in grade 6 (all 6th-grade seats at these schools are
assigned in a single bucket; ineligible applicants are omitted) for applicants applying for seats in the fall 2013 school year. Column 3
records offers made to these applicants. Columns 4, 5, and 7 show the number of applicants in partitions with a score of zero. Columns
6 and 8 show the number of applicants subject to random assignment. Column 9 shows the number of applicants with certain offers.

3.4. Explaining Random Assignment

Earlier, we noted that STRIVE Prep-GVR had 119 applicants randomized in 2013,
even though no applicant with non-degenerate offer risk ranked this school first. Random
assignment at GVR is a consequence of the many GVR applicants randomized by ad-
missions offers at schools they had ranked more highly. This and related determinants of
offer risk are detailed in Table 111, which explores the anatomy of the DA propensity score
for 6th-grade applicants to six middle schools in the STRIVE network. Columns 6 and 8
of the table count the number of randomized applicants. We see, for example, that all 116
randomized GVR applicants were randomized by virtue of having MIDy, inside the unit
interval (shown in column 8), with no one randomized at GVR’s own cutoff (shown in
column 6).

In contrast with STRIVE’s GVR school, few 2013 applicants were randomized at
STRIVE’s Highland, Lake, and Montbello campuses. This is a consequence of the fact
that most Highland, Lake, and Montbello applicants were likely to clear marginal priority
at these schools (having py; < p;), with values of MID, mostly equal to zero or one, elim-
inating random assignment at schools ranked more highly. Interestingly, the Federal and
Westwood campuses are the only STRIVE schools to see applicants randomized around
the cutoff in these schools’ own marginal priority groups. We can therefore increase the
number randomly assigned at Federal and Westwood by changing the cutoff there (e.g.,
by changing capacity), whereas such a change is likely to be of little consequence for eval-
uations of the other schools.

Table III also documents the surprisingly weak connection between applicant random-
ization counts and a naive definition of oversubscription based on school capacity. In par-
ticular, columns 2 and 3 reveal that four out of six schools described in the table ultimately
made fewer offers than they had seats available (far fewer in the case of Montbello). Even
so, assignment at these schools was far from certain. They therefore contribute to our
charter school impact analysis.

3.5. DA Score Balancing Tests

Theorems 1 and 2 provide asymptotic approximations, the quality of which should be
judged in real markets. The goal of propensity score conditioning is to eliminate omit-
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ted variables bias induced by covariates associated with treatments. Covariate balance is
therefore an important measure of the score-based empirical strategy’s success (a stan-
dard applied routinely; see, e.g., Dehejia and Wahba (1999) and Chapter 14 of Imbens
and Rubin (2015)).

The balance measures reported in Table IV compare uncontrolled differences in av-
erage applicant characteristics by charter-offer status with balance estimates that control
for the score. The latter put applicant characteristics on the left-hand side of regression
models that have charter-offer status and controls for the propensity score on the right.
Balance in this case is measured by regression estimates of

w :E{[I/VilDi =1, ﬁD(Gi)] - E[I/Vi|Di =0, 130(91‘)]},

where W; is a vector of applicant characteristics, including some in 6;, and D; indicates
the offer of any charter seat. pp(6;) is an estimate of the propensity score for getting
any charter seat (D; = 1), computed using simulation or Theorems 1 and 2. The balance
parameter, w, is estimated over 400 runs of DA. Specifically, for each of these 400 draws,
we regress W, on a saturated model for the estimated (or simulated) propensity score
along with a dummy for charter offers. The propensity score theorem leads us to expect
the average charter offer coefficient from these regressions to be close to zero.

Table IV reports the average coefficient on offer in models that dummy all score values
inside the unit interval. Uncontrolled comparisons by offer status, reported in column
2 of the table, show large differences in average applicant characteristics, especially for
variables related to preferences. On average, those not offered a charter seat ranked an
average of 1.4 charter schools, but this increases by almost half a school for applicants
who were offered a charter seat. Likewise, while fewer than 30% of those not offered a
charter seat had ranked a charter school first, the probability applicants ranked a charter
first increases to over 0.9 (i.e., 0.28 + 0.64) for those offered a charter seat. Column 2
also reveals important demographic differences by offer status; Hispanic applicants, for
example, are substantially over-represented among those offered a charter seat.

Control for the simulated propensity score balances covariates almost perfectly. This
can be seen in columns 3 and 4 of Table IV, which report balance conditional on the
simulated score using two rounding schemes. Rounding reflects the fact that, for example,
the simulated score has 1,229 unique values. Rounding to the nearest hundredth leaves 77
points of support, while rounding to the nearest thousandth leaves 153 points of support.

Conditioning on frequency and formula estimates of the DA propensity score also re-
duces differences by offer status markedly, and almost as completely as does conditioning
on the simulated score. The balance estimates in column 5 of Table IV, which come from
regression models with nonparametric control for the DA frequency score, show only
small differences by offer status. Column 6 shows that control for the formula score re-
duces offer gaps for some covariates even further. This evidence of balance means that
the estimated DA score indeed eliminates selection bias. This is in spite of the fact that
the DA propensity score is an asymptotic approximation that has been shown to provide
perfect treatment-control balance only in a large-market limit.

We also report traditional statistical balance tests such as would typically be reported
for a randomized trial. Specifically, Table V documents balance for the realized School-
Choice match by reporting ¢- and F-statistics for charter offer gaps in covariate means.
Again, we look at balance conditional on propensity scores for applicants with scores
strictly between zero and one. Measured by statistical tests, covariates are about equally
well-balanced by both the simulated score and the estimated DA scores. Not surprisingly,
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TABLE IV
EXPECTED BALANCE?

Simulated Score Controls DA Score Controls
Non-Offered Rounded Rounded Frequency = Formula
Mean No Controls (Hundredths) (Thousandths) (Saturated) (Saturated)
Covariate 1) 0) 3) @ 5) (6)
A. Application variables
Number of schools ranked 4.431 —0.533 0.013 0.005 0.049 0.012
Number of charter schools ranked 1.451 0.445 0.005 0.002 0.061 0.002
First school ranked is charter 0.276 0.641 0.000 —0.001 0.002 0.000
B. Baseline covariates
Origin school is charter 0.085 0.124 —0.003 —0.003 0.002  —0.002
Female 0.513 —0.021 0.003 0.003 0.002 0.003
Hispanic 0.596 0.105 0.001 0.001 —0.002 0.003
Black 0.189 —0.053 0.000 0.001 0.001 0.000
Gifted 0.207 —0.009 0.003 0.002 —0.002 —0.001
Bilingual 0.033 0.016 0.000 0.000 0.001 0.001
Subsidized lunch 0.781 0.054 0.001 0.000 0.000 0.003
Limited English proficient 0.306 0.090 0.001 0.001 —0.002 0.002
Special education 0.094 —0.007 —0.001 0.000 —0.003 —0.001
Baseline scores
Math —0.028 0.078 —0.003 —0.002 —0.007 —0.006
Reading —0.001 —0.024 —0.002 —0.004 —0.007 —0.008
Writing —0.001 —0.011 —0.002 —0.003 —0.008 —0.007
Average risk set points of support 77 153 90 104

4This table reports average covariate balance by charter offer status across 400 lottery draws, with DA rerun each time. The sample
includes applicants for 2012-2013 and 2013-2014 charter seats in grades 4-10 who were enrolled in Denver at baseline. Balance is
estimated by regressing each covariate on an any-charter offer dummy, controlling for the propensity-score variable indicated in each
column and dummies for the year in which the applicant applied. The table reports averages of these balance coefficients. The charter-
offer variable indicates an offer at any charter school for a given lottery draw (excluding alternative charters). Column 1 reports the
average over lottery draws baseline characteristics of charter applicants who did not receive a charter offer. Column 2 reports the
average coefficient when no propensity-score controls are used. The estimates in columns 3, 4, 5, and 6 control for the score variables
indicated in the column heading. The average risk set points of support reported at the bottom of the table counts the average number
of unique values found in the support of the relevant propensity score, excluding 0 and 1. For applicants who applied in both years, we
consider only first-time applications.

a few marginally significant imbalances pop up. But the F-statistics (reported at the bot-
tom of the table) that jointly test balance for all baseline covariates fail to reject the null
hypothesis of conditional balance for any specification reported. In this case, conditioning
on the frequency score produces a slight improvement in balance over the formula score.
As can be seen in the last column of Table V, full control for type reduces the sample
available for estimation considerably. Models with full-type control are run on a sample of
size 462. Likewise, the fact that saturated control for the simulated score requires some
smoothing can be seen in the reduced sample available for estimation of models that
control fully for a simulated score rounded to the nearest thousandth rather than the
nearest hundreth (the sample size for baseline score balance falls from 2,678 to 2,263).
A few marginally significant baseline score gaps appear in some of the score-controlled
comparisons at the bottom of the table. The F-test results and the fact that these gaps
are not mirrored in the comparisons in Table IV suggest the differences in Table V are
due to chance. Still, we can mitigate the effect of chance differences on 2SLS estimates
of charter effects by adding baseline score controls (and other covariates) to empirical
models. The inclusion of these additional controls also has the salutary effect of making



TABLE V
STATISTICAL TESTS FOR BALANCE?

Simulated Score Controls DA Score Controls
Non-Offered Rounded Rounded Frequency Formula Full Applicant
Mean No Controls (Hundredths) (Thousandths) (Saturated) (Saturated) Type Controls
(1) (2 3) “4) ) (6) (M
A. Application variables
Number of schools ranked 4.438 —0.544%** —0.076 —0.084 -0.075 —0.104 —0.046
(0.031) (0.070) (0.073) (0.071) (0.069) (0.041)
Number of charter schools ranked 1.450 0.443%** —0.027 —0.029 0.036 —0.020 0.001
(0.018) (0.035) (0.037) (0.037) (0.035) (0.018)
First school ranked is charter 0.275 0.639%** —0.026 —0.022 —0.005 —0.003 0.000
(0.007) (0.017) (0.015) (0.015) (0.014) (0.000)
B. Baseline covariates
Origin school is charter 0.087 0.118%** —0.027* —0.029%* —0.028** —0.038%** 0.024
(0.007) (0.014) (0.014) (0.012) (0.012) (0.015)
Female 0.512 -0.017* 0.030 0.023 0.020 0.020 0.027
(0.010) (0.025) (0.027) (0.026) (0.026) (0.055)
Hispanic 0.597 0.1027%** —0.011 —0.013 —-0.014 —0.007 0.025
(0.010) (0.021) (0.023) (0.021) (0.022) (0.034)
Black 0.188 —0.052%** 0.004 0.000 0.006 0.003 —0.020
(0.007) (0.019) (0.020) (0.019) (0.019) (0.028)
Subsidized lunch 0.782 0.0527%%* —0.007 —0.003 0.004 0.010 0.031
(0.008) (0.018) (0.019) (0.018) (0.018) (0.031)
Limited English proficient 0.305 0.089%** 0.006 0.017 0.002 0.019 0.007
(0.010) (0.023) (0.026) (0.024) (0.025) (0.051)
Special education 0.093 —0.005 0.014 0.009 0.006 0.012 0.036
(0.006) (0.014) (0.016) (0.014) (0.015) (0.023)
N 5,674 9,879 2,714 2,291 2,445 2,404 464

(Continues)
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TABLE V—Continued

Simulated Score Controls DA Score Controls
Non-Offered Rounded Rounded Frequency Formula Full Applicant
Mean No Controls (Hundredths) (Thousandths) (Saturated) (Saturated) Type Controls
1) (2 (3) “4) (5) (6) (7)
Baseline scores
Math —0.025 0.073%** —0.038 —0.035 —0.037 —0.052 —0.205%*
(0.019) (0.044) (0.049) (0.045) (0.046) (0.093)
Reading 0.003 —0.032* —0.069 —0.079* —-0.077* —0.080* —0.140
(0.019) (0.043) (0.048) (0.045) (0.045) (0.086)
Writing 0.002 —0.016 —0.055 —0.049 —0.057 —0.069 —-0.122
(0.018) (0.043) (0.046) (0.044) (0.044) (0.089)
N 5,586 9,743 2,678 2,263 2,415 2,375 462
Risk set points of support 75 141 80 92 89
F-test for joint significance (mvreg) 483.3 0.78 0.82 1.02 1.25 0.92
P-value 0.000 0.702 0.660 0.434 0.226 0.538

AThis table reports coefficients from regressions of the application variables and baseline covariates in each row on a dummy for charter offers. The sample includes applicants for 2012-2014
charter seats in grades 4-10 who were enrolled in Denver at baseline. Columns 2-6 are from regressions like those used to construct expected balance in Table IV, except that the tests reported here
use realized DA offers, with test statistics and standard errors computed in the usual way. Column 7 reports the balance test generated by a regression with saturated controls for applicant type (i.e.,
unique combinations of applicant preferences over school programs and school priorities in those programs). In columns 3-7, N is the number of applicants with a propensity score between zero
and one. Robust standard errors are reported in parentheses. p-values for joint significance tests are estimated with stata’s mvreg command. The sample used here and for the following tables omits
repeat applications. *significant at 10%; **significant at 5%; ***significant at 1%.
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the 2SLS estimates of interest considerably more precise (covariates used for this purpose
include dummies for grade tested, gender, origin school charter status, race, gifted status,
bilingual status, subsidized lunch eligibility, special education, limited English proficiency
status, and baseline test scores; baseline score controls are responsible for most of the
resulting precision gain).'®

The DA score provides effective control for covariates in spite of the fact that the DPS
SchoolChoice market includes almost as many types as applicants. This is consistent with
Theorem 2, which establishes uniform almost sure convergence at a rate determined by
overall market size. The good performance of the estimated DA score is also in line with
earlier evidence on the accuracy of large-market approximations in matching markets
from Azevedo and Leshno (2016), who used simulation to show the rapid convergence of
empirical DA cutoffs to large-market values. The Azevedo-Leshno results are relevant
because our DA score is determined by cutoffs.

We conclude this section by noting that when lottery numbers are independent of cut-
offs, the DA score described by Theorems 1 and 2 is both unbiased and sufficient for type.
This, too, helps explain the success of an empirical strategy based on these theoretical re-
sults. Formally, we have the following finite-sample result:

PROPOSITION 2: Let p,(6) be the estimated DA propensity score obtained by computing
MIDy;, 7, and O for a lottery realization in a finite economy and plugging these quantities
into equation (2)."” Suppose that individual lottery numbers are independent of DA cutoffs
generated by each lottery number realization, that is, r; L ¢ for every applicant i. Then the
estimated DA propensity score is unbiased for the true propensity score, that is,

E[5.(6)] = P[Di(s) = 116,= 6],

for every applicant type 0, where P denotes the probability induced by DA with random lot-
tery numbers. Moreover, assignment is independent of type conditional on the estimated DA
propensity score:

P[Di(s) =11ps(6)), 9i] :P[Di(s) = 1|ﬁs(0i)]-

These unbiasedness and conditional independence properties also hold for the frequency ver-
sion of ps(6).

This result (proved in Appendix A.6) applies to the continuum since continuum cutoffs
are constant. In finite economies, cutoffs are correlated with individual lottery numbers,
so the premise of the proposition is false. Even so, our simulations of DPS SchoolChoice
show that lottery numbers are close to uniformly distributed conditional on cutoffs, sug-
gesting the premise is a reasonable approximation for this market. Proposition 2 there-
fore provides a finite-sample rationale for the use of the estimated DA propensity score
in our application, and suggests the score may apply under approximation sequences that
increase the number of types along with market size (as in Kojima and Pathak (2009),

16Supplemental Material Table B.II reports score-controlled estimates of differential attrition by offer sta-
tus. Applicants who receive charter offers are 3—4 percent more likely to have follow-up scores, a modest
difference that seems unlikely to bias the 2SLS charter estimates reported below. This is confirmed by an
analysis that omits the 5% of applicants for whom conditional-on-score imbalance is greatest. Results in this
trimmed sample are virtually unchanged from those in the full sample.

"Here, p,(0) is the estimated DA score for a fixed finite economy. In contrast, p,(8) in Section 3.3 is the
estimated DA score for finite economies randomly sampled from a continuum economy.
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Lee (2014), Ashlagi, Kanoria, and Leshno (2017)). The near-unbiasedness of DPS char-
ter score estimates constructed using Theorems 1 and 2 is documented in Figure 3. This
figure plots the average frequency and formula scores across 2,000 lottery draws against
the corresponding values of the simulated score (computed using one million draws and
rounded to 0.01). The figure shows a close fit.

4. USING THE SCORE
4.1. Empirical Strategies

We use DPS’s first-round charter offers to construct instrumental variables estimates of
the effects of charter enrollment on achievement. How should the resulting IV estimates
be interpreted? Our IV procedure identifies causal effects for applicants enrolling in a
charter when DA produces a charter offer but not otherwise; in the local average treat-
ment effects (LATE) framework of Imbens and Angrist (1994) and Angrist, Imbens, and
Rubin (1996), these are charter-offer compliers. IV fails to reveal average causal effects
for applicants who decline a first-round DA charter offer and are assigned another type of
school in round 2 (in the LATE framework, these are never-takers). Likewise, IV meth-
ods are not directly informative about the effects of charter enrollment on applicants not
offered a charter seat in round 1, but who nevertheless find their way into a charter school
in the second round (LATE always-takers).

To flesh out this interpretation and the assumptions on which it rests, let C; be a char-
ter enrollment indicator and let D; indicate the offer of a charter seat. These variables
indicate attendance and offers at any charter school, rather than at a specific school.
Since DA produces a single offer, offers of seats at particular schools are mutually exclu-
sive. We therefore construct D; by summing individual charter-offer dummies. Likewise,
the propensity score for this variable, pp(60) = E[D;|0; = 6], is obtained by summing the
scores for all charter schools.

The population of charter-offer compliers is defined by potential charter enrollment
status. This is indexed against the charter-offer instrument, D;. In particular, we observe
potential enrollment Cy;; when D; is switched on and potential enrollment Cy; otherwise
(both of these are assumed to exist for all /). Observed enrollment is therefore

Ci=Cy+ (G — Co)D,.

Compliers have C;; — Cy; = 1, an event that happens when Cj; =1 and Cj; =0.
Causal effects are determined by potential outcomes, indexed against C;. These are
written as Yy; and Yy,. When C; = ¢, we see Y,;, so the observed outcome (a test score) is

Y, =Y+ (Y, — Yo)C.

Proposition 1 implies that charter offers are independent of potential assignments con-
ditional on type. Given an exclusion restriction, the conditional random assignment of
D; also makes D; conditionally independent of potential outcomes. The exclusion re-
striction in this case means that charter offers have no effect on outcomes other than
by boosting charter attendance. The conceptual distinction between random assignment
and instrument exclusion is discussed in Angrist, Imbens, and Rubin (1996) and, for the
case of charter offers, in our working paper (Abdulkadiroglu, Angrist, Narita, and Pathak
(2015)). As a practical matter, the exclusion restriction fails when charter offers change
school quality within charter and non-charter sectors. This most likely occurs when char-
ter offers change the type of school attended on margins other than charter attendance.
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FIGURE 3.—Comparison of frequency and formula scores with simulated scores for 2013 applicants. Notes:
This figure plots frequency and formula scores averaged over 2,000 simulations against the simulated score
computed from 1,000,000 lottery draws, for each school bucket. Simulated scores are rounded to 0.01. The
plot symbols are dots with radius proportional to the square root of the number of students in each 0.01 bin.
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We therefore explore multi-sector models that identify the causal effects of attendance at
different types of charter and non-charter schools. Estimates of multi-sector models are
reported following 2SLS estimates of overall charter effects.

As with the conditional independence of single-school offers described by Proposi-
tion 1, the conditional independence and exclusion assumptions motivating 2SLS esti-
mation of an overall charter effect can be written

P[D; =1|{Yy;, Yo, Cii, Coi}, 6: = 6] = PID; = 1|6; = 6] = p(6), 3)

where the vector of potentials, {Y;;, Yy, Ci;, Cy;}, plays the role of W,. Likewise, as for
single-school offers in equation (1), the propensity score theorem implies

P[D;=1|{Y1;, Yo:, Cui» Coi}, pp(6:) = p] = p, (4)

where pp(6;) is the charter-offer propensity score associated with applicant i’s type.
Equations (3) and (4) allow us to estimate causal effects of charter offers, that is, the ef-
fect of D;. In practice, however, we are interested in the effects of charter attendance, the
treatment indicated by C;. To complete the causal chain from charter offers to charter en-
rollment and finally to outcomes, we assume that charter offers change charter enrollment
for at least some applicants, and that charter offers can only make charter enrollment
more likely, so that Cy; > Cy; for all i. With these first-stage and monotonicity assump-
tions supplementing (4), the conditional-on-score IV estimand is a conditional average
causal affect for compliers at that score value.'® That is, for all 6; with p,(6;) € (0, 1),

E[Yi|Di =1, pp(6;) = x] - E[Yi|Di =0, pp(8;) = x]
E[Ci|Di:1,PD(9i):x]—E[Ci|Di:0, pD(ei):x] %)
= E[Yu — Yol pp(6:) = x, Cii > C()i],

where x indexes values in the support of pp(8).

In view of the fact that (5) generates a distinct causal effect for each score value, it is
natural to consider parsimonious models that use data from all propensity-score cells to
estimate a single average causal effect. We marginalize conditional effects by estimating
a 2SLS specification with first- and second-stage equations that can be written

C,:Z*y(x)dl(x)—}—b‘D,—f—X:)\-f'Vu (6)
Y=Y a(x)d(x) +BC+ Xip+ &, Q)

where the d;(x)’s are dummies indicating values of the estimated score, pp(6;), indexed
by x, and y(x) and «(x) are the associated “score effects” in the first and second stages.
The coefficient & in (6) is the first-stage effect of charter offers on charter enrollment,
while the coefficient B in (7) is the causal effect of interest. These first- and second-stage

¥Monotonicity is plausible because noncompliance of any sort arises through post-match appeals. Specif-
ically, applicants can appeal SchoolChoice offers after the match, no matter what they are offered in School-
Choice. But the offer of a charter seat through SchoolChoice produces a charter option that remains available
regardless of the result of the appeal. The appeals process therefore seems unlikely to reduce charter enroll-
ment for applicants effectively guaranteed a charter seat.
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equations include baseline covariates, X}, to increase precision and adjust for chance im-
balances in applicant characteristics.

As a check on the 2SLS specification, we also report semiparametric estimates of
ETY1; — Yoi|Cy; > Cy;]. In contrast with the additive 2SLS setup, the semiparametric pro-
cedure requires only correct specification of the propensity score to generate a single
average causal effect for all compliers. Our semiparametric strategy uses Abadie’s (2003)
observation that the conditional independence and exclusion restrictions imply

E[Y|Cyi > Cyl

_ 1 E|: CYi(D; — pp(6)) ]
Pr(Cy; > Co) (1 - pD(oi))pD(ei) ,

o (1—C)Y((1= D) — (1= pp(6)))
El¥ulCu > Cal = Pr(Cy; > Co;‘)E|: (1 - pD(Qi))pD(Hi) i|

Subtracting and rearranging, we have

1 Yi(D; — 0
ElYy — Yl Cii > Gyl = E[ ( Pol )) :| (8)
Pr(Ci; > Co) (1 - pD(ei))pD(ei)
The first stage in the denominator, P[Cy; > C], is constructed using
PKL>GM=E[ (Di— ot ”}. ©)
(1= pp(6,)) pp(6:)

The semiparametric IV estimator used here is the sample analog of the right-hand side
of (8) divided by the sample analog of (9). The semiparametric estimator plugs score esti-
mates directly into (8) and (9), while our 2SLS strategies use saturated models to control
for the frequency and formula scores. It’s worth noting, however, that when the only co-
variates are score controls, and the estimated score is an empirical relative frequency like
our frequency score, 2SLS models that control for a full set of score dummies produce
estimated treatment effects identical to those generated by 2SLS with linear control for
the estimated score. This is a consequence of the regression algebra detailed in the proof
of Proposition 3, below.

4.2. Effects of Charter Enrollment

As can be seen in Table VI, 2SLS estimates of charter attendance effects are similar
to the corresponding semiparametric estimates. Compare, for instance, the semiparamet-
ric estimates of effects on math and writing scores of 0.37 and 0.22 in column 1 with
the 2SLS estimates of 0.35 and 0.18 in column 2. Both of these control for simulated
scores. The standard errors for the semiparametric estimates using the simulated score
are higher than those for 2SLS (semiparametric precision is estimated using a Bayesian
bootstrap that randomly reweights observations; see, e.g., Shao and Tu (1995)). There
are further substantial precision gains in 2SLS estimates using models that control for
covariates beyond the score, reported in column 3. The similarity of 2SLS and semipara-
metric estimates and the relative simplicity and precision of 2SLS leads us to focus on
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TABLE VI
CHARTER EFFECTS ESTIMATED USING ALTERNATIVE SCORE CONTROLS?

Simulated Score Controls DA Score Controls No Score Controls
(Rounded to Hundredths) (With Covariates) (With Covariates)
2SLS 2SLS Frequency Formula
Semiparametric  (No Covariates) (With Covariates)  (Saturated)  (Saturated) 2SLS OLS
M (@) 3 “ ) (6) (@)
First stage 0.389%** 0.415%** 0.420%** 0.443***  (0.435%**  (.561***
{0.053} (0.024) (0.024) 0.024)  (0.024)  (0.016)
Math 0.372%** 0.351%** 0.415%** 0.417***  0.409***  (0.231***  (.230***
£0.133} (0.108) (0.052) (0.050)  (0.051)  (0.030)  (0.010)
Reading 0.180 0.083 0.166*** 0.174***  0.166***  0.066** 0.094%**
£0.162} (0.108) (0.053) 0.050)  (0.052)  (0.029)  (0.010)
Writing 0.217 0.184* 0.274%** 0.295***  0.315%**  0.141***  0.171***
£0.136} (0.105) (0.058) 0.056)  (0.058)  (0.032)  (0.011)
N 2,229 2,308 2,308 2,099 2,058 2,947 8,528

4This table compares semiparametric, 2SLS, and OLS estimates of charter attendance effects on the 2013 and 2014 TCAP scores
of Denver 4th-10th graders. For columns 2, 3, 4, 5, and 6, the instrument is an any-charter offer dummy. Models generating columns 2,
3,4, and 5 include propensity-score controls, while models for 6 and 7 do not. All 2SLS and OLS estimates include controls for grade
tested, gender, origin school charter status, race, gifted status, bilingual status, subsidized school lunch eligibility, special education,
limited English proficiency status, baseline test scores, and year of application. Columns 1, 2, and 3 use the simulated score rounded
to 0.01. The semiparametric estimator is described in Section 4.2. The semiparametric model excludes applicants with a rounded
simulated score larger than 0.975 or smaller than 0.025. Standard errors, reported in parentheses, are robust for 2SLS and from a
Bayesian bootstrap for semiparametric estimates. *significant at 10%; **significant at 5%; ***significant at 1%.

2SLS estimates with covariates in what follows.! It is also worth noting that 2SLS can
be interpreted as a “doubly robust” variation on the semiparametric I'V strategy; see, for
example, Robins (2000) and Okui, Small, Tan, and Robins (2012).%

A DA-generated charter offer boosts charter school attendance rates by about 0.4.
These first-stage estimates, shown in the first row of Table VI, are computed by estimat-
ing equation (6) or equation (9). The first stage of 0.4 reflects the fact that many charter
applicants who are not offered a seat in the SchoolChoice first round ultimately find their
way into a charter school by applying to schools directly in the second round (specifically,
44% of the charter applicants analyzed in Table VI are always-takers who enroll in char-
ters even without a first-round charter offer, while fewer than 20% of the analysis sample
are never-takers who decline charter offers). First-stage estimates of around 0.56 com-
puted without score controls, shown in column 6 of the table, are clearly biased upwards.

2SLS estimates of charter attendance effects on test scores, reported below the first-
stage estimates in Table VI, show remarkably large gains in math, with smaller effects on
reading. The math gains reported here are similar to those found for charter students in
Boston (see, e.g., Abdulkadiroglu et al. (2011)). Previous lottery-based studies of charter
schools likewise report much larger gains in math than in reading. Here, however, we also
see large and statistically significant gains in writing scores.

YControls include baseline test scores and the covariates described earlier. Estimates are for test scores
on exams taken in grades 4-10. The sample used for IV estimation is limited to charter applicants with the
relevant propensity score in the unit interval, in score cells with offer variation in the sample.

202SLS also obviates the need for judgments regarding bootstrap methods or implementation. We found, for
example, that a conventional nonparametric bootstrap for the semiparametric estimator requires trimming or
tuning to eliminate the influence of occasional small first-stage estimates. Appendix A.7 discusses alternative
modes of inference for the balance tests in Table V and the 2SLS estimates in Table VI.
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Importantly the estimated charter attendance effects reported in Table VI are largely
invariant to whether the propensity score is estimated by simulation or by a frequency or
formula calculation that uses Theorem 1. Compare, for example, math impact estimates
of 0.415, 0.417, and 0.415 using simulation-, frequency-, or formula-based score controls,
all estimated with similar precision (these appear in columns 3-5). This alignment further
validates the use of Theorem 1 to control for applicant type.

Estimates that omit propensity-score controls highlight the risk of selection bias in a
naive 2SLS empirical strategy. This selection bias is documented in column 6 of Table VI,
which shows that 2SLS estimates of math and writing effects constructed using DA offer
instruments while omitting propensity-score controls are too small by about half. A cor-
responding set of OLS estimates without propensity-score controls, reported in column 7
of the table, also tends to underestimate the gains from charter attendance.?!

4.3. Unbundling Hetereogeneity

Many evaluations of charter schools emphasize charter sector heterogeneity, estimat-
ing separate charter attendance effects for different sorts of schools (see, e.g., Angrist,
Pathak, and Walters (2013)). Since just over half of the schools listed in Table VI be-
long to one of three Denver Charter Management Organizations (CMOs), we split the
charter sector by CMO affiliation. Charters run by CMOs implement common practices
across school sites, and CMOs similar to those operating in Denver have produced espe-
cially large achievement gains (Teh, McCullough, and Gill (2010), Gleason, Tuttle, Gill,
Nichols-Barrer, and Teh (2014), Angrist, Dynarski, Kane, Pathak, and Walters (2012)).

The 2SLS estimates in Table VI also contrast charter outcomes with potential outcomes
generated by attendance at a mix of traditional public schools and schools from other non-
charter sectors. We would like to unbundle this mix so as to produce something closer to
a pure sector-to-sector comparison. Allowance for more than one treatment channel also
addresses concerns about changes in counterfactual outcomes that might cause violations
of the exclusion restriction.

The first step in our effort to unbundle school sector effects is to describe the distri-
bution of charter and non-charter school choices for applicants who were and were not
offered a charter seat in the SchoolChoice match. We then identify the distribution of
school sectors for the group of charter-lottery compliers. Finally, we use the DA mecha-
nism to jointly estimate causal effects of attendance at schools in different sectors, thereby
making the groups of schools compared in our 2SLS strategy more homogeneous.

Important DPS sectors besides charters are traditional public schools, innovation
schools, magnet schools, and alternative schools. Innovation and magnet schools are man-
aged by DPS. Innovation schools design and implement innovative practices meant to
improve student outcomes. Innovation schools operate under an innovation plan that
waives some provisions of the relevant collective bargaining agreements (for more back-
ground on these schools, see Connors, Moldow, Challender, and Walters (2013)).> Mag-
net schools serve students with particular styles of learning. Alternative schools serve
older students who have struggled in a traditional school environment. Smaller school

ZThe OLS estimation sample includes most charter applicants, ignoring the score- and cell-variation re-
strictions relevant for 2SLS.

Znnovation waivers are subject to approval by the Denver Classroom Teachers Association (which orga-
nizes Denver public school teachers’ bargaining unit), and they allow, for example, increased instruction time.
DPS innovation schools appear to have much in common with Boston’s pilot schools, a model examined in
Abdulkadiroglu et al. (2011).
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TABLE VII
ENROLLMENT DESTINIES FOR CHARTER APPLICANTS?

Charter Applicants With DA Score (Frequency) in (0, 1)

All Charter Applicants All Applicants Compliers
No Charter Charter Non-Offered First Stage + No Charter Charter
Offer Offer Mean Col 3 Offer Offer

) (@) (©) 4 Q) )

A. Decomposing Y;

Any charter 0.129 0.884 0.310 0.754 1.000
CMO Charter 0.095 0.764 0.248 0.673 0.958
Non-CMO Charter 0.034 0.120 0.061 0.080 0.042

B. Decomposing Y

Traditional public 0.380 0.066 0.244 0.065 0.405

Innovation school 0.283 0.023 0.289 0.109 0.405

Magnet school 0.191 0.018 0.126 0.056 0.157

Alternative school 0.009 0.005 0.021 0.014 0.015

Contract school 0.007 0.002 0.009 0.000 0.022

N 4,917 3,805 962 2,098

aThis table describes school enrollment outcomes for charter applicants. Columns 1-2 show enrollment by sector for all applicants
without and with a charter offer. The remaining columns look only at those with a DA (frequency) score strictly between zero and
one. Column 4 adds the non-offered mean in column 3 to the first-stage estimate of the effect of charter offers on charter enrollment.
School sectors are classified by grade. CMO charters are listed in Table II. Innovation schools design and implement innovative
practices to improve applicant outcomes. Magnet schools serve applicants with particular styles of learning. Alternative schools serve
applicants struggling with academics, behavior, attendance, or other factors that may prevent them from succeeding in a traditional
school environment. The table omits a charter school that closed in May 2013. Complier means in columns 5 and 6 were estimated
using the 2SLS procedures described by Abadie (2002), with the same propensity score and controls as were used to construct the
estimates in Table VI.

sectors include a single charter middle school outside the centralized DPS assignment
process (now closed) and a private school contracted to serve DPS students.

The distribution of enrollment sectors for applicants who do and do not receive a char-
ter offer is described in the first two columns of Table VII. These columns show a charter
enrollment rate of 88% in the group offered a charter seat, with roughly 76% enrolling
in a CMO charter. Perhaps surprisingly, only around 38% of those not offered a charter
seat enroll in a traditional public school, with the rest of the non-offered group distributed
over a variety of sectors. Innovation schools are the leading non-charter alternative to tra-
ditional public schools.

The sector distribution for non-offered applicants with nontrivial charter risk (meaning
a charter-offer score strictly between zero and one) appears in column 3 of Table VII,
alongside the sum of the non-offered mean and a charter-offer treatment effect on en-
rollment in each sector in column 4. These first-stage estimates, computed by putting
indicators 1(S; = j) for when applicant i enrolls in sector j on the left-hand side of equa-
tion (6), control for the DA propensity score and therefore have a causal interpretation.
The number of applicants not offered a seat who end up in a charter school is higher
for those with nontrivial charter-offer risk than in the full applicant sample, as can be
seen by comparing columns 3 and 1. The charter enrollment first stage that is implicit in
the column 4-versus-3 comparison matches the first stage in column 4 of Table VI. The
distinction between CMO and non-CMO charters reveals that the charter-offer instru-
ment mostly moves applicants into CMO charters. First stages for other sectors show that
charter offers reduce innovation and traditional public school enrollment.
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The 2SLS estimates reported in Table VI capture causal effect for charter lottery com-
pliers. We describe the distribution of school sectors for compliers by defining potential
school sectors, Sy; and Sy;, indexed against charter offers, D;. Potential and observed
school sectors are related by

Si = Soi + (S1: — Soi) D

In the population of charter-offer compliers, Sy; = charter for all i: by definition, charter-
offer compliers attend a charter school when the DPS assignment offers them the oppor-
tunity to do so. The top panel of Table VII reports the breakdown of charter sector for
charter-offer compliers, showing (in the last column) that 96% of offered compliers at-
tend CMO charters. We are also interested in E[1(Sy; = k)|C;; > Cy;] for sectors indexed
by k, that is, the sector type distribution for charter-offer compliers in the scenario where
they are not offered a charter seat. We refer to this distribution as describing counterfac-
tual enrollment destinies for compliers.

Enrollment destinies are marginal potential outcome distributions for compliers. As
shown by Abadie (2002), these are identified by a simple 2SLS estimand. The details
of our implementation of this identification strategy follow those in Angrist, Cohodes,
Dynarski, Pathak, and Walters (2016), with the modification that instead of estimating
marginal potential outcome densities for a continuous variable, the outcomes of interest
here are Bernoulli.”

Column 5 of Table VII reveals that only about 41% of charter lottery compliers are
destined to end up in a traditional public school if they are not offered a charter seat.
Moreover, an innovation school enrollment destiny is just as likely as a traditional public
school. By contrast, the likelihood of an enrollment destiny outside the charter, tradi-
tional, and innovation sectors is much smaller.

4.4. Additional School Sector Effects

The contribution of Denver’s CMO charters to our first stage and the outsize role of
innovation schools in counterfactual destinies motivate an empirical strategy that distin-
guishes the effects of CMO and non-CMO charters and allows for separate innovation
school treatment effects. By pulling innovation schools out of the non-charter counter-
factual, we capture charter treatment effects driven mainly by the contrast between char-
ter and traditional public schools. Models with a more homogeneous non-charter coun-
terfactual also mitigate bias that might arise from violations of the exclusion restriction
(discussed in Section 4.1). The innovation treatment effect is also of interest in its own
right.

To facilitate the causal analysis of multiple school sectors, we write the potential out-
come for sector k as Yy, representing the latent outcome when S; = k, for school sectors
codedby k €{0, 1, ..., K}. Thisleads to K — 1 heterogeneous causal effects: Yy; — Yy, ...,
Y, — Yy, and Yy; — Y. Identification of multiple LATEs with unrestricted heterogeneity
is challenging and raises issues that go beyond the scope of this paper.”* We therefore

BBriefly, our procedure puts (1—C;)1(S; = k) on the left-hand side of a version of equation (7) with endoge-
nous variable 1 — C;. The coefficient on this endogenous variable is an estimate of E[1(Sy; = k)|C1; > Cy;, Xi].
The covariates and sample used here are the same as those used to construct the 2SLS impact estimates re-
ported in column 4 of Table VI.

%#See Behaghel, Crépon, and Gurgand (2013), Blackwell (2017), and Hull (2016) for recent progress on
multi-treatment IV models with heterogeneous effects.
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assume constant effects for each sector:
Yki - Y(Ji = Bk- (10)

With constant effects, a multi-sector identification strategy can be motivated by the simple
conditional independence assumption,

Yo L Z,|6;, (11)

where Z;, =k €{0, 1, ..., K} is a categorical variable that records DA-generated offers in
each sector.

The instruments for the multi-sector model are the full set of indicators for offers in
each sector, indexed by ¢: {D! =1[Z; =¢]; £ =1, ..., K}. These dummy instruments are
used in a 2SLS procedure with endogenous variables C* = 1[S; = k] indicating sector k
enrollment. As in Imbens’s (2000) extension of the propensity-score method to multiple
treatments, propensity-score conditioning to make charter offer instruments ignorable is
justified by the fact that (11) implies

YOiJ-LZi|p1(0)’ pz(a)a""pK(0)7 (12)

where p'(0) = E[D!|0] for£=1,..., K.
The 2SLS setup in this case consists of the second- and first-stage equations,

K K

Yi=) D andi(x)+) BiCf+ e (13)
=1 x k=1
K K

CE=>"> " yu@)d{(x)+ Y _ 8uDi+vy fork=1,...,K, (14)
=1 x =1

where the dummy control variables, d!(x), saturate estimates of the propensity scores
for each offer dummy, D¢, with corresponding score effects denoted by the y’s and «a’s
in the first- and second-stage models. Note that there are as many first stages as there
are sectors (minus one) and that each offer dummy appears in each first-stage equation,
with an associated set of score controls for that offer. The sample used for this analysis
contains the union of the sets of charter and innovation school applicants, including all
applicants with assignment risk in any sector in the model.

The conditional independence relation (12) suggests we should control for conditional
probabilities of assignment for all treatment levels jointly. Joint score control replaces
the additive score controls in equations (13) and (14) with saturated score controls of the
form

df(x', ..., x*)=1[p"(6) =x", p*(6) =x7, ..., pX(6;) = x*],

where hats denote score estimates and the indices, (x', x%, ..., xX) run independently
over all values in the support for each score. This model generates far more score fixed
effects than appear in equation (13). Fortunately, however, the algebra of 2SLS obviates
the need for joint score control; additive control as in (13) is enough, a conclusion that
follows from the next proposition.

BImbens (2000) and Yang et al. (2016) call the score for indicators of values of a multi-level treatment the
generalized propensity score.
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PROPOSITION 3: Let q(6;) be an arbitrary function of type. Consider the 2SLS estimator
of the vector of B} for k =1, ..., K constructed by estimating equations (13) and (14) with
additional controls q(0;) in each equation. Then,

Bi = B

PROOF: Note first that 2SLS estimates of (13)-(14) can be obtained by regressing first-
stage fitted values on the controls in these two equations (the full set of score dummies
and any other covariates in the model) and then using the residuals from this regression
as instruments for a model that omits the score dummies and additional covariates (see,
e.g., Section 4.1 in Angrist and Pischke (2009)). Equivalently, since first-stage fitted values
are a linear combination of offer dummies, we can regress each of the offer dummies on
these same controls and use the resulting residuals as instruments.

Now consider the set of auxiliary regressions that produce these residualized instru-
ments: they have D¥ on the left-hand side, with a saturating set of dummies for p*(6,)
and a vector of additional controls, g(6;), on the right. By the law of iterated expecta-
tions, the conditional expectation function (CEF) associated with this auxiliary regression
is

E[D!|p'(6)), 9(8)] = E{E[D|6,]

P8, q(0)} = p*(6)).

In other words, having conditioned on p*(#;), other functions of 6; drop out of the
CEF (this is a restatement of the propensity-score theorem). Moreover, because our
2SLS procedure includes a saturating set of dummies for the own-score, p*(6,), the CEF
E[D¥|p*(6,), q(6,)] is linear in regressors, so it and the associated auxiliary regression
function coincide. This completes the proof. Q.E.D.

The argument for additive score control is completed by observing that both the addi-
tive and joint models implicitly control for a full set of own-score dummies and additional
functions of 6;. For both models, therefore, the auxiliary regression that generates the
instruments used by 2SLS has residual D¥ — p*(6,).%

Multi-Sector Estimates

As a benchmark, columns 1-3 of Table VIII report three sets of single-sector 2SLS es-
timates, comparing CMO charter-only, non-CMO charter-only, and innovation-only es-
timates computed using DA (frequency) score controls. Each sample is limited to appli-
cants to the relevant sector.”’” The CMO charter first stage (the effect of a CMO charter
offer on CMO charter enrollment) is around 0.49. The non-CMO charter first stage is
0.33. It is worth noting that these two columns use different instruments, one indicating
CMO charter offers and one indicating non-CMO offers. This fact makes it possible to
identify distinct within-charter sector effects. The innovation school first stage (the ef-
fect of an innovation school offer on innovation school enrollment) is around 0.37. Not

2 As noted at the end of Section 4.1, a further implication of Proposition 3 is that in models with no covari-
ates other than score controls, and propensity score estimates using empirical offer rates, we can substitute
linear score control for saturating dummy controls. In this case, the fitted values and hence the residuals for
the auxiliary partialing-out regression generated by both linear and saturated score control are the same.

Z’Supplemental Material Table B.III lists innovation schools and describes the random assignment pattern
at these schools along the lines of Table II for charter schools. Covariate balance and differential attrition
results for innovation schools are reported in Supplemental Material Table B.IV.
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TABLE VIII
SCHOOL SECTOR EFFECTS?
Single Sector Models Multi-Sector Models
Additive Score Joint Score
CMO Non-CMO Innovation Controls Controls
6 ® ®) @ ®)
CMO First Stage 0.491%** 0.333%%* 0.368%**
(0.024) (0.056) (0.034)
A. Math
CMO Charter 0.441%** 0.472%** 0.442%**
(0.047) (0.059) (0.065)
Non-CMO Charter —0.090 0.057 —0.035
(0.166) (0.164) (0.174)
Innovation school —-0.137 0.168 0.132
(0.091) (0.102) (0.108)
N 1,940 394 923 2,663 2,326
B. Reading
CMO Charter 0.214%** 0.152%* 0.127*
(0.047) (0.066) (0.072)
Non-CMO Charter —0.248 —0.257 —0.128
(0.188) (0.191) (0.210)
Innovation school —0.100 —0.038 —0.091
(0.101) (0.117) (0.126)
N 1,944 394 924 2,668 2,332
C. Writing
CMO Charter 0.299%** 0.354%** 0.343%**
(0.052) (0.070) (0.077)
Non-CMO Charter 0.016 0.087 0.072
(0.171) (0.175) (0.198)
Innovation school —0.075 0.147 0.094
(0.102) (0.120) (0.126)
N 1,952 393 928 2,676 2,338

aThis table reports 2SLS estimates of CMO, non-CMO charter, and innovation attendance effects for applicants to schools in these
sectors. CMO charters are listed in Table II. Column 1 reports attendance effects of CMO charters, estimated in models using a CMO
offer instrument. Column 2 reports attendance effects of non-CMO charters, estimated in models using a non-CMO offer instrument
and non-CMO specific saturated score controls constructed like those used for charter applicants. Column 3 reports attendance effects
of innovation schools, estimated in models using an innovation school offer instrument and innovation-specific saturated score controls
constructed like those used for charter applicants. Column 4 reports coefficients from a three-endogenous-variable/three-instrument
2SLS model for the attendance effects of CMOs, non-CMO charters, and innovation schools, conditioning additively on CMO, non-
CMO, and innovation saturated score controls. Column 5 shows results from joint-effect models that add interactions between the
three scores to the specification that generates column 4. The first stage estimates reported above Panel A are for math scores. Robust
standard errors are reported in parentheses. *significant at 10%; **significant at 5% ; ***significant at 1%.

surprisingly in view of the substantially reduced number of applicants with nontrivial non-
CMO and innovation offer risk (401 and 942) and the corresponding smaller first stages,
both the non-CMO and innovation attendance estimates are less precise than the CMO
effects. Even so, it is noteworthy that in all subjects the estimated effects of non-CMO
and innovation school attendance are negative or close to zero.

2SLS estimates of equation (13) appear in columns 4 and 5 of Table VIII. The large
CMO charter school effects reported in column 1 remain substantial in this specification,
but (insignificant) negative innovation school estimates for math flip to positive when esti-
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mated using a model that also isolates the two charter treatment effects. The negative in-
novation school effects on reading seen in column 3 also shrink in the three-endogenous-
variables models. Most interestingly, perhaps, the large significant positive CMO charter
school effect on reading in column 1 is smaller and only marginally significant in columns 4
and 5. While charter applicants’ reading performance exceeds what we can expect to see
were these applicants to enroll in a mix of traditional and (low-performing) innovation
schools, the reading gap between CMO charters and traditional public schools appears to
be a little smaller.

As the theoretical discussion above leads us to expect, the results of estimation with
joint score controls, reported in column 5 of Table VIII, differ little from the estimates
constructed using additive score controls. Overall, it seems fair to say that the findings
showing substantial charter effectiveness in Table VI are driven entirely by CMO charters,
and that these findings hold up when effects are estimated using a procedure that removes
the innovation sector from the charter enrollment counterfactual.

4.5. Alternative IV Strategies

Previous research using centralized assignment to eliminate the selection bias arising
from the dependence of assignments on preferences and priorities focuses either on offers
of seats at applicants’ first-choice schools, or uses instrumental variables (IVs) indicating
whether an applicant’s lottery number falls below the highest number offered a seat at all
schools he has ranked (we call this a qualification instrument). The first-choice strategy
conditions on the identity of the school ranked first, while qualification instruments con-
dition on the set of schools ranked. These IV strategies are likely to produce estimates
of school attendance free of omitted variables bias. At the same time, both first-choice
and qualification instruments discard much of the variation induced by centralized as-
signment.

We are interested in comparing 2SLS estimates of charter effects constructed using of-
fer dummies as instruments while controlling for the DA propensity score with suitably-
controlled estimates using first-choice and qualification instruments. We expect DA-offer
instruments to yield a precision gain while also increasing the number of schools repre-
sented in the estimation sample relative to these two previously-employed IV strategies.?

Let X (0;) be a variable identifying the charter school that applicant i ranks first, along
with his priority status at this school, defined for applicants whose first choice is indeed a
charter school. X (6;) ignores other schools that might have been ranked. The first-choice
strategy is implemented by the following 2SLS setup:

Y=Y a(x)di(x) + BCi+ &,

Ci=)_y(x)di(x) + 8D] +v;,

BStudies using first-choice instruments to evaluate schools in districts with centralized assignment in-
clude Abdulkadiroglu, Hu, and Pathak (2013), Deming (2011), Deming et al. (2014), and Hastings, Kane,
and Staiger (2009). First-choice instruments have also been used with decentralized assignment mechanisms
(Abdulkadiroglu et al. (2011), Cullen, Jacob, and Levitt (2006), Dobbie and Fryer (2011), and Hoxby, Mu-
rarka, and Kang (2009)). Dobbie and Fryer (2014), Lucas and Mbiti (2014), and Pop-Eleches and Urquiola
(2013) use qualification instruments.
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where the d;(x)’s are dummies indicating values of X (6;), indexed by x, and y(x) and
a(x) are the associated “risk set effects” in the first and second stages. The first-choice
instrument, D{ , is a dummy variable indicating i’s qualification at his or her first-choice
school. In other words,

D{ = 1[m;, < ¢, for charter s that i has ranked first].

First-choice qualification is the same as first-choice offer since, under DA, applicants who
rank a first are offered a seat there if and only if they qualify at a.?

The qualification strategy expands the sample to include all charter applicants, with the
risk sets for qualification instruments identifying the set of all charter schools that i ranks,
along with his or her priority status at each of these schools (again, these risk sets are
denoted X (6,)).* The qualification instrument, DY, indicates qualification at any charter
he or she has ranked. In other words,

D? =1[m; < ¢, for at least one charter s that i has ranked].

In large markets, the instruments D/ and DY are independent of type conditional on
X (6,); see Appendix A.8 for details.

A primary source of inefficiency in the first-choice and qualification strategies is appar-
ent in Panel A of Table IX. This panel reports two sorts of first-stage estimates for each
instrument: the first of these regresses a dummy indicating any charter offer—that is, our
DA charter offer instrument, D,—on each of the three instruments under consideration.
A regression of D; on itself necessarily produces a coefficient of 1. By contrast, a first-
choice offer boosts the probability of any charter offer by only around 0.73 in the sample
of those who have ranked a charter first. This reflects the fact that, while anyone receiv-
ing a first-choice charter offer has surely been offered a charter seat, roughly 27% of the
sample ranking a charter first is offered a charter seat at schools other than their first
choice. The relationship between D! and charter offers is even weaker, at around 0.46.
This reflects the fact that, for schools below the one ranked first, charter qualification is
insufficient for a charter offer.

The diminished impact of the two alternative instruments on charter offers translates
into a weakened first stage for charter enrollment. The best-case scenario, using all DA-
generated offers (i.e., D;) as a source of quasi-experimental variation, produces a first
stage of around 0.44. But first-choice offers boost charter enrollment by only 0.35, while
qualification at any charter yields a charter enrollment gain of only 0.23. As always, the
size of the first stage is a primary determinant of the precision of an I'V estimate.’!

At 0.050, the standard error of the DA-offer estimate for effects on math scores is
lower than the standard error of 0.064 yielded by a first-choice strategy and well below
the standard error of 0.092 generated by qualification instruments. The precision loss
here is similar to the decline in the intermediate first stages recorded in the first row
of the table (compare 0.73 with 0.050/0.064 = 0.78 and 0.46 with 0.050/0.092 = 0.54).

2DPS divides each school into buckets, as explained in Section 2.3. Our first-choice risk set therefore iden-
tifies applicants to all buckets at the first-choice school.

For example, an applicant who ranks A and B with marginal priority only at A is distinguished from an
applicant who ranks A and B with marginal priority only at B.

31The sample used to construct the estimates in columns 1-3 of Table IX is limited to those who have
variation in the instrument at hand conditional on the relevant risk set.
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TABLE IX
OTHER IV STRATEGIES®

Instrument Equivalent Sample Increase
Offer Instrument First Choice Quualification
With DA Score  Charter Offer With  Instrument With
Controls Risk Set Controls  Risk Set Controls Col2vs. Col1 Col 3 vs. Col 1
@ ) 3) ©) ©)
A. First stage estimates
First stage for charter offers 1.000 0.7317%** 0.457%%*
(0.017) (0.018)
First stage for charter enrollment 0.443%** 0.3477%** 0.227%%*
(0.024) (0.022) (0.021)
B. 2SLS estimates
Math 0.417%** 0.515%%* 0.379%** 1.64 3.46
(0.050) (0.064) (0.092)
Reading 0.174%** 0.258%*** 0.198** 1.56 2.96
(0.050) (0.062) (0.086)
Writing 0.295%%** 0.316%** 0.344%** 1.61 2.81
(0.056) (0.071) (0.094)
N 2,099 2,222 3,502

4This table compares alternative 2SLS estimates of charter attendance effects using the same sample and control variables used
to construct the estimates in Table VI. Column 1 repeats the estimates from column 4 in Table VI. The row labeled “First stage for
charter offers” reports the coefficient from a regression of an any-charter offer dummy (the instrument used in column 1) on other
instruments, conditioning on the controls used in the corresponding first-stage estimates for charter enrollment. Column 2 reports
2SLS estimates estimated using a first-choice charter offer instrument. Column 3 reports charter attendance effects estimated using
an any-charter qualification instrument. These alternative IV models control for risk sets making the first-choice and qualification
instruments conditionally random; see Section 4.5 for details. Columns 4 and 5 report the sample size increase needed to achieve a
precision gain equivalent to the gain from using the any-charter offer instrument. Robust standard errors are reported in parentheses.
*significant at 10%; **significant at 5%; ***significant at 1%.

Columns 4 and 5 show the sample size increase needed to undo the damage done by a
smaller first stage for each alternative instrument.*

The precision loss from alternative IV strategies is much worse in multi-sector models.
For example, when estimating sector effects jointly, with additive score controls (as in
column 4 of Table VIII), the innovation school math effect estimated using a first-choice
offer instrument has a standard error of 0.737, while the corresponding standard error
using a qualification instrument is 1.879. These can be compared with the standard error
of 0.097 using DA offers and the DA score. It seems fair to say that multi-sector estimators
with these other IV strategies are uninformative.

First-choice analyses lose schools because many lotteries fail to randomize first-choice
applicants (as seen in Table II). It is therefore worth noting that the first-choice estimate
of effects on math and reading scores are noticeably larger than the estimates generated
using DA-offer and qualification instruments (compare the estimate of 0.42 using DA
offers with estimates of 0.52 and 0.38 using first-choice and qualification instruments).

32This pattern is consistent with theoretical econometric results in Newey (1990) and Hong and Nekipelov
(2010), which show that the semiparametric efficiency bound for LATE-type estimates is proportional to the
number of compliers, that is, to the size of the first stage. Hong and Nekipelov (2010) also show that the
efficient estimator of marginal-over-covariates LATE (E[Y; — Yy|Dy > Dol = E{E[Y1 — Yo|D1 > Dy, X1|D; >
D,}) is a weighted average of empirical covariate-specific Wald estimators, with weights proportional to the
corresponding covariate-specific first stage. See also Frolich (2007).
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This finding may reflect an advantage for those awarded a seat at their first-choice school
(Hastings, Kane, and Staiger (2009), Deming (2011), Deming et al. (2014) report a gen-
eral “first-choice advantage” in analyses of school attendance effects). By contrast, the
DA-offer instrument yields an estimand that is more representative of the full comple-
ment of charter schools in the SchoolChoice match.

Motivated by the possibility of a “first-choice” advantage, we conclude our empirical
analysis with estimates from models allowing separate effects of first-choice charters and
other-choice charters. As for the estimates in Table VIII, the instruments for enrollment
in more narrowly defined sectors are dummies indicating offers of seats in these sec-
tors, controlling for the corresponding narrow-sector propensity score. For first-choice
charters, for example, the instrument indicates offers at a charter ranked first and the
propensity score is the probability of receiving an offer at a charter ranked first.

Consistent with the hypothesis of “first-choice” advantage, the estimates in Table X sug-
gest first-choice charters generate achievement effects beyond those of charters ranked
lower. Compare, for example, the 0.40 math estimate for first-choice charters with the
0.24 estimate for other-choice charters, both of which are reported in column 1. Likewise,
for reading, the estimates in column 3 show a gain around 0.14 at first-choice charters,
with an estimated zero reading effect elsewhere. As can be seen in column 5, estimates of
effects on writing are similar at both types of schools.

CMO charters drive positive overall charter effects. It is natural, therefore, to ask
whether the first-choice advantage is visible within CMO and non-CMO sectors. The esti-
mates reported in even-numbered columns in Table X are from a model with four endoge-
nous variables, distinguishing first-choice and other charters by their CMO status. The
evidence of CMO charter quality remains impressive in this parameterization. We see,
for example (in column 2), that among charters ranked first, CMO charters boost math

TABLE X
DPS CHARTER SCHOOL ATTENDANCE EFFECTS BY FIRST CHOICE AND CMO STATUS?

Math Reading Writing
1) 2 (3) “4) (%) (6)
First-choice charters 0.403%** 0.141%** 0.291***
(0.049) (0.049) (0.056)
First-choice charters, CMO 0.428%** 0.166*** 0.307%**
(0.051) (0.052) (0.060)
First-choice charters, non-CMO 0.015 —0.270 0.048
(0.173) (0.235) (0.220)
Other-choice charters 0.239%** —0.025 0.289%**
(0.076) (0.078) (0.086)
Other-choice charters, CMO 0.294%** 0.038 0.296***
(0.073) (0.071) (0.082)
Other-choice charters, non-CMO 0.033 —0.253 0.250
(0.309) (0.355) (0.358)
N 2,522 2,519 2,522 2,519 2,522 2,519

aThis table reports 2SLS estimates for a two-endogenous/two-instrument model using saturated frequency score controls. The two
endogenous variables indicate attendance at first-choice charters and other-choice charters. Estimates are also presented for a four-
endogenous/four-instrument model. The four endogenous variables indicate attendance at a first-choice CMO, first-choice non-CMO,
other-choice CMO, and other-choice non-CMO. The first-choice charter instrument is a dummy indicating an offer from a first-choice
charter. The other-choice charter instrument is a dummy indicating an offer from a charter ranked below the applicant’s first choice.
The four first-choice-by-CMO instruments are defined similarly. Robust standard errors are reported in parentheses. *significant at
10%; **significant at 5%; ***significant at 1%.
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scores by 0.43, while non-CMO charters ranked first have essentially no effect. A similar
contrast in favor of CMOs appears for other subjects as well, though it should be noted
that the non-CMO estimates here are imprecise.

5. SUMMARY AND DIRECTIONS FOR FURTHER WORK

We have shown how to analyze the stratified randomized trial induced by any central-
ized assignment mechanism satisfying the equal treatment of equals property. DA with
lottery tie-breaking is the leading mechanism in the ETE class. Our main theoretical re-
sult is an analytical formula for the DA propensity score, derived using a large-market
approximation. This approximation works well in our DPS application in the sense of
producing the covariate balance promised by the propensity-score theorem.

The theoretical results developed here extend to other widely-used matching schemes,
including immediate acceptance, as well as to matches using multiple tie-breakers. The
DA propensity score also reveals the nature of the experimental design embedded in DA,
as well as suggesting modifications (such as to priorities) that might boost the research
value of school assignment or other matching schemes. Finally, as a theoretical matter,
the DA score provides a natural data driven smoother for the finite-market propensity
score. In ongoing work, we are extending the framework in this paper to cover centralized
assignment schemes using top trading cycles.

A score-based analysis of data from Denver’s unified school match reveals substantial
gains from attendance at one of Denver’s many charter schools. The resulting charter
effects are similar to those computed using single-school lottery strategies for Boston’s
charters reported in Abdulkadiroglu et al. (2011) and to estimates computed using char-
ter takeovers in New Orleans (Abdulkadiroglu, Angrist, Hull, and Pathak (2016)). At
the same time, as with previously reported results for Boston Pilot schools, Denver’s In-
novation school model does not appear to boost achievement. As always, econometric
estimates need not predict the effects of policy changes. But the track record for charter
lottery estimates is encouraging. In addition to the fact that lottery estimates have been
replicated in many large urban districts, Cohodes, Setren, and Walters (2016) showed that
a recent wave of Boston charter expansions, a policy innovation prompted by a legislative
change, produced achievement gains very much in line with earlier lottery estimates.

Our analysis focuses on defining and estimating the DA propensity score, giving less
attention to the problem of how best to use the score for estimation. Still, simple 2SLS
procedures seem to work well, and the resulting estimates of DPS charter effects dif-
fer little from those generated by semiparametric alternatives. Estimates using DA-offer
instruments also generate noteworthy precision gains relative to qualification and first-
choice instruments, mostly as a consequence of an increased first stage, though also (in
the case of first choice) by exploiting randomization at a larger set of schools.

Our DPS analysis shows how centralized assignment schemes can be used to unbun-
dle school heterogeneity. We see, for example, that CMO-affiliated charters are much
stronger than others in DPS, and achievement gains are larger when applicants are of-
fered seats at charters they rank first. In principle, the empirical strategy demonstrated
here can be used to construct single-school value-added estimates, though the VAM
agenda raises unique challenges. In a related paper, Angrist, Hull, Pathak, and Walters
(2017) show how lottery estimates can be embedded in an empirical Bayes framework
that identifies value added for schools that are undersubscribed or for which there is no
randomization. A natural direction for future work is the combination of the strategy
outlined here with the empirical Bayes VAM framework.
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Finally, it is worth noting that matching schemes for selective exam schools (analyzed
by Jackson (2010), Dobbie and Fryer (2014), Abdulkadiroglu, Angrist, and Pathak (2014),
Lucas and Mbiti (2014), Pop-Eleches and Urquiola (2013)) and the U.S. medical match
use non-randomly-assigned tie-breakers rather than a lottery. These schemes embed re-
gression discontinuity designs inside a market design rather than embedding a random-
ized trial. The question of how best to define and exploit the DA propensity score for
markets that combine regression-discontinuity tie-breaking with market-design match-
making is an important next step on the market-design-meets-research-design agenda.
Abdulkadiroglu et al. (2017) report initial results on this piece of our agenda.

APPENDIX A: THEORETICAL APPENDIX
A.1. Equal Treatment of Equals

This section describes a broad class of mechanisms satisfying ETE. Fix the set of ap-
plicants and suppose that each applicant is assigned L lottery numbers. For example, L
is equal to 1 if every applicant is assigned a single random number as in a DA with sin-
gle tie-breakers, and L is equal to the number of schools if every applicant is assigned
a different lottery number at every school. Generalizing the notation of Section 3, let
r; = (ra, ..., ;) be the vector of applicant i’s realized lottery numbers and r = (r;: i € I).
Assume that, forany £ € {1,..., L}, r, =ry ifand onlyif i = j.

Recall that a stochastic mechanism maps a school-choice problem into a distribution
of possible assignments. Given lottery numbers r, we can be more explicit about how
a stochastic mechanism is constructed by defining a function ¢ which maps the set of
applicants and their random numbers to an assignment. ¢ is the allocation produced for
a particular lottery realization. Let ¢;(r) denote i’s assignment when lottery numbers are
given by r and define ¢ (r) = (¢p;(r) :i € ).

Given r and i, j € I, let i and j swap lottery numbers and denote the resulting lottery
vector by (r;j, I;, ;). We say that ¢ is anonymous if, for any i, j, and r such that i # j and
0; = 0;, we have

d’i(r(i,j), r;,r)= d’j(l’),
¢;(rqj,r;, 1) =¢;(r), and
br(xrij), rj, ;) = y(r) forall k e I'\ {i, j}.

We construct a stochastic mechanism by drawing lottery numbers. Let / be a probability
distribution over r with support R". Given (¢, h), we can construct the corresponding
stochastic mechanism, which we denote ¢". Let ¢! be the probability that i is assigned s,
that is,

ol =" h(r)1(di(r) =s5)

reR"

when the support of 4 is countable, and

¢g=/ h(r)1(¢i(r) =s)dr
Rh

otherwise. We say that a random lottery 4 is symmetric if h(r) = h(r ), r;, r;) for any i, j,
and r such that i # j and 0, = 0;.
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LEMMA 1: If ¢ is anonymous and h is symmetric, then stochastic mechanism ¢" satisfies
Equal Treatment of Equals, that is,

b= ),
forall s and i, j such that 0; = 0.

PROOF: Assume that ¢ is anonymous and /% is symmetric. Consider any i and j such
thati#j, 0, =0,.

The set of possible assignments is finite. So, by grouping together the sets of random
numbers that yield the same assignment and redefining %, we can assume without of loss
of generality that R" has finite cardinality. Formally, let M = {¢(r) : r € R"} be the set of
all assignments generated by (¢, /). Construct a new lottery g as follows: Let R$ denote
the support of g. For each assignment m € M, pick some r € R" such that ¢(r) = m,
include it in R¢, and set

g(r) = /h h(2)1(¢(z) =m)dz.
R
Then, by construction,
P8 =l
for all s and i. R can be constructed in a way that g is symmetric. So we assume without
loss of generality that R" has finite cardinality.

Let {R, R} be a partition of R" such that r € R if and only if (r(;,r;, r;) € RY. Such
partition exists by the symmetry of 4 and finite cardinality of R". Then

dl= > hr)l(gir)=s)

reRURY

Z h(r)1(¢i(r) = S) + h(rq, ), ri)1(¢i(r(i,j), r,r;) = S)

reR

= Zh(r(i,j); r;, ri)1(¢j(r(i,j)> rj,r;) = S) + h(r)1(¢j(r) = S)

reR

> h(r)1(¢;(r) =5)

reRURY
_ ¢h
=},
h

where the first equality is the definition of ¢, the second follows from the way the parti-
tion is constructed, the third follows from (i) 4 (r) = h(r(, r;, r;) by symmetry of 4, and
(ii) ¢i(r) =s & ¢;(ri ), r;,1r;) = s by ¢ being anonymous. The fourth equality follows
from the way the partition is constructed. Finally, the fifth equality is by definition. This
completes the proof. QE.D.

This result implies that the following mechanisms with a symmetric lottery satisfy ETE:
DA, the immediate acceptance (“Boston”) mechanism, random serial dictatorship, and
TTC, since each is anonymous. To see why, consider any i and j with 6; = 6;. When i
and j swap lottery numbers, they swap roles in the implementation of each mechanism
as well; consequently, they swap assignments. Lemma 1 also allows us to conclude that
versions of these mechanisms using school-specific tie-breaking satisfy ETE when tie-
breaking lotteries are symmetric.
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A.2. Defining DA: Details

Our general formulation defines the DA match as determined by cutoffs found in the
limit of a sequence. Recall that these cutoffs evolve according to

o K+1 if F(Q,(¢")) < g5,
¢ 7 | max{x €[0,K +1]| F({i € O(c') such that m;, < x}) < ¢,} otherwise,

where (Q;(c’) is the demand for seats at school s for a given vector of cutoffs ¢’ and is
defined as

O,(c')={iel|ms<clands >3 forall § € S such that m;; < ci}. (15)

The following result confirms that these limiting cutoffs exist, that is, that the sequence ¢’
converges.

LEMMA 2: Consider an economy described by a distribution of applicants F and school
capacities as defined in Section 3.1. Construct a sequence of cutoffs, c., for this economy as
described above. Then, lim,_, , c! exists.

PROOF: c! is well-defined for all £ > 1 and all s € S since it is either K 4 1 or the maxi-
mizer of a continuous function over a compact set. We will show by induction that {c!} is
a decreasing sequence for all s.

For the base case, ¢? < ¢! for all s since ¢! = K + 1 and ¢ < K + 1 by construction.
For the inductive step, suppose that ¢! < ¢/ forall sand all t=1,..., T. For each s, if
¢l =K +1, then ¢/ < ¢! since ¢! < K + 1 for all ¢ by construction. Otherwise, suppose
to the contrary that ¢/ > ¢7. Since ¢! < K+ 1, F({i € Q;(¢"™") such that m;; < ¢'}) = g,.
Then,

F({i € O,(c") such that m;; < ¢/*'}) = F({i € O,(c") such that m;, < ¢!})
+ F({i € Os(c") such that ¢] < m;, <c*'})
> F({i € Os(c"") such that m;; < c})
+ F({i € Os(c") such that ¢] < m;; <c!/*'})

s

> g, + F({i € O,(c") such that ¢] < m;; <c/*'})(17)

N

> g,. (18)

(16)

Expression (16) follows because

{i € O,(c") such that 7, < ¢}
={iel|m,<c ands>;5forall 5§ € § such that m; < ¢}
T-1 T-1

Dliel|ms<cl ands>;5forall 5 e Ssuchthatms <c/ '} (bye/ <)

= {i € Q,(c"") such that m;; < ¢ }.

Expression (17) follows by the inductive assumption and since ¢/ < K + 1.
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Expression (18) follows since if F({i € Q,(c”) such that ¢! < m;; < ¢I*'}) =0, then

F({i € O,(c"") such that m;; < ¢/*'}) = F({i € Q,(¢" ") such that m;; < c}) < g,
while ¢/*! > ¢!, contradicting the definition of ¢’.

Expression (18) contradicts the definition of ¢’ since the cutoff at step 7 + 1 results in
an allocation that exceeds the capacity of school s. This therefore establishes the inductive
step that ¢/ ! < 7.

To complete the proof of the proposition, observe that since {c!} is a decreasing se-

quence in the compact interval [0, K + 1], ¢! converges by the monotone convergence
theorem. O.E.D.

Note that this result applies to the cutoffs for both finite and continuum economies. In
finite markets, at convergence, these cutoffs produce the allocation we get from the usual
definition of DA (e.g., as in Gale and Shapley (1962)). This can be seen by noting that

max{x € [0, K + 1] | F({i € O,(c') such that m;, < x}) < ¢,}
=max{x € [0, K+ 1]||{j € Os(¢) : ;s < x}| <k},

implying that the provisional cutoff at school s in step ¢ in our DA formulation, which is
determined by the left-hand side of this equality, is the same as that in Gale and Shap-
ley’s (1962) DA formulation, which is determined by the right-hand side of the equality.
Our DA formulation and the Gale and Shapley (1962) formulation therefore produce
the same cutoff at each step. This also implies that, in finite markets, our DA cutoffs are
found in a finite number of iterations, since DA as described by Gale and Shapley (1962)
converges in a finite number of steps.

A.3. Proof of Theorem 1

Note first that admissions cutoffs ¢ in a continuum economy are invariant to lottery
outcomes r; for each i: DA in the continuum depends only on F(l,) for sets Iy ={i e |
0; € O} with various choices of @,. In particular, F([y) does not depend on lottery real-
izations. Likewise, marginal priority p; is uniquely determined for every school, s.

Now, consider the propensity score for school s. Applicants who do not rank s have
ps(6) = 0. Among those who do rank s, those of type 6 € @” have py, > p,. Therefore,
ps(6) =0forevery 6 € @2 U (O \ O,).

Applicants of type 6 € @¢ U @¢ may be assigned § € By,, where py; = p;. Since lottery
numbers are uniform, the proportion of type-60 applicants assigned some § € By, where
pos = ps 1S MIDy;. In other words, the probability of not being assigned any s € By, where
pes = p; for a type-0 applicant is 1 — MID,,. Every applicant of type 6 € ®¢ who is not
assigned a higher choice is assigned s because py, < p;, and so

ps(0) =(1 —MIDy,) forall ec6r.

Finally, consider applicants of type 6 € @S who are not assigned a higher choice. The
fraction of applicants 6 € ®¢ who are not assigned a higher choice is 1 — MID,,. Also,
the random numbers of these applicants is larger than MIDy,. If 7, < MIDy,, then no
such applicant is assigned s. If 7, > MIDy;, then the ratio of applicants that are assigned s

within this set is given by Tf_‘l\“fllll)):f. Hence, conditional on 6 € @¢ and not being assigned
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T:—MIDQA-}

a choice higher than s, the probability of being assigned s is given by max{0, T MIDL

Therefore,

7s — MIDy

;(6) = (1 — MIDy, 0, —
Ps(0) =( a)xmax: 1_MID,,

} for all 6 € O5.

A.4. Example 2 in the Continuum

In the large-market analog of Example 2, we can model lottery numbers as distributed
according to a continuous uniform distribution over [0, 1]. Types 2 and 3 rank different
schools ahead of a, so the sets of schools preferred to a by types 2 and 3 are

Bs, = {b} and By, = {b’ C}'
Nevertheless, because 7. = 0.5 < 0.75 = 7,, we have that
MIDZ‘, = MID3a =Tp= 0.75.

To see where these cutoffs come from, note first that among the 2n type 1 and type 2
applicants who rank c first in this large market, those with lottery numbers lower (better)
than 0.5 are assigned to c since it has a capacity of n: 7. = 0.5. The remaining type 2
applicants (half of the original mass of type 2), all of whom have lottery numbers higher
(worse) than 0.5, must compete with all type 3 applicants for seats at b. We therefore have
1.5n school-b hopefuls but only n seats at b. All type 3 applicants with lottery numbers
below 0.5 get seated at b (the type 2 applicants all have lottery numbers above 0.5), but
this does not fill b. The remaining seats are therefore split equally between type 2 and
type 3 applicants in the upper half of the lottery distribution, implying that the highest
lottery number seated at b is 7, = 0.75.

Since there are no priorities, type 2 and type 3 are in @¢ and type 2 and type 3 applicants
seated at a must have lottery numbers above 0.75. It remains to compute the cutoff, 7,.
Types 2 and 3 compete only with type 4 at a, and are surely beaten out there by type 4’s
with lottery numbers below 0.75. The remaining 0.25 seats are shared equally between
types 2, 3, and 4, going to the best lottery numbers in [0.75, 1], without regard to type.
The lottery cutoff at a, 7,, is therefore 0.75 4+ 0.25/3 = 5/6. Plugging these into equation
(2) gives the DA score for types 2 and 3:

7, — MIDy,
=(1-MID 0, —————
®a(0) = ( 6a) xmaX{ > T_MID,, }
5/6 —0.75
= (1 —075) X maX{O, i—T}
1
12

The score for type 4 is the remaining probability, 1 — (2 x &) = 2.

A.5. Proof of Theorem 2

We complete the proof of Theorem 2 in Section 3.3 by proving the following two inter-
mediate results.



1420 ABDULKADIROGLU, ANGRIST, NARITA, AND PATHAK
LEMMA 3—Cutoff Almost Sure Convergence: ¢, — c.

LEMMA 4—Propensity-Score Almost Sure Convergence: For all 6 € @ and s € S,
Pus(0) = @(0).

A.5.1. Proof of Lemma 3

We use the Extended Continuous Mapping Theorem (Theorem 19.1 in van der Vaart
(2000)) to prove the lemma. We first show deterministic convergence of cutoffs in order
to verify the assumptions of the Continuous Mapping theorem.

Let

1Oy, ry,r1)={iel|0;€BOpry<r;<n}.

In a continuum economy,
F(I1(Oy,1ry,11)) = E[1{6; € Op}] x (1, — o),
where the expectation is assumed to exist. In a finite economy with n applicants,

|I(@Oar05r1)|

F(1(Bq,ry, 1)) = p

Let F be the set of possible F’s defined above. For any two distributions F and F’, the
supnorm metric is defined by

d(F,F)= sup  |F(I(@g,r,1))—F (I(O,r,r))l|

0¢CO,rg,r1€[0,1]

The notation is otherwise as in the text.

PROOF OF LEMMA 3: Consider a deterministic sequence of economies described by a
sequence of distributions {f,} over applicants, together with associated school capacities,
so that for all n, f,, € F is a potential realization produced by randomly drawing » appli-
cants and their lottery numbers from F. Assume that f, — F in metric space (F, d). Let
¢, denote the admissions cutoffs in f,. Note the ¢, is constant because this is the cutoff
for a particular realized economy f,.

The proof first shows deterministic convergence of cutoffs for any convergent subse-
quence of f,. Let {f,} be a subsequence of realized economies {f,}. The corresponding
cutoffs are denoted {¢,}. Let ¢ = (¢;) be the limit of ¢,. The following two claims establish
that ¢, — c¢, the cutoff associated with F.

CLAIM 1: ¢, > ¢, forevery s € S.

ProOOF: This is proved by contradiction in three steps. Suppose to the contrary that
¢ < ¢, for some 5. Let §' C S be the set of schools the cutoffs of which are strictly lower
under ¢. For any s € §', define I! ={i € I | ¢,; < m;; < ¢, and i ranks s first} where [ is the
set of applicants in F, which contains the set of applicants in f, for all #. In other words,
I’ are the set of applicants ranking school s first who have an applicant rank in between
C,s and c;.
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Step (a): We first show that for our subsequence, when the market is large enough, there
must be some applicants who are in I?. That is, there exists N such that for any n > N, we

have f;(];) >0forallses§'.

To see this, we begin by showing that for all s € §’, there exists N such that for any
n > N, we have F'(I) > 0. Suppose, to the contrary, that there exists s € §’ such that
for all N, there exists n > N such that F(I}) = 0. When we consider the subsequence of

realized economies { ﬂ}, we find that

fa({i € Os(c,) such that 7 < ¢,})
f,,({z € O,(c,) such that m;; < &, }) + ﬂ({z € O,(c,) such that &,, < m;, < ¢,})

fu({i € Qu(e,) such that m, <,}) (19)
q (20)

IA

Expression (19) follows from Assumption 1 by the following reason. Equation (19)
does not hold, that is, f;({i € Qs(c,) suchthat ¢,; < 7, < ¢;}) > 0 only if F({i € I |
Cns < Tis < ¢5}) > 0. This and Assumption 1 imply F({i € I | ¢,; < ;s < ¢, and i ranks
s first}) = F(I}) > 0, a contradiction to F'(/3) = 0. Since f,, is realized as n i.i.d. sam-
ples from F, ﬂ({i el | ¢, < my < ¢}) =0. Expression (20) follows by our definition of
DA, which can never assign more applicants to a school than its capacity for each of the
n samples. We obtain our contradiction since ¢,, is not maximal at s in fn since expres-
sion (20) means it is possible to increase the cutoff ¢, to ¢, without violating the capacity
constraint.

Given that we have just shown that for each s € §’, F(I}) > 0 for some n, it is possible
to find an n such that F(I3) > ¢ > 0. Since f, — F and so an — F, there exists N such that
for all n > N, we have f,,(l *) > F(I}) — & > 0. Since the number of schools is finite, such
N can be taken uniformly over all s € S. This completes the argument for Step (a).

Step (a) allows us to find some N such that for any n > N, ﬁ(];‘) >( for all s € §'.
Let §, € S and ¢ be such that ¢! > ¢, for all s € S and ¢; < ¢;,. That is, §, is one of

the first schools the cutoff of which falls strictly below c;, under the DA algorithm in f,,,
which happens in round ¢ of the DA algorithm. Such §, and ¢ exist since the choice of n
guarantees ﬂ(l;) >0andso ¢, <c,forallse§'.

Step (b): We next show that there exist infinitely many values of n such that the as-
sociated §, is in §’ and f;(l;) > 0 for all s € §'. This is true because otherwise, by Step
(a), there exists N such that for all » > N, we have §, ¢ S'. Since there are only finitely
many schools, {5,} has a subsequence {5,,} such that §,, is the same school outside S’ for
all m. By definition of §,, C,;, < Cps, < Cs,, for all m and so ¢;, < ¢;,,, a contradiction to
Sm¢ S,

Fix some n such that the associated s, is in §’ and f;(F) > 0 for all s € §'. Step (b)
guarantees that such 7 exists. Let A,;, and A;, be the sets of applicants assigned §, under
fyand F, respectively. All applicants in I’ are assigned 3, in F and rejected by §, in fn
Since these applicants rank §, first, there must exist a positive measure (with respect to f )
of applicants outside I¥* who are assigned 3, in f, and some other school in F; denote the
set of them by Amn \ Asn f (A,,Sn \ 4;,) > 0 since otherwise, for any # such that Step (b)
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applies,
FCAus,) = Ja(As, N I7) = Ful ) = FulE),

which by Step (a) converges to something strictly smaller than F(A;,) since f:,(Agn) —
F(A4;,) and ﬂ([ Sn) > 0 for all large enough n by Step (a). Note that F(A;,) is weakly
smaller than g;,. This implies that for large enough 7, f:,(;lng”) < gs,, a contradiction to
Izlnsn’s being the set of applicants assigned §, at a cutoff strictly smaller than the largest
possible value K + 1. For each i € /~ln§n \ 45, let s; be the school to which i is assigned
under F. .

Step (c): To complete the argument for Claim 1, we show that some i € A,;, \ A5, must
have been rejected by s; in some step i<t—1of the DA algorithm in f That is, there
exists i € Am,, \ A4;, and 7 < ¢ — 1 such that s, > c _. Suppose to the contrary that for all

i€ A,,sn \ A;, and 7 <t — 1, we have s, < cm Each such applicant i must prefer s; to
5, because i is assigned s; # §, under F though 75, < C.5, < c;,, where the first inequality
holds because i is assigned §, in I:",, while the second inequality does because §, € S’. This
implies none of A, \ A;, is rejected by s;, applies for §, and contributes to decreasing
ci. atleast until step # and so ¢/, < c¢;, cannot be the case, a contradiction. Therefore, we
have our desired conclusion of Step (c)

Claim 1 can now be established by showing that Step (c) implies there are i € Izlngn \ 45,
and 7 < ¢ — 1 such that s, > Ef”i > C,y;, Where the last inequality is implied by the fact that
in every economy, for all s € S and ¢ > 0, we have ¢/ < ¢’. Also, they are assigned s; in
F so that m;;, < ¢,,. These imply ¢,, > Eisl_ > Cpy;. That is, the cutoff of s; falls below c¢,; in
step f <t — 1 < t of the DA algorithm in f,. This contradicts the definition of 5, and 7.
Therefore, ¢, > ¢, for all s € S, as desired. This completes the proof of Claim 1. ~Q.E.D.

CLAIM 2: By a similar argument, ¢, < c, for every s € S.

Since ¢; > ¢, and ¢ < ¢ for all s, it must be the case that ¢, — c. The following claim
uses this to show that ¢, — c.

CLAIM 3: If ¢, — c for every convergent subsequence {c,} of {c,}, then ¢, — c.

PROOF: Since {¢,} is bounded in [0, K + 1]/, it has a convergent subsequence by the
Bolzano-Weierstrass theorem. Suppose to the contrary that for every convergent subse-
quence {¢,}, we have ¢, — ¢, but ¢, - c. Then there exists £ > 0 such that for all £ > 0,
there exists n, > k such that ||c,, — ¢|| > &. Then the subsequence {c,, }; C {c,} has a con-
vergent subsequence that does not converge to ¢ (since |¢,, — ¢|| > ¢ for all k), which
contradicts the supposition that every convergent subsequence of {c,} converges to c,
completing the proof of the claim. Q.E.D.

The last step in the proof of Lemma 3 relates this fact to stochastic convergence.

S,

CLAIM 4: ¢, — cimplies ¢, Ze

PROOF: This proof is based on two off-the-shelf asymptotic results from mathematical
statics. First, let F,, be the distribution over 1(0,, ry, r;)’s generated by randomly draw-
ing n applicants from F. Note that F,, is random since it involves randomly drawing n
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applicants. F, 23 F by the Glivenko—Cantelli theorem (Theorem 19.1 in van der Vaart
(2000)). Next, since F, 3 F and ¢, — ¢, the Extended Continuous Mapping Theorem

(Theorem 18.11 in van der Vaart (2000)) implies that ¢, =5 ¢, establishing the claim and
completing the proof of Lemma 3. Q.E.D.
Q.E.D.

A.5.2. Proof of Lemma 4

Consider any deterministic sequence of economies {f,} such that f, € F for all n
and f, — F in the (F, d) metric space. Let p,;(0) be the (finite-market, deterministic)
propensity score for a particular f,. Note that this modifies the definition of p,(60) from
that in the text. The change here is that the propensity score for f, is not a random quan-
tity, because economy f, is viewed as fixed.

For Lemma 4, it is enough to show deterministic convergence of this finite-market
score, that is, p,;(8) — ¢.(0) as f, — F. To see this, let F, be the distribution over
1(Oy, ry, r1)’s induced by randomly drawing n applicants from F. Note that F, is ran-

dom and that F, 23 F by the Glivenko—Cantelli theorem (Theorem 19.1 in van der Vaart
(2000)). F,, 23 F and p,;(6) — ¢,(6) allow us to apply the Extended Continuous Mapping

Theorem (Theorem 18.11 in van der Vaart (2000)) to obtain p,,(6) 2 0,(0).
We prove convergence of p,;(0) — ¢,(0) as follows. Let ¢,; and ¢,y be the random
cutoffs at s and ', respectively, in f,, and

Tos = Cs — pﬁs;
Tos. = max{cy — poy},
s'>gs
Tnos = Cns — Pos> and

Thos. = maX{Cns/ - p()s’}-
s'>=gs

We can express ¢,(0) and p,,(6) as follows:
QDS(G) = maX{()’ Tos — Tﬂs_}s
pns(e) = Pn(%nf)s = R> %HGL))

where P, is the probability induced by randomly drawing lottery numbers given f,, and
R is a random (not realized) lottery number for any type-6 applicant, where we omit an
applicant subscript for simplicity. R’s marginal distribution is U[0, 1].

By Lemma 3, with probability 1, for all ; > 0, there exists V; such that for all n > Ny,

|Gy —cy| <& foralls,
which implies that with probability 1,
|Tnos. — Tos_|
= [{Cusy, — Pos,} — {Csy — P }|
|{5m-1 — Pos;} — ({Ensl — Pos,} + 81)| if ¢;, — pos, = Cus, — Posy»

|{Cnsl - pﬂsl} - ({Ensl - Pesz} - 81)| if Csz — Pos, < Ensl — Posy

= &1,

<
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where in the first equality, s, = argmaxy. ,,{C,y — pos} and s, = argmax{cy — pyy}. The
inequality is by |C,y — ¢y| < & for all s'. For all ¢ > 0, the above argument with setting
&1 < g/2 implies that there exists N such that for all n > N,

pns(e) = Pn(%nﬁx Z R > %nﬂs_)
€ (maX{O, Tos — Tos. — &}, max{0, 7o, — oy + &})

€ (@5(0) — &, ¢5(0) + &),

where the second-to-last inclusion is because with probability 1, there exists N such
that for all » > N such that |7, — Tosl, |Tnes. — Tos_| < € and R ~ U[0, 1]. This means
Pns(0) — @4(68), completing the proof of Lemma 4.

A.6. Proof of Proposition 2

By the definition of MID, for any 6 and s, there exists § such that MIDg; = 75, which
is the decimal part of ¢;. Cutoff vector ¢ also pins down @¢ and ©5. Thus, the assump-
tion (r; L ¢) implies that individual lottery numbers r; are uniformly distributed over
[0, 1] (not only unconditionally but also) conditional on any cutoff, MID, ®¢, ¢, and
type. This gives us both unbiasedness and conditional independence. When p,(0) is the
formula version of the estimated DA propensity score, the DA propensity score is unbi-
ased for the true propensity score, that is, E(p,(6)) = ps(0) for every applicant type 6
since

E(ps(9)) (a)
7, — MID,, } )

> 1— MID,,

= E(l{e,- € 0°}(1 —MID,,) + 1{6; € O} (1 — MIDgl.S)max{O
(b)

0,=6>

= E(E(1{6; € 02} 1{MIDy, <1} + 1{6; € O} 1{MID,,, <1, < 7,}|

0; = 0, 7,, MID,,,, ©¢, 09)|6, = 0)
= E(E(1{6; € ©¢ and MID,,, < r;} + 1{6; € @¢ and MID,, <r; < 7, }|

0; = 0, 7,, MID,,,, ©¢, ©9) |6, = 0)
= E(1{6; € @¢ and MIDy,, < r;} + 1{6; € ©¢ and MID,, < r; < 7,}|6, = 6)
= E(1{(6; € © and MIDy,, <r;) or (6; € O and MID,,, <r; < 7,)}|6; = 6)
= P(Di(s)=1/6; = 0),

where the first and fourth equalities are by the law of iterated expectation, and the second
equality is by r; ~ U(0, 1) conditional on any cutoff, MID, @¢, ®¢, and type. To obtain this

s

result for the frequency version of the estimated DA propensity score, insert the following
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lines between equations (a) and (b):

> Di()1{1{6; € 2} = 1{6; € 02}, MID, , = MID,,, }

a)=F 1 9,-6@5 el
@ 3_;"{ 8 > 1{1{6; € 02} =1{6; € 02}, MID, , = MID,,, }

jel

> Di(9)1{1{0; € @} = 1{6; € O}, MID, , = MID,,}

=E|E| Y 16,02}~

d=a,c,n Z 1 0 (S @6 {0, < @f}, MIngs = MID@Z.S}

jel

0,‘ = 0, Ts, MIDgiS, @?, @g 0,‘ =0

= E(E(l{el- € 0!}(1 —MIDy,) + 1{6; € O} (1 — MIDeis)max{o
0,=0>

where the first equality is by the definition of the frequency DA score, the second equality
is by the law of iterated expectation, and the third equality is by r; ~ U[0, 1] conditional
on any cutoff, MID, ¢, ®¢, and type.

Assignment is mdependent conditional on the formula version of the estimated DA
propensity score, that is, P(D;(s) = 1|p,(6;), 6;) = P(D;(s) = 1| p,(6;)) by the following
reason:

7, — MIDy,q )
" 1—MID,,

0;= 0,1y, MIDB,-S: @?a @g)

= (b),

P(D(s) =1|p,(6:) = p, 6;)
= E(1{(6; € ©? and MID,,, <r;) or (6; € O and MID,,, <r; < 7,)}| p,(6;) = p, 6;)
= E(E(1{(6; € ©¢ and MIDy,; <r;) or (6; € @ and MIDy, < r; < 7,)}|
7, MIDy,, 0%, 0%, p,(6;) = p, 6:)| p;(6:) = p, 6;) (c)
= E(E(1{(6; € ©¢ and MIDy,; <r;) or (6; € @ and MIDy,, < r; < 7,)}|

7, MID,,,, 0%, 0%, 6,)| p,(6,) = p, 6,)
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a ¢ Ty — MIDB;s
= E<1{9,~ € 0!}(1 —MIDy,) + 1{6; € O} (1 — MID(,is)max{O, m}‘
ps(0:) =p, 95)
=E(l~?s(9i)|13s(9i)=1?, 9[) (d)
=D

which is independent from 6; conditional on p(6;) = p. In the above calculations, the
first equality is by the definition of D;(s), the second equality is by the law of iterated
expectation, the third equality is by the fact that 7, MID,,,, @¢, and ©¢ pin down p,(6;),
the fourth equality is by r; ~ U[0, 1] conditional on any cutoff, MID, ®¢, @¢, and type, and
the fifth equality is by the definition of p,(8;). Assignment is also independent conditional
on the frequency version of the estimated DA propensity score since, for the frequency
version, equation (c) directly implies (d). Q.E.D.

A.7. Modes of Inference

Econometric inference typically tries to quantify the uncertainty due to random sam-
pling. What then, to make of the fact that the analysis reported here uses data on all DPS
applicants from 2012? On one hand, we might imagine that the applicants we happen
to be studying constitute a random sample from some larger population of possible ap-
plicants. At the same time, the statistical uncertainty in our empirical work can also be
seen as a consequence of random assignment: we see only a single lottery draw for each
applicant, one of many possibilities even when the sample of applicants is viewed as fixed.

In an effort to determine whether the distinction between sampling inference and ran-
domization inference matters for our purposes, we computed randomization p-values by
repeatedly drawing lottery numbers and calculating offer gaps in covariates conditional
on the simulated propensity score. Regression conditioning on the simulated score pro-
duces near-perfect balance in Table IV so this distribution is what we should expect to
see under the null hypothesis of no difference by treatment assignment. Randomization
p-values are therefore given by quantiles of the ¢-statistics in the distribution resulting
from these repeated draws.

The p-values associated with conventional robust ¢-statistics for covariate balance turn
out to be close to the corresponding randomization p-values. For the number of char-
ter schools an applicant has ranked, for example, the conventional p-value for balance
is 0.885 while the corresponding randomization p-value is 0.850. This is consistent with
a classic result on the asymptotic equivalence of randomization and sampling tests for
differences in means (see, e.g., Chapter 15.2 in Lehmann and Romano (2005)).

Abadie, Athey, Imbens, and Woolridge (2014) generalized results on the large-sample
equivalence of randomization and sampling inference to cover regression estimates of
treatment effects and tests for covariate balance of the sort reported here. If the regres-
sion function is linear and the regression of treatment on controls is linear, the usual
robust covariance matrix associated with random sampling is asymptotically valid for the
sampling distribution induced by random assignment.*® The treatment in our case is an

3This is Theorem 3, in Abadie, Athey, Imbens, and Woolridge (2014), a result predicated on indepen-
dent treatment assignments. In practice, DA assignments are correlated. Here too, however, the large-market
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offer dummy, while the controls are dummies or a linear model for the propensity score.
The second of these requirements holds here when the controls fully saturate the propen-
sity score (ignoring any additional covariates). The first requires constant offer effects
given a saturated model for the score. The models estimated here do not quite satisfy
these conditions (they are not fully saturated) but do not seem to be so far off that this
matters for inference.

A related issue arises from the fact that the empirical strategy used here conditions
on estimates of the propensity score (the simulated score is also an estimate since it is
based on a finite number of draws). As noted by Hirano, Imbens, and Ridder (2003)
and Abadie and Imbens (2016), conditioning on an estimated as opposed to a non-
stochastic known score may affect sampling distributions of the resulting estimated causal
effects. We therefore checked conventional large-sample p-values against randomiza-
tion p-values for the reduced-form charter-offer effects associated with the 2SLS es-
timates reported in Table VI. Robust asymptotic sampling formulas again generate p-
values close to a randomization-inference benchmark, regardless of how the score behind
these estimates was constructed. In view of these findings, we rely on the usual robust
standard errors and test statistics for inference about 2SLS estimates of treatment ef-
fects.

A.8. First-Choice and Qualification Instruments: Details
Let D/ be the first-choice instrument defined in Section 4.5 and let 5; be is first-choice
school. The first-choice risk set is X (0,) = (5;, pis)-

PROPOSITION 4: In any continuum economy, Dl-f is independent of 0; conditional on
X (6)).

PROOF: In general,
Pr(D} =1|6; = 0) = Pr(ms;, < |0, = 0)
= Pr(p,g,, +r < C§i|0i =0)
=Pr(r; <c;, — ps10:=0)
= C5; — Pis;»

which depends on 6; only through X (6,) because cutoffs are fixed in the contin-
uum. O.E.D.

Let DY and X (6;) be the qualification instrument and the associated risk set defined in
Section 4.5. The latter is given by the list of schools i ranks and his priority status at each,
that is, X (0,) = (S;, (pis)ses,) Where S; is the set of charter schools i ranks.

PROPOSITION 5: In any continuum economy, D is independent of 0; conditional on
X (6)).

approximation smooths things out. In the continuum, cutoffs are fixed, and treatments are determined by
individual independently drawn lottery numbers. We can therefore think of the asymptotic equivalence of
randomization and conventional inference as a further consequence of our large-market approximation.
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PROOF: In general, we have
Pr(D{ =1]6; = 0) = Pr(m; < ¢, for some s € S;|6; = 0)
= Pr(p;; +r; < ¢, for some s € S;|6; = 0)

= Pr(r; < ¢, — pj, for some s € S0, = 0)

=)

= Pr(r,- < max(c, —
seS;

= mgll_X(cx — Pis),
which depends on 6; only through X (6;) because cutoffs are fixed in the contin-
uum. QE.D.

A.9. The DA Propensity Score With School-Specific Lotteries

Washington, DC, New Orleans, and Amsterdam use DA with multiple lottery numbers,
one for each school (see, e.g., de Haan, Gautier, Oosterbeek, and van der Klaauw (2015)).
Washington, DC uses a version of DA that uses a mixture of shared and individual school
lotteries. This section derives the DA propensity score for a mechanism with multiple
tie-breaking.

Let random variable R;; denote applicant i’s lottery number at school s. Assume that
each R; is distributed uniformly and independently over i, but R;; # R,y for some (not
necessarily all) s, s € §. When R;; and R,y differ, they’re assumed to be independent.

Recall By, is defined as {s' € S | s’ > s}. Partition By, into m disjoint sets Bj, ..., By,
so that s’ and s” use the same lottery if and only if s, s” € B}, for some m. Note that
this partition is specific to type 6. With single-school lotteries, m simplifies to | By, the
number of schools type 6 ranks ahead of s.

Most information disqualification, MID7., is defined for each m as

0s>

0 if pgs > p; forall § € B;”s,
1 if pgs < p; for some § € B},
l'l'lf:lX{’7'§|§€BZfv and p9§=p§} lfp9§=p§ fOI':S?GBZ‘lY

and pg > p; otherwise.

MID? =

Let m* be the value of m for schools in the partition that use the same lottery as s. Denote
the associated MID by MID; . We define MIDj, = 0 when the lottery at s is unique and
there is no m*. The following result extends Theorem 1 to a general lottery structure. The
proof is omitted.

THEOREM 1—Generalization: For all s and 0 in any continuum economy, we have

0 ifoe@!,
(1-MIDy) ifoe !,
Pr[D;(s) =1|6; = 6] = ¢,(0) = m:l
m 7, — MIDj,
(1—MID},) 0, ————21 iffeO
1 xmax{ , 1—MIDZS} if 0 € O,

m:

where we set ¢,(0) =0 when MID,; =1 and 6 € O¢.
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Note that in the single-tie-breaker case, the expression for ¢,(0) reduces to that in
Theorem 1 since m = 1 in that case.

A.10. The Boston (Immediate Acceptance) Mechanism

Studies by Hastings—Kane-Staiger (2009), Hastings—Neilson—Zimmerman (2012), and
Deming—Hastings—Kane—Staiger (2013), among others, use data generated from versions
of the Boston mechanism. Given strict preferences of applicants and schools, the Boston
mechanism is defined as follows:

e Step 1: Each applicant applies to her most preferred acceptable school (if any). Each
school accepts its most-preferred applicants up to its capacity and rejects every other
applicant.

In general, for any step ¢ > 2,

e Step #: Each applicant who has not been accepted by any school applies to her most
preferred acceptable school that has not rejected her (if any). Each school accepts its
most-preferred applicants up to its remaining capacity and rejects every other applicant.

This algorithm terminates at the first step in which no applicant applies to a school.
Boston assignments differ from DA in that any offer at any step is fixed; applicants re-
ceiving offers cannot be displaced later. This important difference notwithstanding, the
Boston mechanism can be represented as a special case of DA by redefining priorities as
follows:

PROPOSITION 6—Ergin and Sonmez (2006): The Boston mechanism applied to (>;);
and (>), produces the same assignment as DA applied to (>;); and (>*), where > is defined
as follows:

1. For k=1,2,..., {applicants who rank s kth} > {applicants who rank s k + 1th}.

2. Within each priority group, >* ranks the applicants in the same order as original > .

This equivalence allows us to construct a propensity score for the Boston mechanism
by redefining priorities so that priority groups at a given school consist of applicants who
share original priority status at this school and rank it the same way.
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