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The Welfare Effects of Coordinated Assignment: 
Evidence from the New York City High School Match†

By Atila Abdulkadiroğlu, Nikhil Agarwal, and Parag A. Pathak*

Coordinated single-offer school assignment systems are a popu-
lar education reform. We show that uncoordinated offers in NYC’s 
school assignment mechanism generated mismatches. One-third of 
applicants were unassigned after the main round and later adminis-
tratively placed at less desirable schools. We evaluate the effects of 
the new coordinated mechanism based on deferred acceptance using 
estimated student preferences. The new mechanism achieves 80 per-
cent of the possible gains from a no-choice neighborhood extreme to 
a utilitarian benchmark. Coordinating offers dominates the effects of 
further algorithm modifications. Students most likely to be previously 
administratively assigned experienced the largest gains in welfare 
and subsequent achievement. (JEL C78, D82, I21, I28)

In recent years, market design theory has inspired dramatic changes in how chil-
dren are assigned to public schools across numerous American cities and around the 
world. The first new system adopted was for placing eighth graders into high schools 
in New York City (NYC). NYC’s new system has not only received widespread sci-
entific and popular acclaim (Economic Sciences Prize Committee 2012; Tullis 2014; 
Roth 2015), but also became a template for reforms in other cities.1 Despite wide-
spread adoption of and apparent consensus on the value of market-design-inspired 

1 Cities that adopted new coordinated matching systems following NYC include Camden, Denver, New Orleans, 
Newark, and Washington, DC. 
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centralized assignment schemes, there is remarkably little evidence on whether, 
why, and how much a coordinated assignment system affects pupil allocation to 
schools or the extent to which the new system created losers as well as winners. The 
empirical performance of alternatives to NYC’s deferred acceptance-based scheme, 
the quantitative aspects of particular design trade-offs, and whether the new mech-
anism is associated with improvements in downstream educational outcomes also 
remain open questions.2

Characterizing the state of the market prior to the new mechanism is a major chal-
lenge because decentralized and uncoordinated systems do not usually generate sys-
tematic data. This paper surmounts this hurdle by exploiting new data on the system 
used in New York before 2003 to study the effect of moving from an uncoordinated 
assignment system to a coordinated single-offer system for allocating students to 
schools. Using our rich micro-data on applications, assignments, and enrollments, 
we describe high school student placement in both systems and assess whether stu-
dents receive one of their preferred choices. Tracking students from application to 
assignment allows us to comprehensively describe the drawbacks of NYC’s previ-
ous system, but still leaves unanswered questions. First, we do not know whether the 
reform realized most of the possible gains associated with a new assignment system 
or how those gains were distributed across applicants. Second, we know little about 
the magnitude of further algorithmic improvements, as considered by the market 
design literature compared to other design aspects. Our paper addresses these ques-
tions using an estimated model of student preferences exploiting the straightforward 
incentive feature of New York’s new system.

Prior to 2003, rising NYC high school students applied to five out of more than 
600 school programs; they could receive multiple offers and be placed on wait lists. 
Students were allowed to accept only one school and one wait list offer, and the 
cycle of offers and acceptances was repeated two more times. The vast majority 
of students not assigned in these rounds went through an administrative process 
that manually placed them at schools close to their residences. Since admissions 
offers were not coordinated across schools, we refer to this as the uncoordinated 
mechanism.3 In fall 2003, this system was replaced by a single-offer assignment 
system, based on the student-proposing deferred acceptance algorithm (DA) for the 
main round. Applicants were allowed to rank up to 12 programs for enrollment 
in 2004–2005, and a supplementary round placed students unassigned in the main 
round. Since the central office coordinated all schools into a single offer, we refer 
to this new system as the coordinated mechanism. The mechanisms could produce 
different allocations for three main reasons: (i) the new mechanism allows students 
to rank up to 12 choices, whereas the old mechanism only allowed for 5; (ii) the old 
mechanism’s limited number of offer and acceptance rounds led to congestion, as 
students held on to less-preferred choices while waiting to be offered seats at more 
preferred schools after others decline; and (iii) unlike the new mechanism, the old 

2 There is an active scholarly and policy debate about alternative designs. The OneApp process used in the 
Recovery School District in New Orleans is based on an entirely different assignment algorithm that relaxes the 
stability constraint in New York’s system (Abdulkadiroğlu et al. 2017). Abdulkadiroğlu, Che, and Yasuda (2015) 
argue that ordinal strategy-proof mechanisms may not lead to improvements in cardinal utility. 

3 Although the offer timetable and number of rounds was uniform across schools, there was no coordination of 
admissions decisions among schools.
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mechanism invited strategic considerations on student ranking, as schools were able 
to see the entire rank ordering of applicants in the old mechanism, and some adver-
tised they would only consider those who ranked them first.

Offer processing and matriculation patterns provide rich details on how and why 
the new mechanism improves on the old one. In the old mechanism, 18.6 percent 
of students matriculate at schools different from their assignment at the end of the 
match compared to 11.4 percent under the new mechanism. Multiple offers and 
short rank-order lists in the old mechanism advantage few students but leave many 
without offers. Roughly one-fifth of students obtain multiple offers, while half of 
applicants receive no first round offer, and 59 percent of these applicants are admin-
istratively assigned. The take-up rates for administratively-assigned students are 
similar across mechanisms, but the number of students assigned in that round is 
three times larger in the old mechanism. In addition, 8.5 percent of applicants left 
the district after assignment in the old mechanism while only 6.4 percent left under 
the new mechanism. While these observations suggest welfare improvements, it is 
nevertheless necessary to estimate a model of school demand to quantify the distri-
bution of student welfare effects and the relevance of design issues that are central 
to the school matching market design literature.

The new mechanism is based on DA, which is strategy-proof. This fact motivates 
treating stated preferences as true preferences, thereby sidestepping challenges 
associated with inferring preferences from highly manipulable systems.4 As far as 
we know, our paper is the first to fit econometric models of school demand using 
data generated by DA, though many have argued for strategy-proof mechanisms 
because they generate credible preference data for guiding policy.5 Our preference 
estimates characterize the heterogeneous nature of student preferences and allow 
us to quantify which aspects of school choice market design are most important for 
allocative efficiency. That our estimates are robust to variations on our assumptions 
about ranking behavior and evidence of in-sample and out-of-sample fit reassures us 
that using stated preferences is suitable for welfare analysis.

We use these estimates to evaluate the allocative and distributional aspect of 
various assignment mechanisms, an exercise that provides a quantitative counter-
part to the theoretical literature on matching market design. To scale the magnitude 
of welfare effects, we first measure aggregate welfare from two benchmark cases: 
a neighborhood assignment allocation, wherein each student was assigned to the 
closest school subject to capacity constraints, and the utilitarian optimal assign-
ment, which maximizes the equally weighted average of distance-equivalent utility. 
The coordinated scheme achieves 80 percent of this idealized benchmark. Next, 
we find relatively modest gains from relaxing the mechanism design constraints 
emphasized by a large theoretical market design literature (Erdil and Ergin 2008; 
Abdulkadiroğlu, Pathak, and Roth 2009; Kesten 2010; Kesten and Kurino 2012). 
Had the mechanism produced a student-optimal stable matching, the average stu-
dent welfare would improve by another 0.6 percent of this range. An ex post Pareto 

4 Section VIIIB probes this assumption in greater detail. 
5 The fact that strategy-proof mechanisms generate reliable demand data is a common argument in their favor 

(see, e.g., Abdulkadiroğlu et al. 2006; Abdulkadiroğlu, Pathak, and Roth 2009; Sönmez 2013). Following our 
paper, Pathak and Shi (2014) examine the out-of-sample performance of school demand forecasts using data from 
Boston’s DA-based system. 



3638 THE AMERICAN ECONOMIC REVIEW DECEMBER 2017

efficient matching, which abandons the stability constraints in the current mech-
anism, results in a further improvement of about 2.7 percent of the range. While 
these alternatives are infeasible without sacrificing some appealing features of the 
mechanism, this exercise shows that the magnitude of student welfare gains from 
any potential algorithmic improvements are swamped by the effect of simply having 
choice in a coordinated system implemented by deferred acceptance.

We then deploy several approaches to use our demand estimates to evaluate the 
transition from an uncoordinated to a coordinated mechanism. The first approach 
evaluates welfare changes by treating student behavior in the two mechanisms sym-
metrically, and the second approach approximates the best-case scenario for the 
uncoordinated mechanism in which students behave optimally. We find the new 
mechanism has made it easier for students to obtain a choice they want, and this 
result is robust to how we interpret data from the uncoordinated mechanism. Even 
though the coordinated mechanism produces school assignments that are geograph-
ically further away, our estimated distribution of preferences indicates the degree to 
which students prefer these assignments more than compensates for this difference. 
Under our estimate of an approximate best-case for the uncoordinated mechanism, 
we estimate that admissions coordination represents about a 45 percent improve-
ment in the range from no choice to the utilitarian optimum. Students across all 
demographic groups, boroughs, and baseline achievement levels receive a more pre-
ferred assignment on average from the new mechanism. The largest gains are for 
student groups that were more likely to be unassigned after the old mechanism’s 
main round, a result that suggests that the old mechanism’s congestion and ad-hoc 
placement of unassigned students are primarily responsible for misallocation. This 
comparison also shows that eliminating congestion through offer coordination via 
DA dominates the allocative effect of further modifications to the matching algo-
rithm within the coordinated system. Finally, we show both test scores and gradua-
tion rates increase for students who were most likely to be administratively assigned 
in the old mechanism.

This paper relates to two distinct literatures on school choice and matching 
mechanisms. Our focus aligns with research on how choice affects student assign-
ment and sorting (Epple and Romano 1998; Urquiola 2005) rather than the com-
petitive effects of choice on student achievement (Hoxby 2003; Rothstein 2006). 
Further, we concentrate on allocative efficiency, and only briefly examine subse-
quent achievement, a topic of several other studies (Abdulkadiroğlu et al. 2011; 
Deming et al. 2014; Walters 2014; Neilson 2013). The allocative issues on which 
we focus are likely important for understanding potential long-term effects on 
residential choices and school productivity. A number of recent papers use micro 
data from assignment mechanisms to understand school demand (Hastings, Kane, 
and Staiger 2009; He 2012; Ajayi 2013; Agarwal and Somaini 2014; Calsamiglia, 
Fu, and Güell 2014; Hwang 2014; Burgess et al. 2015), typically using data from 
manipulable mechanisms like the Boston mechanism based on specific models of 
student information and sophistication. While some of these papers have compared 
the Boston mechanism and DA, ours is the first to examine congestion in an unco-
ordinated school assignment system. An approach based on estimated preferences 
complements survey data for comparing mechanisms. For instance, Budish and 
Cantillon (2012) use survey data on a multi-unit course allocation mechanism and 
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find that more students are assigned to preferable choices in a strategy-proof mech-
anism than in the draft mechanism used at the Harvard Business School. Finally, 
our work relates to comparisons of decentralized and centralized medical labor 
markets by Niederle and Roth (2003).

I.  High School Choice in NYC

A. School Options

Aspiring high school students may apply to any school or program throughout 
New York City. A single school may host several programs that have curricula rang-
ing from the arts to sciences to vocational training. The 2002–2003 High School 
directory describes program types. Specialized high schools, such as Stuyvesant and 
Bronx Science, admit students by admissions test performance on the Specialized 
High Schools Admissions Test (SHSAT).6 There are three ways in which student 
screening differs for non-specialized high schools. Unscreened programs admit 
students by random lottery, in some cases giving priority to students from spe-
cific residential zones or to students who attend the school’s open house. Screened 
programs evaluate students individually using an assortment of criteria, including 
grades, standardized/diagnostic test scores; attendance and punctuality; interviews; 
and essays. Such programs might also evaluate students for proficiency in specific 
performing or visual arts, music, or dance. Education Option programs also evaluate 
students individually, but only for half of their seats. The other half is allocated by 
lottery. Seat allocation in each half targets the following student ability distribution 
as measured by citywide seventh grade English language arts scores: 16 percent of 
seats should be allocated to high performing readers, 68 percent to middle perform-
ers, and 16 percent to low performers.

Throughout the last decade, the NYC Department of Education (DOE) opened 
new small high schools throughout the city, each with roughly 400 students. A big 
push for these small high schools came as part of the New Century High Schools 
Initiative launched by Mayor Bloomberg and Chancellor Klein. Eleven new small 
high schools were opened in 2002, 23 new small schools were opened in 2003, and 
small high school openings peaked in 2004 (Abulkadiroğlu, Hu, and Pathak 2013). 
Most of these schools are small and have about 100 students per entering class. As 
a result, the new small high schools have a relatively minor effect on overall enroll-
ment patterns during our study period, which focuses on school options available in 
2002–2003 and 2003–2004.

B. Uncoordinated Admissions in 2002–2003

Forms of high school choice have existed in New York City for decades. Before 
2002, high school assignment in New York City featured many choice options, 
mostly controlled by borough-wide superintendents. Significant admissions power 
resided with school administrators, who could directly enroll students. Admissions 

6 Abdulkadiroğlu, Angrist, and Pathak (2014) describe the exam school admissions process in more detail. 
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to the specialized high schools and the LaGuardia High School of Music & Art and 
Performing Arts, however, have been traditionally administered as a separate pro-
cess, which did not change with the new mechanism.7 Our study therefore focuses 
on admissions to non-specialized public schools.

About 80,000 students interested in regular high schools visit schools and attend 
city-wide high school open houses before submitting their preferences in the fall. 
In the main round in 2002–2003, students could apply to at most five regular pro-
grams in addition to the specialized high schools. Programs receiving a student’s 
application were able to see the applicant’s entire preference list, including where 
their program was ranked. Programs then decided whom to admit, place on a wait-
ing list, or reject. Applicants were sent a decision letter from each program to which 
they had applied, and some obtained more than one offer. Students were allowed to 
hold on to at most one admission and one wait list offer. After receiving responses 
to the first letters, programs with vacant seats could make new offers to students 
from waiting lists. After the second round, students who did not have a zoned high 
school were allowed to participate in a supplementary round known as the vari-
able assignment process. In the supplementary round, students could rank up to 
eight choices and were assigned based on seat availability negotiations between the 
enrollment office and high school principals. After replies to the second letter were 
received, a third round of letters were mailed. New offers did not necessarily go to 
rejected or wait listed students in a predetermined order. Unassigned students were 
either placed at their zoned programs or administratively placed as close to home 
as possible by the central office. We refer to this final stage as the administrative 
round.8

Three features of this assignment scheme motivated the NYC DOE to abandon 
it in favor of a new mechanism. First, there was inadequate time for offers, wait 
list decisions, and acceptances to clear the market for school seats. DOE officials 
reported that in some cases, high-achieving students received acceptances from 
all of the schools to which they applied, while many other students received none 
(Herszenhorn 2004). Comments by the Deputy Schools Chancellor summarized 
the frustration: “Parents are told a school is full, then in two months, miracles of 
miracles, seats open up, but other kids get them. Something is wrong” (Gendar 
2000).

Second, some schools awarded admissions priority to students who ranked them 
first on their application forms. The high school directory advises that when ranking 
schools, students should “determine what [their] competition is for a seat in this 
program” (DOE 2002, p. x). This recommendation reflects strategic incentives for 
ranking decisions. Students have to consider both the limited number of potential 
applications and whether the school only considers first-choice applicants.

7 The 1972 Hecht-Calandra Act is a New York State law that governs admissions to the original four specialized 
high schools: Stuyvesant, Bronx High School of Science, Brooklyn Technical, and Fiorello H. LaGuardia High 
School of Music & Art and Performing Arts. City officials indicated that this law prohibits including these schools 
within the common application system without action by the state legislature. 

8 Students who are new to New York City or did not submit an application participate in an “over-the-counter” 
round over the summer. Our analysis follows applicants through to assignment and therefore does not consider stu-
dents who joined the process after the high school match. Arvidsson, Fruchter, and Mokhtar (2013) provide further 
details on the over-the-counter round. 
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Third, a number of schools managed to conceal capacity to fill seats later on with 
more preferred students. For example, the Deputy Chancellor stated, “before you 
might have a situation where a school was going to take 100 new children for ninth 
grade, they might have declared only 40 seats, and then placed the other 60 outside 
the process” (Herszenhorn 2004, p. 3). Overall, critics alleged that the old mecha-
nism disadvantaged low-achieving students and those without sophisticated parents 
(Hemphill and Nauer 2009).

C. Coordinated Admissions in 2003–2004

The new mechanism was designed with input from economists (see 
Abdulkadiroğlu, Pathak, and Roth 2005 and Abdulkadiroğlu, Pathak, and Roth 
2009). When publicizing the new mechanism, the DOE explained that its goals were 
to utilize school places more efficiently and reduce the gaming involved in obtaining 
school seats (Kerr 2003). As in previous years, in the first round, students apply to 
specialized high schools when they take the SHSAT. Offers are produced according 
to a serial dictatorship with priority given by SHSAT scores.9

In the main round, students can rank up to 12 regular school programs in their 
applications, which are due in November. The DOE advises parents: “You must 
now rank schools very carefully, to reflect your true preferences (DOE 2003, p. 
ii),” because this round is built on Gale and Shapley’s (1962) student-proposing 
deferred acceptance algorithm. Schools with programs that prioritize applicants 
based on auditions, test scores, or other criteria are sent lists of students who ranked 
the school, but these lists do not reveal where on the preference lists the schools 
were ranked. Schools return orderings of applicants to the central enrollment office. 
Schools that prioritize applicants using geographic or other criteria have those crite-
ria supplied by the central office. That office uses a single lottery to break ties among 
students with the same priority, thus generating a strict student order at each school.

The centralized clearinghouse assigned schools using DA with inputs that include 
student preferences, school capacities, and schools’ strict ordering. After lottery 
numbers are drawn, DA works as follows:

Step 1: Each student proposes to her first choice. Each school tentatively assigns 
seats to its proposers one at a time, following their priority order. The student is 
rejected if no seats are available at the time of consideration.

Step k > 1: Each student who was rejected in the previous step proposes to her 
next best choice. Each school considers the students it has tentatively assigned 
together with its new proposers and tentatively assigns its seats to these students one 
at a time following the school’s priority order. The student is rejected if no seats are 
available when she is considered.

The algorithm terminates either when there are no new proposals or when all rejected 
students have exhausted their preference lists.

9 There is very limited overlap between the specialized round and subsequent rounds. In 2003–2004, 4,175 out 
of 4,553 of students offered a specialized high school placement accepted that offer. 
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DA is run for all students in February. In this first round, only students who 
receive a specialized high school offer receive an offer letter from a regular school 
if admitted, and they are asked to choose. After they respond, students who accept 
are removed from the pool, school capacities are adjusted, and the algorithm is 
re-run with the remaining students. After the main round, all students receive a 
letter notifying them of their assignment or whether they are unassigned after the 
main round.

Students unassigned after the main round receive a list of programs with vacan-
cies and are asked to rank up to 12 of these programs. In 2003–2004, the admissions 
criteria at the remaining school seats were ignored in this supplementary round. 
Students are ordered by their random number, and DA is run with this ordering in 
place at each school. Students who remain unassigned in the supplementary round 
are assigned administratively. These students and any appealing students are pro-
cessed on a case-by-case basis in the administrative round.

II.  Data and Sample Restrictions

A. Students

For this study, the NYC DOE provided us with several datasets: student choices 
and assignments, student demographics, and October student enrollment. Each stu-
dent has a unique identification number. For 2002–2003, the assignment files record 
students’ main round rank-order list, their offers and rejections for each round, 
whether they participate in the supplementary round, and their final assignment 
at the conclusion of the assignment process as of July 2003. For 2003–2004, the 
assignment files contain students’ choice schools in order of preference, priority 
information for each school, assignments at the end of each round, and final assign-
ment as of early August 2004. The student demographic files for both years con-
tain information on home address, gender, race, limited English proficiency status, 
special education status, and performance on seventh grade citywide tests. We use 
addresses to compute the road distance between each student and her school and to 
place each student in a census block group.10 We also have access to similar files for 
2004–2005. Further details are in the online Data Appendix.

Our analysis sample makes two restrictions. First, since we do not have demo-
graphic information for private school applicants, we restrict the analysis to students 
in NYC’s public middle schools in the year prior to application. Second, we focus 
on students who are not assigned to specialized high schools because that part of the 
assignment process did not change in the new mechanism. Given these restrictions, 
we have two main analysis files: the mechanism comparison sample and the demand 
estimation sample.

The mechanism comparison sample is used to compare the assignment across the 
two mechanisms. This sample is the largest set of students assigned through the high 
school assignment mechanism to a school that exists when the high school directory 

10 Though we use road distance, we also computed subway distance using the Metropolitan Transportation 
Authority GIS files; the correlation between driving and subway commuting distance for all student-program pairs 
is 0.96. 
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is printed. A key property of the mechanism comparison sample is that every student 
has an assignment. Columns 1 and 2 of Table 1 summarize student characteristics in 
the mechanism comparison samples across years; 3,500 fewer students are involved 
in the mechanism comparison sample in the coordinated mechanism, a difference 
mainly due to the students assigned either to schools created after the high school 
directory was printed or to closed schools (as shown in online Appendix Table C2).

New York City is the nation’s largest school district, and like many urban districts, 
the majority of students are low-income and nonwhite. Nearly three-quarters of stu-
dents are black or Hispanic, and about 10 percent of students are Asian. Brooklyn 
has the largest number of applicants, followed by Queens and the Bronx, both of 
which account for roughly one quarter of students. Manhattan and Staten Island 
account for considerably smaller shares of students at about 13 percent and 7 per-
cent, respectively. Consistent with the sudden announcement of the new mechanism, 
applicant characteristics are similar across years.

The demand sample, drawn from the assignment files, contains participants in 
the main round in the new mechanism. These students’ school choices represent 
the overwhelming majority of students. From the set of main round participants, we 
exclude a small fraction of students who are classified as the top 2 percent because 

Table 1—Characteristics of Student Sample

Mechanism comparison
Demand 

estimation

Uncoordinated 
mechanism

(1)

Coordinated 
mechanism

(2)  

Coordinated 
mechanism

(3)
Number of students 70,358 66,921 69,907

Female 49.4 49.0 49.0

Bronx 23.7 23.3 23.7
Brooklyn 31.9 34.1 33.3
Manhattan 12.5 11.8 12.0
Queens 25.0 24.8 24.7
Staten Island 6.9 6.0 6.3

Asian 10.6 10.9 10.6
Black 35.4 35.7 35.7
Hispanic 38.9 40.4 40.3
White 14.7 12.6 13.0
Other 0.4 0.4 0.4

Subsidized lunch 68.0 67.4 67.8
Neighborhood income ($) 38,360 37,855 37,920

Limited English proficient 13.1 12.6 12.6
Special education 8.2 7.9 7.5
SHSAT test-taker 22.4 24.3 23.9

Notes: Percents unless otherwise noted. Uncoordinated mechanism refers to the 2002–2003 mechanism and coor-
dinated mechanism refers to the 2003–2004 mechanism based on deferred acceptance. Neighborhood income is 
the median census block group family income from the 2000 census. SHSAT stands for Specialized High School 
Achievement Test.
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these students are guaranteed a school only if they rank it first, and this may distort 
their incentives to rank schools truthfully. Additional details on the sample restric-
tions are in the online Data Appendix.

B. Schools

School data were taken from New York State report card files provided by NYC 
DOE. Program information comes from the official NYC High School Directory 
made available to students before they submit an application. Table 2 summarizes 
school and program characteristics across years. The number of schools increases 
from 215 to 235, and the number of students enrolled in ninth grade per school 
decreases by about 14 students. This decrease is driven by the replacement of some 
large schools with smaller schools that took place concurrently in 2003–2004, as 
described above. Despite these shifts, there is little change in either average school 
achievement level or school demographic composition as measured by the report 

Table 2—Descriptive Statistics for Schools and Programs

Uncoordinated 
mechanism

Coordinated 
mechanism

(1) (2)

Panel A. Schools
Number 215 235

High math achievement (%) 10.2 10.0
High English achievement (%) 19.1 19.3
Percent attending four-year college 47.8 47.2
Percent inexperienced teachers 54.7 55.6
Attendance rate (%) 85.5 85.7
Percent subsidized lunch 62.5 62.6
Size of ninth grade 465.7 451.3

Percent white 10.9 10.9
Percent Asian 8.7 8.6
Percent black 38.5 38.4
Percent Hispanic 41.9 42.1

Panel B. Programs
Number 612 558

Screened 233 208
Unscreened 63 119
Education option 316 119

Spanish language 27 24
Asian language 10 9
Other language 6 7

Arts 80 80
Humanities 89 93
Math and science 53 60
Vocational 55 59
Other specialties 163 162

Notes: Panel A reports means and panel B reports counts, unless otherwise noted. Uncoordinated 
mechanism refers to the 2002–2003 mechanism and coordinated mechanism refers to the 
2003–2004 mechanism based on deferred acceptance. The data Appendix presents information 
on the availability of school characteristics. High math and High English Achievement is the 
fraction of students who scored more than 85 percent on the Math A and English Regents tests, 
respectively. Inexperienced teachers are those who have taught for less than two years.
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card data. We are not aware of other significant changes in school inputs, recruit-
ment campaigns, or materials, including the format of the high school directory.11

Students can choose from among roughly 600 programs throughout the city. 
Programs vary substantially in focus, post-graduate orientation, and educational phi-
losophy. For instance, the Heritage School in Manhattan is an Educational Option 
program where the arts play a substantial role in the curriculum, while Townsend 
Harris High School in Queens is a Screened program with a rigorous humanities 
department, making it among the most competitive in the city. Using information 
from high school directories, we identify each program’s type, language orientation, 
and specialty. With the new mechanism, there are more Unscreened programs and 
fewer Educational Option programs, a change driven by the conversion of many 
Educational Option programs to Unscreened programs. This change in labeling was 
due to overlapping admissions criteria and similarity of educational programming. 
We code language-focused programs as Spanish, Asian, or Other, and we categorize 
program specialties as Arts, Humanities, Math and Science, Vocational, or Other. Not 
all programs have specialties, though about 70 percent fall into one of these catego-
ries. (Details on our classification scheme are in the online Data Appendix.) The menu  
of language program offerings and program specialties changes little across years.

III.  Congestion and Changes in Assignments

The similarity of student and school attributes in Tables 1 and 2 suggest that 
there were few major systematic changes in either participant attributes or school 
supply across years. Moreover, there is no large-scale change in student location 
across years, as shown in Figure 1, which maps both student and school locations. 
Taking these facts into consideration, we attribute differences in allocations between 
2002–2003 and 2003–2004 primarily to the assignment mechanism rather than 
changes in student participation or range of school options.

A. Congestion in the Main Round

Table 3 reports the number of students assigned across rounds of the uncoor-
dinated and coordinated mechanisms. The most noteworthy pattern is that, in the 
uncoordinated mechanism, more students obtain their final assignments in the 
administrative round than in the first round. Panel A of the table shows that 37 per-
cent of students are assigned administratively, compared to 34 percent in the first 
round. Panel B shows that only 33,894 students obtained one or more first-round 
offers. This is consistent with application patterns that are concentrated at relatively 
few schools and conservative yield management practices. As a consequence, only 
23,867 students received their final assignment in the first round; 10,027 students 
with a first round offer were finalized with offers made in subsequent rounds. These 
students were processed as schools revised offers based on first-round rejections 
and made new offers in the second and third rounds. However, the relatively small 
number of students placed in the second and third round indicates that three rounds 

11 Appendix Figure A3 shows that the market share of most programs, except for about 20 rarely-ranked pro-
grams in the uncoordinated mechanism, is similar across years. 
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Figure 1. School Locations and Students by New York City Census Tract in 2002–2003 and 2003–2004

Table 3—Offer Processing across Mechanisms

Distance to school (miles)
Number of 

students Assignment Enrollment
Exit from NYC 

public schools (%)
Enrolled in school other 

than assigned (%)
  (1) (2) (3) (4) (5)

Panel A. Uncoordinated mechanism, by final assignment round
Overall 70,358 3.36 3.50 8.5 18.6
First round 23,867 4.23 4.11 5.2 9.6
Second round 5,780 4.55 4.44 4.8 11.4
Third round 4,443 4.35 4.26 4.9 14.2
Supplementary round 10,170 4.61 4.37 7.8 25.4
Administrative round 26,098 1.64 2.11 13.3 26.8

Panel B. Uncoordinated mechanism, by number of first round offers
No offers 36,464 2.80 3.12 10.4 24.4
One offer 21,328 3.89 3.85 7.1 13.8
Two or more offers 12,566 4.07 4.03 5.7 9.8

Panel C. Coordinated mechanism, by final assignment round
Overall 66,921 4.05 3.91 6.4 11.4

Main round 54,577 4.02 3.86 6.1 9.9
Supplementary round 5,201 5.10 4.90 4.8 10.4
Administrative round 7,143 3.50 3.52 9.6 23.6

Notes: Columns 2–5 report means. Uncoordinated mechanism refers to the 2002–2003 mechanism and coordinated 
mechanism refers to the 2003–2004 mechanism based on deferred acceptance. Student distance is calculated as 
road distance using ArcGIS. Assignment is the school assigned at the conclusion of the high school assignment pro-
cess. Enrollment is the school in which a student enrolls in October following application. Assigned students exit 
New York City if they are not enrolled in any NYC public high school in October following application. Enrolled in 
school other than assigned means student is in a NYC public high school, but in a school other than that assigned at 
end of match. Final assignment round is the round during which an offer to the final assigned school was first made.



3647Abdulkadiroğlu et al.: Effects of Coordinated AssignmentVOL. 107 NO. 12

were insufficient to process all students. That only half of the students were placed 
in the main round of the old mechanism contrasts sharply with the new mechanism, 
wherein 82 percent of students were placed in the main round.12

These observations about the old mechanism are characteristic of congestion, 
as described in Roth and Xing’s (1997) study of the labor market for entry-level 
clinical psychologists. In that market, training position offers were made in an 
uncoordinated fashion during a seven-hour window, and Roth and Xing (1997) 
argue that uncoordinated processing and a small market-clearing window led to 
mismatch. In NYC, holding few rounds and serially processing batches of offers, so 
that programs waited for previous offers to be rejected before making new offers, 
combined to have similar effects. In addition to insufficient offer processing, the 
small number of applications allowed in the old mechanism also led to situations 
where students who applied to oversubscribed schools fell through the cracks. Since 
rank-order lists were short, the mechanism considered a smaller number of alter-
nate choices for these students. Had more applications been allowed, schools where 
these students were ultimately placed may have been assigned in the main round.

The new mechanism relieved congestion by increasing both the number of choices 
students can rank and the number of rounds of offer processing. To investigate the 
role of these two forces—short rank order lists and limited offer processing—in pro-
ducing administrative assignments, we used data from the coordinated mechanism to 
simulate two variations: (i) the main round, with only the top 5 choices considered 
and no restriction in the number of rounds, and (ii) the main round with 12 choices, 
but only 3 sets of proposals from the deferred acceptance algorithm. The first simula-
tion is intended to illustrate the role of 5 choices, while the second illustrates the role 
of few offer-processing rounds. Since we do not model student behavioral responses, 
we only intend this exercise to shed light on mechanical features generating admin-
istrative assignments in the uncoordinated mechanism. The five-choice constraint 
with an unlimited number of rounds leaves about one quarter of applicants unas-
signed. The unconstrained mechanism with three proposal rounds leaves roughly 
half of applicants unassigned. Relative to the uncoordinated mechanism, then, the 
new coordinated mechanism appears to reduce administrative assignments by com-
puterizing offer processing and avoiding the need for active student and school 
participation once preferences are submitted. Short rank-order lists also generate  
administrative assignments, but less so than few offer processing rounds.

B. Distance, Exit, and Matriculation

Across mechanisms, there are stark differences in distance to assigned school 
and offer take-up. Figure 2 reports the distribution of distance between students’ 
residences and their assigned schools in both mechanisms. New York City spans a 
large geographic range, with nearly 45 miles separating the southern tip of Staten 
Island from the northernmost areas of the Bronx, and 25 miles separating the western 
edge of Manhattan near Washington Heights from Far Rockaway at the easternmost 

12 The marked shift in the number assigned in the main round also appears in the second year of the coordinated 
mechanism, where even more students, 87.3 percent, were placed in the main round (shown in online Appendix 
Table B1). 
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tip of Brooklyn.13 The closest school for a typical student is 0.82 miles from home, 
and students in the uncoordinated mechanism on average traveled 3.36 miles to their 
assigned school. In the coordinated mechanism, the average distance is 4.05 miles. 
Panels A and C of Table 3 show that average distances were lower in the uncoordi-
nated system because a large number of students were administratively assigned to 
schools close to their homes.

The increased distance between home and assigned school parallels Niederle and 
Roth’s (2003) study of the gastroenterology labor market, wherein physician mobil-
ity increased following a centralized match. While these observations may suggest 
that coordinated mechanisms expand market scope, in the school choice context 
daily travel to school imposes a cost on students. It is therefore essential to measure 
how students value proximity relative to other aspects of their school choices to 
assess whether improved assignments compensate for the distance increase.

Student enrollment patterns documented in Table 3 indicate that student assign-
ments in the uncoordinated mechanism, particularly those made in the administra-
tive round, are less desirable than assignments made in the coordinated mechanism. 
After receiving an assignment, a student may opt for a private school, leave New 
York, or even drop out. Families may switch schools after their final assignments 
are announced, but before the school year starts.14 In the uncoordinated mechanism, 
principals had greater discretion to enroll students, and the DOE officials quoted 
above alleged that students with sophisticated parents might just show up at a school 
in the fall and ask for a seat at the school. The exit rate from city public schools is 
higher in the uncoordinated mechanism (8.5 percent compared to 6.4 percent), and 

13 Our analysis focuses on road distance, which correlates highly with subway distance. Online Appendix B 
presents a detailed comparison of both measures. 

14 Narita (2016) theoretically and empirically studies mechanisms to handle post-match reassignments. 
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Figure 2. Distribution of Distance to Assigned School in Uncoordinated (2002–2003) and Coordinated 
(2003–2004) Mechanism

Notes: Mean (median) travel distance is 3.36 (2.25) miles in 2002–2003 and 4.05 (3.04) miles in 2003–2004. Top 
and bottom 1 percent are not shown in figure. Line fit from Gaussian kernel with bandwidth chosen to minimize 
mean integrated squared error.
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the fraction of students who enroll at a school other than their assignment is higher 
(18.6 percent compared to 11.4 percent).

In the uncoordinated mechanism, students assigned in earlier rounds appear more 
satisfied with their assignments than those assigned in later rounds. The fraction of 
students who exit NYC public schools is 13.3 percent among administrative place-
ments, compared to 5.2 percent among those assigned in the first round. More than a 
quarter of students assigned in the administrative round who are still in NYC public 
schools matriculate at schools other than those to which they were assigned. By 
comparison, the take-up of offered assignments is much higher for those assigned in 
the first three rounds. Based on exit and matriculation, students with multiple offers 
in the first round are more satisfied with their assignment than students with zero or 
one offers. Students with multiple offers also travel further to their final assignments 
or enrolled schools. In contrast, the majority of students with no offers are assigned 
through the administrative round, which likely accounts for their higher rates of exit 
and enrollment at a school other than their assignment. Even though the coordinated 
mechanism has substantially fewer administratively assigned students, the exit rates 
are highest and the matriculation rates are lowest for the participants in that round.15

C. Mismatch in Administrative Round

To further evaluate student assignments in the administrative round, we com-
pare the attributes of schools that students wanted (i.e., ranked) to the attributes 
of schools to which they were assigned. Students processed in earlier rounds are 
assigned to schools with attributes more similar to the schools they ranked than 
students processed in later rounds. Table 4 shows that, in both mechanisms, students 
assigned in the main round ranked schools with similar or better attributes, with the 
exception of distance, than the schools they received. For instance, ranked schools 
have higher math and English performance, more students attending four-year col-
leges, and higher attendance rates. Ranked and assigned schools are similar in terms 
of teacher experience, poverty (as measured by the percent of students receiving 
subsidized lunch), and racial make-up.

For students placed in the supplementary round, assigned schools are also less 
desirable than ranked schools, and many of the gaps are wider than in the main 
round. In the uncoordinated mechanism, for instance, the math performance gap 
between ranked and assigned schools is 0.7 percentage points for those assigned in 
the main round and 2.5 points in the supplementary round. The gap between ranked 
and assigned alternatives for ninth grade size is quite pronounced under both mech-
anisms. For example, in the uncoordinated mechanism, ranked schools have about 
200 fewer ninth graders than the schools where students are assigned. Since stu-
dents participate in the supplementary round when they do not obtain a main round 
assignment, it is not surprising that the difference between what students wanted 
and what they received widens.

15 In the second year of the mechanism, the average distance to the assigned school is 4.07 miles and the average 
exit rate is 6.6 percent (shown in online Appendix Table B1). The take-up rate is higher than the first year and the 
fraction in the administrative round decreases to 5.4 percent. 
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The most striking pattern in Table 4, however, is for students who are administra-
tively assigned. As noted above, the uncoordinated mechanism produces three times 
more students assigned in this round in the uncoordinated mechanism. Panel C shows 
that, in the uncoordinated mechanism, administratively-assigned students ranked 
schools, on average, 5.1 miles away from home and were assigned to schools only 
1.6 miles away, a much larger gap than in either the main or supplementary round. 
For other school characteristics, the difference between what students wanted and 
what they were assigned widens relative to the supplementary round, suggesting 
that mismatch is greatest for students in the administrative round. For instance, the 
2.5 point spread in math achievement in the supplementary round is 4.4 points in 
the administrative round, and the fraction of students attending four-year colleges 
similarly widens. The difference in ninth grade size is also considerable for the 

Table 4—Ranked versus Assigned Schools by Student Assignment Round

Uncoordinated mechanism Coordinated mechanism

Ranked schools Assigned Ranked schools Assigned

  (1) (2) (3) (4)

Panel A. Main round
Distance (miles) 4.82 4.30 5.10 4.00

High math achievement (%) 12.4 11.7 13.0 10.7
High English achievement (%) 20.9 20.2 22.1 19.1
Percent attending four-year college 49.1 47.1 50.6 48.3
Percent inexperienced teachers 45.3 45.6 46.6 43.8
Attendance rate (%) 85.1 84.6 85.7 83.8
Percent subsidized lunch 60.0 60.5 57.6 56.7
Size of ninth grade 694.3 698.8 675.0 819.2
Percent white 15.1 14.7 16.7 17.8

Panel B. Supplementary round
Distance (miles) 4.87 4.59 5.87 5.17

High math achievement (%) 11.8 9.3 16.6 14.2
High English achievement (%) 19.9 15.8 26.5 20.0
Percent attending four-year college 48.6 44.9 54.1 50.1
Percent inexperienced teachers 46.0 41.5 45.3 36.9
Attendance rate (%) 85.1 82.2 87.4 83.2
Percent subsidized lunch 62.0 61.8 53.5 51.0
Size of ninth grade 685.3 908.0 638.5 1,129.7
Percent white 13.8 13.3 17.4 15.3

Panel C. Administrative round
Distance (miles) 5.11 1.62 5.33 3.43

High math achievement (%) 14.9 10.5 14.3 10.7
High English achievement (%) 24.3 17.5 24.2 19.2
Percent attending four-year college 52.0 46.7 51.7 47.9
Percent inexperienced teachers 41.9 39.4 47.8 42.1
Attendance rate (%) 85.8 80.8 86.7 82.9
Percent subsidized lunch 53.8 50.4 57.2 53.1
Size of ninth grade 760.6 1,181.9 607.6 984.0
Percent white 18.5 19.1 17.6 17.9

Notes: Means unless otherwise noted. Analysis restricts the sample to students from the welfare sample. 
Uncoordinated mechanism refers to the 2002–2003 mechanism and coordinated mechanism refers to the 2003–
2004 mechanism based on deferred acceptance. Main round in the uncoordinated mechanism corresponds to the 
first round. Rankings are from the main round. Student distance is calculated as road distance using ArcGIS. See 
Table 2 notes for details on school characteristics.
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administratively assigned: ranked schools have more than 400 fewer students than 
assigned schools.

In the coordinated mechanism, the difference between ranked and assigned 
schools also widen for later rounds. Rank and assigned schools differences in math 
and English achievement and four-year college going are narrower for the adminis-
trative round of the coordinated mechanism than for the uncoordinated one. On the 
other hand, assigned schools are not as close to home in the coordinated mechanism. 
Therefore, it is not possible to assert which mechanism’s administrative round gen-
erates better matches. What is clear, however, is that being processed in the admin-
istrative round is undesirable for students in both mechanisms. As a result, it is 
reasonable to expect that significant changes in student welfare produced by the 
coordinated mechanism will be driven by reducing the number of administratively 
assigned.

D. Offer Processing

Table 5 reports student attributes across rounds compared to the overall applicant 
population. Students from Manhattan, those with high math baseline scores, and 
those who have applied to exam schools (as indicated by taking the SHSAT) tend 
to obtain offers earlier in the uncoordinated mechanism. These applicants are also 
overrepresented among students who receive multiple first round offers (not shown). 
Students from Staten Island, students who are white, and those from high-income 

Table 5—Offer Processing by Student Type

Uncoordinated mechanism   Coordinated mechanism

Main 
round Supplementary Administrative Main Supplementary Administrative
(1) (2) (3) (4) (5) (6)

Students 48.5 14.5 37.1 81.6 7.8 10.7

Female 51.0 14.3 34.7 82.1 7.7 10.2

Bronx 53.3 20.2 26.5 81.7 6.7 11.6
Brooklyn 49.8 16.2 33.9 82.9 8.0 9.1
Manhattan 66.8 19.2 14.0 78.9 7.4 13.7
Queens 43.1 8.3 48.6 79.2 10.0 10.8
Staten Island 11.9 0.0 88.1 88.3 2.4 9.3

Asian 46.1 5.4 48.5 82.3 7.3 10.3
Black 53.2 18.4 28.4 81.3 8.7 10.0
Hispanic 51.2 17.3 31.5 81.8 7.9 10.3
White 31.5 3.8 64.7 81.4 5.0 13.6

High baseline math 57.3 7.4 35.3 85.2 5.1 9.7
Low baseline math 46.8 19.8 33.4 79.9 7.2 12.9

Subsidized lunch 51.8 15.9 32.3 82.7 7.7 9.6
Bottom neighborhood 
  income quartile

55.4 23.3 21.3 81.8 7.2 11.0

Top neighborhood 
  income quartile

41.3 8.1 50.6 80.8 7.4 11.8

Limited English proficient 46.9 16.3 36.8 81.8 7.6 10.7
Special education 38.9 18.8 42.3 71.8 0.0 28.2
SHSAT test-taker 61.9 10.3 27.8 82.6 7.3 10.0

Notes: Table reports mean percentages. Uncoordinated mechanism refers to the 2002–2003 mechanism and coordi-
nated mechanism refers to the 2003–2004 mechanism based on deferred acceptance. Table reports on final assign-
ment round, which is the round during which an offer to the final assigned school was accepted. Neighborhood 
income is median census block group family income from the 2000 census.
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neighborhoods tend to obtain offers later in the process. Compared to the overall 
population, these groups are overrepresented in the administrative round.

The coordinated mechanism distributes school access more evenly across rounds. 
That is, the differences in the types of students assigned in each round are not as 
pronounced under the coordinated mechanism. This can be seen by comparing stu-
dents across boroughs or racial groups in column 4 of Table 5. The fraction of stu-
dents assigned in the main round is similar across all five boroughs, as is the racial 
composition of students. Higher baseline applicants are more likely to be assigned 
in the main round in the new mechanism than low baseline applicants, but are not as 
overrepresented as in the old mechanism.

The coordinated mechanism also assigns fewer students to schools that were 
undersubscribed in the uncoordinated mechanism. Figure 3 reports the change in 
the number of students assigned to a school compared to a measure of how over-
subscribed the school was in the uncoordinated mechanism. For example, in 2002–
2003, 1,455 students were assigned to the Louis Brandeis High School, a struggling 
Manhattan high school with four-year graduation rates among the lowest in the city, 
but in 2003–2004 only 911 students were assigned there.16 The upward sloping 
line indicates that if a school is more oversubscribed in the old mechanism, the new 
mechanism tends to assign more students to that school. This phenomenon suggests 
that the coordinated mechanism was able to use the submitted preferences to more 

16 The NYC DOE announced the closure of this school in 2009. The largest size reduction is the Evander Childs 
High School in the Bronx, which went from 1,739 to 453 ninth graders. This high school had a longstanding repu-
tation for violence and disorder, and it was eventually closed in 2008. 
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effectively place children into their desired schools. The extent to which this change 
represents an improvement in student welfare depends on the heterogeneity of stu-
dent preferences, an issue we turn to next.

IV.  Estimating Student Preferences

A. Student Choices

Families in NYC obtain information about high school programs from many 
sources including guidance counselors, teachers, and other families. Each year the 
DOE publishes the Directory of New York City Public High Schools, a booklet with 
information about school size, course offerings, Regents and graduation perfor-
mance, the school’s address, the closest bus and subway, and a description of each 
program, including its extracurricular activities and sports teams. Families can also 
learn about schools at high school fairs and open houses and from local newspapers, 
online guides, and books (e.g., Hemphill 2007).

While a family may rank a school for reasons that we do not observe, the observ-
able dimensions of their choices display consistent regularities: students prefer 
closer and higher quality schools as measured by student achievement levels, shown 
in Table 6.17 The first row of the table shows that only 20 percent of applicants 
rank 12 school choices; the majority rank 9 or fewer choices, and nearly 90 per-
cent rank at least 3 choices. A student’s top choice is on average 4.43 miles away 
from home. Since the closest school is on average 0.82 miles away, the school 
closest to home is not most students’ first choice. The typical student’s first choice 
is 0.38  miles closer to home than her second choice, and her second choice is  
0.24 miles closer than her third choice. Distance increases monotonically until the 
ninth choice, which is 5.65 miles away.

Lower-ranked schools are also less desirable on other measures of school qual-
ity. Math performance decreases going down rank-order lists. (English performance 
exhibits the same trends as math and is therefore not reported.) Other measures of 
performance (also not reported) such as the percent of students attending a four-year 
college and the fraction of teachers classified as inexperienced change monotoni-
cally going down rank-order lists. Schools enrolling lower shares of poor students 
or higher proportions of white students tend to be ranked higher.

Using requests for individual teachers, Jacob and Lefgren (2007) find that par-
ents in low-income and minority schools value a teacher’s ability to raise student 
achievement more than parents in high-income and nonminority schools. In con-
trast, Hastings, Kane, and Staiger (2009) report that higher-SES families are more 
likely to choose higher-performing schools than lower-SES ones based on stated 
reports under Charlotte’s school choice plan. This difference across groups moti-
vates our investigation of how baseline ability and neighborhood income influence 
ranking behavior. High-achieving students tend to rank schools with higher math 

17 Online Appendix Table B3 provides additional information on school assignments. 31.9 percent of students 
receive their top choice, 15.0 percent receive their second choice, and 2.4 percent receive a choice ranked tenth, 
eleventh, or twelfth. 17.5 percent of students are asked to participate in the supplementary round because they are 
unassigned in the main round. 
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achievement relative to low achievers, though both groups place less emphasis on 
achievement as they move further down their preference list. Similarly, students 
from low-income neighborhoods tend to put less weight on math achievement than 
do students from high-income neighborhoods, but both groups rank higher achieving 
schools higher. These differences suggest the importance of allowing for preferred 
school achievement levels to differ by baseline achievement and income groups in 
the demand model.

Schools with lower math achievement or higher fraction subsidized lunch are 
also ranked lower in the uncoordinated mechanism. For distance, however, the 
gradient is lower relative to the coordinated mechanism. In the uncoordinated 

Table 6—School Characteristics by Rank of Student Choice

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

Panel A. All students
Students ranking choice (%)
  Coordinated 100.0 93.4 88.7 82.8 76.2 69.1 62.3 56.0 49.7 43.2 34.4 20.3
  Uncoordinated 100.0 93.5 85.8 71.7 46.7

Distance in miles: mean
  Coordinated 4.43 4.81 5.05 5.21 5.38 5.49 5.59 5.63 5.65 5.58 5.43 5.12
  Uncoordinated 4.80 4.91 4.94 4.88 4.79

Distance in miles: median
  Coordinated 3.51 3.95 4.20 4.37 4.57 4.63 4.72 4.77 4.78 4.71 4.59 4.24
  Uncoordinated 3.87 4.00 4.05 4.05 4.02

High math achievement (%)
  Coordinated 16.7 15.3 14.7 13.9 13.4 12.8 12.4 11.9 11.5 11.1 10.8 10.4
  Uncoordinated 14.1 13.3 12.8 12.1 11.7

Percent subsidized lunch
  Coordinated 51.4 53.4 54.5 56.2 57.4 58.7 59.8 60.6 61.3 61.9 62.7 63.1
  Uncoordinated 56.6 58.0 59.1 60.7 62.0

Size of ninth grade
  Coordinated 713.4 708.1 689.3 668.0 655.3 635.9 620.7 609.5 608.8 612.1 623.8 649.2
  Uncoordinated 720.7 720.7 709.3 696.5 686.6

Percent white
  Coordinated 19.1 16.7 15.7 14.4 13.3 12.2 11.2 10.8 10.4 9.8 9.4 9.0
  Uncoordinated 14.6 13.4 12.5 11.4 10.8

Panel B. Student subgroups
Split by high math achievement
  Students with low baseline math (%)
    Coordinated 10.9 10.9 10.5 10.1 10.0 9.7 9.6 9.4 9.4 9.1 8.8 8.8
    Uncoordinated 9.5 9.5 9.4 8.9 8.7

  Students with high baseline math (%)
    Coordinated 26.0 21.4 20.5 19.1 18.2 17.3 16.4 15.6 15.2 14.2 13.9 12.8
    Uncoordinated 21.5 19.0 17.8 16.9 16.1
Split by neighborhood income
  Students from bottom neighborhood 
    income quartile (%)
    Coordinated 11.4 10.9 10.5 10.4 10.1 9.9 10.0 9.9 9.6 9.3 9.1 8.7
    Uncoordinated 9.5 9.6 9.5 9.1 8.7

  Students from top neighborhood 
    income quartile (%)
    Coordinated 23.3 20.7 19.6 18.7 17.7 16.8 16.0 15.1 15.0 14.1 13.2 12.7
    Uncoordinated 21.4 18.5 17.6 16.5 16.1  

Notes: Statistics based on 69,907 students for the coordinated mechanism and 59,277 students for the uncoordinated mechanism. 
Uncoordinated mechanism refers to the 2002–2003 mechanism and coordinated mechanism refers to the 2003–2004 mechanism 
based on deferred acceptance. Student distance is calculated as road distance using ArcGIS. High math achievement is the fraction 
of students who scored over 85 percent on the Math A Regents in New York State Report Cards. High baseline math students score 
above the seventy-fifth percentile for seventh grade middle school math; low baseline math students score below the twenty-fifth 
percentile. Neighborhood income is median family income from the 2000 census.
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mechanism, the distance to a students’ first choice school is 4.80 miles, while it 
is 4.79 miles for their fifth choice. In the coordinated mechanism, the fifth choice 
is about one mile further than the first choice. Such a pattern is consistent with 
students being more expressive with their choices in the new mechanism, which 
would be expected given that more choices can be ranked.

All else being equal, based on their submitted preferences, students prefer 
attending a school closer to home. The fact that students in the new mechanism are 
assigned to schools further from home might suggest that school assignments are 
worse on average than in the old mechanism. On the other hand, students may prefer 
schools outside their neighborhood because these schools are a better fit. To assess 
the new mechanism, we must therefore weigh the greater travel distance in the new 
mechanism against changes in other aspects of the assigned school. Our next task 
is to quantify how students evaluate distance relative to school attributes, including 
average achievement levels, demographic composition, and size, based on their sub-
mitted preferences in the coordinated mechanism.

B. Model and Estimation

Comparing the characteristics of schools ranked higher, lower, or not at all reveals 
students’ tastes over these characteristics. To quantify these trade-offs, we estimate 
a random utility model, which represents the ordinal rankings in cardinal terms. Let ​
i ∈ ​ index students and ​j ∈ ​ index programs. The indirect utility of student ​i​ from 
program ​j​ is

(1)	​ ​u​ ij​​  =  v(​x​j​​, ​z​i​​, ​ξ​j​​, ​γ​i​​, ​ε​ij​​) − ​d​ ij​​ ,​

where ​​x​j​​​ is a vector of program ​j​’s observed characteristics, ​​z​i​​​ is a vector of observed 
student characteristics, ​​ξ​j​​​ is a program-specific unobserved vertical characteristic, ​​γ​i​​​ 
is a vector capturing idiosyncratic tastes for program characteristics, ​​ε​ij​​​ captures 
idiosyncratic tastes for programs, and ​​d​ ij​​​ is distance between student ​i​’s address and 
program ​j​ , measured in miles. Our main assumption is

	 (​​γ​i​​​, ​​ε​ij​​​) ⊥ ​​d​ ij​​​ | ​​z​i​​​, ​​x​j​​​, ​​ξ​j​​​ ,

which states that, conditional on observed student and school characteristics, and the 
vertical school characteristics ​​ξ​j​​​ , unobserved tastes for programs are independent 
of distance. This assumption may be violated if students systematically reside near 
schools they prefer, given our controls for student characteristics. In that case, we’re 
likely to underestimate the value of being assigned to a nearby school. On the other 
hand, the assumption is plausible if the set of observed characteristics is sufficiently 
rich. The specification also treats distance as the numeraire. All else being equal, if 
students dislike traveling to school, then the coefficient of ​−1​ on distance is a scale 
normalization, which allows us to measure utility in distance units, expressed as a 
“willingness to travel.” We also normalize ​v( · ) =  0​ if all of its arguments are zero.18

18 These scale and location normalizations are without loss of generality and equivalent to other normalizations 
since the additively separable form of utilities is well defined only up to positive affine transformations. 
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To assist estimation in finite samples while allowing for a computationally tracta-
ble procedure, we parametrize ​​u​ ij​​​ as follows:

(2)	​​ u​ ij​​   = ​ δ​j​​ + ​∑ 
l
​ ​​ ​α​​ l​ ​z​ i​ l​ ​x​ j​ l​ + ​∑ 

k
​ ​​ ​γ​ i​ k​ ​x​ j​ k​ − ​d ​ij​​ + ​ε​ij​​ , 

	 with ​δ​j​​  = ​ x​j​​ β + ​ξ​j​​ .​

We further assume that

	​ ​γ​i​​  ∼   (0, ​Σ​γ​​ ),  ​  ξ​j​​  ∼   (0, ​σ​ ξ​ 2​ ),  ​  ε​ij​​  ∼   (0, ​σ​ ε​ 2​ ).​

The vector of random coefficients, ​​γ​i​​​ , capture idiosyncratic tastes for program char-
acteristics. It is worth noting that for our welfare calculations, we do not interpret 
the coefficients on school characteristics as measuring the causal effect of differ-
ent school characteristics. Throughout the welfare comparisons, we examine the 
effects of different assignments on utility holding school attributes fixed. This 
parametrization is an ordered choice version of the model in Rossi, McCulloch, 
and Allenby (1996), who show that these distributional assumptions allow for 
estimation via Gibbs’ sampling.19 To this end, we specify conjugate priors for ​
θ  =  (α, β, ​Σ​γ​​, ​σ​ ξ​ 2​, ​σ​ ε​ 2​ )​. For additional details on the procedure and the specification 
of priors, see the online Computational Appendix.

Intuitively, the degree to which otherwise identical students’ propensity to rank a 
school changes with distance reveals how important distance is relative to other fac-
tors. Since our model is nonparametrically identified, these assumptions are made 
for tractability.20

Our specification allows for students to have idiosyncratic tastes for schools that 
are not captured by the student characteristics in our dataset. To exploit the rich-
ness of rank-ordered data, we do not restrict the correlation across the dimensions 
of ​​γ​i​​​. Berry, Levinsohn, and Pakes (2004) show that data on top and second choices 
improves on estimates that only use first choice by revealing common characteris-
tics between subsequent rankings for a given student. Rank-ordered data also allow 
us to relax the common assumption that random coefficients on choice characteris-
tics are independently distributed.

We do not explicitly model an outside option because our primary interest is 
studying the allocation within inside options rather than substitution outside of the 
NYC public school system. Moreover, the commonly-used model of the outside 
option, which infers that a school is unacceptable if not ranked, would require us to 

19 We use Gibbs’ sampling rather than simulated maximum likelihood because of biases in datasets with a large 
number of choices (Train 2009). The posterior means we report have the same asymptotic distribution as maximum 
likelihood estimates (see van der Vaart 2000, chapter 10.1). 

20 In particular, under our assumption that there is one characteristic (distance) that is additively separable and 
independent of the unobservable (​​γ​i​​​ , ​​ε​ij​​​), we can use variation in distance to trace out the distribution of utility. 
Identification for binary and multinomial models is studied by Ichimura and Thompson (1998); Lewbel (2000); and 
Briesch, Chintagunta, and Matzkin (2002). Ordered choice data contains strictly more information than in these set-
tings. Agarwal and Somaini (2014) study identification in the school choice context with a potentially manipulable 
mechanism. Nonparametric identification results in these settings apply to our case. 
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assume that students who have not ranked all 12 choices prefer their outside option 
to a NYC high school.21 We set the mean of ​​u​ ij​​​ to zero if all observables are zero.

The demand sample for 2003–2004 contains the rankings of 69,907 participants 
across 497 programs in 235 schools, for a total of 542,666 school choices. Our spec-
ifications follow other school demand models and include average school test scores 
and racial attributes as characteristics (see, e.g., Hastings, Kane, and Staiger 2009). 
We focus on four main school characteristics: high math achievement, percentage of 
students receiving subsidized lunch, percent white, and ninth grade size.

We start by assuming that rankings reflect true preferences. For rank-order 
list ​​r​i​​  =  (​r​ i1​​, … , ​r​ i​K​ i​​​​ ),​ let ​​r​ ik​​​ be the ​k th​-choice program and ​​K​ i​​​ is the number of 
choices ​i​ ranks. In terms of indirect utilities, we assume that

	​​ u​ i​r​ik​​​​   > ​ u​ i​r​ik+1​​​​ 	 for all k  < ​ K​ i​​ ,

	​ u​ i​r​ i​K​i​​​​​​   > ​ u​ ij​​      for all j  ≠ ​ r​ ik​​  and k  ≤ ​ K​ i​​ .​

This benchmark is motivated by the mechanism’s straightforward incentive prop-
erties and by the advice the NYC DOE provided in the 2003–2004 High School 
Directory and their information and outreach campaign.22 For instance, the DOE 
guide advises participants to “rank your twelve selections in order of your true 
preferences” (DOE 2003, p. v) with the knowledge that “schools will no longer 
know your rankings.” (DOE 2003, p. ii)

This model assumes that all programs are available to applicants, though in prac-
tice, 193 programs have an eligibility restriction whereby applicants are only eligi-
ble for a program if they reside in particular boroughs. We therefore also consider a 
model in which each applicant’s choice set only comprises the programs for which 
she is eligible. About 5 percent of students rank a program for which they are inel-
igible and this corresponds to about 1 percent of all submitted choices. In those 
cases, we include the ineligible program as part of the choice set.23 Section VIII 
reports on variations on these assumptions.

C. Preference Estimates

We report select estimates for four different specifications in Table 7 and 
a larger set of specifications in Table A3. The first specification includes school 
characteristics (high math achievement, percent subsidized lunch, percent white, 
and ninth grade size), but does not incorporate interactions between school and 

21 Online Appendix Table B3 shows that only about 14,000 students submit all 12 ranks and that students with 
incomplete lists are also more likely to remain unassigned. Online Appendix Table B4 shows that the majority of 
these students enter the supplementary round and are likely to accept an assignment in this round. This suggests that 
the choice of the number of schools to rank is not directly related to preferences. 

22 As mentioned above, this formulation ignores potential information about the relative value of schools less 
preferable than the ​​K​ i​​​  th most preferred school. It is consistent with a model in which the student ranks all schools 
that are preferable to an outside option, but does not require this to be the case. 

23 This specification is similar in spirit to methods in Fack, Grenet, and He (2015) who advocate for restricting 
the student choice set based on the set of schools that may be achievable for that student. Their setting has the 
additional advantage that admission criteria for all schools are known, whereas we do not have direct information 
on admissions criteria used for all screened schools. 
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student characteristics (i.e., ​​α​​ l​  =  0​ for all ​l​  ). Further, we do not include additional 
achievement characteristics examined in Table 4, such as high English achievement 
and percentage of students later attending a four-year college, because these both 
closely relate to high math achievement.

The next three specifications include student-school interactions. Each specifica-
tion includes dummies for Spanish, Asian, and Other Language Programs, which are 
interacted with students’ English proficiency status and whether they are Hispanic 

Table 7—Select Preference Estimates for Different Demand Specifications

School characteristics × Student characteristics

Models with random coefficients

No student 
interactions

Without random 
coefficients

All 
choices

Choice among 
eligible programs

(1) (2) (3) (4)

High math achievement
  Main effect 0.016 (0.016) 0.027 (0.014) −0.029 (0.018) −0.058 (0.039)
  Baseline math 0.031 (0.001) 0.039 (0.001) 0.050 (0.001)
Percent subsidized lunch
  Main effect −0.085 (0.007) −0.057 (0.004) −0.069 (0.009) −0.113 (0.058)
Size of ninth grade (in 100s)
  Main effect −0.164 (0.036) −0.092 (0.032) −0.113 (0.048) −0.153 (0.178)
Percent white
  Main effect −0.002 (0.014) 0.070 (0.012) 0.062 (0.016) 0.093 (0.062)
  Asian −0.054 (0.002) −0.075 (0.003) −0.100 (0.004)
  Black −0.084 (0.002) −0.124 (0.002) −0.189 (0.003)
  Hispanic −0.047 (0.002) −0.084 (0.002) −0.119 (0.003)
Standard deviation of ε 7.226 (0.010) 7.385 (0.011) 7.858 (0.013) 10.059 (0.022)
Standard deviation of ξ 3.519 (0.121) 2.954 (0.100) 3.676 (0.129) 5.151 (0.650)
Random coefficients (covariances)
  Size of ninth grade (in 100s) 1.584 (0.009) 1.837 (0.012)
    Percent white −0.006 (0.001) −0.009 (0.001)
    Percent subsidized lunch −0.002 (0.000) −0.002 (0.000)
    High math achievement −0.011 (0.001) −0.015 (0.001)
  Percent white 0.008 (0.000) 0.013 (0.000)
    Percent subsidized lunch −0.001 (0.000) −0.002 (0.000)
    High math achievement 0.005 (0.000) 0.007 (0.000)
  Percent subsidized lunch 0.002 (0.000) 0.003 (0.000)
    High math achievement 0.000 (0.000) −0.001 (0.000)
  High math achievement 0.016 (0.000) 0.022 (0.000)

X X X
X X X

69,907  69,907  69,907  69,907 
542,666  542,666   542,666  542,666 

Notes: Select estimates of demand system with submitted ranks over 497 program choices in 235 schools. Distance 
is calculated using ArcGIS. Dummies for missing school attributes are estimated with separate coefficients. Column 
1 contains no interactions between student and school characteristics. Column 2 contains interactions among 
school characteristics and baseline achievement, gender, race, special education, limited English proficiency, 
subsidized lunch, and median 2000 census block group family income. Columns 3–4 include random coefficients 
on school size, percent white, percent subsidized lunch, and math achievement, with unrestricted covariance across 
characteristics. High math achievement is the fraction of students who score more than 85 on the Math A Regents 
in New York State Report Cards. Models estimate the utility differences among inside options only. Column 4 
restricts each applicant’s choice set to include eligible programs. If an applicant ranked an ineligible program, that 
program is included in the choice set. A total of 193 programs have eligibility restrictions and 3,854 students rank 
an ineligible program. Standard errors in parentheses.
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or Asian. The model in column 2 assumes that there are no random coefficients 
(​​γ​i​​  =  0​), while the model in column 3 places no restriction on ​​γ​i​​​. Column 4 reports 
estimates wherein the choice set for each applicant is restricted to the set of schools 
for which she is eligible.

There are three main patterns in Table 7. First, student-school interactions are 
often estimated precisely; for instance, high baseline math students tend to prefer 
higher-achieving schools and minority students tend not to prefer schools with high 
white percentages. Second, the estimates are similar between the model with no 
restriction on the choice set and the model where the choice set only contains pro-
grams for which the student is eligible. Third, many of the random coefficients are 
significant, thereby suggesting the importance of a flexible specification in account-
ing for the underlying heterogeneity in student preferences. We further report on 
model fit in Section VIII. We use the estimates in column 3 for our primary calcu-
lations, because these fully exploit all choice data in the most flexible model, and 
discuss other specifications in Section VIII.

V.  Comparing Alternative Mechanisms

A. Measuring Welfare

Our estimates allow us to compute measures of welfare for an assignment using 
the distribution of student preferences. Let ​μ :   →   ∪ ​ denote a matching, 
such that each student is assigned either to only one program or is unassigned (here, 
assigned to herself), and no program’s matches exceed its capacity. Note that ​μ(i )​ 
denotes student ​i​’s assignment. The average student welfare under ​μ​ is

	​ W(μ)  = ​   1 __ 
​|   |​ ​ ​ ∑ 

i∈
​​​ ​u​ iμ​(i)​​​ ,​

where ​​u​ ij​​​ is the (indirect) utility student ​i​ associated with assignment to program ​j​.  
Given the normalization in equation (1), welfare is measured in the same units as 
distance (in miles).

Since individual student utility is not directly observed, we compute the expecta-
tion of the utility for each student, ​E[ ​u​ iμ​(i)​​​ | ​r​i​​, ​z​i​​, ​x​j​​, ​d​i​​; θ ] ,​ given the rank-order list ​​r​i​​​ , 
the observed characteristics ​(​z​i​​, ​x​j​​, ​d​i​​)​ , and the estimated distribution of preferences 
parameterized by ​θ​. In what follows, we drop the conditioning on ​(​z​i​​, ​x​j​​, ​d​i​​)​ and ​θ​ to 
simplify the notation. With this convention, we estimate the average student welfare ​​
W ̅ ​(μ)​ as the expectation of ​W(μ)​ defined above:

	​ ​W ̅ ​(μ)  = ​   1 __ 
​|  |​ ​ ​ ∑ 

i∈
​​​ E[​u​ iμ​(i)​​​ | ​r​i​​ ].​

Evaluating the expectation of each student’s utility requires an assumption about 
the relationship between utilities and observed rank-order lists. If preferences are 
truthfully submitted to coordinated mechanism, the ​k th​ ranked program yields the ​
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k th​ highest utility. This assumption restricts values of unobserved tastes ​​γ​i​​​ and ​​ε​ij​​​. 
The expectation

(3)  ​E[​u​ ij​​ | ​r​i​​ ] 

    = ​
{

​
E​[​u​ ij​​ | ​u​ i​r​i1​​​​ > ⋯ > ​u​ i​r​ik−1​​​​ > ​u​ ij​​ > ​u​ i​r​ik+1​​​​ > ⋯  > ​u​ i​r​i​K​ i​​​​​​]​​ 

if program j ranked k th
​        

E​[​u​ ij​​ | ​u​ i​r​i1​​​​ > ⋯  > ​u​ i​r​ik​​​​ > ⋯ > ​u​ i​r​i​K​ i​​​​​​ > ​u​ ij​​]​
​ 

if program j not ranked,
​​​

where ​​K​ i​​​ is the number of programs listed on rank-order list ​​r​i​​​. The conditioning 
events in equation (3) translate observed rank-order lists ​​r​i​​​ into restrictions on unob-
served tastes ​​γ​i​​​ and ​​ε​ij​​​. Intuitively, if program ​j​ is ranked among the top 12, it must 
yield higher utility than all unranked programs. Since there are many unranked pro-
grams, this means that idiosyncratic tastes for ranked programs are likely to be high. 
We compute the expression in equation (3) by fixing the estimated parameters at their 
posterior means, and using a Gibbs sampler to draw from the distribution of utili-
ties given the rank order list.24 For a student who did not submit a rank-order list in 
the main round, we compute the mean utility conditional only on (​​z​i​​, ​x​j​​, ​d​i​​, θ​). This 
simulated value of the expectation of utility is fixed for welfare comparisons across 
assignments.

The difference in average student welfare between two matchings, ​μ​ and ​​μ ′ ​​ , is 
given by

(4)	​ ​W ̅ ​(μ) − ​W ̅ ​(​μ ′ ​)  = ​   1 __ 
​|  |​ ​  ​ ∑ 

i∈
​​​ (E[ ​u​ iμ​(i)​​​ | ​r​i​​ ] − E[​u​ i​μ ′ ​​(i)​​​ | ​r​i​​ ]) .​

To report differences in average welfare for particular demographic groups, we sim-
ply restrict the sample to the set of students with that demographic characteristic 
when computing equation (4).

B. Evaluating Mechanism Design Features

There are several coordinated mechanisms that can be used to organize school 
admissions. They differ in how they deal with strategic considerations and school 
priorities.  We summarize their theoretical properties before examining these alter-
natives empirically.

Theoretical Mechanism Design Trade-Offs.—A typical school choice problem 
can be modeled as a matching problem between students and schools. Each student 
ranks schools on her application. Each student is also granted an assignment priority 
at every school for which she is eligible. Priorities may differ among schools and 
may be determined, for instance, by whether the student resides in a particular bor-
ough or has attended the school’s information session.

An assignment of students to schools matches each student with at most one 
school for which she is eligible, or leaves her unassigned, and capacity is not 

24 For each applicant, we use 20,000 draws after burning the first 1,000 draws. This step is identical to the first 
step in the Gibbs sampler described in online Appendix A. 
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exceeded at any school. An assignment mechanism produces an assignment using 
students’ reported preferences, school priorities, school capacities, and a lottery to 
break ties amongst equal priority students to produce an assignment. Once the ties 
are broken, every school ranks students in a linear order, first by priority at the 
school and then by lottery numbers, which we will also refer to as tiebreaker. A 
mechanism is strategy-proof if submitting true preferences is a (weakly) dominant 
strategy for every student.

To facilitate comparison of alternative allocations, we consider two benchmarks. 
Neighborhood assignment is an allocation where students are assigned to the clos-
est possible school subject to capacity constraints. We compute this assignment by 
running deferred acceptance (DA), described in Section IC, with applicants sim-
ply ranking schools in increasing order of distance and schools ranking students in 
increasing order of distance. This benchmark corresponds to an extreme without 
school choice, where the market’s geographic scope is limited in a similar fashion 
as the administrative round of the uncoordinated mechanism.

The second benchmark, utilitarian assignment, assigns students to obtain the 
greatest possible average student utility given school capacities. Given school 
capacities ​​c​ j​​​ at each program ​j​ , it solves the following program:

	​ ​max​ 
a
​ ​ ​ ​ ∑ 

ij
​ ​​ ​u​ ij​​ ​a​ ij​​​  subject to ​​ ∑ 

j
​ 
 

 ​​​ ​​ a​ ij​​​ ≤ 1, ​​ ∑ 
j
​ 
 

 ​​​ ​​ a​ ij​​​ ≤ ​​c​ j​​​, ​​ a​ ij​​​ ∈ {0, 1},

where ​a​ is an ​|   | × |   |​ matrix with ​(i, j )​ element ​​a​ ij​​​ denoting that student ​i​ is  
assigned to program ​j​. Since no other feasible allocation yields higher average util-
ity, the utilitarian assignment represents an extreme, where a planner implements 
the best possible allocation with knowledge of the cardinal distribution of student 
preferences.

While the utilitarian assignment yields the maximal possible student welfare, it 
is difficult to achieve for two reasons. First, there are over 200 screened programs in 
New York City, so implementing this allocation would ignore school-side rankings in 
those programs. For instance, the utilitarian assignment could allow a lower-scoring 
student or a student in a lower priority group to be assigned to a school over a stu-
dent with a higher score or higher priority who also wanted that school.25 More 
formally, a student-school pair blocks an assignment if the student strictly prefers 
the school to his assignment, is eligible for it, and the school either has an available 
seat or is assigned another student with lower priority. An assignment is stable if it is 
not blocked by any student-school pair, and if every student prefers her assignment 
to remaining unassigned. The utilitarian assignment may not be stable.

Second, the utilitarian assignment uses cardinal information, which is not elicited 
by the coordinated mechanism.26 An alternative notion of efficiency would only 
consider students’ ordinal rankings of schools. An assignment Pareto dominates 
another, if in the latter assignment every student is assigned to a weakly-preferred 

25 Budish et al. (2013) and He et al. (forthcoming) describe alternative utilitarian mechanisms that take into  
account how programs rank students. 

26 Bogomolnaia and Moulin (2001, p. 297) argue that focusing on ordinal mechanisms can be “justified by the 
limited rationality of agents participating in the mechanism.” 
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choice but some students are assigned to a strictly preferred choice than in the 
former assignment. An assignment is Pareto efficient if it is not Pareto dominated by 
another assignment; in other words, if there is no way to match some students with 
better schools in their choice lists without hurting other students.

When priorities do not include any ties, the student-proposing DA used in the 
coordinated mechanism produces the unique student-optimal stable matching 
(Gale and Shapley 1962). That is, it produces a stable matching that is not Pareto 
dominated by any stable assignment. Furthermore, DA is strategy-proof (Dubins 
and Freedman 1981; Roth 1982). When priorities include ties, however, DA must 
include a tiebreaker. Tiebreaking opens the door to multiple student-optimal stable 
matchings and DA may fail to find a student-optimal stable matching (Erdil and 
Ergin 2008; Abdulkadiroğlu, Pathak, and Roth 2009).

Based on this observation, Erdil and Ergin (2008) suggest an algorithm to find a 
student-optimal stable matching when priorities include ties. The algorithm uses a 
stable matching (such as the one produced by DA) as its input and looks for stable 
improvement cycles to improve on this matching. A stable improvement cycle is an 
ordered set of students such that (i) every student is assigned a school but prefers the 
assigned school of the next student, and the last student prefers the assigned school 
of the first student (so that we obtain a cycle); (ii) moreover, each student in the set 
has the highest priority at the assigned school of the next student among all students 
who prefer that school to their assignment.

By modifying the original assignment by moving each student to the school to 
which the next student in this cycle is assigned, we can find an assignment that is 
both stable and Pareto dominates the original assignment. Consequently, they pro-
pose the following stable improvement cycles algorithm:

Step 1: Start with the assignment produced by the deferred acceptance algorithm.

Step k > 1: If a stable improvement cycle exists in the assignment produced by 
step ​k − 1​ , obtain a new stable assignment by moving each student to the assigned 
school of the next student in the cycle.

Since each step improves upon the assignment of each student in the cycle without 
creating blocking pairs, the resulting new assignment is stable and Pareto dominates 
the previous one. The algorithm terminates when no stable improvement cycle is 
found. While the stable improvement cycles assignment is a student-optimal stable 
matching, no mechanism is student optimal stable and strategy-proof when priori-
ties include ties (Erdil and Ergin 2008).

A student-optimal stable assignment may still fail to be Pareto efficient (Roth 
1982), thus leaving room for improvement in student assignments at the expense of 
creating blocking pairs. In order to measure the efficiency loss from imposing stabil-
ity, we find a Pareto efficient assignment that Pareto dominates the stable improve-
ment cycles assignment by employing Gale’s top trading cycles algorithm (Shapley 
and Scarf 1974) as follows:27

27 This version of the top trading cycles algorithm starts with the DA outcome in contrast to the version defined 
by Abdulkadiroğlu and Sönmez (2003). 



3663Abdulkadiroğlu et al.: Effects of Coordinated AssignmentVOL. 107 NO. 12

Step 1: Start with a student-optimal stable assignment. Initialize all students to 
be available.

Step k > 1: Given an assignment, each available student points to her most pre-
ferred school, each school points to the highest ranked available student that is 
assigned to the school, and if no available student is assigned the school, it points to 
the highest ranked available student.

A top trading cycle is an ordered list of student-school pairs such that each stu-
dent points to her paired school and the school points to the student of the next pair, 
where “next pair” for the last pair is the first pair in the ordered list.

Since the number of students and schools is finite, a top trading cycle exists, and 
each student in the cycle is assigned the school he points to and is then removed.

The algorithm terminates when no more top trading cycles are found.

This mechanism is not strategy-proof, and in general, there is no strategy-proof 
mechanism that Pareto dominates the deferred acceptance or stable improvement 
cycles mechanism (Abdulkadiroğlu, Pathak, and Roth 2009; Kesten 2010; Kesten 
and Kurino 2012).

Quantifying Mechanism Design Trade-offs.—The first column of Table 8 shows 
that the difference in distance-equivalent utility between the neighborhood and util-
itarian assignment is 18.96 miles. In other words, the average student is willing to 
travel 18.96 miles further for the school she is assigned under the utilitarian assign-
ment compared to the neighborhood assignment. To compute the coordinated mech-
anism, we run DA for 100 different lottery draws.28 The coordinated mechanism 
achieves about 80 percent of the 18.96 mile range, since the difference in willing-
ness to travel from the utilitarian assignment for the average student is 3.73 miles 
shown in column 2.29 The gains from a choice system are smaller for whites and 
Asians compared to blacks and Hispanics. Gains are also considerably smaller for 
residents of Staten Island, which has on average better-performing schools than 
other boroughs.

As discussed above, DA does not produce a student-optimal stable matching 
when priorities involve ties, but no strategy-proof mechanism does. Any potential 
gains from a Pareto-dominant stable assignment can therefore be viewed as the cost 
of providing straightforward incentives for students. We quantify this cost by com-
puting a student-optimal stable assignment that Pareto dominates the DA assign-
ment. To this end, we run the stable improvements cycle algorithm for each of the 
100 lottery draws. Across these draws, 2,348 students on average obtain a better 
assignment in a student-optimal stable matching without harming other students. 
The difference in distance-equivalent utility is 0.11 miles on average compared to 
the assignment produced by the coordinated mechanism. Because the student-op-
timal matching Pareto dominates the DA assignment for every lottery draw, this 

28 For students unassigned after the main round, we implement NYC’s supplementary round by using prefer-
ences from the demand model and assigning students under a serial dictatorship according to the lottery number. 

29 The standard error across parameter draws is 0.04. For a fixed parameter draw, the variance of this difference 
is small because our sample has 69,907 students. 
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difference is non-negative for every realization of utilities and is therefore statisti-
cally significant.

A stable assignment constrains student welfare through its treatment of school pri-
orities and preferences. We next compute welfare from a Pareto-efficient assignment 
that dominates the student-optimal stable assignment via Gale’s top trading cycles 
algorithm. Since this mechanism does not produce a stable outcome, it is possible 
that schools benefit by offering students seats outside of the assignment process. The 
difference in aggregate student welfare under this Pareto-efficient assignment and the 
student-optimal stable matching may therefore be viewed as the cost of providing 
incentives for schools for participating in the system.30

For each of the 100 lottery draws, we calculate a Pareto-efficient matching that 
dominates each student-optimal stable matching and report the average welfare 

30 Balinski and Sönmez (1999) and Abdulkadiroğlu and Sönmez (2003) provide an alternative equity rationale 
for stability. No stable mechanism eliminates strategic participation issues for schools (Sönmez 1997; Ekmekci and 
Yenmez 2016), although this may not be an issue in markets with many participants (Kojima and Pathak 2009). 

Table 8—Welfare Comparison of Alternative Mechanisms Compared to Utilitarian Assignment

School choice

Assignment mechanism:
Neighborhood 

assignment
Coordinated 
mechanism

Student-optimal 
matching

Ordinal Pareto 
efficient matching

  (1) (2) (3) (4)

All −18.96 −3.73 −3.62 −3.11
Female −18.90 −3.71 −3.59 −3.07

Asian −18.08 −3.53 −3.43 −3.01
Black −19.43 −3.89 −3.79 −3.25
Hispanic −19.37 −3.80 −3.67 −3.10
White −17.07 −3.21 −3.11 −2.82
Bronx −21.39 −4.63 −4.46 −3.72
Brooklyn −18.48 −3.21 −3.14 −2.70
Manhattan −20.07 −5.40 −5.25 −4.43
Queens −18.02 −3.39 −3.29 −2.96
Staten Island −13.82 −1.25 −1.10 −1.03

High baseline math −18.53 −3.29 −3.18 −2.61
Low baseline math −19.40 −4.28 −4.18 −3.63

Subsidized lunch −19.16 −3.78 −3.66 −3.12
Bottom neighborhood income quartile −19.89 −4.25 −4.12 −3.46
Top neighborhood income quartile −17.44 −3.63 −3.51 −3.15

Special education −19.41 −4.83 −4.73 −4.11
Limited English proficient −19.81 −3.74 −3.64 −3.16
SHSAT test-takers −19.13 −4.17 −4.05 −3.41

Notes: Utility from alternative assignments relative to utilitarian optimal assignment computed ignoring all school-
side constraints except capacity. Utility computed using estimates in column 3 of Table 7. Mean utility from the 
utilitarian optimal assignment normalized to zero. Column 1 is computed by running the student-proposing deferred 
acceptance algorithm where applicants simply rank schools in order of distance. Column 2 is from 100 lottery draws 
of student-proposing deferred acceptance with single tie-breaking using the demand estimation sample. If a student 
is unassigned, we mimic the supplementary round by assigning students according to a serial dictatorship using 
preferences drawn from the preference distribution estimated in column 3 of Table 7. Student optimal matching 
in column 3 computed by taking each deferred acceptance assignment and applying the Erdil and Ergin (2008) 
stable improvement cycles algorithm to find a student-optimal matching. Ordinal Pareto efficient matching in 
column 4 computed by applying Gale’s top trading cycles to the economy where the student-optimal matching 
determine student endowments, followed by the Abdulkadiroğlu and Sonmez (2003) version of top trading cycles 
with counters.
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relative to the utilitarian assignment in column 4 of Table 8. A total of 10,882 stu-
dents obtain a more preferred assignment at a Pareto-efficient matching. An ordi-
nal Pareto-efficient allocation still produces substantially lower welfare than the 
utilitarian optimum. The utility difference for the average student is 3.11 miles. 
Relative to the coordinated mechanism, the cost of limiting the scope for strategiz-
ing by schools (i.e., by imposing stability) is 0.62 miles.

In summary, these comparisons show that the difference in student welfare 
between having a choice system with the coordinated mechanism and neighbor-
hood assignment is much larger than possible welfare gains from fine-tuning the 
algorithm used in the coordinated mechanism. That is, the ability to choose schools 
generates substantial student welfare when preferences are heterogeneous. Further 
optimizing the matching algorithm in NYC is likely to produce relatively little gain 
in the best case, even if it were possible to implement cardinal allocation schemes. 
This conclusion does not imply that the matching scheme is unimportant especially 
in light of the large number administratively assigned in the uncoordinated mecha-
nism. To see where the uncoordinated mechanism lies in the 18.96 mile range, we 
next turn to analyzing its properties.

VI.  Comparing the Coordinated and Uncoordinated Mechanisms

A. Approach

We use the estimated preference parameters and observed data to quantify the 
difference in welfare between assignments produced by the coordinated and unco-
ordinated mechanisms. Results presented in the previous section used information 
embedded in a student’s submitted ranking when evaluating the expectation of her 
utility for the observed assignment using equation (3). This exercise relied on the 
fact that the coordinated mechanism has straightforward incentives. Interpreting 
rankings submitted in the uncoordinated system, however, is significantly more chal-
lenging since the uncoordinated mechanism is not strategy-proof and, consequently, 
submitted rankings depend on applicant beliefs and behavior.31 This difficulty is 
not unique to our setting and is likely a challenge in evaluating other assignment 
systems where the incentive properties of the mechanism are not well understood 
and agent behavior is difficult to model. We therefore analyze the uncoordinated 
mechanism using two extreme models of agents’ behavior: truthful reporting and 
optimal reporting. Neither extreme is a plausible characterization of behavior under 
the uncoordinated mechanism, but the former is focal, and the latter represents a 
best-case analysis for the uncoordinated system and therefore represents a lower 
bound on the difference between the coordinated and uncoordinated mechanisms.

Truthful reporting parallels the assumption made for the coordinated mechanism. 
Although we do not presume all participants were truthful, it is a natural definition 

31 Recent work by Kapor, Neilson, and Zimmerman (2017) surveys parents to elicit their beliefs about admis-
sions probabilities in the New Haven choice mechanism and incorporate them as part of an empirical strategy to 
simulate alternative mechanisms. Budish and Cantillon (2012) utilize survey data from a manipulable mechanism 
to make statements about changes in mechanism design. Unfortunately, similar survey data does not exist in our 
setting. 
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of unsophisticated behavior.32 Suboptimal reporting is consistent with the fact that 
about one-third of applicants who submitted preferences end up unassigned, shown 
in Table 3. Had applicants anticipated they would be unassigned in the main round, 
they may have ranked schools that would admit them.

To describe our approach, let  be the set of students in the coordinated mecha-
nism and ​′​ be the set in the uncoordinated mechanism. Suppose ​μ​ is the matching 
produced by the coordinated mechanism and ​​μ ′ ​​ is the matching produced by the 
uncoordinated mechanism. Given our estimate of ​θ​ from the coordinated mech-
anism, we estimate the difference in average student welfare assuming truthful 
reporting in the uncoordinated mechanism as follows:

(5)	​ ​​W ̅ ​​​ T​ (μ) − ​​W ̅ ​​​ T​ (​μ ′ ​)  = ​   1 __ 
​|  |​ ​  ​ ∑ 

i∈
​​​ E[​u​ iμ​(i)​​​ | ​r​i​​ ] − ​  1 ___ 

​| ′ |​ ​ ​ ∑ 
i∈′

​​​ E[​u​ i​μ ′ ​​(i)​​​ | ​r​i​​ ],​

where each expectation is computed as equation (3).33

Optimal reporting assumes that applicant rank-order lists are optimal given their 
(correct) beliefs on admissions probabilities. While it is unlikely that all applicants 
are sophisticated enough to respond optimally, considering this alternative generates 
a lower bound on the difference in average student welfare between the coordinated 
and uncoordinated mechanism. To see why, let ​​O​ i​​​ be the set of schools that make an 
offer to student ​i​ in the main round of the uncoordinated mechanism. For each appli-
cant ​i​ , let ​​p​ i​ 

j​ (​r​i​​ )​ be the probability that student ​i​ is offered a seat at program ​j​ given 
report ​​r​i​​​ in the main round. We assume that students have private information about 
their preferences, and correct forecasts about their admissions chances at various 
schools, which depend on the ranking strategies of all other students. We omit the 
dependence on these ranking strategies for notational simplicity. Probability ​​p​ i​ 

j​ (​r​i​​ )​ 
is zero if program ​j​ is not ranked in ​​r​i​​​. Since the uncoordinated mechanism is not a 
single-offer mechanism, ​​O​ i​​​ may have more than one element. Each student picks her 
most preferred option in ​​O​ i​​​. Therefore, given ​​O​ i​​​ , her utility from the most preferable 
assignment in the main round is ​​max​ j∈​O​i​​​ 

​ ​ ​ u​ ij​​​. If an applicant does not receive any 
offers, she expects to participate in the supplementary and administrative rounds. 
Let ​​q​i​​​ be a probability vector giving the odds student ​i​ is assigned to program ​j​ , ​​q​ i​ 

j​​ , 
in these rounds. The expected utility from submitting ​​r​i​​​ is, therefore,

(6)	​ EU(​r​i​​ ; ​u​i​​ )  =  E​[​​max​ 
j∈​O​i​​

​ ​ ​ ​ u​ ij​​ |​ ​r​i​​ ; ​u​i​​]​ + Pr ​(​O​ i​​  =  ∅ | ​r​i​​)​ ​∑ 
j
​ ​​ ​q​ i​ 

j​ ​u​ ij​​ .​

The first term in the right-hand side of expression (6) reflects the fact that applicants 
obtain utility from their most preferred school when they have more than one offer. 
The second term represents the expected utility when an applicant is not offered any 

school in the main round. Let ​​u​ i​ 
(k)​​ be the utility for the ​k  th​ best program given ​​u​i​​​ , 

32 Experimental, empirical, and theoretical studies of the Boston mechanism assume truthful behavior is focal.  
See, e.g., Chen and Sönmez (2006); Hastings, Kane, and Staiger (2009); Pathak and Sönmez (2008). 

33 Under the assumption of truthful reporting, it would be possible to estimate demand directly from rank-order 
lists submitted in the uncoordinated mechanism. We did not do that because some applicants may not have submit-
ted truthful reports, and so we felt more comfortable using the preference estimates obtained from the coordinated 
mechanism. Instead, we interpret the results in this section as providing a range for the plausible answers. 
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and let ​​p​ i​ 
(k)​​ be the probability of an offer at that program. Expression (6) can be 

written without the ​​O​ i​​​ notation as

(7)  ​EU(​r​i​​; ​u​i​​) = ​ ∑ 
k=1

​ 
J

  ​​ ​u​ i​ 
(k)​ ​ ∏ 

ℓ=1
​ 

k−1
​​ (1 − ​p​ i​ 

(ℓ)​ (​r​i​​)) ​p​ i​ 
(k)​ (​r​i​​) + ​[ ​ ∏ 

k=1
​ 

J
  ​​ (1 − ​p​ i​ 

(k)​ (​r​i​​))]​ ​ ∑ 
j=1

​ 
J

  ​​ ​q​ i​ 
j​ ​u​ ij​​ .​

Suppose a student knows the probability of receiving an offer from a program 
given her rank-order list. The rank-order list ​​r​ i​ ∗​​ is an optimal report if it maximizes 
her expected utility:

(8)	​ ​r​ i​ ∗​  ∈ ​ arg max​ 
​r​ i​ ′ ​
​ ​​  EU(​r​ i​ ′ ​ ; ​u​i​​ ).​

The average student welfare of the uncoordinated assignment when each student 
submits an optimal report is

	​ ​​W ̅ ​​​ ∗​  = ​   1 ___ 
​| ′ |​ ​  ​ ∑ 

i∈′
​​​ E [ EU(​r​ i​ ∗​; ​u​i​​ ) ] ,​

where the expectation is simulated by drawing from the estimated distribution of ​​u​i​​​ 
given ​(​z​i​​, ​x​j​​, ​d​i​​, θ, ξ )​ and solving for ​​r​ i​ ∗​​.34 The definition of ​​r​ i​ ∗​​ implies that

	​ E[EU(​r​ i​ ∗​; ​u​i​​ ) ]   ≥  E[EU(​r​i​​; ​u​i​​) ]    for any ​r​i​​ .​

The average student welfare when each applicant submits an optimal report, there-
fore, provides a best-case scenario across possible application strategies in the unco-
ordinated mechanism.

This exercise assumes that students in 2002–2003 were submitting optimal 
reports, and these reports generated ​p​ and ​q​ , the equilibrium reduced-form admis-
sions probabilities, which we estimate. The approach imposes consistency of the 
admissions probabilities in the data and ranking strategies. It does not imply that the 
welfare associated with the old mechanism is the best possible equilibrium given the 
2002–2003 mechanism. Students might have, for instance, all done better by coordi-
nating and ranking the school they obtain from the student-optimal stable matching. 
However, strategies from such an equilibrium would not be optimal given the strat-
egies and admissions rules that generated the data. This approach of computing ​​​W ̅ ​​​ ∗​​ 
differs from our approach under truthful reporting, which uses data on applicant 
rank-order lists and assignments from the uncoordinated mechanism directly. Given 
the large number of choices and no analytic formula for what rankings imply about 
unobserved tastes in the uncoordinated mechanism, we only use data from the unco-
ordinated mechanism to measure ​(p, q)​.

While optimal reporting provides a valuable lower bound, we need to tackle two 
issues in solving the optimization problem given by equation (8). First, we must 
specify the information students have about ​(p, q)​. Second, given ​(p, q)​ solving 

34 ​θ​ is set to the posterior mean. For 423 programs that existed in 2003–2004, ​ξ​ is set to the posterior mean. For 
the remaining programs, ​ξ​ is drawn from ​ (0, ​σ​ ξ​ 2​ )​. For each applicant, we use 1,000 draws of ​( ​γ​i​​ , ​ε​i​​ )​ from their 
respective distribution given ​θ​. 
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equation (8) requires iterating through all possible rank orderings of length up to 
five to find the maximum for each applicant. When the number of schools is large, 
this is computationally infeasible.35

We estimate ​(p, q )​ using data from the uncoordinated mechanism, using a simple 
reduced form for school admissions decisions. Given a dataset of applications ​​r​i​​​ and 
offers, we fit the logit equation

(9)	​ ​p ​ i​ 
j​ (​r​i​​ )  =  G​(​τ​j​​ + ​z​i​​ ​λ​1​​ + ​∑ 

l
​ ​​ ​η​​ l​ ​z​ i​ l​ ​x​ j​ l​ + 1{​r​ i1​​  =  j}(1, ​n​ j​ r​, ​n​ j​ a​ ) ​λ​2​​)​,​

where ​G​ is the standard logistic function, ​​τ​j​​​ is a program fixed-effect, ​​z​i​​​ is a vector of 
the same student characteristics as in the demand models with comformable param-
eter ​​λ​1​​​ , ​​x​j​​​ are program-type dummies with parameter ​η​ , ​1{ ​r​ i1​​  =  j}​ is an indicator if 
applicant ​i​ ranked program ​j​ first, ​​n​ j​ r​​ and ​​n​ j​ a​​ are the number of students that ranked 
and were admitted to program ​j​ , and ​​λ​2​​​ is a three-dimensional column vector. The 
admission probability depends on the program (via the program fixed effect), stu-
dent characteristics, and their interaction (via the interaction of program type and 
student characteristics). Since schools could observe the student’s rank-order lists, 
it also distinguishes between the probability of an offer from a school based on 
whether it was ranked first, and differentially so based on the number of students 
that ranked the program and were admitted.36 We estimate ​​q​i​​​ as the empirical fre-
quency of school assignments for unassigned students in the same geographic area 
defined by student ​i​’s zoned high school. For the vast majority of students, the stu-
dent’s zoned high school predicts a greater than three-quarters chance of assignment 
into a single program. The zone school is almost a perfect predictor of the school to 
which a student will be administratively assigned.

Given our estimate of ​(p, q )​ , to solve the optimization problem, we approximate 
student welfare from optimal reports by limiting the set of reports a student consid-
ers to include only a subset of programs based on her preferences. In particular, we 
assume that agents consider the set of programs which give the highest utility for a 
student given our estimate ​θ​. Given a utility vector ​​u​i​​​ for student ​i​ , let ​​J​ iℓ​​​ be the set 
of the ​ℓ​-highest utility schools for applicant ​i​. Define the optimal report, given that 
only the top ​ℓ​ choices are considered, as

(10)	​ ​r​ i​ ∗,ℓ​  ∈ ​  arg max​ 
​r​ i​ ′ ​, s.t. ​r​ ik​ ′ ​∈​J​ iℓ​​

​​​ EU(​r​ i​ ′ ​ , ​u​i​​ )​

and the corresponding student welfare as

(11)	​ ​​W ̅ ​​​ ∗,ℓ​  = ​   1 __ 
​| ′ |​ ​  ​ ∑ 

i∈′
​​​ E​[EU(​r​ i​ ∗,ℓ​, ​u​i​​ )]​.​

35 With 612 programs, this requires a search over 612 × 612 × 611 × 610 × 609 (since it is possible to submit 
an incomplete list) or more than 85 trillion possible rank orderings. 

36 Specifications that allowed the probability to differ if a program is ranked second show little evidence of a 
systematic second-choice effect. 
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As ​ℓ​ increases, the ​​J​ iℓ​​​ approaches the set of all schools. Therefore, the expected 
utility of the optimal report from this restricted set, ​​r​ i​ ∗,ℓ​​ , approaches the expected 
utility from the optimal report when considering all programs, ​​r​ i​ ∗​​. As a result, our 
approximation of ​​​W ̅ ​​​ ∗​​ improves as ​ℓ​ increases and equals the best-case average stu-
dent welfare when ​ℓ​ equals the size of the choice set. In the analysis that follows, 
we consider three different values of ​ℓ = 10, 15,​ and ​20​. We have not been able to 
compute equation (10) for larger values of ​ℓ​ , but seeing how the estimate changes 
for the three values of ​ℓ​ we can compute informs us about what to expect from larger 
values of ​ℓ​.

B. Estimates

Under the truthful reporting assumption for the uncoordinated mechanism, the 
improvement in average student welfare between the uncoordinated and coordinated 
mechanism equals 10.62 miles with a standard error of 0.64 miles. Figure 4 shows 
the distribution of welfare from the two mechanisms. The bimodal distribution of 
utility in the uncoordinated mechanism is caused by students who are assigned in 
the administrative round. In the coordinated mechanism, most of the mass in the 
first mode shifts rightward, a phenomenon driven by the sharp reduction in admin-
istrative placements. The shift in the distribution is broad-based: each student group 
shown in Table 9 experiences a positive gain from the coordinated mechanism.

We’ve seen in Table 3 that the new mechanism assigned students 0.69 miles fur-
ther from home. The magnitude of the difference in average student welfare far 
exceeds this increased travel distance. The lowest gains in Table 9 are for Manhattan 
residents, who experience no increase in travel distance. However, the welfare gains 
are not solely driven by changes in distance. For instance, Staten Island pupils only 
travel 0.34 miles further, but they experience the largest improvement of any bor-
ough at 22.62 miles. This suggests mismatch was particularly severe in Staten Island 
and is consistent with the substantially larger fraction of Staten Island residents who 
are administratively assigned in the uncoordinated mechanism.37

The welfare gains in the coordinated mechanism are larger for many disadvan-
taged groups, as seen in Table 9, a pattern consistent with Hemphill and Nauer’s 
(2009) claim that the uncoordinated mechanism advantaged high-achieving stu-
dents and those with sophisticated parents. For instance, welfare gains are larger 
for low baseline math students than for high baseline math students. Gains are also 
higher for limited English proficient students than for SHSAT test-takers. However, 
the difference for Staten Island, which has a larger white population and wealthier 
neighborhoods, plays a significant role in the fact that whites and those from rich 
neighborhoods experience larger welfare gains than blacks, Hispanics, and those 
from poorer neighborhoods.

37 The 22.62 mile difference in Staten Island is larger than the 13.82 mile difference between the neighborhood 
and utilitarian assignment in Table 8, a result that suggests the uncoordinated assignment is actually worse than 
neighborhood assignment in Staten Island. In the uncoordinated mechanism, there are 1,054 students who ranked 
Staten Island Technical, a highly sought-after screened school. Only 16 percent are assigned there, and about 
75 percent do not obtain a main round offer and are subsequently administratively assigned. In the coordinated 
mechanism, there is also a large reduction in the number assigned to four main Staten Island schools: New Dorp, 
Tottenville, Port Richmond, and Curtis. Staten Island students submitting rankings were unlikely to highly rank 
these schools. 
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The estimates discussed above may be optimistic because they are not based on 
the best-case scenario for the uncoordinated mechanism. Table 10 reports the extent 
to which truthful reporting may be biased in favor of the uncoordinated mechanism. 
Specifically, the table reports

	​ ​Δ​​ ℓ​  = ​   1 __ 
​| ′ |​ ​ ​ ∑ 

i∈′
​​​ E​[EU(​r​ i​ ∗,ℓ​, ​u​i​​)]​ − ​  1 __ 

​| ′ |​ ​ ​ ∑ 
i∈′

​​​ E​[EU(​r​ i​ T​ , ​u​i​​ )]​,​

for ​ℓ  =  10, 15,​ and ​20​ where ​​r​ i​ T​​ is the truthful report, i.e., ​​r​ ik​ T ​​ is the program with 
the ​k th​  highest utility in ​​u​i​​​, and a student only ranks a school if it is preferred to 
remaining unassigned in the main round. The difference between our approxima-
tion of optimal reporting and truthful reporting in the uncoordinated mechanism 
indicates that the range under which our behavioral assumptions about rankings 
submitted in the uncoordinated mechanism may alter the conclusions about the two 
mechanisms.38

There is a large difference in behavior between estimates that assume truth-
ful reporting and our approximation of optimal reporting. Using our approxima-
tion computed from the top ten choices, only about one-tenth of applicants submit 
the same rank ordering as they would if they submitted preferences truthfully. As 
we improve our approximation by considering larger choice sets, the fraction of 
applicants who have the same optimal report increases. Roughly half of applicants 

38 If applicants submitted truthful reports in the uncoordinated mechanism and ​(p, q)​ represents the correspond-
ing admissions probabilities, then

​​​W ̅ ​​​ T​ (​μ ′ ​)  = ​   1 _____ | ′ | ​  ​ ∑ 
i∈​​  ​ ′​

​​​ E [EU(​r​ i​ T​ , ​u​i​​ ) ] ,​

where ​​μ ′ ​​ is assignment in the uncoordinated mechanism. 
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Figure 4. Student Welfare from Uncoordinated and Coordinated Mechanism 

Notes: Distribution of utility (measured in distance units) from assignment based estimates in column 3 of Table A1 
with mean utility in 2003–2004 normalized to zero. Top and bottom 1 percent are not shown in figure. Line fit from 
Gaussian kernel with bandwidth chosen to minimize mean integrated squared error.
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submit the same rank list when optimizing over their top 10 choices compared to 
their top 15 choices. That is, ​​r​ i​ ∗, 10​  = ​ r​ i​ ∗, 15​​ for about half of the applicants. When 
we compare ​​r​ i​ ∗, 15​​ and ​​r​ i​ ∗, 20​​ , nearly three quarters have the same choices. Consistent 
with this fact, the difference between truthful and optimal reporting from a menu of 
top 20 choices is ​​Δ​​ 20​  =  2.08​ miles, which is only slightly larger than the difference 
with optimal reporting and a menu of top 15 choices ​​Δ​​ 15​  =  1.94.​ These findings 
suggest that we would not find a large difference if we were able to approximate 
optimal reports from the full choice menu.

The difference between assuming truthful reporting and our approximation of 
optimal reporting changes the 10.62 mile estimate in Table 9 by about 2.08 miles 
overall, or about 20 percent. The conclusion that the coordinated mechanism gen-
erated significant welfare improvement over the uncoordinated mechanism appears 
robust to a best-case analysis for the uncoordinated mechanism. The gains are larg-
est for groups that experienced high rates of administrative assignment in the unco-
ordinated mechanism. Nearly all of the patterns across demographic groups remain 
the same when considering optimal reports among the top 20: Manhattan residents 

Table 9—Welfare Comparison between Coordinated and Uncoordinated Mechanism

  Change in utility net distance 
(miles)

Change in distance
(miles)

Assignment Enrollment Assignment Enrollment
  (1) (2) (3) (4)

All students 10.62 9.25 0.69 0.38
Female 10.01 8.59 0.68 0.37

Asian 11.91 10.11 0.63 0.33
Black 8.97 7.83 0.74 0.45
Hispanic 10.21 9.11 0.66 0.39
White 15.46 13.03 0.56 0.22

Bronx 9.46 8.54 0.93 0.64
Brooklyn 10.57 9.49 0.52 0.33
Manhattan 5.10 4.33 0.00 −0.09
Queens 11.30 8.78 1.13 0.57
Staten Island 22.62 22.42 0.34 0.00

High baseline math 8.85 6.85 0.53 0.20
Low baseline math 10.61 9.83 0.57 0.33

Subsidized lunch 10.13 8.93 0.65 0.38
Bottom neighborhood income quartile 8.81 8.18 0.57 0.42
Top neighborhood income quartile 12.02 9.71 0.71 0.25

Special education 10.30 9.10 0.76 0.43
Limited English proficient 11.62 10.58 0.60 0.38
SHSAT test-takers 6.91 5.51 0.55 0.25

Notes: Utilities are in distance units (miles) averaged across students in the mechanism comparison sample in 
Table 1 using preference estimates in column 3 of Table 7. Utility estimates assume truthful reports. Assignment 
is the school assigned at the conclusion of the high school assignment process. Enrollment is the school student 
in which the student enrolls in October following application. If a student enrolls in the assigned school, we 
use the assigned program to compute the utility of enrollment. If a student enrolls at another school, we use the 
program-size weighted average of utilities from all programs at that school. 2002–2003 offer process reports the 
fraction of students with row characteristic first offered school finally assigned in the main round (rounds 1–3), the 
supplementary round, or the administrative round. Student distance calculated as road distance using ArcGIS. High 
baseline math students score above the seventy-fifth percentile for seventh grade relative to citywide distribution; 
low baseline math students score below the twenty-fifth percentile. Subsidized lunch, not available pre-assignment, 
comes from enrolled students as of the 2004–2005 school year. Neighborhood income is median census block group 
family income from the 2000 census.
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gained the least, while Staten Island residents gained the most; low baseline students 
gained more than SHSAT test takers. Since optimal reporting provides the best case 
for the uncoordinated mechanism and there is evidence that our approximation may 
be close to optimal reporting, the average improvement in student welfare is likely 
more than 8.6 miles.

The large gains associated with assignment offers need not correspond to dif-
ferences in matriculation patterns observed earlier, especially if the uncoordinated 
mechanism’s aftermarket is more flexible.39 Coordinating admissions occurred with 
greater central control over enrollment, which may mean the more rigid aftermar-
ket in the coordinated mechanism is actually worse for students. Table 3 shows that 
students enrolled in schools further away on average than where they were assigned 
in the uncoordinated mechanism, but the opposite pattern is true in the coordinated 
mechanism. Column 2 of Table 9 also reports the utility associated with the schools 
at which students enroll in October of the following school year. Compared to 
assignments, the gains from the coordinated mechanism measured by enrollment are 

39 Similar arguments are often made in the context of auction design in the presence of resale markets. See, e.g., 
Milgrom (2004). 

Table 10—Welfare Comparison for Alternative Selection Rules

Difference in expected utility from truthful reporting 

Top 10 Top 15 Top 20

  (1) (2) (3)

Optimal reporting computed from choice menu consisting of
All students 1.57 1.94 2.08
Female 1.51 1.85 1.98

Asian 2.18 2.68 2.86
Black 1.39 1.73 1.87
Hispanic 1.39 1.71 1.84
White 2.07 2.52 2.66

Bronx 1.43 1.76 1.89
Brooklyn 1.66 2.07 2.21
Manhattan 1.24 1.52 1.63
Queens 1.77 2.19 2.36
Staten Island 1.56 1.82 1.90

High baseline math 1.60 1.91 2.01
Low baseline math 1.53 1.93 2.10

Subsidized lunch 1.49 1.83 1.97
Bottom neighborhood income quartile 1.29 1.59 1.71
Top neighborhood income quartile 1.81 2.22 2.36

Special education 1.56 1.96 2.12
Limited English proficient 1.62 2.01 2.16
SHSAT test-takers 1.60 1.94 2.05

Notes: Utilities are in distance units (miles) averaged across students in the mechanism comparison sample in 
Table 1 using preference estimates in column 3 of Table 7. Table reports difference in expected utility between 
coordinated and uncoordinated mechanism and an estimate of optimal reports from 2002–2003 where students 
best respond to the empirical distribution given the top 10, top 15, and top 20 choices based on the preference 
distribution estimated from 2003–2004. 11.6 percent of applicants have the same application from truthful reporting 
as optimal reporting optimizing over a choice menu with the applicant’s top 10 choices. 55.8 percent of applicants 
have the same application from optimal reporting optimizing over a choice menu with the applicant’s top 10 choices 
and the applicant’s top 15 choices. 75.5 percent of applicants have the same application from optimal reporting 
optimizing over a choice menu with the applicant’s top 15 choices and the applicant’s top 20 choices.
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somewhat smaller, but they are still large. For instance, the distance-equivalent utility 
for the average student is 9.25 miles (with standard error 0.56 miles). The change in 
distance to enrolled school is also lower than the change in distance to assignment. 
Though a smaller gain from enrollment suggests some of the old mechanism’s mis-
match was undone in its aftermarket, these facts weigh against the argument that 
post-market reallocation has undone a large fraction of misallocation. Relatedly, 
since the exit rate in the coordinated mechanism is lower than in the uncoordinated 
mechanism, more students preferred accepting their coordinated offer over enrolling 
in a high school outside of the system. This finding suggests that our welfare estimate 
may understate the overall effect for all public school eighth graders.

Figure 5 summarizes the comparisons across the alternative mechanisms. The 
scale corresponds to 18.96 miles from neighborhood to utilitarian assignment. Under 
our approximation to the best-case for the uncoordinated mechanism, the difference 
between it and the coordinated mechanism represents 45 percent of the total range. This 
is more than double the possible range associated with further tweaks to the matching 
algorithm, which is at most 20 percent. This finding informs a broader debate in the 
market design literature about the importance of sophisticated market clearing mech-
anisms. In the context of auctions, Klemperer (2002, p. 170) argued that “most of the 
extensive auction literature is of second-order importance for practical auction design,” 
and that “good auction design is mostly good elementary economics.” Consistent with 
this point of view, for school matching market design, coordinating admissions pro-
duces much larger gains than algorithm refinements within the coordinated system.

VII.  Comparison for the Administratively Assigned

A key difference between mechanisms is the number of students administratively 
assigned. Table 4 shows that being administratively assigned is undesirable: stu-
dents are assigned to schools that differ substantially from the schools they ranked. 
These facts suggest that students who are administratively assigned loom large in 
comparisons between mechanisms. In this section, we investigate what our demand 
estimates imply for this group, and we also examine achievement outcomes.

Neighborhood
assignment

Uncoordinated
mechanism Student-optimal

stable

Utilitarian
optimal

Approx. best-case

Gain from no choice benchmark
to uncoordinated mechanism

(6.69 miles, 35%)

Coordinating assignment
(8.54 miles, 45%)

Potential algorithm
improvements

(3.73 miles, 20%)

0.11
miles
0.6%

0.51
miles
2.7%

2.08 miles
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3.11 miles
16.4%

Truthful

Coordinated
mechanism

Pareto efficient
stable

Figure 5. Coordinating Assignments versus Algorithm Improvements
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To begin, we estimate the likelihood that a student is administratively assigned in 
the uncoordinated mechanism based on demographic characteristics and geographic 
location. Denote ​​a​ i​​​ as an indicator if a student is administratively assigned. We fit a 
probit model:

(12)	​ ​a​ i​​  =  Φ(​z​i​​ ρ + ​π​t​​ )​,

where ​​z​i​​​ is a vector of student characteristics (same as the demand model) with 
coefficient vector ​ρ​ , ​​π​t​​​ are census tract effects for tracts indexed by ​t​ , and ​Φ​ is the 
standard normal CDF. The specification includes census tract effects to account for 
neighborhoods that may or may not have zoned high schools, which are a guaran-
teed fallback option for some students.

Equation (13) allows us to construct an index, based on each student’s observed 
characteristics, that quantifies a student’s risk of being administratively assigned. 
With this index, we compare students from the uncoordinated mechanism with stu-
dents in the coordinated mechanism that are similar on this dimension.

A. Welfare

Figure 6 shows that students who were likely to be administratively assigned in 
the old mechanism realized higher student welfare under the new mechanism. To 
produce this figure, we compute the expected utility for student ​i​ under mechanism ​
m​ , where ​m  ∈  { coordinated, uncoordinated}​ from equation (​3)​. Then we relate the 
fitted values ​​​a ˆ ​​i​​​ to this expected utility using a flexible functional form:

(13)	​ ​y​ im​​  = ​ g​ m​​ ( ​​a ̂ ​​i​​ ) + ​ϵ​im​​​,

where ​​g​ m​​​ is estimated via local linear regressions with normal kernel, with twice 
Silverman’s rule-of-thumb bandwidth.

For a grid of points ​a ∈ {​a​ 1​​, … , ​a​ K​​ }​ , Figure 6 reports the difference in ​​g​ m​​​ for the 
coordinated and uncoordinated mechanism. This provides a nonparametric estimate 
of the difference in utility for students with administratively assignment propensity  
​a​.40 Consistent with the descriptive facts in Tables 3 and 4, there is a clear monotonic 
pattern between administrative assignment propensity and welfare improvement, 
whether comparing utility differences including either distance or net of distance.

B. Test Scores and Graduation

We next examine whether the allocative differences on which we’ve focused 
influence educational outcomes. This exercise not only complements our focus on 
allocative effects, but it is also of independent interest. As far as we know, there is 
no previous evidence on how changes in school assignment mechanisms translate 
into differences in downstream educational outcomes. Comparisons between mech-
anisms are challenging because they are aggregate market-wide shocks, making 

40 These results are similar if the expected utility under the uncoordinated assignment mechanism is computed 
under the assumption of optimal reporting rather than under truthful reporting. 
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it difficult to disentangle changes in the mechanism from other contemporaneous 
changes. Our approach considers groups of students who are more likely to benefit 
from the new mechanism based their likelihood of being assigned administratively 
in the old mechanism. Because our findings suggest that effects are largest for those 
most likely to have been administratively assigned, we anticipate that the down-
stream consequences are largest for that group.

Figure 7 reports estimates of math and English Regents and graduation based on 
the probability a student is administratively assigned, constructed in the same way as 
Figure 6. The top panel shows the difference in Regents math and English achieve-
ment is largest for students who were most likely to be administratively assigned in 
the uncoordinated mechanism, and the difference in achievement mirrors the dif-
ference in utility shown in Figure 6. The bottom panel shows that these differences 
translate into differences in graduation rates, with a nearly 10 percent graduation 
increase for students who were most likely to be formerly administratively assigned.

VIII.  Model Fit and Alternate Behavioral Assumptions

A. Model Fit

Since our goal is to make statements about welfare, it is important to examine 
how well our demand estimates match the data. We first investigate within-sample 
fit to see what our estimates imply for the aggregate patterns by rank in Table 6. 
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of the parameter, we updated ξ and obtained utility draws consistent with observed rank-ordered data using a Gibbs’ 
sampler. Programs that are not ranked by anyone are assigned a draw of ξ from the unconditional distribution.
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Figure A2 reports on measures of fit using the main specification in column 3 of 
Table 7. We plot the observed versus predicted pattern of three school characteris-
tics—high math achievement, percent subsidized lunch, and percent white—as we 
go down a student’s choice list. The panels include three pairs of lines for the entire 
sample and for the low and high baseline math applicants. For these three char-
acteristics, our estimates capture the broad pattern of the choices, matching both 
the level and slope of these characteristics. For instance, the average high math 
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achievement is 10.0, and the range from the top choice to the twelfth choice is 16.7 
to 10.4. Our estimates imply that for first choices, a school’s fraction high math 
achievement is 18.4, which drops to 11.8 for the twelfth choice. Our model also 
captures high baseline math applicants’ greater sensitivity of high baseline math 
applicants to school math performance is also captured by our model. Furthermore, 
first choices for percent white are 19.1, while we predict them to be 19.8 on aver-
age, and the average percent white across New York’s schools is only 10.8. Relative 
to the average attributes of schools, the model fit is much closer to the actual ranked 
distribution.

In the last panel of Figure A2, we report the fit for distance. Here, we find that 
while the increase in distance observed for lower-ranked choices mirrors that pre-
dicted by our model, there is a greater divergence in the level of distance. This 
pattern appears in all of the models we have estimated with random coefficients. It 
is worth noting that the difference in levels between our model and the data is small 
compared to the difference between the average distance to a high school in New 
York (12.7 miles from home) and the closest school (less than a mile from home).

Berry, Levinsohn, and Pakes (2004) emphasize the importance of random coeffi-
cients models in the context of rank data for automobiles. In particular, they empha-
size that when examining the within-consumer relationship between the attributes 
of alternatives ranked first and second, models without random coefficients do a 
poor job. This concern may be particularly important in our context. For instance, 
a high correlation between the first and second ranked schools’ size may indicate 
taste for large schools. In Table A1, we report on the correlation between the first 
and second choice, the first and third choice, and the second and third choice. 
Consistent with earlier work, we see that the observed correlation between choices 
is much closer in our preferred specification than in the simpler model within sam-
ple. When we examine a more demanding out-of-sample test, which compares the 
2003–2004 preference estimates to examine the correlation pattern of choice made 
in 2004–2005, we also see that the correlation pattern in our main specification 
is closer to the observed pattern than that from a demand model without student 
interactions.

B. Behavioral Assumptions on Ranking

Motivated by the detailed information in school brochures and the incentive 
properties of the deferred acceptance algorithm, the preference estimates that we 
reported come from models that assume students are well-informed and truthful in 
the coordinated mechanism. We examine some potential objections to this assump-
tion in this subsection.

Stability of Preferences.—In an influential field experiment, Hastings and 
Weinstein (2008) sent Charlotte-area parents clear information about schools. 
The percentage of applicants who requested to change schools increased by about 
6.6 percent (with a standard error of 3.6 percent). The authors interpret this finding 
as showing that how school information is framed can influence school choices. 
In NYC, the information available to participants about school characteristics was 
similar in the uncoordinated mechanism and the first few years of the coordinated 
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mechanism. Consistent with this fact, Figure A4 shows that school market shares are 
fairly stable in the first and second year of the new mechanism.

Enrollment patterns also support the idea that choices are deliberate and contain 
welfare-relevant information. Online Appendix Table B4 reports assignment and 
enrollment decisions for students who are assigned in the main round. The table 
shows that 92.7 percent of students enroll in their assigned choice, and this num-
ber varies from 88.4 percent to 94.5 percent, depending on which choice a stu-
dent receives. Interestingly, take-up is higher for students who receive lower-ranked 
choices, while the fraction of students who exit is highest among students who 
obtain one of their top three choices. This suggests that either families are uncon-
cerned with differences among later choices and simply enroll where they obtain an 
offer or that families deliberately investigate later choices and are therefore willing 
to enroll in lower-ranked schools. If families are more uncertain about lower-ranked 
choices, then using all submitted ranks may provide a misleading account of student 
preferences. To examine how sensitive our conclusions are to this assumption, we 
fit a demand model that considers only students’ top three choices in column 4 of 
Table 7.

Assumptions about Ranking Behavior.—A second concern with treating sub-
mitted rankings as truthful is that parents rank schools using heuristics carried 
over from the previous system. Despite the theoretical motivation and the DOE’s 
advice, parents might still deviate from truth-telling because of misinformation. 
Online Appendix Table B3 shows that students are more likely to be assigned 
their last choice than their penultimate choice. This pattern may be caused by 
strategic behavior if students apply to schools that they like, and, as a safety 
option, rank last a school in which they have a higher admissions chance. For 
instance, Calsamiglia, Haeringer, and Klijn (2010) present laboratory evidence 
that a constraint on rank-order lists encourages students to rank safer options. 
However, it may also be fully consistent with truth-telling. For example, students 
usually obtain borough priority or zone priority for schools in their neighbor-
hoods. Ranking these schools improves their likelihood of being assigned to them 
in case they are rejected by their higher choices. If students consider applying 
to higher-achieving schools further away from their neighborhoods, they may as 
well stop ranking schools below their neighborhood schools once such consider-
ations no longer justify the cost of their commute. Alternatively, search costs may 
induce parents to stop their search for schools before they identify 12 schools for 
their children and rank their neighborhood school as last choice. This preference 
pattern would produce the observed assignment pattern. To examine how sensitive 
our conclusions are to this assumption, we fit demand models that drop the last 
choice of each student.

Another issue with assuming truthful preferences is that students can rank at 
most 12 programs on school applications. When a student is interested in more 
than 12 schools, she has to carefully reduce the choice set down to 12 schools. If a 
student is only interested in 11 or fewer schools, this constraint in principle should 
not influence ranking behavior (Abdulkadiroğlu, Pathak, and Roth 2009; Haeringer 
and Klijn 2009). It is a weakly dominant strategy to add an acceptable school to 
a rank-order list as long as there is room for additional schools on the application 
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form. However, 20.3 percent of students in our demand sample rank 12 schools. 
Some of these students may drop highly sought-after schools from the top of their 
choice lists because of this constraint. To examine how sensitive our conclusions are 
to this assumption, we fit a demand model that drops students who have ranked all 
12 choices.

In Table A2, we report on our evaluation of mechanism design choices under these 
alternative specifications: (i) using choices among eligible programs; (ii) using only 
the top 3 choices; (iii) excluding applicants who have ranked all 12 programs; and 
(iv) dropping applicants’ last choice. (Table A3 reports the corresponding prefer-
ence estimates.) For all demand models, the coordinated mechanism in column 2 is 
more than three quarters of the way from the neighborhood assignment to the util-
itarian assignment. It therefore appears that our conclusions on the value of choice 
relative to changes within the coordinated mechanism are robust to these alternative 
ways of using the submitted rank-order lists in the coordinated mechanism.

Panel B of Table A2 reports on how the comparison between mechanisms var-
ies with our demand specification using participants’ full ranking information. 
Given that Staten Island has the highest fraction of students who are assigned 
administratively and experiences the largest welfare gain, we re-estimate prefer-
ences excluding any applicant from Staten Island. Our conclusions are unaltered 
by this modification. The table does show, however, that preference heterogeneity 
generates a larger role for school choice compared to neighborhood assignment. 
This phenomenon can be seen by comparing the estimates from our main specifi-
cation to those from specifications without student interactions and without ran-
dom coefficients. The neighborhood assignment is more appealing according to 
those two demand models, since they are only 15.3 and 16.0 miles away from the 
utilitarian assignment, compared to 19.0 miles from the main specification.

IX.  Conclusion

The reform of NYC’s high school assignment system provides a unique oppor-
tunity to study the effects of centralizing and coordinating school admissions with 
detailed data on preferences, assignments, and enrollments. We find that the new 
coordinated mechanism is an improvement relative to the old uncoordinated mecha-
nism in a of variety dimensions. More than a third of students were assigned through 
an ad-hoc administrative process in the uncoordinated mechanism after multiple 
offers with few choices and few rounds of market-clearing left a large number of 
students without offers after the main round. Students placed in the administra-
tive round were assigned to schools with considerably worse characteristics than 
the schools they ranked. The new mechanism relieved this congestion and assigned 
more students to schools where they applied.

The coordinated mechanism assigns students 0.69 miles further from home com-
pared to the uncoordinated mechanism. However, the benefit of being assigned 
through the coordinated mechanism is significantly larger than the cost of addi-
tional travel. The gains are positive on average for students from all boroughs, 
demographic groups, and baseline achievement categories. Welfare improvements 
are present whether utility is measured based on assignments made at the end of 
the high school match or subsequent school enrollment. The largest gains are for 
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students who were more likely to be processed in the Administrative round of the 
uncoordinated mechanism. These conclusions are robust to alternative behavioral 
assumptions on preferences submitted in both the uncoordinated and coordinated 
mechanism. Cross-sectional differences in Regents test performance and graduation 
also coincide with the fact that students who were most likely to be assigned admin-
istratively in the old mechanism experienced the largest gains.

These gains are measured by a rich specification of student demand that implies 
significant estimated heterogeneity in willingness to travel for school. Understanding 
preference heterogeneity is important for measuring the allocative effects of choice. 
Our estimates reveal that the benefits of coordinated choice with deferred accep-
tance are much larger than than those associated with modifications to the assign-
ment algorithm within the coordinated mechanism. This does not imply that the 
mechanism design is not important, however, because the gap in average student 
welfare between the uncoordinated and coordinated mechanism is large.

The increase in student welfare due to the new mechanism illustrates that there are 
considerable frictions to exercising choice in poorly designed assignment systems. 
The 2003 change in NYC took place in an environment where participants already 
had some familiarity with choice since both the uncoordinated and coordinated sys-
tem had a common application. In other cities, the school choice market is even less 
well organized, without readily available information on admissions processes and 
application timelines. For instance, admissions in Boston’s growing charter sec-
tor are uncoordinated, and the schools have only recently adopted a standardized 
application timeline. Recently, there have been efforts to unify enrollment across 
school sectors (Vaznis 2013; Fox 2015). The relative value of policies such as com-
mon timelines, common applications, single versus multiple offers, sophisticated 
matching algorithms, and good information and decision aides is an interesting ave-
nue for future research.
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Figure A1. Comparison of Characteristics of Enrolled Students at Each School between 
Uncoordinated and Coordinated Mechanism

Notes: This figure reports school characteristics measured by the attributes of students enrolled at each school 
across mechanisms. The dotted line is the 45 degree line; the solid line is the least squares line fit.
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Notes: This figure reports the observed and estimated school characteristics for different student ranked choices. 
The estimates are from the main specification in column 3 of Table 7.
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Figure A3. Comparison of School Market Shares between 2002–2003 Uncoordinated Mechanism and 
2003–2004 Coordinated Mechanism

Notes: This figure plots school market shares defined as the count of applicants ranking a program at a given school 
divided by the total number of choices expressed for schools to which students can apply to in 2002–2003 and 
2003–2004. Market shares are normalized within this set to sum to one.

Figure A4. Comparison of School Market Shares between 2003–2004 Coordinated Mechanism and 
2004–2005 Coordinated Mechanism

Notes: This figure plots school market shares defined as the count of applicants ranking a program at a given school 
divided by the total number of choices expressed for schools to which students can apply in 2003–2004 and 2004–
2005. Market shares are normalized within this set to sum to one. The slope of the line fit is 0.93 and the R2 is 0.86.
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Table A1—Model Fit of Correlation between Choices across Demand Specifications

Correlation 
between

Coordinated mechanism
(2003–2004)

Coordinated mechanism
(2004–2005)

Specification Specification

School 
characteristic

Choice Choice Observed
Main 

specification
No student 
interactions Observed

Main 
specification

No student 
interactions

(1) (2) (3) (4) (5) (6) (7) (8)

Distance 1 2 0.47 0.16 0.09 0.50 0.17 0.07
1 3 0.39 0.15 0.09 0.41 0.16 0.07
2 3 0.44 0.17 0.12 0.47 0.16 0.07

High math 1 2 0.35 0.39 0.03 0.39 0.42 0.03
  performance 1 3 0.32 0.36 0.03 0.35 0.38 0.03

2 3 0.34 0.33 0.03 0.39 0.36 0.03

Percent free 1 2 0.61 0.49 0.30 0.66 0.49 0.34
  lunch 1 3 0.54 0.46 0.28 0.60 0.47 0.33

2 3 0.55 0.43 0.26 0.62 0.45 0.31

Percent white 1 2 0.55 0.55 0.29 0.60 0.56 0.37
1 3 0.47 0.52 0.26 0.54 0.54 0.36
2 3 0.48 0.48 0.24 0.56 0.51 0.35

Size of 1 2 0.29 0.60 0.07 0.34 0.59 0.09
  ninth grade 1 3 0.21 0.58 0.06 0.24 0.57 0.09

2 3 0.27 0.56 0.06 0.33 0.56 0.08

Notes: Table reports the observed correlation between the school characteristic of the choice in column 1 with the 
choice in column 2 for the main specification (shown in column 3 of Table 7) and the specification with no student 
interactions (shown in column 1 of Table 7).

Table A2—Welfare Comparisons for Alternative Demand Specifications

School choice

Neighborhood 
assignment

Coordinated 
mechanism

Student optimal 
matching

Ordinal Pareto 
efficient matching

(1) (2) (3) (4)

Panel A. Alternative behavioral assumptions
Choice among eligible programs −25.22 −5.48 −5.33 −4.68
Top three choices −19.47 −3.82 −3.70 −3.19
Excluding full lists −18.81 −3.71 −3.59 −3.09
Excluding last choice −18.70 −3.69 −3.58 −3.07

Panel B. Alternative samples and demand model interactions
Main specification −18.96 −3.73 −3.62 −3.11
Excluding Staten Island −19.68 −3.93 −3.82 −3.28
No student interactions −15.32 −3.29 −3.19 −2.76
No random coefficients −15.95 −3.22 −3.12 −2.67

Number of students reassignments 
  relative to column 2

2,344  10,881 

Notes: Utility from alternative assignments relative to utilitarian assignment computed using actual preferences and 
ignoring all school-side constraints except capacity. See notes to Table 8 for details on mechanism calculations. All 
mechanism counterfactuals used these estimates for all applicants in the mechanism comparison sample. Choice 
among eligible programs restricts each applicant’s choice set to include eligible programs. If an applicant ranked 
an ineligible program, that program is included in the choice set. Top three choices refers to estimates that only use 
the top three choices of applicants. Excluding full lists refers to estimates that only use rankings of students who 
rank fewer than 12 choices. Excluding last choice refers to estimates that use all rankings except the last one. No 
student interactions and no random coefficient refers to the specification in column 1 and 2 of Table 7, respectively.
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Table A3—Posterior Means of Preference Estimates for Alternative Demand Specifications

Models with random coefficients

No student 
interactions

Without 
random 

coefficients All choices
Top three 
choices

All except 
last choice

Students 
that ranked 
less than

12 schools

Drop
Staten 
Island 

students

Choice 
among 
eligible 

programs

(1) (2) (3) (4) (5) (6) (7) (8)

High math achievement
  Main effect 0.016 0.027 −0.029 −0.010 −0.026 −0.024 −0.032 −0.058

(0.016) (0.014) (0.018) (0.018) (0.017) (0.017) (0.045) (0.039)
  Baseline math 0.031 0.039 0.051 0.039 0.038 0.040 0.050

(0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001)
  Baseline English 0.025 0.039 0.047 0.039 0.041 0.040 0.049

(0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.002)
  Subsidized lunch −0.008 −0.016 −0.015 −0.016 −0.016 −0.018 −0.018

(0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
  Neighborhood 0.004 0.012 0.012 0.011 0.011 0.013 0.012
    income (in 1,000s) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.001)
  Limited English −0.002 0.000 −0.009 0.000 0.000 −0.001 −0.003
    proficiency (0.002) (0.003) (0.005) (0.003) (0.004) (0.003) (0.004)
  Special education −0.007 −0.006 0.003 −0.006 0.002 −0.005 −0.008

(0.002) (0.004) (0.005) (0.004) (0.004) (0.004) (0.005)

Percent subsidized lunch
  Main effect −0.085 −0.057 −0.069 −0.044 −0.064 −0.067 −0.103 −0.113

(0.007) (0.004) (0.009) (0.011) (0.006) (0.007) (0.062) (0.058)
  Asian −0.009 −0.012 −0.022 −0.012 −0.012 −0.016 −0.021

(0.002) (0.002) (0.003) (0.002) (0.003) (0.002) (0.003)
  Black 0.005 0.009 −0.004 0.008 0.007 0.005 −0.012

(0.002) (0.002) (0.003) (0.002) (0.002) (0.002) (0.002)
  Hispanic 0.031 0.043 0.049 0.043 0.043 0.041 0.043

(0.002) (0.002) (0.003) (0.002) (0.002) (0.002) (0.002)
  Subsidized lunch 0.007 0.011 0.013 0.011 0.011 0.011 0.012

(0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001)
  Neighborhood −0.004 −0.008 −0.011 −0.008 −0.009 −0.008 −0.010
    income (in 1,000s) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Size of ninth grade (in 100s)
  Main effect −0.164 −0.092 −0.113 −0.151 −0.077 −0.039 −0.188 −0.153

(0.036) (0.032) (0.048) (0.054) (0.043) (0.043) (0.192) (0.178)
  Baseline math −0.017 −0.026 −0.036 −0.026 −0.022 −0.027 −0.031

(0.002) (0.008) (0.010) (0.008) (0.009) (0.008) (0.008)
  Baseline English −0.038 −0.066 −0.108 −0.066 −0.075 −0.067 −0.087

(0.002) (0.008) (0.011) (0.008) (0.010) (0.008) (0.009)
  Subsidized lunch 0.016 0.038 0.039 0.036 0.050 0.032 0.062

(0.003) (0.012) (0.015) (0.011) (0.014) (0.013) (0.013)
  Neighborhood income −0.011 −0.012 −0.005 −0.013 −0.019 −0.010 −0.017
    (in 1,000s) (0.001) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
  Special education −0.031 −0.048 −0.087 −0.048 −0.044 −0.049 −0.058

(0.005) (0.022) (0.028) (0.021) (0.027) (0.022) (0.025)

Percent white
  Main effect −0.002 0.070 0.062 0.104 0.069 0.076 0.062 0.093

(0.014) (0.012) (0.016) (0.016) (0.014) (0.014) (0.059) (0.062)
  Asian −0.054 −0.075 −0.094 −0.075 −0.079 −0.082 −0.100

(0.002) (0.003) (0.004) (0.003) (0.003) (0.003) (0.004)
  Black −0.084 −0.124 −0.157 −0.124 −0.132 −0.139 −0.189

(0.002) (0.002) (0.003) (0.002) (0.003) (0.003) (0.003)
  Hispanic −0.047 −0.084 −0.095 −0.084 −0.089 −0.099 −0.119

(0.002) (0.002) (0.003) (0.002) (0.003) (0.003) (0.003)

(Continued )
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Table A3—Posterior Means of Preference Estimates for Alternative Demand Specifications 
(Continued)

Models with random coefficients

No student 
interactions

Without 
random 

coefficients All choices
Top three 
choices

All except 
last choice

Students 
that ranked 
less than

12 schools

Drop
Staten 
Island 

students

Choice 
among 
eligible 

programs

(1) (2) (3) (4) (5) (6) (7) (8)

Spanish language program
  Limited English proficient 14.042 15.437 16.004 15.415 16.213 15.769 20.022

(0.282) (0.307) (0.543) (0.312) (0.378) (0.328) (0.412)
  Limited English proficient x −9.452 −10.502 −10.184 −10.509 −10.889 −10.765 −14.152

(0.407) (0.445) (0.672) (0.449) (0.503) (0.472) (0.577)

Asian language program
  Limited English proficient 10.623 11.814 12.466 11.811 11.994 12.066 15.221

(0.108) (0.120) (0.219) (0.119) (0.152) (0.125) (0.158)
  Limited English proficient x −6.373 −7.091 −8.299 −7.086 −6.870 −7.259 −8.960

Other language program (0.342) (0.378) (0.657) (0.385) (0.417) (0.390) (0.490)
  Limited English proficient 6.538 7.448 8.538 7.450 7.656 7.597 9.873

(0.183) (0.204) (0.320) (0.206) (0.249) (0.210) (0.269)

Standard deviation of ε 7.226 7.385 7.858 8.032 7.857 7.869 8.025 10.059
(0.010) (0.011) (0.013) (0.022) (0.013) (0.015) (0.015) (0.022)

Standard deviation of ξ 3.519 2.954 3.676 3.936 3.609 3.554 4.155 5.151
(0.121) (0.100) (0.129) (0.131) (0.121) (0.119) (0.817) (0.650)

Random coefficients (covariances)
  Size of ninth grade (in 100s) 1.584 2.351 1.584 1.967 1.651 1.837

(0.009) (0.016) (0.009) (0.013) (0.010) (0.012)
    Percent white −0.006 −0.010 −0.006 −0.005 −0.007 −0.009

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
    Percent subsidized lunch −0.002 −0.004 −0.002 −0.003 −0.003 −0.002

(0.000) (0.001) (0.000) (0.000) (0.000) (0.000)
    High math achievement −0.011 −0.015 −0.011 −0.009 −0.012 −0.015

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
  Percent white 0.008 0.010 0.008 0.008 0.009 0.013

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
    Percent subsidized lunch −0.001 0.000 −0.001 −0.001 −0.001 −0.002

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
    High math achievement 0.005 0.006 0.005 0.004 0.005 0.007

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
  Percent subsidized lunch 0.002 0.005 0.002 0.003 0.003 0.003

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
    High math achievement 0.000 0.000 0.000 0.000 0.000 −0.001

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
  High math achievement 0.016 0.021 0.016 0.016 0.017 0.022

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Program type dummies X X X X X X
Program specialty dummies X X X X X X

Number of students   69,907   69,907   69,907   69,907 69,907   55,695   65,518   69,907
Number of ranks 542,666 542,666 542,666 197,245 55,323 372,122 530,861 542,666

Notes: Estimates of demand system with submitted ranks over 497 program choices in 235 schools. All columns use all students. 
See Table 7 and Table A2 for additional details.
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